1
|
Maurice MM, Angers S. Mechanistic insights into Wnt-β-catenin pathway activation and signal transduction. Nat Rev Mol Cell Biol 2025; 26:371-388. [PMID: 39856369 DOI: 10.1038/s41580-024-00823-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 01/27/2025]
Abstract
In multicellular organisms, Wnt proteins govern stem and progenitor cell renewal and differentiation to regulate embryonic development, adult tissue homeostasis and tissue regeneration. Defects in canonical Wnt signalling, which is transduced intracellularly by β-catenin, have been associated with developmental disorders, degenerative diseases and cancers. Although a simple model describing Wnt-β-catenin signalling is widely used to introduce this pathway and has largely remained unchanged over the past 30 years, in this Review we discuss recent studies that have provided important new insights into the mechanisms of Wnt production, receptor activation and intracellular signalling that advance our understanding of the molecular mechanisms that underlie this important cell-cell communication system. In addition, we review the recent development of molecules capable of activating the Wnt-β-catenin pathway with selectivity in vitro and in vivo that is enabling new lines of study to pave the way for the development of Wnt therapies for the treatment of human diseases.
Collapse
Affiliation(s)
- Madelon M Maurice
- Center for Molecular Medicine, University Medical Center, Utrecht, Netherlands.
- Oncode Institute, Utrecht, Netherlands.
| | - Stephane Angers
- Donnelly Centre for Cellular and Biomolecular Research and Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Guo S, Shuaiying Z, Yingying K, Tang J, Xu J, Dai Y, Geng Y. Screening, expression, and functional validation of camelid-derived nanobodies targeting RSPO2. Vet Immunol Immunopathol 2025; 283:110922. [PMID: 40179630 DOI: 10.1016/j.vetimm.2025.110922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 04/05/2025]
Abstract
OBJECTIVE RSPO2 (R-spondin 2) is a key regulator of the Wnt/β-catenin signaling pathway, involved in embryogenesis, tissue homeostasis, and cancer progression. Despite its therapeutic potential, effective agents targeting RSPO2 remain elusive. To address the unmet need for RSPO2-targeted therapies, we aimed to develop high-affinity nanobodies via phage display and prokaryotic expression, characterizing their binding specificity and functional blockade of RSPO2-LGR4 interactions. This study provides foundational insights into nanobody-mediated inhibition of Wnt signaling, supporting future therapeutic strategies against RSPO2-driven pathologies. METHODS Recombinant RSPO2 proteins were constructed and purified using PCR-based recombination. Camels (Camelus bactrianus) were immunized with RSPO2, and phage display was employed to screen nanobody libraries. High-affinity nanobodies were cloned, expressed, purified, and assessed for specificity and binding affinity using biolayer interferometry and protein blotting. Functional validation was performed using TOPFLASH assays to evaluate their impact on Wnt/β-catenin signaling. RESULTS Nanobodies with high specificity and nanomolar-range affinity constants (KDs) for RSPO2 were identified. The nanobody effectively inhibited RSPO2-induced Wnt/β-catenin signaling in human renal epithelial cells. CONCLUSION The development of RSPO2-targeting nanobodies offers new prospects for treating RSPO2-related diseases. The nanobody serve as valuable tools for functional research and hold potential as diagnostic and therapeutic agents for RSPO2-driven conditions.
Collapse
Affiliation(s)
- Shaojue Guo
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhao Shuaiying
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Kong Yingying
- State Key Laboratory of Drug Research, The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; College of Pharmacy, Henan University, Kaifeng, Henan 475000, China
| | - Junming Tang
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research and Institute of Biomedicine, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Jianfeng Xu
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Yuanyuan Dai
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital of Chinese Academy of Medical Sciences, Langfang Campus, Langfang 065001, China.
| | - Yong Geng
- State Key Laboratory of Drug Research, The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Cheng J, Yang L, Wang S, Luo K, Luo S, Dong Y, Ning Y, Wang W. Phylogenetic Insights into the Evolutionary History of the RSPO Gene Family in Metazoa. Genes (Basel) 2025; 16:477. [PMID: 40428299 PMCID: PMC12111769 DOI: 10.3390/genes16050477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
Background: The RSPO gene family encodes secreted glycoproteins that are rich in cysteine, which generally serve as activators of the Wnt signaling pathway in animals. Four types of this family have been identified in a few model species. However, the evolution of the family remains unclear. Methods: In this study, we identified a total of 1496 RSPO homologs through an extensive survey of the RSPO genes in 430 animals. Gene family clustering and phylogenetic analysis identified four major subtypes of the family (RSPO1-RSPO4) and clarified their distribution of copy number in different species. Results and Conclusions: Members of the RSPO4 subfamily that were closest to ancestral forms existed in both Deuterostomes and Protostomates, and we speculate that representatives of this subfamily already existed in Urbilatera, the last common ancestor of Deuterostomes. Particularly, in some RSPO3 subtypes of Actinopterygii (ray-finned fishes), an FU repeated motif with three conserved cysteines was identified. Further conservative analysis of amino acids and alignment of tertiary protein structure revealed the potential functional sites for each subgroup. The results provide insight into the phylogenetic relationships and evolutionary patterns of conserved motifs of RSPO family genes in animal kingdoms, which will guide further studies on the biological functions of RSPO in other non-model species.
Collapse
Affiliation(s)
- Jia Cheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (J.C.); (K.L.); (S.L.)
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming 650201, China;
| | - Ling Yang
- Institute of Agro-Products of Processing and Design, Hainan Academy of Agricultural Sciences, Haikou 571100, China;
| | - Shiping Wang
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming 650201, China;
- Institute of Agro-Products of Processing and Design, Hainan Academy of Agricultural Sciences, Haikou 571100, China;
| | - Kaiyong Luo
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (J.C.); (K.L.); (S.L.)
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming 650201, China;
| | - Senlin Luo
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (J.C.); (K.L.); (S.L.)
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming 650201, China;
| | - Yang Dong
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming 650201, China;
| | - Ya Ning
- College of Science, Yunnan Agricultural University, Kunming 650201, China;
| | - Weibin Wang
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming 650201, China;
- College of Science, Yunnan Agricultural University, Kunming 650201, China;
| |
Collapse
|
4
|
Chevallier L, Green M, Vo J, Vernau K, Marcellin-Little DJ, Jagannathan V, Leeb T, Bannasch D. The RSPO2 gene is associated with bilateral anterior amelia in Chihuahuas. Mamm Genome 2025:10.1007/s00335-025-10123-1. [PMID: 40131457 DOI: 10.1007/s00335-025-10123-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/15/2025] [Indexed: 03/27/2025]
Abstract
Bilateral anterior amelia (BAA) is the congenital absence of thoracic limbs and has been reported in the Chihuahua as an autosomal recessive disorder. In some cases, the digits of the pelvic limbs can be variably affected, but otherwise, the pelvic limbs are generally spared. A GWAS performed with nine BAA affected Chihuahuas identified a significant association on chromosome 13, and homozygosity mapping delineated a 2.1 Mb chromosomal region containing the RSPO2 gene. Loss of function variants of RSPO2 in humans and cattle has been associated with the absence of all limbs. Six affected Chihuahuas were whole genome sequenced (WGS) and aligned to the CanFam4 assembly. SNVs, small indels, and structural variants within the critical interval that fitted a recessive model were investigated. Three SNVs (NC_049234.1:g.8891861C > T; NC_049234.1:g.8974204C > T and NC_049234.1:g.9789424G > A) were homozygous in five cases and absent from 3,418 genetically diverse control genome sequences, except for one Small Poodle that was heterozygous. One SNV resided in RSPO2's second intron, while the two others were intergenic. The three candidate variants were genotyped in 7 additional cases and 100 control Chihuahuas. Twelve of 13 cases were homozygous for the mutant allele, and one case was heterozygous. Controls were either homozygous for the reference allele (97%) or heterozygous (3%). Our data should facilitate genetic testing of Chihuahuas to prevent the unintentional production of BAA affected dogs. Moreover, the identification of these variants enhances understanding of RSPO2 gene function in limb development.
Collapse
Affiliation(s)
- Lucie Chevallier
- INSERM, UPEC, Ecole Nationale Vétérinaire d'Alfort, U955 - IMRB, Team 10 - Biology of the Neuromuscular System, Maisons-Alfort, France
| | - Marin Green
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - Julia Vo
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - Karen Vernau
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - Denis J Marcellin-Little
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Danika Bannasch
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA.
| |
Collapse
|
5
|
Carranza FG, Waldrup B, Jin Y, Amzaleg Y, Postel M, Craig DW, Carpten JD, Salhia B, Hernandez D, Gutierrez N, Ricker CN, Culver JO, Chavez CE, Stern MC, Baezconde-Garbanati L, Lenz HJ, Velazquez-Villarreal E. Assessment of MYC Gene and WNT Pathway Alterations in Early-Onset Colorectal Cancer Among Hispanic/Latino Patients Using Integrated Multi-Omics Approaches. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.12.05.24318588. [PMID: 40034762 PMCID: PMC11875251 DOI: 10.1101/2024.12.05.24318588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Colorectal cancer (CRC) has increased at an alarming rate amongst younger (< 50 years) individuals. Such early-onset colorectal cancer (EOCRC) has been particularly notable within the Hispanic/Latino population. Yet, this population has not been sufficiently profiled in terms of two critical elements of CRC -- the MYC proto-oncogene and WNT signaling pathway. Here, we performed a comprehensive multi-omics analysis on 30 early-onset and 37 late-onset CRC (≥ 50 years) samples from Hispanic/Latino patients. Our analysis included DNA exome sequencing for somatic mutations, somatic copy number alterations, and global and local genetic similarity. Using RNA sequencing, we also assessed differential gene expression, cellular pathways, and gene fusions. We then compared our findings from early-onset Hispanic/Latino patient samples with publicly available data from Non-Hispanic White cohorts. Across all early-onset patients, which had a median 1000 Genomes Project Peruvian-in-Lima-like (1KG-PEL-like) genetic similarity proportion of 60%, we identified 41 WNT pathway genes with significant mutations. Six important examples were APC, TCF7L2, DKK1, DKK2, FZD10, and LRP5. Notably, patients with mutations in DKK1 and DKK2 had the highest 1KG-PEL-like proportion (79%). When we compared the Hispanic/Latino cohort to the Non-Hispanic White cohorts, four of these key genes -- DKK1, DKK2, FZD10, and LRP5 -- were significant in both risk association analyses and differential gene expression. Interestingly, early-onset tumors (vs. late-onset) exhibited distinct somatic copy number alterations and gene expression profiles; the differences included MYC and drug-targetable WNT pathway genes. We also identified a novel WNT gene fusion, RSPO3, in early-onset tumors; it was associated with enhanced WNT signaling. This integrative analysis underscores the distinct molecular features of EOCRC cancer in the Hispanic/Latino population; reveals potential avenues for tailored precision medicine therapies; and emphasizes the importance of multi-omics approaches in studying colorectal carcinogenesis. We expect this data to help contribute towards reducing cancer health disparities. Significance This study offers multi-omics profiling analysis of early-onset colorectal cancer (EOCRC) in an underserved community, explores the implications of MYC gene and WNT pathway alterations, and provides critical insights into cancer health disparities.
