1
|
Zheng J, Wang M, Wang S, Shao Z. Temperature Regulates Astroglia Morphogenesis Through Thermosensory Circuitry in Caenorhabditis elegans. Glia 2025; 73:985-1003. [PMID: 39780488 DOI: 10.1002/glia.24668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
Astrocytes are the most abundant type of macroglia in the brain and play crucial roles in regulating neural development and functions. The diverse functions of astrocytes are largely determined by their morphology, which is regulated by genetic and environmental factors. However, whether and how the astrocyte morphology is affected by temperature remains largely unknown. Here we discovered that elevated cultivation temperature (26°C) stimulates Caenorhabditis elegans ventral CEPsh glia endfoot extension during early developmental stages. This extension depends on the activation of glutamate AWC neurons, which inhibit the postsynaptic cholinergic AIY interneurons through glutamate-gated chloride channels, GLC-3 and GLC-4. In responding to the thermosensory signal, the guanyl-nucleotide exchange factor EPHX-1 and Rho GTPase CDC-42/Cdc42 in the glia facilitate the endfoot extension via F-actin assembly. This study elucidates the significant role of thermosensory circuitry in glia morphogenesis and the underlying molecular mechanism.
Collapse
Affiliation(s)
- Junyu Zheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Mengqing Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Shaocheng Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Zhiyong Shao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| |
Collapse
|
2
|
Almoril-Porras A, Calvo AC, Niu L, Beagan J, Díaz García M, Hawk JD, Aljobeh A, Wisdom EM, Ren I, Wang ZW, Colón-Ramos DA. Configuration of electrical synapses filters sensory information to drive behavioral choices. Cell 2025; 188:89-103.e13. [PMID: 39742807 DOI: 10.1016/j.cell.2024.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 07/26/2024] [Accepted: 11/27/2024] [Indexed: 01/04/2025]
Abstract
Synaptic configurations underpin how the nervous system processes sensory information to produce a behavioral response. This is best understood for chemical synapses, and we know far less about how electrical synaptic configurations modulate sensory information processing and context-specific behaviors. We discovered that innexin 1 (INX-1), a gap junction protein that forms electrical synapses, is required to deploy context-specific behavioral strategies underlying thermotaxis behavior in C. elegans. Within this well-defined circuit, INX-1 couples two bilaterally symmetric interneurons to integrate sensory information during migratory behavior across temperature gradients. In inx-1 mutants, uncoupled interneurons display increased excitability and responses to subthreshold sensory stimuli due to increased membrane resistance and reduced membrane capacitance, resulting in abnormal responses that extend run durations and trap the animals in context-irrelevant tracking of isotherms. Thus, a conserved configuration of electrical synapses enables differential processing of sensory information to deploy context-specific behavioral strategies.
Collapse
Affiliation(s)
- Agustin Almoril-Porras
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Ana C Calvo
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Longgang Niu
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Jonathan Beagan
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Malcom Díaz García
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Josh D Hawk
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Ahmad Aljobeh
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Elias M Wisdom
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Ivy Ren
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Daniel A Colón-Ramos
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06536, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA; Instituto de Neurobiología, Recinto de Ciencias Médicas, Universidad de Puerto Rico, San Juan 00901, Puerto Rico.
| |
Collapse
|
3
|
Chen X. Reimagining Cortical Connectivity by Deconstructing Its Molecular Logic into Building Blocks. Cold Spring Harb Perspect Biol 2024; 16:a041509. [PMID: 38621822 PMCID: PMC11529856 DOI: 10.1101/cshperspect.a041509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Comprehensive maps of neuronal connectivity provide a foundation for understanding the structure of neural circuits. In a circuit, neurons are diverse in morphology, electrophysiology, gene expression, activity, and other neuronal properties. Thus, constructing a comprehensive connectivity map requires associating various properties of neurons, including their connectivity, at cellular resolution. A commonly used approach is to use the gene expression profiles as an anchor to which all other neuronal properties are associated. Recent advances in genomics and anatomical techniques dramatically improved the ability to determine and associate the long-range projections of neurons with their gene expression profiles. These studies revealed unprecedented details of the gene-projection relationship, but also highlighted conceptual challenges in understanding this relationship. In this article, I delve into the findings and the challenges revealed by recent studies using state-of-the-art neuroanatomical and transcriptomic techniques. Building upon these insights, I propose an approach that focuses on understanding the gene-projection relationship through basic features in gene expression profiles and projections, respectively, that associate with underlying cellular processes. I then discuss how the developmental trajectories of projections and gene expression profiles create additional challenges and necessitate interrogating the gene-projection relationship across time. Finally, I explore complementary strategies that, together, can provide a comprehensive view of the gene-projection relationship.
Collapse
Affiliation(s)
- Xiaoyin Chen
- Allen Institute for Brain Science, Seattle, Washington 98109, USA
| |
Collapse
|
4
|
Kratsios P, Hobert O. Almost 40 years of studying homeobox genes in C. elegans. Development 2024; 151:dev204328. [PMID: 39475047 PMCID: PMC11698070 DOI: 10.1242/dev.204328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Homeobox genes are among the most deeply conserved families of transcription factor-encoding genes. Following their discovery in Drosophila, homeobox genes arrived on the Caenorhabditis elegans stage with a vengeance. Between 1988 and 1990, just a few years after their initial discovery in flies and vertebrates, positional cloning and sequence-based searches showed that C. elegans contains HOX cluster genes, an apparent surprise given the simplicity and non-segmented body plan of the nematode, as well as many other non-clustered homeobox genes of all major subfamilies (e.g. LIM, POU, etc.). Not quite 40 years later, we have an exceptionally deep understanding of homeodomain protein expression and function in C. elegans, revealing their prevalent role in nervous system development. In this Spotlight, we provide a historical perspective and a non-comprehensive journey through the C. elegans homeobox field and discuss open questions and future directions.
Collapse
Affiliation(s)
- Paschalis Kratsios
- Department of Neurobiology, University of Chicago, 947 E. 58th St., Chicago, IL 60637, USA
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, 1212 Amsterdam Avenue, New York, NY 10025, USA
| |
Collapse
|
5
|
Poole RJ, Flames N, Cochella L. Neurogenesis in Caenorhabditis elegans. Genetics 2024; 228:iyae116. [PMID: 39167071 PMCID: PMC11457946 DOI: 10.1093/genetics/iyae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/24/2024] [Indexed: 08/23/2024] Open
Abstract
Animals rely on their nervous systems to process sensory inputs, integrate these with internal signals, and produce behavioral outputs. This is enabled by the highly specialized morphologies and functions of neurons. Neuronal cells share multiple structural and physiological features, but they also come in a large diversity of types or classes that give the nervous system its broad range of functions and plasticity. This diversity, first recognized over a century ago, spurred classification efforts based on morphology, function, and molecular criteria. Caenorhabditis elegans, with its precisely mapped nervous system at the anatomical level, an extensive molecular description of most of its neurons, and its genetic amenability, has been a prime model for understanding how neurons develop and diversify at a mechanistic level. Here, we review the gene regulatory mechanisms driving neurogenesis and the diversification of neuron classes and subclasses in C. elegans. We discuss our current understanding of the specification of neuronal progenitors and their differentiation in terms of the transcription factors involved and ensuing changes in gene expression and chromatin landscape. The central theme that has emerged is that the identity of a neuron is defined by modules of gene batteries that are under control of parallel yet interconnected regulatory mechanisms. We focus on how, to achieve these terminal identities, cells integrate information along their developmental lineages. Moreover, we discuss how neurons are diversified postembryonically in a time-, genetic sex-, and activity-dependent manner. Finally, we discuss how the understanding of neuronal development can provide insights into the evolution of neuronal diversity.
Collapse
Affiliation(s)
- Richard J Poole
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Nuria Flames
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IBV-CSIC, Valencia 46012, Spain
| | - Luisa Cochella
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
6
|
AlHarbi S, Frøkjær-Jensen C. Characterizing a standardized BioPart for PVQ-specific expression in C. elegans. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000870. [PMID: 37426742 PMCID: PMC10326622 DOI: 10.17912/micropub.biology.000870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/11/2023]
Abstract
Synthetic biology relies on standardized biological parts (BioParts), and we aim to identify cell-specific promoters for every class of neuron in C. elegans . Here, we characterize a short BioPart (P nlp-17 , 300 bp) for PVQ-specific expression. P nlp-17 ::mScarlet showed bright, persistent, and specific expression in hermaphrodite and male PVQ neurons from multicopy arrays and single-copy insertions starting from the comma stage. We generated standardized P nlp-17 cloning vectors with gfp and mScarlet compatible with single-copy or array expression for PVQ-specific transgene expression or identification. To facilitate gene synthesis, we have incorporated P nlp-17 as a standard BioPart in our online transgene design tool (www.wormbuilder.org/transgenebuilder).
Collapse
Affiliation(s)
- Sarah AlHarbi
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), KAUST Environmental Epigenetics Program (KEEP), Thuwal, 23955-6900, Saudi Arabia
| | - Christian Frøkjær-Jensen
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), KAUST Environmental Epigenetics Program (KEEP), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
7
|
Xuan Z, Yang S, Clark B, Hill SE, Manning L, Colón-Ramos DA. The active zone protein Clarinet regulates synaptic sorting of ATG-9 and presynaptic autophagy. PLoS Biol 2023; 21:e3002030. [PMID: 37053235 PMCID: PMC10101500 DOI: 10.1371/journal.pbio.3002030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/08/2023] [Indexed: 04/14/2023] Open
Abstract
Autophagy is essential for cellular homeostasis and function. In neurons, autophagosome biogenesis is temporally and spatially regulated to occur near presynaptic sites, in part via the trafficking of autophagy transmembrane protein ATG-9. The molecules that regulate autophagy by sorting ATG-9 at synapses remain largely unknown. Here, we conduct forward genetic screens at single synapses of C. elegans neurons and identify a role for the long isoform of the active zone protein Clarinet (CLA-1L) in regulating sorting of autophagy protein ATG-9 at synapses, and presynaptic autophagy. We determine that disrupting CLA-1L results in abnormal accumulation of ATG-9 containing vesicles enriched with clathrin. The ATG-9 phenotype in cla-1(L) mutants is not observed for other synaptic vesicle proteins, suggesting distinct mechanisms that regulate sorting of ATG-9-containing vesicles and synaptic vesicles. Through genetic analyses, we uncover the adaptor protein complexes that genetically interact with CLA-1 in ATG-9 sorting. We also determine that CLA-1L extends from the active zone to the periactive zone and genetically interacts with periactive zone proteins in ATG-9 sorting. Our findings reveal novel roles for active zone proteins in the sorting of ATG-9 and in presynaptic autophagy.
