1
|
Zhang X, Zhang Z, Zhou Q, Zhang G, Luo J, Yun Y. Nanoplastic exposure weakens immunocompetence in the burrowing tarantula (Chilobrachys guangxiensis) following pathogen-associated molecular pattern challenges. ENVIRONMENTAL RESEARCH 2025; 274:121332. [PMID: 40058554 DOI: 10.1016/j.envres.2025.121332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
Nanoplastics (NPs) have emerged as critical environmental contaminants, with growing concerns regarding their potential harm to organisms. Despite this, knowledge remains limited on whether NP exposure diminishes the capacity of organisms to respond to additional environmental stressors. In this study, we evaluated immune function in a burrowing tarantula, Chilobrachys guangxiensis, following NP exposure and subsequent challenges with lipopolysaccharide (LPS) and β-1,3-glucan. The total hemocyte count (THC) and hemolymph encapsulation rate were assessed to determine immune disruption. In addition, transcriptomic analyses were conducted to elucidate the mechanisms involved after both primary and secondary exposures. Results indicated that prolonged NP exposure did not cause significant changes in immunocompetence in C. guangxiensis. However, upon secondary exposure to LPS or β-1,3-glucan, individuals pre-exposed to NPs displayed significant changes in THC and impaired encapsulation capacity. Gene expression profiling based on quantitative real-time PCR revealed that LPS and β-1,3-glucan elicited varying immune responses and distinct gene expression profiles in NP-exposed C. guangxiensis. These findings suggest that NP exposure weakens immunocompetence in C. guangxiensis. This study provides comprehensive insights into the immune responses triggered by different pathogen-associated molecular patterns in NP-exposed C. guangxiensis, offering a novel perspective on the complex immunotoxicological effects of NP pollution.
Collapse
Affiliation(s)
- Xiaopan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Zengtao Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Qi Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Guimin Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jing Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Yueli Yun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
2
|
Jiang S, Ye CJ, Wu YC, Shi RY, Yu YL, Saneela S, Liang D, Huang YJ, Shi XM, Meng Y. BmADARa cooperatively inhibits BmNPV proliferation through the interaction of its dsRBD2 with BmDcr-2-DEXHc in silkworm, Bombyx mori. INSECT SCIENCE 2025. [PMID: 40394905 DOI: 10.1111/1744-7917.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 05/22/2025]
Abstract
Adenosine deaminases that act on RNA (ADARs) are RNA editing enzymes capable of converting adenosine into inosine at specific sites within double-stranded RNA (dsRNA), widely distributed across various animal species. Dicer (Dcr), a member of the RNase III family and a crucial component of the RNA-induced silencing complex (RISC), allows ADAR to participate in innate immunity through Dcr-2 in Drosophila. Bombyx mori nucleopolyhedrovirus (BmNPV) is one of the viruses that can cause substantial economic losses to the sericulture industry upon infecting silkworm. Knocking down the expression of BmDcr-2 in silkworm enhances the proliferation of BmNPV. Our previous research revealed the existence of a predominantly expressed subtype, ADARa, in silkworm (BmADARa), which shares homology with Drosophila ADAR. It remains unclear whether BmADARa can also participate in innate immunity through BmDcr-2. Initially, through bacterial challenge experiments, we found that BmADARa exhibited the highest responsiveness to BmNPV stimulation. Further studies demonstrated that BmADARa, in conjunction with BmDcr-2-DEXHc (DEAD-box helicase domain), collectively inhibits the proliferation of BmNPV. BmADARa interacts with the DEXHc domain of BmDcr-2 through its dsRNA binding domain 2 (dsRBD2), thereby enhancing its ability to inhibit BmNPV proliferation. These results lay a foundation for the study of the function and molecular mechanism of BmADARa in innate immunity, and provide a new experimental ideas for antiviral research in B. mori.
Collapse
Affiliation(s)
- Song Jiang
- School of life sciences, Anhui Agricultural University, Hefei, China
| | - Chong-Jun Ye
- Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yu-Chen Wu
- School of life sciences, Anhui Agricultural University, Hefei, China
| | - Ruo-Yun Shi
- School of life sciences, Anhui Agricultural University, Hefei, China
| | - Yu-Long Yu
- School of life sciences, Anhui Agricultural University, Hefei, China
| | - Syeda Saneela
- School of life sciences, Anhui Agricultural University, Hefei, China
| | - Dan Liang
- College of Biological Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Yan-Jiao Huang
- School of life sciences, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, Hefei, China
- Anhui International Joint Research and Development Center of Sericulture Resources Utilization, Hefei, China
| | - Xia-Ming Shi
- School of life sciences, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, Hefei, China
- Anhui International Joint Research and Development Center of Sericulture Resources Utilization, Hefei, China
| | - Yan Meng
- School of life sciences, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, Hefei, China
- Anhui International Joint Research and Development Center of Sericulture Resources Utilization, Hefei, China
| |
Collapse
|
3
|
Zhang Y, Yan J, Xie Y, Wang X, Ren F, Bian H, Sun J. β-1,3-Glucan Recognition Protein Can Inhibit the Proliferation of Bombyx mori Cytoplasmic Polyhedrosis Virus. INSECTS 2025; 16:431. [PMID: 40332953 PMCID: PMC12028182 DOI: 10.3390/insects16040431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 05/08/2025]
Abstract
Insects detect pathogens through their germ-line encoded pattern recognition receptors (PRRs). Among these, β-1,3-glucan recognition protein (βGRP) is a crucial PRR that specifically identifies pathogenic microorganisms and triggers innate immune signaling cascades. However, it remains unclear whether βGRP can detect viruses and protect the host from viral threats. In this study, using high-throughput sequencing technology, we observed a significant suppression of βGRP-3 in Bombyx mori during infection with the Bombyx mori cytoplasmic polyhedrosis virus (BmCPV). Moreover, overexpression of βGRP-3 in BmN cell lines resulted in a reduction of BmCPV proliferation, whereas knockdown of βGRP-3 in BmN cells promoted BmCPV proliferation. These findings suggest that the βGRP family functions not only as anti-bacterial, antifungal, and anti-yeast PRRs but also as protectors against various harmful viruses in insects.
Collapse
Affiliation(s)
- Yinong Zhang
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (J.Y.); (Y.X.); (J.S.)
| | - Jiming Yan
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (J.Y.); (Y.X.); (J.S.)
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yukai Xie
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (J.Y.); (Y.X.); (J.S.)
| | - Xiong Wang
- College of Life Sciences, Nanyang Normal University, Nanyang 473061, China;
| | - Feifei Ren
- Department of Microbiology, College of Preclinical Medicine, Zunyi Medical University, Zunyi 563009, China
| | - Haixu Bian
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (J.Y.); (Y.X.); (J.S.)
| | - Jingchen Sun
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (J.Y.); (Y.X.); (J.S.)
| |
Collapse
|
4
|
Xia J, Peng R, Fei S, Awais MM, Lai W, Huang Y, Wu H, Yu Y, Liang L, Swevers L, Sun J, Feng M. Systematic analysis of innate immune-related genes in the silkworm: Application to antiviral research. INSECT SCIENCE 2025; 32:151-171. [PMID: 38571329 DOI: 10.1111/1744-7917.13363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/21/2024] [Accepted: 03/01/2024] [Indexed: 04/05/2024]
Abstract
The silkworm, a crucial model organism of the Lepidoptera, offers an excellent platform for investigating the molecular mechanisms underlying the innate immune response of insects toward pathogens. Over the years, researchers worldwide have identified numerous immune-related genes in silkworms. However, these identified silkworm immune genes are not well classified and not well known to the scientific community. With the availability of the latest genome data of silkworms and the extensive research on silkworm immunity, it has become imperative to systematically categorize the immune genes of silkworms with different database IDs. In this study, we present a meticulous organization of prevalent immune-related genes in the domestic silkworm, using the SilkDB 3.0 database as a reliable source for updated gene information. Furthermore, utilizing the available data, we classify the collected immune genes into distinct categories: pattern recognition receptors, classical immune pathways, effector genes and others. In-depth data analysis has enabled us to predict some potential antiviral genes. Subsequently, we performed antiviral experiments on selected genes, exploring their impact on Bombyx mori nucleopolyhedrovirus replication. The outcomes of this research furnish novel insights into the immune genes of the silkworm, consequently fostering advancements in the field of silkworm immunity research by establishing a comprehensive classification and functional understanding of immune-related genes in the silkworm. This study contributes to the broader understanding of insect immune responses and opens up new avenues for future investigations in the domain of host-pathogen interactions.
Collapse
Affiliation(s)
- Junming Xia
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ruoxuan Peng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shigang Fei
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Mian Muhammad Awais
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wenxuan Lai
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yigui Huang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hailin Wu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yue Yu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Lingying Liang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, National Center for Scientific Research Demokritos, Institute of Biosciences and Applications, Athens, Greece
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Liu H, Ding Y, Huang D, Zhang C, Yuan F, Chen Q, Liu T. Chemical Proteomics Reveals That Camptothecin Weakens Insect Immunity against Bacteria by Suppressing Antimicrobial Peptide Expression. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:289-297. [PMID: 39729021 DOI: 10.1021/acs.jafc.4c09514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Plant natural products are crucial in defending against herbivorous insects and are widely used in pest control, yet their mechanisms remain complex and insufficiently studied. This study employed a reverse strategy to investigate the mechanism of camptothecin (CPT), a botanical pesticide. By using a CPT-based chemical probe coupled with proteomic analysis, immune-related proteins, including those involved in prophenoloxidase (PPO) activation and antimicrobial peptide (AMP) synthesis, were identified in the Asian corn borer, Ostrinia furnacalis. The findings demonstrated that CPT weakens insect immunity, primarily by inhibiting AMP synthesis rather than affecting PPO activation. Specifically, CPT downregulated the expression of genes in the IMD pathway and those encoding AMPs (attacin and gloverin). Additionally, CPT-fed insects exhibited reduced antibacterial activity. This research uncovers a novel mechanism of CPT as an insect immunosuppressant, offering new insights that may enhance the application of CPT in pest control.
Collapse
Affiliation(s)
- Huan Liu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yi Ding
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Dongdong Huang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Cheng Zhang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Fenghou Yuan
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Qixian Chen
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, Zhejiang, China
| | - Tian Liu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
6
|
Ma L, Wang H, Liu Y, Sun J, Yan X, Lu Z, Hao C, Qie X. Single von Willebrand factor C-domain protein-2 confers immune defense against bacterial infections in the silkworm, Bombyx mori. Int J Biol Macromol 2024; 279:135241. [PMID: 39233173 DOI: 10.1016/j.ijbiomac.2024.135241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/16/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Single-domain von Willebrand factor type C proteins (SVWCs), primarily found in arthropods, responds to infections caused by various pathogens. Three SVWCs have been identified in the silkworm and BmSVWC2 might play a crucial role in the immune system. However, the regulatory mechanism of BmSVWC2 remains largely unknown. This study aimed to investigate the biochemical functions of BmSVWC2 in the immune system of B. mori comprehensively. Phylogenetic analysis revealed that BmSVWC1, BmSVWC3, and BmSVWC2 were distributed in diverse groups, suggesting distinct biochemical functions. The mRNA and protein levels of BmSVWC2 increased significantly in response to bacterial infection. BmSVWC2 exhibited clear binding activity to the polysaccharide pathogen-associated molecular patterns of bacteria and fungi, enhancing bacterial clearance in vivo but not in vitro. RNA-sequencing assays of the fat body and hemocytes showed that numerous immune genes were markedly up-regulated with higher level of BmSVWC2, primarily affecting recognition, signaling, and response production of the Toll and immune deficiency (IMD) signaling pathways. This led to the production of various antimicrobial peptides and significant antibacterial activities in the hemolymph. BmSVWC2 up-regulated phagocytosis-related genes in the fat body and hemocytes, and phagocytosis assays confirmed that BmSVWC2 improved the phagocytic ability of hemocytes against bacteria. Additionally, BmSVWC2 induced the expression of nitric oxide synthetase (NOS) in the fat body, and bioassays confirmed that BmSVWC2 increased NOS activity in the fat body and hemolymph, resulting in nitric oxide accumulation. However, BmSVWC2 did not affect phenoloxidase activity, despite it caused differential expression of a few serine proteases and serine protease inhibitors. Co-immunoprecipitation and mass spectrometry assays showed that BmSVWC2 interacted with 30 K proteins, such as 30 K protein 2, 30 K pBmHPC-19, 30 K 19G1-like, 30 K protein 8, 30 K protein 7, 30 K pBmHPC-23, and low molecular mass lipoprotein 4-like. Our study provides a comprehensive characterization of BmSVWC2 and elucidates the mechanism underlying its regulation of immune responses activation.
