1
|
Collinson R, Tanos B. Primary cilia and cancer: a tale of many faces. Oncogene 2025; 44:1551-1566. [PMID: 40301543 PMCID: PMC12095056 DOI: 10.1038/s41388-025-03416-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/04/2025] [Accepted: 04/10/2025] [Indexed: 05/01/2025]
Abstract
Cilia are microtubule-based sensory organelles which project from the cell surface, enabling detection of mechanical and chemical stimuli from the extracellular environment. It has been shown that cilia are lost in some cancers, while others depend on cilia or ciliary signaling. Several oncogenic molecules, including tyrosine kinases, G-protein coupled receptors, cytosolic kinases, and their downstream effectors localize to cilia. The Hedgehog pathway, one of the most studied ciliary-signaling pathways, is regulated at the cilium via an interplay between Smoothened (an oncogene) and Patched (a tumor suppressor), resulting in the activation of pro-survival programs. Interestingly, cilia loss can result in resistance to Smoothened-targeting drugs and increased cancer cell survival. On the other hand, kinase inhibitor-resistant and chemoresistant cancers have increased cilia and increased Hedgehog pathway activation, and suppressing cilia can overcome this resistance. How cilia regulate cancer is therefore context dependent. Defining the signaling output of cilia-localized oncogenic pathways could identify specific targets for cancer therapy, including the cilium itself. Increasing evidence implicates cilia in supporting several hallmarks of cancer, including migration, invasion, and metabolic rewiring. While cell cycle cues regulate the biogenesis of cilia, the absence of cilia has not been conclusively shown to affect the cell cycle. Thus, a complex interplay between molecular signals, phosphorylation events and spatial regulation renders this fascinating organelle an important new player in cancer through roles that we are only starting to uncover. In this review, we discuss recent advances in our understanding of cilia as signaling platforms in cancer and the influence this plays in tumor development.
Collapse
Affiliation(s)
- Rebecca Collinson
- Centre for Genome Engineering and Maintenance, Department of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, London, UK
| | - Barbara Tanos
- Centre for Genome Engineering and Maintenance, Department of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, London, UK.
| |
Collapse
|
2
|
Ran J, Zhou J. Post-Translational Modifications in Cilia and Ciliopathies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e16562. [PMID: 40433930 DOI: 10.1002/advs.202416562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 05/05/2025] [Indexed: 05/29/2025]
Abstract
Cilia are microtubule-based organelles that extend from the surface of most vertebrate cells, and they play important roles in diverse cellular processes during embryonic development and tissue homeostasis. Mutations in ciliary proteins are associated with a wide range of human diseases, collectively referred to as ciliopathies. The past decades have witnessed significant advances in the identification of post-translational modifications (PTMs) in ciliary proteins, as well as the enzymes responsible for the PTMs. For example, acetylation of α-tubulin at lysine 40 is essential for ciliary assembly and maintenance, while ubiquitination of centrosomal proteins, such as pericentriolar material 1, regulates ciliary disassembly. In addition, accumulating evidence has shown that PTMs are essential for modulating ciliary structure and function, and that dysregulation of these modifications leads to the development of ciliopathies. In this review, current knowledge of PTMs in ciliary proteins is summarized, and their roles in regulating ciliary formation, homeostasis, and signaling are highlighted. The contribution of aberrant ciliary PTMs to ciliopathies is also discussed, along with the potential of targeting PTMs for ciliopathy treatment, including pharmacological modulation of PTM-related enzymes or substrates, which may provide new avenues for therapeutic intervention in ciliopathies.
Collapse
Affiliation(s)
- Jie Ran
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
- Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| |
Collapse
|
3
|
Fort C, Walker BJ, Baert L, Wheeler RJ. Proteins with proximal-distal asymmetries in axoneme localisation control flagellum beat frequency. Nat Commun 2025; 16:3237. [PMID: 40185731 PMCID: PMC11971395 DOI: 10.1038/s41467-025-58405-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 03/18/2025] [Indexed: 04/07/2025] Open
Abstract
The 9 + 2 microtubule-based axoneme within motile flagella is well known for its symmetry. However, examples of asymmetric structures and proteins asymmetrically positioned within the 9 + 2 axoneme architecture have been identified. These occur in multiple different organisms, particularly involving the inner or outer dynein arms. Here, we comprehensively analyse conserved proximal-distal asymmetries in the uniflagellate trypanosomatid eukaryotic parasites. Building on the genome-wide localisation screen in Trypanosoma brucei we identify conserved proteins with an analogous asymmetric localisation in the related parasite Leishmania mexicana. Using deletion mutants, we find which are necessary for normal cell swimming, flagellum beat parameters and axoneme ultrastructure. Using combinatorial endogenous fluorescent tagging and deletion, we map co-dependencies for assembly into their normal asymmetric localisation. This revealed 15 proteins, 9 known and 6 novel, with a conserved proximal or distal axoneme-specific localisation. Most are outer dynein arm associated and show that there are multiple classes of proximal-distal asymmetry - one which is dependent on the docking complex. Many of these proteins are necessary for retaining the normal frequency of the tip-to-base symmetric flagellar waveform. Our comprehensive mapping reveals unexpected contributions of proximal-specific axoneme components to the frequency of waveforms initiated distally.
Collapse
Affiliation(s)
- Cecile Fort
- Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Diamond Light Source, Didcot, UK
| | - Benjamin J Walker
- Department of Mathematical Sciences, University of Bath, Bath, UK
- Department of Mathematics, University College London, London, UK
| | - Lore Baert
- Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Richard J Wheeler
- Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Institute of Immunology and Infection, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
4
|
Saade M, Martí E. Early spinal cord development: from neural tube formation to neurogenesis. Nat Rev Neurosci 2025; 26:195-213. [PMID: 39915695 DOI: 10.1038/s41583-025-00906-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 03/26/2025]
Abstract
As one of the simplest and most evolutionarily conserved parts of the vertebrate nervous system, the spinal cord serves as a key model for understanding the principles of nervous system construction. During embryonic development, the spinal cord originates from a population of bipotent stem cells termed neuromesodermal progenitors, which are organized within a transient embryonic structure known as the neural tube. Neural tube morphogenesis differs along its anterior-to-posterior axis: most of the neural tube (including the regions that will develop into the brain and the anterior spinal cord) forms via the bending and dorsal fusion of the neural groove, but the establishment of the posterior region of the neural tube involves de novo formation of a lumen within a solid medullary cord. The early spinal cord primordium consists of highly polarized neural progenitor cells organized into a pseudostratified epithelium. Tight regulation of the cell division modes of these progenitors drives the embryonic growth of the neural tube and initiates primary neurogenesis. A rich history of observational and functional studies across various vertebrate models has advanced our understanding of the cellular events underlying spinal cord development, and these foundational studies are beginning to inform our knowledge of human spinal cord development.
Collapse
Affiliation(s)
- Murielle Saade
- Department of Cells and Tissues, Instituto de Biología Molecular de Barcelona CSIC, Barcelona, Spain.
| | - Elisa Martí
- Department of Cells and Tissues, Instituto de Biología Molecular de Barcelona CSIC, Barcelona, Spain.
| |
Collapse
|
5
|
Long AB, Wilson IM, Terry TT, Van Sciver RE, Caspary T. ARL13B-Cerulean rescues Arl13b-null mouse from embryonic lethality and reveals a role for ARL13B in spermatogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.644968. [PMID: 40196635 PMCID: PMC11974714 DOI: 10.1101/2025.03.24.644968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
ARL13B is a regulatory GTPase enriched in cilia, making it a popular marker for this organelle. Arl13b hnn/hnn mice lack ARL13B expression, die during midgestation, and exhibit defects in ciliogenesis. The R26Arl13b-Fucci2aR biosensor mouse line directs the expression of fluorescently tagged full-length Arl13b cDNA upon Cre recombination. To determine whether constitutive, ubiquitous expression of ARL13B-Cerulean can replace endogenous gene expression, we generated Arl13b hnn/hnn animals expressing ARL13B-Cerulean. We show that Arl13b hnn/hnn ;Arl13b-Cerulean mice survive to adulthood with no obvious physical or behavioral defects, indicating that the fluorescently tagged protein can functionally replace the endogenous protein during development. However, we observed that rescued males failed to sire offspring, revealing a role for ARL13B in spermatogenesis. This work shows that the R26Arl13b-Fucci2aR mouse contains an inducible allele of Arl13b capable of functioning in most tissues and biological processes.
Collapse
Affiliation(s)
- Alyssa B. Long
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, USA
| | - Isabella M. Wilson
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, USA
- Graduate Program in Molecular Biology, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, USA
| | - Tiffany T. Terry
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, USA
| | - Robert E. Van Sciver
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, USA
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Bear R, Wei C, Caspary T. In vivo genetic labeling of primary cilia in developing astrocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644181. [PMID: 40166229 PMCID: PMC11957109 DOI: 10.1101/2025.03.19.644181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Astrocyte cilia are largely understudied due to the lack of available tools. Astrocyte research advanced with the establishment of Aldh1l1-Cre ERT2 , an inducible Cre line that specifically targets the astrocyte lineage. Here, we develop and compare genetic models that label astrocyte cilia in the developing prefrontal cortex (PFC) using Aldh1l1-Cre ERT2 and Cre-dependent cilia reporters. We evaluate these models by testing different tamoxifen-induction protocols and quantifying the percentage of astrocytes labeled with the cilia reporters. We show that tamoxifen dosage impacts the expression of cilia reporters in astrocytes. We validate the maximum cilia-labeling efficiency of tamoxifen using constitutively-expressed cilia reporters. The data reveal that only a subset of SOX9- positive astrocytes in the PFC possess cilia throughout development. Our work highlights the utility of Cre-Lox systems to target specific cell types and the importance of carefully validating genetic models.
Collapse
Affiliation(s)
- Rachel Bear
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street Suite 301, Atlanta GA 30322, United States
- Emory Graduate Program in Neuroscience
| | - Claire Wei
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street Suite 301, Atlanta GA 30322, United States
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street Suite 301, Atlanta GA 30322, United States
| |
Collapse
|
7
|
Valls A, Ruiz-Roldán C, Immanuel J, Alonso-Martín S, Gallardo E, Fernández-Torrón R, Bonilla M, Lersundi A, Hernández-Laín A, Domínguez-González C, Vílchez JJ, Iruzubieta P, López de Munain A, Sáenz A. The Role of Integrin β1D Mislocalization in the Pathophysiology of Calpain 3-Related Limb-Girdle Muscular Dystrophy. Cells 2025; 14:446. [PMID: 40136695 PMCID: PMC11941428 DOI: 10.3390/cells14060446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
Limb-girdle muscular dystrophy R1 (LGMDR1) is characterized by progressive proximal muscle weakness due to mutations in the CAPN3 gene. Little is known about CAPN3's function in muscle, but its loss results in aberrant sarcomere formation. Human muscle structure was analyzed in this study, with observations including integrin β1D isoform (ITGβ1D) mislocalization, a lack of Talin-1 (TLN1) in the sarcolemma and the irregular expression of focal adhesion kinase (FAK) in LGMDR1 muscles, suggesting a lack of integrin activation with an altered sarcolemma, extracellular matrix (ECM) assembly and signaling pathway deregulation, which may cause frailty in LGMDR1 muscle fibers. Additionally, altered nuclear morphology, centrosome distribution and microtubule organization have been found in muscle cells derived from LGMDR1 patients.
Collapse
Affiliation(s)
- Andrea Valls
- Neuromuscular Diseases Group, Neurosciences Area, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain
- Center for Biomedical Network Research on Neurodegenerative Diseases (CIBERNED), Spanish Ministry of Science & Innovation, Carlos III Health Institute, 28029 Madrid, Spain
| | - Cristina Ruiz-Roldán
- Neuromuscular Diseases Group, Neurosciences Area, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain
| | - Jenita Immanuel
- Neuromuscular Diseases Group, Neurosciences Area, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain
- Center for Biomedical Network Research on Neurodegenerative Diseases (CIBERNED), Spanish Ministry of Science & Innovation, Carlos III Health Institute, 28029 Madrid, Spain
| | - Sonia Alonso-Martín
- Center for Biomedical Network Research on Neurodegenerative Diseases (CIBERNED), Spanish Ministry of Science & Innovation, Carlos III Health Institute, 28029 Madrid, Spain
- Stem Cells and Aging Group, Bioengineering Area, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain
| | - Eduard Gallardo
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Institut de Recerca Sant Pau, IR-SantPau, 08041 Barcelona, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Spanish Ministry of Science & Innovation, Carlos III Health Institute, 28029 Madrid, Spain
| | - Roberto Fernández-Torrón
- Neuromuscular Diseases Group, Neurosciences Area, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain
- Center for Biomedical Network Research on Neurodegenerative Diseases (CIBERNED), Spanish Ministry of Science & Innovation, Carlos III Health Institute, 28029 Madrid, Spain
- Department of Neurology, Hospital Universitario Donostia, Osakidetza, 20014 San Sebastian, Spain
| | - Mario Bonilla
- Stem Cells and Aging Group, Bioengineering Area, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain
- Department of Traumatology, Donostialdea Integrated Health Organisation, Osakidetza, 20014 San Sebastian, Spain
| | - Ana Lersundi
- Department of Traumatology, Donostialdea Integrated Health Organisation, Osakidetza, 20014 San Sebastian, Spain
- Department of Surgery, University of the Basque Country UPV/EHU, 20014 San Sebastian, Spain
| | - Aurelio Hernández-Laín
- Department of Neuropathology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Department of Pathology, Faculty of Medicine, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Cristina Domínguez-González
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Spanish Ministry of Science & Innovation, Carlos III Health Institute, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Neuromuscular Unit, Department of Neurology, Hospital 12 de Octubre, 28041 Madrid, Spain
| | - Juan Jesús Vílchez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Spanish Ministry of Science & Innovation, Carlos III Health Institute, 28029 Madrid, Spain
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, 46026 Valencia, Spain
| | - Pablo Iruzubieta
- Center for Biomedical Network Research on Neurodegenerative Diseases (CIBERNED), Spanish Ministry of Science & Innovation, Carlos III Health Institute, 28029 Madrid, Spain
- Neurogenetics, RNA Biology and Therapies Group, Neurosciences Area, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Adolfo López de Munain
- Neuromuscular Diseases Group, Neurosciences Area, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain
- Center for Biomedical Network Research on Neurodegenerative Diseases (CIBERNED), Spanish Ministry of Science & Innovation, Carlos III Health Institute, 28029 Madrid, Spain
- Department of Neurology, Hospital Universitario Donostia, Osakidetza, 20014 San Sebastian, Spain
- Department of Neurosciences, University of the Basque Country UPV-EHU, 20014 San Sebastian, Spain
- Faculty of Medicine, University of Deusto, 48007 Bilbao, Spain
| | - Amets Sáenz
- Neuromuscular Diseases Group, Neurosciences Area, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain
- Center for Biomedical Network Research on Neurodegenerative Diseases (CIBERNED), Spanish Ministry of Science & Innovation, Carlos III Health Institute, 28029 Madrid, Spain
| |
Collapse
|
8
|
Wang J, Kidmose RT, Boegholm N, Zacharia NK, Thomsen MB, Christensen A, Malik T, Lechtreck K, Lorentzen E. Integrative in silico and biochemical analyses demonstrate direct Arl3-mediated ODA16 release from the intraflagellar transport machinery. J Biol Chem 2025; 301:108237. [PMID: 39880089 PMCID: PMC11879689 DOI: 10.1016/j.jbc.2025.108237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/27/2024] [Accepted: 01/17/2025] [Indexed: 01/31/2025] Open
Abstract
Outer dynein arms (ODAs) are essential for ciliary motility and are preassembled in the cytoplasm before trafficking into cilia by intraflagellar transport (IFT). ODA16 is a key adaptor protein that links ODAs to the IFT machinery via direct interaction with the IFT46 protein. However, the molecular mechanisms regulating the assembly, transport, and release of ODAs remain poorly understood. Here, we employ AlphaPulldown, an in silico screening method, to identify direct interactors of ODA16, including the dynein adaptor IDA3 and the small GTPase Arl3. We use structural modeling, biochemical, and biophysical assays on Chlamydomonas and human proteins to elucidate the interactions and regulatory mechanisms governing the IFT of ODAs. We identify a conserved N-terminal motif in Chlamydomonas IFT46 that mediates its binding to one side of the ODA16 structure. Biochemical dissection reveals that IDA3 and Arl3 bind to the same surface of ODA16 (the C-terminal β-propeller face), which is opposite to the IFT46 binding site, enabling them to dissociate ODA16 from IFT46, likely through an allosteric mechanism. Our findings provide mechanistic insights into the concerted actions of IFT and adaptor proteins in ODA transport and regulation.