Collapse
Affiliation(s)
- F G Carranza
- City of Hope, Beckman Research Institute, Department of Integrative Translational Sciences, Duarte, CA
| | - B Waldrup
- City of Hope, Beckman Research Institute, Department of Integrative Translational Sciences, Duarte, CA
| | - Y Jin
- City of Hope, Beckman Research Institute, Department of Integrative Translational Sciences, Duarte, CA
| | - Y Amzaleg
- City of Hope, Beckman Research Institute, Department of Integrative Translational Sciences, Duarte, CA
| | - M Postel
- University of Southern California, Keck School of Medicine of USC, Department of Translational Genomics, Los Angeles, CA
| | - D W Craig
- City of Hope, Beckman Research Institute, Department of Integrative Translational Sciences, Duarte, CA
- City of Hope Comprehensive Cancer Center, Duarte, CA
| | - J D Carpten
- City of Hope, Beckman Research Institute, Department of Integrative Translational Sciences, Duarte, CA
- City of Hope Comprehensive Cancer Center, Duarte, CA
| | - B Salhia
- University of Southern California, Keck School of Medicine of USC, Department of Translational Genomics, Los Angeles, CA
- University of Southern California, USC Norris Comprehensive Cancer Center, Los Angeles, CA
| | - D Hernandez
- University of Southern California, Keck School of Medicine of USC, Division of Medical Oncology, Los Angeles, CA
| | - N Gutierrez
- University of Southern California, Keck School of Medicine of USC, Division of Medical Oncology, Los Angeles, CA
| | - C N Ricker
- University of Southern California, USC Norris Comprehensive Cancer Center, Los Angeles, CA
- University of Southern California, Keck School of Medicine of USC, Division of Medical Oncology, Los Angeles, CA
- Los Angeles General Medical Center, Los Angeles, CA
| | - J O Culver
- University of Southern California, USC Norris Comprehensive Cancer Center, Los Angeles, CA
- University of Southern California, Keck School of Medicine of USC, Division of Medical Oncology, Los Angeles, CA
| | - C E Chavez
- University of Southern California, USC Norris Comprehensive Cancer Center, Los Angeles, CA
| | - M C Stern
- University of Southern California, USC Norris Comprehensive Cancer Center, Los Angeles, CA
- University of Southern California, Keck School of Medicine of USC, Department of Population and Public Health Sciences, Los Angeles, CA
| | - L Baezconde-Garbanati
- University of Southern California, USC Norris Comprehensive Cancer Center, Los Angeles, CA
- University of Southern California, Keck School of Medicine of USC, Department of Population and Public Health Sciences, Los Angeles, CA
| | - H J Lenz
- University of Southern California, USC Norris Comprehensive Cancer Center, Los Angeles, CA
- University of Southern California, Keck School of Medicine of USC, Division of Medical Oncology, Los Angeles, CA
| | - E Velazquez-Villarreal
- City of Hope, Beckman Research Institute, Department of Integrative Translational Sciences, Duarte, CA
- City of Hope Comprehensive Cancer Center, Duarte, CA
| |
Collapse
|
6
|
Ho KH, Trapp M, Guida C, Ivanova EL, De Jaime-Soguero A, Jabali A, Thomas C, Salasova A, Bernatík O, Salio C, Horschitz S, Hasselblatt M, Sassoè-Pognetto M, Čajánek L, Ishikawa H, Schroten H, Schwerk C, Acebrón SP, Angel P, Koch P, Patrizi A. Activation of Wnt/β-catenin signaling is critical for the tumorigenesis of choroid plexus. Neuro Oncol 2025; 27:106-122. [PMID: 39215664 PMCID: PMC11726344 DOI: 10.1093/neuonc/noae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The choroid plexus (ChP) is the secretory epithelial structure located in the brain ventricles. Choroid plexus tumors (CPTs) are rare neoplasms predominantly occurring in young patients with intensified malignancy in children. CPT treatment is hindered by insufficient knowledge of tumor pathology and the limited availability of valid models. METHODS Genomic and transcriptomic data from CPT patients were analyzed to identify the putative pathological pathway. Cellular and molecular techniques were employed to validate bioinformatic results in CPT patient samples. Pharmacologic inhibition of Wnt/β-catenin signaling was assessed in CPT cells. Cell-based assays of ChP cell lines were performed following CRISPR-Cas9-derived knockout and overexpression of Wnt/β-catenin pathway genes. A 3D CPT model was generated through CRISPR-Cas9-derived knockout of APC. RESULTS We discovered that Wnt/β-catenin signaling is activated in human CPTs, likely as a consequence of large-scale chromosomal instability events of the CPT genomes. We demonstrated that CPT-derived cells depend on autocrine Wnt/β-catenin signaling for survival. Constitutive Wnt/β-catenin pathway activation, either through knockout of the negative regulator APC or overexpression of the ligand WNT3A, induced tumorigenic properties in ChP 2D in vitro models. Increased activation of the Wnt/β-catenin pathway in ChP organoids, through treatment with a potent GSK3β inhibitor, reduced the differentiation of mature ChP epithelial cells. Remarkably, the depletion of APC was sufficient to induce the oncogenic transformation of ChP organoids. CONCLUSIONS Our research identifies Wnt/β-catenin signaling as a critical driver of CPT tumorigenesis and provides the first 3D in vitro model for future pathological and therapeutic studies of CPT.
Collapse
Affiliation(s)
- Kim Hoa Ho
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marleen Trapp
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Catello Guida
- German Cancer Research Center, Heidelberg, Germany
- Hector Institute for Translational Brain Research, Mannheim, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ekaterina L Ivanova
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, Heidelberg, Germany
| | | | - Ammar Jabali
- German Cancer Research Center, Heidelberg, Germany
- Hector Institute for Translational Brain Research, Mannheim, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christian Thomas
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Alena Salasova
- Danish Research Institute of Translational Neuroscience DANDRITE, and Center of Excellence PROMEMO, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ondřej Bernatík
- Section of Animal Physiology and Immunology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
- Laboratory of Cilia and Centrosome Biology, Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Chiara Salio
- Department of Veterinary Sciences, Turin University, Grugliasco, Italy
| | - Sandra Horschitz
- German Cancer Research Center, Heidelberg, Germany
- Hector Institute for Translational Brain Research, Mannheim, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | | | - Lukáš Čajánek
- Section of Animal Physiology and Immunology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
- Laboratory of Cilia and Centrosome Biology, Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Horst Schroten
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Christian Schwerk
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Sergio P Acebrón
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Peter Angel
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, Heidelberg, Germany
| | - Philipp Koch
- German Cancer Research Center, Heidelberg, Germany
- Hector Institute for Translational Brain Research, Mannheim, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Annarita Patrizi
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
- Interdisciplinary Center for Neuroscience, Heidelberg University, Heidelberg, Germany
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
7
|
Shen Y, Wang J, Dai Y, Wan X, Zhang J, Le Q. RSPO3 Promotes Proliferation and Self-Renewal of Limbal Epithelial Stem Cells Through a WNT/β-Catenin-Independent Signaling Pathway. Invest Ophthalmol Vis Sci 2025; 66:8. [PMID: 39760688 PMCID: PMC11717127 DOI: 10.1167/iovs.66.1.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025] Open
Abstract
Purpose R-spondin3 (RSPO3), a mammalian-specific amplifier of WNT signaling pathway, maintains the homeostasis of various adult stem cells. However, its expression at the limbus and the effect on limbal epithelial stem cells (LESCs) remains unclear. We investigated the impact of RSPO3 on the proliferation and self-renewal of LESCs and explored its molecular mechanisms. Methods The expression of four RSPO subtypes at the limbus were detected. Co-cultured with RSPO3 in vitro, the cell outgrowth area and cell density of human LESCs (hLESCs) were measured, along with EdU assay and evaluation of biomarkers of cell proliferation (Ki67) and stemness (△Np63 and ABCG2). The expression of key molecules in WNT/β-catenin signaling pathway were investigated in RSPO3-co-incubated hLESCs and controls. The effect of RSPO3 on corneal epithelium wound recovery in vivo was investigated in a mouse model of corneal epithelium injury. Results Among four subtypes of RSPO protein, only the RSPO3 isoform was stably expressed at the human limbus. RSPO3 promoted the proliferation and stemness maintenance of hLESCs in vitro in a dose-dependent manner when its concentration ≤ 100 ng/mL, and this effect was not impaired when the activation of β-catenin was inhibited by XAV939, indicating that the effect of RSPO3 on hLESCs was not dependent on canonical WNT/β-catenin signaling pathway. Exogenous RSPO3 accelerated epithelial wound healing by enhancing the proliferation and self-renewal of residual LESCs. Conclusions RSPO3 promotes the proliferation and self-renewal of LESCs through a WNT/β-catenin-independent signaling pathway which might have translational significance in the treatment of corneal epithelium injury and limbal stem cell deficiency.
Collapse
Affiliation(s)
- Yan Shen
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Department of Ophthalmology, Huadong Hospital of Fudan University, Shanghai, China
| | - Jiajia Wang
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
| | - Yiqin Dai
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Research Centre, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
| | - Xichen Wan
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
| | - Jing Zhang
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Research Centre, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
| | - Qihua Le
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Research Centre, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Eye, Ear, Nose and Throat Hospital of Fudan University, Shanghai, China
| |
Collapse
|
8
|
Luo D, Zheng J, Lv S, Sheng R, Chen M, He X, Zhang X. Wnt specifically induces FZD5/8 endocytosis and degradation and the involvement of RSPO-ZNRF3/RNF43 and DVL. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.619000. [PMID: 39463927 PMCID: PMC11507892 DOI: 10.1101/2024.10.18.619000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Frizzled (FZD) proteins are the principal receptors of the Wnt signaling pathway. However, whether Wnt ligands induce FZD endocytosis and degradation remains elusive. The transmembrane E3 ubiquitin ligases ZNRF3 and RNF43 promote the endocytosis and degradation of FZD receptors to inhibit Wnt signaling, and their function is antagonized by R-spondin (RSPO) proteins. However, the dependency of RSPO-ZNRF3/RNF43-mediated FZD endocytosis and degradation on Wnt stimulation, as well as the specificity of this degradation for different FZD, remains unclear. Here, we demonstrated that Wnt specifically induces FZD5/8 endocytosis and degradation in a ZNRF3/RNF43-dependent manner. ZNRF3/RNF43 selectively targets FZD5/8 for degradation upon Wnt stimulation. RSPO1 enhances Wnt signaling by specifically stabilizing FZD5/8. Wnt promotes the interaction between FZD5 and RNF43. We further demonstrated that DVL proteins promote ligand-independent endocytosis of FZD but are dispensable for Wnt-induced FZD5/8 endocytosis and degradation. Our results reveal a novel negative regulatory mechanism of Wnt signaling at the receptor level and illuminate the mechanism by which RSPO-ZNRF3/RNF43 regulates Wnt signaling, which may provide new insights into regenerative medicine and cancer therapy.
Collapse
Affiliation(s)
- Dong Luo
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- These authors contributed equally to this work
| | - Jing Zheng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- These authors contributed equally to this work
| | - Shuning Lv
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ren Sheng
- College of Life and Health Science, Northeastern University, Shenyang, China
| | - Maorong Chen
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Xi He
- The F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Xinjun Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
| |
Collapse
|
9
|
Van Gils J, Karkar S, Barre A, Ley-Ngardigal S, Nothof S, Claverol S, Tokarski C, Trani JP, Chevalier R, Broucqsault N, El Yazidi C, Lacombe D, Fergelot P, Magdinier F. Transcriptome and acetylome profiling identify crucial steps of neuronal differentiation in Rubinstein-Taybi syndrome. Commun Biol 2024; 7:1331. [PMID: 39407026 PMCID: PMC11480426 DOI: 10.1038/s42003-024-06939-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Rubinstein-Taybi syndrome (RTS) is a rare and severe genetic developmental disorder characterized by multiple congenital anomalies and intellectual disability. CREBBP and EP300, the two genes known to cause RTS encode transcriptional coactivators with a catalytic lysine acetyltransferase (KAT) activity. Loss of CBP or p300 function results in a deficit in protein acetylation, in particular at histones. In RTS, nothing is known on the consequences of the loss of histone acetylation on the transcriptomic profiles during neuronal differentiation. To address this question, we differentiated induced pluripotent stem cells from RTS patients carrying a recurrent CREBBP mutation that inactivates the KAT domain into cortical and pyramidal neurons. By comparing their acetylome and their transcriptome at different neuronal differentiation time points, we identified 25 specific acetylated histone residues altered in RTS. We also identified the transition between neural progenitors and immature neurons as a critical step of the differentiation process, with a delayed neuronal maturation in RTS. Overall, this study opens new perspectives in the definition of epigenetic biomarkers for RTS, whose methodology could be extended to other chromatinopathies.
Collapse
Affiliation(s)
- Julien Van Gils
- Department of Medical Genetics, University Hospital of Bordeaux and INSERM U1211, University of Bordeaux, Bordeaux, France.
| | - Slim Karkar
- Bordeaux Bioinformatic Center CBiB, University of Bordeaux, Bordeaux, France
| | - Aurélien Barre
- Bordeaux Bioinformatic Center CBiB, University of Bordeaux, Bordeaux, France
| | - Seyta Ley-Ngardigal
- Department of Medical Genetics, University Hospital of Bordeaux and INSERM U1211, University of Bordeaux, Bordeaux, France
| | - Sophie Nothof
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | - Stéphane Claverol
- Bordeaux Proteomic Platform, University of Bordeaux, Bordeaux, France
| | - Caroline Tokarski
- Bordeaux Proteomic Platform, University of Bordeaux, Bordeaux, France
| | | | - Raphael Chevalier
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | | | - Claire El Yazidi
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | - Didier Lacombe
- Department of Medical Genetics, University Hospital of Bordeaux and INSERM U1211, University of Bordeaux, Bordeaux, France
| | - Patricia Fergelot
- Department of Medical Genetics, University Hospital of Bordeaux and INSERM U1211, University of Bordeaux, Bordeaux, France
| | | |
Collapse
|
10
|
Varshini MS, Reddy RA, Krishnamurthy PT, Wadhwani A. Harmony of Wnt pathway in Alzheimer's: Navigating the multidimensional progression from preclinical to clinical stages. Neurosci Biobehav Rev 2024; 165:105863. [PMID: 39179059 DOI: 10.1016/j.neubiorev.2024.105863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/14/2024] [Accepted: 08/18/2024] [Indexed: 08/26/2024]
Abstract
The Wnt pathway stands out as a pivotal signal transduction pathway, operating through two distinct modes of signaling: the canonical/β-catenin pathway and the non-canonical pathway. Among these, the canonical pathway assumes a paramount role in various physiological and pathological processes within the human body. Particularly in the brain, Wnt exhibits involvement in fundamental physiological events including neuronal differentiation/survival, axonogenesis, neural stem cell regulation, synaptic plasticity, and cell cycle modulation. Notably, scientific evidence underscores the critical role of the Wnt pathway in the pathogenesis of Alzheimer's disease (AD), correlating with its involvement in key pathological features such as tau tangles, Amyloid-β plaques, synaptic dysfunction, oxidative stress, mitochondrial dysfunction, cognitive impairments, and disruption of the blood-brain barrier integrity. This review aims to comprehensively explore the involvement and significance of Wnt signaling in Alzheimer's. Furthermore, it delves into recent advancements in research on Wnt signaling, spanning from preclinical investigations to clinical trials.
