1
|
Vallejos-Vidal E, Santillán-Araneda MJ, Goldstein M, Solarte-Murillo LV, Maisey K, Reyes-Cerpa S, Vidal M, Reyes-Lopez FE. Comparison of anticoagulant vacutainer blood collection tubes on rainbow trout (Oncorhynchus mykiss) leukocyte viability during long-term storage. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110291. [PMID: 40120780 DOI: 10.1016/j.fsi.2025.110291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/26/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
Peripheral blood leukocytes (PBL) are critical for understanding systemic immune responses and assessing the organism's health. In immunological studies, particularly with aquaculture-relevant species like Rainbow trout (Oncorhynchus mykiss), ensuring PBL viability during sample storage is important, especially when samples must be transported over long distances. Anticoagulants are essential for preventing blood clotting and preserving cellular integrity; however, their effects on leukocyte populations in salmonids remain poorly studied. This study aimed to evaluate the impact of four anticoagulants-ethylenediaminetetraacetic acid (EDTA), sodium citrate, sodium heparin, and lithium heparin-on the viability of PBL populations in rainbow trout, with a comparative analysis of human PBL. Blood samples were stored for up to seven days, and cell viability and leukocyte population percentages were assessed by flow cytometry at 0, 1-, 2-, 4-, and 7-days post-collection (dpc). Results showed that sodium heparin and lithium heparin were the most effective anticoagulants for preserving trout leukocyte viability, maintaining percentages greater than 70 % up to 4 dpc. In contrast, EDTA and sodium citrate were less effective in maintaining cell viability. In human PBL samples, EDTA was the most effective anticoagulant, with lymphocyte viability exceeding 80 % at 7 dpc. Sodium heparin and lithium heparin also preserved human PBL viability comparably up to 4 dpc, but their efficacy decreased significantly by 7 dpc. These findings highlight the species-specific effects of anticoagulants, recommending heparin-based anticoagulants for long-term leukocyte preservation in rainbow trout (up to 4 dpc). In addition, this study provides valuable information for blood handling protocols in immunological research.
Collapse
Affiliation(s)
- Eva Vallejos-Vidal
- Fish Health and Integrative Physiogenomics Research Team, Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Edificio de Investigación Eduardo Morales, Estación Central, Santiago, Chile; Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Avenida Walker Martínez 1360, La Florida, 8242125, Santiago de, Chile.
| | - María J Santillán-Araneda
- Fish Health and Integrative Physiogenomics Research Team, Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Edificio de Investigación Eduardo Morales, Estación Central, Santiago, Chile
| | - Merari Goldstein
- Fish Health and Integrative Physiogenomics Research Team, Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Edificio de Investigación Eduardo Morales, Estación Central, Santiago, Chile
| | - Laura V Solarte-Murillo
- Fish Health and Integrative Physiogenomics Research Team, Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Edificio de Investigación Eduardo Morales, Estación Central, Santiago, Chile
| | - Kevin Maisey
- Laboratorio de Inmunología Comparativa, Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Edificio de Investigación Eduardo Morales, Estación Central, Santiago, Chile
| | - Sebastián Reyes-Cerpa
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Chile; Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Chile
| | - Mabel Vidal
- Fish Health and Integrative Physiogenomics Research Team, Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Edificio de Investigación Eduardo Morales, Estación Central, Santiago, Chile; Departamento de Ingeniería Informática y Ciencias de la Computación, Universidad de Concepción, Concepción, Chile
| | - Felipe E Reyes-Lopez
- Fish Health and Integrative Physiogenomics Research Team, Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Edificio de Investigación Eduardo Morales, Estación Central, Santiago, Chile.
| |
Collapse
|
2
|
Wan Q, Zhai S, Chen M, Xu M, Guo S. Δfur mutant as a potential live attenuated vaccine (LAV) candidate protects American eels (Anguilla rostrata) from Vibrio harveyi infection. Microb Pathog 2024; 189:106591. [PMID: 38401591 DOI: 10.1016/j.micpath.2024.106591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/18/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
The eel farming industry is highly susceptible to Vibriosis. Although various types of vaccines against Vibriosis have been investigated, there is limited research on decreasing the virulence of Vibrions through gene knockout and utilizing it as live attenuated vaccines (LAV). In this study, we aim to develop a LAV candidate against Vibrio harveyi infection in American eels (Anguilla rostrata) using a ferric uptake regulator (fur) gene mutant strain of V. harveyi (Δfur mutant). After the eels were administrated with the Δfur mutant at the dose of 4 × 102 cfu/g body weight, the phagocytic activity of the leucocytes, plasma IgM antibody titers, activity of lysozyme and Superoxide Dismutase (SOD) enzyme, and gene expression levels of 18 immune related proteins were detected to evaluate the protection effect of the LAV. Preliminary findings suggest that the LAV achieved over 60% relative percent survival (RPS) after the American eels were challenged by a wild-type strain of V. harveyi infection on 28 and 42 days post the immunization (dpi). The protection was mainly attributed to increased plasma IgM antibody titers, higher levels of lysozyme, enhanced activity of SOD and some regulated genes encoded immune related proteins. Together, the Δfur mutant strain of V. harveyi, as a novel LAV vaccine, demonstrates promising protective effects against V. harveyi infection in American eels, thus presenting a potential candidate vaccine for fish farming.
Collapse
Affiliation(s)
- Qijuan Wan
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China
| | - Shaowei Zhai
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China
| | - Minxia Chen
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China
| | - Ming Xu
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China
| | - Songlin Guo
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China.
| |
Collapse
|
3
|
Han YC, Leaman DW, Shepherd BS. Ghrelin Modulates Differential Expression of Genes Relevant to Immune Activities and Antimicrobial Peptides in Primary Head Kidney Cells of Rainbow Trout ( Oncorhynchus mykiss). Animals (Basel) 2023; 13:ani13101683. [PMID: 37238114 DOI: 10.3390/ani13101683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Ghrelin is a peptide hormone/cytokine that regulates metabolic processes and plays essential roles in the immune system. To evaluate the immunomodulatory actions of ghrelin isoforms in rainbow trout (RT), an in vitro model was utilized with primary cells isolated from fish head kidney (HKD). These RT-HKD cells were treated with synthetic rainbow trout ghrelin and its truncated isoform, desVRQ-ghrelin, over time (0, 2, 4, and 24 h). Reverse transcriptase-coupled qPCR was used to measure the differential expression patterns of genes relevant to various immune processes and genes of antimicrobial peptides. Ghrelin isoform treatments resulted in functional perturbations that displayed overlapping and divergent patterns of gene expression. The differing actions between the two ghrelin isoforms on various assessed genes, and at differing time points, suggested that the two analogs may activate unique pathways, thereby eliciting distinct responses in fish immunity.
Collapse
Affiliation(s)
- Yueh-Chiang Han
- ORISE/ORAU/USDA-ARS, School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53204, USA
| | - Douglas W Leaman
- College of Sciences, Auburn University at Montgomery, Montgomery, AL 36117, USA
| | - Brian S Shepherd
- USDA-ARS, School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53204, USA
| |
Collapse
|
4
|
Goldstein M, Vallejos-Vidal E, Wong-Benito V, Barraza-Rojas F, Tort L, Reyes-Lopez FE, Imarai M. Effects of artificial photoperiods on antigen-dependent immune responses in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2023; 137:108759. [PMID: 37088347 DOI: 10.1016/j.fsi.2023.108759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
In this study, we investigated the effects of the artificial photoperiods that mimic summer (16L:8D) and winter (8L:16D) solstices, equinoxes (12L:12D), and the artificial 24-h light regimen (24L:0D) on the leukocyte populations and the T helper and regulatory type responses on rainbow trout (Oncorhynchus mykiss). Using flow cytometry analysis, we found that photoperiod induces changes in head kidney leukocyte subsets. The lymphoid subset increased in the 16L:8D summer solstice regime. The analysis using antibodies against B and T cells showed the increase of CD4-1+ T lymphocytes and other unidentified lymphoid cells, with no changes in the B cells. To investigate the modulatory influence of the photoperiod on the fish T cell response, we quantified in the head kidney the transcript levels of genes involved in the Th1 type response (t-bet, ifn-ƴ, il-12p35, il-12p40c), Th2 type response (gata3, il-4/13a), Th17 response (ror-ƴt, il-17a/f), T regulatory response (foxp3α, il-10a, tgf-β1), and the T cell growth factor il-2. The results showed that the seasonal photoperiod alone has a limited influence on the expression of these genes, as the only difference was observed in il-14/13a and il-10a transcripts of fish kept on the 16L:8D regimen. In addition, the 24L:0D treatment used in aquaculture produces a reduction of il-14/13a and il-17a/f. We also evaluated the effect of photoperiod in the presence of an antigenic stimulus. Thus, in fish immunized with the recombinant viral protein 1 (rVP1) of infectious pancreatic necrosis virus (IPNV), the photoperiod had a striking influence on the type of adaptive immune response. Each photoperiod fosters a unique immune signature of antigenic response. A classical type 1 response is observed in fish subjected to the 16D:8L photoperiod. In contrast, fish in the 12L:12D photoperiod showed only the upregulation of il-12p40c. Furthermore, none of the cytokines were increased in fish maintained on the artificial 24L:0D regimen, and a decrease in the master transcription factors (t-bet, ror-ƴt, and foxp3α) was observed. Thus, fish on the 12L:12D and 24L:0D photoperiod appear hyporesponsive regarding the T cell response. Altogether, this study showed that photoperiods modify the magnitude and quality of the T-helper response in rainbow trout and thus impact essential mechanisms for the generation of immune memory and protection against microorganisms.
