1
|
Guilloux G, Kitaoka M, Mocaer K, Heichette C, Duchesne L, Heald R, Pecot T, Gibeaux R. Optimized expansion microscopy reveals species-specific spindle microtubule organization in Xenopus egg extracts. Mol Biol Cell 2025; 36:ar73. [PMID: 40327357 DOI: 10.1091/mbc.e24-09-0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025] Open
Abstract
The spindle is key to cell division, ensuring accurate chromosome segregation. Although its assembly and function are well studied, the mechanisms regulating spindle architecture remain elusive. Here, we investigate spindle organization differences between Xenopus laevis and tropicalis, leveraging expansion microscopy (ExM) to overcome conventional imaging limitations. We optimized an ExM protocol tailored for Xenopus egg extract spindles, refining fixation, denaturation, and gelation to achieve higher resolution while preserving spindle integrity. Our protocol enables preexpansion immunofluorescence and is seamlessly compatible with both species. To quantitatively compare microtubule organization in expanded spindles between the two species, we developed an analysis pipeline that is able to characterize microtubule bundles throughout spindles. We show that X. laevis spindles exhibit overall a broader range of bundle sizes, while X. tropicalis spindles contain mostly smaller bundles. Although both species show larger bundles near the spindle center, X. tropicalis spindles otherwise consist of very small bundles, whereas X. laevis spindles contain more medium-sized bundles. Altogether, our work reveals species-specific spindle architectures and suggests their adaptation to the different spindle size and chromatin amount. By enhancing resolution and minimizing artifacts, our ExM approach provides new insights into spindle morphology and a robust tool for further studying these large cellular assemblies.
Collapse
Affiliation(s)
- Gabriel Guilloux
- Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes) - UMR 6290, Rennes F-35000, France
| | - Maiko Kitaoka
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Karel Mocaer
- Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes) - UMR 6290, Rennes F-35000, France
| | - Claire Heichette
- Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes) - UMR 6290, Rennes F-35000, France
| | - Laurence Duchesne
- Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes) - UMR 6290, Rennes F-35000, France
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Thierry Pecot
- Univ Rennes, SFR Biosit - UMS 3480 - US 018, Rennes F-35000, France
| | - Romain Gibeaux
- Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes) - UMR 6290, Rennes F-35000, France
| |
Collapse
|
2
|
Guilloux G, Kitaoka M, Mocaer K, Heichette C, Duchesne L, Heald R, Pecot T, Gibeaux R. Optimized expansion microscopy reveals species-specific spindle microtubule organization in Xenopus egg extracts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612005. [PMID: 39314487 PMCID: PMC11419004 DOI: 10.1101/2024.09.11.612005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The spindle is a key structure in cell division as it orchestrates the accurate segregation of genetic material. While its assembly and function are well-studied, the mechanisms regulating spindle architecture remain elusive. In this study, we investigate the differences in spindle organization between Xenopus laevis and Xenopus tropicalis, leveraging expansion microscopy (ExM) to overcome the limitations of conventional imaging techniques. We optimized an ExM protocol tailored for Xenopus egg extract spindles, improving upon fixation, denaturation and gelation methods to achieve higher resolution imaging of spindles. Our protocol preserves spindle integrity and allows effective pre-expansion immunofluorescence. This method enabled detailed analysis of the differences in microtubule organization between the two species. X. laevis spindles overall exhibited a broader range of bundle sizes, while X. tropicalis spindles contained mostly smaller bundles. Moreover, while both species exhibited larger bundle sizes near and at the spindle center, X. tropicalis spindles otherwise consisted of very small bundles, and X. laevis spindles medium-sized bundles. By enhancing resolution and minimizing distortions and fixation artifacts, our optimized ExM approach offers new insights into spindle morphology and provides a robust tool for studying the structural intricacies of these large cellular assemblies. This work advances our understanding of spindle architecture and opens up new avenues for exploring underlying mechanisms.
Collapse
Affiliation(s)
- Gabriel Guilloux
- Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes) - UMR 6290, F-35000 Rennes, France
| | - Maiko Kitaoka
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Present address: Whitehead Institute for Biomedical Research and Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Karel Mocaer
- Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes) - UMR 6290, F-35000 Rennes, France
- Present address: Heidelberg University, Centre for Organismal Studies (COS), 69120 Heidelberg, Germany
| | - Claire Heichette
- Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes) - UMR 6290, F-35000 Rennes, France
| | - Laurence Duchesne
- Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes) - UMR 6290, F-35000 Rennes, France
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Thierry Pecot
- Univ Rennes, SFR Biosit - UMS 3480 - US 018, F-35000 Rennes, France
| | - Romain Gibeaux
- Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes) - UMR 6290, F-35000 Rennes, France
| |
Collapse
|
3
|
Sarpangala N, Randell B, Gopinathan A, Kogan O. Tunable intracellular transport on converging microtubule morphologies. BIOPHYSICAL REPORTS 2024; 4:100171. [PMID: 38996867 PMCID: PMC11345624 DOI: 10.1016/j.bpr.2024.100171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
A common type of cytoskeletal morphology involves multiple microtubules converging with their minus ends at the microtubule organizing center (MTOC). The cargo-motor complex will experience ballistic transport when bound to microtubules or diffusive transport when unbound. This machinery allows for sequestering and subsequent dispersal of dynein-transported cargo. The general principles governing dynamics, efficiency, and tunability of such transport in the MTOC vicinity are not fully understood. To address this, we develop a one-dimensional model that includes advective transport toward an attractor (such as the MTOC) and diffusive transport that allows particles to reach absorbing boundaries (such as cellular membranes). We calculated the mean first passage time (MFPT) for cargo to reach the boundaries as a measure of the effectiveness of sequestering (large MFPT) and diffusive dispersal (low MFPT). We show that the MFPT experiences a dramatic growth, transitioning from a low to high MFPT regime (dispersal to sequestering) over a window of cargo on-/off-rates that is close to in vivo values. Furthermore, increasing either the on-rate (attachment) or off-rate (detachment) can result in optimal dispersal when the attractor is placed asymmetrically. Finally, we also describe a regime of rare events where the MFPT scales exponentially with motor velocity and the escape location becomes exponentially sensitive to the attractor positioning. Our results suggest that structures such as the MTOC allow for the sensitive control of the spatial and temporal features of transport and corresponding function under physiological conditions.
Collapse
Affiliation(s)
| | - Brooke Randell
- University of California, Santa Cruz, Santa Cruz, California
| | | | - Oleg Kogan
- Queens College of CUNY, Queens, New York.
| |
Collapse
|
4
|
Nešić N, Heiligenstein X, Zopf L, Blüml V, Keuenhof KS, Wagner M, Höög JL, Qi H, Li Z, Tsaramirsis G, Peddie CJ, Stojmenović M, Walter A. Automated segmentation of cell organelles in volume electron microscopy using deep learning. Microsc Res Tech 2024; 87:1718-1732. [PMID: 38501891 DOI: 10.1002/jemt.24548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/05/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024]
Abstract
Recent advances in computing power triggered the use of artificial intelligence in image analysis in life sciences. To train these algorithms, a large enough set of certified labeled data is required. The trained neural network is then capable of producing accurate instance segmentation results that will then need to be re-assembled into the original dataset: the entire process requires substantial expertise and time to achieve quantifiable results. To speed-up the process, from cell organelle detection to quantification across electron microscopy modalities, we propose a deep-learning based approach for fast automatic outline segmentation (FAMOUS), that involves organelle detection combined with image morphology, and 3D meshing to automatically segment, visualize and quantify cell organelles within volume electron microscopy datasets. From start to finish, FAMOUS provides full segmentation results within a week on previously unseen datasets. FAMOUS was showcased on a HeLa cell dataset acquired using a focused ion beam scanning electron microscope, and on yeast cells acquired by transmission electron tomography. RESEARCH HIGHLIGHTS: Introducing a rapid, multimodal machine-learning workflow for the automatic segmentation of 3D cell organelles. Successfully applied to a variety of volume electron microscopy datasets and cell lines. Outperforming manual segmentation methods in time and accuracy. Enabling high-throughput quantitative cell biology.
Collapse
Affiliation(s)
- Nebojša Nešić
- Department of Computer Science and Electrical Engineering, Singidunum University, Belgrade, Serbia
| | | | - Lydia Zopf
- Austrian BioImaging, Vienna BioCenter Core Facilities, Vienna, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Trauma Research Center, Vienna, Austria
| | - Valentin Blüml
- Austrian BioImaging, Vienna BioCenter Core Facilities, Vienna, Austria
| | - Katharina S Keuenhof
- Department for Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Michael Wagner
- Centre for Optical Technologies, Aalen University, Aalen, Germany
| | - Johanna L Höög
- Department for Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Heng Qi
- Department of Computer Science, Dalian University of Technology, Dalian, China
| | - Zhiyang Li
- Department of Computer Science, Dalian Maritime University, Dalian, China
| | - Georgios Tsaramirsis
- Faculty of Computer Information, Higher Colleges of Technology, Abu Dhabi, United Arab Emirates
| | | | - Miloš Stojmenović
- Department of Computer Science and Electrical Engineering, Singidunum University, Belgrade, Serbia
| | - Andreas Walter
- Centre for Optical Technologies, Aalen University, Aalen, Germany
| |
Collapse
|
5
|
Jain I, Rao M, Tran PT. Reliable and robust control of nucleus centering is contingent on nonequilibrium force patterns. iScience 2023; 26:106665. [PMID: 37182105 PMCID: PMC10173738 DOI: 10.1016/j.isci.2023.106665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/23/2023] [Accepted: 04/09/2023] [Indexed: 05/16/2023] Open
Abstract
Cell centers their division apparatus to ensure symmetric cell division, a challenging task when the governing dynamics is stochastic. Using fission yeast, we show that the patterning of nonequilibrium polymerization forces of microtubule (MT) bundles controls the precise localization of spindle pole body (SPB), and hence the division septum, at the onset of mitosis. We define two cellular objectives, reliability, the mean SPB position relative to the geometric center, and robustness, the variance of the SPB position, which are sensitive to genetic perturbations that change cell length, MT bundle number/orientation, and MT dynamics. We show that simultaneous control of reliability and robustness is required to minimize septum positioning error achieved by the wild type (WT). A stochastic model for the MT-based nucleus centering, with parameters measured directly or estimated using Bayesian inference, recapitulates the maximum fidelity of WT. Using this, we perform a sensitivity analysis of the parameters that control nuclear centering.