Collapse
Affiliation(s)
- Jiaolong Wang
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Rune T Kidmose
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Niels Boegholm
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Nevin K Zacharia
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Mads B Thomsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Anni Christensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Tara Malik
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Karl Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
9
|
Zensho K, Miyazaki I, Isse A, Misawa I, Masai K, Oka M, Tsukahara H, Asanuma M. Spatiotemporal expression pattern of dyslexia susceptibility 1 candidate 1 (DYX1C1) during rat cerebral cortex development. Pediatr Res 2025:10.1038/s41390-025-03920-6. [PMID: 39939521 DOI: 10.1038/s41390-025-03920-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/19/2025] [Accepted: 01/27/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND Developmental dyslexia (DD) is a common learning disorder with significant consequences for affected individuals. Although several candidate genes, including dyslexia susceptibility 1 candidate 1 (DYX1C1), have been implicated in dyslexia, their role in brain development remains unclear. We aimed to elucidate the spatiotemporal expression patterns of DYX1C1 during cerebral cortex development in rats. METHODS We investigated DYX1C1 expression during cerebral cortex development using rat embryos at various gestational stages (E13.5, 15.5, 17.5 and 20.5) by immunohistochemistry (n = 7 embryos/stage), quantitative real-time PCR (n = 6), and in situ hybridization (n = 11-15). RESULTS The DYX1C1-positive cells were predominantly located in the outermost layers of the cortical plate, particularly at E15.5. DYX1C1 mRNA expression peaked at E15.5 and subsequently declined. DYX1C1-positive cells did not co-localize with reelin-positive Cajal-Retzius cells, but co-localized with neuronal markers expressed during development, and had shorter primary cilia than DYX1C1-negative cells. CONCLUSIONS Our findings highlight the dynamic expression of DYX1C1 in the developing cerebral cortex of rats, implicating its involvement in neurodevelopmental processes. Further investigation of the functional interactions of DYX1C1, particularly its relationship with reelin and its role in cerebrocortical and hippocampal development, may provide insights into the pathophysiology of dyslexia and neurodevelopmental disorders. IMPACT Our study elucidates spatiotemporal expression patterns of endogenous DYX1C1 predominantly in the primitive cortical zone (PCZ), outermost layer of the cortical plate (CP) during cerebral cortex development, particularly peaked at E15.5. We revealed the spatial relationship between DYX1C1-positive and reelin-expressing Cajal-Retzius (CR) cells, and co-localize with neuronal markers expressed during cerebral cortex development, indicating its contribution to neuronal migration and cortical layer formation. DYX1C1-positive cells mainly in the PCZ possess shorter primary cilia than DYX1C1-negative cells, suggesting the completion of migration.
Collapse
Affiliation(s)
- Kazumasa Zensho
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
- Department of Pediatrics, Okayama University Hospital, Okayama, 700-8558, Japan
- Department of Pediatrics, Kurashiki Medical Center, Okayama, 710-8522, Japan
| | - Ikuko Miyazaki
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Aika Isse
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Ichika Misawa
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Kaori Masai
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Makio Oka
- Department of Psychosocial Medicine, National Center for Child Health and Development, Tokyo, 157-8535, Japan
| | - Hirokazu Tsukahara
- Department of Pediatrics, Okayama University Hospital, Okayama, 700-8558, Japan
| | - Masato Asanuma
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan.
| |
Collapse
|
10
|
Benk Vysloužil D, Bernatík O, Lánská E, Renzová T, Binó L, Lacigová A, Drahošová T, Lánský Z, Čajánek L. Tau-tubulin kinase 2 restrains microtubule-depolymerizer KIF2A to support primary cilia growth. Cell Commun Signal 2025; 23:73. [PMID: 39930500 PMCID: PMC11809056 DOI: 10.1186/s12964-025-02072-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/29/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Primary cilia facilitate cellular signalling and play critical roles in development, homeostasis, and disease. Their assembly is under the control of Tau-Tubulin Kinase 2 (TTBK2), a key enzyme mutated in patients with spinocerebellar ataxia. Recent work has implicated TTBK2 in the regulation of cilia maintenance and function, but the underlying molecular mechanisms are not understood. METHODS To dissect the role of TTBK2 during cilia growth and maintenance in human cells, we examined disease-related TTBK2 truncations. We used biochemical approaches, proteomics, genetic engineering, and advanced microscopy techniques to unveil molecular events triggered by TTBK2. RESULTS We demonstrate that truncated TTBK2 protein moieties, unable to localize to the mother centriole, create unique semi-permissive conditions for cilia assembly, under which cilia begin to form but fail to elongate. Subsequently, we link the defects in cilia growth to aberrant turnover of a microtubule-depolymerizing kinesin KIF2A, which we find restrained by TTBK2 phosphorylation. CONCLUSIONS Together, our data imply that the regulation of KIF2A by TTBK2 represents an important mechanism governing cilia elongation and maintenance. Further, the requirement for concentrating TTBK2 activity to the mother centriole to initiate ciliogenesis can be under specific conditions bypassed, revealing TTBK2 recruitment-independent functions of its key partner, CEP164.
Collapse
Affiliation(s)
- David Benk Vysloužil
- Laboratory of Cilia and Centrosome Biology, Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, Brno, 62500, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - Ondřej Bernatík
- Laboratory of Cilia and Centrosome Biology, Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, Brno, 62500, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - Eva Lánská
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Průmyslová 595, Vestec, Prague, 252 50, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague, 12800, Czech Republic
| | - Tereza Renzová
- Laboratory of Cilia and Centrosome Biology, Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, Brno, 62500, Czech Republic
| | - Lucia Binó
- Laboratory of Cilia and Centrosome Biology, Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, Brno, 62500, Czech Republic
| | - Andrea Lacigová
- Laboratory of Cilia and Centrosome Biology, Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, Brno, 62500, Czech Republic
| | - Tereza Drahošová
- Laboratory of Cilia and Centrosome Biology, Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, Brno, 62500, Czech Republic
| | - Zdeněk Lánský
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Průmyslová 595, Vestec, Prague, 252 50, Czech Republic
| | - Lukáš Čajánek
- Laboratory of Cilia and Centrosome Biology, Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, Brno, 62500, Czech Republic.
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic.
| |
Collapse
|
11
|
Pang X, Gu L, Han QY, Xing JQ, Zhao M, Huang SY, Yi JX, Pan J, Hong H, Xue W, Zhou XQ, Su ZH, Zhang XR, Sun LM, Jiang SZ, Luo D, Chen L, Wang ZJ, Yu Y, Xia T, Zhang XM, Li AL, Zhou T, Cai H, Li T. RGS22 maintains the physiological function of ependymal cells to prevent hydrocephalus. SCIENCE CHINA. LIFE SCIENCES 2025; 68:441-453. [PMID: 39400871 DOI: 10.1007/s11427-024-2720-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/30/2024] [Indexed: 10/15/2024]
Abstract
Ependymal cells line the wall of cerebral ventricles and ensure the unidirectional cerebrospinal fluid (CSF) flow by beating their motile cilia coordinately. The ependymal denudation or ciliary dysfunction causes hydrocephalus. Here, we report that the deficiency of regulator of G-protein signaling 22 (RGS22) results in severe congenital hydrocephalus in both mice and rats. Interestingly, RGS22 is specifically expressed in ependymal cells within the brain. Using conditional knock-out mice, we further demonstrate that the deletion of Rgs22 exclusively in nervous system is sufficient to induce hydrocephalus. Mechanistically, we show that Rgs22 deficiency leads to the ependymal denudation and impaired ciliogenesis. This phenomenon can be attributed to the excessive activation of lysophosphatidic acid receptor (LPAR) signaling under Rgs22-/- condition, as the LPAR blockade effectively alleviates hydrocephalus in Rgs22-/- rats. Therefore, our findings unveil a previously unrecognized role of RGS22 in the central nervous system, and present RGS22 as a potential diagnostic and therapeutic target for hydrocephalus.
Collapse
Affiliation(s)
- Xue Pang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Lin Gu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Qiu-Ying Han
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Jia-Qing Xing
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Ming Zhao
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Shao-Yi Huang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Jun-Xi Yi
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Jie Pan
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Hao Hong
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Wen Xue
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Xue-Qing Zhou
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Zhi-Hui Su
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Xin-Ran Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Li-Ming Sun
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Shao-Zhen Jiang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
- School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Dan Luo
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Ling Chen
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Zheng-Jie Wang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Yu Yu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Tian Xia
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Xue-Min Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
- School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Ai-Ling Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
- School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Tao Zhou
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China
| | - Hong Cai
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China.
| | - Tao Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100039, China.
- School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
12
|
Wang Y, Kraemer N, Schneider J, Ninnemann O, Weng K, Hildebrand M, Reid J, Li N, Hu H, Mani S, Kaindl AM. Togaram1 is expressed in the neural tube and its absence causes neural tube closure defects. HGG ADVANCES 2025; 6:100363. [PMID: 39385469 PMCID: PMC11541697 DOI: 10.1016/j.xhgg.2024.100363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
Neural tube closure defect pathomechanisms in human embryonic development are poorly understood. Here we identified spina bifida patients expressing novel variants of the TOGARAM gene family. TOGARAM1 has been associated with the ciliopathy Joubert syndrome, but its connection to spina bifida and role in neural development is unknown. We show that Togaram1 is expressed in the neural tube and Togaram1 knockout mice have abnormal cilia, reduced sonic hedgehog (Shh) signaling, abnormal neural tube patterning, and display neural tube closure defects. Neural stem cells from Togaram1 knockout embryos showed reduced cilia and defects in Shh signaling. Overexpression in IMCD3 and HEK293 cells of TOGARAM1 carrying the variant found in the spina bifida patient resulted in cilia defect along with reduced pericentriolar material one (PCM1), a critical constituent of centriolar satellites involved in transporting proteins toward the centrosome and primary cilia. Our results demonstrate the role of TOGARAM1 in regulating Shh signaling during early neural development that is critical for neural tube closure and elucidates potential mechanisms whereby the ciliopathy-associated gene TOGARAM1 gives rise to spina bifida aperta in humans.
Collapse
Affiliation(s)
- Yanyan Wang
- Institute of Cell Biology and Neurobiology, Charite - Universitatsmedizin Berlin, Berlin, Germany; Department of Pediatric Neurology, Charité - Universitatsmedizin Berlin, Berlin, Germany
| | - Nadine Kraemer
- Institute of Cell Biology and Neurobiology, Charite - Universitatsmedizin Berlin, Berlin, Germany; Department of Pediatric Neurology, Charité - Universitatsmedizin Berlin, Berlin, Germany
| | - Joanna Schneider
- Department of Pediatric Neurology, Charité - Universitatsmedizin Berlin, Berlin, Germany; Center for Chronically Sick Children, Charité - Universitatsmedizin Berlin, Berlin, Germany
| | - Olaf Ninnemann
- Institute of Cell Biology and Neurobiology, Charite - Universitatsmedizin Berlin, Berlin, Germany
| | - Kai Weng
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Michael Hildebrand
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Melbourne, VIC, Australia; Neuroscience Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Joshua Reid
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Melbourne, VIC, Australia
| | - Na Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hao Hu
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| | - Shyamala Mani
- Institute of Cell Biology and Neurobiology, Charite - Universitatsmedizin Berlin, Berlin, Germany; Department of Pediatric Neurology, Charité - Universitatsmedizin Berlin, Berlin, Germany
| | - Angela M Kaindl
- Institute of Cell Biology and Neurobiology, Charite - Universitatsmedizin Berlin, Berlin, Germany; Department of Pediatric Neurology, Charité - Universitatsmedizin Berlin, Berlin, Germany; Center for Chronically Sick Children, Charité - Universitatsmedizin Berlin, Berlin, Germany; German Epilepsy Center for Children and Adolescents, Charité - Universitatsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
13
|
Cho SH, Kim JH, Kim S. Perturbed cell cycle phase-dependent positioning and nuclear migration of retinal progenitors along the apico-basal axis underlie global retinal disorganization in the LCA8-like mouse model. Dev Biol 2025; 517:39-54. [PMID: 39284539 DOI: 10.1016/j.ydbio.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 08/16/2024] [Accepted: 09/08/2024] [Indexed: 09/29/2024]
Abstract
Combined removal of Crb1 and Crb2 from the developing optic vesicle evokes cellular and laminar disorganization by disrupting the apical cell-cell adhesion in developing retinal epithelium. As a result, at postnatal stages, affected mouse retinas show temporarily thickened, coarsely laminated retinas in addition to functional deficits, including a severely abnormal electroretinogram and decreased visual acuity. These features are reminiscent of Leber congenital amaurosis 8, which is caused in humans by subsets of Crb1 mutations. However, the cellular basis of the abnormalities in retinal progenitor cells (RPCs) that lead to retinal disorganization is largely unknown. In this study, we analyze specific features of RPCs in mutant retinas, including maintenance of the progenitor pool, cell cycle progression, cell cycle phase-dependent nuclear positioning, cell survival, and generation of mature retinal cell types. We find crucial defects in the mutant RPCs. Upon removal of CRB1 and CRB2, apical structures of the RPCs, determined by markers of cilia and centrosomes, are basally shifted. In addition, the positioning of the somata of the M-phase cells, normally localized at the apical surface of the retinal epithelium, is basally shifted in a nearly randomized pattern along the apico-basal axis. Consequently, we propose that positioning of RPCs is desynchronized from cell cycle phase and largely randomized during embryonic development at E17.5. Because the resultant postmitotic cells inevitably lose positional information, the outer and inner nuclear layers (ONL and INL) fail to form from ONBL during neonatal development and retinal cells become mixed locally and globally. Additional results of the lost tissue polarity in Crb1/Crb2 dKO retinas include atypical formation of heterotopic cell patches containing photoreceptor cells in the ganglion cell layer and acellular patches filled with neural processes. Collectively, these changes lead to a mouse model of LCA8-like pathology. LCA8-like pathology differs substantially from the well-characterized, broad range of degeneration phenotypes that arise during the differentiation of photoreceptor and Muller glial cells in retinitis pigmentosa 12, a closely related disease caused by mutated human Crb1. Importantly, the present results suggest that Crb1/Crb2 serve indispensable functions in maintaining cell-cycle phase-dependent positioning of RPCs along the apico-basal axis, regulating cell cycle progression, and maintaining structural laminar integrity without significantly affecting the size of the RPC pools, generation of the subsets of the retinal cell types, or the distribution of cell cycle phases during RPC division. Taken together, these findings provide the crucial cellular basis of the thickening and severely disorganized lamination that are the unique features of the retinal abnormalities in LCA8 patients.