Collapse
Affiliation(s)
- Merari Goldstein
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Edificio de Investigación Eduardo Morales, 9170002 Estación Central, Santiago, Chile.
| | - Eva Vallejos-Vidal
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Edificio de Investigación Eduardo Morales, 9170002 Estación Central, Santiago, Chile; Núcleo de Investigación Aplicada en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile.
| | - Valentina Wong-Benito
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Edificio de Investigación Eduardo Morales, 9170002 Estación Central, Santiago, Chile.
| | - Felipe Barraza-Rojas
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Edificio de Investigación Eduardo Morales, 9170002 Estación Central, Santiago, Chile.
| | - Lluis Tort
- Department of Cell Biology, Physiology, and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Felipe E Reyes-Lopez
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Edificio de Investigación Eduardo Morales, 9170002 Estación Central, Santiago, Chile.
| | - Mónica Imarai
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Edificio de Investigación Eduardo Morales, 9170002 Estación Central, Santiago, Chile; Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
5
|
Liu F, Dixon B, Del Mar Ortega-Villaizan M, Tafalla C, Xu H, Secombes CJ, Wang T. Novel insights into the cytokine network of rainbow trout Oncorhynchus mykiss using cell lines and primary leukocyte populations. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108755. [PMID: 37084856 DOI: 10.1016/j.fsi.2023.108755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Cytokines are small proteins that regulate innate and adaptive immune responses and are released by both immune and non-immune cell types. In the current study, the constitutive and induced gene expression profiles of a suite of proinflammatory and regulatory cytokines was examined comparatively in eight rainbow trout (Oncorhynchus mykiss) cell lines, in order to establish the cytokine repertoires of these different cell types, especially the understudied non-immune cells. They included three epithelial cell lines (RTgut, RTgill, and RTL), one endothelial cell line (RTH), one fibroblast cell line (RTG-2), two stromal cell lines (TSS and TPS-2) and one monocyte/macrophage-like cell line (RTS-11). Three types of primary leukocytes (derived from blood, spleen and head kidney) of trout were also included in the analysis, to allow comparison to the repertoires expressed in T cells, as a major source of cytokines in immune responses. The major findings are: 1) IL-2A, IL-2B, IL-4/13B1, IL-4/13B2, IL-10b, P40B1, P28B, IL-17A/F1b, TNF-α3, TNF-α4, IFNγ1, CCL20L2b and CCL20L3a are expressed mainly in leukocytes but IL-17 N, IL-17D, IL-20 and CCL20L1b2 are not expressed in these cells. Hence future studies in these cell lines will help establish their function in fish; 2) Some of the cytokines were differentially expressed in the cell lines, revealing the potential role of these cell types in aspects of trout mucosal and inflammatory immune responses, 3) Similar cell types grouped together in the cell cluster analysis, including the leukocyte cluster, stromal cell cluster, and epithelial and endothelial cell cluster. Taken together, this investigation of these trout cell lines forms a good database for studying the function of cytokines not expressed in isolated leukocytes or that are preferentially expressed in the cell lines. Furthermore, the cytokine expression analysis undertaken confirmed the phenotypic relationship of these cell types at the molecular level.
Collapse
Affiliation(s)
- Fuguo Liu
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom.
| | - Brian Dixon
- Department of Biology, University of Waterloo, Canada
| | | | - Carolina Tafalla
- Centro de Investigación en Sanidad Animal (CISA-INIA-CSIC), Madrid, Spain.
| | - Hongsen Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom.
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom.
| |
Collapse
|
6
|
Qi Z, Xu Y, Liu Y, Zhang Q, Wang Z, Mei J, Wang D. Transcriptome analysis of largemouth bass (Micropterus salmoides) challenged with LPS and polyI:C. FISH & SHELLFISH IMMUNOLOGY 2023; 133:108534. [PMID: 36649809 DOI: 10.1016/j.fsi.2023.108534] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Largemouth bass (Micropterus salmoides) is a worldwide commercially important aquatic species. In recent years, pathogenic diseases cause great economic losses and hinder the industry of largemouth bass. To further understand the immune response against pathogens in largemouth bass, splenic transcriptome libraries of largemouth bass were respectively constructed at 12 h post-challenged with phosphate-buffered saline (PBS), lipopolysaccharide (LPS) and polyinosinic-polycytidylic acid (polyI:C) by using RNA sequencing technology (RNA-seq). RNA libraries were constructed using 9 RNA splenic samples isolated from three biological replicates of the three groups and sequenced on the DNBSEQ platform. A total number of 86,306 unigenes were obtained. Through pairwise comparisons among the three groups, we identified 11,295 different expression genes (DEGs) exhibiting significant differences at the transcript level. There were 7, 7, and 13 signal pathways were significantly enriched in LPS-PBS comparison, polyI:C-PBS comparison, and LPS-polyI:C comparison, respectively, indicating that the immune response to different pathogens was distinct in largemouth bass. To the best of our knowledge, this is the first report on the immune response of largemouth bass against different pathogen-associated molecular patterns (PAMPs) stimuli using transcriptomic analysis. Our results provide a valuable resource and new insights to understanding the immune characteristics of largemouth bass against different pathogens.
Collapse
Affiliation(s)
- Zhitao Qi
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China.
| | - Yang Xu
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China; College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan Province, China
| | - Yuhao Liu
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China
| | - Qihuan Zhang
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China
| | - Zisheng Wang
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China
| | - Jie Mei
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Dezhong Wang
- Sheyang Kangyu Aquatic Products Technology Co., Ltd, Yancheng, Jiangsu Province, 224300, China
| |
Collapse
|
7
|
Wong-Benito V, Barraza F, Trujillo-Imarai A, Ruiz-Higgs D, Montero R, Sandino AM, Wang T, Maisey K, Secombes CJ, Imarai M. Infectious pancreatic necrosis virus (IPNV) recombinant viral protein 1 (VP1) and VP2-Flagellin fusion protein elicit distinct expression profiles of cytokines involved in type 1, type 2, and regulatory T cell response in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2022; 131:785-795. [PMID: 36323384 DOI: 10.1016/j.fsi.2022.10.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
In this study, we examined the cytokine immune response against two proteins of infectious pancreatic necrosis virus (IPNV) in rainbow trout (Oncorhynchus mykiss), the virion-associated RNA polymerase VP1 and VP2-Flagellin (VP2-Flg) fusion protein. Since VP1 is not a structural protein, we hypothesize it can induce cellular immunity, an essential mechanism of the antiviral response. At the same time, the fusion construction VP2-Flg could be highly immunogenic due to the presence of the flagellin used as an adjuvant. Fish were immunized with the corresponding antigen in Montanide™, and the gene expression of a set of marker genes of Th1, Th2, and the immune regulatory response was quantified in the head kidney of immunized and control fish. Results indicate that VP1 induced upregulation of ifn-γ, il-12p40c, il-4/13a, il-4/13b2, il-10a, and tgf-β1 in immunized fish. Expression of il-2a did not change in treated fish at the times tested. The antigen-dependent response was analysed by in vitro restimulation of head kidney leukocytes. In this assay, the group of cytokines upregulated after VP1-restimulation was consistent with those upregulated in the head kidney in vivo. Interestingly, VP1 induced il-2a expression after in vitro restimulation. The analysis of sorted lymphocytes showed that the increase of cytokines occurred in CD4-1+ T cells suggesting that Th differentiation happens in response to VP1. This is also consistent with the expression of t-bet and gata3, the master regulators for Th1/Th2 differentiation in the kidneys of immunized animals. A different cytokine expression profile was found after VP2-Flg administration, i.e., upregulation occurs for ifn-γ, il-4/13a, il-10a, and tgf-β1, while down-regulation was observed in il-4/13b2 and il-2a. The cytokine response was due to flagellin; only the il-2a effect was dependent upon VP2 in the fusion protein. To the best of our knowledge this study reports for the first-time characteristics of the adaptive immune response induced in response to IPNV VP1 and the fusion protein VP2-Flg in fish. VP1 induces cytokines able to trigger the humoral and cell-mediated immune response in rainbow trout. The analysis of the fish response against VP2-Flg revealed the immunogenic properties of Aeromonas salmonicida flagellin, which can be further tested for adjuvanticity. The novel immunogenic effects of VP1 in rainbow trout open new opportunities for further IPNV vaccine development using this viral protein.
