1
|
Kong W, Ding G, Zhang Q, Yuan X, Zhu Y, Ma L, Cai C, Shi Y, Zhang Q, Xu Z. Identification and characterization of a novel reovirus strain isolated fromgrass carp (Ctenopharyngodon idella). Virol J 2025; 22:92. [PMID: 40176094 PMCID: PMC11966907 DOI: 10.1186/s12985-025-02716-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/27/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Grass carp (Ctenopharyngodon idella) hemorrhagic disease (GCHD) is a devastating disease that leads to substantial economic losses in the freshwater aquaculture industry. RESULTS In this study, we investigated an outbreak of GCHD in large-scale grass carp and identified GCRV-II infection. Notably, hematoxylin and eosin (H&E) staining showed severe histopathological changes in the spleen, head kidney, gill, and gut. Furthermore, we sequenced the entire genome of the viral isolate, and multiple sequence alignment and phylogenetic tree analysis indicated that it represents a novel strain of GCRV-II, provisionally named GCRV-YX246. Finally, artificial infection experiments confirmed the strong virulence, high mortality, and severe pathological damage caused by GCRV-YX246, as demonstrated through artificial infection. CONCLUSIONS A novel reovirus from large-scale grass carp cultured in China was identified. The discovery of this novel GCRV-II strain enhances our understanding of GCRV-II biology and provides valuable insights for developing more effective prevention strategies for GCHD.
Collapse
Affiliation(s)
- Weiguang Kong
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Guangyi Ding
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Qiushi Zhang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xinjie Yuan
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yuchao Zhu
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Liyuan Ma
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Chang Cai
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yong Shi
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Qianqian Zhang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhen Xu
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
2
|
Cui N, Lei T, Liang L, Zhou S, Jin X, Shi Y, Zhao Z, Song X. Type I interferon (IFNd) enhanced the innate immune response and lipid droplets (LDs) formation in obscure puffer Takifugu obscurus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 163:105321. [PMID: 39855437 DOI: 10.1016/j.dci.2025.105321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/03/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
As one member of type I IFN, IFNd showed huge distinctive responses and activity during the viral or bacterial infection in various fish species. Our previous study identified IFNd from obscure puffer Takifugu obscurus (ToIFNd), and the function and regulation of ToIFNd was further investigated in the present study. The transcriptional levels of ToIFNd were significantly induced post bacteria Vibrio harveyi and virus simulator Poly (I:C) stimulation in the head kidney. In addition, recombinant ToIFNd (rToIFNd) treatment enhanced the expressions of numerous interferon stimulated genes (ISGs, such as Mx1, PKR1, and PKR2) and several immune effectors (such as Il1, faslg, and tnf14) both in the in vivo and in vitro experiments. The expression patterns of interferon regulatory factors (IRFs) post rToIFNd stimulation suggesting that IRF3, 7, and 8 showed strong response and might play critical role during the ToIFNd mediated signal transduction. Remarkably, we firstly found that rToIFNd stimulation promoted lipid droplets (LDs) formation in liver, which was further confirmed by the increased number of LDs by TEM, up-regulated expressions of LDs marker PLIN3, as well as the transcripts of genes involved in the transport and synthesis of neutral lipids. These results corroborate the antibacterial and antiviral function of ToIFNd in obscure puffer, and revealed that ToIFNd might play immune regulatory role by medicating LDs formation, which will contribute to explore the functional characteristics of IFN system.
Collapse
Affiliation(s)
- Nan Cui
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Tianying Lei
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Lanyue Liang
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Shan Zhou
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Xingkun Jin
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Yan Shi
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Zhe Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Xiaorui Song
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210024, China.
| |
Collapse
|
3
|
Wang XW, Zhang R, Liu LL, Li HJ, Zhu H. Expression analysis and antiviral activity of koi carp (Cyprinus carpio) viperin against carp edema virus (CEV). FISH & SHELLFISH IMMUNOLOGY 2024; 148:109519. [PMID: 38508540 DOI: 10.1016/j.fsi.2024.109519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/25/2024] [Accepted: 03/18/2024] [Indexed: 03/22/2024]
Abstract
Viperin, also known as radical S-Adenosyl methionine domain containing 2 (RSAD2), is an IFN stimulated protein that plays crucial roles in innate immunity. Here, we identified a viperin gene from the koi carp (Cyprinus carpio) (kVip). The ORF of kVip is 1047 bp in length, encoding a polypeptide of 348 amino acids with neither signal peptide nor transmembrane protein. The predicted molecular weight is 40.37 kDa and the isoelectric point is 7.7. Multiple sequence alignment indicated that putative kVip contains a radical SAM superfamily domain and a conserved C-terminal region. kVip was highly expressed in the skin and spleen of healthy koi carps, and significantly stimulated in both natural and artificial CEV-infected koi carps. In vitro immune stimulation analysis showed that both extracellular and intracellular poly (I: C) or poly (dA: dT) caused a significant increase in kVip expression of spleen cells. Furthermore, intraperitoneal injection of recombinant kVip (rkVip) not only reduced the CEV load in the gills, but also improved the survival of koi carps following CEV challenge. Additionally, rkVip administration effectively regulated inflammatory and anti-inflammatory cytokines (IL-6, IL-1β, TNF-α, IL-10) and interferon-related molecules (cGAS, STING, MyD88, IFN-γ, IFN-α, IRF3 and IRF9). Collectively, kVip effectively responded to CEV infection and exerted antiviral function against CEV partially by regulation of inflammatory and interferon responses.
Collapse
Affiliation(s)
- Xiao-Wen Wang
- Beijing Key Laboratory of Fishery Biotechnology & Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100068, China; National Freshwater Fisheries Engineering Technology Research Center, Beijing, 100068, China
| | - Rong Zhang
- Beijing Key Laboratory of Fishery Biotechnology & Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100068, China; National Freshwater Fisheries Engineering Technology Research Center, Beijing, 100068, China
| | - Li-Li Liu
- Beijing Key Laboratory of Fishery Biotechnology & Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100068, China; National Freshwater Fisheries Engineering Technology Research Center, Beijing, 100068, China
| | - Hui-Juan Li
- Beijing Key Laboratory of Fishery Biotechnology & Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100068, China; National Freshwater Fisheries Engineering Technology Research Center, Beijing, 100068, China
| | - Hua Zhu
- Beijing Key Laboratory of Fishery Biotechnology & Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100068, China; National Freshwater Fisheries Engineering Technology Research Center, Beijing, 100068, China.
| |
Collapse
|
4
|
Huang L, Zhu X, Kuang J, Li B, Yu Q, Liu M, Li B, Guo H, Li P. Molecular and functional characterization of viperin in golden pompano, Trachinotus ovatus. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109098. [PMID: 37758099 DOI: 10.1016/j.fsi.2023.109098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
The radical S-adenosyl methionine domain-containing protein 2 (RSAD2), also known as viperin, plays a momentous and multifaceted role in antiviral immunity. However, the function of viperin is uninvestigated in golden pompano, Trachinotus ovatus. In the present study, a viperin homolog, named To-viperin, was cloned and characterized from golden pompano, and its role in response to grouper iridovirus (SGIV) and nervous necrosis virus (NNV) infection was investigated. The whole open reading frame (ORF) of To-viperin was composed of 1050 bp and encoded a polypeptide of 349 amino acids with 70.66%-83.51% identity with the known viperin homologs from other fish species. A variable N-terminal domain, a highly conserved C-terminal domain, and a conserved middle radical SAM domain (aa 61-271) with the three-cysteine motif CxxCxxC was found in To-viperin sequence. Expression analysis showed that To-viperin was constitutively expressed in all tested organs and was located mainly in the ER of golden pompano cells. Treatments with SGIV, poly I: C, or NNV could induce the up-regulation of viperin to varying degrees. The ectopic expression of To-viperin in vitro significantly reduced the viral titer of SGIV and NNV. Furthermore, To-viperin overexpression enhanced the expression of IFNc, IRF3, and ISG15 genes as well as, to a lesser extent, the IL-6 gene. In summary, our results suggested that the function of viperin is likely to be conserved in fish specise, as observed in other vertebrates, shedding light on the evolutionary conservation of viperin.
Collapse
Affiliation(s)
- Lin Huang
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, PR China
| | - Xiaowen Zhu
- Guangdong Key Laboratory of Aquatic Animal Disease Prevention and Control and Healthy Aquaculture, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang, PR China
| | - Jihui Kuang
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, PR China; School of Resources, Environment and Materials, Guangxi University, Nanning, PR China
| | - Bohuan Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, PR China
| | - Qing Yu
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, PR China
| | - Mingzhu Liu
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, PR China
| | - Bingzheng Li
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, PR China; College of Food Science and Quality Engineering, Nanning University, Nanning, PR China
| | - Hui Guo
- Guangdong Key Laboratory of Aquatic Animal Disease Prevention and Control and Healthy Aquaculture, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang, PR China.
| | - Pengfei Li
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, PR China; Guangdong Key Laboratory of Aquatic Animal Disease Prevention and Control and Healthy Aquaculture, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang, PR China; School of Resources, Environment and Materials, Guangxi University, Nanning, PR China; College of Food Science and Quality Engineering, Nanning University, Nanning, PR China.
| |
Collapse
|
5
|
Shanaka KASN, Jung S, Madushani KP, Wijerathna HMSM, Neranjan Tharuka MD, Kim MJ, Lee J. Generation of viperin-knockout zebrafish by CRISPR/Cas9-mediated genome engineering and the effect of this mutation under VHSV infection. FISH & SHELLFISH IMMUNOLOGY 2022; 131:672-681. [PMID: 36309322 DOI: 10.1016/j.fsi.2022.10.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Viperin is an important virus-induced protein in animals that negatively participates in RNA viral replication and transcription. The reactive machinery of viperin suggests that it produces a regulatory molecule ddhCTP, which may affect immune regulation. In this study, we investigated the expression pattern of viperin in larval and adult stages of zebrafish by whole-mount in situ hybridization and reverse transcription-quantitative PCR (RT-qPCR). To elucidate the function of viperin, we generated a zebrafish knockout model using the CRISPR/Cas9 method and evaluated the mutation's effects under viral hemorrhagic septicemia virus (VHSV) infections. In zebrafish larvae, viperin was expressed in the brain region, eye, and pharynx, which was confirmed by cryosectioning. In adult zebrafish, blood cells showed the highest levels of viperin expression. In 5 dpf fish challenged with VHSV, the expression of the viral NP protein was significantly enhanced in viperin-/- compared to wild-type fish. In vitro VHSV propagation analysis indicated comparatively higher levels of virus propagation in viperin-/- fish. Mortality analysis confirmed higher mortality rates, and interferon gene expression analysis showed a strong upregulation of interferon (ifn)φ1 and 3 gene in viperin-/- fish infected with VHSV. This study describes the successful generation of a viperin-knockout model and the role of viperin during VHSV infections.
Collapse
Affiliation(s)
- K A S N Shanaka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self, Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self, Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - K P Madushani
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self, Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - H M S M Wijerathna
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self, Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - M D Neranjan Tharuka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self, Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Myoung-Jin Kim
- Nakdonggang National Institute of Biological Resources, Sangju-si, Gyeongsangbuk-do, 37242, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self, Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
6
|
Raji Sathyan K, Premraj A, Thavarool Puthiyedathu S. Antiviral radical SAM enzyme viperin homologue from Asian seabass (Lates calcarifer): Molecular characterisation and expression analysis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 136:104499. [PMID: 35931216 DOI: 10.1016/j.dci.2022.104499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
The host response to virus infection is mediated by the interferon system and its workhorse effector proteins like Interferon-stimulated genes (ISGs). Viperin is an interferon-inducible antiviral protein. In the present study, an antiviral radical SAM enzyme, viperin homologue, was cloned and characterised from teleost, Asian seabass (Lates calcarifer). This cloned viperin cDNA encodes 351 amino acid protein with predicted N-terminal amphipathic alpha-helix, conserved radical S-adenosyl l-methionine (SAM) domain with CxxxCxxC motif and a highly conserved C-terminal domain. Lcviperin gene consists of six exons and five introns. The secondary structure contains nine alpha helices and beta sheets. Viperin from Lates is evolutionarily conserved and shares about 89% identity with Seriola dumerili and 70% identity with human orthologue. Poly(I:C) and RGNNV upregulated Lcviperin during in-vivo challenge studies, providing insight into its antiviral properties. Lates antiviral effector genes like viperin could help in elucidating the host-virus protein interactions and allow the development of improved antiviral strategies against pathogens like betanodavirus that devastate aquaculture of the species.