Collapse
Affiliation(s)
- Seo-Hee Cho
- Center for Translational Medicine, Department of Medicine, Sydney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Ji Hyang Kim
- Center for Translational Medicine, Department of Medicine, Sydney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Seonhee Kim
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| |
Collapse
|
14
|
Palicharla VR, Badgandi HB, Hwang SH, Legué E, Liem KF, Mukhopadhyay S. A defined tubby domain β-barrel surface region of TULP3 mediates ciliary trafficking of diverse cargoes. Mol Biol Cell 2025; 36:ar1. [PMID: 39565681 PMCID: PMC11742108 DOI: 10.1091/mbc.e24-09-0426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024] Open
Abstract
The primary cilium is a paradigmatic subcellular compartment at the nexus of numerous cellular and morphogenetic pathways. The tubby family protein TULP3 acts as an adapter of the intraflagellar transport complex A in transporting integral membrane and membrane-associated lipidated proteins into cilia. However, the mechanisms by which TULP3 coordinates ciliary transport of diverse cargoes is not well understood. Here, we provide molecular insights into TULP3-mediated ciliary cargo recognition. We screened for critical TULP3 residues by proximity biotinylation-mass spectrometry, structural analysis, and testing TULP3 variants in human patients with hepatorenal fibrocystic disease and spina bifida. The TULP3 residues we identified 1) were located on one side of the β-barrel of the tubby domain away from the phosphoinositide binding site, 2) mediated ciliary trafficking of lipidated and transmembrane cargoes, and 3) determined proximity with these cargoes in vivo without affecting ciliary localization, phosphoinositide binding or hydrodynamic properties of TULP3. Overall, these findings implicate a specific region of one of the surfaces of the TULP3 β-barrel in ciliary trafficking of diverse cargoes. This region overlooks the β-strands 8-12 of the β-barrel and is away from the membrane anchoring phosphoinositide binding site. Targeting the TULP3-cargo interactions could provide therapeutics in ciliary trafficking diseases.
Collapse
Affiliation(s)
- Vivek Reddy Palicharla
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Hemant B. Badgandi
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Sun-Hee Hwang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Emilie Legué
- Vertebrate Developmental Biology Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520
| | - Karel F. Liem
- Vertebrate Developmental Biology Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520
| | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
15
|
Chattannavar G, Ger M, Balasubramanian J, Mandal S, Jalali S, Takkar B, Pisuchpen P, de Guimaraes TAC, Capasso JE, Kumar Padhy S, Levin AV. Bardet-Biedl syndrome with chorioretinal coloboma: a case series and review of literature. Ophthalmic Genet 2024; 45:616-622. [PMID: 39402987 DOI: 10.1080/13816810.2024.2411257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/09/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
INTRODUCTION Bardet-Biedl Syndrome (BBS) is a ciliopathy causing developmental defects and progressive retinal dystrophy, whereas choroidal coloboma is a developmental defect causing structural deficiency in the posterior retina. Both are rarely reported together. METHODS Here, we describe the phenotype and genotype of three unrelated patients with co-occurrence of Bardet-Biedl Syndrome and chorioretinal coloboma and review the pertinent literature. RESULTS We describe three unrelated patients, with variable clinical features of Bardet Biedl syndrome. None had family history of BBS or coloboma. Each carried biallelic variants in BBS1, BBS9 and TTC8 gene, respectively. Two had unilateral chorioretinal coloboma, while one had bilateral chorioretinal coloboma. DISCUSSION Although there may be other explanatory factors yet to be revealed, our data suggests that chorioretinal coloboma may be associated with BBS. The Hedgehog (Hh) signaling pathway, an intercellular communicator for development of the eye, is dependent on the primary cilia and plays a crucial role in the closure of the optic fissure. Both disorders therefore involve disruption of primary cilia function which may explain their association.
Collapse
Affiliation(s)
- Goura Chattannavar
- Flaum Eye Institute, Ocular Genetics, Golisano Children's Hospital, Rochester, New York, USA
- Jasti V. Ramanamma Children's Eye Care Centre, Child Sight Institute, L. V. Prasad Eye Institute, Hyderabad, India
| | - Marina Ger
- Anant Bajaj Retina Institute, L. V. Prasad eye Institute, Visakhapatnam, India
| | | | - Sohini Mandal
- Department of Ophthalmology, All India Institute of Medical Sciences, New Delhi, India
| | - Subhadra Jalali
- Jasti V. Ramanamma Children's Eye Care Centre, Child Sight Institute, L. V. Prasad Eye Institute, Hyderabad, India
- Srimati Kannuri Santhamma Centre for Vitreoretinal Diseases, Anant Bajaj Retina Institute, L. V. Prasad eye Institute, Hyderabad, India
| | - Brijesh Takkar
- Srimati Kannuri Santhamma Centre for Vitreoretinal Diseases, Anant Bajaj Retina Institute, L. V. Prasad eye Institute, Hyderabad, India
| | - Phattrawan Pisuchpen
- Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Division of Academic Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thales A C de Guimaraes
- Institute of Ophthalmology, University College London, London, UK
- Department of Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Jenina E Capasso
- Flaum Eye Institute, Ocular Genetics, Golisano Children's Hospital, Rochester, New York, USA
| | - Srikanta Kumar Padhy
- Vitreo-Retina, Anant Bajaj Retina Institute, L. V. Prasad Eye Institute, Bhubaneswar, India
| | - Alex V Levin
- Flaum Eye Institute, Ocular Genetics, Golisano Children's Hospital, Rochester, New York, USA
| |
Collapse
|
16
|
Fitzsimons LA, Staurengo-Ferrari L, Khomula EV, Bogen O, Araldi D, Bonet IJM, Green PG, Jordan EE, Sclafani F, Nowak CE, Moulton JK, Ganter GK, Levine JD, Tucker KL. The Nociceptor Primary Cilium Contributes to Mechanical Nociceptive Threshold and Inflammatory and Neuropathic Pain. J Neurosci 2024; 44:e1265242024. [PMID: 39349056 PMCID: PMC11580782 DOI: 10.1523/jneurosci.1265-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/16/2024] [Accepted: 09/20/2024] [Indexed: 10/02/2024] Open
Abstract
The primary cilium, a single microtubule-based organelle protruding from the cell surface and critical for neural development, also functions in adult neurons. While some dorsal root ganglion neurons elaborate a primary cilium, whether it is expressed by and functional in nociceptors is unknown. Recent studies have shown the role of Hedgehog, whose canonical signaling is primary cilium dependent, in nociceptor sensitization. We establish the presence of primary cilia in soma of rat nociceptors, where they contribute to mechanical threshold, prostaglandin E2 (PGE2)-induced hyperalgesia, and chemotherapy-induced neuropathic pain (CIPN). Intrathecal administration of siRNA targeting Ift88, a primary cilium-specific intraflagellar transport (IFT) protein required for ciliary integrity, resulted in attenuation of Ift88 mRNA and nociceptor primary cilia. Attenuation of primary cilia was associated with an increase in mechanical nociceptive threshold in vivo and decrease in nociceptor excitability in vitro, abrogation of hyperalgesia, and nociceptor sensitization induced by both a prototypical pronociceptive inflammatory mediator PGE2 and paclitaxel CIPN, in a sex-specific fashion. siRNA targeting Ift52, another IFT protein, and knockdown of NompB, the Drosophila Ift88 ortholog, also abrogated CIPN and reduced baseline mechanosensitivity, respectively, providing independent confirmation for primary cilia control of nociceptor function. Hedgehog-induced hyperalgesia is attenuated by Ift88 siRNA, supporting the role for primary cilia in Hedgehog-induced hyperalgesia. Attenuation of CIPN by cyclopamine (intradermal and intraganglion), which inhibits Hedgehog signaling, supports the role of Hedgehog in CIPN. Our findings support the role of the nociceptor primary cilium in control of mechanical nociceptive threshold and inflammatory and neuropathic pain, the latter Hedgehog-dependent.
Collapse
Affiliation(s)
- Lindsey A Fitzsimons
- Deparment of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
| | - Larissa Staurengo-Ferrari
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
| | - Eugen V Khomula
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
| | - Oliver Bogen
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
| | - Dionéia Araldi
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
| | - Ivan J M Bonet
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
| | - Paul G Green
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
- Department of Preventative and Restorative Dental Sciences, University of California San Francisco, San Francisco 94115
| | - Ethan E Jordan
- Deparment of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
| | - Finn Sclafani
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
- School of Biological Sciences, College of Arts and Sciences, University of New England, Biddeford, Maine 04005
| | - Connor E Nowak
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
- School of Biological Sciences, College of Arts and Sciences, University of New England, Biddeford, Maine 04005
| | - Julie K Moulton
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
- School of Biological Sciences, College of Arts and Sciences, University of New England, Biddeford, Maine 04005
| | - Geoffrey K Ganter
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
- School of Biological Sciences, College of Arts and Sciences, University of New England, Biddeford, Maine 04005
| | - Jon D Levine
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California San Francisco, San Francisco 94115
- Department of Medicine, Division of Neuroscience, University of California San Francisco, San Francisco 94115
| | - Kerry L Tucker
- Deparment of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine 04005
| |
Collapse
|
17
|
Noble AR, Masek M, Hofmann C, Cuoco A, Rusterholz TDS, Özkoc H, Greter NR, Phelps IG, Vladimirov N, Kollmorgen S, Stoeckli E, Bachmann-Gagescu R. Shared and unique consequences of Joubert Syndrome gene dysfunction on the zebrafish central nervous system. Biol Open 2024; 13:bio060421. [PMID: 39400299 PMCID: PMC11583916 DOI: 10.1242/bio.060421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024] Open
Abstract
Joubert Syndrome (JBTS) is a neurodevelopmental ciliopathy defined by a highly specific midbrain-hindbrain malformation, variably associated with additional neurological features. JBTS displays prominent genetic heterogeneity with >40 causative genes that encode proteins localising to the primary cilium, a sensory organelle that is essential for transduction of signalling pathways during neurodevelopment, among other vital functions. JBTS proteins localise to distinct ciliary subcompartments, suggesting diverse functions in cilium biology. Currently, there is no unifying pathomechanism to explain how dysfunction of such diverse primary cilia-related proteins results in such a highly specific brain abnormality. To identify the shared consequence of JBTS gene dysfunction, we carried out transcriptomic analysis using zebrafish mutants for the JBTS-causative genes cc2d2aw38, cep290fh297, inpp5ezh506, talpid3i264 and togaram1zh510 and the Bardet-Biedl syndrome-causative gene bbs1k742. We identified no commonly dysregulated signalling pathways in these mutants and yet all mutants displayed an enrichment of altered gene sets related to central nervous system function. We found that JBTS mutants have altered primary cilia throughout the brain but do not display abnormal brain morphology. Nonetheless, behavioural analyses revealed reduced locomotion and loss of postural control which, together with the transcriptomic results, hint at underlying abnormalities in neuronal activity and/or neuronal circuit function. These zebrafish models therefore offer the unique opportunity to study the role of primary cilia in neuronal function beyond early patterning, proliferation and differentiation.