Collapse
Affiliation(s)
- Li Ma
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Han Wang
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yaya Liu
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jing Sun
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Xizhong Yan
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Chi Hao
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| | - Xingtao Qie
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|
7
|
Zhu S, Feng X, Liu Y, Jin D, Luo X, Fan Y. Expression of a viral ecdysteroid UDP-glucosyltransferase enhanced the insecticidal activity of the insect pathogenic fungus Beauveria bassiana. PEST MANAGEMENT SCIENCE 2024; 80:4915-4923. [PMID: 38837657 DOI: 10.1002/ps.8204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Entomopathogenic fungi, such as Beauveria bassiana, hold promise as biological control agents against insect pests. However, the efficacy of these fungi can be hindered by insect immune responses. One strategy to enhance fungal virulence is to manipulate host immune by targeting key regulatory molecules like 20-hydroxyecdysone (20E). RESULTS In this study, we engineered B. bassiana strains to constitutively express the enzyme ecdysteroid UDP-glucosyltransferase (EGT), which inactivates 20E, a crucial insect molting hormone. The engineered strain Bb::EGT-1 exhibited robust expression of EGT, leading to a significant reduction in insect 20E levels upon infection. Moreover, infection with Bb::EGT-1 resulted in accelerated larval mortality. Immune responses analysis revealed repression of insect immune response genes and decreased phenoloxidase (PO) activity in larvae infected with Bb::EGT-1. Microbiome analysis indicated alterations in bacterial composition within infected insects, with increased abundance observed during infection with Bb::EGT-1. Additionally, the presence of bacteria hindered hyphal emergence from insect cadavers, suggesting a role for microbial competition in fungal dissemination. CONCLUSIONS Constitutive expression of EGT in B. bassiana enhances fungal virulence by reducing insect 20E levels, suppressing immune responses, and altering the insect microbiome. These findings highlighted the potential of engineered fungi as effective biocontrol agents against insect pests and provide insights into the complex interactions between entomopathogenic fungi, their hosts, and associated microbes. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shengan Zhu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Xueyao Feng
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yu Liu
- Laboratory Animal Center, Southwest University, Chongqing, China
| | - Dan Jin
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Xingyou Luo
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yanhua Fan
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| |
Collapse
|
8
|
Muhammad A, Sun C, Shao Y. The humoral immune response of the lepidopteran model insect, silkworm Bombyx mori L., to microbial pathogens. CURRENT RESEARCH IN INSECT SCIENCE 2024; 6:100097. [PMID: 39364346 PMCID: PMC11447326 DOI: 10.1016/j.cris.2024.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/10/2024] [Accepted: 09/16/2024] [Indexed: 10/05/2024]
Abstract
Insects are valuable models for studying innate immunity and its role in combating infections. The silkworm Bombyx mori L., a well-studied insect model, is susceptible to a range of pathogens, including bacteria, fungi, viruses, and microsporidia. Their susceptibility makes it a suitable model for investigating host-pathogen interactions and immune responses against infections and diseases. This review focuses on the humoral immune response and the production of antimicrobial peptides (AMPs), the phenoloxidase (PO) system, and other soluble factors that constitute the primary defense of silkworms against microbial pathogens. The innate immune system of silkworms relies on pattern recognition receptors (PRRs) to recognize pathogen-associated molecular patterns (PAMPs), which then activate various immune pathways including Imd, Toll, JAK/STAT, and RNA interference (RNAi). Their activation triggers the secretion of AMPs, enzymatic defenses (lysozyme and PO), and the generation of reactive oxygen species (ROS). Collectively, these pathways work together to neutralize and eliminate pathogens, thereby contributing to the defense mechanism of silkworms. Understanding the innate immunity of silkworms can uncover conserved molecular pathways and key immune components shared between insects and vertebrates. Additionally, it can provide valuable insights for improving sericulture practices, developing strategies to control diseases affecting silk production, and providing a theoretical foundation for developing pest control measures.
Collapse
Affiliation(s)
- Abrar Muhammad
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Yongqi Shao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| |
Collapse
|
9
|
Matsumoto Y, Sato E, Sugita T. Induction of acute silkworm hemolymph melanization by Staphylococcus aureus treated with peptidoglycan-degrading enzymes. Drug Discov Ther 2024; 18:194-198. [PMID: 38925960 DOI: 10.5582/ddt.2024.01026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Staphylococcus aureus, a Gram-positive bacterium, causes inflammatory skin diseases, such as atopic dermatitis, and serious systemic diseases, such as sepsis. In the skin and nasal environment, peptidoglycan (PGN)-degrading enzymes, including lysozyme and lysostaphin, affects S. aureus PGN. However, the effects of PGN-degrading enzymes on the acute innate immune-inducing activity of S. aureus have not yet been investigated. In this study, we demonstrated that PGN-degrading enzymes induce acute silkworm hemolymph melanization by S. aureus. Insoluble fractions of S. aureus treated with lysozyme, lysostaphin, or both enzymes, were prepared. Melanization of the silkworm hemolymph caused by the injection of these insoluble fractions was higher than that of S. aureus without enzyme treatment. These results suggest that structural changes in S. aureus PGN caused by PGN-degrading enzymes affect the acute innate immune response in silkworms.
Collapse
Affiliation(s)
- Yasuhiko Matsumoto
- Department of Microbiology, Meiji Pharmaceutical University, Tokyo, 204-8588, Japan
| | - Eri Sato
- Department of Microbiology, Meiji Pharmaceutical University, Tokyo, 204-8588, Japan
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, Tokyo, 204-8588, Japan
| |
Collapse
|
10
|
Hu D, Xu F, Gao Z, Chen K, Guo W, Wang Z, Li S, Feng C. Pleiotropic immunoregulation by growth-blocking peptide in Ostrinia furnacalis. INSECT MOLECULAR BIOLOGY 2024; 33:270-282. [PMID: 38329162 DOI: 10.1111/imb.12898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/20/2024] [Indexed: 02/09/2024]
Abstract
Insects rely on their innate immune system to eliminate pathogenic microbes. As a system component, cytokines transmit intercellular signals to control immune responses. Growth-blocking peptide (GBP) is a member of the stress-responsive peptide family of cytokines found in several orders of insects, including Drosophila. However, the physiological role of GBP in defence against pathogens is not thoroughly understood. In this study, we explored the functions of GBP in a lepidopteran pest, Ostrinia furnacalis. Injection of recombinant O. furnacalis GBP (OfGBP) precursor (proGBP) and chemically synthesised GBP significantly induced the transcription of antimicrobial peptides (AMPs) and other immunity-related genes including immune deficiency (IMD) and Dorsal. The level of OfGBP mRNA was upregulated after bacterial infection. Knockdown of OfGBP expression led to a decrease in IMD, Relish, MyD88 and Dorsal mRNA levels. OfGBP induced phenoloxidase activity and affected hemocyte behaviours in O. furnacalis larvae. In summary, GBP is a potent cytokine, effectively regulating AMP synthesis, melanization response and cellular immunity to eliminate invading pathogens.
Collapse
Affiliation(s)
- Dongchun Hu
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Fuqiang Xu
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Zupeng Gao
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Kangkang Chen
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Wenlong Guo
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Zitian Wang
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Shuzhong Li
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Congjing Feng
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
11
|
Zhou L, Meng G, Zhu L, Ma L, Chen K. Insect Antimicrobial Peptides as Guardians of Immunity and Beyond: A Review. Int J Mol Sci 2024; 25:3835. [PMID: 38612644 PMCID: PMC11011964 DOI: 10.3390/ijms25073835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/29/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Antimicrobial peptides (AMPs), as immune effectors synthesized by a variety of organisms, not only constitute a robust defense mechanism against a broad spectrum of pathogens in the host but also show promising applications as effective antimicrobial agents. Notably, insects are significant reservoirs of natural AMPs. However, the complex array of variations in types, quantities, antimicrobial activities, and production pathways of AMPs, as well as evolution of AMPs across insect species, presents a significant challenge for immunity system understanding and AMP applications. This review covers insect AMP discoveries, classification, common properties, and mechanisms of action. Additionally, the types, quantities, and activities of immune-related AMPs in each model insect are also summarized. We conducted the first comprehensive investigation into the diversity, distribution, and evolution of 20 types of AMPs in model insects, employing phylogenetic analysis to describe their evolutionary relationships and shed light on conserved and distinctive AMP families. Furthermore, we summarize the regulatory pathways of AMP production through classical signaling pathways and additional pathways associated with Nitric Oxide, insulin-like signaling, and hormones. This review advances our understanding of AMPs as guardians in insect immunity systems and unlocks a gateway to insect AMP resources, facilitating the use of AMPs to address food safety concerns.
Collapse
Affiliation(s)
- Lizhen Zhou
- Department of Plant Protection, College of Plant Protection, Yangzhou University, Yangzhou 225009, China;
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Guanliang Meng
- Zoological Research Museum Alexander Koenig, Leibniz Institute for the Analysis of Biodiversity Change, 53113 Bonn, Germany;
| | - Ling Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Li Ma
- College of Plant Protection, Shanxi Agricultural University, Taigu 030810, China
| | - Kangkang Chen
- Department of Plant Protection, College of Plant Protection, Yangzhou University, Yangzhou 225009, China;
| |
Collapse
|
12
|
Wang J, Hu H, Pang S, Yin X, Cao B, Huang J, Xu X, Weng Q, Hu Q. Destruxin A inhibits the hemocytin-mediated hemolymph immunity of host insects to facilitate Metarhizium infection. Cell Rep 2024; 43:113686. [PMID: 38219149 DOI: 10.1016/j.celrep.2024.113686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/07/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024] Open
Abstract
Insects have an effective innate immune system to protect themselves against fungal invasion. Metarhizium employs a toxin-based strategy using a nonribosomal peptide called destruxin A (DA) to counteract the host immune response. However, the mechanism by which DA inhibits insect immunity is still unclear. Here, we identified 48 DA-binding proteins in silkworm hemolymph, with the binding affinity (KD) ranging from 2 to 420 μM. Among these proteins, hemocytin, an important immune factor, was determined to be the strongest DA-binding protein. DA binds to hemocytin and regulates its conformation in a multisite manner. Furthermore, DA exerts a significant inhibitory effect on hemocytin-mediated hemocyte aggregation. By disrupting the interaction between hemocytin, actin A3, and gelsolin, DA prevents the transformation of granules into vesicles in hemocytes. These vesicles are responsible for storing, maturing, and exocytosing hemocytin. Therefore, hemocytin secretion is reduced, and the formation of structures that promote aggregation in outer hemocytes is inhibited.