Collapse
Affiliation(s)
- Valentina Wong-Benito
- Laboratorio de Inmunología. Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile.
| | - Felipe Barraza
- Laboratorio de Inmunología. Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile.
| | - Agustín Trujillo-Imarai
- Laboratorio de Inmunología. Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile.
| | - Daniela Ruiz-Higgs
- Laboratorio de Inmunología. Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile.
| | - Ruth Montero
- Laboratorio de Inmunología Comparativa. Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile.
| | - Ana María Sandino
- Laboratorio de Virología. Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile.
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom.
| | - Kevin Maisey
- Laboratorio de Inmunología Comparativa. Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile.
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom.
| | - Mónica Imarai
- Laboratorio de Inmunología. Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile.
| |
Collapse
|
8
|
Porter D, Peggs D, McGurk C, Martin SAM. Gut Associated Lymphoid Tissue (GALT) primary cells and stable cell lines as predictive models for intestinal health in rainbow trout (Oncorhynchus mykiss). Front Immunol 2022; 13:1023235. [PMID: 36341406 PMCID: PMC9632348 DOI: 10.3389/fimmu.2022.1023235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/30/2022] [Indexed: 11/26/2022] Open
Abstract
The use of functional feeds for farmed fish is now regarded as a key factor in improving fish health and performance against infectious disease. However, the mechanisms by which these nutritional components modulate the immune response are not fully understood. The present study was undertaken to identify the suitability of both primary gut-associated lymphoid tissue (GALT) leucocyte cells and established rainbow trout cell lines as potential alternative methods to test functional feed ingredients prior to full fish feeding trials that can take months to complete. In addition to the primary GALT culture cells, the two rainbow cell lines RTS11 and RTgutGC which are from macrophage and gut epithelial cells, respectively. The cells were stimulated with a variety of pathogen associated molecular patterns (PAMPs) (PHA and Poly I:C) and recombinant rainbow trout IL-1β (rIL-1β), a proinflammatory cytokine, additionally two forms of β-glucan, a prebiotic commonly used aquafeeds were used as stimulants. From this, the suitability of cell models as a health screen for functional feeds was assessed. GALT leucocytes were deemed most effective to act as a health screen over the 4hr time point demonstrating responses to Poly I:C, PHA, and rIL-1β. RTS11 and RTgutGC also responded to the stimulants but did not give a strong T-cell response, most likely reflecting the nature of the cell type as opposed to the mixed cell populations from the primary GALT cell cultures. When stimulated with both forms of β-glucan, GALT leucocytes demonstrated a strong proinflammatory and T-cell response.
Collapse
Affiliation(s)
- D. Porter
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - David Peggs
- Skretting Aquaculture Innovation, Stavanger, Norway
| | - C. McGurk
- Skretting Aquaculture Innovation, Stavanger, Norway
| | - Samuel A. M. Martin
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
- *Correspondence: Samuel A. M. Martin,
| |
Collapse
|
9
|
Yanez-Lemus F, Moraga R, Smith CT, Aguayo P, Sánchez-Alonzo K, García-Cancino A, Valenzuela A, Campos VL. Selenium Nanoparticle-Enriched and Potential Probiotic, Lactiplantibacillus plantarum S14 Strain, a Diet Supplement Beneficial for Rainbow Trout. BIOLOGY 2022; 11:biology11101523. [PMID: 36290428 PMCID: PMC9598509 DOI: 10.3390/biology11101523] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022]
Abstract
Simple Summary Potential probiotic bacteria for aquacultured species should be naturally occurring and non-pathogenic in the native habitat of the host, easy to culture, and able to grow in the intestine of the host. Se nanoparticles (Se0Nps) can be effectively used as a growth promoter, antioxidant, and immunostimulant agent in aquacultured species. Dietary supplementation with probiotics and Se0Nps contributes to the balance of the intestinal microbiota and probiotics have been proposed as an alternative to chemotherapeutants and antibiotics to prevent disease outbreaks, to mitigate the negative effects of stress and to strengthen the antioxidant capacity and the immune system of fish. Our results reported the isolation of a probiotic strain obtained from healthy rainbow trout. The strain was identified as Lactiplantibacillus plantarum species. This strain showed characteristics typically present in probiotics and, concurrently, the capacity to biosynthesize Se0Nps. The supplementation of the rainbow trout fish diet with LABS14-Se0Nps showed a positive effect on innate immune response parameters, oxidative status, well-being, and a better growth performance than the supplementation of the diet with the bacterium LABS14 alone. Therefore, we propose LABS14-Se0Nps as a promising alternative for the nutritional supplementation for rainbow trout or even other salmonids. Abstract Lactic acid bacteria (LAB), obtained from rainbow trout (Oncorhynchus mykiss) intestine, were cultured in MRS medium and probiotic candidates. Concurrently, producers of elemental selenium nanoparticles (Se0Nps) were selected. Probiotic candidates were subjected to morphological characterization and the following tests: antibacterial activity, antibiotic susceptibility, hemolytic activity, catalase, hydrophobicity, viability at low pH, and tolerance to bile salts. Two LAB strains (S4 and S14) satisfied the characteristics of potential probiotics, but only strain S14 reduced selenite to biosynthesize Se0Nps. S14 strain was identified, by 16S rDNA analysis, as Lactiplantibacillus plantarum. Electron microscopy showed Se0Nps on the surface of S14 cells. Rainbow trout diet was supplemented (108 CFU g−1 feed) with Se0Nps-enriched L. plantarum S14 (LABS14-Se0Nps) or L. plantarum S14 alone (LABS14) for 30 days. At days 0, 15, and 30, samples (blood, liver, and dorsal muscle) were obtained from both groups, plus controls lacking diet supplementation. Fish receiving LABS14-Se0Nps for 30 days improved respiratory burst and plasmatic lysozyme, (innate immune response) and glutathione peroxidase (GPX) (oxidative status) activities and productive parameters when compared to controls. The same parameters also improved when compared to fish receiving LABS14, but significant only for plasmatic and muscle GPX. Therefore, Se0Nps-enriched L. plantarum S14 may be a promising alternative for rainbow trout nutritional supplementation.
Collapse
Affiliation(s)
- Francisco Yanez-Lemus
- Environmental Microbiology Laboratory, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile
- Escuela de Medicina Veterinaria, Facultad de Recursos Naturales y Medicina Veterinaria, Universidad Santo Tomás, Santiago 8370003, Chile
| | - Rubén Moraga
- Microbiology Laboratory, Faculty of Renewable Natural Resources, Arturo Prat University, Iquique 1100000, Chile
| | - Carlos T. Smith
- Environmental Microbiology Laboratory, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile
| | - Paulina Aguayo
- Environmental Microbiology Laboratory, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile
- Faculty of Environmental Sciences, EULA-Chile, Universidad de Concepcion, Concepcion 4070386, Chile
- Institute of Natural Resources, Faculty of Veterinary Medicine and Agronomy, Universidad de Las Américas, Sede Concepcion, Chacabuco 539, Concepcion 3349001, Chile
| | - Kimberly Sánchez-Alonzo
- Laboratory of Bacterial Pathogenicity, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile
- School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastian, Concepcion 4080871, Chile
| | - Apolinaria García-Cancino
- Laboratory of Bacterial Pathogenicity, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile
| | - Ariel Valenzuela
- Laboratory of Pisciculture and Aquatic Pathology, Department of Oceanography, Faculty of Natural and Oceanographic Sciences, Universidad de Concepcion, Concepcion 4070386, Chile
| | - Víctor L. Campos
- Environmental Microbiology Laboratory, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile
- Correspondence: ; Tel.: +56-41-2204144
| |
Collapse
|
10
|
Vallejos-Vidal E, Reyes-López FE, Sandino AM, Imarai M. Sleeping With the Enemy? The Current Knowledge of Piscine Orthoreovirus (PRV) Immune Response Elicited to Counteract Infection. Front Immunol 2022; 13:768621. [PMID: 35464421 PMCID: PMC9019227 DOI: 10.3389/fimmu.2022.768621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Piscine orthoreovirus (PRV) is a virus in the genus Orthoreovirus of the Reoviridae family, first described in 2010 associated with Heart and Skeletal Muscle Inflammation (HSMI) in Atlantic salmon (Salmo salar). Three phases of PRV infection have been described, the early entry and dissemination, the acute dissemination phase, and the persistence phase. Depending on the PRV genotype and the host, infection can last for life. Mechanisms of immune response to PRV infection have been just beginning to be studied and the knowledge in this matter is here revised. PRV induces a classical antiviral immune response in experimental infection of salmonid erythrocytes, including transcriptional upregulation of ifn-α, rig-i, mx, and pkr. In addition, transcript upregulation of tcra, tcrb, cd2, il-2, cd4-1, ifn-γ, il-12, and il-18 has been observed in Atlantic salmon infected with PRV, indicating that PRV elicited a Th1 type response probably as a host defense strategy. The high expression levels of cd8a, cd8b, and granzyme-A in PRV-infected fish suggest a positive modulatory effect on the CTL-mediated immune response. This is consistent with PRV-dependent upregulation of the genes involved in antigen presentation, including MHC class I, transporters, and proteasome components. We also review the potential immune mechanisms associated with the persistence phenotype of PRV-infected fish and its consequence for the development of a secondary infection. In this scenario, the application of a vaccination strategy is an urgent and challenging task due to the emergence of this viral infection that threatens salmon farming.