Collapse
Affiliation(s)
- Magham Sai Varshini
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, TN 643001, India
| | - Ramakkamma Aishwarya Reddy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, TN 643001, India
| | | | - Ashish Wadhwani
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, TN 643001, India; Faculty of Health Sciences, School of Pharmacy, JSS Academy of Higher Education and Research, Mauritius, Vacoas 73304, Mauritius
| |
Collapse
|
11
|
Niehrs C, Seidl C, Lee H. An "R-spondin code" for multimodal signaling ON-OFF states. Bioessays 2024; 46:e2400144. [PMID: 39180250 DOI: 10.1002/bies.202400144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
R-spondins (RSPOs) are a family of secreted proteins and stem cell growth factors that are potent co-activators of Wnt signaling. Recently, RSPO2 and RSPO3 were shown to be multifunctional, not only amplifying Wnt- but also binding BMP- and FGF receptors to downregulate signaling. The common mechanism underlying these diverse functions is that RSPO2 and RSPO3 act as "endocytosers" that link transmembrane proteins to ZNRF3/RNF43 E3 ligases and trigger target internalization. Thus, RSPOs are natural protein targeting chimeras for cell surface proteins. Conducting data mining and cell surface binding assays we report additional candidate RSPO targets, including SMO, PTC1,2, LGI1, ROBO4, and PTPR(F/S). We propose that there is an "R-spondin code" that imparts combinatorial signaling ON-OFF states of multiple growth factors. This code involves the modular RSPO domains, notably distinct motifs in the divergent RSPO-TSP1 domains to mediate target interaction and internalization. The RSPO code offers a novel framework for the understanding how diverse signaling pathways may be coordinately regulated in development and disease.
Collapse
Affiliation(s)
- Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Carina Seidl
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Hyeyoon Lee
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
12
|
Olczak A, Pieczonka TD, Ławicki S, Łukaszyk K, Pulawska-Czub A, Cambier L, Kobielak K. The overexpression of R-spondin 3 affects hair morphogenesis and hair development along with the formation and maturation of the hair follicle stem cells. Front Physiol 2024; 15:1424077. [PMID: 39351282 PMCID: PMC11439821 DOI: 10.3389/fphys.2024.1424077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
Mice hair follicles (HFs) are a valuable model for studying various aspects of hair biology, including morphogenesis, development, and regeneration due to their easily observable phenotype and genetic manipulability. The initiation and progression of hair follicle morphogenesis, as well as the hair follicle cycle, are regulated by various signaling pathways, of which the main role is played by the Wingless-type MMTV integration site family (Wnt) and the Bone Morphogenic Protein (BMP). During the hair follicle cycle, the BMP pathway maintains hair follicle stem cells (HFSCs) in a dormant state while the Wnt pathway activates them for hair growth. Given the pivotal role of the Wnt pathway in hair biology and HFSCs regulation, we investigated the influence of the Wnt modulator - R-spondin 3 (Rspo3), in these processes. For this purpose, we developed a transgenic mice model with the overexpression of Rspo3 (Rspo3GOF) in the whole ectoderm and its derivatives, starting from early morphogenesis. Rspo3GOF mice exhibited a distinct phenotype with sparse hair and visible bald areas, caused by reduced proliferation and increased apoptosis of hair matrix progenitor cells, which resulted in a premature anagen-to-catagen transition with a shortened growth phase and decreased overall length of all hair types. In addition, Rspo3GOF promoted induction of auchene and awl, canonical Wnt-dependent hair type during morphogenesis, but the overall hair amount remained reduced. We also discovered a delay in the pre-bulge formation during morphogenesis and prolonged immaturity of the HFSC population in the bulge region postnatally, which further impaired proper hair regeneration throughout the mice's lifespan. Our data supported that Rspo3 function observed in our model works in HFSCs' formation of pre-bulge during morphogenesis via enhancing activation of the canonical Wnt pathway, whereas in contrast, in the postnatal immature bulge, activation of canonical Wnt signaling was attenuated. In vitro studies on keratinocytes revealed changes in proliferation, migration, and colony formation, highlighting the inhibitory effect of constitutive overexpression of Rspo3 on these cellular processes. Our research provides novel insights into the role of Rspo3 in the regulation of hair morphogenesis and development, along with the formation and maturation of the HFSCs, which affect hair regeneration.
Collapse
Affiliation(s)
- Alicja Olczak
- Centre of New Technologies (CeNT), University of Warsaw (UW), Warsaw, Poland
| | - Tomasz D. Pieczonka
- Centre of New Technologies (CeNT), University of Warsaw (UW), Warsaw, Poland
| | - Szymon Ławicki
- Centre of New Technologies (CeNT), University of Warsaw (UW), Warsaw, Poland
| | - Konrad Łukaszyk
- Centre of New Technologies (CeNT), University of Warsaw (UW), Warsaw, Poland
| | - Anna Pulawska-Czub
- Centre of New Technologies (CeNT), University of Warsaw (UW), Warsaw, Poland
| | - Linda Cambier
- The Vision Center and The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Krzysztof Kobielak
- Centre of New Technologies (CeNT), University of Warsaw (UW), Warsaw, Poland
| |
Collapse
|
13
|
Niehrs C, Zapparoli E, Lee H. 'Three signals - three body axes' as patterning principle in bilaterians. Cells Dev 2024:203944. [PMID: 39121910 DOI: 10.1016/j.cdev.2024.203944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
In vertebrates, the three orthogonal body axes, anteroposterior (AP), dorsoventral (DV) and left-right (LR) are determined at gastrula and neurula stages by the Spemann-Mangold organizer and its equivalents. A common feature of AP and DV axis formation is that an evolutionary conserved interplay between growth factors (Wnt, BMP) and their extracellular antagonists (e.g. Dkk1, Chordin) creates signaling gradients for axial patterning. Recent work showed that LR patterning in Xenopus follows the same principle, with R-spondin 2 (Rspo2) as an extracellular FGF antagonist, which creates a signaling gradient that determines the LR vector. That a triad of anti-FGF, anti-BMP, and anti-Wnt governs LR, DV, and AP axis formation reveals a unifying principle in animal development. We discuss how cross-talk between these three signals confers integrated AP-DV-LR body axis patterning underlying developmental robustness, size scaling, and harmonious regulation. We propose that Urbilateria featured three orthogonal body axes that were governed by a Cartesian coordinate system of orthogonal Wnt/AP, BMP/DV, and FGF/LR signaling gradients.
Collapse
Affiliation(s)
- Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany; Institute of Molecular Biology (IMB), 55128 Mainz, Germany.
| | | | - Hyeyoon Lee
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
14
|
Shi DL. Canonical and Non-Canonical Wnt Signaling Generates Molecular and Cellular Asymmetries to Establish Embryonic Axes. J Dev Biol 2024; 12:20. [PMID: 39189260 PMCID: PMC11348223 DOI: 10.3390/jdb12030020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/08/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
The formation of embryonic axes is a critical step during animal development, which contributes to establishing the basic body plan in each particular organism. Wnt signaling pathways play pivotal roles in this fundamental process. Canonical Wnt signaling that is dependent on β-catenin regulates the patterning of dorsoventral, anteroposterior, and left-right axes. Non-canonical Wnt signaling that is independent of β-catenin modulates cytoskeletal organization to coordinate cell polarity changes and asymmetric cell movements. It is now well documented that components of these Wnt pathways biochemically and functionally interact to mediate cell-cell communications and instruct cellular polarization in breaking the embryonic symmetry. The dysfunction of Wnt signaling disrupts embryonic axis specification and proper tissue morphogenesis, and mutations of Wnt pathway genes are associated with birth defects in humans. This review discusses the regulatory roles of Wnt pathway components in embryonic axis formation by focusing on vertebrate models. It highlights current progress in decoding conserved mechanisms underlying the establishment of asymmetry along the three primary body axes. By providing an in-depth analysis of canonical and non-canonical pathways in regulating cell fates and cellular behaviors, this work offers insights into the intricate processes that contribute to setting up the basic body plan in vertebrate embryos.
Collapse
Affiliation(s)
- De-Li Shi
- Department of Medical Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China;
- Laboratory of Developmental Biology, Centre National de la Recherche Scientifique (CNRS), UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne University, 75005 Paris, France
| |
Collapse
|
15
|
Lungu CN, Mangalagiu II, Gurau G, Mehedinti MC. Variations of VEGFR2 Chemical Space: Stimulator and Inhibitory Peptides. Int J Mol Sci 2024; 25:7787. [PMID: 39063029 PMCID: PMC11276785 DOI: 10.3390/ijms25147787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The kinase pathway plays a crucial role in blood vessel function. Particular attention is paid to VEGFR type 2 angiogenesis and vascular morphogenesis as the tyrosine kinase pathway is preferentially activated. In silico studies were performed on several peptides that affect VEGFR2 in both stimulating and inhibitory ways. This investigation aims to examine the molecular properties of VEGFR2, a molecule primarily involved in the processes of vasculogenesis and angiogenesis. These relationships were defined by the interactions between Vascular Endothelial Growth Factor receptor 2 (VEGFR2) and the structural features of the systems. The chemical space of the inhibitory peptides and stimulators was described using topological and energetic properties. Furthermore, chimeric models of stimulating and inhibitory proteins (for VEGFR2) were computed using the protein system structures. The interaction between the chimeric proteins and VEGFR was computed. The chemical space was further characterized using complex manifolds and high-dimensional data visualization. The results show that a slightly similar chemical area is shared by VEGFR2 and stimulating and inhibitory proteins. On the other hand, the stimulator peptides and the inhibitors have distinct chemical spaces.
Collapse
Affiliation(s)
- Claudiu N. Lungu
- Department of Functional and Morphological Science, Faculty of Medicine and Pharmacy, Dunarea de Jos University, 800010 Galati, Romania; (G.G.); (M.C.M.)
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol 1st Bvd, 700506 Iasi, Romania
| | - Ionel I. Mangalagiu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol 1st Bvd, 700506 Iasi, Romania
| | - Gabriela Gurau
- Department of Functional and Morphological Science, Faculty of Medicine and Pharmacy, Dunarea de Jos University, 800010 Galati, Romania; (G.G.); (M.C.M.)
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol 1st Bvd, 700506 Iasi, Romania
| | - Mihaela Cezarina Mehedinti
- Department of Functional and Morphological Science, Faculty of Medicine and Pharmacy, Dunarea de Jos University, 800010 Galati, Romania; (G.G.); (M.C.M.)
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol 1st Bvd, 700506 Iasi, Romania
| |
Collapse
|
16
|
Song P, Gao Z, Bao Y, Chen L, Huang Y, Liu Y, Dong Q, Wei X. Wnt/β-catenin signaling pathway in carcinogenesis and cancer therapy. J Hematol Oncol 2024; 17:46. [PMID: 38886806 PMCID: PMC11184729 DOI: 10.1186/s13045-024-01563-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
The Wnt/β-catenin signaling pathway plays a crucial role in various physiological processes, encompassing development, tissue homeostasis, and cell proliferation. Under normal physiological conditions, the Wnt/β-catenin signaling pathway is meticulously regulated. However, aberrant activation of this pathway and downstream target genes can occur due to mutations in key components of the Wnt/β-catenin pathway, epigenetic modifications, and crosstalk with other signaling pathways. Consequently, these dysregulations contribute significantly to tumor initiation and progression. Therapies targeting the Wnt/β-catenin signaling transduction have exhibited promising prospects and potential for tumor treatment. An increasing number of medications targeting this pathway are continuously being developed and validated. This comprehensive review aims to summarize the latest advances in our understanding of the role played by the Wnt/β-catenin signaling pathway in carcinogenesis and targeted therapy, providing valuable insights into acknowledging current opportunities and challenges associated with targeting this signaling pathway in cancer research and treatment.
Collapse
Affiliation(s)
- Pan Song
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Zirui Gao
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yige Bao
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Li Chen
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yuhe Huang
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yanyan Liu
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Qiang Dong
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
17
|
Liu Y, Fan M, Yang J, Mihaljević L, Chen KH, Ye Y, Sun S, Qiu Z. KAT6A deficiency impairs cognitive functions through suppressing RSPO2/Wnt signaling in hippocampal CA3. SCIENCE ADVANCES 2024; 10:eadm9326. [PMID: 38758792 PMCID: PMC11100567 DOI: 10.1126/sciadv.adm9326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
Intellectual disability (ID) affects ~2% of the population and ID-associated genes are enriched for epigenetic factors, including those encoding the largest family of histone lysine acetyltransferases (KAT5-KAT8). Among them is KAT6A, whose mutations cause KAT6A syndrome, with ID as a common clinical feature. However, the underlying molecular mechanism remains unknown. Here, we find that KAT6A deficiency impairs synaptic structure and plasticity in hippocampal CA3, but not in CA1 region, resulting in memory deficits in mice. We further identify a CA3-enriched gene Rspo2, encoding Wnt activator R-spondin 2, as a key transcriptional target of KAT6A. Deletion of Rspo2 in excitatory neurons impairs memory formation, and restoring RSPO2 expression in CA3 neurons rescues the deficits in Wnt signaling and learning-associated behaviors in Kat6a mutant mice. Collectively, our results demonstrate that KAT6A-RSPO2-Wnt signaling plays a critical role in regulating hippocampal CA3 synaptic plasticity and cognitive function, providing potential therapeutic targets for KAT6A syndrome and related neurodevelopmental diseases.