Collapse
Affiliation(s)
- Jingjing Wang
- College of Plant Protection, South China Agricultural University, Wushan RD483, Tianhe, Guangzhou, China; College of Horticulture, South China Agricultural University, Wushan RD483, Tianhe, Guangzhou, China
| | - Hongwang Hu
- College of Plant Protection, South China Agricultural University, Wushan RD483, Tianhe, Guangzhou, China
| | - Suyun Pang
- College of Plant Protection, South China Agricultural University, Wushan RD483, Tianhe, Guangzhou, China
| | - Xuyu Yin
- College of Plant Protection, South China Agricultural University, Wushan RD483, Tianhe, Guangzhou, China
| | - Bihao Cao
- College of Horticulture, South China Agricultural University, Wushan RD483, Tianhe, Guangzhou, China
| | - Jilei Huang
- Instrumental Analytical and Research Center, South China Agricultural University, Wushan RD483, Tianhe, Guangzhou, China
| | - Xiaoli Xu
- Instrumental Analytical and Research Center, South China Agricultural University, Wushan RD483, Tianhe, Guangzhou, China
| | - Qunfang Weng
- College of Plant Protection, South China Agricultural University, Wushan RD483, Tianhe, Guangzhou, China
| | - Qiongbo Hu
- College of Plant Protection, South China Agricultural University, Wushan RD483, Tianhe, Guangzhou, China.
| |
Collapse
|
13
|
Scheler J, Binder U. Alternative in-vivo models of mucormycosis. Front Cell Infect Microbiol 2024; 14:1343834. [PMID: 38362495 PMCID: PMC10867140 DOI: 10.3389/fcimb.2024.1343834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Mucormycosis is still regarded a rare fungal infection, but the high incidences of COVID-associated cases in India and other countries have shown its potential threat to large patient cohorts. In addition, infections by these fast-growing fungi are often fatal and cause disfigurement, badly affecting patients' lives. In advancing our understanding of pathogenicity factors involved in this disease, to enhance the diagnostic toolset and to evaluate novel treatment regimes, animal models are indispensable. As ethical and practical considerations typically favor the use of alternative model systems, this review provides an overview of alternative animal models employed for mucormycosis and discusses advantages and limitations of the respective model.
Collapse
Affiliation(s)
| | - Ulrike Binder
- Department of Hygiene, Microbiology and Public Health, Division of Hygiene and Medical Microbiology, Medical University Innsbruck, Innsbruck, Tirol, Austria
| |
Collapse
|
14
|
Chen YR, Yang HJ, Cha JM, Zhang XX, Fan D. Expression patterns and antifungal function study of KaSPI in Mythimna separata. BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:756-766. [PMID: 37730215 DOI: 10.1017/s000748532300041x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Kazal-type serine protease inhibitors (KaSPI) play important roles in insect growth, development, digestion, metabolism and immune defence. In this study, based on the transcriptome of Mythimna separata, the cDNA sequence of MsKaSPI with Kazal domain was uploaded to GenBank (MN931651). Spatial and temporal expression analysis showed that MsKaSPI was expressed at different developmental stages and different tissues, and it was induced by 20-hydroxyecdysone in third-instar larvae of M. separata. After 24 h infection by Beauveria bassiana, the expression level of MsKaSPI and the corresponding MsKaSPI content were significantly up-regulated, being 6.42-fold and 1.91-fold to the control group, respectively, while the activities of serine protease, trypsin and chymotrypsin were inhibited. After RNA interference interfered with MsKaSPI for 6 h, the expression decreased by 73.44%, the corresponding content of MsKaSPI protein decreased by 55.66% after 12 h, and the activities of serine protease and trypsin were significantly enhanced. Meanwhile, both the larval and pupal stages of M. separata were prolonged, the weights were reduced and the number of eggs per female decreased by 181. Beauveria bassiana infection also increased the mortality of MsKaSPI-silenced M. separata by 18.96%. These prove MsKaSPI can not only result in slow growth and low fecundity of M. separata by regulating the activity of related protease, but also participate in the resistance to pathogenic fungi by regulating the serine protease inhibitor content and the activities of related serine protease.
Collapse
Affiliation(s)
- Ya-Ru Chen
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hong-Jia Yang
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Jin-Myong Cha
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
- Kyeungsang Sariwon Agricultural University, Pyong Yang 95003, DPR of Korea
| | - Xin-Xin Zhang
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Dong Fan
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
15
|
Hu H, Yin X, Pang S, Jiang Y, Weng Q, Hu Q, Wang J. Mechanism of destruxin a inhibits juvenile hormone binding protein transporting juvenile hormone to affect insect growth. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105654. [PMID: 38072529 DOI: 10.1016/j.pestbp.2023.105654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/22/2023] [Accepted: 10/17/2023] [Indexed: 12/18/2023]
Abstract
Destruxin A, a non-ribosomal peptide toxin produced by Metarhizium, exhibits potent insecticidal activity by targeting various tissues, organs, and cells of insects. Our previous research has revealed that DA possesses the ability to bind to multiple proteins. In this study, we aimed to identify the most sensitive binding proteins of DA and investigate the physiological processes in which DA regulated. Through RNAi technology, we screened 22 binding proteins of DA in silkworm hemolymph. Among them, the juvenile hormone binding protein (JHBP), a hormone transport protein crucial for growth and development regulation, exhibited the highest sensitivity to DA. Subsequent experiments demonstrated that DA could inhibit the body weight gain of silkworm larvae, accelerate the pupation occurrence, and modulate the content of free juvenile hormone (JH) in the hemolymph. We also observed that DA could induce conformational changes in both the JHBP and the JHBP-JH binding complex. Notably, at low dosage, DA influenced the binding of JHBP to JH, while at high dosage, it irreversibly affected the binding of JHBP to JH. Molecular docking and point-mutant experiments suggested that DA might affect the N-arm of JHBP, which is responsible for JH binding. Additionally, we discovered that JHBP is widely distributed in various tissues of the silkworm, including the epidermis, gut, fat body, Malpighian tubule, gonad, muscle, trachea, and hemocyte. This study provides novel insights into the insecticidal mechanism of DA and enhances our understanding of the pathogenic process of Metarhizium.
Collapse
Affiliation(s)
- Hongwang Hu
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Xuyu Yin
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Suyun Pang
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Yali Jiang
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Qunfang Weng
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Qiongbo Hu
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Jingjing Wang
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
16
|
Chen K, Lu S, Song J, Dou X, Wei X, Wang X, Liu X, Feng C. The selective regulation of immune responses by matrix metalloproteinase MMP14 in Ostrinia furnacalis. INSECT SCIENCE 2023; 30:1622-1636. [PMID: 37209089 DOI: 10.1111/1744-7917.13202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 05/22/2023]
Abstract
Matrix metalloproteinases (MMPs) are crucial for tissue remodeling and immune responses in insects, yet it remains unclear how MMPs affect the various immune processes against pathogenic infections and whether the responses vary among insects. In this study, we used the lepidopteran pest Ostrinia furnacalis larvae to address these questions by examining the changes of immune-related gene expression and antimicrobial activity after the knockdown of MMP14 and bacterial infections. We identified MMP14 in O. furnacalis using the rapid amplification of complementary DNA ends (RACE), and found that it was conserved and belonged to the MMP1 subfamily. Our functional investigations revealed that MMP14 is an infection-responsive gene, and its knockdown reduces phenoloxidase (PO) activity and Cecropin expression, while the expressions of Lysozyme, Attacin, Gloverin, and Moricin are enhanced after MMP14 knockdown. Further PO and lysozyme activity determinations showed consistent results with gene expression of these immune-related genes. Finally, the knockdown of MMP14 decreased larvae survival to bacterial infections. Taken together, our data indicate that MMP14 selectively regulates the immune responses, and is required to defend against bacterial infections in O. furnacalis larvae. Conserved MMPs may serve as a potential target for pest control using a combination of double-stranded RNA and bacterial infection.
Collapse
Affiliation(s)
- Kangkang Chen
- Department of Plant Protection, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shiqi Lu
- Department of Plant Protection, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiahui Song
- Department of Plant Protection, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaoyi Dou
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Xiangyi Wei
- Department of Plant Protection, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinyan Wang
- Department of Plant Protection, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xu Liu
- Department of Plant Protection, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Congjing Feng
- Department of Plant Protection, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
17
|
Liu X, Gu H, Xu Q, Jiang Z, Li B, Wei J. Determination of suitable reference genes for RT-qPCR normalisation in Bombyx mori (Lepidoptera: Bombycidae) infected by the parasitoid Exorista sorbillans (Diptera, Tachinidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:845-857. [PMID: 37997795 DOI: 10.1017/s0007485323000536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The silkworm Bombyx mori (Lepidoptera: Bombycidae) is a lepidopteran model insect of great economic importance. The parasitoid Exorista sorbillans (Diptera, Tachinidae) is the major pest of B. mori and also a promising candidate for biological control. However, the molecular interactions between hosts and dipteran parasitoids have only partially been studied. Gene expression analysis by reverse-transcription quantitative real-time polymerase chain reaction (RT-qPCR) is indispensable to characterise their interactions. Accurate normalisation of RT-qPCR-based gene expression requires the use of reference genes that are constantly expressed irrespective of experimental conditions. In this study, the expression stability of 13 traditionally used reference genes was estimated by five statistical algorithms (ΔCt, geNorm, Normfinder, BestKeeper, and RefFinder) to determine the best reference genes for gene expression studies in different tissues of B. mori under E. sorbillans parasitism. Specifically, TATA-box-binding protein was the best reference gene in epidermis and testis, while elongation factor 1α was the most stable gene in prothoracic gland and midgut. Elongation factor 1γ, ribosomal protein L3, actin A1, ribosomal protein L40, glyceraldehyde-3-phosphate dehydrogenase and eukaryotic translation initiation factor 4A were the most suitable genes in head, silk gland, fat body, haemolymph, Malpighian tubule and ovary, respectively. Our study offers a set of suitable reference genes for gene expression normalisation in B. mori under the parasitic stress of E. sorbillans, which will benefit the in-depth exploration of host-dipteran parasitoid interactions, and also provide insights for further improvements of B. mori resistance against parasitoids and biocontrol efficacy of dipteran parasitoids.
Collapse
Affiliation(s)
- Xinyi Liu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Haoyi Gu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Qian Xu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhe Jiang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
- Sericulture Institute of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jing Wei
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
- Sericulture Institute of Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
18
|
Qin M, Jiang L, Qiao G, Chen J. Phylosymbiosis: The Eco-Evolutionary Pattern of Insect-Symbiont Interactions. Int J Mol Sci 2023; 24:15836. [PMID: 37958817 PMCID: PMC10650905 DOI: 10.3390/ijms242115836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Insects harbor diverse assemblages of bacterial and fungal symbionts, which play crucial roles in host life history. Insects and their various symbionts represent a good model for studying host-microbe interactions. Phylosymbiosis is used to describe an eco-evolutionary pattern, providing a new cross-system trend in the research of host-associated microbiota. The phylosymbiosis pattern is characterized by a significant positive correlation between the host phylogeny and microbial community dissimilarities. Although host-symbiont interactions have been demonstrated in many insect groups, our knowledge of the prevalence and mechanisms of phylosymbiosis in insects is still limited. Here, we provide an order-by-order summary of the phylosymbiosis patterns in insects, including Blattodea, Coleoptera, Diptera, Hemiptera, Hymenoptera, and Lepidoptera. Then, we highlight the potential contributions of stochastic effects, evolutionary processes, and ecological filtering in shaping phylosymbiotic microbiota. Phylosymbiosis in insects can arise from a combination of stochastic and deterministic mechanisms, such as the dispersal limitations of microbes, codiversification between symbionts and hosts, and the filtering of phylogenetically conserved host traits (incl., host immune system, diet, and physiological characteristics).