Collapse
Affiliation(s)
- Krishnapriya Raji Sathyan
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682 016, Kerala, India
| | - Avinash Premraj
- Camel Biotechnology Centre, Presidential Camels and Camel Racing Affairs Centre, Department of the President's Affairs, PO Box 17292, Al Ain, United Arab Emirates
| | - Sajeevan Thavarool Puthiyedathu
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682 016, Kerala, India.
| |
Collapse
|
7
|
Dual-Targeting Polymer Nanoparticles Efficiently Deliver DNA Vaccine and Induce Robust Prophylactic Immunity against Spring Viremia of Carp Virus Infection. Microbiol Spectr 2022; 10:e0308522. [PMID: 36073822 PMCID: PMC9603200 DOI: 10.1128/spectrum.03085-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Spring viremia of carp virus (SVCV) is highly contagious and lethal to most cyprinid fish, causing serious economic losses to the carp aquaculture industry. Although DNA vaccines can generate long-term humoral and cellular immune responses, which provide protective immunity against SVCV, the major drawback of DNA vaccines is their low immunogenicity in clinical tests. Here, we construct a dual-targeted polymer DNA vaccine delivery platform (MCS-PCHG) by using mannosylated chitosan to encapsulate the poly(d,l-lactide-co-glycolide)-loaded DNA vaccine containing the heavy-chain CH3 region (CH3) of common carp IgM and the antigenic domain (G131c). The developed nanovaccine delivery platform showed good biocompatibility in vivo and in vitro. With the modification of the mannose moiety and the modification of CH3, the constructed MCS-PCHG could efficiently activate the maturation of antigen-presenting cells. Moreover, we observe significantly high level of immune-related genes expression, serum antigen-specific IgM, SVCV-neutralizing antibody titers in fish vaccinated with MCS-PCHG. Next, the protective efficacy of MCS-PCHG was further evaluated by challenge test. The highest survival rate (ca. 84%) was observed in fish vaccinated with MCS-PCHG after challenging with SVCV. This study presents a novel design for smart, dual-targeted polymer nanoparticles, which are inherently biocompatible, promising for targeted vaccine delivery. IMPORTANCE Spring viremia of carp virus (SVCV) affects global cyprinid fish farming industry, with no available commercial vaccine. Herein, we developed a dual-targeting polymer nanovaccine (MCS-PCHG) by using mannose and common carp IgM heavy chain CH3 region (CH3) as antigen presenting cell (APCs) recognition moiety, attaining the effective delivery of antigen. This dual-targeting polymer vaccine can efficiently activate the APCs, and further induce robust and durable adaptive immune response with good protection against SVCV infection. Our study provides valuable theoretical basis for developing efficient vaccine against infectious diseases in aquaculture.
Collapse
|
8
|
Dong ZR, Mu QJ, Kong WG, Qin DC, Zhou Y, Wang XY, Cheng GF, Luo YZ, Ai TS, Xu Z. Gut mucosal immune responses and protective efficacy of oral yeast Cyprinid herpesvirus 2 (CyHV-2) vaccine in Carassius auratus gibelio. Front Immunol 2022; 13:932722. [PMID: 35967417 PMCID: PMC9373009 DOI: 10.3389/fimmu.2022.932722] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/04/2022] [Indexed: 12/11/2022] Open
Abstract
Cyprinid herpesvirus 2 (CyHV-2) causes herpesviral hematopoietic necrosis (HVHN) disease outbreaks in farmed Cyprinid fish, which leads to serious economic losses worldwide. Although oral vaccination is considered the most suitable strategy for preventing infectious diseases in farmed fish, so far there is no commercial oral vaccine available for controlling HVNN in gibel carp (C. auratus gibelio). In the present study, we developed for the first time an oral vaccine against CyHV-2 by using yeast cell surface display technology and then investigated the effect of this vaccine in gibel carp. Furthermore, the protective efficacy was evaluated by comparing the immune response of a single vaccination with that of a booster vaccination (booster-vaccinated once 2 weeks after the initial vaccination). Critically, the activities of immune-related enzymes and genes expression in vaccine group, especially in the booster vaccine group, were higher than those in the control group. Moreover, strong innate and adaptive immune responses could be elicited in both mucosal and systemic tissues after receipt of the oral yeast vaccine. To further understand the protective efficacy of this vaccine in gibel carp, we successfully developed the challenge model with CyHV-2. Our results showed the relative percent survival was 66.7% in the booster vaccine group, indicating this oral yeast vaccine is a promising vaccine for controlling CyHV-2 disease in gibel carp aquaculture.
Collapse
Affiliation(s)
- Zhao-Ran Dong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Qing-Jiang Mu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Wei-Guang Kong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Da-Cheng Qin
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Xin-You Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Gao-Feng Cheng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yang-Zhi Luo
- Wuhan Chopper Fishery Bio-Tech Co., Ltd, Wuhan Academy of Agricultural Science, Wuhan, China
| | - Tao-Shan Ai
- Wuhan Chopper Fishery Bio-Tech Co., Ltd, Wuhan Academy of Agricultural Science, Wuhan, China
| | - Zhen Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Zhen Xu,
| |
Collapse
|
9
|
Chen SN, Gan Z, Hou J, Yang YC, Huang L, Huang B, Wang S, Nie P. Identification and establishment of type IV interferon and the characterization of interferon-υ including its class II cytokine receptors IFN-υR1 and IL-10R2. Nat Commun 2022; 13:999. [PMID: 35194032 PMCID: PMC8863823 DOI: 10.1038/s41467-022-28645-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 01/26/2022] [Indexed: 11/10/2022] Open
Abstract
Interferons (IFNs) are critical soluble factors in the immune system and are composed of three types, (I, II and III) that utilize different receptor complexes IFN-αR1/IFN-αR2, IFN-γR1/IFN-γR2, and IFN-λR1/IL-10R2, respectively. Here we identify IFN-υ from the genomic sequences of vertebrates. The members of class II cytokine receptors, IFN-υR1 and IL-10R2, are identified as the receptor complex of IFN-υ, and are associated with IFN-υ stimulated gene expression and antiviral activity in zebrafish (Danio rerio) and African clawed frog (Xenopus laevis). IFN-υ and IFN-υR1 are separately located at unique and highly conserved loci, being distinct from all other three-type IFNs. IFN-υ and IFN-υR1 are phylogenetically clustered with class II cytokines and class II cytokine receptors, respectively. Therefore, the finding of this IFN ligand-receptor system may be considered as a type IV IFN, in addition to the currently recognized three types of IFNs in vertebrates. Interferons are critical soluble components of the inflammatory process and are composed of three types with associated receptor complexes. Here the authors identify and characterise the type IV interferon, IFN-υ, and identify its associated receptors, denote functionality during in vivo infection and ascertain its genomic localisation.
Collapse
Affiliation(s)
- Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China.,Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China.,Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Zhen Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Jing Hou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Yue Cong Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Lin Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Bei Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China.,College of Fisheries, Jimei University, 43 Yindou Road, Xiamen, Fujian, 361021, China
| | - Su Wang
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, 266237, China.,School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China. .,Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China. .,Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China. .,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, 266237, China. .,School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266109, China.
| |
Collapse
|
10
|
Wei Z, Wen Q, Li W, Yuan X, Fu Q, Cui Z, Chen X. ATG12 is involved in the antiviral immune response in large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2021; 119:262-271. [PMID: 34653664 DOI: 10.1016/j.fsi.2021.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/02/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
ATG12, a core autophagy protein, forms a conjugate with ATG5 to promote the formation of autophagosome membrane, and plays an important role in antiviral immunity. However, little is known about the function of ATG12 in fish. Here, we cloned the open reading frame (ORF) of large yellow croaker (Larimichthys crocea) ATG12 (LcATG12), which is 354 nucleotides long and encodes a protein of 117 amino acids. The deduced LcATG12 possesses a conserved APG12 domain (residues 31 to 117), and shares 91.45% identities with ATG12 in orange-spotted grouper (Epinephelus coioides). LcATG12 was constitutively expressed in all examined tissues, with the highest level in intestine. Its transcript was also detected in primary head kidney granulocytes (PKG), primary head kidney macrophages (PKM), primary head kidney lymphocytes (PKL), and large yellow croaker head kidney (LYCK) cell line, and was significantly up-regulated by poly(I:C). LcATG12 was regularly distributed in both cytoplasm and nucleus of LYCK and epithelioma papulosum cyprinid (EPC) cells. Overexpression of LcATG12 in EPC cells significantly inhibited the replication of spring viremia of carp virus (SVCV). Further studies reveled that LcATG12 could induce the occurrence of autophagy in LYCK cells. Furthermore, overexpression of LcATG12 in LYCK cells increased the expression levels of large yellow croaker type I interferons (IFNs, IFNc, IFNd, and IFNh), IFN regulatory factors (IRF3 and IRF7), and IFN-stimulated genes (PKR, Mx, and Viperin). All these data indicated that LcATG12 plays a role in the antiviral immunity possibly by inducing both autophagy and type I IFN response in large yellow croaker.
Collapse
Affiliation(s)
- Zuyun Wei
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiao Wen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wanru Li
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoqin Yuan
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiuling Fu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhengwei Cui
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
11
|
Andresen AMS, Gjøen T. Chitosan nanoparticle formulation attenuates poly (I:C) induced innate immune responses against inactivated virus vaccine in Atlantic salmon (Salmo salar). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 40:100915. [PMID: 34634571 DOI: 10.1016/j.cbd.2021.100915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Many vaccine formulations, in particular vaccines based on inactivated virus, needs adjuvants to boost immunogenicity. In aquaculture, mineral and plant oil are used as adjuvant in commercial vaccines, and the advent of oil-adjuvanted vaccines was crucial to aquaculture development. Nevertheless, some of these approved vaccines display suboptimal performance in the field compared to experimental conditions. Therefore, there is a need to improve adjuvants and delivery methods for fish vaccines against viruses. We used RNA sequencing of Atlantic salmon head kidney to analyse the difference in gene expression 24 h after injection of different experimental vaccine formulations. We compared five different formulations in addition to a PBS control: inactivated virus alone (group V), soluble poly (I:C) (group P), nanoparticles containing poly (I:C) (group N), soluble poly (I:C) + inactivated virus (group PV) and finally nanoparticles containing poly (I:C) + inactivated virus (group NV). Our results showed poly (I:C)'s ability as adjuvant and its capacity influence innate immune genes expression in Atlantic salmon. Soluble poly (I:C) upregulated multiple immune related genes and was more effective compared to poly (I:C) formulated into chitosan nanoparticles (more than 10 fold increase in differentially expressed genes, DEGs). However, inclusion of inactivated ISA virus in the nanoparticle vaccine, increased the number of DEGs fivefold suggesting a synergistic effect of adjuvant and antigen. Our results indicate that the way poly (I:C) is formulated and the presence of antigen is important for the magnitude of the innate immune response in Atlantic salmon.
Collapse
Affiliation(s)
| | - Tor Gjøen
- Department of Pharmacy, Section for Pharmacology and Pharmaceutical Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
12
|
Gao Y, Li C, Shi L, Wang F, Ye J, Lu YA, Liu XQ. Viperin_sv1 promotes RIG-I expression and suppresses SVCV replication through its radical SAM domain. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104166. [PMID: 34116117 DOI: 10.1016/j.dci.2021.104166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/28/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
SVCV infection is known to activate the host's innate immune responses, including the production of interferon (IFN) and interferon-stimulated genes (ISGs). Viperin_sv1 is a novel splice variant of viperin, which is induced during SVCV infection and proves to positively regulate the IFN activation and production. However, the underlying mechanism remains unsolved. In this study, the P protein of SVCV was identified to be the key to induce the mRNA modification and production of viperin_sv1 during the virus infection. Besides, Viperin_sv1 was able to trigger the RLR signaling cascades to activate type-1 interferon response. Additional analysis revealed that viperin_sv1 promoted the stability and function of RIG-I, which result in the production of IFN and ISGs. Moreover, the central SAM domain of viperin_sv1 was demonstrated to be essential for regulating RIG-I protein expression and inducing IFN production. Furthermore, this study also showed that SVCV replication could be inhibited by the viperin_sv1 SAM domain. In conclusion, our study demonstrates that viperin_sv1 reduces the replication of SVCV by promoting the RIG-I protein expression. Our findings identified the antiviral function played by the SAM domain of viperin_sv1 and suggested an antiviral mechanism that is conserved among different species.