Collapse
Affiliation(s)
- Zhao Xuan
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Sisi Yang
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Benjamin Clark
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Sarah E. Hill
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Laura Manning
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Daniel A. Colón-Ramos
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Instituto de Neurobiología, Recinto de Ciencias Médicas, Universidad de Puerto Rico, San Juan,Puerto Rico
- Wu Tsai Institute, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
8
|
Feng W, Destain H, Smith JJ, Kratsios P. Maintenance of neurotransmitter identity by Hox proteins through a homeostatic mechanism. Nat Commun 2022; 13:6097. [PMID: 36243871 PMCID: PMC9569373 DOI: 10.1038/s41467-022-33781-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Hox transcription factors play fundamental roles during early patterning, but they are also expressed continuously, from embryonic stages through adulthood, in the nervous system. However, the functional significance of their sustained expression remains unclear. In C. elegans motor neurons (MNs), we find that LIN-39 (Scr/Dfd/Hox4-5) is continuously required during post-embryonic life to maintain neurotransmitter identity, a core element of neuronal function. LIN-39 acts directly to co-regulate genes that define cholinergic identity (e.g., unc-17/VAChT, cho-1/ChT). We further show that LIN-39, MAB-5 (Antp/Hox6-8) and the transcription factor UNC-3 (Collier/Ebf) operate in a positive feedforward loop to ensure continuous and robust expression of cholinergic identity genes. Finally, we identify a two-component design principle for homeostatic control of Hox gene expression in adult MNs: Hox transcriptional autoregulation is counterbalanced by negative UNC-3 feedback. These findings uncover a noncanonical role for Hox proteins during post-embryonic life, critically broadening their functional repertoire from early patterning to the control of neurotransmitter identity.
Collapse
Affiliation(s)
- Weidong Feng
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- University of Chicago Neuroscience Institute, Chicago, IL, USA
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, USA
| | - Honorine Destain
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- University of Chicago Neuroscience Institute, Chicago, IL, USA
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, USA
| | - Jayson J Smith
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- University of Chicago Neuroscience Institute, Chicago, IL, USA
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, IL, USA.
- University of Chicago Neuroscience Institute, Chicago, IL, USA.
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
9
|
Widespread employment of conserved C. elegans homeobox genes in neuronal identity specification. PLoS Genet 2022; 18:e1010372. [PMID: 36178933 PMCID: PMC9524666 DOI: 10.1371/journal.pgen.1010372] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022] Open
Abstract
Homeobox genes are prominent regulators of neuronal identity, but the extent to which their function has been probed in animal nervous systems remains limited. In the nematode Caenorhabditis elegans, each individual neuron class is defined by the expression of unique combinations of homeobox genes, prompting the question of whether each neuron class indeed requires a homeobox gene for its proper identity specification. We present here progress in addressing this question by extending previous mutant analysis of homeobox gene family members and describing multiple examples of homeobox gene function in different parts of the C. elegans nervous system. To probe homeobox function, we make use of a number of reporter gene tools, including a novel multicolor reporter transgene, NeuroPAL, which permits simultaneous monitoring of the execution of multiple differentiation programs throughout the entire nervous system. Using these tools, we add to the previous characterization of homeobox gene function by identifying neuronal differentiation defects for 14 homeobox genes in 24 distinct neuron classes that are mostly unrelated by location, function and lineage history. 12 of these 24 neuron classes had no homeobox gene function ascribed to them before, while in the other 12 neuron classes, we extend the combinatorial code of transcription factors required for specifying terminal differentiation programs. Furthermore, we demonstrate that in a particular lineage, homeotic identity transformations occur upon loss of a homeobox gene and we show that these transformations are the result of changes in homeobox codes. Combining the present with past analyses, 113 of the 118 neuron classes of C. elegans are now known to require a homeobox gene for proper execution of terminal differentiation programs. Such broad deployment indicates that homeobox function in neuronal identity specification may be an ancestral feature of animal nervous systems.
Collapse
|
10
|
Bordet G, Couillault C, Soulavie F, Filippopoulou K, Bertrand V. PRC1 chromatin factors strengthen the consistency of neuronal cell fate specification and maintenance in C. elegans. PLoS Genet 2022; 18:e1010209. [PMID: 35604893 PMCID: PMC9126393 DOI: 10.1371/journal.pgen.1010209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/19/2022] [Indexed: 11/18/2022] Open
Abstract
In the nervous system, the specific identity of a neuron is established and maintained by terminal selector transcription factors that directly activate large batteries of terminal differentiation genes and positively regulate their own expression via feedback loops. However, how this is achieved in a reliable manner despite noise in gene expression, genetic variability or environmental perturbations remains poorly understood. We addressed this question using the AIY cholinergic interneurons of C. elegans, whose specification and differentiation network is well characterized. Via a genetic screen, we found that a loss of function of PRC1 chromatin factors induces a stochastic loss of AIY differentiated state in a small proportion of the population. PRC1 factors act directly in the AIY neuron and independently of PRC2 factors. By quantifying mRNA and protein levels of terminal selector transcription factors in single neurons, using smFISH and CRISPR tagging, we observed that, in PRC1 mutants, terminal selector expression is still initiated during embryonic development but the level is reduced, and expression is subsequently lost in a stochastic manner during maintenance phase in part of the population. We also observed variability in the level of expression of terminal selectors in wild type animals and, using correlation analysis, established that this noise comes from both intrinsic and extrinsic sources. Finally, we found that PRC1 factors increase the resistance of AIY neuron fate to environmental stress, and also secure the terminal differentiation of other neuron types. We propose that PRC1 factors contribute to the consistency of neuronal cell fate specification and maintenance by protecting neurons against noise and perturbations in their differentiation program.
Collapse
Affiliation(s)
- Guillaume Bordet
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Carole Couillault
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Fabien Soulavie
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | | | - Vincent Bertrand
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| |
Collapse
|
11
|
Choudhary S, Kashyap SS, Martin RJ, Robertson AP. Advances in our understanding of nematode ion channels as potential anthelmintic targets. Int J Parasitol Drugs Drug Resist 2022; 18:52-86. [PMID: 35149380 PMCID: PMC8841521 DOI: 10.1016/j.ijpddr.2021.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022]
Abstract
Ion channels are specialized multimeric proteins that underlie cell excitability. These channels integrate with a variety of neuromuscular and biological functions. In nematodes, the physiological behaviors including locomotion, navigation, feeding and reproduction, are regulated by these protein entities. Majority of the antinematodal chemotherapeutics target the ion channels to disrupt essential biological functions. Here, we have summarized current advances in our understanding of nematode ion channel pharmacology. We review cys-loop ligand gated ion channels (LGICs), including nicotinic acetylcholine receptors (nAChRs), acetylcholine-chloride gated ion channels (ACCs), glutamate-gated chloride channels (GluCls), and GABA (γ-aminobutyric acid) receptors, and other ionotropic receptors (transient receptor potential (TRP) channels and potassium ion channels). We have provided an update on the pharmacological properties of these channels from various nematodes. This article catalogs the differences in ion channel composition and resulting pharmacology in the phylum Nematoda. This diversity in ion channel subunit repertoire and pharmacology emphasizes the importance of pursuing species-specific drug target research. In this review, we have provided an overview of recent advances in techniques and functional assays available for screening ion channel properties and their application.
Collapse
Affiliation(s)
- Shivani Choudhary
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Sudhanva S Kashyap
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Richard J Martin
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Alan P Robertson
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
12
|
Rapti G. Open Frontiers in Neural Cell Type Investigations; Lessons From Caenorhabditis elegans and Beyond, Toward a Multimodal Integration. Front Neurosci 2022; 15:787753. [PMID: 35321480 PMCID: PMC8934944 DOI: 10.3389/fnins.2021.787753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Nervous system cells, the building blocks of circuits, have been studied with ever-progressing resolution, yet neural circuits appear still resistant to schemes of reductionist classification. Due to their sheer numbers, complexity and diversity, their systematic study requires concrete classifications that can serve reduced dimensionality, reproducibility, and information integration. Conventional hierarchical schemes transformed through the history of neuroscience by prioritizing criteria of morphology, (electro)physiological activity, molecular content, and circuit function, influenced by prevailing methodologies of the time. Since the molecular biology revolution and the recent advents in transcriptomics, molecular profiling gains ground toward the classification of neurons and glial cell types. Yet, transcriptomics entails technical challenges and more importantly uncovers unforeseen spatiotemporal heterogeneity, in complex and simpler nervous systems. Cells change states dynamically in space and time, in response to stimuli or throughout their developmental trajectory. Mapping cell type and state heterogeneity uncovers uncharted terrains in neurons and especially in glial cell biology, that remains understudied in many aspects. Examining neurons and glial cells from the perspectives of molecular neuroscience, physiology, development and evolution highlights the advantage of multifaceted classification schemes. Among the amalgam of models contributing to neuroscience research, Caenorhabditis elegans combines nervous system anatomy, lineage, connectivity and molecular content, all mapped at single-cell resolution, and can provide valuable insights for the workflow and challenges of the multimodal integration of cell type features. This review reflects on concepts and practices of neuron and glial cells classification and how research, in C. elegans and beyond, guides nervous system experimentation through integrated multidimensional schemes. It highlights underlying principles, emerging themes, and open frontiers in the study of nervous system development, regulatory logic and evolution. It proposes unified platforms to allow integrated annotation of large-scale datasets, gene-function studies, published or unpublished findings and community feedback. Neuroscience is moving fast toward interdisciplinary, high-throughput approaches for combined mapping of the morphology, physiology, connectivity, molecular function, and the integration of information in multifaceted schemes. A closer look in mapped neural circuits and understudied terrains offers insights for the best implementation of these approaches.
Collapse
|
13
|
Genome-Wide cis-Regulatory Element Based Discovery of Auxin-Responsive Genes in Higher Plant. Genes (Basel) 2021; 13:genes13010024. [PMID: 35052364 PMCID: PMC8775021 DOI: 10.3390/genes13010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022] Open
Abstract
Auxin has a profound impact on plant physiology and participates in almost all aspects of plant development processes. Auxin exerts profound pleiotropic effects on plant growth and differentiation by regulating the auxin response genes’ expressions. The classical auxin reaction is usually mediated by auxin response factors (ARFs), which bind to the auxin response element (AuxRE) in the promoter region of the target gene. Experiments have generated only a limited number of plant genes with well-characterized functions. It is still unknown how many genes respond to exogenous auxin treatment. An economical and effective method was proposed for the genome-wide discovery of genes responsive to auxin in a model plant, Arabidopsis thaliana (A. thaliana). Our method relies on cis-regulatory-element-based targeted gene finding across different promoters in a genome. We first exploit and analyze auxin-specific cis-regulatory elements for the transcription of the target genes, and then identify putative auxin responsive genes whose promoters contain the elements in the collection of over 25,800 promoters in the A. thaliana genome. Evaluating our result by comparing with a published database and the literature, we found that this method has an accuracy rate of 65.2% (309/474) for predicting candidate genes responsive to auxin. Chromosome distribution and annotation of the putative auxin-responsive genes predicted here were also mined. The results can markedly decrease the number of identified but merely potential auxin target genes and also provide useful clues for improving the annotation of gene that lack functional information.