Collapse
Affiliation(s)
- Man Qin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
| | - Liyun Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (M.Q.); (L.J.)
| |
Collapse
|
19
|
Mussa ZH, Al-Ameer LR, Al-Qaim FF, Deyab IF, Kamyab H, Chelliapan S. A comprehensive review on adsorption of methylene blue dye using leaf waste as a bio-sorbent: isotherm adsorption, kinetics, and thermodynamics studies. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:940. [PMID: 37436672 DOI: 10.1007/s10661-023-11432-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/27/2023] [Indexed: 07/13/2023]
Abstract
Water bodies with the dye methylene blue pose serious environmental and health risks to humans. Therefore, the creation and investigation of affordable, potential adsorbents to remove methylene blue dye from water resources as a long-term fix is one focus of the scientific community. Food plants and other carbon-source serve as a hotspot for a wider range of application on different pollutants that impact the environment and living organisms. Here, we reviewed the use of treated and untreated biosorbents made from plant waste leaves for removing the dye methylene blue from aqueous media. After being modified, activated carbon made from various plant leaves improves adsorption performance. The range of activating chemicals, activation methods, and bio-sorbent material characterisation using FTIR analysis, Barunauer-Emmett-Teller (BET) surface area, scanning electron microscope (SEM-EDX), and SEM-EDX have all been covered in this review. It has been thoroughly described how the pH solution of the methylene blue dye compares to the pHPZC of the adsorbent surface. The presentation also includes a thorough analysis of the application of the isotherm model, kinetic model, and thermodynamic parameters. The selectivity of the adsorbent is the main focus of the adsorption kinetics and isotherm models. It has been studied how adsorption occurs, how surface area and pH affect it, and how biomass waste compares to other adsorbents. The use of biomass waste as adsorbents is both environmentally and economically advantageous, and it has been discovered to have exceptional color removal capabilities.
Collapse
Affiliation(s)
| | | | - Fouad Fadhil Al-Qaim
- Department of Chemistry, Faculty of Science for Women, University of Babylon, PO Box 4, Hilla, Iraq.
| | - Issa Farhan Deyab
- Medical Physics Department, Al-Mustaqbal University College, 51001, Hillah, Babil, Iraq
| | - Hesam Kamyab
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India
| | - Shreeshivadasan Chelliapan
- Engineering Department, Razak Faculty of Technology & Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Makwana P, Rahul K, Ito K, Subhadra B. Diversity of Antimicrobial Peptides in Silkworm. Life (Basel) 2023; 13:life13051161. [PMID: 37240807 DOI: 10.3390/life13051161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/01/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Antimicrobial resistance is a phenomenon that the present-day world is witnessing that poses a serious threat to global health. The decline in the development of novel therapeutics over the last couple of decades has exacerbated the situation further. In this scenario, the pursuit of new alternative therapeutics to commonly used antibiotics has gained predominance amongst researchers across the world. Antimicrobial peptides (AMPs) from natural sources have drawn significant interest in the recent years as promising pharmacological substitutes over the conventional antibiotics. The most notable advantage of AMPs is that microorganisms cannot develop resistance to them. Insects represent one of the potential sources of AMPs, which are synthesized as part of an innate immune defence against invading pathogens. AMPs from different insects have been extensively studied, and silkworm is one of them. Diverse classes of AMPs (including attacins, cecropins, defensins, enbocins, gloverins, lebocins and moricins) were identified from silkworm that exhibit antimicrobial property against bacteria, fungi and viruses, indicating their potential therapeutic benefits. This review briefs about the immune responses of silkworm to invading pathogens, the isolation of AMPs from silkworms, AMPs reported in silkworms and their activity against various microorganisms.
Collapse
Affiliation(s)
- Pooja Makwana
- Central Sericultural Research & Training Institute, Central Silk Board, Ministry of Textiles, Government of India, Berhampore, Murshidabad 742101, West Bengal, India
| | - Kamidi Rahul
- Central Sericultural Research & Training Institute, Central Silk Board, Ministry of Textiles, Government of India, Berhampore, Murshidabad 742101, West Bengal, India
| | - Katsuhiko Ito
- Laboratory of Sericultural Science, Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi 183-8509, Tokyo, Japan
| | - Bindu Subhadra
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, New York, NY 11548, USA
| |
Collapse
|
21
|
Jiang Y, Wang Y, Zhang Y, Yang H. Identification and function analysis of a scavenger receptor B gene in red swamp crayfish Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108780. [PMID: 37120086 DOI: 10.1016/j.fsi.2023.108780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/14/2023]
Abstract
Scavenger receptor (SRs) are pattern recognition receptors that play important roles in innate immunity. However, studies on SR in Procambarus clarkii are still lacking. In the present study, a novel scavenger receptor B on P. clarkii (PcSRB) was identified. The ORF of PcSRB was 548 bp and encoded 505 amino acid residues. It was a transmembrane protein with two transmembrane domains. The molecular weight was about 57.1 kDa. The tissue analysis by real-time PCR showed that the highest expression level was found in hepatopancreas, while the lowest expression level was found in heart, muscle, nerve and gill. After P. clarkii were infected with Aeromonas hydrophila, the expression of SRB in hemocytes increased rapidly at 12 h, and SRB in hepatopancreas and intestine also increased rapidly at 48 h after infection. The recombinant protein was obtained by prokaryotic expression. The recombinant protein (rPcSRB) could bind to bacteria and different molecular pattern recognition substances. The present study confirmed that SRB may be involved in the immune regulation process and play a certain role in the immune defense of P. clarkii, especially in the recognition and binding of pathogens. Therefore, this study provides theoretical support for further improving and enriching the immune system of P. clarkii.
Collapse
Affiliation(s)
- Yinan Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yuting Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
22
|
Zhang R, Chen X, Wang Y, Bai X, Yang Q, Zhong Y, Yu XQ, Jin F, Yang W. BmMD-2A responds to 20-hydroxyecdysone and regulates Bombyx mori silkworm innate immunity in larva-to-pupa metamorphosis. INSECT SCIENCE 2023; 30:411-424. [PMID: 35871306 DOI: 10.1111/1744-7917.13097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
20E-hydroxyecdysone (20E) plays important roles in larval molting and metamorphosis in insects and is also involved in the insect innate immune response. Insect metamorphosis is a highly successful strategy for environmental adaptation and is the most vulnerable stage during which the insect is susceptible to various pathogens. 20E regulates a series of antimicrobial peptides (AMPs) through the immunodeficiency (IMD) pathway activation in Drosophila; nevertheless, whether other immune pathways are involved in 20E-regulated insect immunity is unknown. Our previous studies showed that BmMD-2A is a member of the MD-2-related lipid recognition (ML) family of proteins that are involved in the Bombyx mori innate immunity Toll signaling pathway. In this study, we further demonstrate that BmMD-2A is also positively regulated by 20E, and the BmMD-2A neutralization experiment suggested that 20E activates some downstream immune effect factors, the AMP genes against Escherichia coli and Staphylococcus aureus, through the regulation of BmMD-2A in larval metamorphosis, implying that B. mori may use the Toll-ML signaling pathway to maintain innate immune balance in the larval-pupal metamorphosis stage, which is a different innate immunity pathway regulated by 20E compared to the IMD pathway in Drosophila.
Collapse
Affiliation(s)
- Ruonan Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Xue Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yuan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xu Bai
- Guangdong Laboratory for Lingnan Modern Agriculture, Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qiong Yang
- The Sericultural and Agri-Food Research Institute of the Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yangjin Zhong
- Guangdong Laboratory for Lingnan Modern Agriculture, Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao-Qiang Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Fengliang Jin
- Guangdong Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Wanying Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
23
|
Zheng R, Cheng L, Peng J, Li Q, Yang F, Yang D, Xia Y, Tang Q. Comparative analysis of gut microbiota and immune genes linked with the immune system of wild and captive Spodoptera frugiperda (Lepidoptera: Noctuidae). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 138:104530. [PMID: 36084754 DOI: 10.1016/j.dci.2022.104530] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith), is one of the most highly polyphagous invasive pests causing serious damage to maize crops in China. However, little is known about the gut immune responses to the environment, particularly along the migration routes in Jianghuai, China, throughout the autumn and winter. In this study, high-throughput sequencing and real-time quantitative PCR (RT-qPCR) were employed to examine the variations in immune genes and gut microbiome communities between captive and wild fall armyworm populations. Results showed that the diversity and community of the gut's microbes were higher in wild populations, and the average weighted UniFrac distance between bacterial taxa varied. A wide variety of immune genes were more abundant in the wild populations than in others. Results indicated that diets and different survival conditions impacted the gut microbiota and immune system of S. frugiperda, which was crucial for environmental adaptation. These differences in gut microbiota and immune responses between wild and captive Fall armyworms are critical for comprehending the symbiotic relationship between microbes, immune genes, and hosts. They also highlight the need for increased focus on developing more effective and environmentally friendly pest control methods.
Collapse
Affiliation(s)
- Renwen Zheng
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Luoling Cheng
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Jun Peng
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Qianqian Li
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Fan Yang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Dehua Yang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Yuxian Xia
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Qingfeng Tang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
24
|
Zeng T, Jaffar S, Xu Y, Qi Y. The Intestinal Immune Defense System in Insects. Int J Mol Sci 2022; 23:ijms232315132. [PMID: 36499457 PMCID: PMC9740067 DOI: 10.3390/ijms232315132] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Over a long period of evolution, insects have developed unique intestinal defenses against invasion by foreign microorganisms, including physical defenses and immune responses. The physical defenses of the insect gut consist mainly of the peritrophic matrix (PM) and mucus layer, which are the first barriers to pathogens. Gut microbes also prevent the colonization of pathogens. Importantly, the immune-deficiency (Imd) pathways produce antimicrobial peptides to eliminate pathogens; mechanisms related to reactive oxygen species are another important pathway for insect intestinal immunity. The janus kinase/STAT signaling pathway is involved in intestinal immunity by producing bactericidal substances and regulating tissue repair. Melanization can produce many bactericidal active substances into the intestine; meanwhile, there are multiple responses in the intestine to fight against viral and parasitic infections. Furthermore, intestinal stem cells (ISCs) are also indispensable in intestinal immunity. Only the coordinated combination of the intestinal immune defense system and intestinal tissue renewal can effectively defend against pathogenic microorganisms.
Collapse
|
25
|
Alradi MF, Lu S, Wang L, Han Z, Elradi SA, Khogali MK, Liu X, Wei X, Chen K, Li S, Feng C. Characterization and functional analysis of a myeloid differentiation factor 88 in Ostrinia furnacalis Guenée larvae infected by Bacillus thuringiensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104489. [PMID: 35781013 DOI: 10.1016/j.dci.2022.104489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Myeloid differentiation factor 88 (MyD88) is a pivotal adapter protein involved in activating nuclear factor NF-κB of the Toll pathway in insect innate immunity. MyD88 has been extensively studied in vertebrates and Drosophila. However, the information ascribed to MyD88 in Lepidoptera is scarce. In the present study, an Ostrinia furnacalis MyD88 (OfMyD88) cDNA was cloned and functionally characterized (GenBank accession no. MN906311). The complete cDNA sequence of OfMyD88 is 804 bp, and contains a 630 bp open reading frame encoding 209 amino acid residues. OfMyD88 has the death domain (DD), an intermediate domain, and the Toll/interleukin 1 receptor (TIR) domain. OfMyD88 was widely expressed in immune-related tissues such as hemocytes, fat body, midgut, and integument, with the highest expression level in hemocytes, and the lowest expression level in integument. To clarify the immune function of MyD88, O. furnacalis larvae were challenged with Bacillus thuringiensis (Bt) through feeding. Bt oral infection had significantly up-regulated the expression of OfMyD88 and immune genes, including PPO2 (prophenoloxidase 2), Attacin, Gloverin, Cecropin, Moricin, GRP3 (β-1, 3-Glucan recognition protein 3), and Lysozyme, and increased the activities of PO and lysozyme in hemolymph of O. furnacalis larvae. Knockdown of OfMyD88 by RNA interference suppressed the expression levels of immune related genes, but not PPO2 in the larvae orally infected with Bt, suggesting that OfMyD88 is involved in defending against Bt invasion through the Toll signaling pathway, but does not affect the PPO expression in O. furnacalis larvae.