Collapse
Affiliation(s)
- Alexandra R. Noble
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, 8057 Zurich, Switzerland
| | - Markus Masek
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Claudia Hofmann
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Arianna Cuoco
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | | | - Hayriye Özkoc
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Nadja R. Greter
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Ian G. Phelps
- Department of Pediatrics, University of Washington, Seattle, WA 8057, USA
| | - Nikita Vladimirov
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, 8057 Zurich, Switzerland
- Brain Research Institute, University of Zurich, 98105 Zurich, Switzerland
- Center for Microscopy and Image Analysis (ZMB), University of Zurich, 8057 Zurich, Switzerland
| | - Sepp Kollmorgen
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, 8057 Zurich, Switzerland
| | - Esther Stoeckli
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, 8057 Zurich, Switzerland
| | - Ruxandra Bachmann-Gagescu
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, 8057 Zurich, Switzerland
- Institute for Medical Genetics, University of Zurich, 8952 Zurich, Switzerland
| |
Collapse
|
18
|
Bear R, Sloan SA, Caspary T. Primary cilia shape postnatal astrocyte development through Sonic Hedgehog signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618851. [PMID: 39464094 PMCID: PMC11507945 DOI: 10.1101/2024.10.17.618851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Primary cilia function as specialized signaling centers that regulate many cellular processes including neuron and glia development. Astrocytes possess cilia, but the function of cilia in astrocyte development remains largely unexplored. Critically, dysfunction of either astrocytes or cilia contributes to molecular changes observed in neurodevelopmental disorders. Here, we show that a sub-population of developing astrocytes in the prefrontal cortex are ciliated. This population corresponds to proliferating astrocytes and largely expresses the ciliary protein ARL13B. Genetic ablation of astrocyte cilia in vivo at two distinct stages of astrocyte development results in changes to Sonic Hedgehog (Shh) transcriptional targets. We show that Shh activity is decreased in immature and mature astrocytes upon loss of cilia. Furthermore, loss of cilia in immature astrocytes results in decreased astrocyte proliferation and loss of cilia in mature astrocytes causes enlarged astrocyte morphology. Together, these results indicate that astrocytes require cilia for Shh signaling throughout development and uncover functions for astrocyte cilia in regulating astrocyte proliferation and maturation. This expands our fundamental knowledge of astrocyte development and cilia function to advance our understanding of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Rachel Bear
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street Suite 301, Atlanta GA 30322
- Graduate Program in Neuroscience
| | - Steven A. Sloan
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street Suite 301, Atlanta GA 30322
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street Suite 301, Atlanta GA 30322
| |
Collapse
|
19
|
Augière C, Campolina-Silva G, Vijayakumaran A, Medagedara O, Lavoie-Ouellet C, Joly Beauparlant C, Droit A, Barrachina F, Ottino K, Battistone MA, Narayan K, Hess R, Mennella V, Belleannée C. ARL13B controls male reproductive tract physiology through primary and Motile Cilia. Commun Biol 2024; 7:1318. [PMID: 39397107 PMCID: PMC11471856 DOI: 10.1038/s42003-024-07030-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024] Open
Abstract
ARL13B is a small regulatory GTPase that controls ciliary membrane composition in both motile cilia and non-motile primary cilia. In this study, we investigated the role of ARL13B in the efferent ductules, tubules of the male reproductive tract essential to male fertility in which primary and motile cilia co-exist. We used a genetically engineered mouse model to delete Arl13b in efferent ductule epithelial cells, resulting in compromised primary and motile cilia architecture and functions. This deletion led to disturbances in reabsorptive/secretory processes and triggered an inflammatory response. The observed male reproductive phenotype showed significant variability linked to partial infertility, highlighting the importance of ARL13B in maintaining a proper physiological balance in these small ducts. These results emphasize the dual role of both motile and primary cilia functions in regulating efferent duct homeostasis, offering deeper insights into how cilia related diseases affect the male reproductive system.
Collapse
Affiliation(s)
- Céline Augière
- CHU de Québec Research Center (CHUL)- Université Laval, Quebec City, QC, Canada.
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| | - Gabriel Campolina-Silva
- CHU de Québec Research Center (CHUL)- Université Laval, Quebec City, QC, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Aaran Vijayakumaran
- Medical Research Council Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, UK
| | - Odara Medagedara
- Medical Research Council Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, UK
| | - Camille Lavoie-Ouellet
- CHU de Québec Research Center (CHUL)- Université Laval, Quebec City, QC, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | | | - Arnaud Droit
- CHU de Québec Research Center (CHUL)- Université Laval, Quebec City, QC, Canada
| | - Ferran Barrachina
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, MA, USA
| | - Kiera Ottino
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, MA, USA
| | - Maria Agustina Battistone
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, MA, USA
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Rex Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, IL, USA
| | - Vito Mennella
- Medical Research Council Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, UK
- Department of Pathology, 10 Tennis Court Road, University of Cambridge, Cambridge, UK
| | - Clémence Belleannée
- CHU de Québec Research Center (CHUL)- Université Laval, Quebec City, QC, Canada.
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
20
|
Ott CM, Constable S, Nguyen TM, White K, Lee WCA, Lippincott-Schwartz J, Mukhopadhyay S. Permanent deconstruction of intracellular primary cilia in differentiating granule cell neurons. J Cell Biol 2024; 223:e202404038. [PMID: 39137043 PMCID: PMC11320830 DOI: 10.1083/jcb.202404038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/03/2024] [Accepted: 06/26/2024] [Indexed: 08/15/2024] Open
Abstract
Primary cilia on granule cell neuron progenitors in the developing cerebellum detect sonic hedgehog to facilitate proliferation. Following differentiation, cerebellar granule cells become the most abundant neuronal cell type in the brain. While granule cell cilia are essential during early developmental stages, they become infrequent upon maturation. Here, we provide nanoscopic resolution of cilia in situ using large-scale electron microscopy volumes and immunostaining of mouse cerebella. In many granule cells, we found intracellular cilia, concealed from the external environment. Cilia were disassembled in differentiating granule cell neurons-in a process we call cilia deconstruction-distinct from premitotic cilia resorption in proliferating progenitors. In differentiating granule cells, cilia deconstruction involved unique disassembly intermediates, and, as maturation progressed, mother centriolar docking at the plasma membrane. Unlike ciliated neurons in other brain regions, our results show the deconstruction of concealed cilia in differentiating granule cells, which might prevent mitogenic hedgehog responsiveness. Ciliary deconstruction could be paradigmatic of cilia removal during differentiation in other tissues.
Collapse
Affiliation(s)
- Carolyn M Ott
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Sandii Constable
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tri M Nguyen
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Kevin White
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wei-Chung Allen Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
21
|
Kim AH, Sakin I, Viviano S, Tuncel G, Aguilera SM, Goles G, Jeffries L, Ji W, Lakhani SA, Kose CC, Silan F, Oner SS, Kaplan OI, Ergoren MC, Mishra-Gorur K, Gunel M, Sag SO, Temel SG, Deniz E. CC2D1A causes ciliopathy, intellectual disability, heterotaxy, renal dysplasia, and abnormal CSF flow. Life Sci Alliance 2024; 7:e202402708. [PMID: 39168639 PMCID: PMC11339347 DOI: 10.26508/lsa.202402708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Intellectual and developmental disabilities result from abnormal nervous system development. Over a 1,000 genes have been associated with intellectual and developmental disabilities, driving continued efforts toward dissecting variant functionality to enhance our understanding of the disease mechanism. This report identified two novel variants in CC2D1A in a cohort of four patients from two unrelated families. We used multiple model systems for functional analysis, including Xenopus, Drosophila, and patient-derived fibroblasts. Our experiments revealed that cc2d1a is expressed explicitly in a spectrum of ciliated tissues, including the left-right organizer, epidermis, pronephric duct, nephrostomes, and ventricular zone of the brain. In line with this expression pattern, loss of cc2d1a led to cardiac heterotaxy, cystic kidneys, and abnormal CSF circulation via defective ciliogenesis. Interestingly, when we analyzed brain development, mutant tadpoles showed abnormal CSF circulation only in the midbrain region, suggesting abnormal local CSF flow. Furthermore, our analysis of the patient-derived fibroblasts confirmed defective ciliogenesis, further supporting our observations. In summary, we revealed novel insight into the role of CC2D1A by establishing its new critical role in ciliogenesis and CSF circulation.
Collapse
Affiliation(s)
| | - Irmak Sakin
- Department of ENT, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Acibadem University School of Medicine, Istanbul, Turkey
| | - Stephen Viviano
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Gulten Tuncel
- DESAM Research Institute, Near East University, Nicosia, Cyprus
| | | | - Gizem Goles
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Lauren Jeffries
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Weizhen Ji
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Saquib A Lakhani
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Canan Ceylan Kose
- Canakkale 18 March University, Faculty of Medicine, Department of Medical Genetics, Canakkale, Turkey
| | - Fatma Silan
- Canakkale 18 March University, Faculty of Medicine, Department of Medical Genetics, Canakkale, Turkey
| | - Sukru Sadik Oner
- Department of Pharmacology, Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Istanbul, Turkey
- Istanbul Medeniyet University, Science and Advanced Technologies Research Center (BILTAM), Istanbul, Turkey
| | - Oktay I Kaplan
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey
| | - Mahmut Cerkez Ergoren
- Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Ketu Mishra-Gorur
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Murat Gunel
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Program in Brain Tumor Research, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Sebnem Ozemri Sag
- Department of Medical Genetics, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Sehime G Temel
- Department of Medical Genetics, Faculty of Medicine, Uludag University, Bursa, Turkey
- Department of Histology and Embryology and Health Sciences Institute, Department of Translational Medicine, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Engin Deniz
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
22
|
Huang Y, Dong X, Sun SY, Lim TK, Lin Q, He CY. ARL3 GTPases facilitate ODA16 unloading from IFT in motile cilia. SCIENCE ADVANCES 2024; 10:eadq2950. [PMID: 39231220 PMCID: PMC11373600 DOI: 10.1126/sciadv.adq2950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
Eukaryotic cilia and flagella are essential for cell motility and sensory functions. Their biogenesis and maintenance rely on the intraflagellar transport (IFT). Several cargo adapters have been identified to aid IFT cargo transport, but how ciliary cargos are discharged from the IFT remains largely unknown. During our explorations of small GTPases ARL13 and ARL3 in Trypanosoma brucei, we found that ODA16, a known IFT cargo adapter present exclusively in motile cilia, is a specific effector of ARL3. In the cilia, active ARL3 GTPases bind to ODA16 and dissociate ODA16 from the IFT complex. Depletion of ARL3 GTPases stabilizes ODA16 interaction with the IFT, leading to ODA16 accumulation in cilia and defects in axonemal assembly. The interactions between human ODA16 homolog HsDAW1 and ARL GTPases are conserved, and these interactions are altered in HsDAW1 disease variants. These findings revealed a conserved function of ARL GTPases in IFT transport of motile ciliary components, and a mechanism of cargo unloading from the IFT.
Collapse
Affiliation(s)
- Yameng Huang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Xiaoduo Dong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Stella Y Sun
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Teck-Kwang Lim
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Cynthia Y He
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- The Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
23
|
Ansari SS, Dillard ME, Zhang Y, Austria MA, Boatwright N, Shelton EL, Stewart DP, Johnson A, Wang CE, Young BM, Rankovic Z, Hansen BS, Pruett-Miller SM, Carisey AF, Schuetz JD, Robinson CG, Ogden SK. Sonic Hedgehog activates prostaglandin signaling to stabilize primary cilium length. J Cell Biol 2024; 223:e202306002. [PMID: 38856684 PMCID: PMC11166601 DOI: 10.1083/jcb.202306002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 04/03/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024] Open
Abstract
Sonic Hedgehog (SHH) is a driver of embryonic patterning that, when corrupted, triggers developmental disorders and cancers. SHH effector responses are organized through primary cilia (PC) that grow and retract with the cell cycle and in response to extracellular cues. Disruption of PC homeostasis corrupts SHH regulation, placing significant pressure on the pathway to maintain ciliary fitness. Mechanisms by which ciliary robustness is ensured in SHH-stimulated cells are not yet known. Herein, we reveal a crosstalk circuit induced by SHH activation of Phospholipase A2α that drives ciliary E-type prostanoid receptor 4 (EP4) signaling to ensure PC function and stabilize ciliary length. We demonstrate that blockade of SHH-EP4 crosstalk destabilizes PC cyclic AMP (cAMP) equilibrium, slows ciliary transport, reduces ciliary length, and attenuates SHH pathway induction. Accordingly, Ep4-/- mice display shortened neuroepithelial PC and altered SHH-dependent neuronal cell fate specification. Thus, SHH initiates coordination between distinct ciliary receptors to maintain PC function and length homeostasis for robust downstream signaling.
Collapse
Affiliation(s)
- Shariq S. Ansari
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Miriam E. Dillard
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Yan Zhang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Mary Ashley Austria
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Rhodes College Summer Plus Program, Memphis, TN, USA
| | - Naoko Boatwright
- Department of Pediatrics, Monroe Carell Jr. Children’s Hospital at Vanderbilt and Vanderbilt University Medical Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Elaine L. Shelton
- Department of Pediatrics, Monroe Carell Jr. Children’s Hospital at Vanderbilt and Vanderbilt University Medical Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Daniel P. Stewart
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Amanda Johnson
- Cell and Tissue Imaging Center, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Christina E. Wang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Brandon M. Young
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Zoran Rankovic
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Baranda S. Hansen
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Shondra M. Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Alexandre F. Carisey
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - John D. Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Camenzind G. Robinson
- Cell and Tissue Imaging Center, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Stacey K. Ogden
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
24
|
Jiang L, Yang S, Deng L, Luo J, Zhang X, Chen S, Dong Z. ARL13B promotes cell cycle through the sonic hedgehog signaling pathway to alleviate nerve damage during cerebral ischemia/reperfusion in rats. Biochem Pharmacol 2024; 227:116446. [PMID: 39038552 DOI: 10.1016/j.bcp.2024.116446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Cerebral ischemia/reperfusion (CIRI) is a leading cause of death worldwide. A small GTPase known as ADP-ribosylation factor-like protein 13B (ARL13B) is essential in several illnesses. The role of ARL13B in CIRI remains unknown, though. A middle cerebral artery occlusion/reperfusion (MCAO/R) in rats as well as an oxygen-glucose deprivation/reoxygenation (OGD/R) models in PC12 cells were constructed. The neuroprotective effects of ARL13B against MCAO/R were evaluated using neurological scores, TTC staining, rotarod testing, H&E staining, and Nissl staining. To detect the expression of proteins associated with the SHH pathway and apoptosis, western blotting and immunofluorescence were employed. Apoptosis was detected using TUNEL assays and flow cytometry. There was increased expression of ARL13B in cerebral ischemia/reperfusion models. However, ARL13B knockdown aggravated CIRI nerve injury by inhibiting the sonic hedgehog (SHH) pathway. In addition, the use of SHH pathway agonist (SAG) can increased ARL13B expression, reverse the effects of ARL13B knockdown exacerbating CIRI nerve injury. ARL13B alleviated cerebral infarction and pathological injury and played a protective role against MCAO/R. Furthermore, ARL13B significantly increased the expression of SHH pathway-related proteins and the anti-apoptotic protein BCL-2, while decreased the expression of pro-apoptotic protein BAX, thus reducing apoptosis. The results from the OGD/R model in PC12 cells were consistent with those obtained in vivo. Surprisingly, we demonstrated that ARL13B regulates the cell cycle to protect against CIRI nerve injury. Our findings indicate that ARL13B protects against CIRI by reducing apoptosis through SHH-dependent pathway activation, and suggest that ARL13B plays a crucial role in CIRI pathogenesis.