Collapse
Affiliation(s)
- Eva Vallejos-Vidal
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Felipe E Reyes-López
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Department of Cell Biology, Physiology, and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana María Sandino
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Mónica Imarai
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
11
|
Kumar S, Choubey AK, Srivastava PK. The effects of dietary immunostimulants on the innate immune response of Indian major carp: A review. FISH & SHELLFISH IMMUNOLOGY 2022; 123:36-49. [PMID: 35217196 DOI: 10.1016/j.fsi.2022.02.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Immunostimulants, as feed additives, play an important role in maintaining fish health and enhancing their overall growth by providing resistance against diseases in cultured fish. At the initial stages of life of fish, innate immunity is the essential mechanism in their survival. Later, innate immunity has an instructive role in adapting acquired immune response and homeostasis through different receptor proteins. Several studies have been conducted to analyze the effect of dietary immunostimulants like algae, plant extracts, vitamins, herbs, probiotics, and prebiotics-containing diets in Indian major carps. Many bacterial, fungal and viral pathogens are responsible for high death rates in both wild and cultured fish. It's a major limiting factor for world aquaculture industries. Recognition of invading pathogens by different pathogen recognition receptor plays an important role for the activation of different pathways to initiate protective immune responses. Hence, there is a growing need to control the devastating effects of diseases without recourse to toxic chemicals or antibiotics. Keeping with alternative approaches without using toxic chemicals to control fish diseases in mind, many immunostimulants are used, which enhance immune responses along with their gene expression level through different signaling pathway. The objective of this review is to summarize and evaluate the current knowledge of various immunostimulants and their immune responses in three Indian major carps namely Catla catla, Labeo rohita and Cirrhinus mrigala, which are preferred by the people.
Collapse
Affiliation(s)
- Sudhir Kumar
- Institute of Biosciences & Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh- 225003, India
| | - Abhay Kumar Choubey
- Department of Sciences and Humanities, Rajiv Gandhi Institute of Petroleum Technology, Jais, Amethi, Uttar Pradesh-229304, India
| | - Praveen Kumar Srivastava
- Department of Sciences and Humanities, Rajiv Gandhi Institute of Petroleum Technology, Jais, Amethi, Uttar Pradesh-229304, India.
| |
Collapse
|
12
|
Bledsoe JW, Pietrak MR, Burr GS, Peterson BC, Small BC. Functional feeds marginally alter immune expression and microbiota of Atlantic salmon (Salmo salar) gut, gill, and skin mucosa though evidence of tissue-specific signatures and host-microbe coadaptation remain. Anim Microbiome 2022; 4:20. [PMID: 35272695 PMCID: PMC8908560 DOI: 10.1186/s42523-022-00173-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/01/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Mucosal surfaces of fish provide cardinal defense against environmental pathogens and toxins, yet these external mucosae are also responsible for maintaining and regulating beneficial microbiota. To better our understanding of interactions between host, diet, and microbiota in finfish and how those interactions may vary across mucosal tissue, we used an integrative approach to characterize and compare immune biomarkers and microbiota across three mucosal tissues (skin, gill, and gut) in Atlantic salmon receiving a control diet or diets supplemented with mannan-oligosaccharides, coconut oil, or both. Dietary impacts on mucosal immunity were further evaluated by experimental ectoparasitic sea lice (Lepeophtheirus salmonis) challenge. RESULTS Fish grew to a final size of 646.5 g ± 35.8 during the 12-week trial, with no dietary effects on growth or sea lice resistance. Bacterial richness differed among the three tissues with the highest richness detected in the gill, followed by skin, then gut, although dietary effects on richness were only detected within skin and gill. Shannon diversity was reduced in the gut compared to skin and gill but was not influenced by diet. Microbiota communities clustered separately by tissue, with dietary impacts on phylogenetic composition only detected in the skin, although skin and gill communities showed greater overlap compared to the gut according to overall composition, differential abundance, and covariance networks. Inferred metagenomic functions revealed preliminary evidence for tissue-specific host-microbiota coadaptation, as putative microbiota functions showed ties to the physiology of each tissue. Immune gene expression profiles displayed tissue-specific signatures, yet dietary effects were also detected within each tissue and peripheral blood leukocytes. Procrustes analysis comparing sample-matched multivariate variation in microbiota composition to that of immune expression profiles indicated a highly significant correlation between datasets. CONCLUSIONS Diets supplemented with functional ingredients, namely mannan-oligosaccharide, coconut oil, or a both, resulted in no difference in Atlantic salmon growth or resistance to sea lice infection. However, at the molecular level, functional ingredients caused physiologically relevant changes to mucosal microbiota and host immune expression. Putative tissue-specific metagenomic functions and the high correlation between expression profiles and microbiota composition suggest host and microbiota are interdependent and coadapted in a tissue-specific manner.
Collapse
Affiliation(s)
- Jacob W. Bledsoe
- Hagerman Fish Culture Experiment Station, Aquaculture Research Institute, University of Idaho, 3059-F National Fish Hatchery Rd., Hagerman, ID 83332 USA
| | - Michael R. Pietrak
- Agricultural Research Service, National Cold Water Marine Aquaculture Center, United States Department of Agriculture, 25 Salmon Farm Road, Franklin, ME 04634 USA
| | - Gary S. Burr
- Agricultural Research Service, National Cold Water Marine Aquaculture Center, United States Department of Agriculture, 25 Salmon Farm Road, Franklin, ME 04634 USA
| | - Brian C. Peterson
- Agricultural Research Service, National Cold Water Marine Aquaculture Center, United States Department of Agriculture, 25 Salmon Farm Road, Franklin, ME 04634 USA
| | - Brian C. Small
- Hagerman Fish Culture Experiment Station, Aquaculture Research Institute, University of Idaho, 3059-F National Fish Hatchery Rd., Hagerman, ID 83332 USA
| |
Collapse
|
13
|
Hu Y, Alnabulsi A, Alnabulsi A, Scott C, Tafalla C, Secombes CJ, Wang T. Characterisation and analysis of IFN-gamma producing cells in rainbow trout Oncorhynchus mykiss. FISH & SHELLFISH IMMUNOLOGY 2021; 117:328-338. [PMID: 34343543 DOI: 10.1016/j.fsi.2021.07.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
IFN-γ is one of the key cytokines involved in Th1 immune responses. It is produced mainly by T cells and NK cells, which drive both innate and adaptive responses to promote protection against infections. IFN-γ orthologues have been discovered to be functionally conserved in fish, suggesting that type I immunity is present in early vertebrates. However, few studies have looked at IFN-γ protein expression in fish and its role in cell mediated immunity due to a lack of relevant tools. In this study, four monoclonal antibodies (mAbs) V27, N2, VAB3 and V91 raised against short salmonid IFN-γ peptides were developed and characterised to monitor IFN-γ expression. The results show that the IFN-γ mAbs specifically react to their peptide immunogens, recognise E. coli produced recombinant IFN-γ protein and rainbow trout IFN-γ produced in transfected HEK 293 cells. The mAb VAB3 was used further, to detect IFN-γ at the cellular level after in vitro and in vivo stimulation. In flow cytometry, a basal level of 3-5% IFN-γ secreting cells were detected in peripheral blood leucocytes (PBL), which increased significantly when stimulated in vitro with PAMPs (Aeromonas salmonicida bacterin), a mitogen (PHA) and recombinant cytokine (IL-2). Similarly, after injection of live bacteria (Aeromonas salmonicida) or poly I:C the number of IFN-γ+ cells increased in the lymphoid population of PBL, as well as in the myeloid population after infection, with the myeloid cells increasing substantially after both treatments. Immunohistochemistry was used to visualise the IFN-γ+ cells in spleen and head kidney following vaccination, which increased in intensity of staining and number relative to tissue from saline-injected control fish. These results show that several types of cells can produce IFN-γ in trout, and that they increase following infection or vaccination, and likely contribute to immune protection. Hence monitoring IFN-γ producing cells/protein secretion may be an important means to assess the effectiveness of Th1 responses and cell mediated immunity in fish.