Collapse
Affiliation(s)
- Mohamed F Alradi
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Department of Medical Entomology, College of Public and Environmental Health, University of Khartoum, Khartoum, Khartoum State, 13314, Sudan
| | - Shiqi Lu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Libao Wang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Zhaoyang Han
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Sana A Elradi
- Department of Physiology, College of Medicine, University of Khartoum, Khartoum, Khartoum State, 13314, Sudan
| | - Mawahib K Khogali
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Department of Poultry Production, Faculty of Animal Production, University of Khartoum, Khartoum, Khartoum State, 13314, Sudan
| | - Xu Liu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xiangyi Wei
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Kangkang Chen
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Shuzhong Li
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Congjing Feng
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
26
|
Bai J, Cao J, Zhang Y, Xu Z, Li L, Liang L, Ma X, Han R, Ma W, Xu L, Ma L. Comparative analysis of the immune system and expression profiling of Lymantria dispar infected by Beauveria bassiana. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 187:105212. [PMID: 36127056 DOI: 10.1016/j.pestbp.2022.105212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Lymantria dispar is one of the most devastating forest pests worldwide. Fungal biopesticides have great potential as alternatives owing to their high lethality to pests and eco-friendly feature, which is, however, often severely compromised by the pests' innate immunity. A better understanding of the antifungal immune system in L. dispar would significantly facilitate the development of the biopesticide. Here, we investigated phylogenetic characteristics of immunity-related genes as well as the tissue expression patterns in L. dispar after the infection of an entomopathogen Beauveria bassiana using RNA-sequencing data. Results showed most immune genes remain at a low level of response after 24 h post-infection (HPI). Almost all genes in the Toll pathway were significantly up-regulated at 48 HPI, and SPH1, SPN6, Toll6, Toll12, Myd88, pelle, and Drosal were significantly down-regulated at 72 HPI. Immunoblotting analysis revealed that the protein levels of βGRP3 and PPO1 were significantly upregulated at 24 and 48 HPI, while Myd88 was downregulated at 24 HPI, which was further confirmed by Quantitative real-time PCR experiments. Moreover, the relative content of H2O2, a potent reactive oxygen species (ROS), was significantly increased with the decrease of the total antioxidant capacity, indicating that oxidative stress system positively participates in the clearance of the pathogenic fungus. Together, our study provides detailed genetic characteristics of antifungal immunity as well as profiling of the host defense against entomopathogenic infection, and comprehensive insight into molecular interaction between L. dispar and the entomopathogen.
Collapse
Affiliation(s)
- Jianyang Bai
- Department of Forest protection, College of Forestry, Northeast Forestry University, Harbin 150040, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jingyu Cao
- Department of Forest protection, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yue Zhang
- Department of Forest protection, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Zhe Xu
- Department of Forest protection, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Lu Li
- Department of Forest protection, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Liwei Liang
- Department of Forest protection, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Xiaoqian Ma
- Department of Forest protection, College of Forestry, Northeast Forestry University, Harbin 150040, China; Institute of Forest Protection, Heilongjiang Academy of Forestry, Harbin 150081, China
| | - Runhua Han
- Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Wei Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China.
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China.
| | - Ling Ma
- Department of Forest protection, College of Forestry, Northeast Forestry University, Harbin 150040, China; Forest Protection Technology Innovation Center, Harbin, China.
| |
Collapse
|
27
|
Matsumoto Y, Sato E, Sugita T. Acute melanization of silkworm hemolymph by peptidoglycans of the human commensal bacterium Cutibacterium acnes. PLoS One 2022; 17:e0271420. [PMID: 36155485 PMCID: PMC9512201 DOI: 10.1371/journal.pone.0271420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Cutibacterium acnes is a pathogenic bacterium that cause inflammatory diseases of the skin and intervertebral discs. The immune activation induced by C. acnes requires multiple cellular responses in the host. Silkworm, an invertebrate, generates melanin by phenoloxidase upon recognizing bacterial or fungal components. Therefore, the melanization reaction can be used as an indicator of innate immune activation. A silkworm infection model was developed for evaluating the virulence of C. acnes, but a system for evaluating the induction of innate immunity by C. acnes using melanization as an indicator has not yet been established. Here we demonstrated that C. acnes rapidly causes melanization of the silkworm hemolymph. On the other hand, Staphylococcus aureus, a gram-positive bacterium identical to C. acnes, does not cause immediate melanization. Even injection of heat-killed C. acnes cells caused melanization of the silkworm hemolymph. DNase, RNase, and protease treatment of the heat-treated C. acnes cells did not decrease the silkworm hemolymph melanization. Treatment with peptidoglycan-degrading enzymes, such as lysostaphin and lysozyme, however, decreased the induction of melanization by the heat-treated C. acnes cells. These findings suggest that silkworm hemolymph melanization may be a useful indicator to evaluate innate immune activation by C. acnes and that C. acnes peptidoglycans are involved in the induction of innate immunity in silkworms.
Collapse
Affiliation(s)
- Yasuhiko Matsumoto
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
- * E-mail:
| | - Eri Sato
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| |
Collapse
|
28
|
Antimicrobial potential of a ponericin-like peptide isolated from Bombyx mori L. hemolymph in response to Pseudomonas aeruginosa infection. Sci Rep 2022; 12:15493. [PMID: 36109567 PMCID: PMC9477818 DOI: 10.1038/s41598-022-19450-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/29/2022] [Indexed: 12/29/2022] Open
Abstract
The main effectors in the innate immune system of Bombyx mori L. are antimicrobial peptides (AMPs). Here, we infected B. mori with varied inoculum sizes of Pseudomonas aeruginosa ATCC 25668 cells to investigate changes in morpho-anatomical responses, physiological processes and AMP production. Ultraviolet-visible spectra revealed a sharp change in λmax from 278 to 285 nm (bathochromic shift) in the hemolymph of infected B. mori incubated for 24 h. Further, Fourier Transform InfraRed studies on the hemolymph extracted from the infected B. mori showed a peak at 1550 cm-1, indicating the presence of α-helical peptides. The peptide fraction was obtained through methanol, acetic acid and water mixture (90:1:9) extraction, followed by peptide purification using Reverse Phase High Performance Liquid Chromatography. The fraction exhibiting antibacterial properties was collected and characterized by Matrix-Assisted Laser Desorption/Ionization-Time of Flight. A linear α-helical peptide with flexible termini (LLKELWTKMKGAGKAVLGKIKGLL) was found, corresponding to a previously described peptide from ant venom and here denominated as Bm-ponericin-L1. The antibacterial activity of Bm-ponericin-L1 was determined against ESKAPE pathogens. Scanning electron microscopy confirmed the membrane disruption potential of Bm-ponericin-L1. Moreover, this peptide also showed promising antibiofilm activity. Finally, cell viability and hemolytic assays revealed that Bm-ponericin-L1 is non-toxic toward primary fibroblasts cell lines and red blood cells, respectively. This study opens up new perspectives toward an alternative approach to overcoming multiple-antibiotic-resistance by means of AMPs through invertebrates' infection with human pathogenic bacteria.
Collapse
|
29
|
Montali A, Berini F, Saviane A, Cappellozza S, Marinelli F, Tettamanti G. A Bombyx mori Infection Model for Screening Antibiotics against Staphylococcus epidermidis. INSECTS 2022; 13:748. [PMID: 36005373 PMCID: PMC9409246 DOI: 10.3390/insects13080748] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The increasing number of microorganisms that are resistant to antibiotics is prompting the development of new antimicrobial compounds and strategies to fight bacterial infections. The use of insects to screen and test new drugs is increasingly considered a promising tool to accelerate the discovery phase and limit the use of mammalians. In this study, we used for the first time the silkworm, Bombyx mori, as an in vivo infection model to test the efficacy of three glycopeptide antibiotics (GPAs), against the nosocomial pathogen Staphylococcus epidermidis. To reproduce the human physiological temperature, the bacterial infection was performed at 37 °C and it was monitored over time by evaluating the survival rate of the larvae, as well the response of immunological markers (i.e., activity of hemocytes, activation of the prophenoloxidase system, and lysozyme activity). All the three GPAs tested (vancomycin, teicoplanin, and dalbavancin) were effective in curing infected larvae, significantly reducing their mortality and blocking the activation of the immune system. These results corroborate the use of this silkworm infection model for the in vivo studies of antimicrobial molecules active against staphylococci.
Collapse
Affiliation(s)
- Aurora Montali
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Francesca Berini
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Alessio Saviane
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA-AA), 35143 Padova, Italy
| | - Silvia Cappellozza
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA-AA), 35143 Padova, Italy
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Napoli Federico II, 80055 Portici, Italy
| |
Collapse
|
30
|
Zhang X, Zhang F, Lu X. Diversity and Functional Roles of the Gut Microbiota in Lepidopteran Insects. Microorganisms 2022; 10:microorganisms10061234. [PMID: 35744751 PMCID: PMC9231115 DOI: 10.3390/microorganisms10061234] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023] Open
Abstract
Lepidopteran insects are one of the most widespread and speciose lineages on Earth, with many common pests and beneficial insect species. The evolutionary success of their diversification depends on the essential functions of gut microorganisms. This diverse gut microbiota of lepidopteran insects provides benefits in nutrition and reproductive regulation and plays an important role in the defence against pathogens, enhancing host immune homeostasis. In addition, gut symbionts have shown promising applications in the development of novel tools for biological control, biodegradation of waste, and blocking the transmission of insect-borne diseases. Even though most microbial symbionts are unculturable, the rapidly expanding catalogue of microbial genomes and the application of modern genetic techniques offer a viable alternative for studying these microbes. Here, we discuss the gut structure and microbial diversity of lepidopteran insects, as well as advances in the understanding of symbiotic relationships and interactions between hosts and symbionts. Furthermore, we provide an overview of the function of the gut microbiota, including in host nutrition and metabolism, immune defence, and potential mechanisms of detoxification. Due to the relevance of lepidopteran pests in agricultural production, it can be expected that the research on the interactions between lepidopteran insects and their gut microbiota will be used for biological pest control and protection of beneficial insects in the future.
Collapse
Affiliation(s)
- Xiancui Zhang
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou 310029, China;
| | - Fan Zhang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China
- Correspondence: (F.Z.); (X.L.)
| | - Xingmeng Lu
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou 310029, China;
- Correspondence: (F.Z.); (X.L.)
| |
Collapse
|
31
|
Chen K, Wang X, Wei X, Chen J, Wei Y, Jiang H, Lu Z, Feng C. Nitric Oxide-Induced Calcineurin A Mediates Antimicrobial Peptide Production Through the IMD Pathway. Front Immunol 2022; 13:905419. [PMID: 35663981 PMCID: PMC9157438 DOI: 10.3389/fimmu.2022.905419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/20/2022] [Indexed: 12/22/2022] Open
Abstract
Nitric oxide (NO) at a high concentration is an effector to kill pathogens during insect immune responses, it also functions as a second messenger at a low concentration to regulate antimicrobial peptide (AMP) production in insects. Drosophila calcineurin subunit CanA1 is a ubiquitous serine/threonine protein phosphatase involved in NO-induced AMP production. However, it is unclear how NO regulates AMP expression. In this study, we used a lepidopteran pest Ostrinia furnacalis and Drosophila S2 cells to investigate how NO signaling affects the AMP production. Bacterial infections upregulated the transcription of nitric oxide synthase 1/2 (NOS1/2), CanA and AMP genes and increased NO concentration in larval hemolymph. Inhibition of NOS or CanA activity reduced the survival of bacteria-infected O. furnacalis. NO donor increased NO level in plasma and upregulated the production of CanA and certain AMPs. In S2 cells, killed Escherichia coli induced NOS transcription and boosted NO production, whereas knockdown of NOS blocked the NO level increase caused by E. coli. As in O. furnacalis larvae, supplementation of the NO donor increased NO level in the culture medium and AMP expression in S2 cells. Suppression of the key pathway genes showed that the IMD (but not Toll) pathway was involved in the upregulation of CecropinA1, Defensin, Diptericin, and Drosomycin by killed E. coli. Knockdown of NOS also reduced the expression of CanA1 and AMPs induced by E. coli, indicative of a role of NO in the AMP expression. Furthermore, CanA1 RNA interference and inhibition of its phosphatase activity significantly reduced NO-induced AMP expression, and knockdown of IMD suppressed NO-induced AMP expression. Together, these results suggest that NO-induced AMP production is mediated by CanA1 via the IMD pathway.