Collapse
Affiliation(s)
- Ishutesh Jain
- Institut Curie, PSL Universite, Sorbonne Universite, CNRS UMR 144, 75005 Paris, France
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences - TIFR, Bangalore 560065, India
| | - Madan Rao
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences - TIFR, Bangalore 560065, India
- Corresponding author
| | - Phong T. Tran
- Institut Curie, PSL Universite, Sorbonne Universite, CNRS UMR 144, 75005 Paris, France
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corresponding author
| |
Collapse
|
6
|
Wevers C, Höhler M, Alcázar-Román AR, Hegemann JH, Fleig U. A Functional Yeast-Based Screen Identifies the Host Microtubule Cytoskeleton as a Target of Numerous Chlamydia pneumoniae Proteins. Int J Mol Sci 2023; 24:ijms24087618. [PMID: 37108781 PMCID: PMC10142024 DOI: 10.3390/ijms24087618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Bacterial pathogens have evolved intricate ways to manipulate the host to support infection. Here, we systematically assessed the importance of the microtubule cytoskeleton for infection by Chlamydiae, which are obligate intracellular bacteria that are of great importance for human health. The elimination of microtubules in human HEp-2 cells prior to C. pneumoniae infection profoundly attenuated the infection efficiency, demonstrating the need for microtubules for the early infection processes. To identify microtubule-modulating C. pneumoniae proteins, a screen in the model yeast Schizosaccharomyces pombe was performed. Unexpectedly, among 116 selected chlamydial proteins, more than 10%, namely, 13 proteins, massively altered the yeast interphase microtubule cytoskeleton. With two exceptions, these proteins were predicted to be inclusion membrane proteins. As proof of principle, we selected the conserved CPn0443 protein, which caused massive microtubule instability in yeast, for further analysis. CPn0443 bound and bundled microtubules in vitro and co-localized partially with microtubules in vivo in yeast and human cells. Furthermore, CPn0443-transfected U2OS cells had a significantly reduced infection rate by C. pneumoniae EBs. Thus, our yeast screen identified numerous proteins encoded using the highly reduced C. pneumoniae genome that modulated microtubule dynamics. Hijacking of the host microtubule cytoskeleton must be a vital part of chlamydial infection.
Collapse
Affiliation(s)
- Carolin Wevers
- Eukaryotic Microbiology, Institute of Functional Microbial Genomics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Mona Höhler
- Eukaryotic Microbiology, Institute of Functional Microbial Genomics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Abel R Alcázar-Román
- Eukaryotic Microbiology, Institute of Functional Microbial Genomics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Johannes H Hegemann
- Institute of Functional Microbial Genomics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Ursula Fleig
- Eukaryotic Microbiology, Institute of Functional Microbial Genomics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| |
Collapse
|
7
|
Raimondi A, Ilacqua N, Pellegrini L. Liver inter-organelle membrane contact sites revealed by serial section electron tomography. Methods Cell Biol 2023; 177:101-123. [PMID: 37451764 DOI: 10.1016/bs.mcb.2022.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Inter-organelle membrane contact sites (MCSs) are defined as areas of close proximity between the membranes of two organelles (10-80nm). They have been implicated in many physiological processes such as Ca++, lipids or small molecules transfer, organelles biogenesis or dynamic and have an important role in many cellular processes such as apoptosis, autophagy, and signaling. Since the distance and the extent of these contacts are in the nanometer range, high resolution techniques are ideal for imaging these structures. It is for this reason that transmission electron microscopy (TEM) has been considered the gold standard for MCSs visualization and the first technique that described them. However, often TEM analysis is limited to 2D lacking information on the 3D association between the organelles involved in MCSs. To fully describe the complex architecture of MSCs and to unveil their role in cellular physiology a 3D analysis is required. This chapter provides a method for the analysis of MCSs using serial section electron tomography (ssET), a technique able to reconstruct in 3D at nanometer resolution cellular and subcellular structures. By applying this procedure, it was possible to elucidate the role of the contacts between Endoplasmic Reticulum (ER) and other organelles in liver lipid metabolism.
Collapse
Affiliation(s)
- Andrea Raimondi
- Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Nicolò Ilacqua
- Mitochondria Biology Laboratory, Brain Research Center, Quebec, QC, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Quebec, QC, Canada
| | - Luca Pellegrini
- Mitochondria Biology Laboratory, Brain Research Center, Quebec, QC, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Quebec, QC, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
8
|
Chacko LA, Mikus F, Ariotti N, Dey G, Ananthanarayanan V. Microtubule-mitochondrial attachment facilitates cell division symmetry and mitochondrial partitioning in fission yeast. J Cell Sci 2023; 136:286576. [PMID: 36633091 PMCID: PMC10112971 DOI: 10.1242/jcs.260705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/29/2022] [Indexed: 01/13/2023] Open
Abstract
Association with microtubules inhibits the fission of mitochondria in Schizosaccharomyces pombe. Here, we show that this attachment of mitochondria to microtubules is an important cell-intrinsic factor in determining cell division symmetry. By comparing mutant cells that exhibited enhanced attachment and no attachment of mitochondria to microtubules (Dnm1Δ and Mmb1Δ, respectively), we show that microtubules in these mutants displayed aberrant dynamics compared to wild-type cells, which resulted in errors in nuclear positioning. This translated to cell division asymmetry in a significant proportion of both Dnm1Δ and Mmb1Δ cells. Asymmetric division in Dnm1Δ and Mmb1Δ cells resulted in unequal distribution of mitochondria, with the daughter cell that received more mitochondria growing faster than the other daughter cell. Taken together, we show the existence of homeostatic feedback controls between mitochondria and microtubules in fission yeast, which directly influence mitochondrial partitioning and, thereby, cell growth. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Leeba Ann Chacko
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Felix Mikus
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, 69120 Heidelberg, Germany
| | - Nicholas Ariotti
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Gautam Dey
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | |
Collapse
|
9
|
A cryo-fixation protocol to study the structure of the synaptonemal complex. Chromosome Res 2022; 30:385-400. [PMID: 35486207 DOI: 10.1007/s10577-022-09689-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/08/2022] [Accepted: 03/28/2022] [Indexed: 01/25/2023]
Abstract
Genetic variability in sexually reproducing organisms results from an exchange of genetic material between homologous chromosomes. The genetic exchange mechanism is dependent on the synaptonemal complex (SC), a protein structure localized between the homologous chromosomes. The current structural models of the mammalian SC are based on electron microscopy, superresolution, and expansion microscopy studies using chemical fixatives and sample dehydration of gonads, which are methodologies known to produce structural artifacts. To further analyze the structure of the SC, without chemical fixation, we have adapted a cryo-fixation method for electron microscopy where pachytene cells are isolated from mouse testis by FACS, followed by cryo-fixation, cryo-substitution, and electron tomography. In parallel, we performed conventional chemical fixation and electron tomography on mouse seminiferous tubules to compare the SC structure obtained with the two fixation methods. We found several differences in the structure and organization of the SC in cryo-fixed samples when compared to chemically preserved samples. We found the central region of the SC to be wider and the transverse filaments to be more densely packed in the central region of the SC.
Collapse
|
10
|
Choudhury S, Ananthanarayanan V, Ayappa KG. Coupling of mitochondrial population evolution to microtubule dynamics in fission yeast cells: a kinetic Monte Carlo study. SOFT MATTER 2022; 18:4483-4492. [PMID: 35670055 DOI: 10.1039/d2sm00155a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mitochondrial populations in cells are maintained by cycles of fission and fusion events. Perturbation of this balance has been observed in several diseases such as cancer and neurodegeneration. In fission yeast cells, the association of mitochondria with microtubules inhibits mitochondrial fission [Mehta et al., J. Biol. Chem., 2019, 294, 3385], illustrating the intricate coupling between mitochondria and the dynamic population of microtubules within the cell. In order to understand this coupling, we carried out kinetic Monte Carlo (KMC) simulations to predict the evolution of mitochondrial size distributions for different cases; wild-type cells, cells with short and long microtubules, and cells without microtubules. Comparisons are made with mitochondrial distributions reported in experiments with fission yeast cells. Using experimentally determined mitochondrial fission and fusion frequencies, simulations implemented without the coupling of microtubule dynamics predicted an increase in the mean number of mitochondria, equilibrating within 50 s. The mitochondrial length distribution in these models also showed a higher occurrence of shorter mitochondria, implying a greater tendency for fission, similar to the scenario observed in the absence of microtubules and cells with short microtubules. Interestingly, this resulted in overestimating the mean number of mitochondria and underestimating mitochondrial lengths in cells with wild-type and long microtubules. However, coupling mitochondria's fission and fusion events to the microtubule dynamics effectively captured the mitochondrial number and size distributions in wild-type and cells with long microtubules. Thus, the model provides greater physical insight into the temporal evolution of mitochondrial populations in different microtubule environments, allowing one to study both the short-time evolution as observed in the experiments (<5 minutes) as well as their transition towards a steady-state (>15 minutes). Our study illustrates the critical role of microtubules in mitochondrial dynamics and coupling microtubule growth and shrinkage dynamics is critical to predicting the evolution of mitochondrial populations within the cell.