Collapse
Affiliation(s)
- Yongqing Liu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Minghua Fan
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Junhua Yang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ljubica Mihaljević
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kevin Hong Chen
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yingzhi Ye
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shuying Sun
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhaozhu Qiu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
18
|
Shinozuka T, Aoki M, Hatakeyama Y, Sasai N, Okamoto H, Takada S. Rspo1 and Rspo3 are required for sensory lineage neural crest formation in mouse embryos. Dev Dyn 2024; 253:435-446. [PMID: 37767857 DOI: 10.1002/dvdy.659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND R-spondins (Rspos) are secreted proteins that modulate Wnt/β-catenin signaling. At the early stages of spinal cord development, Wnts (Wnt1, Wnt3a) and Rspos (Rspo1, Rspo3) are co-expressed in the roof plate, suggesting that Rspos are involved in development of dorsal spinal cord and neural crest cells in cooperation with Wnt ligands. RESULTS Here, we found that Rspo1 and Rspo3, as well as Wnt1 and Wnt3a, maintained roof-plate-specific expression until late embryonic stages. Rspo1- and Rspo3-double-knock-out (dKO) embryos partially exhibited the phenotype of Wnt1 and Wnt3a dKO embryos. While the number of Ngn2-positive sensory lineage neural crest cells is reduced in Rspo-dKO embryos, development of dorsal spinal cord, including its size and dorso-ventral patterning in early development, elongation of the roof plate, and proliferation of ependymal cells, proceeded normally. Consistent with these slight defects, Wnt/β-catenin signaling was not obviously changed in developing spinal cord of dKO embryos. CONCLUSIONS Our results show that Rspo1 and Rspo3 are dispensable for most developmental processes involving roof plate-derived Wnt ligands, except for specification of a subtype of neural crest cells. Thus, Rspos may modulate Wnt/β-catenin signaling in a context-dependent manner.
Collapse
Affiliation(s)
- Takuma Shinozuka
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Motoko Aoki
- Laboratory for Developmental Gene Regulation, Brain Science Institute, RIKEN, Wako, Saitama, Japan
| | - Yudai Hatakeyama
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
| | - Noriaki Sasai
- Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Hitoshi Okamoto
- Laboratory for Developmental Gene Regulation, Brain Science Institute, RIKEN, Wako, Saitama, Japan
| | - Shinji Takada
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
| |
Collapse
|
19
|
Gao Y, Zhai W, Sun L, Du X, Wang X, Mulholland MW, Yin Y, Zhang W. Hepatic LGR4 aggravates cholestasis-induced liver injury in mice. Am J Physiol Gastrointest Liver Physiol 2024; 326:G460-G472. [PMID: 38440827 PMCID: PMC11213478 DOI: 10.1152/ajpgi.00127.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/06/2024]
Abstract
Current therapy for hepatic injury induced by the accumulation of bile acids is limited. Leucine-rich repeat G protein-coupled receptor 4 (LGR4), also known as GPR48, is critical for cytoprotection and cell proliferation. Here, we reported a novel function for the LGR4 in cholestatic liver injury. In the bile duct ligation (BDL)-induced liver injury model, hepatic LGR4 expression was significantly downregulated. Deficiency of LGR4 in hepatocytes (Lgr4LKO) notably decreased BDL-induced liver injury measured by hepatic necrosis, fibrosis, and circulating liver enzymes and total bilirubin. Levels of total bile acids in plasma and liver were markedly reduced in these mice. However, deficiency of LGR4 in macrophages (Lyz2-Lgr4MKO) demonstrated no significant effect on liver injury induced by BDL. Deficiency of LGR4 in hepatocytes significantly attenuated S1PR2 and the phosphorylation of protein kinase B (AKT) induced by BDL. Recombinant Rspo1 and Rspo3 potentiated the taurocholic acid (TCA)-induced upregulation in S1PR2 and phosphorylation of AKT in hepatocytes. Inhibition of S1PR2-AKT signaling by specific AKT or S1PR2 inhibitors blocked the increase of bile acid secretion induced by Rspo1/3 in hepatocytes. Our studies indicate that the R-spondins (Rspos)-LGR4 signaling in hepatocytes aggravates the cholestatic liver injury by potentiating the production of bile acids in a S1PR2-AKT-dependent manner.NEW & NOTEWORTHY Deficiency of LGR4 in hepatocytes alleviates BDL-induced liver injury. LGR4 in macrophages demonstrates no effect on BDL-induced liver injury. Rspos-LGR4 increases bile acid synthesis and transport via potentiating S1PR2-AKT signaling in hepatocytes.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, People's Republic of China
| | - Wenbo Zhai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, People's Republic of China
| | - Lijun Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, People's Republic of China
| | - Xueqian Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, People's Republic of China
| | - Xianfeng Wang
- Department of Pharmacology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, People's Republic of China
| | - Michael W Mulholland
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, United States
| | - Yue Yin
- Department of Pharmacology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, People's Republic of China
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, People's Republic of China
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, United States
| |
Collapse
|
20
|
Srivastava A, Rikhari D, Srivastava S. RSPO2 as Wnt signaling enabler: Important roles in cancer development and therapeutic opportunities. Genes Dis 2024; 11:788-806. [PMID: 37692504 PMCID: PMC10491879 DOI: 10.1016/j.gendis.2023.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 01/16/2023] [Indexed: 09/12/2023] Open
Abstract
R-spondins are secretory proteins localized in the endoplasmic reticulum and Golgi bodies and are processed through the secretory pathway. Among the R-spondin family, RSPO2 has emanated as a novel regulator of Wnt signaling, which has now been acknowledged in numerous in vitro and in vivo studies. Cancer is an abnormal growth of cells that proliferates and spreads uncontrollably due to the accumulation of genetic and epigenetic factors that constitutively activate Wnt signaling in various types of cancer. Colorectal cancer (CRC) begins when cells in the colon and rectum follow an indefinite pattern of division due to aberrant Wnt activation as one of the key hallmarks. Decades-long progress in research on R-spondins has demonstrated their oncogenic function in distinct cancer types, particularly CRC. As a critical regulator of the Wnt pathway, it modulates several phenotypes of cells, such as cell proliferation, invasion, migration, and cancer stem cell properties. Recently, RSPO mutations, gene rearrangements, fusions, copy number alterations, and altered gene expression have also been identified in a variety of cancers, including CRC. In this review, we addressed the recent updates regarding the recurrently altered R-spondins with special emphasis on the RSPO2 gene and its involvement in potentiating Wnt signaling in CRC. In addition to the compelling physiological and biological roles in cellular fate and regulation, we propose that RSPO2 would be valuable as a potential biomarker for prognostic, diagnostic, and therapeutic use in CRC.
Collapse
Affiliation(s)
- Ankit Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh 211004, India
| | - Deeksha Rikhari
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh 211004, India
| | - Sameer Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh 211004, India
| |
Collapse
|
21
|
Srivastava A, Srivastava S. Multiomics data identifies RSPO2 as a prognostic biomarker in human tumors associated with pan-cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 139:469-499. [PMID: 38448143 DOI: 10.1016/bs.apcsb.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
RSPO2 protein may provide valuable insights into the mechanism underlying various types of tumorigenesis. The role of RSPO2 in pan-cancer has not been reported so far. Therefore, this study aimed to provide a comprehensive analysis of RSPO2 from a pan-cancer perspective employing multiomics data. The expression profile and function of RSPO2 across different tumors were investigated using various web-based tools UALCAN, GEPIA, TIMER, Human Protein Atlas, cBioPortal, TISIDB, STRING, and Metascape to interpret the expression profile, promoter methylation status, genomic alterations, survival analysis, protein-protein interaction, correlation with immune cell subtypes, tumor immune microenvironment and enrichment analysis. Comprehensive pan-cancer analysis indicated that RSPO2 was significantly downregulated in eleven and upregulated in five tumor types compared to normal tissues, validation results further suggest RSPO2 was downregulated in most of the tumors. The protein level expression of RSPO2 was mostly low in malignant tissues. We found that RSPO2 was significantly related to individual pathological stages in BLCA, COAD, LUAD and LUSC. Prognostic analysis indicates that the high RSPO2 expression was significantly correlated with the poor prognosis in BRCA, KICH, KIRP, READ, and UCES. Furthermore, RSPO2 is frequently amplified, exhibits hypermethylated promoter in most cancers, and is associated with immune subtypes, molecular subtypes and immune cell infiltration. Finally, enrichment analysis showed that RSPO2 is involved in the regulation of the canonical Wnt pathway and neuronal development. The overall comprehensive pan-cancer analysis affirms that RSPO2 could be a promising diagnostic and prognostic biomarker and latent therapy target in the future.
Collapse
Affiliation(s)
- Ankit Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh, India
| | - Sameer Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh, India.
| |
Collapse
|
22
|
Tietze E, Barbosa AR, Araujo B, Euclydes V, Spiegelberg B, Cho HJ, Lee YK, Wang Y, McCord A, Lorenzetti A, Feltrin A, van de Leemput J, Di Carlo P, Ursini G, Benjamin KJ, Brentani H, Kleinman JE, Hyde TM, Weinberger DR, McKay R, Shin JH, Sawada T, Paquola ACM, Erwin JA. Human archetypal pluripotent stem cells differentiate into trophoblast stem cells via endogenous BMP5/7 induction without transitioning through naive state. Sci Rep 2024; 14:3291. [PMID: 38332235 PMCID: PMC10853519 DOI: 10.1038/s41598-024-53381-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
Primary human trophoblast stem cells (TSCs) and TSCs derived from human pluripotent stem cells (hPSCs) can potentially model placental processes in vitro. Yet, the pluripotent states and factors involved in the differentiation of hPSCs to TSCs remain poorly understood. In this study, we demonstrate that the primed pluripotent state can generate TSCs by activating pathways such as Epidermal Growth Factor (EGF) and Wingless-related integration site (WNT), and by suppressing tumor growth factor beta (TGFβ), histone deacetylases (HDAC), and Rho-associated protein kinase (ROCK) signaling pathways, all without the addition of exogenous Bone morphogenetic protein 4 (BMP4)-a condition we refer to as the TS condition. We characterized this process using temporal single-cell RNA sequencing to compare TS conditions with differentiation protocols involving BMP4 activation alone or BMP4 activation in conjunction with WNT inhibition. The TS condition consistently produced a stable, proliferative cell type that closely mimics first-trimester placental cytotrophoblasts, marked by the activation of endogenous retroviral genes and the absence of amnion expression. This was observed across multiple cell lines, including various primed induced pluripotent stem cell (iPSC) and embryonic stem cell (ESC) lines. Primed-derived TSCs can proliferate for over 30 passages and further specify into multinucleated syncytiotrophoblasts and extravillous trophoblast cells. Our research establishes that the differentiation of primed hPSCs to TSC under TS conditions triggers the induction of TMSB4X, BMP5/7, GATA3, and TFAP2A without progressing through a naive state. These findings propose that the primed hPSC state is part of a continuum of potency with the capacity to differentiate into TSCs through multiple routes.
Collapse
Affiliation(s)
- Ethan Tietze
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Andre Rocha Barbosa
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Inter-Institutional Graduate Program on Bioinformatics, University of São Paulo, São Paulo, SP, Brazil
| | - Bruno Araujo
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Veronica Euclydes
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, University of Sao Paulo, Medical School, São Paulo, Brazil
| | - Bailey Spiegelberg
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hyeon Jin Cho
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Yong Kyu Lee
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Yanhong Wang
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | | | | | - Arthur Feltrin
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Center for Mathematics, Computation and Cognition, Federal University of ABC, Santo André, SP, Brazil
| | - Joyce van de Leemput
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Center for Precision Disease Modeling and Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Pasquale Di Carlo
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Gianluca Ursini
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kynon J Benjamin
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Helena Brentani
- Inter-Institutional Graduate Program on Bioinformatics, University of São Paulo, São Paulo, SP, Brazil
- Department of Psychiatry, University of Sao Paulo, Medical School, São Paulo, Brazil
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ronald McKay
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Tomoyo Sawada
- Lieber Institute for Brain Development, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Apua C M Paquola
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jennifer A Erwin
- Lieber Institute for Brain Development, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
23
|
Lee H, Camuto CM, Niehrs C. R-Spondin 2 governs Xenopus left-right body axis formation by establishing an FGF signaling gradient. Nat Commun 2024; 15:1003. [PMID: 38307837 PMCID: PMC10837206 DOI: 10.1038/s41467-024-44951-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/10/2024] [Indexed: 02/04/2024] Open
Abstract
Establishment of the left-right (LR, sinistral, dextral) body axis in many vertebrate embryos relies on cilia-driven leftward fluid flow within an LR organizer (LRO). A cardinal question is how leftward flow triggers symmetry breakage. The chemosensation model posits that ciliary flow enriches a signaling molecule on the left side of the LRO that promotes sinistral cell fate. However, the nature of this sinistralizing signal has remained elusive. In the Xenopus LRO, we identified the stem cell growth factor R-Spondin 2 (Rspo2) as a symmetrically expressed, sinistralizing signal. As predicted for a flow-mediated signal, Rspo2 operates downstream of leftward flow but upstream of the asymmetrically expressed gene dand5. Unexpectedly, in LR patterning, Rspo2 acts as an FGF receptor antagonist: Rspo2 via its TSP1 domain binds Fgfr4 and promotes its membrane clearance by Znrf3-mediated endocytosis. Concordantly, we find that at flow-stage, FGF signaling is dextralizing and forms a gradient across the LRO, high on the dextral- and low on the sinistral side. Rspo2 gain- and loss-of function equalize this FGF signaling gradient and sinistralize and dextralize development, respectively. We propose that leftward flow of Rspo2 produces an FGF signaling gradient that governs LR-symmetry breakage.