Collapse
Affiliation(s)
- Kangkang Chen
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xinyan Wang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xiangyi Wei
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Jiaqian Chen
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Youheng Wei
- Department of Biotechnology, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, United States
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Congjing Feng
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
32
|
Wang Q, Sun Z, Ma S, Liu X, Xia H, Chen K. Molecular mechanism and potential application of bacterial infection in the silkworm, Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 131:104381. [PMID: 35245606 DOI: 10.1016/j.dci.2022.104381] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/14/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
As a representative species of Lepidoptera, Bombyx mori has been widely studied and applied. However, bacterial infection has always been an important pathogen threatening the growth of silkworms. Bombyx mori can resist various pathogenic bacteria through their own physical barrier and innate immune system. However, compared with other insects, such as Drosophila melanogaster, research on the antibacterial mechanism of silkworms is still in its infancy. This review systematically summarized the routes of bacterial infection in silkworms, the antibacterial mechanism of silkworms after ingestion or wounding infection, and the intestinal bacteria and infection of silkworms. Finally, we will discuss silkworms as a model animal for studying bacterial infectious diseases and screening antibacterial drugs.
Collapse
Affiliation(s)
- Qiang Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Zhonghe Sun
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Shangshang Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Xiaoyong Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Hengchuan Xia
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China.
| |
Collapse
|
33
|
Chen K, Song J, Song Q, Dou X, Wang Y, Wei Y, Chen J, Wang L, Alradi MF, Liu X, Han Z, Feng C. Transcriptomic analysis provides insights into the immune responses and nutrition in Ostrinia furnacalis larvae parasitized by Macrocentrus cingulum. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 109:e21863. [PMID: 34967472 DOI: 10.1002/arch.21863] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/06/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Macrocentrus cingulum is a principal endoparasite of Ostrinia furnacalis larvae. M. cingulum larvae repress host immune responses for survival and ingest host nutrients for development until emerging. However, most investigations focused on the mechanisms of how wasps repress the host immunity, the triggered immune responses and nutrient status altered by wasps in host are neglected. In this study, we found that parasitized O. furnacalis larvae activated fast recognition responses and produced some effectors such as lysozyme and antimicrobial peptides, along with more consumption of trehalose, glucose, and even lipid to defend against the invading M. cingulum. However, the expression of peroxidase 6 and superoxide dismutase 2 (SOD 2) was upregulated, and the messenger RNA (mRNA) levels of cellular immunity-related genes such as thioester-containing protein 2 (TEP 2) and hemocytin were also reduced, suggesting that some immune responses were selectively shut down by wasp parasitization. Taken together, all the results indicated that parasitized O. furnacalis larvae selectively activate the immune recognition response, and upregulate effector genes, but suppress ROS reaction and cellular immunity, and invest more energy to fuel certain immune responses to defend against the wasp invading. This study provides useful information for further identifying key components of the nutrition and innate immune repertoire which may shape host-parasitoid coevolutionary dynamics.
Collapse
Affiliation(s)
- Kangkang Chen
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiahui Song
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, USA
| | - Xiaoyi Dou
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Yin Wang
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Youheng Wei
- Department of Biotechnology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiaqian Chen
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Libao Wang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Mohamed F Alradi
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xu Liu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhaoyang Han
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Congjing Feng
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
34
|
Zhang K, Shen L, Wang X, Yang H, Zhang X, Pan G, Li C, Ji H, Abbas MN, Li C, Cui H. Scavenger receptor C regulates antimicrobial peptide expression by activating toll signaling in silkworm, Bombyx mori. Int J Biol Macromol 2021; 191:396-404. [PMID: 34547317 DOI: 10.1016/j.ijbiomac.2021.09.084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/26/2021] [Accepted: 09/13/2021] [Indexed: 01/19/2023]
Abstract
Scavenger receptor is pattern-recognition receptor (PRR) that plays a crucial function in host defense against pathogens. Scavenger receptor C (SR-C) is present only in invertebrates and its function has not been studied in detail. In this study, an SR-C homologous gene from the silkworm, Bombyx mori, was identified and characterized. SR-C was largely expressed in hemocytes and Malpighian tubules, with continuous expression in hemocytes. The peak expression was observed in hemocytes during molting and wandering stages both at mRNA and protein levels. Furthermore, immunofluorescence demonstrated it to be mainly distributed in the cell membranes of hemocytes, including oenocytoids and granulocytes. The recombinant SR-C protein (rSR-C) could bind to different types of bacteria and pathogen-associated molecular patterns (PAMPs), with strong binding to gram-positive bacteria and Lys-type peptidoglycans. The overexpression of SR-C induced the expression of genes related to the Toll pathway and antibacterial peptides. While the knockdown of SR-C reduced the expression of AMPs and inhibited the Toll pathway, it impaired the bacterial clearance ability of silkworm larvae, thus decreasing silkworm larvae's survival rate. Altogether, SR-C is a PRR that protect silkworms against bacterial pathogens by enhancing the expression of AMPs expression via the Toll pathway in hemocytes.
Collapse
Affiliation(s)
- Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, China
| | - Li Shen
- Department of Pathology, Chongqing General Hospital, University of Chinese Academy of Sciences, China
| | - Xue Wang
- Department of Pathology, Chongqing General Hospital, University of Chinese Academy of Sciences, China
| | - He Yang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, China
| | - Xiaolin Zhang
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Guangzhao Pan
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, China
| | - Chongyang Li
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, China
| | - Haoyan Ji
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, China
| | - Cong Li
- School of River and Ocean, Chongqing Jiaotong University, 400074, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, China; Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing 400716, China.
| |
Collapse
|
35
|
Dong Z, An L, Lu M, Tang M, Chen H, Huang X, Hou Y, Shen G, Zhang X, Zhang Y, Xia Q, Zhao P. SPINK7 Recognizes Fungi and Initiates Hemocyte-Mediated Immune Defense Against Fungal Infections. Front Immunol 2021; 12:735497. [PMID: 34603317 PMCID: PMC8484702 DOI: 10.3389/fimmu.2021.735497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/30/2021] [Indexed: 12/02/2022] Open
Abstract
Serine protease inhibitors of Kazal-type (SPINKs) were widely identified in vertebrates and invertebrates, and played regulatory roles in digestion, coagulation, and fibrinolysis. In this study, we reported the important role of SPINK7 in regulating immune defense of silkworm, Bombyx mori. SPINK7 contains three Kazal domains and has 6 conserved cysteine residues in each domain. Quantitative real-time PCR analyses revealed that SPINK7 was exclusively expressed in hemocytes and was upregulated after infection with two fungi, Saccharomyces cerevisiae and Candida albicans. Enzyme activity inhibition test showed that SPINK7 significantly inhibited the activity of proteinase K from C. albicans. Additionally, SPINK7 inhibited the growth of three fungal spores, including S. cerevisiae, C. albicans, and Beauveria bassiana. The pathogen-associated molecular patterns (PAMP) binding assays suggested that SPINK7 could bind to β-D-glucan and agglutinate B. bassiana and C. albicans. In vitro assays were performed using SPINK7-coated agarose beads, and indicated that SPINK7 promoted encapsulation and melanization of agarose beads by B. mori hemocytes. Furthermore, co-localization studies using immunofluorescence revealed that SPINK7 induced hemocytes to aggregate and entrap the fungi spores of B. bassiana and C. albicans. Our study revealed that SPINK7 could recognize fungal PAMP and induce the aggregation, melanization, and encapsulation of hemocytes, and provided valuable clues for understanding the innate immunity and cellular immunity in insects.
Collapse
Affiliation(s)
- Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Lingna An
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Mengyao Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Muya Tang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Haiqin Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Xuan Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Yong Hou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Guanwang Shen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Xiaolu Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| |
Collapse
|
36
|
Geng T, Lu F, Zhu F, Wang S. Lineage-specific gene evolution of innate immunity in Bombyx mori to adapt to challenge by pathogens, especially entomopathogenic fungi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104171. [PMID: 34118279 DOI: 10.1016/j.dci.2021.104171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
Bombyx mori is a model species of Lepidoptera, in which 21 gene families and 220 genes have been identified as involved in immunity. However, only 45 B. mori - Drosophila melanogaster - Anopheles gambiae - Apis mellifera - Tribolium castaneum 1:1:1:1:1 orthologous genes were identified. B. mori has unique immune factors not found in D. melanogaster - A. gambiae - A. mellifera - T. castaneum. Pattern recognition receptors, signal transducers and effector genes for antifungal immune responses in B. mori have evolved through expansion and modification of existing genes. This review summarizes the current knowledge of the antifungal immune responses of B. mori and focuses on the lineage-specific gene evolution used by Lepidoptera to adapt to the challenge by pathogens, especially entomopathogenic fungi.
Collapse
Affiliation(s)
- Tao Geng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Sericulture Research Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| | - Fuping Lu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Sericulture Research Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| | - Feng Zhu
- College of Life Sciences, Zaozhuang University, Zaozhuang, 277160, China.
| | - Shuchang Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Sericulture Research Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
37
|
Chen K, Chen J, Tang T, Jiang H, Han Z, Wang L, Alradi MF, Lu S, Wei X, Liu X, Wei Y, Feng C. Characterization and functional analysis of a Relish gene from the Asian corn borer, Ostrinia furnacalis (Guenée). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21841. [PMID: 34468040 PMCID: PMC8453101 DOI: 10.1002/arch.21841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/02/2021] [Accepted: 08/19/2021] [Indexed: 05/21/2023]
Abstract
Pathogen-induced host immune responses reduce the efficacy of pathogens used to control pests. However, compared to the well-deciphered immunity system of Drosophila melanogaster, the immunity system of agricultural pests is largely unconfirmed through functional analysis. Beginning to unveil mechanisms of transcription regulation of immune genes in the Asian corn borer, Ostrinia furnacalis, we cloned the complementary DNA (cDNA) of a transcription factor Relish by rapid amplification of cDNA ends. The 3164 bp cDNA, designated Of-Relish, encodes a 956-residue protein. Bioinformatic analysis showed that Of-Relish had a Rel homology domain, a predicted cleavage site between Q409 and L410 , six ankyrin repeats, and a death domain. The response of Of-Relish expression to the Gram-negative bacteria Pseudomonas aeruginosa was sooner and stronger than to the Gram-positive Micrococcus luteus. The antimicrobial peptide genes Attacin and Gloverin had similar expression patterns in response to the infections. Knockdown of Of-Relish led to a decrease in Attacin and Gloverin messenger RNA levels, suggesting that Attacin and Gloverin were regulated by Of-Relish. Together, the results suggested that Of-Relish is a key component of the IMD pathway in O. furnacalis, involved in defense against P. aeruginosa through activation of Attacin and Gloverin.