Collapse
|
14
|
Filippopoulou K, Couillault C, Bertrand V. Multiple neural bHLHs ensure the precision of a neuronal specification event in Caenorhabditis elegans. Biol Open 2021; 10:273578. [PMID: 34854469 PMCID: PMC8713986 DOI: 10.1242/bio.058976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/22/2021] [Indexed: 11/24/2022] Open
Abstract
Neural bHLH transcription factors play a key role in the early steps of neuronal specification in many animals. We have previously observed that the Achaete-Scute HLH-3, the Olig HLH-16 and their binding partner the E-protein HLH-2 activate the terminal differentiation program of a specific class of cholinergic neurons, AIY, in Caenorhabditis elegans. Here we identify a role for a fourth bHLH, the Neurogenin NGN-1, in this process, raising the question of why so many neural bHLHs are required for a single neuronal specification event. Using quantitative imaging we show that the combined action of different bHLHs is needed to activate the correct level of expression of the terminal selector transcription factors TTX-3 and CEH-10 that subsequently initiate and maintain the expression of a large battery of terminal differentiation genes. Surprisingly, the different bHLHs have an antagonistic effect on another target, the proapoptotic BH3-only factor EGL-1, normally not expressed in AIY and otherwise detrimental for its specification. We propose that the use of multiple neural bHLHs allows robust neuronal specification while, at the same time, preventing spurious activation of deleterious genes. Summary: During neuronal specification, the combined action of several neural bHLHs ensures the robust activation of terminal selector transcription factor expression and prevents the activation of deleterious genes.
Collapse
Affiliation(s)
| | - Carole Couillault
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille 13009, France
| | - Vincent Bertrand
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille 13009, France
| |
Collapse
|
15
|
Mizeracka K, Rogers JM, Rumley JD, Shaham S, Bulyk ML, Murray JI, Heiman MG. Lineage-specific control of convergent differentiation by a Forkhead repressor. Development 2021; 148:272306. [PMID: 34423346 DOI: 10.1242/dev.199493] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022]
Abstract
During convergent differentiation, multiple developmental lineages produce a highly similar or identical cell type. However, few molecular players that drive convergent differentiation are known. Here, we show that the C. elegans Forkhead transcription factor UNC-130 is required in only one of three convergent lineages that produce the same glial cell type. UNC-130 acts transiently as a repressor in progenitors and newly-born terminal cells to allow the proper specification of cells related by lineage rather than by cell type or function. Specification defects correlate with UNC-130:DNA binding, and UNC-130 can be functionally replaced by its human homolog, the neural crest lineage determinant FoxD3. We propose that, in contrast to terminal selectors that activate cell type-specific transcriptional programs in terminally differentiating cells, UNC-130 acts early and specifically in one convergent lineage to produce a cell type that also arises from molecularly distinct progenitors in other lineages.
Collapse
Affiliation(s)
- Karolina Mizeracka
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Julia M Rogers
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138, USA
| | - Jonathan D Rumley
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shai Shaham
- The Rockefeller University, New York, NY 10065, USA
| | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138, USA.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - John I Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maxwell G Heiman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
16
|
Hobert O. Homeobox genes and the specification of neuronal identity. Nat Rev Neurosci 2021; 22:627-636. [PMID: 34446866 DOI: 10.1038/s41583-021-00497-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2021] [Indexed: 12/27/2022]
Abstract
The enormous diversity of cell types that characterizes any animal nervous system is defined by neuron-type-specific gene batteries that endow cells with distinct anatomical and functional properties. To understand how such cellular diversity is genetically specified, one needs to understand the gene regulatory programmes that control the expression of cell-type-specific gene batteries. The small nervous system of the nematode Caenorhabditis elegans has been comprehensively mapped at the cellular and molecular levels, which has enabled extensive, nervous system-wide explorations into whether there are common underlying mechanisms that specify neuronal cell-type diversity. One principle that emerged from these studies is that transcription factors termed 'terminal selectors' coordinate the expression of individual members of neuron-type-specific gene batteries, thereby assigning unique identities to individual neuron types. Systematic mutant analyses and recent nervous system-wide expression analyses have revealed that one transcription factor family, the homeobox gene family, is broadly used throughout the entire C. elegans nervous system to specify neuronal identity as terminal selectors. I propose that the preponderance of homeobox genes in neuronal identity control is a reflection of an evolutionary trajectory in which an ancestral neuron type was specified by one or more ancestral homeobox genes, and that this functional linkage then duplicated and diversified to generate distinct cell types in an evolving nervous system.
Collapse
Affiliation(s)
- Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
17
|
Berghoff EG, Glenwinkel L, Bhattacharya A, Sun H, Varol E, Mohammadi N, Antone A, Feng Y, Nguyen K, Cook SJ, Wood JF, Masoudi N, Cros CC, Ramadan YH, Ferkey DM, Hall DH, Hobert O. The Prop1-like homeobox gene unc-42 specifies the identity of synaptically connected neurons. eLife 2021; 10:e64903. [PMID: 34165428 PMCID: PMC8225392 DOI: 10.7554/elife.64903] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Many neuronal identity regulators are expressed in distinct populations of cells in the nervous system, but their function is often analyzed only in specific isolated cellular contexts, thereby potentially leaving overarching themes in gene function undiscovered. We show here that the Caenorhabditis elegans Prop1-like homeobox gene unc-42 is expressed in 15 distinct sensory, inter- and motor neuron classes throughout the entire C. elegans nervous system. Strikingly, all 15 neuron classes expressing unc-42 are synaptically interconnected, prompting us to investigate whether unc-42 controls the functional properties of this circuit and perhaps also the assembly of these neurons into functional circuitry. We found that unc-42 defines the routes of communication between these interconnected neurons by controlling the expression of neurotransmitter pathway genes, neurotransmitter receptors, neuropeptides, and neuropeptide receptors. Anatomical analysis of unc-42 mutant animals reveals defects in axon pathfinding and synaptic connectivity, paralleled by expression defects of molecules involved in axon pathfinding, cell-cell recognition, and synaptic connectivity. We conclude that unc-42 establishes functional circuitry by acting as a terminal selector of functionally connected neuron types. We identify a number of additional transcription factors that are also expressed in synaptically connected neurons and propose that terminal selectors may also function as 'circuit organizer transcription factors' to control the assembly of functional circuitry throughout the nervous system. We hypothesize that such organizational properties of transcription factors may be reflective of not only ontogenetic, but perhaps also phylogenetic trajectories of neuronal circuit establishment.
Collapse
Affiliation(s)
- Emily G Berghoff
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Lori Glenwinkel
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Abhishek Bhattacharya
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - HaoSheng Sun
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Erdem Varol
- Department of Statistics, Zuckerman Institute, Columbia UniversityNew YorkUnited States
| | - Nicki Mohammadi
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Amelia Antone
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Yi Feng
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Ken Nguyen
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | - Steven J Cook
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Jordan F Wood
- Department of Biological Sciences, University at Buffalo, The State University of New YorkBuffaloUnited States
| | - Neda Masoudi
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Cyril C Cros
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Yasmin H Ramadan
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Denise M Ferkey
- Department of Biological Sciences, University at Buffalo, The State University of New YorkBuffaloUnited States
| | - David H Hall
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| |
Collapse
|
18
|
Glenwinkel L, Taylor SR, Langebeck-Jensen K, Pereira L, Reilly MB, Basavaraju M, Rafi I, Yemini E, Pocock R, Sestan N, Hammarlund M, Miller DM, Hobert O. In silico analysis of the transcriptional regulatory logic of neuronal identity specification throughout the C. elegans nervous system. eLife 2021; 10:e64906. [PMID: 34165430 PMCID: PMC8225391 DOI: 10.7554/elife.64906] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
The generation of the enormous diversity of neuronal cell types in a differentiating nervous system entails the activation of neuron type-specific gene batteries. To examine the regulatory logic that controls the expression of neuron type-specific gene batteries, we interrogate single cell expression profiles of all 118 neuron classes of the Caenorhabditis elegans nervous system for the presence of DNA binding motifs of 136 neuronally expressed C. elegans transcription factors. Using a phylogenetic footprinting pipeline, we identify cis-regulatory motif enrichments among neuron class-specific gene batteries and we identify cognate transcription factors for 117 of the 118 neuron classes. In addition to predicting novel regulators of neuronal identities, our nervous system-wide analysis at single cell resolution supports the hypothesis that many transcription factors directly co-regulate the cohort of effector genes that define a neuron type, thereby corroborating the concept of so-called terminal selectors of neuronal identity. Our analysis provides a blueprint for how individual components of an entire nervous system are genetically specified.
Collapse
Affiliation(s)
- Lori Glenwinkel
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Seth R Taylor
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | | | - Laura Pereira
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Molly B Reilly
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Manasa Basavaraju
- Department of Neurobiology, Yale University School of MedicineNew HavenUnited States
- Department of Genetics, Yale University School of MedicineNew HavenUnited States
| | - Ibnul Rafi
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Eviatar Yemini
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| | - Roger Pocock
- Biotech Research and Innovation Centre, University of CopenhagenCopenhagenDenmark
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash UniversityMelbourneAustralia
| | - Nenad Sestan
- Department of Neurobiology, Yale University School of MedicineNew HavenUnited States
- Department of Genetics, Yale University School of MedicineNew HavenUnited States
| | - Marc Hammarlund
- Department of Neurobiology, Yale University School of MedicineNew HavenUnited States
- Department of Genetics, Yale University School of MedicineNew HavenUnited States
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard Hughes Medical InstituteNew YorkUnited States
| |
Collapse
|
19
|
Masoudi N, Yemini E, Schnabel R, Hobert O. Piecemeal regulation of convergent neuronal lineages by bHLH transcription factors in Caenorhabditis elegans. Development 2021; 148:dev199224. [PMID: 34100067 PMCID: PMC8217713 DOI: 10.1242/dev.199224] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/29/2021] [Indexed: 11/20/2022]
Abstract
Cells of the same type can be generated by distinct cellular lineages that originate in different parts of the developing embryo ('lineage convergence'). Several Caenorhabditis elegans neuron classes composed of left/right or radially symmetric class members display such lineage convergence. We show here that the C. elegans Atonal homolog lin-32 is differentially expressed in neuronal lineages that give rise to left/right or radially symmetric class members. Loss of lin-32 results in the selective loss of the expression of pan-neuronal markers and terminal selector-type transcription factors that confer neuron class-specific features. Another basic helix-loop-helix (bHLH) gene, the Achaete-Scute homolog hlh-14, is expressed in a mirror image pattern relative to lin-32 and is required to induce neuronal identity and terminal selector expression on the contralateral side of the animal. These findings demonstrate that distinct lineage histories converge via different bHLH factors at the level of induction of terminal selector identity determinants, which thus serve as integrators of distinct lineage histories. We also describe neuron-to-neuron identity transformations in lin-32 mutants, which we propose to also be the result of misregulation of terminal selector gene expression.