Collapse
Affiliation(s)
- Samlesh Choudhury
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India.
| | | | - K Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India.
| |
Collapse
|
11
|
Frangakis AS. Mean curvature motion facilitates the segmentation and surface visualization of electron tomograms. J Struct Biol 2022; 214:107833. [DOI: 10.1016/j.jsb.2022.107833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 10/19/2022]
|
12
|
Molines AT, Lemière J, Gazzola M, Steinmark IE, Edrington CH, Hsu CT, Real-Calderon P, Suhling K, Goshima G, Holt LJ, Thery M, Brouhard GJ, Chang F. Physical properties of the cytoplasm modulate the rates of microtubule polymerization and depolymerization. Dev Cell 2022; 57:466-479.e6. [PMID: 35231427 PMCID: PMC9319896 DOI: 10.1016/j.devcel.2022.02.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 11/01/2021] [Accepted: 01/31/2022] [Indexed: 11/20/2022]
Abstract
The cytoplasm is a crowded, visco-elastic environment whose physical properties change according to physiological or developmental states. How the physical properties of the cytoplasm impact cellular functions in vivo remains poorly understood. Here, we probe the effects of cytoplasmic concentration on microtubules by applying osmotic shifts to fission yeast, moss, and mammalian cells. We show that the rates of both microtubule polymerization and depolymerization scale linearly and inversely with cytoplasmic concentration; an increase in cytoplasmic concentration decreases the rates of microtubule polymerization and depolymerization proportionally, whereas a decrease in cytoplasmic concentration leads to the opposite. Numerous lines of evidence indicate that these effects are due to changes in cytoplasmic viscosity rather than cellular stress responses or macromolecular crowding per se. We reconstituted these effects on microtubules in vitro by tuning viscosity. Our findings indicate that, even in normal conditions, the viscosity of the cytoplasm modulates the reactions that underlie microtubule dynamic behaviors.
Collapse
Affiliation(s)
- Arthur T Molines
- Department of Cell and Tissue Biology, University of California, San Francisco, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | - Joël Lemière
- Department of Cell and Tissue Biology, University of California, San Francisco, USA
| | - Morgan Gazzola
- University of Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Phyiologie Cellulaire & Vegétale, CytoMorpho Lab, 38054 Grenoble, France
| | | | | | - Chieh-Ting Hsu
- Department of Physics, McGill University, Montréal, Quebec, Canada
| | - Paula Real-Calderon
- Department of Cell and Tissue Biology, University of California, San Francisco, USA
| | - Klaus Suhling
- Department of Physics, King's College London, London, UK
| | - Gohta Goshima
- Sugashima Marine Biological Laboratory and Division of Biological Science, Graduate School of Science, Nagoya University, Toba City, Mie, Japan; Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Liam J Holt
- Institute for Systems Genetics, New York University Langone Health, New York, NY 10016, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Manuel Thery
- University of Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Phyiologie Cellulaire & Vegétale, CytoMorpho Lab, 38054 Grenoble, France; Université de Paris, INSERM, CEA, Institut de Recherche Saint Louis, U 976, CytoMorpho Lab, 75010 Paris, France
| | - Gary J Brouhard
- Department of Biology, McGill University, Montréal, Quebec, Canada
| | - Fred Chang
- Department of Cell and Tissue Biology, University of California, San Francisco, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| |
Collapse
|
13
|
Simon CS, Funaya C, Bauer J, Voβ Y, Machado M, Penning A, Klaschka D, Cyrklaff M, Kim J, Ganter M, Guizetti J. An extended DNA-free intranuclear compartment organizes centrosome microtubules in malaria parasites. Life Sci Alliance 2021; 4:e202101199. [PMID: 34535568 PMCID: PMC8473725 DOI: 10.26508/lsa.202101199] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 11/24/2022] Open
Abstract
Proliferation of Plasmodium falciparum in red blood cells is the cause of malaria and is underpinned by an unconventional cell division mode, called schizogony. Contrary to model organisms, P. falciparum replicates by multiple rounds of nuclear divisions that are not interrupted by cytokinesis. Organization and dynamics of critical nuclear division factors remain poorly understood. Centriolar plaques, the centrosomes of P. falciparum, serve as microtubule organizing centers and have an acentriolar, amorphous structure. The small size of parasite nuclei has precluded detailed analysis of intranuclear microtubule organization by classical fluorescence microscopy. We apply recently developed super-resolution and time-lapse imaging protocols to describe microtubule reconfiguration during schizogony. Analysis of centrin, nuclear pore, and microtubule positioning reveals two distinct compartments of the centriolar plaque. Whereas centrin is extranuclear, we confirm by correlative light and electron tomography that microtubules are nucleated in a previously unknown and extended intranuclear compartment, which is devoid of chromatin but protein-dense. This study generates a working model for an unconventional centrosome and enables a better understanding about the diversity of eukaryotic cell division.
Collapse
Affiliation(s)
- Caroline S Simon
- Centre for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Charlotta Funaya
- Electron Microscopy Core Facility, Heidelberg University, Heidelberg, Germany
| | - Johanna Bauer
- Centre for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Yannik Voβ
- Centre for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Marta Machado
- Centre for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
- Graduate Program in Areas of Basic and Applied Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Alexander Penning
- Centre for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Darius Klaschka
- Centre for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Marek Cyrklaff
- Centre for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Juyeop Kim
- Centre for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus Ganter
- Centre for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Julien Guizetti
- Centre for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
14
|
Keuenhof KS, Larsson Berglund L, Malmgren Hill S, Schneider KL, Widlund PO, Nyström T, Höög JL. Large organellar changes occur during mild heat shock in yeast. J Cell Sci 2021; 135:271806. [PMID: 34378783 PMCID: PMC8403982 DOI: 10.1242/jcs.258325] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
When the temperature is increased, the heat-shock response is activated to protect the cellular environment. The transcriptomics and proteomics of this process are intensively studied, while information about how the cell responds structurally to heat stress is mostly lacking. Here, Saccharomyces cerevisiae were subjected to a mild continuous heat shock (38°C) and intermittently cryo-immobilised for electron microscopy. Through measuring changes in all distinguishable organelle numbers, sizes and morphologies in over 2100 electron micrographs, a major restructuring of the internal architecture of the cell during the progressive heat shock was revealed. The cell grew larger but most organelles within it expanded even more, shrinking the volume of the cytoplasm. Organelles responded to heat shock at different times, both in terms of size and number, and adaptations of the morphology of some organelles (such as the vacuole) were observed. Multivesicular bodies grew by almost 70%, indicating a previously unknown involvement in the heat-shock response. A previously undescribed electron-translucent structure accumulated close to the plasma membrane. This all-encompassing approach provides a detailed chronological progression of organelle adaptation throughout the cellular heat-stress response.
Collapse
Affiliation(s)
- Katharina S Keuenhof
- Department for Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 41390, Sweden
| | - Lisa Larsson Berglund
- Department for Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 41390, Sweden.,Department of Microbiology and Immunology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg 41390, Sweden
| | - Sandra Malmgren Hill
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg 41390, Sweden.,Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge CB2 0XY, UK
| | - Kara L Schneider
- Department of Microbiology and Immunology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg 41390, Sweden
| | - Per O Widlund
- Department of Microbiology and Immunology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg 41390, Sweden
| | - Thomas Nyström
- Department of Microbiology and Immunology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg 41390, Sweden
| | - Johanna L Höög
- Department for Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 41390, Sweden
| |
Collapse
|
15
|
Panagaki D, Croft JT, Keuenhof K, Larsson Berglund L, Andersson S, Kohler V, Büttner S, Tamás MJ, Nyström T, Neutze R, Höög JL. Nuclear envelope budding is a response to cellular stress. Proc Natl Acad Sci U S A 2021; 118:e2020997118. [PMID: 34290138 PMCID: PMC8325156 DOI: 10.1073/pnas.2020997118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nuclear envelope budding (NEB) is a recently discovered alternative pathway for nucleocytoplasmic communication distinct from the movement of material through the nuclear pore complex. Through quantitative electron microscopy and tomography, we demonstrate how NEB is evolutionarily conserved from early protists to human cells. In the yeast Saccharomyces cerevisiae, NEB events occur with higher frequency during heat shock, upon exposure to arsenite or hydrogen peroxide, and when the proteasome is inhibited. Yeast cells treated with azetidine-2-carboxylic acid, a proline analog that induces protein misfolding, display the most dramatic increase in NEB, suggesting a causal link to protein quality control. This link was further supported by both localization of ubiquitin and Hsp104 to protein aggregates and NEB events, and the evolution of these structures during heat shock. We hypothesize that NEB is part of normal cellular physiology in a vast range of species and that in S. cerevisiae NEB comprises a stress response aiding the transport of protein aggregates across the nuclear envelope.
Collapse
Affiliation(s)
- Dimitra Panagaki
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Jacob T Croft
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Katharina Keuenhof
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Lisa Larsson Berglund
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Stefanie Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Verena Kohler
- Department of Molecular Bioscienses, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Sabrina Büttner
- Department of Molecular Bioscienses, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Markus J Tamás
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Thomas Nyström
- Department of Microbiology and Immunology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Johanna L Höög
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden;
| |
Collapse
|
16
|
Abstract
Since its entry into biomedical research in the first half of the twentieth century, electron microscopy has been a valuable tool for lung researchers to explore the lung's delicate ultrastructure. Among others, it proved the existence of a continuous alveolar epithelium and demonstrated the surfactant lining layer. With the establishment of serial sectioning transmission electron microscopy, as the first "volume electron microscopic" technique, electron microscopy entered the third dimension and investigations of the lung's three-dimensional ultrastructure became possible. Over the years, further techniques, ranging from electron tomography over serial block-face and focused ion beam scanning electron microscopy to array tomography became available. All techniques cover different volumes and resolutions, and, thus, different scientific questions. This review gives an overview of these techniques and their application in lung research, focusing on their fields of application and practical implementation. Furthermore, an introduction is given how the output raw data are processed and the final three-dimensional models can be generated.