Collapse
Affiliation(s)
- Yehfang Hu
- Scottish Fish Immunology Research Centre, University of Aberdeen, Aberdeen, UK
| | | | | | - Callum Scott
- Scottish Fish Immunology Research Centre, University of Aberdeen, Aberdeen, UK
| | | | | | - Tiehui Wang
- Scottish Fish Immunology Research Centre, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
14
|
Minarova H, Ondrackova P, Palikova M, Mares J, Blahova J, Jarova K, Faldyna M. Optimisation of phagocytosis assay in rainbow trout ( Oncorhynchus mykiss). VET MED-CZECH 2021; 66:298-304. [PMID: 40201393 PMCID: PMC11975444 DOI: 10.17221/189/2020-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 03/24/2021] [Indexed: 04/10/2025] Open
Abstract
A phagocytosis assay is one of the most commonly used functional immunological methods. There are many possible ways of assessing leucocytes and their ability to ingest different particles. The aim of this study was to optimise the phagocytosis assay in rainbow trout (Oncorhynchus mykiss) using labelled zymosan particles (Alexa Fluor 488 and Texas Red conjugate). Whole blood was incubated with the particles under different conditions and leucocytes were subsequently isolated by haemolysis in a hypotonic environment. The effect of the different incubation time, temperature, blood volume and dilution on the phagocytic activity was evaluated by flow cytometry. Our experiments showed that the incubation for at least 2 h at 15 °C provided optimal results, while the blood volume and dilution had no significant effect. The optimised assay will be used for the examination of fish health and in further experimental studies.
Collapse
Affiliation(s)
- Hana Minarova
- Department of Ecology & Diseases of Zoo Animals, Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Petra Ondrackova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Miroslava Palikova
- Department of Ecology & Diseases of Zoo Animals, Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Jan Mares
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Jana Blahova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Katerina Jarova
- Department of Ecology & Diseases of Zoo Animals, Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Martin Faldyna
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| |
Collapse
|
15
|
Veenstra KA, Hodneland K, Fischer S, Takehana K, Belmonte R, Fischer U. Cellular Immune Responses in Rainbow Trout ( Onchorhynchus mykiss) Following Vaccination and Challenge Against Salmonid Alphavirus (SAV). Vaccines (Basel) 2020; 8:vaccines8040725. [PMID: 33276596 PMCID: PMC7761581 DOI: 10.3390/vaccines8040725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 01/25/2023] Open
Abstract
Viral disease outbreaks remain a significant limiting factor for aquaculture. The majority of licensed vaccines used in the industry are administered as oil-adjuvanted formulations carrying inactivated whole pathogens. Cell-mediated immune responses, in particular those based on virus-specific cytotoxic T-cells (CTLs) to conventional inactivated oil-based vaccines, are largely unexplored. As vaccines cannot be optimized against viral pathogens if knowledge of host cellular immune mechanisms remains unknown, in this study we examined fundamental cell-mediated immune responses after vaccination of rainbow trout with an oil-adjuvanted inactivated vaccine against salmonid alphavirus (SAV) and after infection with SAV. A unique in vitro model system was developed to examine MHC class I restricted CTL responses in a clonal line of rainbow trout. The levels of cell-mediated cytotoxicity were compared to pathology, virus load, specific antibody response, changes in immune cell populations, and mRNA expression. Our results hint that different protective mechanisms are being triggered by infection compared to vaccination. While vaccination itself did not cause a strong cytotoxic or humoral response, subsequent challenge of vaccinated fish resulted in significantly stronger and faster specific cytotoxicity, alongside reduced viral titers and pathology. Hence, testing a vaccine on the capacity to induce cell-mediated cytotoxicity will still require a challenge test. Examination of cellular markers additionally indicates that the initial innate response induced by the vaccine could play an important role in steering adaptive mechanisms.
Collapse
Affiliation(s)
- Kimberly A. Veenstra
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Infectology, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (K.A.V.); (S.F.)
| | - Kjartan Hodneland
- MSD Animal Health Innovation, Thormøhlens Gate 55, 5006 Bergen, Norway; (K.H.); (R.B.)
| | - Susanne Fischer
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Infectology, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (K.A.V.); (S.F.)
| | - Kota Takehana
- Nagano Prefectural Fisheries Experimental Station, 2871 Oaza-Nakagawate, Akashina, Azumino-shi, Nagano 399-7102, Japan;
| | - Rodrigo Belmonte
- MSD Animal Health Innovation, Thormøhlens Gate 55, 5006 Bergen, Norway; (K.H.); (R.B.)
| | - Uwe Fischer
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Infectology, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (K.A.V.); (S.F.)
- Correspondence: ; Tel.: +49-38351-71175
| |
Collapse
|
16
|
Attaya A, Secombes CJ, Wang T. Effective isolation of GALT cells: Insights into the intestine immune response of rainbow trout (Oncorhynchus mykiss) to different bacterin vaccine preparations. FISH & SHELLFISH IMMUNOLOGY 2020; 105:378-392. [PMID: 32615166 DOI: 10.1016/j.fsi.2020.06.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
The teleost gut is a multifunction complex structure that plays a pivotal immunological role in homeostasis and the maintenance of health, in addition to digestion of food and/or nutrient absorption. In vitro examination of the intestine leucocyte repertoire has the potential to aid our understanding of gut immune competence and allows a rapid screen of host-microorganism interactions in different immunological contexts. To explore this possibility, in the present study we investigated the response of isolated gut leucocytes to 4 bacterins of Aeromonas salmonicida, prepared from different strains, combinations and strains grown in different environments, in comparison to a Yersinia ruckeri bacterin for which a commercial/effective oral booster vaccine has been developed. To aid this study we also optimized further our method of GALT cell isolation from rainbow trout, so as to avoid mechanical clearance of the intestine contents. This drastically increased the cell yield from ~12 × 106 to ~210 × 106/fish with no change in the percent cell viability over time or presence of transcripts typical of the key leucocyte types needed for the study of immune modulation (i.e. T- and B-cells, dendritic cells and macrophages). A wide array of immune transcripts were modulated by the bacterins, demonstrating the diversity of GALT cell responses to bacterial stimulation. Indeed, the GALT leucocyte responses were sensitive enough to distinguish the different bacterial species, strains and membrane proteins, as seen by distinct kinetics of immune gene expression. However, the response of the GALT cells was often relatively slow and of a low magnitude compared to those of PBL. These results enhance our knowledge of the gut biocapacity and help validate the use of this model for screening of oral vaccine candidates.
Collapse
Affiliation(s)
- Ahmed Attaya
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, AB24 2TZ, UK.
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, AB24 2TZ, UK.