Collapse
Affiliation(s)
- Neda Masoudi
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, NY 10027, USA
| | - Eviatar Yemini
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, NY 10027, USA
| | - Ralf Schnabel
- Institute of Genetics, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, NY 10027, USA
| |
Collapse
|
20
|
Parallel Rap1>RalGEF>Ral and Ras signals sculpt the C. elegans nervous system. Dev Biol 2021; 477:37-48. [PMID: 33991533 DOI: 10.1016/j.ydbio.2021.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 11/23/2022]
Abstract
Ras is the most commonly mutated oncogene in humans and uses three oncogenic effectors: Raf, PI3K, and RalGEF activation of Ral. Understanding the importance of RalGEF>Ral signaling in cancer is hampered by the paucity of knowledge about their function in animal development, particularly in cell movements. We found that mutations that disrupt function of RalGEF or Ral enhance migration phenotypes of mutants for genes with established roles in cell migration. We used as a model the migration of the canal associated neurons (CANs), and validated our results in HSN cell migration, neurite guidance, and general animal locomotion. These functions of RalGEF and Ral are specific to their control of Ral signaling output rather than other published functions of these proteins. In this capacity Ral functions cell autonomously as a permissive developmental signal. In contrast, we observed Ras, the canonical activator of RalGEF>Ral signaling in cancer, to function as an instructive signal. Furthermore, we unexpectedly identified a function for the close Ras relative, Rap1, consistent with activation of RalGEF>Ral. These studies define functions of RalGEF>Ral, Rap1 and Ras signaling in morphogenetic processes that fashion the nervous system. We have also defined a model for studying how small GTPases partner with downstream effectors. Taken together, this analysis defines novel molecules and relationships in signaling networks that control cell movements during development of the nervous system.
Collapse
|
21
|
Jia Q, Sieburth D. Mitochondrial hydrogen peroxide positively regulates neuropeptide secretion during diet-induced activation of the oxidative stress response. Nat Commun 2021; 12:2304. [PMID: 33863916 PMCID: PMC8052458 DOI: 10.1038/s41467-021-22561-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/17/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondria play a pivotal role in the generation of signals coupling metabolism with neurotransmitter release, but a role for mitochondrial-produced ROS in regulating neurosecretion has not been described. Here we show that endogenously produced hydrogen peroxide originating from axonal mitochondria (mtH2O2) functions as a signaling cue to selectively regulate the secretion of a FMRFamide-related neuropeptide (FLP-1) from a pair of interneurons (AIY) in C. elegans. We show that pharmacological or genetic manipulations that increase mtH2O2 levels lead to increased FLP-1 secretion that is dependent upon ROS dismutation, mitochondrial calcium influx, and cysteine sulfenylation of the calcium-independent PKC family member PKC-1. mtH2O2-induced FLP-1 secretion activates the oxidative stress response transcription factor SKN-1/Nrf2 in distal tissues and protects animals from ROS-mediated toxicity. mtH2O2 levels in AIY neurons, FLP-1 secretion and SKN-1 activity are rapidly and reversibly regulated by exposing animals to different bacterial food sources. These results reveal a previously unreported role for mtH2O2 in linking diet-induced changes in mitochondrial homeostasis with neuropeptide secretion.
Collapse
Affiliation(s)
- Qi Jia
- PIBBS program, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Derek Sieburth
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
22
|
Pham K, Masoudi N, Leyva-Díaz E, Hobert O. A nervous system-specific subnuclear organelle in Caenorhabditis elegans. Genetics 2021; 217:1-17. [PMID: 33683371 PMCID: PMC8045701 DOI: 10.1093/genetics/iyaa016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/12/2020] [Indexed: 12/26/2022] Open
Abstract
We describe here phase-separated subnuclear organelles in the nematode Caenorhabditis elegans, which we term NUN (NUclear Nervous system-specific) bodies. Unlike other previously described subnuclear organelles, NUN bodies are highly cell type specific. In fully mature animals, 4-10 NUN bodies are observed exclusively in the nucleus of neuronal, glial and neuron-like cells, but not in other somatic cell types. Based on co-localization and genetic loss of function studies, NUN bodies are not related to other previously described subnuclear organelles, such as nucleoli, splicing speckles, paraspeckles, Polycomb bodies, promyelocytic leukemia bodies, gems, stress-induced nuclear bodies, or clastosomes. NUN bodies form immediately after cell cycle exit, before other signs of overt neuronal differentiation and are unaffected by the genetic elimination of transcription factors that control many other aspects of neuronal identity. In one unusual neuron class, the canal-associated neurons, NUN bodies remodel during larval development, and this remodeling depends on the Prd-type homeobox gene ceh-10. In conclusion, we have characterized here a novel subnuclear organelle whose cell type specificity poses the intriguing question of what biochemical process in the nucleus makes all nervous system-associated cells different from cells outside the nervous system.
Collapse
Affiliation(s)
- Kenneth Pham
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| | - Neda Masoudi
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| | - Eduardo Leyva-Díaz
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| |
Collapse
|
23
|
Brovkina MV, Duffié R, Burtis AEC, Clowney EJ. Fruitless decommissions regulatory elements to implement cell-type-specific neuronal masculinization. PLoS Genet 2021; 17:e1009338. [PMID: 33600447 PMCID: PMC7924761 DOI: 10.1371/journal.pgen.1009338] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/02/2021] [Accepted: 01/04/2021] [Indexed: 01/12/2023] Open
Abstract
In the fruit fly Drosophila melanogaster, male-specific splicing and translation of the Fruitless transcription factor (FruM) alters the presence, anatomy, and/or connectivity of >60 types of central brain neurons that interconnect to generate male-typical behaviors. While the indispensable function of FruM in sex-specific behavior has been understood for decades, the molecular mechanisms underlying its activity remain unknown. Here, we take a genome-wide, brain-wide approach to identifying regulatory elements whose activity depends on the presence of FruM. We identify 436 high-confidence genomic regions differentially accessible in male fruitless neurons, validate candidate regions as bona fide, differentially regulated enhancers, and describe the particular cell types in which these enhancers are active. We find that individual enhancers are not activated universally but are dedicated to specific fru+ cell types. Aside from fru itself, genes are not dedicated to or common across the fru circuit; rather, FruM appears to masculinize each cell type differently, by tweaking expression of the same effector genes used in other circuits. Finally, we find FruM motifs enriched among regulatory elements that are open in the female but closed in the male. Together, these results suggest that FruM acts cell-type-specifically to decommission regulatory elements in male fruitless neurons. Courtship behavior in male Drosophila melanogaster is controlled by a well-defined neural circuit that is labeled by the male-specific transcription factor Fruitless (FruM). While FruM is known to change the number, anatomy and connectivity of neurons which comprise the circuit and has been suggested to repress the expression of a few gene targets, the mechanism of how FruM regulates genes across many different kinds of neurons is unknown. Using an approach to identify gene regulatory elements based on their chromatin accessibility states (ATAC-seq), we identified a large set of chromatin accessibility changes downstream of Fruitless. By examining the activity of these regulatory elements in vivo, we found that their activity was 1) sexually dimorphic and 2) specific to a single class of FruM neurons, suggesting that FruM acts on different chromatin targets in different neuron classes comprising the courtship circuit. Further, we found a known FruM-regulated enhancer of the FruM-repressed gene Lgr3 to have closed chromatin specifically in FruM neurons. Combined with an enrichment of FruM motifs in regions which are closed in FruM neurons, we present a mechanism where FruM directs the decommissioning of sex-shared regulatory elements to masculinize neurons in a cell-type specific manner.
Collapse
Affiliation(s)
- Margarita V. Brovkina
- Graduate Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Rachel Duffié
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
- Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, New York, United States of America
| | - Abbigayl E. C. Burtis
- Department of Molecular, Cellular, and Developmental Biology, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - E. Josephine Clowney
- Department of Molecular, Cellular, and Developmental Biology, The University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
24
|
Wang M, Witvliet D, Wu M, Kang L, Shao Z. Temperature regulates synaptic subcellular specificity mediated by inhibitory glutamate signaling. PLoS Genet 2021; 17:e1009295. [PMID: 33428618 PMCID: PMC7822552 DOI: 10.1371/journal.pgen.1009295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/22/2021] [Accepted: 12/05/2020] [Indexed: 01/13/2023] Open
Abstract
Environmental factors such as temperature affect neuronal activity and development. However, it remains unknown whether and how they affect synaptic subcellular specificity. Here, using the nematode Caenorhabditis elegans AIY interneurons as a model, we found that high cultivation temperature robustly induces defects in synaptic subcellular specificity through glutamatergic neurotransmission. Furthermore, we determined that the functional glutamate is mainly released by the ASH sensory neurons and sensed by two conserved inhibitory glutamate-gated chloride channels GLC-3 and GLC-4 in AIY. Our work not only presents a novel neurotransmission-dependent mechanism underlying the synaptic subcellular specificity, but also provides a potential mechanistic insight into high-temperature-induced neurological defects.