Collapse
Affiliation(s)
- Kangkang Chen
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jiaqian Chen
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Tai Tang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Zhaoyang Han
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Libao Wang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Mohamed F. Alradi
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shiqi Lu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiangyi Wei
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xu Liu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Youheng Wei
- Department of Biotechnology, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Congjing Feng
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Corresponding author Congjing Feng,
| |
Collapse
|
38
|
Qasim M, Xiao H, He K, Omar MAA, Hussain D, Noman A, Rizwan M, Khan KA, Al-Zoubi OM, Alharbi SA, Wang L, Li F. Host-pathogen interaction between Asian citrus psyllid and entomopathogenic fungus (Cordyceps fumosorosea) is regulated by modulations in gene expression, enzymatic activity and HLB-bacterial population of the host. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109112. [PMID: 34153507 DOI: 10.1016/j.cbpc.2021.109112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 12/15/2022]
Abstract
The host-pathogen interaction has been explored by several investigations, but the impact of fungal pathogens against insect resistance is still ambiguous. Therefore, we assessed the enzymatic activity and defense-related gene expression of Asian citrus psyllid (ACP) nymphal and adult populations on Huanglongbing-diseased citrus plants under the attack of Cordyceps fumosorosea. Overall, five enzymes viz. superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione S-transferase (GST), carboxylesterase (CarE), and four genes, namely SOD, 16S, CYP4C68, CYP4BD1, were selected for respective observations from ACP populations. Enzymatic activity of four enzymes (SOD, POD, GST, CarE) was significantly decreased after 5-days post-treatment (dpt) and 3-dpt fungal exposure in fungal treated ACP adult and nymphal populations, respectively, whereas the activity of CAT was boosted substantially post-treatment time schedule. Besides, we recorded drastic fluctuations in the expression of CYP4 genes among fungal treated ACP populations. After 24 hours post-treatment (hpt), expression of both CYP4 genes was boosted in fungal treated populations than controlled populations (adult and nymph). After 3-dpt, however, the expression of CYP4 genes was declined in the given populations. Likewise, fungal attack deteriorated the resistance of adult and nymphal of ACP population, as SOD expression was down-regulated in fungal-treated adult and nymphs after 5-dpt and 3-dpt exposure, respectively. Moreover, bacterial expression via the 16S gene was significantly increased in fungal-treated adult and nymphal ACP populations with increasing post-treatment time. Overall, our data illustrate that the fungal application disrupted the insect defense system. The expression of these genes and enzymes suppress the immune function of adult and nymphal ACP populations. As it is reported first time that the applications of C. fumosorosea against ACP reduce insect resistance by interfering with the CYP4 and SOD system. Therefore, we propose new strategies to discover the role of certain toxic compounds from fungus, which can reduce insect resistance, focusing on resistance-related genes and enzymes.
Collapse
Affiliation(s)
- Muhammad Qasim
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Huamei Xiao
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Crop Growth and Development Regulation of Jiangxi Province, College of Life Sciences and Resource Environment, Yichun University, Yichun 336000, PR China
| | - Kang He
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China
| | - Mohamed A A Omar
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China
| | - Dilbar Hussain
- Entomological Research Institute, Ayub Agricultural Research Institute, Faisalabad 38850, Pakistan
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad 38040, Pakistan
| | - Muhammad Rizwan
- Department of Entomology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Khalid Ali Khan
- Research Center for Advanced Materials Science (RCAMS), Unit of Bee Research and Honey Production, Biology Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | | | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Saudi Arabia
| | - Liande Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Fei Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
39
|
Hu X, Zhang K, Pan G, Hao X, Li C, Li C, Gul I, Kausar S, Abbas MN, Zhu Y, Cui H. The identification of nuclear factor Akirin with immune defense role in silkworm, Bombyx mori. Int J Biol Macromol 2021; 188:32-42. [PMID: 34352318 DOI: 10.1016/j.ijbiomac.2021.07.193] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 01/19/2023]
Abstract
Akirins, highly conserved nuclear factors, regulate diverse physiological processes such as innate immunity. The biological functions of Akirins have extensively been studied in vertebrates and many invertebrates; however, there is no report so far on lepidopteran insects. In the present study, we identified and characterized a novel Akirin from the silkworm, Bombyx mori (designated as BmAkirin), and explored its potential roles in innate immunity. The expression analysis revealed the unequal mRNA levels of BmAkirin in all the tested tissues; however, the gene's transcription level was highest in testis, followed by ovaries and hemocytes. It also had significant expression levels at the early stages of embryonic development. Expression of BmAkirin in fat bodies and hemocytes exhibited an increase in various degrees when challenged with virus, fungus, Gram-negative bacteria, and Gram-positive bacteria. Immunofluorescence analysis showed BmAkirin protein was prominently localized in the nucleus. Knockdown of BmAkirin strongly reduced the expression of AMPs and decreased the survival ability of larva upon immune stimulation. Moreover, the bacterial clearance ability of larvae was also decreased following the depletion of BmAkirin. Collectively, our results demonstrate that BmAkirin plays an indispensable role in the innate immunity of Bombyx mori (B. mori) by positively modulating AMPs expression in vivo.
Collapse
Affiliation(s)
- Xin Hu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
| | - Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
| | - Guangzhao Pan
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
| | - Xiangwei Hao
- Chongqing Reproductive and Genetics Institute, Chongqing Obstetrics and Gynecology Hospital, No. 64, Jintang Street, Yuzhong District, Chongqing, China
| | - Chongyang Li
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
| | - Changhong Li
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
| | - Isma Gul
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
| | - Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China.
| | - Yong Zhu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China.
| |
Collapse
|
40
|
Jiang D, Wu S, Tan M, Jiang H, Yan S. The susceptibility of Lymantria dispar larvae to Beauveria bassiana under Cd stress: A multi-omics study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116740. [PMID: 33611203 DOI: 10.1016/j.envpol.2021.116740] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Insect susceptibility to entomopathogenic microorganisms under heavy metal stress, as well as its regulatory mechanism is still poorly understood. This study aims to investigate the susceptibility of gypsy moth larvae to Beauveria bassiana under cadmium (Cd) stress (at 3.248 or 44.473 mg Cd/kg fresh food), and reveal the potential molecular mechanisms underlying the Cd effect on the larval susceptibility to B. bassiana via combined transcriptome and proteome analyses. Our results showed that pre-exposure to Cd increased the susceptibility of gypsy moth larvae to B. bassiana, and there was an additive effect between Cd exposure and B. bassiana infection on the larval mortality. Under the Cd stress at low and high concentrations, 138 and 899 differentially expressed genes (DEGs), as well as 514 and 840 differentially expressed proteins (DEPs) were identified, respectively. Immunotoxic effects induced by Cd exposure at the transcription level increased in a negative dose-response manner, with no immunity-related DEGs obtained at the low Cd concentration and a high number of immunity-related DEGs down-regulated at the high Cd concentration. In contrast, a potentially suppressed or stimulated trend in the Toll and Imd signaling pathway at protein level was revealed under low or high concentration of Cd treatment. Analysis of xenobiotics biodegradation-related pathways at both transcription and translation levels revealed that the gypsy moth larvae possessed an efficient homeostasis regulatory mechanism to the low-level Cd exposure, but exhibited a reduced xenobiotics biodegradation capability to the Cd stress at high levels. Together, these findings demonstrate Cd contamination promote the microbial-based biocontrol efficacy, and unravel the molecular regulatory network of heavy metal exposures that affects susceptibility of insects to pathogenic diseases.
Collapse
Affiliation(s)
- Dun Jiang
- School of Forestry, Northeast Forestry University, Harbin, 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Shuai Wu
- School of Forestry, Northeast Forestry University, Harbin, 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Mingtao Tan
- School of Forestry, Northeast Forestry University, Harbin, 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China
| | - Hong Jiang
- Institute of Agricultural and Poultry Products Comprehensive Utilization, Heilongjiang Academy of Land Reclamation Sciences, Harbin, 150040, PR China
| | - Shanchun Yan
- School of Forestry, Northeast Forestry University, Harbin, 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, PR China.
| |
Collapse
|
41
|
Bai S, Yao Z, Raza MF, Cai Z, Zhang H. Regulatory mechanisms of microbial homeostasis in insect gut. INSECT SCIENCE 2021; 28:286-301. [PMID: 32888254 DOI: 10.1111/1744-7917.12868] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/20/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Insects live in incredibly complex environments. The intestinal epithelium of insects is in constant contact with microorganisms, some of which are beneficial and some harmful to the host. Insect gut health and function are maintained through multidimensional mechanisms that can proficiently remove foreign pathogenic microorganisms while effectively maintaining local symbiotic microbial homeostasis. The basic immune mechanisms of the insect gut, such as the dual oxidase-reactive oxygen species (Duox-ROS) system and the immune deficiency (Imd)-signaling pathway, are involved in the maintenance of microbial homeostasis. This paper reviews the role of physical defenses, the Duox-ROS and Imd signaling pathways, the Janus kinase/signal transducers and activators of transcription signaling pathway, and intestinal symbiotic flora in the homeostatic maintenance of the insect gut microbiome.
Collapse
Affiliation(s)
- Shuai Bai
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhichao Yao
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Fahim Raza
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhaohui Cai
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongyu Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
42
|
Shahriari M, Zibaee A, Khodaparast SA, Fazeli-Dinan M, Hoda H, Armand A. Immunological interactions of Chilo suppressalis Walker (Lepidoptera: Crambidae) with the native entomopathogenic fungi. Microb Pathog 2021; 154:104858. [PMID: 33771627 DOI: 10.1016/j.micpath.2021.104858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/28/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
Entomopathogenic fungi can attack many insect hosts and have been applied as the eco-friendly alternatives to synthetic chemicals for the control of pests. Insects have developed different defense systems encountering entomopathogens including humoral and cellular immune responses. In the present study, injection of some native entomopathogenic fungi to the Chilo suppressalis Walker larvae resulted in an enhancement of the cellular and antimicrobial defenses. The numbers of total and differential hemocytes increased rapidly in the first 3 and 6 h but those gradually reduced 12 and 24 h post-injections. The nodule formation and phenoloxidase activity increased at the time intervals after fungal infection. A similar trend was found in the transcription of antimicrobial peptides including attacin1 and 2, cecropin1 and 2, gallerimycin, defensin, lysozyme, and prophenoloxidase-activating proteinase-3 during infection fungi. In all cases, the target gene transcription was upper in the larvae injected by the fungi than that of control larvae. These results may elucidate better knowledge on the interaction of the fungi present in agroecosystems with the target insect pest.