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, AB24 2TZ, UK.
| |
Collapse
|
17
|
Sequeida A, Castillo A, Cordero N, Wong V, Montero R, Vergara C, Valenzuela B, Vargas D, Valdés N, Morales J, Tello M, Sandino AM, Maisey K, Imarai M. The Atlantic salmon interleukin 4/13 receptor family: Structure, tissue distribution and modulation of gene expression. FISH & SHELLFISH IMMUNOLOGY 2020; 98:773-787. [PMID: 31734286 DOI: 10.1016/j.fsi.2019.11.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Interleukin (IL)-4 and IL-13 play a central role in T helper 2 immune response in mammals. The cell signalling is mediated by the type I heterodimeric receptor containing the IL-4Rα and γC chains, and the type II receptors formed by IL-4Rα and IL-13Rα1. In salmonid species, three paralogues of the IL-4 and IL-13 cytokines have been reported, il-4/13a, il-4/13b1 and il-4/13b2. In regard to receptors, two paralogues of each IL-4/13 receptor chains have been identified in rainbow trout while five genes named γc1, il-4rα, il-13rα1a, il-13rα1b, and il-13rα2 have identified in Atlantic salmon. Since Atlantic salmon is an important farmed fish species, the aim of this work was to get new insights into distribution, structure and expression regulation of the IL-4/13 receptors in salmon. By using qRT-PCR, it was shown that all γc1, il-4rα, il-13rα1a, il-13rα1b, and il-13rα2 receptor chains were expressed in lymphoid and non-lymphoid tissues of healthy salmon, nonetheless γC expression was higher in lymphoid than non-lymphoid tissues. The in silico structural analysis and homology modelling of the predicted receptor proteins showed that domains and most motifs present in the superior vertebrate chains are conserved in salmon suggesting a conserved role for these receptor chains. Only IL-13Rα1B is a receptor chain with a unique structure that seem not to be present in higher vertebrates but in fish species. In order to determine the regulatory role of IL-4/13 on the expression of receptor chains, Atlantic salmon il-4/13A gene was synthetized and cloned in pET15b. The recombinant IL-4/13A was produced in E. coli and the activity of the purified cytokine was confirmed in vitro. The regulatory role of IL-4/13A on the expression of their potential receptors was tested in salmon receiving the recombinant cytokine and effects were compared with those of the control group. The results showed that IL-4/13A induced the expression of its own gene and GATA-3, in the head kidney of fish but not in the spleen, while IL-10 increased in both lymphoid organs indicating a regulatory role of this cytokine on the induction of Th2 responses in salmon. IFN-γ and MHC class II were also later induced in head kidney. In regard to the expression of the receptor chains, IL-4/13A upregulated the expression of γC, IL-13Rα1A and IL-13Rα2A in the spleen but not in the head kidney of salmon, indicating a role on the modulation of cell signalling for the Th2 response. Furthermore, Piscirickettsia salmonis infection of Atlantic salmon occurred with an increase of γC and IL-13Rα1A suggesting a potential role of the IL-4/13 system in bacterial immunity or pathogenesis. This study contributes to a better understanding of the IL-4/13A system in salmon, which as a key axis for Th2 response may be involved not only in pathogen elimination but also in adaptive immune repair that seems critical tolerance to infectious diseases.
Collapse
Affiliation(s)
- Alvaro Sequeida
- Laboratory of Immunology, Centre of Aquatic Biotechnology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Bernardo O'Higgins, 3363, Santiago, Chile.
| | - Andrés Castillo
- Consorcio Tecnológico de Sanidad Acuícola ICTIO Biotechnologies, Federal Research Institute for Animal Health, Institute of Immunology, Südufer 10, 17493, Graeifswald-Insel Riems, Germany.
| | - Natalia Cordero
- Laboratory of Immunology, Centre of Aquatic Biotechnology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Bernardo O'Higgins, 3363, Santiago, Chile; Consorcio Tecnológico de Sanidad Acuícola ICTIO Biotechnologies, Federal Research Institute for Animal Health, Institute of Immunology, Südufer 10, 17493, Graeifswald-Insel Riems, Germany.
| | - Valentina Wong
- Laboratory of Immunology, Centre of Aquatic Biotechnology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Bernardo O'Higgins, 3363, Santiago, Chile.
| | - Ruth Montero
- Laboratory of Comparative Immunology, Centre of Aquatic Biotechnology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Bernardo O'Higgins, 3363, Santiago, Chile; Laboratory for Comparative Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Immunology, Südufer 10, 17493, Graeifswald-Insel Riems, Germany.
| | - Claudio Vergara
- Laboratory of Immunology, Centre of Aquatic Biotechnology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Bernardo O'Higgins, 3363, Santiago, Chile; Consorcio Tecnológico de Sanidad Acuícola ICTIO Biotechnologies, Federal Research Institute for Animal Health, Institute of Immunology, Südufer 10, 17493, Graeifswald-Insel Riems, Germany.
| | - Beatriz Valenzuela
- Laboratory of Immunology, Centre of Aquatic Biotechnology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Bernardo O'Higgins, 3363, Santiago, Chile; Consorcio Tecnológico de Sanidad Acuícola ICTIO Biotechnologies, Federal Research Institute for Animal Health, Institute of Immunology, Südufer 10, 17493, Graeifswald-Insel Riems, Germany.
| | - Deborah Vargas
- Laboratory of Virology, Centre of Aquatic Biotechnology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Bernardo O'Higgins, 3363, Santiago, Chile; Consorcio Tecnológico de Sanidad Acuícola ICTIO Biotechnologies, Federal Research Institute for Animal Health, Institute of Immunology, Südufer 10, 17493, Graeifswald-Insel Riems, Germany.
| | - Natalia Valdés
- Laboratory of Metagenomics, Centre of Aquatic Biotechnology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Bernardo O'Higgins, 3363, Santiago, Chile.
| | - Jonathan Morales
- Consorcio Tecnológico de Sanidad Acuícola ICTIO Biotechnologies, Federal Research Institute for Animal Health, Institute of Immunology, Südufer 10, 17493, Graeifswald-Insel Riems, Germany.
| | - Mario Tello
- Laboratory of Metagenomics, Centre of Aquatic Biotechnology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Bernardo O'Higgins, 3363, Santiago, Chile; Consorcio Tecnológico de Sanidad Acuícola ICTIO Biotechnologies, Federal Research Institute for Animal Health, Institute of Immunology, Südufer 10, 17493, Graeifswald-Insel Riems, Germany.
| | - Ana María Sandino
- Laboratory of Virology, Centre of Aquatic Biotechnology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Bernardo O'Higgins, 3363, Santiago, Chile; Consorcio Tecnológico de Sanidad Acuícola ICTIO Biotechnologies, Federal Research Institute for Animal Health, Institute of Immunology, Südufer 10, 17493, Graeifswald-Insel Riems, Germany.
| | - Kevin Maisey
- Laboratory of Comparative Immunology, Centre of Aquatic Biotechnology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Bernardo O'Higgins, 3363, Santiago, Chile.
| | - Mónica Imarai
- Laboratory of Immunology, Centre of Aquatic Biotechnology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Bernardo O'Higgins, 3363, Santiago, Chile; Consorcio Tecnológico de Sanidad Acuícola ICTIO Biotechnologies, Federal Research Institute for Animal Health, Institute of Immunology, Südufer 10, 17493, Graeifswald-Insel Riems, Germany.
| |
Collapse
|
18
|
Chen H, Yuan G, Su J, Liu X. Hematological and immune genes responses in yellow catfish (Pelteobagrus fulvidraco) with septicemia induced by Edwardsiella ictaluri. FISH & SHELLFISH IMMUNOLOGY 2020; 97:531-539. [PMID: 31794844 DOI: 10.1016/j.fsi.2019.11.071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/15/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Yellow catfish (Pelteobagrus fulvidraco) has been an economically important freshwater species in China because of its good meat quality. In present, the high-density breeding industry has suffered great damage from bacterial infections, in especial, the rapid illness and death of fish caused by bacterial septicemia leads to huge economic losses. Therefore, it is urgent and important to identify pathogenic bacteria and study its pathogenicity. In this study, we isolated a bacterial strain from the yellow catfish with typical septicemia and named it E. 719, then, by morphological observations, regression infection, biochemical identification, 16S rDNA sequence analysis and triple PCR identification, E. 719 was determined to be Edwardsiella ictaluri. Further, we infected yellow catfish with E. ictaluri to study its effects on mortality rate, hematological, histopathological disturbances and expression of immune genes. The mortality results showed that E. ictaluri was highly pathogenic, all infected fish died after 14 days post injection, and the distribution of bacteria in body kidney, spleen, liver, head kidney and brain of fish was continuously detected by measuring the amount of bacteria in the tissues. In addition, the number of red blood cells decreased significantly with the time of infection, while the number of white blood cells and thrombocytes increased. In particular, the number of monocytes and neutrophils increased significantly in the differential leucocyte count (DLC). Histopathologic changes observed by HE staining showed similar results, gill, intestine, spleen and head kidney showed obvious inflammation, bleeding and necrosis. Besides, checking by real time quantitative RT-PCR assays, in both spleen and head kidney tissues which were the major immune organs, mRNA expressions of immune gene IL-1β, TNF-α, and MR significantly increased in the early and middle stages of infection, which suggested that the infection of E. ictaluri caused a strong immune response in yellow catfish. This study provides a preliminary basis for the diagnosis and treatment of pathophysiology septicemia in yellow catfish induced by E. ictaluri.