Collapse
Affiliation(s)
- Jan Philipp Schneider
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
- Research Core Unit Electron Microscopy, Hannover Medical School, 30625 Hannover, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
- Research Core Unit Electron Microscopy, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
17
|
Müller A, Schmidt D, Xu CS, Pang S, D’Costa JV, Kretschmar S, Münster C, Kurth T, Jug F, Weigert M, Hess HF, Solimena M. 3D FIB-SEM reconstruction of microtubule-organelle interaction in whole primary mouse β cells. J Cell Biol 2021; 220:e202010039. [PMID: 33326005 PMCID: PMC7748794 DOI: 10.1083/jcb.202010039] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/14/2020] [Accepted: 11/18/2020] [Indexed: 11/22/2022] Open
Abstract
Microtubules play a major role in intracellular trafficking of vesicles in endocrine cells. Detailed knowledge of microtubule organization and their relation to other cell constituents is crucial for understanding cell function. However, their role in insulin transport and secretion is under debate. Here, we use FIB-SEM to image islet β cells in their entirety with unprecedented resolution. We reconstruct mitochondria, Golgi apparati, centrioles, insulin secretory granules, and microtubules of seven β cells, and generate a comprehensive spatial map of microtubule-organelle interactions. We find that microtubules form nonradial networks that are predominantly not connected to either centrioles or endomembranes. Microtubule number and length, but not microtubule polymer density, vary with glucose stimulation. Furthermore, insulin secretory granules are enriched near the plasma membrane, where they associate with microtubules. In summary, we provide the first 3D reconstructions of complete microtubule networks in primary mammalian cells together with evidence regarding their importance for insulin secretory granule positioning and thus their supportive role in insulin secretion.
Collapse
Affiliation(s)
- Andreas Müller
- Molecular Diabetology, University Hospital and Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Deborah Schmidt
- Center for Systems Biology Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - C. Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - Song Pang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - Joyson Verner D’Costa
- Molecular Diabetology, University Hospital and Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Susanne Kretschmar
- Center for Molecular and Cellular Bioengineering, Technology Platform, Technische Universität Dresden, Dresden, Germany
| | - Carla Münster
- Molecular Diabetology, University Hospital and Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Thomas Kurth
- Center for Molecular and Cellular Bioengineering, Technology Platform, Technische Universität Dresden, Dresden, Germany
| | - Florian Jug
- Center for Systems Biology Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Fondazione Human Technopole, Milano, Italy
| | - Martin Weigert
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Harald F. Hess
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - Michele Solimena
- Molecular Diabetology, University Hospital and Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
18
|
Gao X, Fischer R, Takeshita N. Application of PALM Superresolution Microscopy to the Analysis of Microtubule-Organizing Centers (MTOCs) in Aspergillus nidulans. Methods Mol Biol 2021; 2329:277-289. [PMID: 34085230 DOI: 10.1007/978-1-0716-1538-6_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photoactivated localization microscopy (PALM), one of the super resolution microscopy methods improving the resolution limit to 20 nm, allows the detection of single molecules in complex protein structures in living cells. Microtubule-organizing centres (MTOCs) are large, multisubunit protein complexes, required for microtubule polymerization. The prominent MTOC in higher eukaryotes is the centrosome, and its functional ortholog in fungi is the spindle-pole body (SPB). There is ample evidence that besides centrosomes other MTOCs are important in eukaryotic cells. The filamentous ascomycetous fungus Aspergillus nidulans is a model organism, with hyphae consisting of multinucleate compartments separated by septa. In A. nidulans, besides the SPBs, a second type of MTOCs was discovered at septa (called septal MTOCs, sMTOC). All the MTOC components appear as big dots at SPBs and sMTOCs when tagged with a fluorescent protein and observed with conventional fluorescence microscopy due to the diffraction barrier. In this chapter, we describe the application of PALM in quantifying the numbers of individual proteins at both MTOC sites in A. nidulans and provide evidence that the composition of MTOCs is highly dynamic and dramatically changes during the cell cycle.
Collapse
Affiliation(s)
- Xiaolei Gao
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Reinhard Fischer
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Norio Takeshita
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
19
|
Baybay EK, Esposito E, Hauf S. Pomegranate: 2D segmentation and 3D reconstruction for fission yeast and other radially symmetric cells. Sci Rep 2020; 10:16580. [PMID: 33024177 PMCID: PMC7538417 DOI: 10.1038/s41598-020-73597-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/14/2020] [Indexed: 11/09/2022] Open
Abstract
Three-dimensional (3D) segmentation of cells in microscopy images is crucial to accurately capture signals that extend across optical sections. Using brightfield images for segmentation has the advantage of being minimally phototoxic and leaving all other channels available for signals of interest. However, brightfield images only readily provide information for two-dimensional (2D) segmentation. In radially symmetric cells, such as fission yeast and many bacteria, this 2D segmentation can be computationally extruded into the third dimension. However, current methods typically make the simplifying assumption that cells are straight rods. Here, we report Pomegranate, a pipeline that performs the extrusion into 3D using spheres placed along the topological skeletons of the 2D-segmented regions. The diameter of these spheres adapts to the cell diameter at each position. Thus, Pomegranate accurately represents radially symmetric cells in 3D even if cell diameter varies and regardless of whether a cell is straight, bent or curved. We have tested Pomegranate on fission yeast and demonstrate its ability to 3D segment wild-type cells as well as classical size and shape mutants. The pipeline is available as a macro for the open-source image analysis software Fiji/ImageJ. 2D segmentations created within or outside Pomegranate can serve as input, thus making this a valuable extension to the image analysis portfolio already available for fission yeast and other radially symmetric cell types.
Collapse
Affiliation(s)
- Erod Keaton Baybay
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA.
| | - Eric Esposito
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
| | - Silke Hauf
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
20
|
Chakraborty S, Jasnin M, Baumeister W. Three-dimensional organization of the cytoskeleton: A cryo-electron tomography perspective. Protein Sci 2020; 29:1302-1320. [PMID: 32216120 PMCID: PMC7255506 DOI: 10.1002/pro.3858] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 01/01/2023]
Abstract
Traditionally, structures of cytoskeletal components have been studied ex situ, that is, with biochemically purified materials. There are compelling reasons to develop approaches to study them in situ in their native functional context. In recent years, cryo-electron tomography emerged as a powerful method for visualizing the molecular organization of unperturbed cellular landscapes with the potential to attain near-atomic resolution. Here, we review recent works on the cytoskeleton using cryo-electron tomography, demonstrating the power of in situ studies. We also highlight the potential of this method in addressing important questions pertinent to the field of cytoskeletal biomechanics.
Collapse
Affiliation(s)
- Saikat Chakraborty
- Department of Molecular Structural BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| | - Marion Jasnin
- Department of Molecular Structural BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| | - Wolfgang Baumeister
- Department of Molecular Structural BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| |
Collapse
|
21
|
Abstract
For automated acquisition of tilt series for electron tomography, software needs to handle complications such as movements of the sample in x/y and z, increased projected thickness at high tilt, specimen drift, etc. In addition, many applications require special functionality such as low dose acquisition, automated sequential (batch) tomography, or montage tomography. After reviewing how these difficulties can be addressed and a closer look at what advanced acquisition strategies are employed in biosciences, this chapter introduces acquisition software both developed in academia as well as by hardware vendors. It covers the hardware requirements and compatibility, the functional principle and workflow implemented, as well as what advanced functions are supported by the individual programs.
Collapse
Affiliation(s)
- Guenter P Resch
- Nexperion e.U.-Solutions for Electron Microscopy, Vienna, Austria.
| |
Collapse
|
22
|
Loiodice I, Janson ME, Tavormina P, Schaub S, Bhatt D, Cochran R, Czupryna J, Fu C, Tran PT. Quantifying Tubulin Concentration and Microtubule Number Throughout the Fission Yeast Cell Cycle. Biomolecules 2019; 9:biom9030086. [PMID: 30836700 PMCID: PMC6468777 DOI: 10.3390/biom9030086] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/26/2019] [Indexed: 11/16/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe serves as a good genetic model organism for the molecular dissection of the microtubule (MT) cytoskeleton. However, analysis of the number and distribution of individual MTs throughout the cell cycle, particularly during mitosis, in living cells is still lacking, making quantitative modelling imprecise. We use quantitative fluorescent imaging and analysis to measure the changes in tubulin concentration and MT number and distribution throughout the cell cycle at a single MT resolution in living cells. In the wild-type cell, both mother and daughter spindle pole body (SPB) nucleate a maximum of 23 ± 6 MTs at the onset of mitosis, which decreases to a minimum of 4 ± 1 MTs at spindle break down. Interphase MT bundles, astral MT bundles, and the post anaphase array (PAA) microtubules are composed primarily of 1 ± 1 individual MT along their lengths. We measure the cellular concentration of αβ-tubulin subunits to be ~5 µM throughout the cell cycle, of which one-third is in polymer form during interphase and one-quarter is in polymer form during mitosis. This analysis provides a definitive characterization of αβ-tubulin concentration and MT number and distribution in fission yeast and establishes a foundation for future quantitative comparison of mutants defective in MTs.
Collapse
Affiliation(s)
- Isabelle Loiodice
- Cell & Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marcel E Janson
- Cell & Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Sebastien Schaub
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France
| | - Divya Bhatt
- Cell & Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryan Cochran
- Cell & Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julie Czupryna
- Cell & Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chuanhai Fu
- Cell & Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Phong T Tran
- Cell & Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France.
| |
Collapse
|
23
|
Shen J, Li T, Niu X, Liu W, Zheng S, Wang J, Wang F, Cao X, Yao X, Zheng F, Fu C. The J-domain cochaperone Rsp1 interacts with Mto1 to organize noncentrosomal microtubule assembly. Mol Biol Cell 2019; 30:256-267. [PMID: 30427751 PMCID: PMC6589567 DOI: 10.1091/mbc.e18-05-0279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Microtubule biogenesis initiates at various intracellular sites, including the centrosome, the Golgi apparatus, the nuclear envelope, and preexisting microtubules. Similarly, in the fission yeast Schizosaccharomyces pombe, interphase microtubules are nucleated at the spindle pole body (SPB), the nuclear envelope, and preexisting microtubules, depending on Mto1 activity. Despite the essential role of Mto1 in promoting microtubule nucleation, how distribution of Mto1 in different sites is regulated has remained elusive. Here, we show that the J-domain cochaperone Rsp1 interacts with Mto1 and specifies the localization of Mto1 to non-SPB nucleation sites. The absence of Rsp1 abolishes the localization of Mto1 to non-SPB nucleation sites, with concomitant enrichment of Mto1 to the SPB and the nuclear envelope. In contrast, Rsp1 overexpression impairs the localization of Mto1 to all microtubule organization sites. These findings delineate a previously uncharacterized mechanism in which Rsp1-Mto1 interaction orchestrates non-SPB microtubule formation.