Collapse
Affiliation(s)
- Mengqing Wang
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Daniel Witvliet
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Mengting Wu
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lijun Kang
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhiyong Shao
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Signal Decoding for Glutamate Modulating Egg Laying Oppositely in Caenorhabditis elegans under Varied Environmental Conditions. iScience 2020; 23:101588. [PMID: 33089099 PMCID: PMC7567941 DOI: 10.1016/j.isci.2020.101588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/07/2020] [Accepted: 09/16/2020] [Indexed: 11/24/2022] Open
Abstract
Animals' ability to sense environmental cues and to integrate this information to control fecundity is vital for continuing the species lineage. In this study, we observed that the sensory neurons Amphid neuron (ASHs and ADLs) differentially regulate egg-laying behavior in Caenorhabditis elegans under varied environmental conditions via distinct neuronal circuits. Under standard culture conditions, ASHs tonically release a small amount of glutamate and inhibit Hermaphrodite specific motor neuron (HSN) activities and egg laying via a highly sensitive Glutamate receptor (GLR)-5 receptor. In contrast, under Cu2+ stimulation, ASHs and ADLs may release a large amount of glutamate and inhibit Amphid interneuron (AIA) interneurons via low-sensitivity Glutamate-gated chloride channel (GLC)-3 receptor, thus removing the inhibitory roles of AIAs on HSN activity and egg laying. However, directly measuring the amount of glutamate released by sensory neurons under different conditions and assaying the binding kinetics of receptors with the neurotransmitter are still required to support this study directly. Short-term exposure of CuSO4 evokes hyperactive egg laying ASHs inhibit HSNs and egg laying via GLR-5 receptor under no Cu2+ treatment AIA interneurons suppress HSNs and thus egg laying through ACR-14 signaling Under noxious Cu2+ treatment, ASHs and ADLs suppress AIAs and augment egg laying
Collapse
|
26
|
Abstract
Caenorhabditis elegans' behavioral states, like those of other animals, are shaped by its immediate environment, its past experiences, and by internal factors. We here review the literature on C. elegans behavioral states and their regulation. We discuss dwelling and roaming, local and global search, mate finding, sleep, and the interaction between internal metabolic states and behavior.
Collapse
Affiliation(s)
- Steven W Flavell
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - David M Raizen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Young-Jai You
- Division of Biological Science, Graduate School of Science, Nagoya University, 464-8602, Japan
| |
Collapse
|
27
|
Charest J, Daniele T, Wang J, Bykov A, Mandlbauer A, Asparuhova M, Röhsner J, Gutiérrez-Pérez P, Cochella L. Combinatorial Action of Temporally Segregated Transcription Factors. Dev Cell 2020; 55:483-499.e7. [PMID: 33002421 PMCID: PMC7704111 DOI: 10.1016/j.devcel.2020.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/30/2020] [Accepted: 09/01/2020] [Indexed: 01/05/2023]
Abstract
Combinatorial action of transcription factors (TFs) with partially overlapping expression is a widespread strategy to generate novel gene-expression patterns and, thus, cellular diversity. Known mechanisms underlying combinatorial activity require co-expression of TFs within the same cell. Here, we describe the mechanism by which two TFs that are never co-expressed generate a new, intersectional expression pattern in C. elegans embryos: lineage-specific priming of a gene by a transiently expressed TF generates a unique intersection with a second TF acting on the same gene four cell divisions later; the second TF is expressed in multiple cells but only activates transcription in those where priming occurred. Early induction of active transcription is necessary and sufficient to establish a competent state, maintained by broadly expressed regulators in the absence of the initial trigger. We uncover additional cells diversified through this mechanism. Our findings define a mechanism for combinatorial TF activity with important implications for generation of cell-type diversity. Lineage-specific priming enables asymmetric gene expression in L/R neuron pairs Transient, lineage-specific TFs prime a locus for later activation by a bilateral TF An early active transcriptional state is necessary and sufficient for priming Maintenance of asymmetric primed state occurs in a symmetric regulatory environment
Collapse
Affiliation(s)
- Julien Charest
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Thomas Daniele
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Jingkui Wang
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Aleksandr Bykov
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Ariane Mandlbauer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Mila Asparuhova
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Josef Röhsner
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Paula Gutiérrez-Pérez
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Luisa Cochella
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria.
| |
Collapse
|
28
|
Lorenzo R, Onizuka M, Defrance M, Laurent P. Combining single-cell RNA-sequencing with a molecular atlas unveils new markers for Caenorhabditis elegans neuron classes. Nucleic Acids Res 2020; 48:7119-7134. [PMID: 32542321 PMCID: PMC7367206 DOI: 10.1093/nar/gkaa486] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/11/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
Single-cell RNA-sequencing (scRNA-seq) of the Caenorhabditis elegans nervous system offers the unique opportunity to obtain a partial expression profile for each neuron within a known connectome. Building on recent scRNA-seq data and on a molecular atlas describing the expression pattern of ∼800 genes at the single cell resolution, we designed an iterative clustering analysis aiming to match each cell-cluster to the ∼100 anatomically defined neuron classes of C. elegans. This heuristic approach successfully assigned 97 of the 118 neuron classes to a cluster. Sixty two clusters were assigned to a single neuron class and 15 clusters grouped neuron classes sharing close molecular signatures. Pseudotime analysis revealed a maturation process occurring in some neurons (e.g. PDA) during the L2 stage. Based on the molecular profiles of all identified neurons, we predicted cell fate regulators and experimentally validated unc-86 for the normal differentiation of RMG neurons. Furthermore, we observed that different classes of genes functionally diversify sensory neurons, interneurons and motorneurons. Finally, we designed 15 new neuron class-specific promoters validated in vivo. Amongst them, 10 represent the only specific promoter reported to this day, expanding the list of neurons amenable to genetic manipulations.
Collapse
Affiliation(s)
- Ramiro Lorenzo
- Laboratory of Neurophysiology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET-CICPBA-UNCPBA, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro (FCV-UNCPBA), Tandil, Argentina
| | - Michiho Onizuka
- Laboratory of Neurophysiology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Matthieu Defrance
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Brussels, Belgium
| | - Patrick Laurent
- Laboratory of Neurophysiology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
29
|
Barrière A, Bertrand V. Neuronal specification in C. elegans: combining lineage inheritance with intercellular signaling. J Neurogenet 2020; 34:273-281. [PMID: 32603241 DOI: 10.1080/01677063.2020.1781850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The nervous system is composed of a high diversity of neuronal types. How this diversity is generated during development is a key question in neurobiology. Addressing this question is one of the reasons that led Sydney Brenner to develop the nematode C. elegans as a model organism. While there was initially a debate on whether the neuronal specification follows a 'European' model (determined by ancestry) or an 'American' model (determined by intercellular communication), several decades of research have established that the truth lies somewhere in between. Neurons are specified by the combination of transcription factors inherited from the ancestor cells and signaling between neighboring cells (especially Wnt and Notch signaling). This converges to the activation in newly generated postmitotic neurons of a specific set of terminal selector transcription factors that initiate and maintain the differentiation of the neuron. In this review, we also discuss the evolution of these specification mechanisms in other nematodes and beyond.
Collapse
Affiliation(s)
- Antoine Barrière
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Vincent Bertrand
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| |
Collapse
|
30
|
Estacio-Gómez A, Hassan A, Walmsley E, Le LW, Southall TD. Dynamic neurotransmitter specific transcription factor expression profiles during Drosophila development. Biol Open 2020; 9:9/5/bio052928. [PMID: 32493733 PMCID: PMC7286294 DOI: 10.1242/bio.052928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The remarkable diversity of neurons in the nervous system is generated during development, when properties such as cell morphology, receptor profiles and neurotransmitter identities are specified. In order to gain a greater understanding of neurotransmitter specification we profiled the transcription state of cholinergic, GABAergic and glutamatergic neurons in vivo at three developmental time points. We identified 86 differentially expressed transcription factors that are uniquely enriched, or uniquely depleted, in a specific neurotransmitter type. Some transcription factors show a similar profile across development, others only show enrichment or depletion at specific developmental stages. Profiling of Acj6 (cholinergic enriched) and Ets65A (cholinergic depleted) binding sites in vivo reveals that they both directly bind the ChAT locus, in addition to a wide spectrum of other key neuronal differentiation genes. We also show that cholinergic enriched transcription factors are expressed in mostly non-overlapping populations in the adult brain, implying the absence of combinatorial regulation of neurotransmitter fate in this context. Furthermore, our data underlines that, similar to Caenorhabditis elegans, there are no simple transcription factor codes for neurotransmitter type specification. This article has an associated First Person interview with the first author of the paper. Summary: Transcriptome profiling of cholinergic, GABAergic and glutamatergic neurons in Drosophila identified multiple transcription factors as potential regulators of neurotransmitter fate.
Collapse
Affiliation(s)
- Alicia Estacio-Gómez
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, London SW7 2AZ, UK
| | - Amira Hassan
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, London SW7 2AZ, UK
| | - Emma Walmsley
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, London SW7 2AZ, UK
| | - Lily Wong Le
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, London SW7 2AZ, UK
| | - Tony D Southall
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, London SW7 2AZ, UK
| |
Collapse
|
31
|
Modular Organization of Cis-regulatory Control Information of Neurotransmitter Pathway Genes in Caenorhabditis elegans. Genetics 2020; 215:665-681. [PMID: 32444379 DOI: 10.1534/genetics.120.303206] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/20/2020] [Indexed: 11/18/2022] Open
Abstract
We explore here the cis-regulatory logic that dictates gene expression in specific cell types in the nervous system. We focus on a set of eight genes involved in the synthesis, transport, and breakdown of three neurotransmitter systems: acetylcholine (unc-17 /VAChT, cha-1 /ChAT, cho-1 /ChT, and ace-2 /AChE), glutamate (eat-4 /VGluT), and γ-aminobutyric acid (unc-25 /GAD, unc-46 /LAMP, and unc-47 /VGAT). These genes are specifically expressed in defined subsets of cells in the nervous system. Through transgenic reporter gene assays, we find that the cellular specificity of expression of all of these genes is controlled in a modular manner through distinct cis-regulatory elements, corroborating the previously inferred piecemeal nature of specification of neurotransmitter identity. This modularity provides the mechanistic basis for the phenomenon of "phenotypic convergence," in which distinct regulatory pathways can generate similar phenotypic outcomes (i.e., the acquisition of a specific neurotransmitter identity) in different neuron classes. We also identify cases of enhancer pleiotropy, in which the same cis-regulatory element is utilized to control gene expression in distinct neuron types. We engineered a cis-regulatory allele of the vesicular acetylcholine transporter, unc-17 /VAChT, to assess the functional contribution of a "shadowed" enhancer. We observed a selective loss of unc-17 /VAChT expression in one cholinergic pharyngeal pacemaker motor neuron class and a behavioral phenotype that matches microsurgical removal of this neuron. Our analysis illustrates the value of understanding cis-regulatory information to manipulate gene expression and control animal behavior.