Collapse
Affiliation(s)
- Lu Jiang
- Department of Pharmacology, Chongqing Medical University, Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Shaonan Yang
- Department of Pharmacology, Chongqing Medical University, Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Ling Deng
- Department of Pharmacology, Chongqing Medical University, Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Jingjing Luo
- Department of Pharmacology, Chongqing Medical University, Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Xiaoling Zhang
- Department of Pharmacology, Chongqing Medical University, Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Sha Chen
- Department of Pharmacology, Chongqing Medical University, Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Zhi Dong
- Department of Pharmacology, Chongqing Medical University, Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China.
| |
Collapse
|
25
|
Wang L, Guo Q, Acharya S, Zheng X, Huynh V, Whitmore B, Yimit A, Malhotra M, Chatterji S, Rosin N, Labit E, Chipak C, Gorzo K, Haidey J, Elliott DA, Ram T, Zhang Q, Kuipers H, Gordon G, Biernaskie J, Guo J. Primary cilia signaling in astrocytes mediates development and regional-specific functional specification. Nat Neurosci 2024; 27:1708-1720. [PMID: 39103557 DOI: 10.1038/s41593-024-01726-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 07/09/2024] [Indexed: 08/07/2024]
Abstract
Astrocyte diversity is greatly influenced by local environmental modulation. Here we report that the majority of astrocytes across the mouse brain possess a singular primary cilium localized to the cell soma. Comparative single-cell transcriptomics reveals that primary cilia mediate canonical SHH signaling to modulate astrocyte subtype-specific core features in synaptic regulation, intracellular transport, energy and metabolism. Independent of canonical SHH signaling, primary cilia are important regulators of astrocyte morphology and intracellular signaling balance. Dendritic spine analysis and transcriptomics reveal that perturbation of astrocytic cilia leads to disruption of neuronal development and global intercellular connectomes in the brain. Mice with primary ciliary-deficient astrocytes show behavioral deficits in sensorimotor function, sociability, learning and memory. Our results uncover a critical role for primary cilia in transmitting local cues that drive the region-specific diversification of astrocytes within the developing brain.
Collapse
Affiliation(s)
- Lizheng Wang
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Qianqian Guo
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sandesh Acharya
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Xiao Zheng
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Vanessa Huynh
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Brandon Whitmore
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Askar Yimit
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mehr Malhotra
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Siddharth Chatterji
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicole Rosin
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Surgery, University of Calgary, Calgary, Alberta, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Elodie Labit
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Surgery, University of Calgary, Calgary, Alberta, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Colten Chipak
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kelsea Gorzo
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Jordan Haidey
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - David A Elliott
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tina Ram
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Qingrun Zhang
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Hedwich Kuipers
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neuroscience, University of Calgary, Calgary, Alberta, Canada
| | - Grant Gordon
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Jeff Biernaskie
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Surgery, University of Calgary, Calgary, Alberta, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jiami Guo
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
26
|
He K, Jiang H, Li W, Toutounchi S, Huang Y, Wu J, Ma X, Baehr W, Pignolo RJ, Ling K, Zhou X, Wang H, Hu J. Primary cilia mediate skeletogenic BMP and Hedgehog signaling in heterotopic ossification. Sci Transl Med 2024; 16:eabn3486. [PMID: 39047114 DOI: 10.1126/scitranslmed.abn3486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/04/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024]
Abstract
Heterotopic ossification (HO), defined as the formation of extraskeletal bone in muscle and soft tissues, is a diverse pathological process caused by either genetic mutations or inciting trauma. Fibrodysplasia ossificans progressiva (FOP) is a genetic form of HO caused by mutations in the bone morphogenetic protein (BMP) type I receptor gene activin A receptor type 1 (ACVR1). These mutations make ACVR1 hypersensitive to BMP and responsive to activin A. Hedgehog (Hh) signaling also contributes to HO development. However, the exact pathophysiology of how skeletogenic cells contribute to endochondral ossification in FOP remains unknown. Here, we showed that the wild-type or FOP-mutant ACVR1 localized in the cilia of stem cells from human exfoliated deciduous teeth with key FOP signaling components, including activin A receptor type 2A/2B, SMAD family member 1/5, and FK506-binding protein 12kD. Cilia suppression by deletion of intraflagellar transport 88 or ADP ribosylation factor like GTPase 3 effectively inhibited pathological BMP and Hh signaling, subdued aberrant chondro-osteogenic differentiation in primary mouse or human FOP cells, and diminished in vivo extraskeletal ossification in Acvr1Q207D, Sox2-Cre; Acvr1R206H/+ FOP mice and in burn tenotomy-treated wild-type mice. Our results provide a rationale for early and localized suppression of cilia in affected tissues after injury as a therapeutic strategy against either genetic or acquired HO.
Collapse
Affiliation(s)
- Kai He
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 USA
| | - Heng Jiang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 USA
| | - Weijun Li
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905 USA
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905 USA
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Mayo Clinic, Rochester, MN 55905 USA
| | - Saman Toutounchi
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905 USA
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905 USA
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Mayo Clinic, Rochester, MN 55905 USA
| | - Yan Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 USA
| | - Jianfeng Wu
- Department of Orthopedics, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Xiaoyu Ma
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 USA
| | - Wolfgang Baehr
- Department of Ophthalmology, University of Utah, Salt Lake City, UT 84132, USA
| | - Robert J Pignolo
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905 USA
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905 USA
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Mayo Clinic, Rochester, MN 55905 USA
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 USA
| | - Xuhui Zhou
- Translational Research Center of Orthopedics, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Haitao Wang
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905 USA
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905 USA
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Mayo Clinic, Rochester, MN 55905 USA
| | - Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
- Mayo Clinic Robert M. and Billie Kelley Pirnie Translational Polycystic Kidney Disease Center, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
27
|
Lu H, Twan WK, Ikawa Y, Khare V, Mukherjee I, Schou KB, Chua KX, Aqasha A, Chakrabarti S, Hamada H, Roy S. Localisation and function of key axonemal microtubule inner proteins and dynein docking complex members reveal extensive diversity among vertebrate motile cilia. Development 2024; 151:dev202737. [PMID: 39007638 DOI: 10.1242/dev.202737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024]
Abstract
Vertebrate motile cilia are classified as (9+2) or (9+0), based on the presence or absence of the central pair apparatus, respectively. Cryogenic electron microscopy analyses of (9+2) cilia have uncovered an elaborate axonemal protein composition. The extent to which these features are conserved in (9+0) cilia remains unclear. CFAP53, a key axonemal filamentous microtubule inner protein (fMIP) and a centriolar satellites component, is essential for motility of (9+0), but not (9+2) cilia. Here, we show that in (9+2) cilia, CFAP53 functions redundantly with a paralogous fMIP, MNS1. MNS1 localises to ciliary axonemes, and combined loss of both proteins in zebrafish and mice caused severe outer dynein arm loss from (9+2) cilia, significantly affecting their motility. Using immunoprecipitation, we demonstrate that, whereas MNS1 can associate with itself and CFAP53, CFAP53 is unable to self-associate. We also show that additional axonemal dynein-interacting proteins, two outer dynein arm docking (ODAD) complex members, show differential localisation between types of motile cilia. Together, our findings clarify how paralogous fMIPs, CFAP53 and MNS1, function in regulating (9+2) versus (9+0) cilia motility, and further emphasise extensive structural diversity among these organelles.
Collapse
Affiliation(s)
- Hao Lu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, 61 Biopolis Drive, Singapore138673
| | - Wang Kyaw Twan
- Laboratory for Organismal Patterning, RIKEN Centre for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-Ku, Kobe 650-0005, Japan
| | - Yayoi Ikawa
- Laboratory for Organismal Patterning, RIKEN Centre for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-Ku, Kobe 650-0005, Japan
| | - Vani Khare
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, 61 Biopolis Drive, Singapore138673
| | - Ishita Mukherjee
- Translational Research Unit of Excellence, Structural Biology and Bioinformatics Division, Council for Scientific and Industrial Research - Indian Institute of Chemical Biology, Kolkata 700091, India
| | - Kenneth Bødtker Schou
- The Danish Cancer Society Research Centre, Danish Cancer Institute, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Kai Xin Chua
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, 61 Biopolis Drive, Singapore138673
| | - Adam Aqasha
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, 61 Biopolis Drive, Singapore138673
| | - Saikat Chakrabarti
- Translational Research Unit of Excellence, Structural Biology and Bioinformatics Division, Council for Scientific and Industrial Research - Indian Institute of Chemical Biology, Kolkata 700091, India
| | - Hiroshi Hamada
- Laboratory for Organismal Patterning, RIKEN Centre for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-Ku, Kobe 650-0005, Japan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bengaluru 560065, India
- Trivedi School of Biosciences, Ashoka University, Sonepat, 131029, India
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, 61 Biopolis Drive, Singapore138673
- Department of Paediatrics, Yong Loo Ling School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore119288
| |
Collapse
|
28
|
Ran J, Guo G, Zhang S, Zhang Y, Zhang L, Li D, Wu S, Cong Y, Wang X, Xie S, Zhao H, Liu H, Ou G, Zhu X, Zhou J, Liu M. KIF11 UFMylation Maintains Photoreceptor Cilium Integrity and Retinal Homeostasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400569. [PMID: 38666385 PMCID: PMC11220646 DOI: 10.1002/advs.202400569] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/01/2024] [Indexed: 07/04/2024]
Abstract
The photoreceptor cilium is vital for maintaining the structure and function of the retina. However, the molecular mechanisms underlying the photoreceptor cilium integrity and retinal homeostasis are largely unknown. Herein, it is shown that kinesin family member 11 (KIF11) localizes at the transition zone (connecting cilium) of the photoreceptor and plays a crucial role in orchestrating the cilium integrity. KIF11 depletion causes malformations of both the photoreceptor ciliary axoneme and membranous discs, resulting in photoreceptor degeneration and the accumulation of drusen-like deposits throughout the retina. Mechanistic studies show that the stability of KIF11 is regulated by an interplay between its UFMylation and ubiquitination; UFMylation of KIF11 at lysine 953 inhibits its ubiquitination by synoviolin 1 and thereby prevents its proteasomal degradation. The lysine 953-to-arginine mutant of KIF11 is more stable than wild-type KIF11 and also more effective in reversing the ciliary and retinal defects induced by KIF11 depletion. These findings identify a critical role for KIF11 UFMylation in the maintenance of photoreceptor cilium integrity and retinal homeostasis.
Collapse
Affiliation(s)
- Jie Ran
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyHaihe Laboratory of Cell EcosystemCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Guizhi Guo
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyHaihe Laboratory of Cell EcosystemCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Sai Zhang
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyHaihe Laboratory of Cell EcosystemCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Yufei Zhang
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyHaihe Laboratory of Cell EcosystemCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Liang Zhang
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyHaihe Laboratory of Cell EcosystemCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Dengwen Li
- Department of Genetics and Cell BiologyState Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjin300071China
| | - Shian Wu
- Department of Genetics and Cell BiologyState Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjin300071China
| | - Yusheng Cong
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceInstitute of Aging ResearchSchool of MedicineHangzhou Normal UniversityHangzhou310036China
| | - Xiaohong Wang
- Department of PharmacologyTianjin Key Laboratory of Inflammation BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjin300070China
| | - Songbo Xie
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyHaihe Laboratory of Cell EcosystemCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Huijie Zhao
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyHaihe Laboratory of Cell EcosystemCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Hongbin Liu
- Center for Reproductive MedicineCheeloo College of MedicineKey Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinan250014China
| | - Guangshuo Ou
- Tsinghua‐Peking Center for Life SciencesMinistry of Education Key Laboratory for Protein ScienceSchool of Life SciencesTsinghua UniversityBeijing100084China
| | - Xueliang Zhu
- State Key Laboratory of Cell BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghai200031China
| | - Jun Zhou
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyHaihe Laboratory of Cell EcosystemCollege of Life SciencesShandong Normal UniversityJinan250014China
- Department of Genetics and Cell BiologyState Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjin300071China
| | - Min Liu
- Laboratory of Tissue HomeostasisHaihe Laboratory of Cell EcosystemTianjin300462China
| |
Collapse
|
29
|
Baur K, Şan Ş, Hölzl-Wenig G, Mandl C, Hellwig A, Ciccolini F. GDF15 controls primary cilia morphology and function thereby affecting progenitor proliferation. Life Sci Alliance 2024; 7:e202302384. [PMID: 38719753 PMCID: PMC11077589 DOI: 10.26508/lsa.202302384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
We recently reported that growth/differentiation factor 15 (GDF15) and its receptor GDNF family receptor alpha-like (GFRAL) are expressed in the periventricular germinal epithelium thereby regulating apical progenitor proliferation. However, the mechanisms are unknown. We now found GFRAL in primary cilia and altered cilia morphology upon GDF15 ablation. Mutant progenitors also displayed increased histone deacetylase 6 (Hdac6) and ciliary adenylate cyclase 3 (Adcy3) transcript levels. Consistently, microtubule acetylation, endogenous sonic hedgehog (SHH) activation and ciliary ADCY3 were all affected in this group. Application of exogenous GDF15 or pharmacological antagonists of either HDAC6 or ADCY3 similarly normalized ciliary morphology, proliferation and SHH signalling. Notably, Gdf15 ablation affected Hdac6 expression and cilia length only in the mutant periventricular niche, in concomitance with ciliary localization of GFRAL. In contrast, in the hippocampus, where GFRAL was not expressed in the cilium, progenitors displayed altered Adcy3 expression and SHH signalling, but Hdac6 expression, cilia morphology and ciliary ADCY3 levels remained unchanged. Thus, ciliary signalling underlies the effect of GDF15 on primary cilia elongation and proliferation in apical progenitors.