Collapse
Affiliation(s)
- Morteza Shahriari
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Arash Zibaee
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran.
| | - Seyyed Akbar Khodaparast
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Mahmoud Fazeli-Dinan
- Department of Medical Entomology and Vector Control, School of Public Health and Health Sciences Research Centre, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hassan Hoda
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension, Amol, Iran
| | - Alireza Armand
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
43
|
Jiang D, Tan M, Guo Q, Yan S. Transfer of heavy metal along food chain: a mini-review on insect susceptibility to entomopathogenic microorganisms under heavy metal stress. PEST MANAGEMENT SCIENCE 2021; 77:1115-1120. [PMID: 32965074 DOI: 10.1002/ps.6103] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
The development and physiological status of pest insects are important factors that affect the effectiveness of biological control. Current knowledge reveals that heavy metals can be transferred to phytophagous insects through food chains and cause various chronic toxicological effects on the growth and physiology of phytophagous insects. These findings potentially attribute heavy metal contamination to an environmental factor governing biocontrol efficiency against pest insects, pointing to an urgent demand to better understand the effects of heavy metal exposure on insect susceptibility to entomopathogenic microorganisms. Here we discuss the transfer characteristics of heavy metals along the food chains to phytophagous insects and conclude that heavy metal exposure may promote insect susceptibility to entomopathogenic microorganisms in the heavy metal-contaminated regions. Furthermore, we propose a 'combined effect' hypothesis that combination of entomopathogenic agent and heavy metal stress can cause a much higher overall insect mortality than does the entomopathogenic agent or the heavy metal stress alone. This is a new and relatively unexplored area in the microbial-based biocontrol research, which might have great potential for future optimization of biocontrol strategies against economically and ecologically important agricultural or forest pests in the heavy metal polluted areas. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dun Jiang
- School of Forestry, Northeast Forestry University, Harbin, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Mingtao Tan
- School of Forestry, Northeast Forestry University, Harbin, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Qingxi Guo
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Shanchun Yan
- School of Forestry, Northeast Forestry University, Harbin, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| |
Collapse
|
44
|
Influence of Hyperproteinemia on Insect Innate Immune Function of the Circulatory System in Bombyx mori. BIOLOGY 2021; 10:biology10020112. [PMID: 33546519 PMCID: PMC7913649 DOI: 10.3390/biology10020112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/16/2022]
Abstract
Simple Summary Hyperproteinemia, a condition of elevated protein levels in the blood, is associated with a diverse range of human and animal diseases. However, there is no reliable hyperproteinemia disease models or modeling methods in mammal or other organisms, and the effect of hyperproteinemia on immunity is still unknown. Our work succeeded in constructing an animal model of hyperproteinemia with no primary disease effects and a controllable plasma protein concentration (PPC) in an invertebrate model organism, Bombyx mori. Our work confirmed that high PPC enhances hemolymph phagocytosis via a rapid increase in granulocytes and inhibited hemolymph melanization due to inhibition of the prophenoloxidase (PPO) signaling pathway, and also upregulated the gene expression of antimicrobial peptides via activating the Toll and Imd pathways in NF-κB signaling, and showed an inconsistent antibacterial activity for Gram-positive and Gram-negative bacteria. Our results show that high PPC had multiple significant effects on the innate immune function of the silkworm circulatory system and is expected to be improved by endocrine hormones. Our work explores the pathogenesis of hyperproteinemia in an invertebrate model, and expands the scope for silkworm biomedical applications, even use for a potential drug development platform. Abstract Metabolic disorders of the circulatory system of animals (e.g., hyperglycemia and hyperlipidemia) can significantly affect immune function; however, since there is currently no reliable animal model for hyperproteinemia, its effects on immunity remain unclear. In this study, we established an animal model for hyperproteinemia in an invertebrate silkworm model, with a controllable plasma protein concentration (PPC) and no primary disease effects. We evaluated the influence of hyperproteinemia on innate immunity. The results showed that high PPC enhanced hemolymph phagocytosis via inducing a rapid increase in granulocytes. Moreover, while oenocytoids increased, the plasmacytes quickly dwindled. High PPC inhibited hemolymph melanization due to decreased phenoloxidase (PO) activity in the hemolymph via inhibiting the expression of the prophenoloxidase-encoding genes, PPO1 and PPO2. High PPC upregulated the gene expression of antimicrobial peptides via differential activation of the Toll and Imd signaling pathways associated with NF-κB signaling, followed by an induction of inconsistent antibacterial activity towards Gram-positive and Gram-negative bacteria in an animal model of high PPC. Therefore, high PPC has multiple significant effects on the innate immune function of the silkworm circulatory system.
Collapse
|
45
|
Nakamura T, Shimizu T, Inagaki F, Okazaki S, Saha SS, Uda A, Watanabe K, Watarai M. Identification of Membrane-Bound Lytic Murein Transglycosylase A (MltA) as a Growth Factor for Francisella novicida in a Silkworm Infection Model. Front Cell Infect Microbiol 2021; 10:581864. [PMID: 33553001 PMCID: PMC7862118 DOI: 10.3389/fcimb.2020.581864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/04/2020] [Indexed: 12/22/2022] Open
Abstract
Francisella tularensis, the causative agent of tularemia, is transmitted by arthropod vectors within mammalian hosts. The detailed mechanisms contributing to growth and survival of Francisella within arthropod remain poorly understood. To identify novel factors supporting growth and survival of Francisella within arthropods, a transposon mutant library of F. tularensis subsp. novicida (F. novicida) was screened using an F. novicida-silkworm infection model. Among 750 transposon mutants screened, the mltA-encoding membrane-bound lytic murein transglycosylase A (MltA) was identified as a novel growth factor of F. novicida in silkworms. Silkworms infection with an mltA deletion mutant (ΔmltA) resulted in a reduction in the number of bacteria and prolonged survival. The ΔmltA strain exhibited limited intracellular growth and cytotoxicity in BmN4 silkworm ovary cells. Moreover, the ΔmltA strain induced higher expression of the antimicrobial peptide in silkworms compared to the wild-type strain. These results suggest that F. novicida MltA contributes to the survival of F. novicida in silkworms via immune suppression-related mechanisms. Intracellular growth of the ΔmltA strain was also reduced in human monocyte THP-1 cells. These results also suggest the contribution of MltA to pathogenicity in humans and utility of the F. novicida-silkworm infection model to explore Francisella infection.
Collapse
Affiliation(s)
- Takemasa Nakamura
- Laboratory of Veterinary Public Health, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Takashi Shimizu
- Laboratory of Veterinary Public Health, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Fumiya Inagaki
- Laboratory of Veterinary Public Health, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Shoma Okazaki
- Laboratory of Veterinary Public Health, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Shib Shankar Saha
- Department of Pathology and Parasitology, Patuakhali Science and Technology University, Barisal, Bangladesh
| | - Akihiko Uda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kenta Watanabe
- Laboratory of Veterinary Public Health, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Masahisa Watarai
- Laboratory of Veterinary Public Health, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
46
|
Barretto DA, Gadwala M, Vootla SK. The silkworm gut microbiota: A potential source for biotechnological applications. J Microbiol Methods 2021. [DOI: 10.1016/bs.mim.2021.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
47
|
Bai J, Xu Z, Li L, Ma W, Xu L, Ma L. Temporospatial modulation of Lymantria dispar immune system against an entomopathogenic fungal infection. PEST MANAGEMENT SCIENCE 2020; 76:3982-3989. [PMID: 32506667 DOI: 10.1002/ps.5947] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/21/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Lymantria dispar is an economically impactful forest pest worldwide. The entomopathogenic fungi Beauveria bassiana shows great promise in pest management due to its high lethality in Lymantria dispar. A complete understanding of the immune interactions between the pest and the pathogenic fungus is essential to actualizing biological pest management. RESULTS Following the infection of Lymantria dispar by Beauveria bassiana spores, we performed a time-course analysis of transcriptome in Lymantria dispar fat bodies and hemocytes to explore host immune response. A total of 244 immunity-related genes including pattern recognition receptors, extracellular signal modulators, immune pathways (Toll, IMD, JNK and JAK/STAT), and response effectors were identified. We observed contrasting tissue and time-specific differences in the expression of immune genes. At the early stage of infection, several recognition receptors and effector genes were activated, while the signal modulation and effector genes were suppressed at later stages. Further enzyme activity-based assays coupled with gene expression analysis of prophenoloxidase revealed a significant upregulation of phenoloxidase activity at 48- and 72-h post-infection. Moreover, fungal infection led to dysbiosis in gut microbiota that seems to be partially attributed to reduced gut hydrogen peroxide (H2 O2 ) amount, which indicates a significant impact of fungal infection on host gut microbes. CONCLUSION Our study provides a comprehensive sequence resource and crucial new insights about an economically important forest pest. Specifically, we elucidate the complicated multipartite interaction between host and fungal pathogen and contribute to a better understanding of Lymantria dispar anti-fungal immunity, resulting in better tools for biological pest control. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jianyang Bai
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
| | - Zhe Xu
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
| | - Lu Li
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
| | - Wei Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Ling Ma
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
- Forest Protection Technology Innovation Center, Harbin, China
| |
Collapse
|
48
|
Wang RJ, Chen K, Xing LS, Lin Z, Zou Z, Lu Z. Reactive oxygen species and antimicrobial peptides are sequentially produced in silkworm midgut in response to bacterial infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 110:103720. [PMID: 32344046 DOI: 10.1016/j.dci.2020.103720] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
The silkworm, Bombyx mori, is utilized as a research model in many aspects of biological studies, including genetics, development and immunology. Previous biochemical and genomic studies have elucidated the silkworm immunity in response to infections elicited by bacteria, fungi, microsporidia, and viruses. The intestine serves as the front line in the battle between insects and ingested harmful microorganisms. In this study, we performed RNA sequencing (RNA-seq) of the larval silkworm midgut after oral infection with the Gram-positive bacterium Bacillus bombysepticus and the Gram-negative bacterium Yersinia pseudotuberculosis. This enables us to get a comprehensive understanding of the midgut responses to bacterial infection. We found that B. bombysepticus induced much stronger immune responses than Y. pseudotuberculosis did. Bacterial infection resulted in more energy consumption including carbohydrates and fatty acids. The midgut immune system was characterized by the generation of reactive oxygen species and antimicrobial peptides. The former played a critical role in eliminating invading bacteria during early stage, while the latter executed during late stage. Our results provide an integrated insight into the midgut systematic responses to bacterial infection.
Collapse
Affiliation(s)
- Rui-Juan Wang
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China.
| | - Kangkang Chen
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China.
| | - Long-Sheng Xing
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, China.
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
49
|
Ma L, Liu L, Zhao Y, Yang L, Chen C, Li Z, Lu Z. JNK pathway plays a key role in the immune system of the pea aphid and is regulated by microRNA-184. PLoS Pathog 2020; 16:e1008627. [PMID: 32584915 PMCID: PMC7343183 DOI: 10.1371/journal.ppat.1008627] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/08/2020] [Accepted: 05/13/2020] [Indexed: 12/21/2022] Open
Abstract
Different from holometabolous insects, the hemipteran species such as pea aphid Acyrthosiphon pisum exhibit reduced immune responses with the absence of the genes coding for antimicrobial peptide (AMP), immune deficiency (IMD), peptidoglycan recognition proteins (PGRPs), and other immune-related molecules. Prior studies have proved that phenoloxidase (PO)-mediated melanization, hemocyte-mediated phagocytosis, and reactive oxygen species (ROS) participate in pea aphid defense against bacterial infection. Also, the conserved signaling, Jun N-terminal kinase (JNK) pathway, has been suggested to be involved in pea aphid immune defense. However, the precise role of the JNK signaling, its interplay with other immune responses and its regulation in pea aphid are largely unknown. In this study, using in vitro biochemical assays and in vivo bioassays, we demonstrated that the JNK pathway regulated hemolymph PO activity, hydrogen peroxide concentration and hemocyte phagocytosis in bacteria infected pea aphids, suggesting that the JNK pathway plays a central role in regulating immune responses in pea aphid. We further revealed the JNK pathway is regulated by microRNA-184 in response to bacterial infection. It is possible that in common the JNK pathway plays a key role in immune system of hemipteran insects and microRNA-184 regulates the JNK pathway in animals.
Collapse
Affiliation(s)
- Li Ma
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Lu Liu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Yujie Zhao
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Yang
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Caihua Chen
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhaofei Li
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail:
| |
Collapse
|
50
|
Stączek S, Zdybicka-Barabas A, Pleszczyńska M, Wiater A, Cytryńska M. Aspergillus niger α-1,3-glucan acts as a virulence factor by inhibiting the insect phenoloxidase system. J Invertebr Pathol 2020; 171:107341. [DOI: 10.1016/j.jip.2020.107341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/06/2020] [Accepted: 02/08/2020] [Indexed: 12/24/2022]
|