Collapse
Affiliation(s)
- Yan Gao
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, Hubei, China
| | - Chen Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, Hubei, China
| | - Lin Shi
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, Hubei, China
| | - Fang Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, Hubei, China
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yuan-An Lu
- Department of Public Health Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Xue-Qin Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, Hubei, China.
| |
Collapse
|
13
|
Figueiredo F, Kristoffersen H, Bhat S, Zhang Z, Godfroid J, Peruzzi S, Præbel K, Dalmo RA, Xu X. Immunostimulant Bathing Influences the Expression of Immune- and Metabolic-Related Genes in Atlantic Salmon Alevins. BIOLOGY 2021; 10:980. [PMID: 34681079 PMCID: PMC8533105 DOI: 10.3390/biology10100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/03/2022]
Abstract
Disease resistance of fish larvae may be improved by bath treatment in water containing immunostimulants. Pattern recognition receptors, such as TLR3, TLR7, and MDA5, work as an "early warning" to induce intracellular signaling and facilitate an antiviral response. A single bath of newly hatched larvae, with Astragalus, upregulated the expression of IFNα, IFNc, ISG15, MDA5, PKR, STAT1, TLR3, and TLR7 immune genes, on day 4 post treatment. Similar patterns were observed for Hyaluronic acid and Poly I:C. Increased expression was observed for ISG15, MDA5, MX, STAT1, TLR3, TLR7, and RSAD2, on day 9 for Imiquimod. Metabolic gene expression was stimulated on day 1 after immunostimulant bath in ULK1, MYC, SLC2A1, HIF1A, MTOR, and SIX1, in Astragalus, Hyaluronic acid, and Imiquimod. Expression of NOS2 in Poly I:C was an average fourfold above that of control at the same timepoint. Throughout the remaining sampling days (2, 4, 9, 16, 32, and 45 days post immunostimulant bath), NOS2 and IL1B were consistently overexpressed. In conclusion, the immunostimulants induced antiviral gene responses, indicating that a single bath at an early life stage could enable a more robust antiviral defense in fish. Additionally, it was demonstrated, based on gene expression data, that cell metabolism was perturbed, where several metabolic genes were co-regulated with innate antiviral genes.
Collapse
Affiliation(s)
- Filipe Figueiredo
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (H.K.); (S.B.); (K.P.); (X.X.)
| | - Harald Kristoffersen
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (H.K.); (S.B.); (K.P.); (X.X.)
| | - Shripathi Bhat
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (H.K.); (S.B.); (K.P.); (X.X.)
| | - Zuobing Zhang
- College of Life Sciences, Shanxi University, Taiyuan 030006, China;
| | - Jacques Godfroid
- Department of Arctic and Marine Biology, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (J.G.); (S.P.)
| | - Stefano Peruzzi
- Department of Arctic and Marine Biology, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (J.G.); (S.P.)
| | - Kim Præbel
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (H.K.); (S.B.); (K.P.); (X.X.)
| | - Roy Ambli Dalmo
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (H.K.); (S.B.); (K.P.); (X.X.)
| | - Xiaoli Xu
- Norwegian College of Fishery Science, UiT—The Arctic University of Norway, N-9019 Tromsø, Norway; (H.K.); (S.B.); (K.P.); (X.X.)
| |
Collapse
|
14
|
Mou CY, Li S, Lu LF, Wang Y, Yu P, Li Z, Tong JF, Zhang QY, Wang ZW, Zhang XJ, Wang GX, Zhou L, Gui JF. Divergent Antiviral Mechanisms of Two Viperin Homeologs in a Recurrent Polyploid Fish. Front Immunol 2021; 12:702971. [PMID: 34531856 PMCID: PMC8438203 DOI: 10.3389/fimmu.2021.702971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/09/2021] [Indexed: 12/03/2022] Open
Abstract
Polyploidy and subsequent diploidization provide genomic opportunities for evolutionary innovations and adaptation. The researches on duplicated gene evolutionary fates in recurrent polyploids have seriously lagged behind that in paleopolyploids with diploidized genomes. Moreover, the antiviral mechanisms of Viperin remain largely unclear in fish. Here, we elaborate the distinct antiviral mechanisms of two viperin homeologs (Cgviperin-A and Cgviperin-B) in auto-allo-hexaploid gibel carp (Carassius gibelio). First, Cgviperin-A and Cgviperin-B showed differential and biased expression patterns in gibel carp adult tissues. Subsequently, using co-immunoprecipitation (Co-IP) screening analysis, both CgViperin-A and CgViperin-B were found to interact with crucian carp (C. auratus) herpesvirus (CaHV) open reading frame 46 right (ORF46R) protein, a negative herpesvirus regulator of host interferon (IFN) production, and to promote the proteasomal degradation of ORF46R via decreasing K63-linked ubiquitination. Additionally, CgViperin-B also mediated ORF46R degradation through autophagosome pathway, which was absent in CgViperin-A. Moreover, we found that the N-terminal α-helix domain was necessary for the localization of CgViperin-A and CgViperin-B at the endoplasmic reticulum (ER), and the C-terminal domain of CgViperin-A and CgViperin-B was indispensable for the interaction with degradation of ORF46R. Therefore, the current findings clarify the divergent antiviral mechanisms of the duplicated viperin homeologs in a recurrent polyploid fish, which will shed light on the evolution of teleost duplicated genes.
Collapse
Affiliation(s)
- Cheng-Yan Mou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shun Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Long-Feng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Peng Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Jin-Feng Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Guang-Xin Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
15
|
Stosik M, Tokarz-Deptuła B, Deptuła W. Type I interferons in ray-finned fish (Actinopterygii). FISH & SHELLFISH IMMUNOLOGY 2021; 110:35-43. [PMID: 33387659 DOI: 10.1016/j.fsi.2020.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Interferons (IFNs) are proteins of vital importance in the body's immune response. They are formed in different types of cells and have been found in fish, amphibians, reptiles and mammals. Two types of IFN have been found in ray-finned fish (Superclass: Osteichthyes, Class: Actinopterygii) so far, i.e. IFN type I (IFN I) and IFN type II (IFN II), while the presence of IFN type III (IFN III), which is found in phylogenetically older cartilaginous fishes, was not confirmed in this taxonomic group of vertebrates. Currently, type I IFN in Actinopterygii is divided into three groups, I, II and III, within which there are subgroups. These cytokines in these animals show primarily antiviral activity through the use of a signalling pathway JAK-STAT (Janus kinases - Signal transducer and activator of transcription) and the ability to induce ISG (IFN-stimulated genes) expression, which contain ISRE complexes (IFN-stimulated response elements). On the other hand, in Perciformes and Cyprinidae, it was found that type I/I interferons also participate in the antimicrobial response, inter alia, by inducing the expression of the inducible nitric oxide synthase (iNOS) and influencing the production of reactive oxygen species (ROS) in cells carrying out the phagocytosis process.
Collapse
Affiliation(s)
- Michał Stosik
- Faculty of Biological Sciences, Institute of Biological Sciences, University of Zielona Góra, Poland.
| | | | - Wiesław Deptuła
- Faculty of Biological and Veterinary Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Poland
| |
Collapse
|
16
|
Recombinant Baculovirus-Produced Grass Carp Reovirus Virus-Like Particles as Vaccine Candidate That Provides Protective Immunity against GCRV Genotype II Infection in Grass Carp. Vaccines (Basel) 2021; 9:vaccines9010053. [PMID: 33466933 PMCID: PMC7830148 DOI: 10.3390/vaccines9010053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 11/16/2022] Open
Abstract
Grass carp reovirus (GCRV) leads to severe hemorrhagic disease in grass carp (Ctenopharyngodon idella) and causes economic losses in grass carp aquaculture. Recent epidemiological investigations showed that GCRV genotype II is the dominant subtype in China. Therefore, it is very important to develop a novel vaccine for preventing diseases caused by GCRV genotype II. In this study, we employed a bac-to-bac expression system to generate GCRV-II-based virus-like particles (VLPs). Previous studies have shown that the structural proteins VP3, VP4, and VP38 encoded by the segments S3, S6, and S10 of type II GCRV are immunogenic. Hence, the GCRV-VLPs were produced by co-infection of sf9 cells with recombinant baculoviruses PFBH-VP3, PFBH-VP4, and PFBH-VP38. The expressions of VP3, VP4, and VP38 proteins in GCRV-VLPs were tested by IFA and Western blot analysis. By electron microscopic observations of ultrathin sections, purified VLPs showed that the expressed proteins are similar in shape to GCRV genotype II with a size range from 40 nm to 60 nm. The immunogenicity of GCRV-VLPs was evaluated by the injection immunization of grass carp. The analysis of serum-specific IgM antibody showed that grass carp immunized with GCRV-VLPs produced GCRV-specific antibodies. Furthermore, injection with GCRV-VLPs increased the expressions of immune-related genes (IgM, IFN, TLR3, TLR7) in the spleen and kidney. In addition, grass carp immunized with a GCRV-VLPs-based vaccine showed a relative percent survival rate (RPS) of 83.33% after challenge. The data in this study showed that GCRV-VLPs demonstrated an excellent immunogenicity and represent a promising approach for vaccine development against GCRV genotype II infection.
Collapse
|
17
|
Assessment of a natural grass carp reovirus genotype II avirulent strain GD1108 shows great potential as an avirulent live vaccine. Microb Pathog 2020; 152:104602. [PMID: 33157219 DOI: 10.1016/j.micpath.2020.104602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 02/04/2023]
Abstract
Vaccine immunization is currently the only effective way to prevent and control the grass carp haemorrhagic disease, and the primary pathogen in these infections is grass carp reovirus genotype II (GCRV-II) for which there is no commercial vaccine. In this study, we evaluated the safety of the GCRV-II avirulent strain GD1108 which isolated in the early stage of the laboratory through continuously passed in grass carp. The immunogenicity and protective effects were evaluated after immunization by injection and immersion. The avirulent strain GD1108 could infect and replicate in the fish which did not revert to virulence after continuous passage. No adverse side effects were observed and the vaccine strain did not spread horizontally among fish. Two routes of immunization induced high serum antibody titers of OD450nm value were 0.79 and 0.76 and neutralization titers of 320 and 320 for the injection and immersion routes of inoculation, respectively. The expression of immune-related genes increased after immunization and the levels were statistically significant. Challenge of immunized fish with a virulent GCRV-II strain resulted in protection rates of 93.88% and 76.00% for the injection and immersion routes, respectively. The avirulent strain GD1108 revealed good safety and immunogenicity via two different inoculation routes. Although the injection route provided the best immune effect, two pathways provided protection against infection with virulent GCRV-II strains in various degrees. These results indicated that the avirulent strain GD1108 can be used for the development and application as live vaccine.
Collapse
|
18
|
Li M, Liu C, Xu X, Liu Y, Jiang Z, Li Y, Lv Y, Lu S, Hu C, Mao H. Grass carp (Ctenopharyngodon idella) GPATCH3 initiates IFN 1 expression via the activation of STING-IRF7 signal axis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 112:103781. [PMID: 32645337 DOI: 10.1016/j.dci.2020.103781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
GPATCH3, a protein with G-patch domain, is known to participate in innate immune response and organ development in mammals. However, there are few reports on GPATCH3 in fish. Here the cDNA sequence of GPATCH3 was cloned from Ctenopharyngodon idella (CiGPATCH3, MN149902) and was determined its character. A cDNA sequence of CiGPATCH3 is 1646 bp and contains an ORF of 1221 bp translating a protein of 407 amino acids. Phylogenetic analysis uncovered that CiGPATCH3 possesses a relatively high degree of homology with Cyprinus carpio GPATCH3. The mRNA level of CiGPATCH3 was increased following the intracellular stimulation of poly (I:C) into CIK cells. In vivo, over-expression of CiGPATCH3 can significantly up-regulate IFN 1 and ISG15 expression at mRNA and protein levels. To investigate the molecular mechanism by which GPATCH3 initiates the innate immune response in fish, co-IP experiments were performed to analyze the substrates of CiGPATCH3. The results showed that CiGPATCH3 directly interacted with CiSTING, but not with CiIRF3, CiIRF7, CiTBK1 or CiIPS-1. As compared with the single transfection of CO cells with either CiGPATCH3 or CiSTING, the expression of IFN 1 was more significantly up-regulated in cells under treatment with dual transfection of CiGPATCH3 and CiSTING. Knockdown of CiGPATCH3 inhibited STING-mediated IFN 1 expression in fish cells. Over-expression of CiGPATCH3 and CiSTING facilitated the phosphorylation and cytoplasmic-to-nuclear translocation of CiIRF7. These results explicitly showed that CiGPATCH3 up-regulates IFN 1 and ISG15 expression via the activation of STING-IRF7 signal axis in vivo.