Collapse
|
32
|
Kaur S, Mélénec P, Murgan S, Bordet G, Recouvreux P, Lenne PF, Bertrand V. Wnt ligands regulate the asymmetric divisions of neuronal progenitors in C. elegans embryos. Development 2020; 147:dev183186. [PMID: 32156756 PMCID: PMC10679509 DOI: 10.1242/dev.183186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/25/2020] [Indexed: 12/12/2022]
Abstract
Wnt/β-catenin signalling has been implicated in the terminal asymmetric divisions of neuronal progenitors in vertebrates and invertebrates. However, the role of Wnt ligands in this process remains poorly characterized. Here, we used the terminal divisions of the embryonic neuronal progenitors in C. elegans to characterize the role of Wnt ligands during this process, focusing on a lineage that produces the cholinergic interneuron AIY. We observed that, during interphase, the neuronal progenitor is elongated along the anteroposterior axis, then divides along its major axis, generating an anterior and a posterior daughter with different fates. Using time-controlled perturbations, we show that three Wnt ligands, which are transcribed at higher levels at the posterior of the embryo, regulate the orientation of the neuronal progenitor and its asymmetric division. We also identify a role for a Wnt receptor (MOM-5) and a cortical transducer APC (APR-1), which are, respectively, enriched at the posterior and anterior poles of the neuronal progenitor. Our study establishes a role for Wnt ligands in the regulation of the shape and terminal asymmetric divisions of neuronal progenitors, and identifies downstream components.
Collapse
Affiliation(s)
- Shilpa Kaur
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille 13009, France
| | - Pauline Mélénec
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille 13009, France
| | - Sabrina Murgan
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille 13009, France
| | - Guillaume Bordet
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille 13009, France
| | - Pierre Recouvreux
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille 13009, France
| | - Pierre-François Lenne
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille 13009, France
| | - Vincent Bertrand
- Aix Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille 13009, France
| |
Collapse
|
33
|
Ashida K, Shidara H, Hotta K, Oka K. Optical Dissection of Synaptic Plasticity for Early Adaptation in Caenorhabditis elegans. Neuroscience 2020; 428:112-121. [PMID: 31917348 DOI: 10.1016/j.neuroscience.2019.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 10/25/2022]
Abstract
To understand neuronal information processing, it is essential to investigate the input-output relationship and its modulation via detailed dissections of synaptic transmission between pre- and postsynaptic neurons. In Caenorhabditis elegans, pre-exposure to an odorant for five minutes reduces chemotaxis (early adaptation). AWC sensory neurons and AIY interneurons are crucial for this adaptation; AWC neurons sense volatile odors, and AIY interneurons receive glutamatergic inputs from AWC neurons. However, modulations via early adaptation of the input-output relationship between AWC and AIY are not well characterized. Here we use a variety of fluorescent imaging techniques to show that reduced synaptic-vesicle release without Ca2+ modulation in AWC neurons suppresses the Ca2+ response in AIY neurons via early adaptation. First, early adaptation modulates the Ca2+ response in AIY but not AWC neurons. Adaptation in the Ca2+ signal measured in AIY neurons is caused by adaptation in glutamate release from AWC neurons. Further, we found that a G protein γ-subunit, GPC-1, is related to modulation of glutamate input to AIY. Our results dissect the modulation of the pre- and postsynaptic relationship in vivo based on optical methods, and demonstrate the importance of neurotransmitter-release modulation in presynaptic neurons without Ca2+ modulation.
Collapse
Affiliation(s)
- Keita Ashida
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan.
| | - Hisashi Shidara
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan.
| | - Kohji Hotta
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan.
| | - Kotaro Oka
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan; Waseda Research Institute for Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku, Tokyo 162-8480, Japan.
| |
Collapse
|
34
|
Davis FP, Nern A, Picard S, Reiser MB, Rubin GM, Eddy SR, Henry GL. A genetic, genomic, and computational resource for exploring neural circuit function. eLife 2020; 9:e50901. [PMID: 31939737 PMCID: PMC7034979 DOI: 10.7554/elife.50901] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/14/2020] [Indexed: 12/11/2022] Open
Abstract
The anatomy of many neural circuits is being characterized with increasing resolution, but their molecular properties remain mostly unknown. Here, we characterize gene expression patterns in distinct neural cell types of the Drosophila visual system using genetic lines to access individual cell types, the TAPIN-seq method to measure their transcriptomes, and a probabilistic method to interpret these measurements. We used these tools to build a resource of high-resolution transcriptomes for 100 driver lines covering 67 cell types, available at http://www.opticlobe.com. Combining these transcriptomes with recently reported connectomes helps characterize how information is transmitted and processed across a range of scales, from individual synapses to circuit pathways. We describe examples that include identifying neurotransmitters, including cases of apparent co-release, generating functional hypotheses based on receptor expression, as well as identifying strong commonalities between different cell types.
Collapse
Affiliation(s)
- Fred P Davis
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Molecular Immunology and Inflammation BranchNational Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of HealthBethesdaUnited States
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Serge Picard
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Michael B Reiser
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Sean R Eddy
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Howard Hughes Medical Institute and Department of Molecular and Cellular BiologyHarvard UniversityCambridgeUnited States
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeUnited States
| | - Gilbert L Henry
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| |
Collapse
|
35
|
The NALCN Channel Regulator UNC-80 Functions in a Subset of Interneurons To Regulate Caenorhabditis elegans Reversal Behavior. G3-GENES GENOMES GENETICS 2020; 10:199-210. [PMID: 31690562 PMCID: PMC6945035 DOI: 10.1534/g3.119.400692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
NALCN (Na+leak channel, non-selective) is a conserved, voltage-insensitive cation channel that regulates resting membrane potential and neuronal excitability. UNC79 and UNC80 are key regulators of the channel function. However, the behavioral effects of the channel complex are not entirely clear and the neurons in which the channel functions remain to be identified. In a forward genetic screen for C. elegans mutants with defective avoidance response to the plant hormone methyl salicylate (MeSa), we isolated multiple loss-of-function mutations in unc-80 and unc-79. C. elegans NALCN mutants exhibited similarly defective MeSa avoidance. Interestingly, NALCN, unc-80 and unc-79 mutants all showed wild type-like responses to other attractive or repelling odorants, suggesting that NALCN does not broadly affect odor detection or related forward and reversal behaviors. To understand in which neurons the channel functions, we determined the identities of a subset of unc-80-expressing neurons. We found that unc-79 and unc-80 are expressed and function in overlapping neurons, which verified previous assumptions. Neuron-specific transgene rescue and knockdown experiments suggest that the command interneurons AVA and AVE and the anterior guidepost neuron AVG can play a sufficient role in mediating unc-80 regulation of the MeSa avoidance. Though primarily based on genetic analyses, our results further imply that MeSa might activate NALCN by direct or indirect actions. Altogether, we provide an initial look into the key neurons in which the NALCN channel complex functions and identify a novel function of the channel in regulating C. elegans reversal behavior through command interneurons.
Collapse
|
36
|
Chien J, Wolf FW, Grosche S, Yosef N, Garriga G, Mörck C. The Enigmatic Canal-Associated Neurons Regulate Caenorhabditis elegans Larval Development Through a cAMP Signaling Pathway. Genetics 2019; 213:1465-1478. [PMID: 31619445 PMCID: PMC6893374 DOI: 10.1534/genetics.119.302628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 11/18/2022] Open
Abstract
Caenorhabditis elegans larval development requires the function of the two Canal-Associated Neurons (CANs): killing the CANs by laser microsurgery or disrupting their development by mutating the gene ceh-10 results in early larval arrest. How these cells promote larval development, however, remains a mystery. In screens for mutations that bypass CAN function, we identified the gene kin-29, which encodes a member of the Salt-Inducible Kinase (SIK) family and a component of a conserved pathway that regulates various C. elegans phenotypes. Like kin-29 loss, gain-of-function mutations in genes that may act upstream of kin-29 or growth in cyclic-AMP analogs bypassed ceh-10 larval arrest, suggesting that a conserved adenylyl cyclase/PKA pathway inhibits KIN-29 to promote larval development, and that loss of CAN function results in dysregulation of KIN-29 and larval arrest. The adenylyl cyclase ACY-2 mediates CAN-dependent larval development: acy-2 mutant larvae arrested development with a similar phenotype to ceh-10 mutants, and the arrest phenotype was suppressed by mutations in kin-29 ACY-2 is expressed predominantly in the CANs, and we provide evidence that the acy-2 functions in the CANs to promote larval development. By contrast, cell-specific expression experiments suggest that kin-29 acts in both the hypodermis and neurons, but not in the CANs. Based on our findings, we propose two models for how ACY-2 activity in the CANs regulates KIN-29 in target cells.
Collapse
Affiliation(s)
- Jason Chien
- Department of Chemistry and Molecular Biology, University of Gothenburg, Sweden 405 30
| | - Fred W Wolf
- Department of Molecular and Cell Biology, University of California, Merced, California 95343
| | - Sarah Grosche
- Department of Chemistry and Molecular Biology, University of Gothenburg, Sweden 405 30
| | - Nebeyu Yosef
- Department of Chemistry and Molecular Biology, University of Gothenburg, Sweden 405 30
| | - Gian Garriga
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3204
| | - Catarina Mörck
- Department of Chemistry and Molecular Biology, University of Gothenburg, Sweden 405 30
| |
Collapse
|
37
|
Kratsios P, Hobert O. Nervous System Development: Flies and Worms Converging on Neuron Identity Control. Curr Biol 2019; 28:R1154-R1157. [PMID: 30300603 DOI: 10.1016/j.cub.2018.08.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Distinct neuronal cell types display phenotypic similarities such as their neurotransmitter identity. Studies in worms and flies have revealed that this phenotypic convergence can be brought about by distinct transcription factors regulating the same effector genes in different neuron types.
Collapse
Affiliation(s)
- Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA.
| | - Oliver Hobert
- Department of Biology, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
38
|
Axon-Dependent Patterning and Maintenance of Somatosensory Dendritic Arbors. Dev Cell 2019; 48:229-244.e4. [PMID: 30661986 DOI: 10.1016/j.devcel.2018.12.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 11/12/2018] [Accepted: 12/16/2018] [Indexed: 12/20/2022]
Abstract
The mechanisms that pattern and maintain dendritic arbors are key to understanding the principles that govern nervous system assembly. The activity of presynaptic axons has long been known to shape dendrites, but activity-independent functions of axons in this process have remained elusive. Here, we show that in Caenorhabditis elegans, the axons of the ALA neuron control guidance and extension of the 1° dendrites of PVD somatosensory neurons independently of ALA activity. PVD 1° dendrites mimic ALA axon guidance defects in loss-of-function mutants for the extracellular matrix molecule MIG-6/Papilin or the UNC-6/Netrin pathway, suggesting that axon-dendrite adhesion is important for dendrite formation. We found that the SAX-7/L1CAM cell adhesion molecule engages in distinct molecular mechanisms to mediate extensions of PVD 1° dendrites and maintain the ALA-PVD axon-dendritic fascicle, respectively. Thus, axons can serve as critical scaffolds to pattern and maintain dendrites through contact-dependent but activity-independent mechanisms.