Collapse
Affiliation(s)
- Juan Shen
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Tianpeng Li
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Xiaojia Niu
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Wenyue Liu
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Shengnan Zheng
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Jing Wang
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Fengsong Wang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230027, China
| | - Xinwang Cao
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230027, China
| | - Xuebiao Yao
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Fan Zheng
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Chuanhai Fu
- Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Chinese Academy of Sciences Center for Excellence in Molecular Cell Sciences, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
24
|
Mehta K, Chacko LA, Chug MK, Jhunjhunwala S, Ananthanarayanan V. Association of mitochondria with microtubules inhibits mitochondrial fission by precluding assembly of the fission protein Dnm1. J Biol Chem 2019; 294:3385-3396. [PMID: 30602572 DOI: 10.1074/jbc.ra118.006799] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/27/2018] [Indexed: 11/06/2022] Open
Abstract
Mitochondria are organized as tubular networks in the cell and undergo fission and fusion. Although several of the molecular players involved in mediating mitochondrial dynamics have been identified, the precise cellular cues that initiate mitochondrial fission or fusion remain largely unknown. In fission yeast (Schizosaccharomyces pombe), mitochondria are organized along microtubule bundles. Here, we employed deletions of kinesin-like proteins to perturb microtubule dynamics and used high-resolution and time-lapse fluorescence microscopy, revealing that mitochondrial lengths mimic microtubule lengths. Furthermore, we determined that compared with WT cells, mutant cells with long microtubules exhibit fewer mitochondria, and mutant cells with short microtubules have an increased number of mitochondria because of reduced mitochondrial fission in the former and elevated fission in the latter. Correspondingly, upon onset of closed mitosis in fission yeast, wherein interphase microtubules assemble to form the spindle within the nucleus, we observed increased mitochondrial fission. We found that the consequent rise in the mitochondrial copy number is necessary to reduce partitioning errors during independent segregation of mitochondria between daughter cells. We also discovered that the association of mitochondria with microtubules physically impedes the assembly of the fission protein Dnm1 around mitochondria, resulting in inhibition of mitochondrial fission. Taken together, we demonstrate a mechanism for the regulation of mitochondrial fission that is dictated by the interaction between mitochondria and the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Kritika Mehta
- From the Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Leeba Ann Chacko
- From the Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Manjyot Kaur Chug
- From the Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Siddharth Jhunjhunwala
- From the Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Vaishnavi Ananthanarayanan
- From the Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
25
|
Tolić IM. Mitotic spindle: kinetochore fibers hold on tight to interpolar bundles. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2018; 47:191-203. [PMID: 28725997 PMCID: PMC5845649 DOI: 10.1007/s00249-017-1244-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/30/2017] [Accepted: 07/02/2017] [Indexed: 12/24/2022]
Abstract
When a cell starts to divide, it forms a spindle, a micro-machine made of microtubules, which separates the duplicated chromosomes. The attachment of microtubules to chromosomes is mediated by kinetochores, protein complexes on the chromosome. Spindle microtubules can be divided into three major classes: kinetochore microtubules, which form k-fibers ending at the kinetochore; interpolar microtubules, which extend from the opposite sides of the spindle and interact in the middle; and astral microtubules, which extend towards the cell cortex. Recent work in human cells has shown a close relationship between interpolar and kinetochore microtubules, where interpolar bundles are attached laterally to kinetochore fibers almost all along their length, acting as a bridge between sister k-fibers. Most of the interpolar bundles are attached to a pair of sister kinetochore fibers and vice versa. Thus, the spindle is made of modules consisting of a pair of sister kinetochore fibers and a bundle of interpolar microtubules that connects them. These interpolar bundles, termed bridging fibers, balance the forces acting at kinetochores and support the rounded shape of the spindle during metaphase. This review discusses the structure, function, and formation of kinetochore fibers and interpolar bundles, with an emphasis on how they interact. Their connections have an impact on the force balance in the spindle and on chromosome movement during mitosis because the forces in interpolar bundles are transmitted to kinetochore fibers and hence to kinetochores through these connections.
Collapse
Affiliation(s)
- Iva M Tolić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia.
| |
Collapse
|
26
|
Zabeo D, Heumann JM, Schwartz CL, Suzuki-Shinjo A, Morgan G, Widlund PO, Höög JL. A lumenal interrupted helix in human sperm tail microtubules. Sci Rep 2018; 8:2727. [PMID: 29426884 PMCID: PMC5807425 DOI: 10.1038/s41598-018-21165-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/26/2018] [Indexed: 01/16/2023] Open
Abstract
Eukaryotic flagella are complex cellular extensions involved in many human diseases gathered under the term ciliopathies. Currently, detailed insights on flagellar structure come mostly from studies on protists. Here, cryo-electron tomography (cryo-ET) was performed on intact human spermatozoon tails and showed a variable number of microtubules in the singlet region (inside the end-piece). Inside the microtubule plus end, a novel left-handed interrupted helix which extends several micrometers was discovered. This structure was named Tail Axoneme Intra-Lumenal Spiral (TAILS) and binds directly to 11 protofilaments on the internal microtubule wall, in a coaxial fashion with the surrounding microtubule lattice. It leaves a gap over the microtubule seam, which was directly visualized in both singlet and doublet microtubules. We speculate that TAILS may stabilize microtubules, enable rapid swimming or play a role in controlling the swimming direction of spermatozoa.
Collapse
Affiliation(s)
- Davide Zabeo
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, 41390, Sweden
| | - John M Heumann
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Cindi L Schwartz
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Azusa Suzuki-Shinjo
- Krefting Research Centre, University of Gothenburg, Gothenburg, 41390, Sweden
| | - Garry Morgan
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Per O Widlund
- Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41390, Sweden
| | - Johanna L Höög
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, 41390, Sweden.
| |
Collapse
|
27
|
Müller-Reichert T, Kiewisz R, Redemann S. Mitotic spindles revisited – new insights from 3D electron microscopy. J Cell Sci 2018; 131:131/3/jcs211383. [DOI: 10.1242/jcs.211383] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT
The mitotic spindle is a complex three-dimensional (3D) apparatus that functions to ensure the faithful segregation of chromosomes during cell division. Our current understanding of spindle architecture is mainly based on a plethora of information derived from light microscopy with rather few insights about spindle ultrastructure obtained from electron microscopy. In this Review, we will provide insights into the history of imaging of mitotic spindles and highlight recent technological advances in electron tomography and data processing, which have delivered detailed 3D reconstructions of mitotic spindles in the early embryo of the nematode Caenorhabditis elegans. Tomographic reconstructions provide novel views on spindles and will enable us to revisit and address long-standing questions in the field of mitosis.
Collapse
Affiliation(s)
- Thomas Müller-Reichert
- Technische Universität Dresden, Experimental Center, Medical Faculty Carl Gustav Carus, Fiedlerstraße 42, 01307 Dresden, Germany
| | - Robert Kiewisz
- Technische Universität Dresden, Experimental Center, Medical Faculty Carl Gustav Carus, Fiedlerstraße 42, 01307 Dresden, Germany
| | - Stefanie Redemann
- Technische Universität Dresden, Experimental Center, Medical Faculty Carl Gustav Carus, Fiedlerstraße 42, 01307 Dresden, Germany
| |
Collapse
|
28
|
Cavanaugh AM, Jaspersen SL. Big Lessons from Little Yeast: Budding and Fission Yeast Centrosome Structure, Duplication, and Function. Annu Rev Genet 2017; 51:361-383. [PMID: 28934593 DOI: 10.1146/annurev-genet-120116-024733] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Centrosomes are a functionally conserved feature of eukaryotic cells that play an important role in cell division. The conserved γ-tubulin complex organizes spindle and astral microtubules, which, in turn, separate replicated chromosomes accurately into daughter cells. Like DNA, centrosomes are duplicated once each cell cycle. Although in some cell types it is possible for cell division to occur in the absence of centrosomes, these divisions typically result in defects in chromosome number and stability. In single-celled organisms such as fungi, centrosomes [known as spindle pole bodies (SPBs)] are essential for cell division. SPBs also must be inserted into the membrane because fungi undergo a closed mitosis in which the nuclear envelope (NE) remains intact. This poorly understood process involves events similar or identical to those needed for de novo nuclear pore complex assembly. Here, we review how analysis of fungal SPBs has advanced our understanding of centrosomes and NE events.
Collapse
Affiliation(s)
- Ann M Cavanaugh
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA;
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA; .,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
29
|
Vleugel M, Kok M, Dogterom M. Understanding force-generating microtubule systems through in vitro reconstitution. Cell Adh Migr 2017; 10:475-494. [PMID: 27715396 PMCID: PMC5079405 DOI: 10.1080/19336918.2016.1241923] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Microtubules switch between growing and shrinking states, a feature known as dynamic instability. The biochemical parameters underlying dynamic instability are modulated by a wide variety of microtubule-associated proteins that enable the strict control of microtubule dynamics in cells. The forces generated by controlled growth and shrinkage of microtubules drive a large range of processes, including organelle positioning, mitotic spindle assembly, and chromosome segregation. In the past decade, our understanding of microtubule dynamics and microtubule force generation has progressed significantly. Here, we review the microtubule-intrinsic process of dynamic instability, the effect of external factors on this process, and how the resulting forces act on various biological systems. Recently, reconstitution-based approaches have strongly benefited from extensive biochemical and biophysical characterization of individual components that are involved in regulating or transmitting microtubule-driven forces. We will focus on the current state of reconstituting increasingly complex biological systems and provide new directions for future developments.