Collapse
Affiliation(s)
- Meifeng Li
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Changxin Liu
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Xiaowen Xu
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Yapeng Liu
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Zeying Jiang
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Yinping Li
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Yangfeng Lv
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Shina Lu
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Chengyu Hu
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang, 330031, China.
| | - Huiling Mao
- Department of Bioscience, School of Life Science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
19
|
Lu LF, Li ZC, Zhang C, Zhou XY, Zhou Y, Jiang JY, Chen DD, Li S, Zhang YA. Grass Carp Reovirus (GCRV) Giving Its All to Suppress IFN Production by Countering MAVS Signaling Transduction. Front Immunol 2020; 11:545302. [PMID: 33193312 PMCID: PMC7649419 DOI: 10.3389/fimmu.2020.545302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 10/06/2020] [Indexed: 01/05/2023] Open
Abstract
Viruses typically target host RIG-I-like receptors (RLRs), a group of key factors involved in interferon (IFN) production, to enhance viral infection. To date, though immune evasion methods to contradict IFN production have been characterized for a series of terrestrial viruses, the strategies employed by fish viruses remain unclear. Here, we report that all grass carp reovirus (GCRV) proteins encoded by segments S1 to S11 suppress mitochondrial antiviral signaling protein (MAVS)-mediated IFN expression. First, the GCRV viral proteins blunted the MAVS-induced expression of IFN, and impair MAVS antiviral capacity significantly. Interestingly, subsequent co-immunoprecipitation experiments demonstrated that all GCRV viral proteins interacted with several RLR cascades, especially with TANK-binding kinase 1 (TBK1) which was the downstream factor of MAVS. To further illustrate the mechanisms of these interactions between GCRV viral proteins and host RLRs, two of the viral proteins, NS79 (S4) and VP3 (S3), were selected as representative proteins for two distinguished mechanisms. The obtained data demonstrated that NS79 was phosphorylated by gcTBK1, leading to the reduction of host substrate gcIRF3/7 phosphorylation. On the other hand, VP3 degraded gcMAVS and the degradation was significantly reversed by 3-MA. The biological effects of both NS79 and VP3 were consistently found to be related to the suppression of IFN expression and the promotion of viral evasion. Our findings shed light on the special evasion mechanism utilized by fish virus through IFN regulation, which might differ between fish and mammals.
Collapse
Affiliation(s)
- Long-Feng Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhuo-Cong Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Can Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Yu Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Yu Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jing-Yu Jiang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dan-Dan Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shun Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Fisheries, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
20
|
Huo X, Fan C, Ai T, Su J. The Combination of Molecular Adjuvant CCL35.2 and DNA Vaccine Significantly Enhances the Immune Protection of Carassius auratus gibelio against CyHV-2 Infection. Vaccines (Basel) 2020; 8:vaccines8040567. [PMID: 33019519 PMCID: PMC7712643 DOI: 10.3390/vaccines8040567] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
Cyprinid herpesvirus 2 (CyHV-2) infection results in huge economic losses in gibel carp (Carassius auratus gibelio) industry. In this study, we first constructed recombinant plasmids pcORF25 and pcCCL35.2 as DNA vaccine and molecular adjuvant against CyHV-2, respectively, and confirmed that both recombinant plasmids could be effectively expressed in vitro and in vivo. Then, the vaccination and infection experiments (n = 50) were set as seven groups. The survival rate (70%) in ORF25/CCL35.2 group was highest. The highest specific antibody levels were found in ORF25/CCL35.2 group in major immune tissues by qRT-PCR, and confirmed in serum by ELISA assay, antibody neutralization titer, and serum incubation-infection experiments. Three crucial innate immune indices, namely C3 content, lysozyme, and total superoxide dismutase (TSOD) activities, were highest in ORF25/CCL35.2 group in serum. pcORF25/pcCCL35.2 can effectively up-regulate mRNA expressions of some important immune genes (IL-1β, IL-2, IFN-γ2, and viperin), and significantly suppress CyHV-2 replication in head kidney and spleen tissues. The minimal tissue lesions can be seen in ORF25/CCL35.2 group in gill, spleen, and trunk kidney tissues by histopathological examination. The results indicated that the combination of DNA vaccine pcORF25 and molecular adjuvant pcCCL35.2 is an effective method against CyHV-2 infection, suggesting a feasible strategy for the control of fish viral diseases.
Collapse
Affiliation(s)
- Xingchen Huo
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.H.); (C.F.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Chengjian Fan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.H.); (C.F.)
| | - Taoshan Ai
- Wuhan Chopper Fishery Bio-Tech Co., Ltd., Wuhan Academy of Agricultural Science, Wuhan 430207, China;
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.H.); (C.F.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
- Correspondence: ; Tel.: +86-27-8728-2227
| |
Collapse
|
21
|
Lu WJ, Zhou L, Gao FX, Zhou YL, Li Z, Zhang XJ, Wang Y, Gui JF. Dynamic and Differential Expression of Duplicated Cxcr4/Cxcl12 Genes Facilitates Antiviral Response in Hexaploid Gibel Carp. Front Immunol 2020; 11:2176. [PMID: 33013914 PMCID: PMC7516010 DOI: 10.3389/fimmu.2020.02176] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/10/2020] [Indexed: 12/16/2022] Open
Abstract
Chemokine receptor cxcr4 and its ligand cxcl12 have evolved two paralogs in the teleost lineage. In this study, we have identified four duplicated cxcr4 and cxcl12 genes from hexaploid gibel carp, Carassius gibelio, respectively. Cgcxcr4bs and Cgcxcl12as were dynamically and differentially expressed in immune-related tissues, and significantly up-regulated in head kidney and spleen after crucian carp herpesvirus (CaHV) infection. Blocking Cxcr4/Cxcl12 axis by injecting AMD3100 brought more severe bleeding symptom and lower survival rate in CaHV-infected fish. AMD3100 treatment also suppressed the up-regulation of key antiviral genes in head kidney and spleen, and resulted in more acute replication of CaHV in vivo. Consistently, the similar suppression of up-regulated expression of key antiviral genes were also observed in CAB cells treated by AMD3100 after poly(I:C) stimulation. Finally, MAPK3 and JAK/STAT were identified as the possible pathways that CgCxcr4s and CgCxcl12s participate in to promote the antiviral response in vitro.
Collapse
Affiliation(s)
- Wei-Jia Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, China
| | - Fan-Xiang Gao
- Institute of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Yu-Lin Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
22
|
Su H, Fan C, Liao Z, Yang C, Clarke JL, Zhang Y, Su J. Grass Carp Reovirus Major Outer Capsid Protein VP4 Interacts with RNA Sensor RIG-I to Suppress Interferon Response. Biomolecules 2020; 10:biom10040560. [PMID: 32268551 PMCID: PMC7226501 DOI: 10.3390/biom10040560] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 01/02/2023] Open
Abstract
Diseases caused by viruses threaten the production industry and food safety of aquaculture which is a great animal protein source. Grass carp reovirus (GCRV) has caused tremendous loss, and the molecular function of viral proteins during infection needs further research, as for most aquatic viruses. In this study, interaction between GCRV major outer capsid protein VP4 and RIG-I, a critical viral RNA sensor, was screened out by GST pull-down, endogenous immunoprecipitation and subsequent LC-MS/MS, and then verified by co-IP and an advanced far-red fluorescence complementation system. VP4 was proved to bind to the CARD and RD domains of RIG-I and promoted K48-linked ubiquitination of RIG-I to degrade RIG-I. VP4 reduced mRNA and promoter activities of key genes of RLR pathway and sequential IFN production. As a consequence, antiviral effectors were suppressed and GCRV replication increased, resulting in intensified cytopathic effect. Furthermore, results of transcriptome sequencing of VP4 stably expressed CIK (C. idella kidney) cells indicated that VP4 activated the MyD88-dependent TLR pathway. Knockdown of VP4 obtained opposite effects. These results collectively revealed that VP4 interacts with RIG-I to restrain interferon response and assist GCRV invasion. This study lays the foundation for anti-dsRNA virus molecular function research in teleost and provides a novel insight into the strategy of immune evasion for aquatic virus.
Collapse
Affiliation(s)
- Hang Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (H.S.); (C.F.); (Z.L.); (Y.Z.)
- Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Norwegian Institute for Bioeconomy Research, 1430 Ås, Norway;
| | - Chengjian Fan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (H.S.); (C.F.); (Z.L.); (Y.Z.)
| | - Zhiwei Liao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (H.S.); (C.F.); (Z.L.); (Y.Z.)
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan,430070, China;
| | | | - Yongan Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (H.S.); (C.F.); (Z.L.); (Y.Z.)
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (H.S.); (C.F.); (Z.L.); (Y.Z.)
- Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: ; Tel./Fax: +86-27-87282227
| |
Collapse
|
23
|
Zhang C, Lu LF, Li ZC, Zhou XY, Zhou Y, Chen DD, Li S, Zhang YA. Grass carp reovirus VP56 represses interferon production by degrading phosphorylated IRF7. FISH & SHELLFISH IMMUNOLOGY 2020; 99:99-106. [PMID: 32032764 PMCID: PMC7111710 DOI: 10.1016/j.fsi.2020.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/16/2020] [Accepted: 02/03/2020] [Indexed: 05/14/2023]
Abstract
Grass carp reovirus (GCRV) is an efficient pathogen causing high mortality in grass carp, meanwhile, fish interferon (IFN) is a powerful cytokine enabling host cells to establish an antiviral state; therefore, the strategies used by GCRV to escape the cellular IFN response need to be investigated. Here, we report that GCRV VP56 inhibits host IFN production by degrading the transcription factor IFN regulatory factor 7 (IRF7). First, overexpression of VP56 inhibited the IFN production induced by the polyinosinic-polycytidylic acid (poly I:C) and mitochondrial antiviral signaling protein (MAVS), while the capacity of IRF7 on IFN induction was unaffected. Second, VP56 interacted with RLRs but did not affect the stabilization of the proteins in the normal state, while the phosphorylated IRF7 activated by TBK1 was degraded by VP56 through K48-linked ubiquitination. Finally, overexpression of VP56 remarkably reduced the host cellular ifn transcription and facilitated viral proliferation. Taken together, our results demonstrate that GCRV VP56 suppresses the host IFN response by targeting phosphorylated IRF7 for ubiquitination and degradation.
Collapse
Affiliation(s)
- Can Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Long-Feng Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhuo-Cong Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Yu Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yu Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Dan-Dan Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shun Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
24
|
Alkie TN, de Jong J, Jenik K, Klinger KM, DeWitte-Orr SJ. Enhancing innate antiviral immune responses in rainbow trout by double stranded RNA delivered with cationic phytoglycogen nanoparticles. Sci Rep 2019; 9:13619. [PMID: 31541160 PMCID: PMC6754369 DOI: 10.1038/s41598-019-49931-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/28/2019] [Indexed: 12/20/2022] Open
Abstract
Innate immunity is induced when pathogen-associated molecular patterns (PAMPs) bind host pattern recognition receptors (PRRs). Polyinosinic:polycytidylic acid [poly(I:C)] is a synthetic analogue of viral dsRNA that acts as a PAMP, inducing type I interferons (IFNs) in vertebrates. In the present study, the immunostimulatory effects of high molecular weight (HMW) poly(I:C) in rainbow trout cells were measured when bound to a cationic phytoglycogen nanoparticle (Nano-HMW). The physical characteristics of the nanoparticle itself, when bound to different lengths of dsRNA and when cell associated was evaluated. Optimal concentration and timing for innate immune stimulation was measured using the RTG-P1 reporter cell line. The immunostimulatory effects of HMW poly (I:C) was compared to Nano-HMW in vitro using the RTgutGC cell line cultured in a conventional monolayer or a transwell culture system. The ability of an activated intestinal epithelium to transmit an antiviral signal to macrophages was evaluated using a co-culture of RTgutGC cells and RTSll (a monocyte/macrophage cell). In all culture conditions, Nano-HMW was a more effective inducer of IFN-related antiviral immune responses compared to HMW poly (I:C) alone. This study introduces the use of cationic phytoglycogen nanoparticles as a novel delivery system for immunomodulatory molecules to enhance immune responses in aquatic vertebrates.