Collapse
|
39
|
Stratmann J, Ekman H, Thor S. Branching gene regulatory network dictating different aspects of a neuronal cell identity. Development 2019; 146:dev.174300. [DOI: 10.1242/dev.174300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/22/2019] [Indexed: 12/30/2022]
Abstract
The nervous system displays a daunting cellular diversity. Neuronal sub-types differ from each other in several aspects, including their neurotransmitter expression and axon projection. These aspects can converge, but can also diverge, such that neurons expressing the same neurotransmitter may project axons to different targets. It is not well understood how regulatory programs converge/diverge to associate/dissociate different cell fate features. Studies of the Drosophila Tv1 neurons have identified a regulatory cascade; ladybird early -> collier -> apterous/eyes absent -> dimmed, which specifies Tv1 neurotransmitter expression. Here, we conduct genetic and transcriptome analysis to address how other aspects of Tv1 cell fate is governed. We find that an initiator terminal selector gene triggers a feedforward loop which branches into different subroutines, each of which establishes different features of this one unique neuronal cell fate.
Collapse
Affiliation(s)
- Johannes Stratmann
- Department of Clinical and Experimental Medicine, Linkoping University, SE-581 85 Linkoping, Sweden
| | - Helen Ekman
- Department of Clinical and Experimental Medicine, Linkoping University, SE-581 85 Linkoping, Sweden
| | - Stefan Thor
- Department of Clinical and Experimental Medicine, Linkoping University, SE-581 85 Linkoping, Sweden
- School of Biomedical Sciences, University of Queensland, St Lucia QLD 4072, Australia
| |
Collapse
|
40
|
Pereira L, Aeschimann F, Wang C, Lawson H, Serrano-Saiz E, Portman DS, Großhans H, Hobert O. Timing mechanism of sexually dimorphic nervous system differentiation. eLife 2019; 8:e42078. [PMID: 30599092 PMCID: PMC6312707 DOI: 10.7554/elife.42078] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 10/24/2018] [Indexed: 12/16/2022] Open
Abstract
The molecular mechanisms that control the timing of sexual differentiation in the brain are poorly understood. We found that the timing of sexually dimorphic differentiation of postmitotic, sex-shared neurons in the nervous system of the Caenorhabditis elegans male is controlled by the temporally regulated miRNA let-7 and its target lin-41, a translational regulator. lin-41 acts through lin-29a, an isoform of a conserved Zn finger transcription factor, expressed in a subset of sex-shared neurons only in the male. Ectopic lin-29a is sufficient to impose male-specific features at earlier stages of development and in the opposite sex. The temporal, sexual and spatial specificity of lin-29a expression is controlled intersectionally through the lin-28/let-7/lin-41 heterochronic pathway, sex chromosome configuration and neuron-type-specific terminal selector transcription factors. Two Doublesex-like transcription factors represent additional sex- and neuron-type specific targets of LIN-41 and are regulated in a similar intersectional manner.
Collapse
Affiliation(s)
- Laura Pereira
- Department of Biological Sciences, Howard Hughes Medical InstituteColumbia UniversityNew YorkUnited States
| | - Florian Aeschimann
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- University of BaselBaselSwitzerland
| | - Chen Wang
- Department of Biological Sciences, Howard Hughes Medical InstituteColumbia UniversityNew YorkUnited States
| | - Hannah Lawson
- Department of BiologyUniversity of RochesterRochesterUnited States
| | - Esther Serrano-Saiz
- Department of Biological Sciences, Howard Hughes Medical InstituteColumbia UniversityNew YorkUnited States
| | - Douglas S Portman
- Department of BiologyUniversity of RochesterRochesterUnited States
- DelMonte Institute for Neuroscience, Department of Biomedical GeneticsUniversity of RochesterNew YorkUnited States
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- University of BaselBaselSwitzerland
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical InstituteColumbia UniversityNew YorkUnited States
| |
Collapse
|
41
|
Konstantinides N, Kapuralin K, Fadil C, Barboza L, Satija R, Desplan C. Phenotypic Convergence: Distinct Transcription Factors Regulate Common Terminal Features. Cell 2018; 174:622-635.e13. [PMID: 29909983 PMCID: PMC6082168 DOI: 10.1016/j.cell.2018.05.021] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/28/2018] [Accepted: 05/09/2018] [Indexed: 12/25/2022]
Abstract
Transcription factors regulate the molecular, morphological, and physiological characteristics of neurons and generate their impressive cell-type diversity. To gain insight into the general principles that govern how transcription factors regulate cell-type diversity, we used large-scale single-cell RNA sequencing to characterize the extensive cellular diversity in the Drosophila optic lobes. We sequenced 55,000 single cells and assigned them to 52 clusters. We validated and annotated many clusters using RNA sequencing of FACS-sorted single-cell types and cluster-specific genes. To identify transcription factors responsible for inducing specific terminal differentiation features, we generated a "random forest" model, and we showed that the transcription factors Apterous and Traffic-jam are required in many but not all cholinergic and glutamatergic neurons, respectively. In fact, the same terminal characters often can be regulated by different transcription factors in different cell types, arguing for extensive phenotypic convergence. Our data provide a deep understanding of the developmental and functional specification of a complex brain structure.
Collapse
Affiliation(s)
| | - Katarina Kapuralin
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Chaimaa Fadil
- Department of Biology, New York University, New York, NY 10003, USA; New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Luendreo Barboza
- Department of Biology, New York University, New York, NY 10003, USA; Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016, USA; New York Genome Center, New York, NY 10013, USA
| | - Rahul Satija
- Department of Biology, New York University, New York, NY 10003, USA; New York Genome Center, New York, NY 10013, USA
| | - Claude Desplan
- Department of Biology, New York University, New York, NY 10003, USA; New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
42
|
Shi Y, Li Q, Shao Z. Wnts Promote Synaptic Assembly Through T-Cell Specific Transcription Factors in Caenorhabditis elegans. Front Mol Neurosci 2018; 11:194. [PMID: 29962933 PMCID: PMC6013564 DOI: 10.3389/fnmol.2018.00194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/16/2018] [Indexed: 12/19/2022] Open
Abstract
Synapses are specialized neuronal connections essential for neuronal function. Defects in synaptic assembly or maintenance usually lead to various neurological disorders. Synaptic assembly is regulated by secreted molecules such as Wnts. Wnts are a large family of conserved glycosylated signaling molecules involved in many aspects of neural development and maintenance. However, the molecular mechanisms by which Wnts regulate synaptic assembly remain elusive due to the large number of ligands/receptors, the diversity of signaling cascades and the complexity of the nervous system. In this study, through genetic manipulation, we uncover that C. elegans Wnt-2 (CWN-2) is required for synaptic development. The CWN-2 signal is required during both embryonic and postembryonic development, in the nervous system and intestine, for promoting synaptic assembly. Furthermore, we provide genetic evidence for CWN-2 promoting synaptogenesis through the Frizzled receptor (FZD) CFZ-2, the Dishevelled (DVL) DSH-2, the β-catenin SYS-1 and the only T-cell specific transcription factor POP-1/TCF. Importantly, it is the first time to report the requirement of a TCF for presynaptic assembly. These findings expand our understanding of the synaptogenic mechanisms and may provide therapeutic insights into Wnt-related neurological disorders.
Collapse
Affiliation(s)
- Yanjun Shi
- Department of Neurology, State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qian Li
- Department of Neurology, State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiyong Shao
- Department of Neurology, State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
43
|
Zic Genes in Nematodes: A Role in Nervous System Development and Wnt Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 29442317 DOI: 10.1007/978-981-10-7311-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Transcription factors of the Zic family play important roles during animal development, and their misregulation has been implicated in several human diseases. Zic proteins are present in nematodes, and their function has been mostly studied in the model organism C. elegans. C. elegans possesses only one Zic family member, REF-2. Functional studies have shown that this factor plays a key role during the development of the nervous system, epidermis, and excretory system. In addition, they have revealed that the C. elegans Zic protein acts as an atypical mediator of the Wnt/β-catenin pathway. In other animals including vertebrates, Zic factors are also regulators of nervous system development and modulators of Wnt signaling, suggesting that these are evolutionary ancient functions of Zic proteins.
Collapse
|
44
|
Weinberg P, Berkseth M, Zarkower D, Hobert O. Sexually Dimorphic unc-6/Netrin Expression Controls Sex-Specific Maintenance of Synaptic Connectivity. Curr Biol 2018; 28:623-629.e3. [PMID: 29429615 DOI: 10.1016/j.cub.2018.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/29/2017] [Accepted: 01/01/2018] [Indexed: 12/17/2022]
Abstract
Nervous systems display intriguing patterns of sexual dimorphisms across the animal kingdom, but the mechanisms that generate such dimorphisms remain poorly characterized. In the nematode Caenorhabditis elegans, a number of neurons present in both sexes are synaptically connected to one another in a sexually dimorphic manner as a result of sex-specific synaptic pruning and maintenance [1-3]. We define here a mechanism for the male-specific maintenance of the synaptic connections of the phasmid sensory neuron PHB and its male-specific target, the sex-shared AVG interneuron. We show that the C. elegans Netrin ortholog UNC-6, signaling through its cognate receptor UNC-40/DCC and the CED-5/DOCK180 guanine nucleotide exchange factor, is both required and sufficient for male-specific synaptic maintenance. The dimorphism of unc-6 activity is brought about by sex-specific regulation of unc-6 transcription. Although unc-6 is transcribed in the AVG neuron of males and hermaphrodites during juvenile stages, unc-6 expression is downregulated in AVG in hermaphrodites during sexual maturation but is maintained during sexual maturation of males. unc-6 downregulation in hermaphrodites is conferred by the master regulator of hermaphrodite sexual identity, the Gli/CI homolog TRA-1, which antagonizes the non-sex-specific function of the LIM homeobox gene lin-11, a terminal selector and activator of unc-6 in AVG. Preventing the downregulation of unc-6 in AVG of hermaphrodites through ectopic expression of unc-6 in transgenic animals results in the maintenance of the PHB>AVG synapses in hermaphrodites. Taken together, intersectional transcriptional regulation of unc-6/Netrin is required and sufficient to cell autonomously pattern sexually dimorphic synapses.