Collapse
Affiliation(s)
- Mathijs Vleugel
- a Department of Bionanoscience , Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft Institute of Technology , Delft , The Netherlands
| | - Maurits Kok
- a Department of Bionanoscience , Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft Institute of Technology , Delft , The Netherlands
| | - Marileen Dogterom
- a Department of Bionanoscience , Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft Institute of Technology , Delft , The Netherlands
| |
Collapse
|
30
|
Bestul AJ, Yu Z, Unruh JR, Jaspersen SL. Molecular model of fission yeast centrosome assembly determined by superresolution imaging. J Cell Biol 2017; 216:2409-2424. [PMID: 28619713 PMCID: PMC5551712 DOI: 10.1083/jcb.201701041] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/17/2017] [Accepted: 05/10/2017] [Indexed: 01/06/2023] Open
Abstract
Microtubule-organizing centers (MTOCs), known as centrosomes in animals and spindle pole bodies (SPBs) in fungi, are important for the faithful distribution of chromosomes between daughter cells during mitosis as well as for other cellular functions. The cytoplasmic duplication cycle and regulation of the Schizosaccharomyces pombe SPB is analogous to centrosomes, making it an ideal model to study MTOC assembly. Here, we use superresolution structured illumination microscopy with single-particle averaging to localize 14 S. pombe SPB components and regulators, determining both the relationship of proteins to each other within the SPB and how each protein is assembled into a new structure during SPB duplication. These data enabled us to build the first comprehensive molecular model of the S. pombe SPB, resulting in structural and functional insights not ascertained through investigations of individual subunits, including functional similarities between Ppc89 and the budding yeast SPB scaffold Spc42, distribution of Sad1 to a ring-like structure and multiple modes of Mto1 recruitment.
Collapse
Affiliation(s)
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, MO
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO .,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
31
|
McIntosh JR, Morphew MK, Giddings TH. Electron Microscopy of Fission Yeast. Cold Spring Harb Protoc 2017; 2017:2017/1/pdb.top079822. [PMID: 28049809 DOI: 10.1101/pdb.top079822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Electron microscopy (EM) can provide images of cells with a spatial resolution that significantly surpasses that available from light microscopy (LM), even with modern methods that give LM "super resolution." However, EM resolution comes with costs in time spent with sample preparation, expense of instrumentation, and concerns regarding sample preparation artifacts. It is therefore important to know the limitations of EM as well as its strengths. Here we describe the most reliable methods for the preservation of fission yeast cells currently available. We describe the properties of images obtained by transmission EM (TEM) and contrast them with images from scanning EM (SEM). We also show how one can make three-dimensional TEM images and discuss several approaches to address the problem of localizing specific proteins within cells. We give references to work by others who have pursued similar goals with different methods, and we discuss briefly the complex subject of image interpretation.
Collapse
Affiliation(s)
- J Richard McIntosh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347
- Laboratory for 3D Electron Microscopy, University of Colorado, Boulder, Colorado 80309-0347
| | - Mary K Morphew
- Laboratory for 3D Electron Microscopy, University of Colorado, Boulder, Colorado 80309-0347
| | - Thomas H Giddings
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347
| |
Collapse
|
32
|
Giddings TH, Morphew MK, McIntosh JR. Preparing Fission Yeast for Electron Microscopy. Cold Spring Harb Protoc 2017; 2017:2017/1/pdb.prot091314. [PMID: 28049777 DOI: 10.1101/pdb.prot091314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Freezing samples while simultaneously subjecting them to a rapid increase in pressure, which inhibits ice crystal formation, is a reliable method for cryofixing fission yeast. The procedure consists simply of harvesting cells and loading them into a high-pressure freezer (HPF), and then operating the device. If equipment for high-pressure freezing is not available, fission yeast can be frozen by plunging a monolayer of cells into a liquid cryogen, usually ethane or propane. Unlike the HPF, where relatively large volumes of cells can be frozen in a single run, plunge freezing requires cells to be dispersed in a layer <20 µm thick. Unless frozen cells are to be imaged in the vitreous state, they must be fixed, dehydrated, and embedded for subsequent study by transmission electron microscopy; warming frozen cells without fixation badly damages cell structure. Fixation is best accomplished by freeze-substitution, a process in which frozen water is removed from samples by a water-miscible solvent that is liquid at a temperature low enough to prevent the cellular water from recrystallizing. Low concentrations of chemical fixatives and stains are generally added to this solvent such that they permeate the cells as the water is replaced. The activity of these additives is quite limited at the low temperatures required for minimizing ice crystal formation, but they are in the right place to react effectively as the cells warm up. Step-by-step protocols for HPF, plunge freezing, and freeze-substitution are provided here.
Collapse
Affiliation(s)
- Thomas H Giddings
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347
| | - Mary K Morphew
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347
| | - J Richard McIntosh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347.,Laboratory for 3D Electron Microscopy, University of Colorado, Boulder, Colorado 80309-0347
| |
Collapse
|
33
|
Ekman AA, Chen JH, Guo J, McDermott G, Le Gros MA, Larabell CA. Mesoscale imaging with cryo-light and X-rays: Larger than molecular machines, smaller than a cell. Biol Cell 2017; 109:24-38. [PMID: 27690365 PMCID: PMC5261833 DOI: 10.1111/boc.201600044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/11/2022]
Abstract
In the context of cell biology, the term mesoscale describes length scales ranging from that of an individual cell, down to the size of the molecular machines. In this spatial regime, small building blocks self-organise to form large, functional structures. A comprehensive set of rules governing mesoscale self-organisation has not been established, making the prediction of many cell behaviours difficult, if not impossible. Our knowledge of mesoscale biology comes from experimental data, in particular, imaging. Here, we explore the application of soft X-ray tomography (SXT) to imaging the mesoscale, and describe the structural insights this technology can generate. We also discuss how SXT imaging is complemented by the addition of correlative fluorescence data measured from the same cell. This combination of two discrete imaging modalities produces a 3D view of the cell that blends high-resolution structural information with precise molecular localisation data.
Collapse
Affiliation(s)
- Axel A. Ekman
- Department of Anatomy, School of Medicine, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jian-Hua Chen
- Department of Anatomy, School of Medicine, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jessica Guo
- Department of Anatomy, School of Medicine, University of California San Francisco, San Francisco, CA 94158, USA
| | - Gerry McDermott
- Department of Anatomy, School of Medicine, University of California San Francisco, San Francisco, CA 94158, USA
| | - Mark A. Le Gros
- Department of Anatomy, School of Medicine, University of California San Francisco, San Francisco, CA 94158, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Carolyn A. Larabell
- Department of Anatomy, School of Medicine, University of California San Francisco, San Francisco, CA 94158, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
34
|
Fernández-Álvarez A, Bez C, O'Toole ET, Morphew M, Cooper JP. Mitotic Nuclear Envelope Breakdown and Spindle Nucleation Are Controlled by Interphase Contacts between Centromeres and the Nuclear Envelope. Dev Cell 2016; 39:544-559. [PMID: 27889481 DOI: 10.1016/j.devcel.2016.10.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/02/2016] [Accepted: 10/26/2016] [Indexed: 10/20/2022]
Abstract
Faithful genome propagation requires coordination between nuclear envelope (NE) breakdown, spindle formation, and chromosomal events. The conserved linker of nucleoskeleton and cytoskeleton (LINC) complex connects fission yeast centromeres and the centrosome, across the NE, during interphase. During meiosis, LINC connects the centrosome with telomeres rather than centromeres. We previously showed that loss of telomere-LINC contacts compromises meiotic spindle formation. Here, we define the precise events regulated by telomere-LINC contacts and address the analogous possibility that centromeres regulate mitotic spindle formation. We develop conditionally inactivated LINC complexes in which the conserved SUN-domain protein Sad1 remains stable but severs interphase centromere-LINC contacts. Strikingly, the loss of such contacts abolishes spindle formation. We pinpoint the defect to a failure in the partial NE breakdown required for centrosome insertion into the NE, a step analogous to mammalian NE breakdown. Thus, interphase chromosome-LINC contacts constitute a cell-cycle control device linking nucleoplasmic and cytoplasmic events.
Collapse
Affiliation(s)
- Alfonso Fernández-Álvarez
- Telomere Biology Section, LBMB, National Cancer Institute, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA; Telomere Biology Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK.
| | - Cécile Bez
- Telomere Biology Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Eileen T O'Toole
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Mary Morphew
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Julia Promisel Cooper
- Telomere Biology Section, LBMB, National Cancer Institute, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA; Telomere Biology Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK.
| |
Collapse
|
35
|
Automated tilt series alignment and tomographic reconstruction in IMOD. J Struct Biol 2016; 197:102-113. [PMID: 27444392 DOI: 10.1016/j.jsb.2016.07.011] [Citation(s) in RCA: 483] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 02/07/2023]
Abstract
Automated tomographic reconstruction is now possible in the IMOD software package, including the merging of tomograms taken around two orthogonal axes. Several developments enable the production of high-quality tomograms. When using fiducial markers for alignment, the markers to be tracked through the series are chosen automatically; if there is an excess of markers available, a well-distributed subset is selected that is most likely to track well. Marker positions are refined by applying an edge-enhancing Sobel filter, which results in a 20% improvement in alignment error for plastic-embedded samples and 10% for frozen-hydrated samples. Robust fitting, in which outlying points are given less or no weight in computing the fitting error, is used to obtain an alignment solution, so that aberrant points from the automated tracking can have little effect on the alignment. When merging two dual-axis tomograms, the alignment between them is refined from correlations between local patches; a measure of structure was developed so that patches with insufficient structure to give accurate correlations can now be excluded automatically. We have also developed a script for running all steps in the reconstruction process with a flexible mechanism for setting parameters, and we have added a user interface for batch processing of tilt series to the Etomo program in IMOD. Batch processing is fully compatible with interactive processing and can increase efficiency even when the automation is not fully successful, because users can focus their effort on the steps that require manual intervention.
Collapse
|
36
|
Electron tomography of rabbit cardiomyocyte three-dimensional ultrastructure. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:77-84. [PMID: 27210305 PMCID: PMC4959512 DOI: 10.1016/j.pbiomolbio.2016.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/01/2016] [Indexed: 12/22/2022]
Abstract
The field of cardiovascular research has benefitted from rapid developments in imaging technology over the last few decades. Accordingly, an ever growing number of large, multidimensional data sets have begun to appear, often challenging existing pre-conceptions about structure and function of biological systems. For tissue and cell structure imaging, the move from 2D section-based microscopy to true 3D data collection has been a major driver of new insight. In the sub-cellular domain, electron tomography is a powerful technique for exploration of cellular structures in 3D with unparalleled fidelity at nanometer resolution. Electron tomography is particularly advantageous for studying highly compartmentalised cells such as cardiomyocytes, where elaborate sub-cellular structures play crucial roles in electrophysiology and mechanics. Although the anatomy of specific ultra-structures, such as dyadic couplons, has been extensively explored using 2D electron microscopy of thin sections, we still lack accurate, quantitative knowledge of true individual shape, volume and surface area of sub-cellular domains, as well as their 3D spatial interrelations; let alone of how these are reshaped during the cycle of contraction and relaxation. Here we discuss and illustrate the utility of ET for identification, visualisation, and analysis of 3D cardiomyocyte ultrastructures such as the T-tubular system, sarcoplasmic reticulum, mitochondria and microtubules.