Collapse
Affiliation(s)
- Huijie Chen
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gailing Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Xiaoling Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China.
| |
Collapse
|
19
|
Hu Y, Carpio Y, Scott C, Alnabulsi A, Alnabulsi A, Wang T, Liu F, Monte M, Wang T, Secombes CJ. Induction of IL-22 protein and IL-22-producing cells in rainbow trout Oncorhynchus mykiss. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 101:103449. [PMID: 31306696 PMCID: PMC6873780 DOI: 10.1016/j.dci.2019.103449] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 05/11/2023]
Abstract
IL-22 is a critical cytokine which is involved in modulating tissue responses during inflammation, and is produced mainly by T cells and innate leucocytes. In mammals, IL-22 is a key component in mucosal defences, tissue repair, epithelial cell survival and proliferation. In teleosts, IL-22 has been cloned and studied in several species, and the transcript is highly expressed in mucosal tissues and induced by pathogen associated molecular patterns (PAMPs), suggesting IL-22 also functions as an important component of the innate immune response in fish. To investigate these immune responses further, we have validated and characterised two monoclonal antibodies (mAbs) which were raised against two different peptide immunogens of salmonid IL-22. Our results show that both mAbs specifically react to their own peptide immunogens and recombinant IL-22, and are able to detect the induction of native protein expression after stimulation. In flow cytometry, an increase in IL-22 positive cells was detected after stimulation in vitro with cytokines and PAMPs and in vivo after bacterial challenge. The immunohistochemistry results showed that IL-22 is highly upregulated in the gills after challenge, both in cells within the gill filaments and in the interbranchial lymphoid tissue. Such results suggest IL-22 may have a role in triggering local antimicrobial defences in fish that may facilitate efficient microbial clearance. Hence monitoring IL-22 producing cells/protein secretion may provide an alternative mean to assess the effectiveness of mucosal vaccines.
Collapse
Affiliation(s)
- Yehfang Hu
- Scottish Fish Immunology Research Centre (SFIRC), School of Biological Sciences, University of Aberdeen, UK
| | - Yamila Carpio
- Centre of Genetic Engineering and Biotechnology, Havana, Cuba
| | - Callum Scott
- Scottish Fish Immunology Research Centre (SFIRC), School of Biological Sciences, University of Aberdeen, UK
| | | | - Abdo Alnabulsi
- Vertebrate Antibodies Limited, Aberdeen, UK; Department of Pathology, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, UK
| | - Tingyu Wang
- Scottish Fish Immunology Research Centre (SFIRC), School of Biological Sciences, University of Aberdeen, UK
| | - Fuguo Liu
- Scottish Fish Immunology Research Centre (SFIRC), School of Biological Sciences, University of Aberdeen, UK
| | - Milena Monte
- Scottish Fish Immunology Research Centre (SFIRC), School of Biological Sciences, University of Aberdeen, UK
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre (SFIRC), School of Biological Sciences, University of Aberdeen, UK.
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre (SFIRC), School of Biological Sciences, University of Aberdeen, UK.
| |
Collapse
|
20
|
Lulijwa R, Alfaro AC, Merien F, Meyer J, Young T. Advances in salmonid fish immunology: A review of methods and techniques for lymphoid tissue and peripheral blood leucocyte isolation and application. FISH & SHELLFISH IMMUNOLOGY 2019; 95:44-80. [PMID: 31604150 DOI: 10.1016/j.fsi.2019.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/29/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Evaluating studies over the past almost 40 years, this review outlines the current knowledge and research gaps in the use of isolated leucocytes in salmonid immunology understanding. This contribution focuses on the techniques used to isolate salmonid immune cells and popular immunological assays. The paper also analyses the use of leucocytes to demonstrate immunomodulation following dietary manipulation, exposure to physical and chemical stressors, effects of pathogens and parasites, vaccine design and application strategies assessment. We also present findings on development of fish immune cell lines and their potential uses in aquaculture immunology. The review recovered 114 studies, where discontinuous density gradient centrifugation (DDGC) with Percoll density gradient was the most popular leucocyte isolation method. Fish head kidney (HK) and peripheral blood (PB) were the main sources of leucocytes, from rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Phagocytosis and respiratory burst were the most popular immunological assays. Studies used isolated leucocytes to demonstrate that dietary manipulations enhance fish immunity, while chemical and physical stressors suppress immunity. In addition, parasites, and microbial pathogens depress fish innate immunity and induce pro-inflammatory cytokine gene transcripts production, while vaccines enhance immunity. This review found 10 developed salmonid cell lines, mainly from S. salar and O. mykiss HK tissue, which require fish euthanisation to isolate. In the face of high costs involved with density gradient reagents, the application of hypotonic lysis in conjunction with mico-volume blood methods can potentially reduce research costs, time, and using nonlethal and ethically flexible approaches. Since the targeted literature review for this study retrieved no metabolomics study of leucocytes, indicates that this approach, together with traditional technics and novel flow cytometry could help open new opportunities for in vitro studies in aquaculture immunology and vaccinology.
Collapse
Affiliation(s)
- Ronald Lulijwa
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand; National Agricultural Research Organisation (NARO), Rwebitaba Zonal Agricultural Research and Development Institute (Rwebitaba-ZARDI), P. O. Box 96, Fort Portal, Uganda
| | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand.
| | - Fabrice Merien
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand; AUT-Roche Diagnostics Laboratory, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Jill Meyer
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand; AUT-Roche Diagnostics Laboratory, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Tim Young
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand; The Centre for Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, New Zealand
| |
Collapse
|
21
|
Attaya A, Jiang Y, Secombes CJ, Wang T. Distinct response of immune gene expression in peripheral blood leucocytes modulated by bacterin vaccine candidates in rainbow trout Oncorhynchus mykiss: A potential in vitro screening and batch testing system for vaccine development in aquaculture. FISH & SHELLFISH IMMUNOLOGY 2019; 93:631-640. [PMID: 31377431 DOI: 10.1016/j.fsi.2019.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/02/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
Fish aquaculture is the world's fastest growing food production industry and infectious diseases are a major limiting factor. Vaccination is the most appropriate method for controlling infectious diseases and a key reason for the success of salmonid cultivation and has reduced the use of antibiotics. The development of fish vaccines requires the use of a great number of experimental animals that are challenged with virulent pathogens. In vitro cell culture systems have the potential to replace in vivo pathogen exposure for initial screening and testing of novel vaccine candidates/preparations, and for batch potency and safety tests. PBL contain major immune cells that enable the detection of both innate and adaptive immune responses in vitro. Fish PBL can be easily prepared using a hypotonic method and is the only way to obtain large numbers of immune cells non-lethally. Distinct gene expression profiles of innate and adaptive immunity have been observed between bacterins prepared from different bacterial species, as well as from different strains or culturing conditions of the same bacterial species. Distinct immune pathways are activated by pathogens or vaccines in vivo that can be detected in PBL in vitro. Immune gene expression in PBL after stimulation with vaccine candidates may shed light on the immune pathways involved that lead to vaccine-mediated protection. This study suggests that PBL are a suitable platform for initial screening of vaccine candidates, for evaluation of vaccine-induced immune responses, and a cheap alternative for potency testing to reduce animal use in aquaculture vaccine development.
Collapse
Affiliation(s)
- Ahmed Attaya
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Yousheng Jiang
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK; College of Fishery and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| |
Collapse
|
22
|
Zhu W, Zhang Y, Zhang J, Yuan G, Liu X, Ai T, Su J. Astragalus polysaccharides, chitosan and poly(I:C) obviously enhance inactivated Edwardsiella ictaluri vaccine potency in yellow catfish Pelteobagrus fulvidraco. FISH & SHELLFISH IMMUNOLOGY 2019; 87:379-385. [PMID: 30690155 DOI: 10.1016/j.fsi.2019.01.033] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
The yellow catfish (Pelteobagrus fulvidraco) is an economically important fish in China, but Edwardsiella ictaluri, an intracellular pathogenic bacterium, causes great losses to the culture industry. Currently, vaccination is the most promising strategy to combat the infectious diseases, while adjuvant can provide effective assistant for vaccines to enhance immune responses. In the present study, inactivated E. ictaluri vaccine was prepared, then Astragalus polysaccharides (APS), chitosan and poly(I:C) were employed as adjuvants to evaluate the effect on boosting immune responses and protecting yellow catfish against E. ictaluri. The survival rate was obviously improved after vaccination with APS, chitosan or poly(I:C) respectively, in addition, these three adjuvants could clearly protect the target tissue (intestine) by pathological sections in infectious experiments. In sera, total protein levels increased throughout the immunization stages, total superoxide dismutase levels continued to raise after vaccination, and lysozyme activity levels improved at different periods, examining by the commercial kits. Moreover, checking by real time quantitative RT-PCR assays, in both spleen and head kidney tissues which were the major immune organs, mRNA expressions of inflammatory cytokine IL-1β increased in the early stage of immunity, typical Th1 immune response cytokines IL-2 and IFN-γ2 rose up in the whole immune period, and IgM significantly enhanced in the adjuvant supplementation groups. The results demonstrated the good efficiency of APS, chitosan or poly(I:C) as adjuvant, and provided more options for the fish adjuvants.