Collapse
Affiliation(s)
- Hyeyoon Lee
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120, Heidelberg, Germany
| | - Celine Marie Camuto
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120, Heidelberg, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120, Heidelberg, Germany.
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany.
| |
Collapse
|
24
|
Scharr M, Hirt B, Neckel PH. Spatial gene expression profile of Wnt-signaling components in the murine enteric nervous system. Front Immunol 2024; 15:1302488. [PMID: 38322254 PMCID: PMC10846065 DOI: 10.3389/fimmu.2024.1302488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024] Open
Abstract
Introduction Wnt-signaling is a key regulator of stem cell homeostasis, extensively studied in the intestinal crypt and other metazoan tissues. Yet, there is hardly any data available on the presence of Wnt-signaling components in the adult enteric nervous system (ENS) in vivo. Methods Therefore, we employed RNAscope HiPlex-assay, a novel and more sensitive in situ hybridization technology. By amplifying target specific signals, this technique enables the detection of low abundance, tightly regulated RNA content as is the case for Wnt-signaling components. Additionally, we compared our data to previously published physiological single cell RNA and RiboTag-based RNA sequencing analyses of enteric gliosis using data-mining approaches. Results Our descriptive analysis shows that several components of the multidi-mensional regulatory network of the Wnt-signaling pathway are present in the murine ENS. The transport and secretion protein for Wnt-ligands Wntless as well as canonical (Wnt3a and Wnt2b) and non-canonical Wnt-ligands (Wnt5a, Wnt7a, Wnt8b and Wnt11) are detectable within submucosal and myenteric plexus. Further, corresponding Frizzled receptors (Fzd1, Fzd3, Fzd6, and Fzd7) and regulatory signaling mediators like R-Spondin/DKK ligands are present in the ENS of the small and large intestine. Further, data mining approaches revealed, that several Wnt-related molecules are expressed by enteric glial cell clusters and are dynamically regulated during the inflammatory manifestation of enteric gliosis. Discussion Our results suggest, that canonical and non-canonical Wnt-signaling has a much broader impact on the mature ENS and its cellular homeostasis in health and inflammation, than previously anticipated.
Collapse
Affiliation(s)
| | | | - Peter H. Neckel
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| |
Collapse
|
25
|
Zhang J, Liu G, Liu Y, Yang P, Xie J, Wei X. The biological functions and related signaling pathways of SPON2. Front Oncol 2024; 13:1323744. [PMID: 38264743 PMCID: PMC10803442 DOI: 10.3389/fonc.2023.1323744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Abstract
Spondin-2 (SPON2), also referred to as M-spondin or DIL-1, is a member of the extracellular matrix protein family known as Mindin-F-spondin (FS). SPON2 can be used as a broad-spectrum tumor marker for more than a dozen tumors, mainly prostate cancer. Meanwhile, SPON2 is also a potential biomarker for the diagnosis of certain non-tumor diseases. Additionally, SPON2 plays a pivotal role in regulating tumor metastasis and progression. In normal tissues, SPON2 has a variety of biological functions represented by promoting growth and development and cell proliferation. This paper presents a comprehensive overview of the regulatory mechanisms, diagnostic potential as a broad-spectrum biomarker, diverse biological functions, involvement in various signaling pathways, and clinical applications of SPON2.
Collapse
Affiliation(s)
- Jingrun Zhang
- Zhongshan Clinical College, Dalian University, Dalian, China
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Ge Liu
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Yuchen Liu
- Zhongshan Clinical College, Dalian University, Dalian, China
| | - Pei Yang
- Department of Neurology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Junyuan Xie
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaowei Wei
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| |
Collapse
|
26
|
Ando R, Shiraki Y, Miyai Y, Shimizu H, Furuhashi K, Minatoguchi S, Kato K, Kato A, Iida T, Mizutani Y, Ito K, Asai N, Mii S, Esaki N, Takahashi M, Enomoto A. Meflin is a marker of pancreatic stellate cells involved in fibrosis and epithelial regeneration in the pancreas. J Pathol 2024; 262:61-75. [PMID: 37796386 DOI: 10.1002/path.6211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/18/2023] [Accepted: 08/25/2023] [Indexed: 10/06/2023]
Abstract
Pancreatic stellate cells (PSCs) are stromal cells in the pancreas that play an important role in pancreatic pathology. In chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDAC), PSCs are known to get activated to form myofibroblasts or cancer-associated fibroblasts (CAFs) that promote stromal fibroinflammatory reactions. However, previous studies on PSCs were mainly based on the findings obtained using ex vivo expanded PSCs, with few studies that addressed the significance of in situ tissue-resident PSCs using animal models. Their contributions to fibrotic reactions in CP and PDAC are also lesser-known. These limitations in our understanding of PSC biology have been attributed to the lack of specific molecular markers of PSCs. Herein, we established Meflin (Islr), a glycosylphosphatidylinositol-anchored membrane protein, as a PSC-specific marker in both mouse and human by using human pancreatic tissue samples and Meflin reporter mice. Meflin-positive (Meflin+ ) cells contain lipid droplets and express the conventional PSC marker Desmin in normal mouse pancreas, with some cells also positive for Gli1, the marker of pancreatic tissue-resident fibroblasts. Three-dimensional analysis of the cleared pancreas of Meflin reporter mice showed that Meflin+ PSCs have long and thin cytoplasmic protrusions, and are localised on the abluminal side of vessels in the normal pancreas. Lineage tracing experiments revealed that Meflin+ PSCs constitute one of the origins of fibroblasts and CAFs in CP and PDAC, respectively. In these diseases, Meflin+ PSC-derived fibroblasts showed a distinctive morphology and distribution from Meflin+ PSCs in the normal pancreas. Furthermore, we showed that the genetic depletion of Meflin+ PSCs accelerated fibrosis and attenuated epithelial regeneration and stromal R-spondin 3 expression, thereby implying that Meflin+ PSCs and their lineage cells may support tissue recovery and Wnt/R-spondin signalling after pancreatic injury and PDAC development. Together, these data indicate that Meflin may be a marker specific to tissue-resident PSCs and useful for studying their biology in both health and disease. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Ryota Ando
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukihiro Shiraki
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki Miyai
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Shimizu
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuhiro Furuhashi
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shun Minatoguchi
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Katsuhiro Kato
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Kato
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tadashi Iida
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuyuki Mizutani
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kisuke Ito
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoya Asai
- Department of Molecular Pathology, Fujita Health University, Toyoake, Japan
| | - Shinji Mii
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobutoshi Esaki
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahide Takahashi
- Division of International Center for Cell and Gene Therapy, Fujita Health University, Toyoake, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan
| |
Collapse
|
27
|
Hwang B, Jeon MY, Jang JH, Cho YL, Lee DG, Min JK, Lee J, Park JG, Noh JH, Yang W, Lee NK. Coactivation of Tie2 and Wnt signaling using an antibody-R-spondin fusion potentiates therapeutic angiogenesis and vessel stabilization in hindlimb ischemia. MAbs 2024; 16:2435478. [PMID: 39607038 DOI: 10.1080/19420862.2024.2435478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024] Open
Abstract
Therapeutic angiogenesis by intentional formation of blood vessels is essential for treating various ischemic diseases, including limb ischemia. Because Wnt/β-catenin and angiopoietin-1/Tie2 signaling play important roles in endothelial survival and vascular stability, coactivation of these signaling pathways can potentially achieve therapeutic angiogenesis. In this study, we developed a bifunctional antibody fusion, consisting of a Tie2-agonistic antibody and the Furin domains of R-spondin 3 (RSPO3), to simultaneously activate Tie2 and Wnt/β-catenin signaling. We identified a Tie2-agonistic antibody T11 that cross-reacted with the extracellular domain of human and mouse Tie2, and evaluated its ability to increase endothelial cell survival and tube formation. We generated a bifunctional T11-RF12 by fusing T11 with the Furin-1 and -2 domains of RSPO3. T11-RF12 could bind not only to Tie2, but also to LGR5 and ZNRF3, which are counterparts of the Furin-1 and -2 domains. T11-RF12 significantly increased Wnt/β-catenin signaling, as well as the formation of capillary-like endothelial tubes, regardless of the presence of Wnt ligands. Coactivation of Tie2 and Wnt/β-catenin signaling by T11-RF12 increased the blood flow, and thereby reduced foot necrosis in a mouse hindlimb ischemia model. In particular, T11-RF12 induced therapeutic angiogenesis by promoting vessel stabilization through pericyte coverage and retaining endothelial expression of Frizzled 10 and active β-catenin. These results indicate that the agonistic synergism of Tie2 and Wnt/β-catenin signaling achieved using T11-RF12 is a novel therapeutic option with potential for treating limb ischemia and other ischemic diseases.
Collapse
Affiliation(s)
- Byungtae Hwang
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Min-Young Jeon
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Ju-Hong Jang
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Young-Lai Cho
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Dong Gwang Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Jeong-Ki Min
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Jangwook Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biomolecular Science, Korea Research Institute of Bioscience and Biotechnology (KRIBB), School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Jong-Gil Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biomolecular Science, Korea Research Institute of Bioscience and Biotechnology (KRIBB), School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Ji-Hun Noh
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Wonjun Yang
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Nam-Kyung Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Biomolecular Science, Korea Research Institute of Bioscience and Biotechnology (KRIBB), School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
28
|
Qin K, Yu M, Fan J, Wang H, Zhao P, Zhao G, Zeng W, Chen C, Wang Y, Wang A, Schwartz Z, Hong J, Song L, Wagstaff W, Haydon RC, Luu HH, Ho SH, Strelzow J, Reid RR, He TC, Shi LL. Canonical and noncanonical Wnt signaling: Multilayered mediators, signaling mechanisms and major signaling crosstalk. Genes Dis 2024; 11:103-134. [PMID: 37588235 PMCID: PMC10425814 DOI: 10.1016/j.gendis.2023.01.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/01/2022] [Accepted: 01/29/2023] [Indexed: 08/18/2023] Open
Abstract
Wnt signaling plays a major role in regulating cell proliferation and differentiation. The Wnt ligands are a family of 19 secreted glycoproteins that mediate their signaling effects via binding to Frizzled receptors and LRP5/6 coreceptors and transducing the signal either through β-catenin in the canonical pathway or through a series of other proteins in the noncanonical pathway. Many of the individual components of both canonical and noncanonical Wnt signaling have additional functions throughout the body, establishing the complex interplay between Wnt signaling and other signaling pathways. This crosstalk between Wnt signaling and other pathways gives Wnt signaling a vital role in many cellular and organ processes. Dysregulation of this system has been implicated in many diseases affecting a wide array of organ systems, including cancer and embryological defects, and can even cause embryonic lethality. The complexity of this system and its interacting proteins have made Wnt signaling a target for many therapeutic treatments. However, both stimulatory and inhibitory treatments come with potential risks that need to be addressed. This review synthesized much of the current knowledge on the Wnt signaling pathway, beginning with the history of Wnt signaling. It thoroughly described the different variants of Wnt signaling, including canonical, noncanonical Wnt/PCP, and the noncanonical Wnt/Ca2+ pathway. Further description involved each of its components and their involvement in other cellular processes. Finally, this review explained the various other pathways and processes that crosstalk with Wnt signaling.