Collapse
Affiliation(s)
- Tamiru N Alkie
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Jondavid de Jong
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada.,Glysantis Inc., Guelph, ON, Canada
| | - Kristof Jenik
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
| | | | | |
Collapse
|
25
|
Liu W, Chen B, Yao J, Liu J, Kuang M, Wang F, Wang Y, Elkady G, Lu Y, Zhang Y, Liu X. Identification of fish CMPK2 as an interferon stimulated gene against SVCV infection. FISH & SHELLFISH IMMUNOLOGY 2019; 92:125-132. [PMID: 31125665 DOI: 10.1016/j.fsi.2019.05.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/09/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Cytidine/uridine monophosphate kinase 2 (CMPK2) is known as a nucleoside monophosphate kinase in mitochondria to maintains intracellular UTP/CTP, and could be induced by immunostimulants LPS and Poly (I:C) in mammals, suggesting its potential antiviral and antibacterial role. In this study, CMPK2 was cloned and characterized in Fathead minnow (FHM) cells. In vivo analysis of tissue distribution revealed that CMPK2 transcript was detected in all the tissues of zebrafish (Danio rerio) examined in this study, particularly abundant in liver, spleen and kidney. In addition, indirect immunofluorescence showed that CMPK2 was localized in the cytoplasm of FHM cells. Expression of CMPK2 mRNA was significantly up-regulated following challenge with Spring viraemia of carp virus (SVCV), poly(I:C), or zebrafish IFN1 and IFN3 both in vitro and in vivo. Furthermore, overexpression and RNA interference of CMPK2 in SVCV-infected FHM cells showed significantly antiviral effect. In summary, this study for the first time shows the presence and distribution of CMPK2 in different tissues of zebrafish, but also demonstrates its antiviral potential against SVCV infection in vivo. These new findings could contribute to explain the molecular mechanism of the CMPK2 mediated antiviral function.
Collapse
Affiliation(s)
- Wanmeng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Bo Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Jian Yao
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Jiaoyun Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Ming Kuang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Fang Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Yeda Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Gehad Elkady
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Yuanan Lu
- Department of Public Health Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Yongan Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Xueqin Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China.
| |
Collapse
|
26
|
Honarmand Ebrahimi K. A unifying view of the broad-spectrum antiviral activity of RSAD2 (viperin) based on its radical-SAM chemistry. Metallomics 2019; 10:539-552. [PMID: 29568838 DOI: 10.1039/c7mt00341b] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
RSAD2 (cig-5), also known as viperin (virus inhibitory protein, endoplasmic reticulum associated, interferon inducible), is a member of the radical S-adenosylmethionine (SAM) superfamily of enzymes. Since the discovery of this enzyme more than a decade ago, numerous studies have shown that it exhibits antiviral activity against a wide range of viruses. However, there is no clear picture demonstrating the mechanism by which RSAD2 restricts the replication process of different viruses, largely because there is no direct evidence describing its in vivo enzymatic activity. As a result, a multifunctionality model has emerged. According to this model the mechanism by which RSAD2 restricts replication of different viruses varies and in many cases is not dependent on the radical-SAM chemistry of RSAD2. If the radical-SAM activity of RSAD2 is not required for its antiviral function, the question worth asking is: why does the cellular defence mechanism induce the expression of the radical-SAM enzyme RSAD2, which is metabolically expensive due to the requirement for a [4Fe-4S] cluster and usage of SAM? Here, in contrast to the multifunctionality view, I put forward a unifying model. I postulate that the radical-SAM activity of RSAD2 modulates cellular metabolic pathways essential for viral replication and/or cell proliferation and survival. As a result, its catalytic activity restricts the replication of a wide range of viruses via a common cellular function. This view is based on recent discoveries hinting towards possible substrates of RSAD2, re-evaluation of previous studies regarding the antiviral activity of RSAD2, and accumulating evidence suggesting a role of human RSAD2 in the metabolic reprogramming of cells.
Collapse
|
27
|
Eslamloo K, Ghorbani A, Xue X, Inkpen SM, Larijani M, Rise ML. Characterization and Transcript Expression Analyses of Atlantic Cod Viperin. Front Immunol 2019; 10:311. [PMID: 30894853 PMCID: PMC6414715 DOI: 10.3389/fimmu.2019.00311] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/06/2019] [Indexed: 12/29/2022] Open
Abstract
Viperin is a key antiviral effector in immune responses of vertebrates including the Atlantic cod (Gadus morhua). Using cloning, sequencing and gene expression analyses, we characterized the Atlantic cod viperin at the nucleotide and hypothetical amino acid levels, and its regulating factors were investigated. Atlantic cod viperin cDNA is 1,342 bp long, and its predicted protein contains 347 amino acids. Using in silico analyses, we showed that Atlantic cod viperin is composed of 5 exons, as in other vertebrate orthologs. In addition, the radical SAM domain and C-terminal sequences of the predicted Viperin protein are highly conserved among various species. As expected, Atlantic cod Viperin was most closely related to other teleost orthologs. Using computational modeling, we show that the Atlantic cod Viperin forms similar overall protein architecture compared to mammalian Viperins. qPCR revealed that viperin is a weakly expressed transcript during embryonic development of Atlantic cod. In adults, the highest constitutive expression of viperin transcript was found in blood compared with 18 other tissues. Using isolated macrophages and synthetic dsRNA (pIC) stimulation, we tested various immune inhibitors to determine the possible regulating pathways of Atlantic cod viperin. Atlantic cod viperin showed a comparable pIC induction to other well-known antiviral genes (e.g., interferon gamma and interferon-stimulated gene 15-1) in response to various immune inhibitors. The pIC induction of Atlantic cod viperin was significantly inhibited with 2-Aminopurine, Chloroquine, SB202190, and Ruxolitinib. Therefore, endosomal-TLR-mediated pIC recognition and signal transducers (i.e., PKR and p38 MAPK) downstream of the TLR-dependent pathway may activate the gene expression response of Atlantic cod viperin. Also, these results suggest that antiviral responses of Atlantic cod viperin may be transcriptionally regulated through the interferon-activated pathway.
Collapse
Affiliation(s)
- Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Atefeh Ghorbani
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Sabrina M Inkpen
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Mani Larijani
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
28
|
Ding Y, Guan Y, Huang X, Ao J, Chen X. Characterization and function of a group II type I interferon in the perciform fish, large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2019; 86:152-159. [PMID: 30448445 DOI: 10.1016/j.fsi.2018.11.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/10/2018] [Accepted: 11/14/2018] [Indexed: 06/09/2023]
Abstract
Teleost fish possess two groups of type I interferons (IFNs) with two (group I IFNs) or four (group II IFNs) conserved cysteines, which are further classified into seven subgroups. In our previous study, two group I type I IFNs, LcIFNd and LcIFNh (a new subgroup member), were identified in the perciform fish, large yellow croaker (Larimichthys crocea). Here, we identified a group II type I IFN, LcIFNc, in this species. The deduced LcIFNc contained six cysteines, four of which are highly conserved (C1: C28, C2:C53, C3: C130, and C4:C159) in the fish group II type I IFNs, and a typical type I IFN signature motif was also found in it. Phylogenetic analysis indicated that LcIFNc belongs to the IFNc subgroup of fish group II type I IFNs. LcIFNc was constitutively expressed in all examined tissues, and was rapidly up-regulated in spleen and head kidney by poly(I:C) and Aeromonas hydrophila. Recombinant LcIFNc protein (rLcIFNc) could increase the expression of antiviral genes, Mx1, PKR and ISG15, in large yellow croaker peripheral blood leukocytes (PBLs). The rLcIFNc also exhibited obvious antiviral activity based on less cytopathic effect (CPE) and decreased expression levels of several viral genes in the rLcIFNc-treated grouper spleen (GS) cells following Singapore grouper iridovirus (SGIV) infection. Additionally, rLcIFNc was able to induce the expression of LcIFNc, as well as LcIFNd and LcIFNh in the PBLs and primary head kidney cells (HKCs) from large yellow croaker. These results therefore indicated that LcIFNc not only had antiviral activity, but also mediated the regulation of type I IFN response.
Collapse
Affiliation(s)
- Yang Ding
- Institute of Oceanology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, PR China
| | - Yanyun Guan
- Institute of Oceanology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, PR China
| | - Xiaohong Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, PR China
| | - Jingqun Ao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, PR China
| | - Xinhua Chen
- Institute of Oceanology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
29
|
Zhang Y, Lv S, Zheng J, Huang X, Huang Y, Qin Q. Grouper viperin acts as a crucial antiviral molecule against iridovirus. FISH & SHELLFISH IMMUNOLOGY 2019; 86:1026-1034. [PMID: 30584907 DOI: 10.1016/j.fsi.2018.12.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/17/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Virus inhibitory protein, endoplasmic reticulum-associated, IFN-inducible (viperin), is an antiviral protein, induced by interferon (IFN), poly(I:C) and viral infection to exert antiviral function. To investigate the roles of viperin during fish virus infection, a viperin homolog from orange spotted grouper (Epinephelus coioides) (Ecviperin) was cloned and characterized in this study. Ecviperin encoded a 361-aa protein which shared 87% and 69% identity with Siniperca undulata and Homo sapiens, respectively. Amino acid alignment analysis showed that Ecviperin contained a conserved radical-SAM domain (aa73-281). Phylogenetic analysis indicated that Ecviperin showed the nearest relationship with S. undulata. In healthy grouper, Ecviperin was distributed in all tissues, and the expression of Ecviperin was the highest in kidney and spleen. In vitro, the mRNA expression of Ecviperin was significantly up-regulated in response to Singaporean grouper iridovirus (SGIV) infection. Subcellular localization analysis showed that Ecviperin was distributed in the cytoplasm and co-localized with endoplasmic reticulum (ER). The ectopic expression of Ecviperin significantly inhibited the replication of SGIV. Furthermore, overexpression of Ecviperin positively regulated the interferon related molecules, including interferon regulatory factor 3 (IRF3), IRF7, interferon stimulated gene 15 (ISG15), myxovirus resistance gene I (MXI), interferon-induced 35-kDa protein (IFP35), and TNF receptor-associated factor 6 (TRAF6). In addition, the expression of pro-inflammation cytokines was differently regulated by Ecviperin overexpression. Furthermore, reporter gene analysis showed that the overexpression of Ecviperin enhanced the activity of nuclear factor of kappa B (NF-κB), IFN-1 and interferon-stimulated response element (ISRE) promoter, suggesting that Ecviperin might restrict SGIV replication by the positive regulation of interferon and inflammatory response. Taken together, our results demonstrated that Ecviperin encoded an ER-localized protein, and exerted antiviral function against fish DNA virus by up-regulating interferon and pro-inflammatory response.
Collapse
Affiliation(s)
- Ya Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Shunyou Lv
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Jiaying Zheng
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xiaohong Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Youhua Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China.
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, PR China.
| |
Collapse
|
30
|
Tharuka MDN, Priyathilaka TT, Yang H, Pavithiran A, Lee J. Molecular and transcriptional insights into viperin protein from Big-belly seahorse (Hippocampus abdominalis), and its potential antiviral role. FISH & SHELLFISH IMMUNOLOGY 2019; 86:599-607. [PMID: 30529464 DOI: 10.1016/j.fsi.2018.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/05/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Viperin is recognized as an antiviral protein that is stimulated by interferon, viral exposures, and other pathogenic molecules in vertebrate. In this study, a viperin homolog in the Big-belly seahorse (Hippocampus abdominalis; HaVip) was functionally characterized to determine its subcellular localization, expression pattern, and antiviral activity in vitro. The HaVip coding sequence encodes a 348 amino acid polypeptide with predicted molecular weight of 38.48 kDa. Sequence analysis revealed that HaVip comprises three main domains: the N-terminal amphipathic α-helix, a radical S-adenosyl-l-methionine (SAM) domain, and a conserved C-terminal domain. Transfected GFP-tagged HaVip protein was found to localize to the endoplasmic reticulum (ER). Overexpressed-HaVip in FHM cells was found to significantly reduce viral capsid gene expression in VHSV infection in vitro. Under normal physiological conditions, HaVip expression was ubiquitously detected in all 14 examined tissues of the seahorse, with the highest expression observed in the heart, followed by skin and blood. In vivo studies showed that HaVip was rapidly and predominantly upregulated in blood, kidney, and intestinal tissue upon poly (I:C) stimulus. LPS and Streptococus iniae challenges caused a significant increase in expression of HaVip in all the analyzed tissues. The obtained results suggest that HaVip is involved in the immune system of the seahorse, triggering antiviral and antibacterial responses, upon viral and bacterial pathogenic infections.