Collapse
|
37
|
Rao AN, Falnikar A, O'Toole ET, Morphew MK, Hoenger A, Davidson MW, Yuan X, Baas PW. Sliding of centrosome-unattached microtubules defines key features of neuronal phenotype. J Cell Biol 2016; 213:329-41. [PMID: 27138250 PMCID: PMC4862329 DOI: 10.1083/jcb.201506140] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 03/28/2016] [Indexed: 12/25/2022] Open
Abstract
Contemporary models for neuronal migration are grounded in the view that virtually all functionally relevant microtubules (MTs) in migrating neurons are attached to the centrosome, which occupies a position between the nucleus and a short leading process. It is assumed that MTs do not undergo independent movements but rather transduce forces that enable movements of the centrosome and nucleus. The present results demonstrate that although this is mostly true, a small fraction of the MTs are centrosome-unattached, and this permits limited sliding of MTs. When this sliding is pharmacologically inhibited, the leading process becomes shorter, migration of the neuron deviates from its normal path, and the MTs within the leading process become buckled. Partial depletion of ninein, a protein that attaches MTs to the centrosome, leads to greater numbers of centrosome-unattached MTs as well as greater sliding of MTs. Concomitantly, the soma becomes less mobile and the leading process acquires an elongated morphology akin to an axon.
Collapse
Affiliation(s)
- Anand N Rao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Aditi Falnikar
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Eileen T O'Toole
- Boulder Laboratory for 3D Electron Microscopy of Cells, University of Colorado, Boulder, CO 80309
| | - Mary K Morphew
- Boulder Laboratory for 3D Electron Microscopy of Cells, University of Colorado, Boulder, CO 80309
| | - Andreas Hoenger
- Boulder Laboratory for 3D Electron Microscopy of Cells, University of Colorado, Boulder, CO 80309
| | - Michael W Davidson
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310 Department of Biological Science, Florida State University, Tallahassee, FL 32310
| | - Xiaobing Yuan
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Peter W Baas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| |
Collapse
|
38
|
Braun M, Lansky Z, Hilitski F, Dogic Z, Diez S. Entropic forces drive contraction of cytoskeletal networks. Bioessays 2016; 38:474-81. [DOI: 10.1002/bies.201500183] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Marcus Braun
- B CUBE – Center for Molecular BioengineeringTechnische Universität DresdenDresdenGermany
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Zdenek Lansky
- B CUBE – Center for Molecular BioengineeringTechnische Universität DresdenDresdenGermany
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Institute of Biotechnology CASBIOCEV CenterVestecCzech Republic
| | - Feodor Hilitski
- Martin Fisher School of PhysicsBrandeis UniversityWalthamMAUSA
| | - Zvonimir Dogic
- Martin Fisher School of PhysicsBrandeis UniversityWalthamMAUSA
| | - Stefan Diez
- B CUBE – Center for Molecular BioengineeringTechnische Universität DresdenDresdenGermany
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| |
Collapse
|
39
|
Niclis JC, Murphy SV, Parkinson DY, Zedan A, Sathananthan AH, Cram DS, Heraud P. Three-dimensional imaging of human stem cells using soft X-ray tomography. J R Soc Interface 2016; 12:20150252. [PMID: 26063819 DOI: 10.1098/rsif.2015.0252] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Three-dimensional imaging of human stem cells using transmission soft X-ray tomography (SXT) is presented for the first time. Major organelle types--nuclei, nucleoli, mitochondria, lysosomes and vesicles--were discriminated at approximately 50 nm spatial resolution without the use of contrast agents, on the basis of measured linear X-ray absorption coefficients and comparison of the size and shape of structures to transmission electron microscopy (TEM) images. In addition, SXT was used to visualize the distribution of a cell surface protein using gold-labelled antibody staining. We present the strengths of SXT, which include excellent spatial resolution (intermediate between that of TEM and light microscopy), the lack of the requirement for fixative or contrast agent that might perturb cellular morphology or produce imaging artefacts, and the ability to produce three-dimensional images of cells without microtome sectioning. Possible applications to studying the differentiation of human stem cells are discussed.
Collapse
Affiliation(s)
- J C Niclis
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia The Florey Institute of Neuroscience and Mental Health, Melbourne University, Parkville, Victoria 3052, Australia
| | - S V Murphy
- The Ritchie Centre, Monash Institute of Medical Research, Monash University, Clayton, Victoria 3800, Australia Wake Forest Baptist Medical Center, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
| | - D Y Parkinson
- Advanced Light Source, Lawrence Berkeley National Laboratory, US Department of Energy, Berkeley, CA, USA
| | - A Zedan
- Advanced Light Source, Lawrence Berkeley National Laboratory, US Department of Energy, Berkeley, CA, USA
| | - A H Sathananthan
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | - D S Cram
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | - P Heraud
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia Centre for Biospectroscopy, School of Chemistry, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
40
|
Viral Infection at High Magnification: 3D Electron Microscopy Methods to Analyze the Architecture of Infected Cells. Viruses 2015; 7:6316-45. [PMID: 26633469 PMCID: PMC4690864 DOI: 10.3390/v7122940] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/16/2015] [Accepted: 11/16/2015] [Indexed: 02/06/2023] Open
Abstract
As obligate intracellular parasites, viruses need to hijack their cellular hosts and reprogram their machineries in order to replicate their genomes and produce new virions. For the direct visualization of the different steps of a viral life cycle (attachment, entry, replication, assembly and egress) electron microscopy (EM) methods are extremely helpful. While conventional EM has given important information about virus-host cell interactions, the development of three-dimensional EM (3D-EM) approaches provides unprecedented insights into how viruses remodel the intracellular architecture of the host cell. During the last years several 3D-EM methods have been developed. Here we will provide a description of the main approaches and examples of innovative applications.
Collapse
|
41
|
Grippa A, Buxó L, Mora G, Funaya C, Idrissi FZ, Mancuso F, Gomez R, Muntanyà J, Sabidó E, Carvalho P. The seipin complex Fld1/Ldb16 stabilizes ER-lipid droplet contact sites. J Cell Biol 2015; 211:829-44. [PMID: 26572621 PMCID: PMC4657162 DOI: 10.1083/jcb.201502070] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 10/16/2015] [Indexed: 01/11/2023] Open
Abstract
Mutations in the seipin complex components Fld1 and Ldb16 result in the loss of lipid droplet identity and phospholipid packing defects, revealing a role of this complex in the stabilization of ER–lipid droplet contact sites. Lipid droplets (LDs) are storage organelles consisting of a neutral lipid core surrounded by a phospholipid monolayer and a set of LD-specific proteins. Most LD components are synthesized in the endoplasmic reticulum (ER), an organelle that is often physically connected with LDs. How LD identity is established while maintaining biochemical and physical connections with the ER is not known. Here, we show that the yeast seipin Fld1, in complex with the ER membrane protein Ldb16, prevents equilibration of ER and LD surface components by stabilizing the contact sites between the two organelles. In the absence of the Fld1/Ldb16 complex, assembly of LDs results in phospholipid packing defects leading to aberrant distribution of lipid-binding proteins and abnormal LDs. We propose that the Fld1/Ldb16 complex facilitates the establishment of LD identity by acting as a diffusion barrier at the ER–LD contact sites.
Collapse
Affiliation(s)
- Alexandra Grippa
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Laura Buxó
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Gabriel Mora
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Charlotta Funaya
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Fatima-Zahra Idrissi
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Francesco Mancuso
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Raul Gomez
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Júlia Muntanyà
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Eduard Sabidó
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Pedro Carvalho
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| |
Collapse
|
42
|
Borek WE, Groocock LM, Samejima I, Zou J, de Lima Alves F, Rappsilber J, Sawin KE. Mto2 multisite phosphorylation inactivates non-spindle microtubule nucleation complexes during mitosis. Nat Commun 2015; 6:7929. [PMID: 26243668 PMCID: PMC4918325 DOI: 10.1038/ncomms8929] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 06/25/2015] [Indexed: 01/09/2023] Open
Abstract
Microtubule nucleation is highly regulated during the eukaryotic cell cycle, but the underlying molecular mechanisms are largely unknown. During mitosis in fission yeast Schizosaccharomyces pombe, cytoplasmic microtubule nucleation ceases simultaneously with intranuclear mitotic spindle assembly. Cytoplasmic nucleation depends on the Mto1/2 complex, which binds and activates the γ-tubulin complex and also recruits the γ-tubulin complex to both centrosomal (spindle pole body) and non-centrosomal sites. Here we show that the Mto1/2 complex disassembles during mitosis, coincident with hyperphosphorylation of Mto2 protein. By mapping and mutating multiple Mto2 phosphorylation sites, we generate mto2-phosphomutant strains with enhanced Mto1/2 complex stability, interaction with the γ-tubulin complex and microtubule nucleation activity. A mutant with 24 phosphorylation sites mutated to alanine, mto2[24A], retains interphase-like behaviour even in mitotic cells. This provides a molecular-level understanding of how phosphorylation ‘switches off' microtubule nucleation complexes during the cell cycle and, more broadly, illuminates mechanisms regulating non-centrosomal microtubule nucleation. In S. pombe, cytoplasmic microtubule nucleation, which depends on the Mto1/2 complex, ceases during mitosis. Here, Borek et al., show that multisite phosphorylation of Mto1/2 during mitosis disassembles the Mto1/2 complex and prevents microtubule nucleation activity.