Collapse
Affiliation(s)
- Kevin Qin
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael Yu
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hongwei Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Interventional Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zander Schwartz
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Jeffrey Hong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lily Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin H. Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
29
|
He Z, Zhang J, Ma J, Zhao L, Jin X, Li H. R-spondin family biology and emerging linkages to cancer. Ann Med 2023; 55:428-446. [PMID: 36645115 PMCID: PMC9848353 DOI: 10.1080/07853890.2023.2166981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The R-spondin protein family comprises four members (RSPO1-4), which are agonists of the canonical Wnt/β-catenin pathway. Emerging evidence revealed that RSPOs should not only be viewed as agonists of the Wnt/β-catenin pathway but also as regulators for tumor development and progression. Aberrant expression of RSPOs is related to tumorigenesis and tumor development in multiple cancers and their expression of RSPOs has also been correlated with anticancer immune cell signatures. More importantly, the role of RSPOs as potential target therapies and their implication in cancer progressions has been studied in the preclinical and clinical settings. These findings highlight the possible therapeutic value of RSPOs in cancer medicine. However, the expression pattern, effects, and mechanisms of RSPO proteins in cancer remain elusive. Investigating the many roles of RSPOs is likely to expand and improve our understanding of the oncogenic mechanisms mediated by RSPOs. Here, we reviewed the recent advances in the functions and underlying molecular mechanisms of RSPOs in tumor development, cancer microenvironment regulation, and immunity, and discussed the therapeutic potential of targeting RSPOs for cancer treatment. In addition, we also explored the biological feature and clinical relevance of RSPOs in cancer mutagenesis, transcriptional regulation, and immune correlation by bioinformatics analysis.KEY MESSAGESAberrant expressions of RSPOs are detected in various human malignancies and are always correlated with oncogenesis.Although extensive studies of RSPOs have been conducted, their precise molecular mechanism remains poorly understood.Bioinformatic analysis revealed that RSPOs may play a part in the development of the immune composition of the tumor microenvironment.
Collapse
Affiliation(s)
- Zhimin He
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Jialin Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Jianzhong Ma
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Lei Zhao
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Hongbin Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| |
Collapse
|
30
|
Farnhammer F, Colozza G, Kim J. RNF43 and ZNRF3 in Wnt Signaling - A Master Regulator at the Membrane. Int J Stem Cells 2023; 16:376-384. [PMID: 37643759 PMCID: PMC10686798 DOI: 10.15283/ijsc23070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/10/2023] [Indexed: 08/31/2023] Open
Abstract
The Wnt β-catenin signaling pathway is a highly conserved mechanism that plays a critical role from embryonic development and adult stem cell homeostasis. However, dysregulation of the Wnt pathway has been implicated in various diseases, including cancer. Therefore, multiple layers of regulatory mechanisms tightly control the activation and suppression of the Wnt signal. The E3 ubiquitin ligases RNF43 and ZNRF3, which are known negative regulators of the Wnt pathway, are critical component of Wnt signaling regulation. These E3 ubiquitin ligases control Wnt signaling by targeting the Wnt receptor Frizzled to induce ubiquitination-mediated endo-lysosomal degradation, thus controlling the activation of the Wnt signaling pathway. We also discuss the regulatory mechanisms, interactors, and evolution of RNF43 and ZNRF3. This review article summarizes recent findings on RNF43 and ZNRF3 and their potential implications for the development of therapeutic strategies to target the Wnt signaling pathway in various diseases, including cancer.
Collapse
Affiliation(s)
- Fiona Farnhammer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
- Division of Oncology and Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gabriele Colozza
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Jihoon Kim
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Korea
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Korea
| |
Collapse
|
31
|
Zhang L, Adu IK, Zhang H, Wang J. The WNT/β-catenin system in chronic kidney disease-mineral bone disorder syndrome. Int Urol Nephrol 2023; 55:2527-2538. [PMID: 36964322 DOI: 10.1007/s11255-023-03569-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/18/2023] [Indexed: 03/26/2023]
Abstract
BACKGROUND The WNT/β-catenin system is an evolutionarily conserved signaling pathway that plays a crucial role in morphogenesis and cell tissue formation during embryogenesis. Although usually suppressed in adulthood, it can be reactivated during organ damage and regeneration. Transient activation of the WNT/β-catenin pathway stimulates tissue regeneration after acute kidney injury, while persistent (uncontrolled) activation can promote the development of chronic kidney disease (CKD). CKD-MBD is a clinical syndrome that develops with systemic mineral and bone metabolism disorders caused by CKD, characterized by abnormal bone mineral metabolism and/or extraosseous calcification, as well as cardiovascular disease associated with CKD, including vascular stiffness and calcification. OBJECTIVE This paper aims to comprehensively review the WNT/β-catenin signaling pathway in relation to CKD-MBD, focusing on its components, regulatory molecules, and regulatory mechanisms. Additionally, this review highlights the challenges and opportunities for using small molecular compounds to target the WNT/β-catenin signaling pathway in CKD-MBD therapy. METHODS We conducted a comprehensive literature review using various scientific databases, including PubMed, Scopus, and Web of Science, to identify relevant articles. We searched for articles that discussed the WNT/β-catenin signaling pathway, CKD-MBD, and their relationship. We also reviewed articles that discussed the components of the WNT/β-catenin signaling pathway, its regulatory molecules, and regulatory mechanisms. RESULTS The WNT/β-catenin signaling pathway plays a crucial role in CKD-MBD by promoting vascular calcification and bone mineral metabolism disorders. The pathway's components include WNT ligands, Frizzled receptors, and LRP5/6 co-receptors, which initiate downstream signaling cascades leading to the activation of β-catenin. Several regulatory molecules, including GSK-3β, APC, and Axin, modulate β-catenin activation. The WNT/β-catenin signaling pathway also interacts with other signaling pathways, such as the BMP pathway, to regulate CKD-MBD. CONCLUSIONS The WNT/β-catenin signaling pathway is a potential therapeutic target for CKD-MBD. Small molecular compounds that target the components or regulatory molecules of the pathway may provide a promising approach to treat CKD-MBD. However, more research is needed to identify safe and effective compounds and to determine the optimal dosages and treatment regimens.
Collapse
Affiliation(s)
- Lingbo Zhang
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, People's Republic of China
| | - Isaac Kumi Adu
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, People's Republic of China
- Department of Internal Medicine, The Second Hospital of Jingzhou and the Affiliated Hospital of Hubei College of Chinese Medicine, Jingzhou, People's Republic of China
- Department of Internal Medicine, Kings and Queens University College and Teaching Hospital, Akosombo, Ghana
| | - Haifeng Zhang
- Department of Internal Medicine, The Second Hospital of Jingzhou and the Affiliated Hospital of Hubei College of Chinese Medicine, Jingzhou, People's Republic of China
| | - Jiancheng Wang
- Department of Internal Medicine, The Second Hospital of Jingzhou and the Affiliated Hospital of Hubei College of Chinese Medicine, Jingzhou, People's Republic of China.
| |
Collapse
|
32
|
Watanabe K, Horie M, Hayatsu M, Mikami Y, Sato N. Spatiotemporal expression patterns of R-spondins and their receptors, Lgrs, in the developing mouse telencephalon. Gene Expr Patterns 2023; 49:119333. [PMID: 37651925 DOI: 10.1016/j.gep.2023.119333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/14/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
Development of the mammalian telencephalon, which is the most complex region of the central nervous system, is precisely orchestrated by many signaling molecules. Wnt signaling derived from the cortical hem, a signaling center, is crucial for telencephalic development including cortical patterning and the induction of hippocampal development. Secreted protein R-spondin (Rspo) 1-4 and their receptors, leucine-rich repeat-containing G-protein-coupled receptor (Lgr) 4-6, act as activators of Wnt signaling. Although Rspo expression in the hem during the early stages of cortical development has been reported, comparative expression analysis of Rspos and Lgr4-6 has not been performed. In this study, we examined the detailed spatiotemporal expression patterns of Rspo1-4 and Lgr4-6 in the embryonic and postnatal telencephalon to elucidate their functions. In the embryonic day (E) 10.5-14.5 telencephalon, Rspo1-3 were prominently expressed in the cortical hem. Among their receptors, Lgr4 was observed in the ventral telencephalon, and Lgr6 was highly expressed throughout the telencephalon at the same stages. This suggests that Rspo1-3 and Lgr4 initially regulate telencephalic development in restricted regions, whereas Lgr6 functions broadly. From the late embryonic stage, the expression areas of Rspo1-3 and Lgr4-6 dramatically expanded; their expression was found in the neocortex and limbic system, such as the hippocampus, amygdala, and striatum. Increased Rspo and Lgr expression from the late embryonic stages suggests broad roles of Rspo signaling in telencephalic development. Furthermore, the Lgr+ regions were located far from the Rspo+ regions, especially in the E10.5-14.5 ventral telencephalon, suggesting that Lgrs act via a Rspo-independent pathway.
Collapse
Affiliation(s)
- Keisuke Watanabe
- Division of Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.
| | - Masao Horie
- Department of Nursing, Niigata College of Nursing, Jōetsu, Japan
| | - Manabu Hayatsu
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yoshikazu Mikami
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Noboru Sato
- Division of Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
33
|
Cao J, Zhou T, Chen G, Zou G, Liang H. Effect of Exogenous Hormone on R-Spondin 2 ( Rspo2) and R-Spondin 3 ( Rspo3) Gene Expression and Embryo Development in Chinese Soft-Shelled Turtle ( Pelodiscus sinensis). Genes (Basel) 2023; 14:1466. [PMID: 37510371 PMCID: PMC10379378 DOI: 10.3390/genes14071466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The Chinese soft-shelled turtle, Pelodiscus sinensis, is an important aquaculture species in China that exhibits distinct sexual dimorphism; male individuals are economically more valuable than females. In vertebrates, several R-spondin family proteins have been associated with sex differentiation mechanisms; however, their involvement in P. sinensis sex differentiation is unclear. Exogenous hormones such as estradiol (E2) also influence the sex differentiation of P. sinensis and induce sexual reversal. In the present study, we investigated the effects of E2 on the embryonic development of P. sinensis and the expression of R-spondin 2 (Rspo2) and R-spondin 3 (Rspo3). We amplified P. sinensis Rspo2 and Rspo3 and analyzed their expression patterns in different tissues. Comparative analyses with protein sequences from other species elucidated that P. sinensis RSPO2 and RSPO3 sequences were conserved. Moreover, phylogenetic analysis revealed that P. sinensis RSPO2 and RSPO3 were closely related to these two proteins from other turtle species. Furthermore, Rspo2 and Rspo3 were highly expressed in the brain and gonads of adult turtles, with significantly higher expression in the ovaries than in the testes (p < 0.05). We also evaluated the expression of Rspo2 and Rspo3 after the administration of three concentrations of E2 (1.0, 5.0, and 10.0 mg/mL) to turtle eggs during embryonic development. The results revealed that E2 upregulated Rspo2 and Rspo3, and the expression trends varied during different embryonic developmental stages (stages 13-20). These findings lay the groundwork for future investigations into the molecular mechanisms involved in the sex differentiation of Chinese soft-shelled turtles.
Collapse
Affiliation(s)
- Jizeng Cao
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (G.C.)
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China
| | - Tong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China
| | - Guobin Chen
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (G.C.)
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China
| | - Guiwei Zou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China
| | - Hongwei Liang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (G.C.)
- Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Wuhan 430223, China
| |
Collapse
|
34
|
Seidl C, Da Silva F, Zhang K, Wohlgemuth K, Omran H, Niehrs C. Mucociliary Wnt signaling promotes cilia biogenesis and beating. Nat Commun 2023; 14:1259. [PMID: 36878953 PMCID: PMC9988884 DOI: 10.1038/s41467-023-36743-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
It is widely thought that Wnt/Lrp6 signaling proceeds through the cytoplasm and that motile cilia are signaling-inert nanomotors. Contrasting both views, we here show in the mucociliary epidermis of X. tropicalis embryos that motile cilia transduce a ciliary Wnt signal that is distinct from canonical β-catenin signaling. Instead, it engages a Wnt-Gsk3-Ppp1r11-Pp1 signaling axis. Mucociliary Wnt signaling is essential for ciliogenesis and it engages Lrp6 co-receptors that localize to cilia via a VxP ciliary targeting sequence. Live-cell imaging using a ciliary Gsk3 biosensor reveals an immediate response of motile cilia to Wnt ligand. Wnt treatment stimulates ciliary beating in X. tropicalis embryos and primary human airway mucociliary epithelia. Moreover, Wnt treatment improves ciliary function in X. tropicalis ciliopathy models of male infertility and primary ciliary dyskinesia (ccdc108, gas2l2). We conclude that X. tropicalis motile cilia are Wnt signaling organelles that transduce a distinct Wnt-Pp1 response.
Collapse
Affiliation(s)
- Carina Seidl
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Fabio Da Silva
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Kaiqing Zhang
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Kai Wohlgemuth
- University Children's Hospital Muenster, Department of General Pediatrics, 48149, Muenster, Germany
| | - Heymut Omran
- University Children's Hospital Muenster, Department of General Pediatrics, 48149, Muenster, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany. .,Institute of Molecular Biology (IMB), 55128, Mainz, Germany.
| |
Collapse
|
35
|
Gessler L, Kurtek C, Merholz M, Jian Y, Hashemolhosseini S. In Adult Skeletal Muscles, the Co-Receptors of Canonical Wnt Signaling, Lrp5 and Lrp6, Determine the Distribution and Size of Fiber Types, and Structure and Function of Neuromuscular Junctions. Cells 2022; 11:cells11243968. [PMID: 36552732 PMCID: PMC9777411 DOI: 10.3390/cells11243968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022] Open
Abstract
Canonical Wnt signaling is involved in skeletal muscle cell biology. The exact way in which this pathway exerts its contribution to myogenesis or neuromuscular junctions (NMJ) is a matter of debate. Next to the common co-receptors of canonical Wnt signaling, Lrp5 and Lrp6, the receptor tyrosine kinase MuSK was reported to bind at NMJs WNT glycoproteins by its extracellular cysteine-rich domain. Previously, we reported canonical Wnt signaling being active in fast muscle fiber types. Here, we used conditional Lrp5 or Lrp6 knockout mice to investigate the role of these receptors in muscle cells. Conditional double knockout mice died around E13 likely due to ectopic expression of the Cre recombinase. Phenotypes of single conditional knockout mice point to a very divergent role for the two receptors. First, muscle fiber type distribution and size were changed. Second, canonical Wnt signaling reporter mice suggested less signaling activity in the absence of Lrps. Third, expression of several myogenic marker genes was changed. Fourth, NMJs were of fragmented phenotype. Fifth, recordings revealed impaired neuromuscular transmission. In sum, our data show fundamental differences in absence of each of the Lrp co-receptors and suggest a differentiated view of canonical Wnt signaling pathway involvement in adult skeletal muscle cells.