Collapse
Affiliation(s)
- M D Neranjan Tharuka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Thanthrige Thiunuwan Priyathilaka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Hyerim Yang
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Amirthalingam Pavithiran
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea.
| |
Collapse
|
31
|
Wang F, Jiao H, Liu W, Chen B, Wang Y, Chen B, Lu Y, Su J, Zhang Y, Liu X. The antiviral mechanism of viperin and its splice variant in spring viremia of carp virus infected fathead minnow cells. FISH & SHELLFISH IMMUNOLOGY 2019; 86:805-813. [PMID: 30540955 DOI: 10.1016/j.fsi.2018.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/06/2018] [Accepted: 12/08/2018] [Indexed: 06/09/2023]
Abstract
Viperin is known to play an important role in innate immune and its antiviral mechanisms are well demonstrated in mammals. Fish Viperin mediates antiviral activity against several viruses. However, little has been done to the underlying mechanism. Here, we discovered a novel Viperin splice variant named Viperin_sv1 from viral-infected FHM cells. Spring varimia of carp virus (SVCV) was able to increase the mRNA levels of both Viperin and Viperin_sv1, while poly(I:C) only has effect on Viperin. Viperin functions as an antiviral protein at 24 h post-SVCV infection, but the antiviral activity dramatically declined at late infection stages. However, Viperin_sv1 inhibited SVCV replication significantly at all the tested time. Viperin_sv1, but not Viperin can facilitate the production of type I IFN and IFN stimulate genes (ISGs) through activation of RIG-1, IRF3 and IRF7 signaling cascades. On the other hand, SVCV down-regulated Viperin_sv1 at the protein level through the proteasome pathway to keep itself away from the immune system monitoring. Taken together, these findings provide new insights into the regulation of Viperin from the posttranscriptional modification perspective and the role of splicing variant Viperin_sv1 in virus-host interaction.
Collapse
Affiliation(s)
- Fang Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Houqi Jiao
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Wanmeng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Bo Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Yeda Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Buxin Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Yuanan Lu
- Department of Public Health Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Jianguo Su
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Yongan Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xueqin Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China.
| |
Collapse
|
32
|
Gao FX, Lu WJ, Wang Y, Zhang QY, Zhang YB, Mou CY, Li Z, Zhang XJ, Liu CW, Zhou L, Gui JF. Differential expression and functional diversification of diverse immunoglobulin domain-containing protein (DICP) family in three gynogenetic clones of gibel carp. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 84:396-407. [PMID: 29555550 DOI: 10.1016/j.dci.2018.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 03/15/2018] [Indexed: 06/08/2023]
Abstract
Diverse immunoglobulin (Ig) domain-containing protein (DICP) family is a novel bony fish-specific multi-gene family encoding diversified immune receptors. However, their function and the implication of binding partners remain unknown. In this study, we first identified 28 DICPs from three gibel carp gynogenetic clones and revealed their high variability and clone-specific feature. After crucian carp herpesvirus (CaHV) infection, these DICPs were significantly upregulated in head kidney, kidney and spleen. The up-regulation folds in clone A+, F and H were related to the susceptibility to CaHV, progressively increasing from resistant clone to susceptible clone. Overexpression of gibel carp DICPs inhibited interferon (IFN) and viperin promoter-driven luciferase activity. The additions of E. coli extracts and lipid A significantly enhanced the inhibition effect. In addition, gibel carp DICPs can interact with SHP-1 and SHP-2. These findings suggest that gible carp DICPs, as inhibitory receptors, might specifically recognize lipid A, and then interact with SHP-1 and SHP-2 to inhibit the induction of IFN and ISGs.
Collapse
Affiliation(s)
- Fan-Xiang Gao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Jia Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Bing Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng-Yan Mou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chao-Wei Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
33
|
Zhang J, Liu C, Zhao S, Guo S, Shen B. Molecular characterization and expression analyses of the Viperin gene in Larimichthys crocea (Family: Sciaenidae). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 79:59-66. [PMID: 29066399 DOI: 10.1016/j.dci.2017.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/20/2017] [Accepted: 10/20/2017] [Indexed: 06/07/2023]
Abstract
In this study, we sequenced and characterized an interferon-stimulated gene Viperin homologue, LcViperin, from large yellow croaker (Larimichthys crocea). The LcViperin encodes 354 amino acids and contains an N-terminal amphipathic α-helix domain, a radical S-adenosyl-l-methionine (SAM) domain and a highly conserved C-terminal domain. The analyses of LcViperin promoter region revealed nine kinds of putative transcriptional factor binding sites, including five putative ICSBP (IRF-8) binding sites and one putative IRF-1 binding site, indicating that the expression of LcViperin might be induced by the type I IFN response. Phylogenetic analyses based on amino acid sequences showed that the Viperin of large yellow croaker is clustered together with its counterparts from other teleost fishes. The Real-time PCR analyses showed that the LcViperin was found to be ubiquitously expressed in ten examined tissues in large yellow croaker, with predominant expression in peripheral blood, followed by heart and gill. Expression analyses showed that the LcViperin was rapidly and significantly upregulated in vivo after poly (I:C) challenge in peripheral blood, head kidney, spleen and liver tissues. The results indicate that the LcViperin might play a pivotal role in antiviral immune responses.
Collapse
Affiliation(s)
- Jianshe Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, Zhoushan 316004, China
| | - Cheng Liu
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, Zhoushan 316004, China
| | - Shujiang Zhao
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, Zhoushan 316004, China
| | - Shaoyu Guo
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, Zhoushan 316004, China
| | - Bin Shen
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, Zhoushan 316004, China.
| |
Collapse
|
34
|
Shaw AE, Hughes J, Gu Q, Behdenna A, Singer JB, Dennis T, Orton RJ, Varela M, Gifford RJ, Wilson SJ, Palmarini M. Fundamental properties of the mammalian innate immune system revealed by multispecies comparison of type I interferon responses. PLoS Biol 2017; 15:e2004086. [PMID: 29253856 PMCID: PMC5747502 DOI: 10.1371/journal.pbio.2004086] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/29/2017] [Accepted: 11/22/2017] [Indexed: 12/31/2022] Open
Abstract
The host innate immune response mediated by type I interferon (IFN) and the resulting up-regulation of hundreds of interferon-stimulated genes (ISGs) provide an immediate barrier to virus infection. Studies of the type I ‘interferome’ have mainly been carried out at a single species level, often lacking the power necessary to understand key evolutionary features of this pathway. Here, using a single experimental platform, we determined the properties of the interferomes of multiple vertebrate species and developed a webserver to mine the dataset. This approach revealed a conserved ‘core’ of 62 ISGs, including genes not previously associated with IFN, underscoring the ancestral functions associated with this antiviral host response. We show that gene expansion contributes to the evolution of the IFN system and that interferomes are shaped by lineage-specific pressures. Consequently, each mammal possesses a unique repertoire of ISGs, including genes common to all mammals and others unique to their specific species or phylogenetic lineages. An analysis of genes commonly down-regulated by IFN suggests that epigenetic regulation of transcription is a fundamental aspect of the IFN response. Our study provides a resource for the scientific community highlighting key paradigms of the type I IFN response. The type I interferon (IFN) response is triggered upon sensing of an incoming pathogen in an infected cell and results in the expression of hundreds of IFN-stimulated genes (ISGs, collectively referred to as ‘the interferome’). Studies on the interferome have been carried out mainly in human cells and therefore often lack the power to understand comparative evolutionary aspects of this critical pathway. In this study, we characterized the interferome in several animal species (including humans) using a single experimental framework. This approach allowed us to identify fundamental properties of the innate immune system. In particular, we revealed 62 ‘core’ ISGs, up-regulated in response to IFN in all vertebrates, highlighting the ancestral functions of the IFN system. In addition, we show that many genes repressed by the IFN response normally function as regulators of cell transcription. ISGs shared by multiple species have a higher propensity than other genes to exist as multiple copies in the genome. Importantly, we observed that genes have arisen as ISGs throughout evolution. Hence, every animal species possesses a unique repertoire of ISGs that includes core and lineage-specific genes. Collectively, our data provide a framework on which it will be possible to test the role of the IFN response in pathogen emergence and cross-species transmission.
Collapse
Affiliation(s)
- Andrew E. Shaw
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Abdelkader Behdenna
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Joshua B. Singer
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Tristan Dennis
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Richard J. Orton
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Mariana Varela
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Robert J. Gifford
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Sam J. Wilson
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- * E-mail: (SJW); (MP)
| | - Massimo Palmarini
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- * E-mail: (SJW); (MP)
| |
Collapse
|
35
|
Eslamloo K, Xue X, Hall JR, Smith NC, Caballero-Solares A, Parrish CC, Taylor RG, Rise ML. Transcriptome profiling of antiviral immune and dietary fatty acid dependent responses of Atlantic salmon macrophage-like cells. BMC Genomics 2017; 18:706. [PMID: 28886690 PMCID: PMC5591513 DOI: 10.1186/s12864-017-4099-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 08/30/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Due to the limited availability and high cost of fish oil in the face of increasing aquaculture production, there is a need to reduce usage of fish oil in aquafeeds without compromising farm fish health. Therefore, the present study was conducted to determine if different levels of vegetable and fish oils can alter antiviral responses of salmon macrophage-like cells (MLCs). Atlantic salmon (Salmo salar) were fed diets containing 7.4% (FO7) or 5.1% (FO5) fish oil. These diets were designed to be relatively low in EPA + DHA (i.e. FO7: 1.41% and FO5: 1%), but near the requirement level, and resulting in comparable growth. Vegetable oil (i.e. rapeseed oil) was used to balance fish oil in experimental diets. After a 16-week feeding trial, MLCs isolated from fish in these dietary groups were stimulated by a viral mimic (dsRNA: pIC) for 6 h (qPCR assay) and 24 h (microarray and qPCR assays). RESULTS The fatty acid composition of head kidney leukocytes varied between the two dietary groups (e.g. higher 20:5n-3 in the FO7 group). Following microarray assays using a 44K salmonid platform, Rank Products (RP) analysis showed 14 and 54 differentially expressed probes (DEP) (PFP < 0.05) between the two diets in control and pIC groups (FO5 vs. FO7), respectively. Nonetheless, Significance Analysis of Microarrays (SAM, FDR < 0.05) identified only one DEP between pIC groups of the two diets. Moreover, we identified a large number (i.e. 890 DEP in FO7 and 1128 DEP in FO5 overlapping between SAM and RP) of pIC-responsive transcripts, and several of them were involved in TLR-/RLR-dependent and cytokine-mediated pathways. The microarray results were validated as significantly differentially expressed by qPCR assays for 2 out of 9 diet-responsive transcripts and for all of the 35 selected pIC-responsive transcripts. CONCLUSION Fatty acid-binding protein adipocyte (fabp4) and proteasome subunit beta type-8 (psmb8) were significantly up- and down-regulated, respectively, in the MLCs of fish fed the diet with a lower level of fish oil, suggesting that they are important diet-responsive, immune-related biomarkers for future studies. Although the different levels of dietary fish and vegetable oils involved in this study affected the expression of some transcripts, the immune-related pathways and functions activated by the antiviral response of salmon MLCs in both groups were comparable overall. Moreover, the qPCR revealed transcripts responding early to pIC (e.g. lgp2, map3k8, socs1, dusp5 and cflar) and time-responsive transcripts (e.g. scarb1-a, csf1r, traf5a, cd80 and ctsf) in salmon MLCs. The present study provides a comprehensive picture of the putative molecular pathways (e.g. RLR-, TLR-, MAPK- and IFN-associated pathways) activated by the antiviral response of salmon MLCs.
Collapse
Affiliation(s)
- Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL, A1C 5S7, Canada
| | - Jennifer R Hall
- Aquatic Research Cluster, CREAIT Network, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL, A1C 5S7, Canada
| | - Nicole C Smith
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL, A1C 5S7, Canada
| | - Albert Caballero-Solares
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL, A1C 5S7, Canada
| | - Christopher C Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL, A1C 5S7, Canada
| | | | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| |
Collapse
|
36
|
Honarmand Ebrahimi K, Carr SB, McCullagh J, Wickens J, Rees NH, Cantley J, Armstrong FA. The radical-SAM enzyme Viperin catalyzes reductive addition of a 5'-deoxyadenosyl radical to UDP-glucose in vitro. FEBS Lett 2017; 591:2394-2405. [PMID: 28752893 DOI: 10.1002/1873-3468.12769] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 12/11/2022]
Abstract
Viperin, a radical-S-adenosylmethionine (SAM) enzyme conserved from fungi to humans, can restrict replication of many viruses. Neither the molecular mechanism underlying the antiviral activity of Viperin, nor its exact physiological function, is understood: most importantly, no radical-SAM activity has been discovered for Viperin. Here, using electron paramagnetic resonance (EPR) spectroscopy, mass spectrometry, and NMR spectroscopy, we show that uridine diphosphate glucose (UDP-glucose) is a substrate of a fungal Viperin (58% pairwise identity with human Viperin at the amino acid level) in vitro. Structural homology modeling and docking experiments reveal a highly conserved binding pocket in which the position of UDP-glucose is consistent with our experimental data regarding catalytic addition of a 5'-deoxyadenosyl radical and a hydrogen atom to UDP-glucose.