Collapse
Affiliation(s)
- Weronika E Borek
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Lynda M Groocock
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Itaru Samejima
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Juan Zou
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Flavia de Lima Alves
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Juri Rappsilber
- 1] Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK [2] Department of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin 13355, Germany
| | - Kenneth E Sawin
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| |
Collapse
|
43
|
Laporte D, Courtout F, Pinson B, Dompierre J, Salin B, Brocard L, Sagot I. A stable microtubule array drives fission yeast polarity reestablishment upon quiescence exit. J Cell Biol 2015; 210:99-113. [PMID: 26124291 PMCID: PMC4494004 DOI: 10.1083/jcb.201502025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/01/2015] [Indexed: 11/22/2022] Open
Abstract
Cells perpetually face the decision to proliferate or to stay quiescent. Here we show that upon quiescence establishment, Schizosaccharomyces pombe cells drastically rearrange both their actin and microtubule (MT) cytoskeletons and lose their polarity. Indeed, while polarity markers are lost from cell extremities, actin patches and cables are reorganized into actin bodies, which are stable actin filament-containing structures. Astonishingly, MTs are also stabilized and rearranged into a novel antiparallel bundle associated with the spindle pole body, named Q-MT bundle. We have identified proteins involved in this process and propose a molecular model for Q-MT bundle formation. Finally and importantly, we reveal that Q-MT bundle elongation is involved in polarity reestablishment upon quiescence exit and thereby the efficient return to the proliferative state. Our work demonstrates that quiescent S. pombe cells assemble specific cytoskeleton structures that improve the swiftness of the transition back to proliferation.
Collapse
Affiliation(s)
- Damien Laporte
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, 33000 Bordeaux, France Centre National de la Recherche Scientifique, UMR5095 Bordeaux, 33077 Bordeaux, France
| | - Fabien Courtout
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, 33000 Bordeaux, France Centre National de la Recherche Scientifique, UMR5095 Bordeaux, 33077 Bordeaux, France
| | - Benoît Pinson
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, 33000 Bordeaux, France Centre National de la Recherche Scientifique, UMR5095 Bordeaux, 33077 Bordeaux, France
| | - Jim Dompierre
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, 33000 Bordeaux, France Centre National de la Recherche Scientifique, UMR5095 Bordeaux, 33077 Bordeaux, France
| | - Bénédicte Salin
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, 33000 Bordeaux, France Centre National de la Recherche Scientifique, UMR5095 Bordeaux, 33077 Bordeaux, France
| | - Lysiane Brocard
- Bordeaux Imaging Center, Pôle d'imagerie du végétal, Institut National de la Recherche Agronomique, 33140 Villenave d'Ornon, France
| | - Isabelle Sagot
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, 33000 Bordeaux, France Centre National de la Recherche Scientifique, UMR5095 Bordeaux, 33077 Bordeaux, France
| |
Collapse
|
44
|
Targeting of γ-tubulin complexes to microtubule organizing centers: conservation and divergence. Trends Cell Biol 2015; 25:296-307. [DOI: 10.1016/j.tcb.2014.12.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/25/2014] [Accepted: 12/01/2014] [Indexed: 11/29/2022]
|
45
|
Quantitative analysis of cytoskeletal reorganization during epithelial tissue sealing by large-volume electron tomography. Nat Cell Biol 2015; 17:605-14. [DOI: 10.1038/ncb3159] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 03/13/2015] [Indexed: 12/26/2022]
|
46
|
Glunčić M, Maghelli N, Krull A, Krstić V, Ramunno-Johnson D, Pavin N, Tolić IM. Kinesin-8 motors improve nuclear centering by promoting microtubule catastrophe. PHYSICAL REVIEW LETTERS 2015; 114:078103. [PMID: 25763975 DOI: 10.1103/physrevlett.114.078103] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Indexed: 06/04/2023]
Abstract
In fission yeast, microtubules push against the cell edge, thereby positioning the nucleus in the cell center. Kinesin-8 motors regulate microtubule catastrophe; however, their role in nuclear positioning is not known. Here we develop a physical model that describes how kinesin-8 motors affect nuclear centering by promoting a microtubule catastrophe. Our model predicts the improved centering of the nucleus in the presence of motors, which we confirmed experimentally in living cells. The model also predicts a characteristic time for the recentering of a displaced nucleus, which is supported by our experiments where we displaced the nucleus using optical tweezers.
Collapse
Affiliation(s)
- Matko Glunčić
- Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Nicola Maghelli
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Alexander Krull
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Vladimir Krstić
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
| | | | - Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
| | - Iva M Tolić
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
47
|
Ward JJ, Roque H, Antony C, Nédélec F. Mechanical design principles of a mitotic spindle. eLife 2014; 3:e03398. [PMID: 25521247 PMCID: PMC4290452 DOI: 10.7554/elife.03398] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 12/17/2014] [Indexed: 12/11/2022] Open
Abstract
An organised spindle is crucial to the fidelity of chromosome segregation, but the relationship between spindle structure and function is not well understood in any cell type. The anaphase B spindle in fission yeast has a slender morphology and must elongate against compressive forces. This 'pushing' mode of chromosome transport renders the spindle susceptible to breakage, as observed in cells with a variety of defects. Here we perform electron tomographic analyses of the spindle, which suggest that it organises a limited supply of structural components to increase its compressive strength. Structural integrity is maintained throughout the spindle's fourfold elongation by organising microtubules into a rigid transverse array, preserving correct microtubule number and dynamically rescaling microtubule length.
Collapse
Affiliation(s)
- Jonathan J Ward
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Hélio Roque
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Claude Antony
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - François Nédélec
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
48
|
Weber B, Tranfield EM, Höög JL, Baum D, Antony C, Hyman T, Verbavatz JM, Prohaska S. Automated stitching of microtubule centerlines across serial electron tomograms. PLoS One 2014; 9:e113222. [PMID: 25438148 PMCID: PMC4249889 DOI: 10.1371/journal.pone.0113222] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 09/30/2014] [Indexed: 01/17/2023] Open
Abstract
Tracing microtubule centerlines in serial section electron tomography requires microtubules to be stitched across sections, that is lines from different sections need to be aligned, endpoints need to be matched at section boundaries to establish a correspondence between neighboring sections, and corresponding lines need to be connected across multiple sections. We present computational methods for these tasks: 1) An initial alignment is computed using a distance compatibility graph. 2) A fine alignment is then computed with a probabilistic variant of the iterative closest points algorithm, which we extended to handle the orientation of lines by introducing a periodic random variable to the probabilistic formulation. 3) Endpoint correspondence is established by formulating a matching problem in terms of a Markov random field and computing the best matching with belief propagation. Belief propagation is not generally guaranteed to converge to a minimum. We show how convergence can be achieved, nonetheless, with minimal manual input. In addition to stitching microtubule centerlines, the correspondence is also applied to transform and merge the electron tomograms. We applied the proposed methods to samples from the mitotic spindle in C. elegans, the meiotic spindle in X. laevis, and sub-pellicular microtubule arrays in T. brucei. The methods were able to stitch microtubules across section boundaries in good agreement with experts' opinions for the spindle samples. Results, however, were not satisfactory for the microtubule arrays. For certain experiments, such as an analysis of the spindle, the proposed methods can replace manual expert tracing and thus enable the analysis of microtubules over long distances with reasonable manual effort.
Collapse
Affiliation(s)
- Britta Weber
- Zuse Institute Berlin, Berlin, Germany
- Max Planck Institute for Molecular Biology and Genetics, Dresden, Germany
| | | | - Johanna L. Höög
- Max Planck Institute for Molecular Biology and Genetics, Dresden, Germany
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | - Claude Antony
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Tony Hyman
- Max Planck Institute for Molecular Biology and Genetics, Dresden, Germany
| | | | | |
Collapse
|
49
|
Abenza JF, Chessel A, Raynaud WG, Carazo-Salas RE. Dynamics of cell shape inheritance in fission yeast. PLoS One 2014; 9:e106959. [PMID: 25210736 PMCID: PMC4161360 DOI: 10.1371/journal.pone.0106959] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/01/2014] [Indexed: 01/24/2023] Open
Abstract
Every cell has a characteristic shape key to its fate and function. That shape is not only the product of genetic design and of the physical and biochemical environment, but it is also subject to inheritance. However, the nature and contribution of cell shape inheritance to morphogenetic control is mostly ignored. Here, we investigate morphogenetic inheritance in the cylindrically-shaped fission yeast Schizosaccharomyces pombe. Focusing on sixteen different ‘curved’ mutants - a class of mutants which often fail to grow axially straight – we quantitatively characterize their dynamics of cell shape inheritance throughout generations. We show that mutants of similar machineries display similar dynamics of cell shape inheritance, and exploit this feature to show that persistent axial cell growth in S. pombe is secured by multiple, separable molecular pathways. Finally, we find that one of those pathways corresponds to the swc2-swr1-vps71 SWR1/SRCAP chromatin remodelling complex, which acts additively to the known mal3-tip1-mto1-mto2 microtubule and tea1-tea2-tea4-pom1 polarity machineries.
Collapse
Affiliation(s)
- Juan F. Abenza
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (JFA); (REC-S)
| | - Anatole Chessel
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - William G. Raynaud
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Rafael E. Carazo-Salas
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (JFA); (REC-S)
| |
Collapse
|
50
|
Abstract
Microtubules exhibit dynamic instability, stochastically switching between infrequent phases of growth and shrinkage. In the cell, microtubule dynamic instability is further modulated by microtubule-associated proteins and motors, which are specifically tuned to cell cycle stages. For example, mitotic microtubules are more dynamic than interphase microtubules. The different parameters of microtubule dynamics can be measured from length versus time data, which are generally obtained from time-lapse acquisition using the optical microscope. The typical maximum resolution of the optical microscope is ~λ/2 or ~300 nm. This scale represents a challenge for imaging fission yeast microtubule dynamics specifically during early mitosis, where the bipolar mitotic spindle contains many short dynamic microtubules of ~1-μm scale. Here, we present a novel method to image short fission yeast mitotic microtubules. The method uses the thermosensitive reversible kinesin-5 cut7.24(ts) to create monopolar spindles, where asters of individual mitotic microtubules are presented for imaging and subsequent analysis.
Collapse
|