Collapse
Affiliation(s)
- Lea Gessler
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christopher Kurtek
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Mira Merholz
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Yongzhi Jian
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Said Hashemolhosseini
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, 91054 Erlangen, Germany
- Muscle Research Center, Friedrich-Alexander-University of Erlangen-Nürnberg, 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-85-24634
| |
Collapse
|
36
|
Chaves-Pérez A, Santos-de-Frutos K, de la Rosa S, Herranz-Montoya I, Perna C, Djouder N. Transit-amplifying cells control R-spondins in the mouse crypt to modulate intestinal stem cell proliferation. J Exp Med 2022; 219:213460. [PMID: 36098959 PMCID: PMC9475298 DOI: 10.1084/jem.20212405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/24/2022] [Accepted: 08/09/2022] [Indexed: 11/04/2022] Open
Abstract
Intestinal epithelium regenerates rapidly through proliferation of intestinal stem cells (ISCs), orchestrated by potent mitogens secreted within the crypt niche. However, mechanisms regulating these mitogenic factors remain largely unknown. Here, we demonstrate that transit-amplifying (TA) cells, marked by unconventional prefoldin RPB5 interactor (URI), control R-spondin production to guide ISC proliferation. Genetic intestinal URI ablation in mice injures TA cells, reducing their survival capacity, leading to an inflamed tissue and subsequently decreasing R-spondin levels, thereby causing ISC quiescence and disruption of intestinal structure. R-spondin supplementation or restoration of R-spondin levels via cell death inhibition by c-MYC elimination or the suppression of inflammation reinstates ISC proliferation in URI-depleted mice. However, selective c-MYC and p53 suppression are required to fully restore TA cell survival and differentiation capacity and preserve complete intestinal architecture. Our data reveal an unexpected role of TA cells, which represent a signaling platform instrumental for controlling inflammatory cues and R-spondin production, essential for maintaining ISC proliferation and tissue regeneration.
Collapse
Affiliation(s)
- Almudena Chaves-Pérez
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional Investigaciones Oncológicas, Madrid, Spain
| | - Karla Santos-de-Frutos
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional Investigaciones Oncológicas, Madrid, Spain
| | - Sergio de la Rosa
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional Investigaciones Oncológicas, Madrid, Spain
| | - Irene Herranz-Montoya
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional Investigaciones Oncológicas, Madrid, Spain
| | - Cristian Perna
- Department of Pathology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Nabil Djouder
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional Investigaciones Oncológicas, Madrid, Spain
| |
Collapse
|
37
|
Nelson AL, Fontana G, Miclau E, Rongstad M, Murphy W, Huard J, Ehrhart N, Bahney C. Therapeutic approaches to activate the canonical Wnt pathway for bone regeneration. J Tissue Eng Regen Med 2022; 16:961-976. [PMID: 36112528 PMCID: PMC9826348 DOI: 10.1002/term.3349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/05/2022] [Accepted: 09/01/2022] [Indexed: 01/12/2023]
Abstract
Activation of the canonical Wingless-related integration site (Wnt) pathway has been shown to increase bone formation and therefore has therapeutic potential for use in orthopedic conditions. However, attempts at developing an effective strategy to achieve Wnt activation has been met with several challenges. The inherent hydrophobicity of Wnt ligands makes isolating and purifying the protein difficult. To circumvent these challenges, many have sought to target extracellular inhibitors of the Wnt pathway, such as Wnt signaling pathway inhibitors Sclerostin and Dickkopf-1, or to use small molecules, ions and proteins to increase target Wnt genes. Here, we review systemic and localized bioactive approaches to enhance bone formation or improve bone repair through antibody-based therapeutics, synthetic Wnt surrogates and scaffold doping to target canonical Wnt. We conclude with a brief review of emerging technologies, such as mRNA therapy and Clustered Regularly Interspaced Short Palindromic Repeats technology, which serve as promising approaches for future clinical translation.
Collapse
Affiliation(s)
- Anna Laura Nelson
- Center for Regenerative and Personalized MedicineSteadman Philippon Research Institute (SPRI)VailColoradoUSA,School of Biomedical EngineeringColorado State UniversityFort CollinsColoradoUSA
| | - GianLuca Fontana
- Department of Orthopedics and RehabilitationUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Elizabeth Miclau
- Center for Regenerative and Personalized MedicineSteadman Philippon Research Institute (SPRI)VailColoradoUSA
| | - Mallory Rongstad
- Department of Orthopedics and RehabilitationUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - William Murphy
- Department of Orthopedics and RehabilitationUniversity of Wisconsin‐MadisonMadisonWisconsinUSA,Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Johnny Huard
- Center for Regenerative and Personalized MedicineSteadman Philippon Research Institute (SPRI)VailColoradoUSA,Department of Clinical SciencesColorado State UniversityFort CollinsColoradoUSA
| | - Nicole Ehrhart
- School of Biomedical EngineeringColorado State UniversityFort CollinsColoradoUSA,Department of Clinical SciencesColorado State UniversityFort CollinsColoradoUSA
| | - Chelsea Bahney
- Center for Regenerative and Personalized MedicineSteadman Philippon Research Institute (SPRI)VailColoradoUSA,School of Biomedical EngineeringColorado State UniversityFort CollinsColoradoUSA,Department of Clinical SciencesColorado State UniversityFort CollinsColoradoUSA,Orthopaedic Trauma InstituteUniversity of California, San Francisco (UCSF)San FranciscoCaliforniaUSA
| |
Collapse
|
38
|
Beni FA, Kazemi M, Dianat-Moghadam H, Behjati M. MicroRNAs regulating Wnt signaling pathway in colorectal cancer: biological implications and clinical potentials. Funct Integr Genomics 2022; 22:1073-1088. [DOI: 10.1007/s10142-022-00908-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022]
|
39
|
Xiao Q, Wang L, Zhang J, Zhong X, Guo Z, Yu J, Ma Y, Wu H. Activation of Wnt/β-Catenin Signaling Involves 660 nm Laser Radiation on Epithelium and Modulates Lipid Metabolism. Biomolecules 2022; 12:1389. [PMID: 36291598 PMCID: PMC9599573 DOI: 10.3390/biom12101389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/10/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Research has proven that light treatment, specifically red light radiation, can provide more clinical benefits to human health. Our investigation was firstly conducted to characterize the tissue morphology of mouse breast post 660 nm laser radiation with low power and long-term exposure. RNA sequencing results revealed that light exposure with a higher intervention dosage could cause a number of differentially expressed genes compared with a low intervention dosage. Gene ontology analysis, protein-protein interaction network analysis, and gene set enrichment analysis results suggested that 660 nm light exposure can activate more transcription-related pathways in HC11 breast epithelial cells, and these pathways may involve modulating critical gene expression. To consider the critical role of the Wnt/T-catenin pathway in light-induced modulation, we hypothesized that this pathway might play a major role in response to 660 nm light exposure. To validate our hypothesis, we conducted qRT-PCR, immunofluorescence staining, and Western blot assays, and relative results corroborated that laser radiation could promote expression levels of β-catenin and relative phosphorylation. Significant changes in metabolites and pathway analysis revealed that 660 nm laser could affect nucleotide metabolism by regulating purine metabolism. These findings suggest that the Wnt/β-catenin pathway may be the major sensor for 660 nm laser radiation, and it may be helpful to rescue drawbacks or side effects of 660 nm light exposure through relative interventional agents.
Collapse
Affiliation(s)
- Qiyang Xiao
- School of Artificial Intelligence, Henan University, Zhengzhou 450046, China
| | - Lijing Wang
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Juling Zhang
- Center for Faculty Development, South China Normal University, Guangzhou 510631, China
| | - Xinyu Zhong
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Zhou Guo
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Jiahao Yu
- Shandong Zhongbaokang Medical Implements Co., Ltd., Zibo 255000, China
| | - Yuanyuan Ma
- School of Pharmacy, Henan University, Kaifeng 475000, China
| | - Haigang Wu
- School of Artificial Intelligence, Henan University, Zhengzhou 450046, China
| |
Collapse
|
40
|
Zhao H, Collet C, Peng D, Sinha UK, Lin DC. Investigation of early neoplastic transformation and premalignant biology using genetically engineered organoid models. Comput Struct Biotechnol J 2022; 20:5309-5315. [PMID: 36212534 PMCID: PMC9513696 DOI: 10.1016/j.csbj.2022.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022] Open
Abstract
Organoid modeling is a powerful, robust and efficient technology faithfully preserving physiological and pathological characteristics of tissues of origin. Recently, substantial advances have been made in applying genetically engineered organoid models to study early tumorigenesis and premalignant biology. These efforts promise to identify novel avenues for early cancer detection, intervention and prevention. Here, we highlight significant advancements in the functional characterization of early genomic and epigenomic events during neoplastic evolution using organoid modeling, discuss the application of the lineage-tracing methodology in organoids to study cancer cells-of-origin, and review future opportunities for further development and improvement of organoid modeling of cancer precursors.
Collapse
Affiliation(s)
- Hua Zhao
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Casey Collet
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Dongzi Peng
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Uttam K. Sinha
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - De-Chen Lin
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
41
|
Colozza G, Park SY, Koo BK. Clone wars: From molecules to cell competition in intestinal stem cell homeostasis and disease. Exp Mol Med 2022; 54:1367-1378. [PMID: 36117218 PMCID: PMC9534868 DOI: 10.1038/s12276-022-00854-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/27/2022] [Accepted: 07/19/2022] [Indexed: 11/14/2022] Open
Abstract
The small intestine is among the fastest self-renewing tissues in adult mammals. This rapid turnover is fueled by the intestinal stem cells residing in the intestinal crypt. Wnt signaling plays a pivotal role in regulating intestinal stem cell renewal and differentiation, and the dysregulation of this pathway leads to cancer formation. Several studies demonstrate that intestinal stem cells follow neutral drift dynamics, as they divide symmetrically to generate other equipotent stem cells. Competition for niche space and extrinsic signals in the intestinal crypt is the governing mechanism that regulates stemness versus cell differentiation, but the underlying molecular mechanisms are still poorly understood, and it is not yet clear how this process changes during disease. In this review, we highlight the mechanisms that regulate stem cell homeostasis in the small intestine, focusing on Wnt signaling and its regulation by RNF43 and ZNRF3, key inhibitors of the Wnt pathway. Furthermore, we summarize the evidence supporting the current model of intestinal stem cell regulation, highlighting the principles of neutral drift at the basis of intestinal stem cell homeostasis. Finally, we discuss recent studies showing how cancer cells bypass this mechanism to gain a competitive advantage against neighboring normal cells. Stem cells in the gut rapidly renew themselves through processes that cancer cells co-opt to trigger tumor development. Gabriele Colozza from the Institute of Molecular Biotechnology in Vienna, Austria, and colleagues review how a network of critical molecular signals and competition for limited space help to regulate the dynamics of stem cells in the intestines. The correct balance between self-renewal and differentiation is tightly controlled by the so-called Wnt signaling pathway and its inhibitors. Competition between dividing cells in the intestinal crypts, the locations between finger-like protrusions in the gut where stem cells are found, provides another protective mechanism against runaway stem cell growth. However, intestinal cancer cells, thanks to their activating mutations, bypass these safeguards to gain a survival advantage. Drugs that target these ‘super-competitive’ behaviors could therefore help combat tumor proliferation.
Collapse
|
42
|
Florimond M, Minic S, Sharpe P, Chaussain C, Renard E, Boukpessi T. Modulators of Wnt Signaling Pathway Implied in Dentin Pulp Complex Engineering: A Literature Review. Int J Mol Sci 2022; 23:ijms231810582. [PMID: 36142496 PMCID: PMC9502831 DOI: 10.3390/ijms231810582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/26/2022] Open
Abstract
The main goal of vital pulp therapy (VPT) is to preserve the vitality of the pulp tissue, even when it is exposed due to bacterial invasion, iatrogenic mechanical preparation, or trauma. The type of new dentin formed as a result of VPT can differ in its cellular origin, its microstructure, and its barrier function. It is generally agreed that the new dentin produced by odontoblasts (reactionary dentin) has a tubular structure, while the dentin produced by pulp cells (reparative dentin) does not or has less. Thus, even VPT aims to maintain the vitality of the pulp. It does not regenerate the dentin pulp complex integrity. Therefore, many studies have sought to identify new therapeutic strategies to successfully regenerate the dentin pulp complex. Among them is a Wnt protein-based strategy based on the fact that Wnt proteins seem to be powerful stem cell factors that allow control of the self-renewal and proliferation of multiple adult stem cell populations, suitable for homeostasis maintenance, tissue healing, and regeneration promotion. Thus, this review outlines the different agents targeting the Wnt signaling that could be applied in a tooth environment, and could be a potential therapy for dentin pulp complex and bone regeneration.