Collapse
Affiliation(s)
| | - Stephen B Carr
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, UK.,Department of Biochemistry, University of Oxford, UK
| | | | | | | | - James Cantley
- Department of Physiology, Anatomy, and Genetics, University of Oxford, UK
| | | |
Collapse
|
37
|
Grass Carp Reovirus VP41 Targets Fish MITA To Abrogate the Interferon Response. J Virol 2017; 91:JVI.00390-17. [PMID: 28446676 DOI: 10.1128/jvi.00390-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/21/2017] [Indexed: 12/27/2022] Open
Abstract
Although fish possess an efficient interferon (IFN) system to defend against aquatic virus infection, grass carp reovirus (GCRV) still causes hemorrhagic disease in grass carp. To date, GCRV's strategy for evading the fish IFN response is still unknown. Here, we report that GCRV VP41 inhibits fish IFN production by suppressing the phosphorylation of mediator of IFN regulatory factor 3 (IRF3) activation (MITA). First, the activation of the IFN promoter (IFNpro) stimulated by mitochondrial antiviral signaling protein (MAVS) and MITA was decreased by the overexpression of VP41, whereas such activation induced by TANK-binding kinase 1 (TBK1) was not affected. Second, VP41 was colocalized in the cellular endoplasmic reticulum (ER) and associated with MITA. Furthermore, as a phosphorylation substrate of TBK1, VP41 significantly decreased the phosphorylation of MITA. Truncation assays indicated that the transmembrane (TM) region of VP41 was indispensable for the suppression of IFNpro activity. Finally, after infection with GCRV, VP41 blunted the transcription of host IFN and facilitated viral RNA synthesis. Taken together, our findings suggest that GCRV VP41 prevents the fish IFN response by attenuating the phosphorylation of MITA for viral evasion.IMPORTANCE MITA is thought to act as an adaptor protein to facilitate the phosphorylation of IRF3 by TBK1 upon viral infection, and it plays a critical role in innate antiviral responses. Here, we report that GCRV VP41 colocalizes with MITA at the ER and reduces MITA phosphorylation by acting as a decoy substrate of TBK1, thus inhibiting IFN production. These findings reveal GCRV's strategy for evading the host IFN response for the first time.
Collapse
|
38
|
Dai Z, Li J, Hu C, Wang F, Wang B, Shi X, Hou Q, Huang W, Lin G. Transcriptome data analysis of grass carp (Ctenopharyngodon idella) infected by reovirus provides insights into two immune-related genes. FISH & SHELLFISH IMMUNOLOGY 2017; 64:68-77. [PMID: 28279792 DOI: 10.1016/j.fsi.2017.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/02/2017] [Accepted: 03/04/2017] [Indexed: 06/06/2023]
Abstract
Grass carp (Ctenopharyngodon idella) was one of the economically important freshwater fish in China. However, hemorrhagic disease caused by grass carp reovirus (GCRV) results in a tremendous loss in the process of grass carp cultivation. Transcriptome analysis could provide a comprehensive understanding of the molecular mechanisms involved in specific biological processes and diseases for the resistance to reovirus infection of grass carp. In this study, the raw data from NCBI (accession number: SRA099702) were analyzed, in which, 50 significant differentially expressed genes by routine transcriptome analysis and 84 notably differentially expressed genes by co-expression network method. KEGG analysis revealed that the pathway in hemorrhagic diseases in grass carp was similar to the influenza A induced pathway. The interferon-stimulated gene ISG15 and sacsin-like gene, which were up-regulated in data (SRA099702), were also up-regulated in data (SRP049081) from a similar assay. QPCR experiment was performed to validate these up-regulated genes. The ISG15 gene was shown to be the core gene in the co-expression network. The results would enhance our understanding of the antivirus system of grass carp infected by reovirus.
Collapse
Affiliation(s)
- Zao Dai
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Jicheng Li
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Chengyu Hu
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Fang Wang
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Binhua Wang
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Xiao Shi
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Qunhao Hou
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Waigen Huang
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Gang Lin
- Department of Bioscience, College of Life Science, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
39
|
Chen SN, Zou PF, Nie P. Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) in fish: current knowledge and future perspectives. Immunology 2017; 151:16-25. [PMID: 28109007 DOI: 10.1111/imm.12714] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/20/2016] [Accepted: 01/12/2017] [Indexed: 12/24/2022] Open
Abstract
Retinoic acid-inducible gene I (RIG-I) -like receptors (RLRs) are found conservatively present in teleost fish. All three members, RIG-I, MDA5 and LGP2, together with the downstream molecules such as MITA, TRAF3 and TBK1, have been identified in a range of fish species. However, it is unexpected that RIG-I has not been reported in fish of Acanthopterygii, and it would be important to clarify the presence and role of the RIG-I gene in a broad range of taxa in Teleostei. RLRs in fish can be induced in vivo and in vitro by viral pathogens as well as synthetic dsRNA, poly(I:C), leading to the production of type I interferons (IFNs) and the expression of IFN-stimulated genes (ISGs). Bacterial pathogens, such as Edwardsiella tarda, and their components, such as lipopolysaccharide are also found to induce the expression of RLRs, and whether such induction was mediated through the direct recognition by RLRs or through crosstalk with other pattern recognition receptors recognizing directly bacterial pathogen-associated molecular patterns awaits to be investigated. On the other hand, RLR-activated type I IFN production can be negatively regulated in fish by molecules, such as TBK-1-like protein and IRF10, which are found to negatively regulate RIG-I and MAVS-activated type I IFN production, and to block MITA or bind ISRE motifs, respectively. It is considered that the evolutionary occurrence of RLRs in fish, and their recognized ligands, especially those from their fish pathogens, as well as the mechanisms involved in the RLR signalling pathways, are of significant interest for further investigation.
Collapse
Affiliation(s)
- Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Peng Fei Zou
- College of Fisheries, Jimei University, Xiamen, Fujian, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
40
|
Liu P, Wang L, Ye BQ, Huang S, Wong SM, Yue GH. Characterization of a novel disease resistance gene rtp3 and its association with VNN disease resistance in Asian seabass. FISH & SHELLFISH IMMUNOLOGY 2017; 61:61-67. [PMID: 27989862 DOI: 10.1016/j.fsi.2016.12.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/09/2016] [Accepted: 12/15/2016] [Indexed: 06/06/2023]
Abstract
Asian seabass, an important food fish in Southeast Asia, has suffered from nervous necrosis virus (NNV) infection, resulting in massive mortality of Asian seabass larvae and enormous economic losses. Identification and characterization of disease resistance genes is important. Previous transcriptome analysis of Asians seabass epithelial cells after NNV infection revealed a highly inducible gene, receptor-transporting protein 3 (rtp3), indicating it could play an important role in Asian seabass - NNV interaction. To characterize this gene, we determined its expression pattern and subcellular localization. The rtp3 was highly induced in most examined tissues and organs of Asian seabass after NNV infection, and protein Rtp3 was localized in cytoplasm. Further association study in multiple families revealed that a microsatellite marker, (GT)ntt(GT)n, in the 3' UTR of rtp3 was significantly associated with VNN disease resistance in Asian seabass. Our results imply that rtp3 may be a novel disease resistance gene in Asian seabass. This data could improve our understanding of molecular interaction between Asian seabass and NNV, and has the potential to be applied in marker-assisted selection for disease resistance breeding in Asian seabass.
Collapse
Affiliation(s)
- Peng Liu
- Department of Biological Sciences, National University of Singapore, 14 Science Drive, 117543 Singapore; Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, 117604 Singapore
| | - Le Wang
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, 117604 Singapore
| | - Bao Qing Ye
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, 117604 Singapore
| | - Shuqing Huang
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, 117604 Singapore
| | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore, 14 Science Drive, 117543 Singapore; Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, 117604 Singapore; National University of Singapore Suzhou Research Institute, Suzhou, Jiangsu, 215123 China.
| | - Gen Hua Yue
- Department of Biological Sciences, National University of Singapore, 14 Science Drive, 117543 Singapore; Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, 117604 Singapore; School of Biological Sciences, Nanyang Technological University, 6 Nanyang Drive, 637551 Singapore.
| |
Collapse
|
41
|
XU W, CHEN S. Genomics and genetic breeding in aquatic animals: progress and prospects. FRONTIERS OF AGRICULTURAL SCIENCE AND ENGINEERING 2017; 4:305. [DOI: 10.15302/j-fase-2017154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
42
|
Poynter SJ, DeWitte-Orr SJ. Fish interferon-stimulated genes: The antiviral effectors. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:218-225. [PMID: 27451256 DOI: 10.1016/j.dci.2016.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/18/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
Type I interferons (IFN) are the cornerstone cytokine of innate antiviral immunity. In response to a viral infection, IFN signaling results in the expression of a diverse group of genes known as interferon-stimulated genes (ISGs). These ISGs are responsible for interfering with viral replication and infectivity, helping to limit viral infection within a cell. In mammals, many antiviral effector ISGs have been identified and the antiviral mechanisms are at least partially elucidated. In fish fewer ISGs have been identified and while there is evidence they limit viral infection, almost nothing is known of their respective antiviral mechanisms. This review discusses seven ISGs common to mammals and fish and three ISGs that are unique to fish. The lack of understanding regarding fish ISG's antiviral effector functions is highlighted and draws attention to the need for research in this aspect of aquatic innate immunity.
Collapse
Affiliation(s)
- Sarah J Poynter
- Department of Biology, 200 University Ave W, Waterloo, ON N2L 3G1, Canada.
| | - Stephanie J DeWitte-Orr
- Department of Health Sciences and Biology, 75 University Ave W, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
43
|
Eslamloo K, Xue X, Booman M, Smith NC, Rise ML. Transcriptome profiling of the antiviral immune response in Atlantic cod macrophages. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 63:187-205. [PMID: 27255218 DOI: 10.1016/j.dci.2016.05.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/29/2016] [Accepted: 05/29/2016] [Indexed: 06/05/2023]
Abstract
A study was conducted to determine the transcriptome response of Atlantic cod (Gadus morhua) macrophages to the viral mimic, polyriboinosinic polyribocytidylic acid (pIC), using a 20K Atlantic cod microarray platform and qPCR. We identified 285 significantly up-regulated and 161 significantly down-regulated probes in cod macrophages 24 h after pIC stimulation. A subset of 26 microarray-identified transcripts was subjected to qPCR validation using samples treated with pIC or phosphate-buffered saline (control) over time (3, 6, 12, 24, 48 h), and 77% of them showed a significant response to pIC. The microarray and qPCR analyses in this study showed that pIC induced the expression of cod macrophage transcripts involved in RLR- and TLR-dependent pathogen recognition (e.g. tlr3, tlr7, mda5 and lgp2), as well as signal transducers (e.g. stat1 and nfkbia) and transcription activators (e.g. irf7 and irf10) in the MyD88-independent and dependent signalling pathways. Several immune effectors (e.g. isg15s, viperin, herc4, mip2 and ccl13) were significantly up-regulated in pIC-stimulated cod macrophages. The expression of some transcripts (e.g. irf7, irf10, viperin) was significantly up-regulated by pIC as early as 12 h. All pIC-induced transcripts had peak expression at either 24 h (e.g. tlr7, irf7, mip2) or 48 h (e.g. tlr3, lgp2, stat1). This study suggests possible roles of both vertebrate-conserved (e.g. tlr3 as an up-regulated gene) and fish-specific (tlr22g as a down-regulated gene) receptors in dsRNA recognition, and the importance of conserved and potentially fish-specific interferon stimulated genes in cod macrophages.