Collapse
Affiliation(s)
- Wentao Zhu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Yanqi Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiacheng Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gailing Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoling Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Taoshan Ai
- Wuhan Chopper Fishery Bio-Tech Co.,Ltd, Wuhan Academy of Agricultural Science, Wuhan, 430207, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China.
| |
Collapse
|
23
|
Yao F, Yin L, Feng S, Wang X, Zhang A, Zhou H. Functional characterization of grass carp runt-related transcription factor 3: Involvement in TGF-β1-mediated c-Myc transcription in fish cells. FISH & SHELLFISH IMMUNOLOGY 2018; 82:130-135. [PMID: 30099141 DOI: 10.1016/j.fsi.2018.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 06/08/2023]
Abstract
In mammals, both runt-related transcription factor 3 (RUNX3) and c-Myc are the downstream effectors of transforming growth factor-β1 (TGF-β1) signaling to mediate various cellular responses. However, information of their interaction especially in fish is lacking. In the present study, grass carp (Ctenopharyngodon idella) runx3 (gcrunx3) cDNA was cloned and identified. Interestingly, opposing effects of recombinant grass carp TGF-β1 (rgcTGF-β1) on c-myc and runx3 mRNA expression were observed in grass carp periphery blood lymphocytes (PBLs). Parallelly, Runx3 protein levels were enhanced by rgcTGF-β1 in the cells. These findings prompted us to examine whether Runx3 can mediate the inhibition of TGF-β1 on c-myc expression in fish cells. In line with this, overexpression of grass carp Runx3 and Runx3 DN (a dominant-negative form of Runx3) in grass carp kidney cell line (CIK) cells decreased and increased c-myc transcript levels, respectively. Particularly, the regulation of Runx3 and Runx3 DN on c-myc mRNA expression was direct since they were presented in the nucleus without any stimulation. In addition, rgcTGF-β1 alone suppressed c-myc mRNA expression in CIK cells as in PBLs. Moreover, this inhibitory effect was also observed when grass carp Runx3 and Runx3 DN were overexpressed. These results strengthened the role of TGF-β1 signaling in controlling c-myc transcription. Taken together, TGF-β1-mediated c-myc expression was affected at least in part by Runx3, thereby firstly exploring the functional role of Runx3 in TGF-β1 down-regulation on c-myc mRNA expression in fish.
Collapse
Affiliation(s)
- Fuli Yao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China; Department of Biochemistry and Molecular Biology, College of Preclinical Medicine, Southwest Medical University, Luzhou, People's Republic of China
| | - Licheng Yin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Shiyu Feng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| |
Collapse
|
24
|
Causey DR, Pohl MAN, Stead DA, Martin SAM, Secombes CJ, Macqueen DJ. High-throughput proteomic profiling of the fish liver following bacterial infection. BMC Genomics 2018; 19:719. [PMID: 30285610 PMCID: PMC6167799 DOI: 10.1186/s12864-018-5092-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023] Open
Abstract
Background High-throughput proteomics was used to determine the role of the fish liver in defense responses to bacterial infection. This was done using a rainbow trout (Oncorhynchus mykiss) model following infection with Aeromonas salmonicida, the causative agent of furunculosis. The vertebrate liver has multifaceted functions in innate immunity, metabolism, and growth; we hypothesize this tissue serves a dual role in supporting host defense in parallel to metabolic adjustments that promote effective immune function. While past studies have reported mRNA responses to A. salmonicida in salmonids, the impact of bacterial infection on the liver proteome remains uncharacterized in fish. Results Rainbow trout were injected with A. salmonicida or PBS (control) and liver extracted 48 h later for analysis on a hybrid quadrupole-Orbitrap mass spectrometer. A label-free method was used for protein abundance profiling, which revealed a strong innate immune response along with evidence to support parallel rewiring of metabolic and growth systems. 3076 proteins were initially identified against all proteins (n = 71,293 RefSeq proteins) annotated in a single high-quality rainbow trout reference genome, of which 2433 were maintained for analysis post-quality filtering. Among the 2433 proteins, 109 showed significant differential abundance following A. salmonicida challenge, including many upregulated complement system and acute phase response proteins, in addition to molecules with putative functions that may support metabolic re-adjustments. We also identified novel expansions in the complement system due to gene and whole genome duplication events in salmonid evolutionary history, including eight C3 proteins showing differential changes in abundance. Conclusions This study provides the first high-throughput proteomic examination of the fish liver in response to bacterial challenge, revealing novel markers for the host defense response, and evidence of metabolic remodeling in conjunction with activation of innate immunity. Electronic supplementary material The online version of this article (10.1186/s12864-018-5092-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dwight R Causey
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Moritz A N Pohl
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - David A Stead
- Aberdeen Proteomics, University of Aberdeen, The Rowett Institute, Aberdeen, UK
| | | | | | - Daniel J Macqueen
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
25
|
Wang T, Hu Y, Wangkahart E, Liu F, Wang A, Zahran E, Maisey KR, Liu M, Xu Q, Imarai M, Secombes CJ. Interleukin (IL)-2 Is a Key Regulator of T Helper 1 and T Helper 2 Cytokine Expression in Fish: Functional Characterization of Two Divergent IL2 Paralogs in Salmonids. Front Immunol 2018; 9:1683. [PMID: 30093902 PMCID: PMC6070626 DOI: 10.3389/fimmu.2018.01683] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/09/2018] [Indexed: 12/13/2022] Open
Abstract
Mammalian interleukin (IL)-2 is a cytokine centrally involved in the differentiation and survival of CD4+ T helper subsets and CD4+ T regulatory cells and in activation of cytotoxic effector lymphocytes. In bony fish, IL2 orthologs have been identified with an additional divergent IL2-Like gene on the same locus present in several fish species. We report here two divergent IL2 paralogs, IL2A and IL2B, in salmonids that originated from the whole genome duplication event in this fish lineage. The salmonid IL2 paralogs differ not only in sequence but also in exon sizes. The IL-2 isoforms that are encoded have disparate pI values and may have evolved to preferentially bind specific IL-2 receptors. Rainbow trout IL2 paralogs are highly expressed in thymus, spleen, gills, kidney and intestine, important tissues/organs in fish T cell development and function. Their expression in peripheral blood leukocytes (PBL) is low constitutively but can be upregulated by the mixed leukocyte reaction, by the T cell mitogen phytohemagglutinin and by signal mimics of T cell activation (phorbol 12-myristate 13-acetate and calcium ionophore). Both trout IL-2 isoforms promoted PBL proliferation and sustained high-level expression of CD4 and CD8, suggesting that trout IL-2 isoforms are T cell growth/survival factors mainly expressed by activated T cells. The recombinant proteins for these two trout IL2 paralogs have been produced in E. coli and possess shared but also distinct bioactivities. IL-2A, but not IL-2B, induced IL12P35A1 and CXCR1 expression in PBL. IL-2B had a stronger effect on upregulation of the T helper 1 (Th1) cytokine interferon-γ (IFNγ) and could sustain CD8α and CD8β expression levels. Nevertheless, both cytokines upregulated key Th1 (IFNγ1, IFNγ2, TNFα2 and IL12) and T helper 2 (Th2) cytokines (IL4/13B1 and IL4/13B2), cytokine and chemokine receptors and the antimicrobial peptide cathelicidin-1 but had limited effects on T helper 17 cytokines and TGFβ1 in PBL. They could also enhance PBL phagocytosis. These results suggest, for the first time in fish, that IL-2 isoforms may have an important role in regulating Th1 and Th2 cell development, and innate and adaptive host defenses in fish, and shed light on lineage-specific expansion, evolution, and functional diversification of IL2 in vertebrates.
Collapse
Affiliation(s)
- Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Yehfang Hu
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Eakapol Wangkahart
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Division of Fisheries, Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Kantharawichai, Thailand
| | - Fuguo Liu
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Alex Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Eman Zahran
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Kevin R Maisey
- Laboratorio de Immunologia, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Min Liu
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom.,College of Animal Science and Technology, Northeast Agriculture University, Harbin, China
| | - Qiaoqing Xu
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom.,School of Animal Science, Yangtze University, Jingzhou, China
| | - Mónica Imarai
- Laboratorio de Immunologia, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|