Collapse
Affiliation(s)
- Katja Baur
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Şeydanur Şan
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
- Sorbonne University, Paris, France
| | - Gabriele Hölzl-Wenig
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Claudia Mandl
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Andrea Hellwig
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Francesca Ciccolini
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
30
|
Lim YZ, Zhu M, Wang Y, Sharma T, Kelley S, Oertling E, Zhu H, Corbitt N. Pkd1l1-deficiency drives biliary atresia through ciliary dysfunction in biliary epithelial cells. J Hepatol 2024; 81:62-75. [PMID: 38460793 DOI: 10.1016/j.jhep.2024.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 02/07/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND & AIMS Syndromic biliary atresia is a cholangiopathy characterized by fibro-obliterative changes in the extrahepatic bile duct (EHBD) and congenital malformations including laterality defects. The etiology remains elusive and faithful animal models are lacking. Genetic syndromes provide important clues regarding the pathogenic mechanisms underlying the disease. We investigated the role of the gene Pkd1l1 in the pathophysiology of syndromic biliary atresia. METHODS Constitutive and conditional Pkd1l1 knockout mice were generated to explore genetic pathology as a cause of syndromic biliary atresia. We investigated congenital malformations, EHBD and liver pathology, EHBD gene expression, and biliary epithelial cell turnover. Biliary drainage was functionally assessed with cholangiography. Histology and serum chemistries were assessed after DDC (3,5-diethoxycarbony l-1,4-dihydrocollidine) diet treatment and inhibition of the ciliary signaling effector GLI1. RESULTS Pkd1l1-deficient mice exhibited congenital anomalies including malrotation and heterotaxy. Pkd1l1-deficient EHBDs were hypertrophic and fibrotic. Pkd1l1-deficient EHBDs were patent but displayed delayed biliary drainage. Pkd1l1-deficient livers exhibited ductular reaction and periportal fibrosis. After DDC treatment, Pkd1l1-deficient mice exhibited EHBD obstruction and advanced liver fibrosis. Pkd1l1-deficient mice had increased expression of fibrosis and extracellular matrix remodeling genes (Tgfα, Cdkn1a, Hb-egf, Fgfr3, Pdgfc, Mmp12, and Mmp15) and decreased expression of genes mediating ciliary signaling (Gli1, Gli2, Ptch1, and Ptch2). Primary cilia were reduced on biliary epithelial cells and altered expression of ciliogenesis genes occurred in Pkd1l1-deficient mice. Small molecule inhibition of the ciliary signaling effector GLI1 with Gant61 recapitulated Pkd1l1-deficiency. CONCLUSIONS Pkd1l1 loss causes both laterality defects and fibro-proliferative EHBD transformation through disrupted ciliary signaling, phenocopying syndromic biliary atresia. Pkd1l1-deficient mice function as an authentic genetic model for study of the pathogenesis of biliary atresia. IMPACT AND IMPLICATIONS The syndromic form of biliary atresia is characterized by fibro-obliteration of extrahepatic bile ducts and is often accompanied by laterality defects. The etiology is unknown, but Pkd1l1 was identified as a potential genetic candidate for syndromic biliary atresia. We found that loss of the ciliary gene Pkd1l1 contributes to hepatobiliary pathology in biliary atresia, exhibited by bile duct hypertrophy, reduced biliary drainage, and liver fibrosis in Pkd1l1-deficient mice. Pkd1l1-deficient mice serve as a genetic model of biliary atresia and reveal ciliopathy as an etiology of biliary atresia. This model will help scientists uncover new therapeutic approaches for patients with biliary atresia, while pediatric hepatologists should validate the diagnostic utility of PKD1L1 variants.
Collapse
Affiliation(s)
- Yi Zou Lim
- Children's Research Institute, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Min Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Simmons Comprehensive Cancer Center, Center for Regenerative Science and Medicine, Children's Research Institute Mouse Genome Engineering Core, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yunguan Wang
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | - Tripti Sharma
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Simmons Comprehensive Cancer Center, Center for Regenerative Science and Medicine, Children's Research Institute Mouse Genome Engineering Core, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shannon Kelley
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Estelle Oertling
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hao Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Simmons Comprehensive Cancer Center, Center for Regenerative Science and Medicine, Children's Research Institute Mouse Genome Engineering Core, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Natasha Corbitt
- Children's Research Institute, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA.
| |
Collapse
|
31
|
Reddy Palicharla V, Mukhopadhyay S. Molecular and structural perspectives on protein trafficking to the primary cilium membrane. Biochem Soc Trans 2024; 52:1473-1487. [PMID: 38864436 PMCID: PMC11346432 DOI: 10.1042/bst20231403] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/13/2024]
Abstract
The primary cilium is a dynamic subcellular compartment templated from the mother centriole or basal body. Cilia are solitary and tiny, but remarkably consequential in cellular pathways regulating proliferation, differentiation, and maintenance. Multiple transmembrane proteins such as G-protein-coupled receptors, channels, enzymes, and membrane-associated lipidated proteins are enriched in the ciliary membrane. The precise regulation of ciliary membrane content is essential for effective signal transduction and maintenance of tissue homeostasis. Surprisingly, a few conserved molecular factors, intraflagellar transport complex A and the tubby family adapter protein TULP3, mediate the transport of most membrane cargoes into cilia. Recent advances in cryogenic electron microscopy provide fundamental insights into these molecular players. Here, we review the molecular players mediating cargo delivery into the ciliary membrane through the lens of structural biology. These mechanistic insights into ciliary transport provide a framework for understanding of disease variants in ciliopathies, enable precise manipulation of cilia-mediated pathways, and provide a platform for the development of targeted therapeutics.
Collapse
Affiliation(s)
- Vivek Reddy Palicharla
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, U.S.A
| | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, U.S.A
| |
Collapse
|
32
|
Jurisch-Yaksi N, Wachten D, Gopalakrishnan J. The neuronal cilium - a highly diverse and dynamic organelle involved in sensory detection and neuromodulation. Trends Neurosci 2024; 47:383-394. [PMID: 38580512 DOI: 10.1016/j.tins.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 04/07/2024]
Abstract
Cilia are fascinating organelles that act as cellular antennae, sensing the cellular environment. Cilia gained significant attention in the late 1990s after their dysfunction was linked to genetic diseases known as ciliopathies. Since then, several breakthrough discoveries have uncovered the mechanisms underlying cilia biogenesis and function. Like most cells in the animal kingdom, neurons also harbor cilia, which are enriched in neuromodulatory receptors. Yet, how neuronal cilia modulate neuronal physiology and animal behavior remains poorly understood. By comparing ciliary biology between the sensory and central nervous systems (CNS), we provide new perspectives on the functions of cilia in brain physiology.
Collapse
Affiliation(s)
- Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine (IKOM), Faculty of Medicine and Health Science, Norwegian University of Science and Technology, Erling Skalgssons gate 1, 7491 Trondheim, Norway.
| | - Dagmar Wachten
- Department of Biophysical Imaging, Institute of Innate Immunity, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Jay Gopalakrishnan
- Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany; Institute for Human Genetics, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, 07740 Jena, Germany
| |
Collapse
|
33
|
Ni H, Li L, Hu D, Yang M, Wang D, Ma H, Bu W, Yang J, Zhu LE, Zhai D, Song T, Yang S, Lu Q, Li D, Ran J, Liu M. Dynamic changes of endothelial and stromal cilia are required for the maintenance of corneal homeostasis. J Cell Physiol 2024; 239:e31215. [PMID: 38308657 DOI: 10.1002/jcp.31215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Primary cilia are distributed extensively within the corneal epithelium and endothelium. However, the presence of cilia in the corneal stroma and the dynamic changes and roles of endothelial and stromal cilia in corneal homeostasis remain largely unknown. Here, we present compelling evidence for the presence of primary cilia in the corneal stroma, both in vivo and in vitro. We also demonstrate dynamic changes of both endothelial and stromal cilia during corneal development. In addition, our data show that cryoinjury triggers dramatic cilium formation in the corneal endothelium and stroma. Furthermore, depletion of cilia in mutant mice lacking intraflagellar transport protein 88 compromises the corneal endothelial capacity to establish the effective tissue barrier, leading to an upregulation of α-smooth muscle actin within the corneal stroma in response to cryoinjury. These observations underscore the essential involvement of corneal endothelial and stromal cilia in maintaining corneal homeostasis and provide an innovative strategy for the treatment of corneal injuries and diseases.
Collapse
Affiliation(s)
- Hua Ni
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
- College of Life and Geographic Sciences, Kashi University, Kashi, China
| | - Lamei Li
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Die Hu
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Mulin Yang
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Difei Wang
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Hongbo Ma
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Weiwen Bu
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jia Yang
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Li-E Zhu
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Denghui Zhai
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Ting Song
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Song Yang
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Quanlong Lu
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Dengwen Li
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jie Ran
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Min Liu
- Laboratory of Tissue Homeostasis, Haihe Laboratory of Cell Ecosystem, Tianjin, China
| |
Collapse
|
34
|
Mohd Rafiq N, Fujise K, Rosenfeld MS, Xu P, De Camilli P. Parkinsonism Sac domain mutation in Synaptojanin-1 affects ciliary properties in iPSC-derived dopaminergic neurons. Proc Natl Acad Sci U S A 2024; 121:e2318943121. [PMID: 38635628 PMCID: PMC11047088 DOI: 10.1073/pnas.2318943121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/04/2024] [Indexed: 04/20/2024] Open
Abstract
Synaptojanin-1 (SJ1) is a major neuronal-enriched PI(4, 5)P2 4- and 5-phosphatase implicated in the shedding of endocytic factors during endocytosis. A mutation (R258Q) that impairs selectively its 4-phosphatase activity causes Parkinsonism in humans and neurological defects in mice (SJ1RQKI mice). Studies of these mice showed, besides an abnormal assembly state of endocytic factors at synapses, the presence of dystrophic nerve terminals selectively in a subset of nigro-striatal dopamine (DA)-ergic axons, suggesting a special lability of DA neurons to the impairment of SJ1 function. Here we have further investigated the impact of SJ1 on DA neurons using iPSC-derived SJ1 KO and SJ1RQKI DA neurons and their isogenic controls. In addition to the expected enhanced clustering of endocytic factors in nerve terminals, we observed in both SJ1 mutant neuronal lines increased cilia length. Further analysis of cilia of SJ1RQDA neurons revealed abnormal accumulation of the Ca2+ channel Cav1.3 and of ubiquitin chains, suggesting a defect in the clearing of ubiquitinated proteins at the ciliary base, where a focal concentration of SJ1 was observed. We suggest that SJ1 may contribute to the control of ciliary protein dynamics in DA neurons, with implications on cilia-mediated signaling.
Collapse
Affiliation(s)
- Nisha Mohd Rafiq
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Department of Cell biology, Yale University School of Medicine, New Haven, CT06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT06510
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Kenshiro Fujise
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Department of Cell biology, Yale University School of Medicine, New Haven, CT06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT06510
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Martin Shaun Rosenfeld
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Department of Cell biology, Yale University School of Medicine, New Haven, CT06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT06510
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Peng Xu
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Department of Cell biology, Yale University School of Medicine, New Haven, CT06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT06510
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Pietro De Camilli
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Department of Cell biology, Yale University School of Medicine, New Haven, CT06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT06510
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| |
Collapse
|
35
|
Lin Z, Shen Y, Li Y, Lu C, Zhu Y, He R, Cao Z, Yin Z, Gao H, Guo B, Ma X, Cao M, Luo M. Novel compound heterozygous variants in ARL13B lead to Joubert syndrome. J Cell Physiol 2024; 239:e31189. [PMID: 38219074 DOI: 10.1002/jcp.31189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 01/15/2024]
Abstract
Joubert syndrome (JBTS) is a systematic developmental disorder mainly characterized by a pathognomonic mid-hindbrain malformation. All known JBTS-associated genes encode proteins involved in the function of antenna-like cellular organelle, primary cilium, which plays essential roles in cellular signal transduction and development. Here, we identified four unreported variants in ARL13B in two patients with the classical features of JBTS. ARL13B is a member of the Ras GTPase family and functions in ciliogenesis and cilia-related signaling. The two missense variants in ARL13B harbored the substitutions of amino acids at evolutionarily conserved positions. Using model cell lines, we found that the accumulations of the missense variants in cilia were impaired and the variants showed attenuated functions in ciliogenesis or the trafficking of INPP5E. Overall, these findings expanded the ARL13B pathogenetic variant spectrum of JBTS.
Collapse
Affiliation(s)
- Zaisheng Lin
- International Peace Maternity and Child Health Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Shen
- National Human Genetic Resources Center, National Research Institute for Family Planning, Beijing, China
| | - Yan Li
- International Peace Maternity and Child Health Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Lu
- National Human Genetic Resources Center, National Research Institute for Family Planning, Beijing, China
| | - Ying Zhu
- International Peace Maternity and Child Health Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruida He
- International Peace Maternity and Child Health Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zongfu Cao
- National Human Genetic Resources Center, National Research Institute for Family Planning, Beijing, China
| | - Zhe Yin
- National Human Genetic Resources Center, National Research Institute for Family Planning, Beijing, China
| | - Huafang Gao
- National Human Genetic Resources Center, National Research Institute for Family Planning, Beijing, China
| | - Bin Guo
- International Peace Maternity and Child Health Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Ma
- National Human Genetic Resources Center, National Research Institute for Family Planning, Beijing, China
| | - Muqing Cao
- International Peace Maternity and Child Health Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minna Luo
- National Human Genetic Resources Center, National Research Institute for Family Planning, Beijing, China
| |
Collapse
|
36
|
Schieweck R, Götz M. Pan-cellular organelles and suborganelles-from common functions to cellular diversity? Genes Dev 2024; 38:98-114. [PMID: 38485267 PMCID: PMC10982711 DOI: 10.1101/gad.351337.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Cell diversification is at the base of increasing multicellular organism complexity in phylogeny achieved during ontogeny. However, there are also functions common to all cells, such as cell division, cell migration, translation, endocytosis, exocytosis, etc. Here we revisit the organelles involved in such common functions, reviewing recent evidence of unexpected differences of proteins at these organelles. For instance, centrosomes or mitochondria differ significantly in their protein composition in different, sometimes closely related, cell types. This has relevance for development and disease. Particularly striking is the high amount and diversity of RNA-binding proteins at these and other organelles, which brings us to review the evidence for RNA at different organelles and suborganelles. We include a discussion about (sub)organelles involved in translation, such as the nucleolus and ribosomes, for which unexpected cell type-specific diversity has also been reported. We propose here that the heterogeneity of these organelles and compartments represents a novel mechanism for regulating cell diversity. One reason is that protein functions can be multiplied by their different contributions in distinct organelles, as also exemplified by proteins with moonlighting function. The specialized organelles still perform pan-cellular functions but in a cell type-specific mode, as discussed here for centrosomes, mitochondria, vesicles, and other organelles. These can serve as regulatory hubs for the storage and transport of specific and functionally important regulators. In this way, they can control cell differentiation, plasticity, and survival. We further include examples highlighting the relevance for disease and propose to examine organelles in many more cell types for their possible differences with functional relevance.
Collapse
Affiliation(s)
- Rico Schieweck
- Institute of Biophysics, National Research Council (CNR) Unit at Trento, 38123 Povo, Italy;
- Biomedical Center (BMC), Department of Physiological Genomics, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany
| | - Magdalena Götz
- Biomedical Center (BMC), Department of Physiological Genomics, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany;
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, 82152 Planegg-Martinsried, Germany
- SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
37
|
Hunter MI, Thies KM, Winuthayanon W. Hormonal regulation of cilia in the female reproductive tract. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2024; 34:100503. [PMID: 38293616 PMCID: PMC10824531 DOI: 10.1016/j.coemr.2024.100503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
This review intends to bridge the gap between our knowledge of steroid hormone regulation of motile cilia and the potential involvement of the primary cilium focusing on the female reproductive tract functions. The review emphasizes hormonal regulation of the motile and primary cilia in the oviduct and uterus. Steroid hormones including estrogen, progesterone, and testosterone act through their cognate receptors to regulate the development and biological function of the reproductive tracts. These hormones modulate motile ciliary beating and, in some cases, primary cilia function. Dysfunction of motile or primary cilia due to genetic anomalies, hormone imbalances, or loss of steroid hormone receptors impairs mammalian fertility. However, further research on hormone modulation of ciliary function, especially in the primary cilium, and its signaling cascades will provide insights into the pathogenesis of mammalian infertility and the development of contraceptives or infertility treatments targeting primary and/or motile cilia.