Collapse
Affiliation(s)
- Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, NL, A1C 5S7, Canada
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, NL, A1C 5S7, Canada
| | - Marije Booman
- Department of Ocean Sciences, Memorial University of Newfoundland, NL, A1C 5S7, Canada
| | - Nicole C Smith
- Department of Ocean Sciences, Memorial University of Newfoundland, NL, A1C 5S7, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, NL, A1C 5S7, Canada.
| |
Collapse
|
44
|
Ding Y, Ao J, Huang X, Chen X. Identification of Two Subgroups of Type I IFNs in Perciforme Fish Large Yellow Croaker Larimichthys crocea Provides Novel Insights into Function and Regulation of Fish Type I IFNs. Front Immunol 2016; 7:343. [PMID: 27656183 PMCID: PMC5013148 DOI: 10.3389/fimmu.2016.00343] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 08/24/2016] [Indexed: 12/11/2022] Open
Abstract
Like mammals, fish possess an interferon regulatory factor (IRF) 3/IRF7-dependent type I IFN responses, but the exact mechanism by which IRF3/IRF7 regulate the type I IFNs remains largely unknown. In this study, we identified two type I IFNs in the Perciforme fish large yellow croaker Larimichthys crocea, one of which belongs to the fish IFNd subgroup and the other is assigned to a novel subgroup of group I IFNs in fish, tentatively termed IFNh. The two IFN genes are constitutively expressed in all examined tissues, but with varied expression levels. Both IFN genes can be rapidly induced in head kidney and spleen tissues by polyinosinic-polycytidylic acid. The recombinant IFNh was shown to be more potent to trigger a rapid induction of the antiviral genes MxA and protein kinase R than the IFNd, suggesting that they may play distinct roles in regulating early antiviral immunity. Strikingly, IFNd, but not IFNh, could induce the gene expression of itself and IFNh through a positive feedback loop mediated by the IFNd-dependent activation of IRF3 and IRF7. Furthermore, our data demonstrate that the induction of IFNd can be enhanced by the dimeric formation of IRF3 and IRF7, while the IFNh expression mainly involves IRF3. Taken together, our findings demonstrate that the IFN responses are diverse in fish and are likely to be regulated by distinct mechanisms.
Collapse
Affiliation(s)
- Yang Ding
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Jingqun Ao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Xiaohong Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xinhua Chen
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
45
|
Liu P, Wang L, Kwang J, Yue GH, Wong SM. Transcriptome analysis of genes responding to NNV infection in Asian seabass epithelial cells. FISH & SHELLFISH IMMUNOLOGY 2016; 54:342-52. [PMID: 27109582 DOI: 10.1016/j.fsi.2016.04.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 04/20/2016] [Accepted: 04/20/2016] [Indexed: 05/07/2023]
Abstract
Asian seabass is an important food fish in Southeast Asia. Viral nervous necrosis (VNN) disease, triggered by nervous necrosis virus (NNV) infection, has caused mass mortality of Asian seabass larvae, resulting in enormous economic losses in the Asian seabass industry. In order to better understand the complex molecular interaction between Asian seabass and NNV, we investigated the transcriptome profiles of Asian seabass epithelial cells, which play an essential role in immune regulation, after NNV infection. Using the next generation sequencing (NGS) technology, we sequenced mRNA from eight samples (6, 12, 24, 48 h post-inoculation) of mock and NNV-infected Asian seabass epithelial cell line, respectively. Clean reads were de novo assembled into a transcriptome consisting of 89026 transcripts with a N50 of 2617 bp. Furthermore, 251 differentially expressed genes (DEGs) in response to NNV infection were identified. Top DEGs include protein asteroid homolog 1-like (ASTE1), receptor-transporting protein 3 (RTP3), heat shock proteins 30 (HSP30) and 70 (HSP70), Viperin, interferon regulatory factor 3 (IRF3) and other genes related to innate immunity. Our data suggest that abundant and diverse genes corresponding to NNV infection. The results of this study could also offer vital information not only for identification of novel genes involved in Asian seabass-NNV interaction, but also for our understanding of the molecular mechanism of Asian seabass' response to viral infection. In addition, 24807 simple sequence repeats (SSRs) were detected in the assembled transcriptome, providing valuable resources for studying genetic variations and accelerating quantitative trait loci (QTL) mapping for disease resistance in Asian seabass in the future.
Collapse
Affiliation(s)
- Peng Liu
- Department of Biological Sciences, National University of Singapore, 14 Science Drive, 117543, Singapore; Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, 117604, Singapore
| | - Le Wang
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, 117604, Singapore
| | - Jimmy Kwang
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, 117604, Singapore
| | - Gen Hua Yue
- Department of Biological Sciences, National University of Singapore, 14 Science Drive, 117543, Singapore; Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, 117604, Singapore; School of Biological Sciences, Nanyang Technological University, 6 Nanyang Drive, 637551, Singapore.
| | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore, 14 Science Drive, 117543, Singapore; Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, 117604, Singapore; National University of Singapore Suzhou Research Institute, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
46
|
Cao Y, Xu L, LaPatra SE, Zhao J, Liu M, Liu H, Lu T, Zhang Q. The kinetics and protection of the antiviral state induced by recombinant iIFN1a in rainbow trout against infectious hematopoietic necrosis virus. Mol Immunol 2016; 76:55-61. [PMID: 27348633 DOI: 10.1016/j.molimm.2016.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/02/2016] [Accepted: 06/02/2016] [Indexed: 01/08/2023]
Abstract
The iIFN1a (intracellular IFN-a1), that is one of the IFN-a1 variants, was shown to be functional intracellularly and act as a novel defense against an infectious hematopoietic necrosis virus (IHNV). To determine its antiviral properties, a recombinant iIFN1a was generated in Escherichia coli. Its antiviral activity against IHNV was 1.69×10(7)U/mg in CHSE-214 cells. Additionally, iIFN1a was capable of inducing comparable levels of IRF-1, IRF-2, IFN-I, IFN-γ and Mx transcription in head kidney, spleen and liver tissues at an early time point (6h), that was followed by a rapid decline 24h after induction. The recombinant protein also elicited protection against IHNV in vivo. At 6 and 24h after induction there was 100% protection against the virus, however, at 48 and 72h the protection decreased to 57 and 40%, respectively. The in vivo protection kinetics correlated with the kinetics of gene expression. The results of this study provide details of the antiviral state that was induced by iIFN1a in vivo for the first time. Additionally, this information will facilitate the development of this recombinant protein as a potential anti-viral treatment and/or adjuvant.
Collapse
Affiliation(s)
- Yongsheng Cao
- Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Liming Xu
- Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Scott E LaPatra
- Research Division, Clear Springs Foods Inc., P.O. Box 712, Buhl, ID 83316, USA.
| | - Jingzhuang Zhao
- Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Miao Liu
- Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Hongbai Liu
- Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Tongyan Lu
- Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Qiya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
47
|
Green TJ, Speck P, Geng L, Raftos D, Beard MR, Helbig KJ. Oyster viperin retains direct antiviral activity and its transcription occurs via a signalling pathway involving a heat-stable haemolymph protein. J Gen Virol 2016; 96:3587-3597. [PMID: 26407968 DOI: 10.1099/jgv.0.000300] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Little is known about the response of non-model invertebrates, such as oysters, to virus infection. The vertebrate innate immune system detects virus-derived nucleic acids to trigger the type I IFN pathway, leading to the transcription of hundreds of IFN-stimulated genes (ISGs) that exert antiviral functions. Invertebrates were thought to lack the IFN pathway based on the absence of IFN or ISGs encoded in model invertebrate genomes. However, the oyster genome encodes many ISGs, including the well-described antiviral protein viperin. In this study, we characterized oyster viperin and showed that it localizes to caveolin-1 and inhibits dengue virus replication in a heterologous model. In a second set of experiments, we have provided evidence that the haemolymph from poly(I : C)-injected oysters contains a heat-stable, protease-susceptible factor that induces haemocyte transcription of viperin mRNA in conjunction with upregulation of IFN regulatory factor. Collectively, these results support the concept that oysters have antiviral systems that are homologous to the vertebrate IFN pathway.
Collapse
Affiliation(s)
- Timothy J Green
- School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia.,Department of Biological Sciences and Sydney Institute of Marine Science, Macquarie University, NSW 2109, Australia
| | - Peter Speck
- School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - Lu Geng
- School of Biological Sciences, University of Adelaide, SA 5001, Australia
| | - David Raftos
- Department of Biological Sciences and Sydney Institute of Marine Science, Macquarie University, NSW 2109, Australia
| | - Michael R Beard
- School of Biological Sciences, University of Adelaide, SA 5001, Australia
| | - Karla J Helbig
- School of Biological Sciences, University of Adelaide, SA 5001, Australia
| |
Collapse
|
48
|
Sensors of Infection: Viral Nucleic Acid PRRs in Fish. BIOLOGY 2015; 4:460-93. [PMID: 26184332 PMCID: PMC4588145 DOI: 10.3390/biology4030460] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/19/2015] [Accepted: 06/19/2015] [Indexed: 12/25/2022]
Abstract
Viruses produce nucleic acids during their replication, either during genomic replication or transcription. These nucleic acids are present in the cytoplasm or endosome of an infected cell, or in the extracellular space to be sensed by neighboring cells during lytic infections. Cells have mechanisms of sensing virus-generated nucleic acids; these nucleic acids act as flags to the cell, indicating an infection requiring defense mechanisms. The viral nucleic acids are called pathogen-associated molecular patterns (PAMPs) and the sensors that bind them are called pattern recognition receptors (PRRs). This review article focuses on the most recent findings regarding nucleic acids PRRs in fish, including: Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), cytoplasmic DNA sensors (CDSs) and class A scavenger receptors (SR-As). It also discusses what is currently known of the downstream signaling molecules for each PRR family and the resulting antiviral response, either type I interferons (IFNs) or pro-inflammatory cytokine production. The review highlights what is known but also defines what still requires elucidation in this economically important animal. Understanding innate immune systems to virus infections will aid in the development of better antiviral therapies and vaccines for the future.
Collapse
|
49
|
Zhong Z, Ji Y, Fu Y, Liu B, Zhu Q. Molecular characterization and expression analysis of the duck viperin gene. Gene 2015; 570:100-7. [PMID: 26049096 DOI: 10.1016/j.gene.2015.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/03/2015] [Accepted: 06/02/2015] [Indexed: 12/11/2022]
Abstract
Viperin is well known as one of the interferon-stimulated genes involved in innate immunity. Recent studies showed that this gene is mainly responsible for antiviral response to a large variety of viral infections. In this study, we successfully cloned and characterized the complete coding sequence of duck viperin gene. The duck viperin gene encodes 363 amino acids (aa) and is highly similar to viperins from other species. Moreover, secondary and 3D structures were predicted, and these structures showed two main domains, one signal peptide, and one radical S-adenosyl methionine (SAM) domain. Additionally, the duck viperin expression was analyzed in vitro and in vivo, and analysis results indicated that the duck viperin can be strongly up-regulated by poly(I:C) and Newcastle disease virus in primary duck embryo fibroblast cells. Results also demonstrated that Newcastle disease virus significantly induced duck viperin expression in the spleen, kidneys, liver, brain, and blood. Our findings will contribute to future studies on the detailed functions and potential underlying mechanisms of this novel protein in innate immunity.
Collapse
Affiliation(s)
- Zifu Zhong
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xujiaping, Chengguan District, Lanzhou 730046, Gansu, People's Republic of China
| | - Yanhong Ji
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xujiaping, Chengguan District, Lanzhou 730046, Gansu, People's Republic of China
| | - Yuguang Fu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xujiaping, Chengguan District, Lanzhou 730046, Gansu, People's Republic of China
| | - Bin Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xujiaping, Chengguan District, Lanzhou 730046, Gansu, People's Republic of China
| | - Qiyun Zhu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xujiaping, Chengguan District, Lanzhou 730046, Gansu, People's Republic of China.
| |
Collapse
|
50
|
Insights into the antiviral immunity against grass carp (Ctenopharyngodon idella) reovirus (GCRV) in grass carp. J Immunol Res 2015; 2015:670437. [PMID: 25759845 PMCID: PMC4337036 DOI: 10.1155/2015/670437] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/12/2014] [Indexed: 12/13/2022] Open
Abstract
Global fish production from aquaculture has rapidly grown over the past decades, and grass carp shares the largest portion. However, hemorrhagic disease caused by grass carp reovirus (GCRV) results in tremendous loss of grass carp (Ctenopharyngodon idella) industry. During the past years, development of molecular biology and cellular biology technologies has promoted significant advances in the understanding of the pathogen and the immune system. Immunoprophylaxis based on stimulation of the immune system of fish has also got some achievements. In this review, authors summarize the recent progresses in basic researches on GCRV; viral nucleic acid sensors, high-mobility group box proteins (HMGBs); pattern recognition receptors (PRRs), Toll-like receptors (TLRs) and retinoic acid inducible gene I- (RIG-I-) like receptors (RLRs); antiviral immune responses induced by PRRs-mediated signaling cascades of type I interferon (IFN-I) and IFN-stimulated genes (ISGs) activation. The present review also notices the potential applications of molecule genetic markers. Additionally, authors discuss the current preventive and therapeutic strategies (vaccines, RNAi, and prevention medicine) and highlight the importance of innate immunity in long term control for grass carp hemorrhagic disease.
Collapse
|