Collapse
Affiliation(s)
- Peter Weinberg
- Department of Biological Sciences and Howard Hughes Medical Institute, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027, USA
| | - Matthew Berkseth
- Department of Genetics, Cell Biology, and Development, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA
| | - David Zarkower
- Department of Genetics, Cell Biology, and Development, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA
| | - Oliver Hobert
- Department of Biological Sciences and Howard Hughes Medical Institute, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027, USA.
| |
Collapse
|
45
|
Murray JI. Systems biology of embryonic development: Prospects for a complete understanding of the Caenorhabditis elegans embryo. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7:e314. [PMID: 29369536 DOI: 10.1002/wdev.314] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/01/2017] [Accepted: 12/12/2017] [Indexed: 01/07/2023]
Abstract
The convergence of developmental biology and modern genomics tools brings the potential for a comprehensive understanding of developmental systems. This is especially true for the Caenorhabditis elegans embryo because its small size, invariant developmental lineage, and powerful genetic and genomic tools provide the prospect of a cellular resolution understanding of messenger RNA (mRNA) expression and regulation across the organism. We describe here how a systems biology framework might allow large-scale determination of the embryonic regulatory relationships encoded in the C. elegans genome. This framework consists of two broad steps: (a) defining the "parts list"-all genes expressed in all cells at each time during development and (b) iterative steps of computational modeling and refinement of these models by experimental perturbation. Substantial progress has been made towards defining the parts list through imaging methods such as large-scale green fluorescent protein (GFP) reporter analysis. Imaging results are now being augmented by high-resolution transcriptome methods such as single-cell RNA sequencing, and it is likely the complete expression patterns of all genes across the embryo will be known within the next few years. In contrast, the modeling and perturbation experiments performed so far have focused largely on individual cell types or genes, and improved methods will be needed to expand them to the full genome and organism. This emerging comprehensive map of embryonic expression and regulatory function will provide a powerful resource for developmental biologists, and would also allow scientists to ask questions not accessible without a comprehensive picture. This article is categorized under: Invertebrate Organogenesis > Worms Technologies > Analysis of the Transcriptome Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics.
Collapse
Affiliation(s)
- John Isaac Murray
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
46
|
Vidal B, Aghayeva U, Sun H, Wang C, Glenwinkel L, Bayer EA, Hobert O. An atlas of Caenorhabditis elegans chemoreceptor expression. PLoS Biol 2018; 16:e2004218. [PMID: 29293491 PMCID: PMC5749674 DOI: 10.1371/journal.pbio.2004218] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/22/2017] [Indexed: 12/20/2022] Open
Abstract
One goal of modern day neuroscience is the establishment of molecular maps that assign unique features to individual neuron types. Such maps provide important starting points for neuron classification, for functional analysis, and for developmental studies aimed at defining the molecular mechanisms of neuron identity acquisition and neuron identity diversification. In this resource paper, we describe a nervous system-wide map of the potential expression sites of 244 members of the largest gene family in the C. elegans genome, rhodopsin-like (class A) G-protein-coupled receptor (GPCR) chemoreceptors, using classic gfp reporter gene technology. We cover representatives of all sequence families of chemoreceptor GPCRs, some of which were previously entirely uncharacterized. Most reporters are expressed in a very restricted number of cells, often just in single cells. We assign GPCR reporter expression to all but two of the 37 sensory neuron classes of the sex-shared, core nervous system. Some sensory neurons express a very small number of receptors, while others, particularly nociceptive neurons, coexpress several dozen GPCR reporter genes. GPCR reporters are also expressed in a wide range of inter- and motorneurons, as well as non-neuronal cells, suggesting that GPCRs may constitute receptors not just for environmental signals, but also for internal cues. We observe only one notable, frequent association of coexpression patterns, namely in one nociceptive amphid (ASH) and two nociceptive phasmid sensory neurons (PHA, PHB). We identified GPCRs with sexually dimorphic expression and several GPCR reporters that are expressed in a left/right asymmetric manner. We identified a substantial degree of GPCR expression plasticity; particularly in the context of the environmentally-induced dauer diapause stage when one third of all tested GPCRs alter the cellular specificity of their expression within and outside the nervous system. Intriguingly, in a number of cases, the dauer-specific alterations of GPCR reporter expression in specific neuron classes are maintained during postdauer life and in some case new patterns are induced post-dauer, demonstrating that GPCR gene expression may serve as traits of life history. Taken together, our resource provides an entry point for functional studies and also offers a host of molecular markers for studying molecular patterning and plasticity of the nervous system.
Collapse
Affiliation(s)
- Berta Vidal
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Ulkar Aghayeva
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Haosheng Sun
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Chen Wang
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Lori Glenwinkel
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Emily A. Bayer
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| |
Collapse
|
47
|
Deneris E, Gaspar P. Serotonin neuron development: shaping molecular and structural identities. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2018; 7:10.1002/wdev.301. [PMID: 29072810 PMCID: PMC5746461 DOI: 10.1002/wdev.301] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/03/2017] [Accepted: 08/24/2017] [Indexed: 02/03/2023]
Abstract
The continuing fascination with serotonin (5-hydroxytryptamine, 5-HT) as a nervous system chemical messenger began with its discovery in the brains of mammals in 1953. Among the many reasons for this decades-long interest is that the small numbers of neurons that make 5-HT influence the excitability of neural circuits in nearly every region of the brain and spinal cord. A further reason is that 5-HT dysfunction has been linked to a range of psychiatric and neurological disorders many of which have a neurodevelopmental component. This has led to intense interest in understanding 5-HT neuron development with the aim of determining whether early alterations in their generation lead to brain disease susceptibility. Here, we present an overview of the neuroanatomical organization of vertebrate 5-HT neurons, their neurogenesis, and prodigious axonal architectures, which enables the expansive reach of 5-HT neuromodulation in the central nervous system. We review recent findings that have revealed the molecular basis for the tremendous diversity of 5-HT neuron subtypes, the impact of environmental factors on 5-HT neuron development, and how 5-HT axons are topographically organized through disparate signaling pathways. We summarize studies of the gene regulatory networks that control the differentiation, maturation, and maintenance of 5-HT neurons. These studies show that the regulatory factors controlling acquisition of 5-HT-type transmitter identity continue to play critical roles in the functional maturation and the maintenance of 5-HT neurons. New insights are presented into how continuously expressed 5-HT regulatory factors control 5-HT neurons at different stages of life and how the regulatory networks themselves are maintained. WIREs Dev Biol 2018, 7:e301. doi: 10.1002/wdev.301 This article is categorized under: Nervous System Development > Vertebrates: General Principles Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics Gene Expression and Transcriptional Hierarchies > Cellular Differentiation Nervous System Development > Secondary: Vertebrates: Regional Development.
Collapse
Affiliation(s)
- Evan Deneris
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Patricia Gaspar
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-S839, Paris, France
- Sorbonne Université, Paris, France
- Institut du Fer à Moulin, Campus Jussieu, Paris, France
| |
Collapse
|
48
|
Topalidou I, Cooper K, Pereira L, Ailion M. Dopamine negatively modulates the NCA ion channels in C. elegans. PLoS Genet 2017; 13:e1007032. [PMID: 28968387 PMCID: PMC5638609 DOI: 10.1371/journal.pgen.1007032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 10/12/2017] [Accepted: 09/18/2017] [Indexed: 02/07/2023] Open
Abstract
The NALCN/NCA ion channel is a cation channel related to voltage-gated sodium and calcium channels. NALCN has been reported to be a sodium leak channel with a conserved role in establishing neuronal resting membrane potential, but its precise cellular role and regulation are unclear. The Caenorhabditis elegans orthologs of NALCN, NCA-1 and NCA-2, act in premotor interneurons to regulate motor circuit activity that sustains locomotion. Recently we found that NCA-1 and NCA-2 are activated by a signal transduction pathway acting downstream of the heterotrimeric G protein Gq and the small GTPase Rho. Through a forward genetic screen, here we identify the GPCR kinase GRK-2 as a new player affecting signaling through the Gq-Rho-NCA pathway. Using structure-function analysis, we find that the GPCR phosphorylation and membrane association domains of GRK-2 are required for its function. Genetic epistasis experiments suggest that GRK-2 acts on the D2-like dopamine receptor DOP-3 to inhibit Go signaling and positively modulate NCA-1 and NCA-2 activity. Through cell-specific rescuing experiments, we find that GRK-2 and DOP-3 act in premotor interneurons to modulate NCA channel function. Finally, we demonstrate that dopamine, through DOP-3, negatively regulates NCA activity. Thus, this study identifies a pathway by which dopamine modulates the activity of the NCA channels.
Collapse
Affiliation(s)
- Irini Topalidou
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- * E-mail: (IT); (MA)
| | - Kirsten Cooper
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Laura Pereira
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- * E-mail: (IT); (MA)
| |
Collapse
|
49
|
Rapti G, Li C, Shan A, Lu Y, Shaham S. Glia initiate brain assembly through noncanonical Chimaerin-Furin axon guidance in C. elegans. Nat Neurosci 2017; 20:1350-1360. [PMID: 28846083 PMCID: PMC5614858 DOI: 10.1038/nn.4630] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/19/2017] [Indexed: 01/08/2023]
Abstract
Brain assembly is hypothesized to begin when pioneer axons extend over non-neuronal cells, forming tracts guiding follower axons. Yet pioneer-neuron identities, their guidance substrates, and their interactions are not well understood. Here, using time-lapse embryonic imaging, genetics, protein-interaction, and functional studies, we uncover the early events of C. elegans brain assembly. We demonstrate that C. elegans glia are key for assembly initiation, guiding pioneer and follower axons using distinct signals. Pioneer sublateral neurons, with unique growth properties, anatomy, and innervation, cooperate with glia to mediate follower-axon guidance. We further identify a Chimaerin (CHIN-1)- Furin (KPC-1) double-mutant that severely disrupts assembly. CHIN-1 and KPC-1 function noncanonically, in glia and pioneer neurons, for guidance-cue trafficking. We exploit this bottleneck to define roles for glial Netrin and Semaphorin in pioneer- and follower-axon guidance, respectively, and for glial and pioneer-neuron Flamingo (CELSR) in follower-axon navigation. Taken together, our studies reveal previously undescribed glial roles in pioneer-axon guidance, suggesting conserved principles of brain assembly.
Collapse
Affiliation(s)
- Georgia Rapti
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Chang Li
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
- These authors contributed equally to this work
| | - Alan Shan
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
- These authors contributed equally to this work
| | - Yun Lu
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| |
Collapse
|
50
|
Jeong H, Paik YK. MGL-1 on AIY neurons translates starvation to reproductive plasticity via neuropeptide signaling in Caenorhabditis elegans. Dev Biol 2017; 430:80-89. [DOI: 10.1016/j.ydbio.2017.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/09/2017] [Indexed: 11/28/2022]
|