Collapse
Affiliation(s)
- Mark I. Hunter
- OB/GYN & Women’s Health Department, School of Medicine, University of Missouri – Columbia, Columbia, MO, 65211, United States
| | - Karen M. Thies
- OB/GYN & Women’s Health Department, School of Medicine, University of Missouri – Columbia, Columbia, MO, 65211, United States
| | - Wipawee Winuthayanon
- OB/GYN & Women’s Health Department, School of Medicine, University of Missouri – Columbia, Columbia, MO, 65211, United States
| |
Collapse
|
38
|
Fitzsimons LA, Tasouri E, Willaredt MA, Stetson D, Gojak C, Kirsch J, Gardner HAR, Gorgas K, Tucker KL. Primary cilia are critical for tracheoesophageal septation. Dev Dyn 2024; 253:312-332. [PMID: 37776236 PMCID: PMC10922539 DOI: 10.1002/dvdy.660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/14/2023] [Accepted: 09/09/2023] [Indexed: 10/02/2023] Open
Abstract
INTRODUCTION Primary cilia play pivotal roles in the patterning and morphogenesis of a wide variety of organs during mammalian development. Here we examined murine foregut septation in the cobblestone mutant, a hypomorphic allele of the gene encoding the intraflagellar transport protein IFT88, a protein essential for normal cilia function. RESULTS We reveal a crucial role for primary cilia in foregut division, since their dramatic decrease in cilia in both the foregut endoderm and mesenchyme of mutant embryos resulted in a proximal tracheoesophageal septation defects and in the formation of distal tracheo(broncho)esophageal fistulae similar to the most common congenital tracheoesophageal malformations in humans. Interestingly, the dorsoventral patterning determining the dorsal digestive and the ventral respiratory endoderm remained intact, whereas Hedgehog signaling was aberrantly activated. CONCLUSIONS Our results demonstrate the cobblestone mutant to represent one of the very few mouse models that display both correct endodermal dorsoventral specification but defective compartmentalization of the proximal foregut. It stands exemplary for a tracheoesophageal ciliopathy, offering the possibility to elucidate the molecular mechanisms how primary cilia orchestrate the septation process. The plethora of malformations observed in the cobblestone embryo allow for a deeper insight into a putative link between primary cilia and human VATER/VACTERL syndromes.
Collapse
Affiliation(s)
- Lindsey Avery Fitzsimons
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, U.S.A
- Dept. of Biomedical Sciences, Center for Excellence in the Neurosciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005, U.S.A
| | - Evangelia Tasouri
- Interdisciplinary Center for Neurosciences, University of Heidelberg, 69120 Heidelberg, Germany
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Marc August Willaredt
- Interdisciplinary Center for Neurosciences, University of Heidelberg, 69120 Heidelberg, Germany
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Daniel Stetson
- AstraZeneca Pharmaceuticals LP, 35 Gatehouse Drive, Waltham, Massachusetts 02451, U.S.A
| | - Christian Gojak
- Interdisciplinary Center for Neurosciences, University of Heidelberg, 69120 Heidelberg, Germany
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Joachim Kirsch
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | | | - Karin Gorgas
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Kerry L. Tucker
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, U.S.A
- Dept. of Biomedical Sciences, Center for Excellence in the Neurosciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005, U.S.A
| |
Collapse
|
39
|
Righini M, Mancini R, Busutti M, Buscaroli A. Autosomal Dominant Polycystic Kidney Disease: Extrarenal Involvement. Int J Mol Sci 2024; 25:2554. [PMID: 38473800 DOI: 10.3390/ijms25052554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disorder, but kidneys are not the only organs involved in this systemic disorder. Individuals with the condition may display additional manifestations beyond the renal system, involving the liver, pancreas, and brain in the context of cystic manifestations, while involving the vascular system, gastrointestinal tract, bones, and cardiac valves in the context of non-cystic manifestations. Despite kidney involvement remaining the main feature of the disease, thanks to longer survival, early diagnosis, and better management of kidney-related problems, a new wave of complications must be faced by clinicians who treated patients with ADPKD. Involvement of the liver represents the most prevalent extrarenal manifestation and has growing importance in the symptom burden and quality of life. Vascular abnormalities are a key factor for patients' life expectancy and there is still debate whether to screen or not to screen all patients. Arterial hypertension is often the earliest onset symptom among ADPKD patients, leading to frequent cardiovascular complications. Although cardiac valvular abnormalities are a frequent complication, they rarely lead to relevant problems in the clinical history of polycystic patients. One of the newest relevant aspects concerns bone disorders that can exert a considerable influence on the clinical course of these patients. This review aims to provide the "state of the art" among the extrarenal manifestation of ADPKD.
Collapse
Affiliation(s)
- Matteo Righini
- Nephrology and Dialysis Unit, Santa Maria delle Croci Hospital, AUSL Romagna, 48121 Ravenna, Italy
- Nephrology, Dialysis and Transplantation Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Raul Mancini
- Nephrology, Dialysis and Transplantation Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Marco Busutti
- Nephrology, Dialysis and Transplantation Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Andrea Buscaroli
- Nephrology and Dialysis Unit, Santa Maria delle Croci Hospital, AUSL Romagna, 48121 Ravenna, Italy
| |
Collapse
|
40
|
Tran MV, Khuntsariya D, Fetter RD, Ferguson JW, Wang JT, Long AF, Cote LE, Wellard SR, Vázquez-Martínez N, Sallee MD, Genova M, Magiera MM, Eskinazi S, Lee JD, Peel N, Janke C, Stearns T, Shen K, Lansky Z, Magescas J, Feldman JL. MAP9/MAPH-9 supports axonemal microtubule doublets and modulates motor movement. Dev Cell 2024; 59:199-210.e11. [PMID: 38159567 PMCID: PMC11385174 DOI: 10.1016/j.devcel.2023.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/15/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
Microtubule doublets (MTDs) comprise an incomplete microtubule (B-tubule) attached to the side of a complete cylindrical microtubule. These compound microtubules are conserved in cilia across the tree of life; however, the mechanisms by which MTDs form and are maintained in vivo remain poorly understood. Here, we identify microtubule-associated protein 9 (MAP9) as an MTD-associated protein. We demonstrate that C. elegans MAPH-9, a MAP9 homolog, is present during MTD assembly and localizes exclusively to MTDs, a preference that is in part mediated by tubulin polyglutamylation. We find that loss of MAPH-9 causes ultrastructural MTD defects, including shortened and/or squashed B-tubules with reduced numbers of protofilaments, dysregulated axonemal motor velocity, and perturbed cilia function. Because we find that the mammalian ortholog MAP9 localizes to axonemes in cultured mammalian cells and mouse tissues, we propose that MAP9/MAPH-9 plays a conserved role in regulating ciliary motors and supporting the structure of axonemal MTDs.
Collapse
Affiliation(s)
- Michael V Tran
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Daria Khuntsariya
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, 25250 Vestec, Prague West, Czech Republic
| | - Richard D Fetter
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - James W Ferguson
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jennifer T Wang
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Alexandra F Long
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Lauren E Cote
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | | | - Maria D Sallee
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Mariya Genova
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France; Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Maria M Magiera
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France; Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Sani Eskinazi
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Nina Peel
- The College of New Jersey, Ewing, NJ 08628, USA
| | - Carsten Janke
- Institut Curie, Université PSL, CNRS UMR3348, Orsay, France; Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Tim Stearns
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kang Shen
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Zdenek Lansky
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, 25250 Vestec, Prague West, Czech Republic
| | - Jérémy Magescas
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Jessica L Feldman
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
41
|
Lee C, Yi J, Park J, Ahn B, Won YW, Jeon J, Lee BJ, Cho WJ, Park JW. Hedgehog signalling is involved in acquired resistance to KRAS G12C inhibitors in lung cancer cells. Cell Death Dis 2024; 15:56. [PMID: 38225225 PMCID: PMC10789740 DOI: 10.1038/s41419-024-06436-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/17/2024]
Abstract
Although KRASG12C inhibitors have shown promising activity in lung adenocarcinomas harbouring KRASG12C, acquired resistance to these therapies eventually occurs in most patients. Re-expression of KRAS is thought to be one of the main causes of acquired resistance. However, the mechanism through which cancer cells re-express KRAS is not fully understood. Here, we report that the Hedgehog signal is induced by KRASG12C inhibitors and mediates KRAS re-expression in cancer cells treated with a KRASG12C inhibitor. Further, KRASG12C inhibitors induced the formation of primary cilia and activated the Hedgehog-GLI-1 pathway. GLI-1 binds to the KRAS promoter region, enhancing KRAS promoter activity and KRAS expression. Inhibition of GLI using siRNA or the smoothened (Smo) inhibitor suppressed re-expression of KRAS in cells treated with a KRASG12C inhibitor. In addition, we demonstrate that KRASG12C inhibitors decreased Aurora kinase A (AURKA) levels in cancer cells, and inhibition of AURKA using siRNA or inhibitors led to increased expression levels of GLI-1 and KRAS even in the absence of KRAS inhibitor. Ectopic expression of AURKA attenuated the effect of KRASG12C inhibitors on the expression of GLI-1 and re-expression of KRAS. Together, these findings demonstrate the important role of AURKA, primary cilia, and Hedgehog signals in the re-expression of KRAS and therefore the induction of acquired resistance to KRASG12C inhibitors, and provide a rationale for targeting Hedgehog signalling to overcome acquired resistance to KRASG12C inhibitors.
Collapse
Affiliation(s)
- Chaeyoung Lee
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Jawoon Yi
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Byungyong Ahn
- Department of Food Science and Nutrition, University of Ulsan, Ulsan, Korea
- Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan, Korea
| | - Young-Wook Won
- Department of Biomedical Engineering, University of North Texas, Texas, USA
- RopheLBio, B102, Seoul Forest M Tower, Seoul, Korea
| | - JiHeung Jeon
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Byung Ju Lee
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
- Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan, Korea
| | - Wha Ja Cho
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea.
| | - Jeong Woo Park
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea.
- Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan, Korea.
| |
Collapse
|
42
|
Kuhns S, Juhl AD, Anvarian Z, Wüstner D, Pedersen LB, Andersen JS. Endogenous Tagging of Ciliary Genes in Human RPE1 Cells for Live-Cell Imaging. Methods Mol Biol 2024; 2725:147-166. [PMID: 37856023 DOI: 10.1007/978-1-0716-3507-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
CRISPR-mediated endogenous tagging of genes provides unique possibilities to explore the function and dynamic subcellular localization of proteins in living cells. Here, we describe experimental strategies for endogenous PCR-tagging of ciliary genes in human RPE1 cells and how image acquisition and analysis of the expressed fluorescently tagged proteins can be utilized to study the dynamic ciliary processes of intraflagellar transport and vesicular trafficking.
Collapse
Affiliation(s)
- Stefanie Kuhns
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Alice Dupont Juhl
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Zeinab Anvarian
- Department of Biology, University of Copenhagen, Copenhagen Ø, Denmark
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Lotte B Pedersen
- Department of Biology, University of Copenhagen, Copenhagen Ø, Denmark
| | - Jens S Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark.
| |
Collapse
|
43
|
Bear RM, Caspary T. Uncovering cilia function in glial development. Ann Hum Genet 2024; 88:27-44. [PMID: 37427745 PMCID: PMC10776815 DOI: 10.1111/ahg.12519] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/11/2023]
Abstract
Primary cilia play critical roles in regulating signaling pathways that underlie several developmental processes. In the nervous system, cilia are known to regulate signals that guide neuron development. Cilia dysregulation is implicated in neurological diseases, and the underlying mechanisms remain poorly understood. Cilia research has predominantly focused on neurons and has overlooked the diverse population of glial cells in the brain. Glial cells play essential roles during neurodevelopment, and their dysfunction contributes to neurological disease; however, the relationship between cilia function and glial development is understudied. Here we review the state of the field and highlight the glial cell types where cilia are found and the ciliary functions that are linked to glial development. This work uncovers the importance of cilia in glial development and raises outstanding questions for the field. We are poised to make progress in understanding the function of glial cilia in human development and their contribution to neurological diseases.
Collapse
Affiliation(s)
- Rachel M. Bear
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta GA 30322
- Graduate Program in Neuroscience
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta GA 30322
| |
Collapse
|
44
|
Sewell MT, Legué E, Liem KF. Tubb4b is required for multi-ciliogenesis in the mouse. Development 2024; 151:dev201819. [PMID: 38031972 PMCID: PMC10820790 DOI: 10.1242/dev.201819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
Cilia are microtubule (MT)-based organelles present on the surface of nearly all vertebrate cells. MTs are polymers of α- and β-tubulins that are each encoded by multiple, individual isotype genes. Tubulin isotype composition is thought to influence MT behaviors. Ciliary MTs differ from other MTs in the cell in terms of organization, stability and post-translational modifications. However, little is known about the tubulin isotypes that build ciliary MTs and the functional requirements for tubulin isotypes in cilia have not been examined in vertebrates. Here, we have tested the role of the β-tubulin isotype genes in the mouse that harbor a conserved amino acid motif associated with ciliated organisms. We found that Tubb4b localizes to cilia in multi-ciliated cells (MCCs) specifically. In respiratory and oviduct MCCs, Tubb4b is asymmetrically localized within multi-cilia, indicating that the tubulin isotype composition changes along the length of the ciliary axonemal MTs. Deletion of Tubb4b resulted in striking structural defects within the axonemes of multi-cilia, without affecting primary cilia. These studies show that Tubb4b is essential for the formation of a specific MT-based subcellular organelle and sheds light on the requirements of tubulin isotypes in cilia.