Collapse
Affiliation(s)
- Marion Florimond
- Laboratory of Orofacial Pathologies, Imaging and Biotherapies, School of Dentistry, Laboratoire d’Excellence INFLAMEX, Université Paris Cité, URP 2496, 1 Rue Maurice Arnoux, 92120 Montrouge, France
- Dental Department, Charles Foix Hospital, AP-HP, 94200 Ivry sur Seine, France
| | - Sandra Minic
- Laboratory of Orofacial Pathologies, Imaging and Biotherapies, School of Dentistry, Laboratoire d’Excellence INFLAMEX, Université Paris Cité, URP 2496, 1 Rue Maurice Arnoux, 92120 Montrouge, France
| | - Paul Sharpe
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK
| | - Catherine Chaussain
- Laboratory of Orofacial Pathologies, Imaging and Biotherapies, School of Dentistry, Laboratoire d’Excellence INFLAMEX, Université Paris Cité, URP 2496, 1 Rue Maurice Arnoux, 92120 Montrouge, France
- Dental Department, and Reference Center for Rare Diseases of Calcium and Phosphorus Metabolism, Bretonneau Hospital, AP-HP, 75018 Paris, France
| | - Emmanuelle Renard
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Nantes Université, ONIRIS, 44000 Nantes, France
- CHU de Nantes, Service d’Odontologie Restauratrice et Chirurgicale, 44000 Nantes, France
| | - Tchilalo Boukpessi
- Laboratory of Orofacial Pathologies, Imaging and Biotherapies, School of Dentistry, Laboratoire d’Excellence INFLAMEX, Université Paris Cité, URP 2496, 1 Rue Maurice Arnoux, 92120 Montrouge, France
- Dental Department, Pitié Salpétrière Hospital, DMU CHIR, AP-HP, 75013 Paris, France
- Correspondence:
| |
Collapse
|
43
|
Yang L, Yue W, Zhang H, Gao Y, Yang L, Li L. The role of roof plate-specific spondins in liver homeostasis and disease. LIVER RESEARCH 2022; 6:139-145. [PMID: 39958194 PMCID: PMC11791806 DOI: 10.1016/j.livres.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/05/2022] [Accepted: 09/02/2022] [Indexed: 02/16/2023]
Abstract
As evolutionarily conserved signals, roof plate-specific spondins (R-spondins; RSPOs) are a family with four members (RSPO1-4) exerting distinctly different functions. RSPOs have five receptors and correlate with different signaling pathways through these receptors and then perform various functions. Moreover, their best-known molecular function is the capacity to enhance WNT signaling pathways, which play critical roles in several processes. A recent study shows that RSPOs not only potentiate the WNT/beta (β)-catenin signaling pathway but are also involved in the WNT/planar cell polarity signaling pathway. RSPOs influence liver homeostasis and the development of multiple liver diseases. RSPO1 increases cell proliferation, protects hepatocytes from injury, improves liver regenerative potential, and affects liver metabolic zonation. RSPO2 not only regulates proliferation-associated genes and promotes differentiation in the liver but also participates in liver fibrosis through the WNT/β-catenin signaling pathway. RSPO3 is a key determinant of proper liver function, such as promoting hepatocyte regeneration and maintaining liver zonation. RSPO3 is upregulated in liver fibrosis and livers of patients with non-alcoholic steatohepatitis. Besides, RSPO2 and RSPO3 are confirmed as oncogenes and involved in the occurrence of liver cancer. The role of RSPO4 in the liver remains unclear. In this review, the structural and biochemical properties of RSPOs and their receptors and their roles in liver homeostasis and disease are summarized.
Collapse
Affiliation(s)
- Le Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, China
| | - Wenhui Yue
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, China
| | - Hang Zhang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, China
| | - Yue Gao
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, China
| | - Lin Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, China
| | - Liying Li
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, China
| |
Collapse
|
44
|
RSPO3 is a novel contraction-inducible factor identified in an "in vitro exercise model" using primary human myotubes. Sci Rep 2022; 12:14291. [PMID: 35995979 PMCID: PMC9395423 DOI: 10.1038/s41598-022-18190-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
The physiological significance of skeletal muscle as a secretory organ is now well known but we can only speculate as to the existence of as-yet-unidentified myokines, especially those upregulated in response to muscle contractile activity. We first attempted to establish an “insert-chamber based in vitro exercise model” allowing the miniature but high cell-density culture state enabling highly developed contractile human myotubes to be readily obtained by applying electric pulse stimulation (EPS). By employing this in vitro exercise model, we identified R-spondin 3 (RSPO3) as a novel contraction-inducible myokine produced by cultured human myotubes. Contraction-dependent muscular RSPO3 mRNA upregulation was confirmed in skeletal muscles of mice subjected to sciatic nerve mediated in situ contraction as well as those of mice after 2 h of running. Pharmacological in vitro experiments demonstrated a relatively high concentration of metformin (millimolar range) to suppress the contraction-inducible mRNA upregulation of human myokines including RSPO3, interleukin (IL)-6, IL-8 and CXCL1. Our data also suggest human RSPO3 to be a paracrine factor that may positively participate in the myogenesis processes of myoblasts and satellite cells. Thus, the “insert chamber-based in vitro exercise model” is a potentially valuable research tool for investigating contraction-inducible biological responses of human myotubes usually exhibiting poorer contractility development even in the setting of EPS treatment.
Collapse
|
45
|
Xie Y, Wu C, Li Z, Wu Z, Hong L. Early Gonadal Development and Sex Determination in Mammal. Int J Mol Sci 2022; 23:ijms23147500. [PMID: 35886859 PMCID: PMC9323860 DOI: 10.3390/ijms23147500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Sex determination is crucial for the transmission of genetic information through generations. In mammal, this process is primarily regulated by an antagonistic network of sex-related genes beginning in embryonic development and continuing throughout life. Nonetheless, abnormal expression of these sex-related genes will lead to reproductive organ and germline abnormalities, resulting in disorders of sex development (DSD) and infertility. On the other hand, it is possible to predetermine the sex of animal offspring by artificially regulating sex-related gene expression, a recent research hotspot. In this paper, we reviewed recent research that has improved our understanding of the mechanisms underlying the development of the gonad and primordial germ cells (PGCs), progenitors of the germline, to provide new directions for the treatment of DSD and infertility, both of which involve manipulating the sex ratio of livestock offspring.
Collapse
Affiliation(s)
- Yanshe Xie
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
| | - Changhua Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
- Correspondence: (Z.W.); (L.H.)
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
- Correspondence: (Z.W.); (L.H.)
| |
Collapse
|
46
|
Abstract
The Wnt pathway is central to a host of developmental and disease-related processes. The remarkable conservation of this intercellular signaling cascade throughout metazoan lineages indicates that it coevolved with multicellularity to regulate the generation and spatial arrangement of distinct cell types. By regulating cell fate specification, mitotic activity, and cell polarity, Wnt signaling orchestrates development and tissue homeostasis, and its dysregulation is implicated in developmental defects, cancer, and degenerative disorders. We review advances in our understanding of this key pathway, from Wnt protein production and secretion to relay of the signal in the cytoplasm of the receiving cell. We discuss the evolutionary history of this pathway as well as endogenous and synthetic modulators of its activity. Finally, we highlight remaining gaps in our knowledge of Wnt signal transduction and avenues for future research. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ellen Youngsoo Rim
- Howard Hughes Medical Institute, Department of Developmental Biology, and Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California, USA;
| | - Hans Clevers
- Hubrecht Institute and Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, The Netherlands
| | - Roel Nusse
- Howard Hughes Medical Institute, Department of Developmental Biology, and Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California, USA;
| |
Collapse
|
47
|
Canonical Wnt Signaling in the Pathology of Iron Overload-Induced Oxidative Stress and Age-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7163326. [PMID: 35116092 PMCID: PMC8807048 DOI: 10.1155/2022/7163326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 12/26/2022]
Abstract
Iron accumulates in the vital organs with aging. This is associated with oxidative stress, inflammation, and mitochondrial dysfunction leading to age-related disorders. Abnormal iron levels are linked to neurodegenerative diseases, liver injury, cancer, and ocular diseases. Canonical Wnt signaling is an evolutionarily conserved signaling pathway that regulates many cellular functions including cell proliferation, apoptosis, cell migration, and stem cell renewal. Recent evidences indicate that iron regulates Wnt signaling, and iron chelators like deferoxamine and deferasirox can inhibit Wnt signaling and cell growth. Canonical Wnt signaling is implicated in the pathogenesis of many diseases, and there are significant efforts ongoing to develop innovative therapies targeting the aberrant Wnt signaling. This review examines how intracellular iron accumulation regulates Wnt signaling in various tissues and their potential contribution in the progression of age-related diseases.
Collapse
|
48
|
Della Gaspera B, Weill L, Chanoine C. Evolution of Somite Compartmentalization: A View From Xenopus. Front Cell Dev Biol 2022; 9:790847. [PMID: 35111756 PMCID: PMC8802780 DOI: 10.3389/fcell.2021.790847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
Somites are transitory metameric structures at the basis of the axial organization of vertebrate musculoskeletal system. During evolution, somites appear in the chordate phylum and compartmentalize mainly into the dermomyotome, the myotome, and the sclerotome in vertebrates. In this review, we summarized the existing literature about somite compartmentalization in Xenopus and compared it with other anamniote and amniote vertebrates. We also present and discuss a model that describes the evolutionary history of somite compartmentalization from ancestral chordates to amniote vertebrates. We propose that the ancestral organization of chordate somite, subdivided into a lateral compartment of multipotent somitic cells (MSCs) and a medial primitive myotome, evolves through two major transitions. From ancestral chordates to vertebrates, the cell potency of MSCs may have evolved and gave rise to all new vertebrate compartments, i.e., the dermomyome, its hypaxial region, and the sclerotome. From anamniote to amniote vertebrates, the lateral MSC territory may expand to the whole somite at the expense of primitive myotome and may probably facilitate sclerotome formation. We propose that successive modifications of the cell potency of some type of embryonic progenitors could be one of major processes of the vertebrate evolution.
Collapse
|
49
|
Lee H, Sun R, Niehrs C. Uncoupling the BMP receptor antagonist function from the WNT agonist function of R-spondin 2 using the inhibitory peptide dendrimer RW d. J Biol Chem 2022; 298:101586. [PMID: 35032551 PMCID: PMC8842081 DOI: 10.1016/j.jbc.2022.101586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/28/2022] Open
Abstract
Signaling by bone morphogenetic proteins (BMPs) plays pivotal roles in embryogenesis, adult tissue homeostasis, and disease. Recent studies revealed that the well-established WNT agonist R-spondin 2 (RSPO2) is also a BMP receptor (BMP receptor type 1A) antagonist, with roles in early Xenopus embryogenesis and human acute myeloid leukemia (AML). To uncouple the BMP antagonist function from the WNT agonist function and to promote development of AML therapeutics, here we identified a 10-mer peptide (RW) derived from the thrombospondin 1 domain of RSPO2, which specifically prevents binding between RSPO2 and BMP receptor type 1A without altering WNT signaling. We also show that a corresponding RW dendrimer (RWd) exhibiting improved half-life relieves inhibition of BMP receptor signaling by RSPO2 in human AML cells, reduces cell growth, and induces differentiation. Moreover, microinjection of RWd in Xenopus embryos ventralizes the dorsoventral embryonic patterning by upregulating BMP signaling without affecting WNT signaling. Our study corroborates the function of RSPO2 as a BMP receptor antagonist and provides a proof of concept for pharmacologically uncoupling BMP antagonist from WNT agonist functions of RSPO2 using the inhibitor peptide RWd with enhanced target selectivity and limited side effects.
Collapse
Affiliation(s)
- Hyeyoon Lee
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Rui Sun
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany; Institute of Molecular Biology (IMB), Mainz, Germany.
| |
Collapse
|
50
|
Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther 2022; 7:3. [PMID: 34980884 PMCID: PMC8724284 DOI: 10.1038/s41392-021-00762-6] [Citation(s) in RCA: 1103] [Impact Index Per Article: 367.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
The Wnt/β-catenin pathway comprises a family of proteins that play critical roles in embryonic development and adult tissue homeostasis. The deregulation of Wnt/β-catenin signalling often leads to various serious diseases, including cancer and non-cancer diseases. Although many articles have reviewed Wnt/β-catenin from various aspects, a systematic review encompassing the origin, composition, function, and clinical trials of the Wnt/β-catenin signalling pathway in tumour and diseases is lacking. In this article, we comprehensively review the Wnt/β-catenin pathway from the above five aspects in combination with the latest research. Finally, we propose challenges and opportunities for the development of small-molecular compounds targeting the Wnt signalling pathway in disease treatment.
Collapse
|