Collapse
Affiliation(s)
- Mycah T. Sewell
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Emilie Legué
- Vertebrate Developmental Biology Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Karel F. Liem
- Vertebrate Developmental Biology Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
45
|
Kong D, Luvsanjav D, Loncarek J. Immunolabel-First-Expand-Later Expansion Microscopy Approach Using Stable STED Dyes. Methods Mol Biol 2024; 2725:89-101. [PMID: 37856019 DOI: 10.1007/978-1-0716-3507-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Multiple expansion microscopy approaches have been successfully used in the analysis of centrioles, centrosomes, and cilia, helping to reveal the localization of numerous centrosomal and ciliary proteins at nanoscale resolution. In this chapter, we describe the use of two stable STED dyes in combination with expansion microscopy, which allows the robust detection by conventional and STED microscopy of proteins immunolabeled prior to sample expansion. We demonstrate the stability of these dyes during the crosslinking, polymerization, and denaturation steps of an expansion protocol thereby allowing their use in an immunolabel-first-expand-later approach. Our protocol overcomes the frequent technical limitation of poor, unreproducible binding of primary antibodies to proteins after denaturation. We demonstrate the applicability of this approach by analyzing both a centriole appendage protein Cep164 and a ciliary protein ARL13B.
Collapse
Affiliation(s)
- Dong Kong
- Cancer Innovation Laboratory, NIH/NCI/CCR, Frederick, MD, USA
| | | | | |
Collapse
|
46
|
Deguchi H, Tanioka H, Watanabe M, Horiuchi N, Fukuoka H, Hieda O, Inatomi T, Kinoshita S, Sotozono C. Identification and Analysis of Primary Cilia in the Corneal Endothelial Cells of Patients with Bullous Keratopathy. Curr Eye Res 2024; 49:10-15. [PMID: 37706487 DOI: 10.1080/02713683.2023.2259633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/03/2023] [Accepted: 09/11/2023] [Indexed: 09/15/2023]
Abstract
PURPOSE To identify primary cilia in human corneal endothelial cells (CECs) obtained from patients with bullous keratopathy (BK). METHODS This study involved CEC specimens obtained from 10 eyes of 10 consecutive patients (three males and seven females; mean age: 74.5 years, range: 68-90 years) with BK who underwent Descemet's stripping automated endothelial keratoplasty at Baptist Eye Institute, Kyoto, Japan between August 2019 and September 2020. Three corneal buttons obtained from 3 patients who underwent penetrating keratoplasty for keratoconus were used as 'non-BK' controls. All specimens were evaluated with immunofluorescence staining using an antibody against acetylated α-tubulin. RESULTS Ciliary expression was observed in six of the 10 CEC specimens; i.e. in two specimens obtained from BK patients after glaucoma surgery (trabeculectomy), in two specimens obtained from patients with Fuchs endothelial corneal dystrophy, and in two specimens obtained from a patient with BK after laser iridotomy for primary angle closure. There was acetylated α-tubulin staining but no hair-like structures in two specimens, and ciliary expression was unknown in two specimens due to the absence of cells. The length of the primary cilia varied between all specimens. In contrast, no primary cilia were observed in the corneal buttons obtained from the three keratoconus patients. CONCLUSION The findings in this study clearly demonstrate the expression of primary cilia in the CECs of patients afflicted with BK.
Collapse
Affiliation(s)
- Hideto Deguchi
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hidetoshi Tanioka
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mako Watanabe
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Baptist Eye Institute, Kyoto, Japan
| | - Noriko Horiuchi
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hideki Fukuoka
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Osamu Hieda
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tsutomu Inatomi
- Department of Ophthalmology, National Center for Geriatrics and Gerontology, Obu City, Japan
| | - Shigeru Kinoshita
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Chie Sotozono
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
47
|
Fitzsimons LA, Staurengo-Ferrari L, Bogen O, Araldi D, Bonet IJM, Jordan EE, Levine JD, Tucker KL. The Primary Cilium and its Hedgehog Signaling in Nociceptors Contribute to Inflammatory and Neuropathic Pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.27.573420. [PMID: 38234719 PMCID: PMC10793418 DOI: 10.1101/2023.12.27.573420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The primary cilium, a 1-3 μm long hair-like structure protruding from the surface of almost all cells in the vertebrate body, is critical for neuronal development and also functions in the adult. As the migratory neural crest settles into dorsal root ganglia (DRG) sensory neurons elaborate a single primary cilium at their soma that is maintained into adult stages. While it is not known if primary cilia are expressed in nociceptors, or their potential function in the mature DRG neuron, recent studies have shown a role for Hedgehog, whose signaling demonstrates a dependence on primary cilia, in nociceptor sensitization. Here we report the expression of primary cilia in rat and mouse nociceptors, where they modulate mechanical nociceptive threshold, and contribute to inflammatory and neuropathic pain. When siRNA targeting Ift88 , a primary cilium-specific intra-flagellar transport (IFT) protein required for ciliary integrity, was administered by intrathecal injection, in the rat, it resulted in loss of Ift88 mRNA in DRG, and primary cilia in neuronal cell bodies, which was associated with an increase in mechanical nociceptive threshold, and abrogation of hyperalgesia induced by the pronociceptive inflammatory mediator, prostaglandin E 2 , and painful peripheral neuropathy induced by a neurotoxic chemotherapy drug, paclitaxel. To provide further support for the role of the primary cilium in nociceptor function we also administered siRNA for another IFT protein, Ift 52. Ift 52 siRNA results in loss of Ift 52 in DRG and abrogates paclitaxel-induced painful peripheral neuropathy. Attenuation of Hedgehog-induced hyperalgesia by Ift88 knockdown supports a role for the primary cilium in the hyperalgesia induced by Hedgehog, and attenuation of paclitaxel chemotherapy-induced neuropathy (CIPN) by cyclopamine, which attenuates Hedgehog signaling, suggests a role of Hedgehog in CIPN. Our findings support a role of nociceptor primary cilia in the control of mechanical nociceptive threshold and in inflammatory and neuropathic pain, the latter, at least in part, Hedgehog dependent.
Collapse
|
48
|
Ott CM, Constable S, Nguyen TM, White K, Lee WCA, Lippincott-Schwartz J, Mukhopadhyay S. Permanent deconstruction of intracellular primary cilia in differentiating granule cell neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.565988. [PMID: 38106104 PMCID: PMC10723395 DOI: 10.1101/2023.12.07.565988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Primary cilia on granule cell neuron progenitors in the developing cerebellum detect sonic hedgehog to facilitate proliferation. Following differentiation, cerebellar granule cells become the most abundant neuronal cell type in the brain. While essential during early developmental stages, the fate of granule cell cilia is unknown. Here, we provide nanoscopic resolution of ciliary dynamics in situ by studying developmental changes in granule cell cilia using large-scale electron microscopy volumes and immunostaining of mouse cerebella. We found that many granule cell primary cilia were intracellular and concealed from the external environment. Cilia were disassembed in differentiating granule cell neurons in a process we call cilia deconstruction that was distinct from pre-mitotic cilia resorption in proliferating progenitors. In differentiating granule cells, ciliary loss involved unique disassembly intermediates, and, as maturation progressed, mother centriolar docking at the plasma membrane. Cilia did not reform from the docked centrioles, rather, in adult mice granule cell neurons remained unciliated. Many neurons in other brain regions require cilia to regulate function and connectivity. In contrast, our results show that granule cell progenitors had concealed cilia that underwent deconstruction potentially to prevent mitogenic hedgehog responsiveness. The ciliary deconstruction mechanism we describe could be paradigmatic of cilia removal during differentiation in other tissues.
Collapse
Affiliation(s)
- Carolyn M. Ott
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Sandii Constable
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tri M. Nguyen
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Current affiliation, Zetta AI LLC, USA
| | - Kevin White
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wei-Chung Allen Lee
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
49
|
Dubaic M, Peskova L, Hampl M, Weissova K, Celiker C, Shylo NA, Hruba E, Kavkova M, Zikmund T, Weatherbee SD, Kaiser J, Barta T, Buchtova M. Role of ciliopathy protein TMEM107 in eye development: insights from a mouse model and retinal organoid. Life Sci Alliance 2023; 6:e202302073. [PMID: 37863656 PMCID: PMC10589122 DOI: 10.26508/lsa.202302073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/22/2023] Open
Abstract
Primary cilia are cellular surface projections enriched in receptors and signaling molecules, acting as signaling hubs that respond to stimuli. Malfunctions in primary cilia have been linked to human diseases, including retinopathies and ocular defects. Here, we focus on TMEM107, a protein localized to the transition zone of primary cilia. TMEM107 mutations were found in patients with Joubert and Meckel-Gruber syndromes. A mouse model lacking Tmem107 exhibited eye defects such as anophthalmia and microphthalmia, affecting retina differentiation. Tmem107 expression during prenatal mouse development correlated with phenotype occurrence, with enhanced expression in differentiating retina and optic stalk. TMEM107 deficiency in retinal organoids resulted in the loss of primary cilia, down-regulation of retina-specific genes, and cyst formation. Knocking out TMEM107 in human ARPE-19 cells prevented primary cilia formation and impaired response to Smoothened agonist treatment because of ectopic activation of the SHH pathway. Our data suggest TMEM107 plays a crucial role in early vertebrate eye development and ciliogenesis in the differentiating retina.
Collapse
Affiliation(s)
- Marija Dubaic
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lucie Peskova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marek Hampl
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Kamila Weissova
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Canan Celiker
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Natalia A Shylo
- Department of Genetics, Yale University, School of Medicine, New Haven, CT, USA
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Eva Hruba
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Michaela Kavkova
- CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Tomas Zikmund
- CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Scott D Weatherbee
- Department of Genetics, Yale University, School of Medicine, New Haven, CT, USA
- Biology Department, Fairfield University, Fairfield, CT, USA
| | - Jozef Kaiser
- CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Tomas Barta
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marcela Buchtova
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
50
|
Serres MP, Shaughnessy R, Escot S, Hammich H, Cuvelier F, Salles A, Rocancourt M, Verdon Q, Gaffuri AL, Sourigues Y, Malherbe G, Velikovsky L, Chardon F, Sassoon N, Tinevez JY, Callebaut I, Formstecher E, Houdusse A, David NB, Pylypenko O, Echard A. MiniBAR/GARRE1 is a dual Rac and Rab effector required for ciliogenesis. Dev Cell 2023; 58:2477-2494.e8. [PMID: 37875118 DOI: 10.1016/j.devcel.2023.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/07/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023]
Abstract
Cilia protrude from the cell surface and play critical roles in intracellular signaling, environmental sensing, and development. Reduced actin-dependent contractility and intracellular trafficking are both required for ciliogenesis, but little is known about how these processes are coordinated. Here, we identified a Rac1- and Rab35-binding protein with a truncated BAR (Bin/amphiphysin/Rvs) domain that we named MiniBAR (also known as KIAA0355/GARRE1), which plays a key role in ciliogenesis. MiniBAR colocalizes with Rac1 and Rab35 at the plasma membrane and on intracellular vesicles trafficking to the ciliary base and exhibits fast pulses at the ciliary membrane. MiniBAR depletion leads to short cilia, resulting from abnormal Rac-GTP/Rho-GTP levels and increased acto-myosin-II-dependent contractility together with defective trafficking of IFT88 and ARL13B into cilia. MiniBAR-depleted zebrafish embryos display dysfunctional short cilia and hallmarks of ciliopathies, including left-right asymmetry defects. Thus, MiniBAR is a dual Rac and Rab effector that controls both actin cytoskeleton and membrane trafficking for ciliogenesis.
Collapse
Affiliation(s)
- Murielle P Serres
- Institut Pasteur, Université de Paris, CNRS UMR3691, Membrane Traffic and Cell Division Laboratory, 25-28 rue du Dr Roux, 75015 Paris, France
| | - Ronan Shaughnessy
- Institut Pasteur, Université de Paris, CNRS UMR3691, Membrane Traffic and Cell Division Laboratory, 25-28 rue du Dr Roux, 75015 Paris, France
| | - Sophie Escot
- Laboratoire d'Optique et Biosciences (LOB), CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Hussein Hammich
- Institut Curie, PSL Research University, CNRS UMR144, Structural Motility, 26 rue d'Ulm, 75005 Paris, France
| | - Frédérique Cuvelier
- Institut Pasteur, Université de Paris, CNRS UMR3691, Membrane Traffic and Cell Division Laboratory, 25-28 rue du Dr Roux, 75015 Paris, France
| | - Audrey Salles
- Institut Pasteur, Université de Paris, UTechS Photonic BioImaging (UTechS PBI), Centre de Recherche et de Ressources Technologiques C2RT, 25-28 rue du Dr Roux, 75015 Paris, France
| | - Murielle Rocancourt
- Institut Pasteur, Université de Paris, CNRS UMR3691, Membrane Traffic and Cell Division Laboratory, 25-28 rue du Dr Roux, 75015 Paris, France
| | - Quentin Verdon
- Institut Pasteur, Université de Paris, CNRS UMR3691, Membrane Traffic and Cell Division Laboratory, 25-28 rue du Dr Roux, 75015 Paris, France
| | - Anne-Lise Gaffuri
- Institut Pasteur, Université de Paris, CNRS UMR3691, Membrane Traffic and Cell Division Laboratory, 25-28 rue du Dr Roux, 75015 Paris, France
| | - Yannick Sourigues
- Institut Curie, PSL Research University, CNRS UMR144, Structural Motility, 26 rue d'Ulm, 75005 Paris, France
| | - Gilles Malherbe
- Institut Curie, PSL Research University, CNRS UMR144, Structural Motility, 26 rue d'Ulm, 75005 Paris, France
| | - Leonid Velikovsky
- Institut Curie, PSL Research University, CNRS UMR144, Structural Motility, 26 rue d'Ulm, 75005 Paris, France
| | - Florian Chardon
- Institut Curie, PSL Research University, CNRS UMR144, Structural Motility, 26 rue d'Ulm, 75005 Paris, France
| | - Nathalie Sassoon
- Institut Pasteur, Université de Paris, CNRS UMR3691, Membrane Traffic and Cell Division Laboratory, 25-28 rue du Dr Roux, 75015 Paris, France
| | - Jean-Yves Tinevez
- Institut Pasteur, Université de Paris, Image Analysis Hub, 25-28 rue du Dr Roux, 75015 Paris, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Etienne Formstecher
- Hybrigenics Services SAS, 1 rue Pierre Fontaine 91000 Evry, Courcouronnes, France
| | - Anne Houdusse
- Institut Curie, PSL Research University, CNRS UMR144, Structural Motility, 26 rue d'Ulm, 75005 Paris, France
| | - Nicolas B David
- Laboratoire d'Optique et Biosciences (LOB), CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Olena Pylypenko
- Institut Curie, PSL Research University, CNRS UMR144, Structural Motility, 26 rue d'Ulm, 75005 Paris, France
| | - Arnaud Echard
- Institut Pasteur, Université de Paris, CNRS UMR3691, Membrane Traffic and Cell Division Laboratory, 25-28 rue du Dr Roux, 75015 Paris, France.
| |
Collapse
|