1
|
Wu X, Guan X, Cheng C, Deng Z, Li Z, Ma Y, Xie Y, Zheng Q. Activation of the MEK1-CHK2 axis in macrophages by Staphylococcus aureus promotes mitophagy, resulting in a reduction in bactericidal efficacy. Mol Med 2025; 31:211. [PMID: 40437411 PMCID: PMC12121099 DOI: 10.1186/s10020-025-01274-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Accepted: 05/20/2025] [Indexed: 06/01/2025] Open
Abstract
BACKGROUND Macrophages, which serve as the frontline defenders against microbial invasion, paradoxically become accomplices in Staphylococcus aureus (S. aureus)-driven osteomyelitis pathogenesis through poorly defined immunosuppressive mechanisms. METHODS In this study, we established an S. aureus implant-associated femoral infection model treated with MEK1 inhibitors and evaluated the degree of bone destruction and the bacterial load. We subsequently investigated changes in mitochondrial ROS (mtROS) levels, mitophagy activity, phagocytic-killing ability, and CHEK2 mitochondrial translocation in S. aureus-activated bone marrow-derived macrophages (BMDMs) following MEK1 inhibitor treatment. Finally, in vivo experiments involving different inhibitor combinations were conducted to assess mitophagy levels and the therapeutic potential for treating osteomyelitis. RESULTS Pharmacological inhibition of MEK1 significantly attenuated bone degradation and the pathogen burden in murine models of osteomyelitis, indicating its therapeutic potential. Investigations using BMDMs revealed that blockade of the MEK1-ERK1/2 axis increases mtROS levels by suppressing mitophagy, directly linking metabolic reprogramming to increased bactericidal activity. Mechanistically, inactivation of the MEK1-ERK1/2 pathway restores CHEK2 expression, facilitating its translocation from the nucleus to mitochondria to restore mtROS levels by inhibiting mitophagy. Importantly, in vivo studies confirmed that the MEK1-ERK1/2-CHEK2 axis is pivotal for controlling mitophagy-dependent bone pathology and bacterial persistence during S. aureus infection. CONCLUSIONS We identified a self-amplifying pathogenic loop in which S. aureus exploits macrophage MEK1 to hyperactivate ERK1/2, leading to the suppression of CHEK2 expression. This process results in excessive mitophagy and decreased mtROS levels, which impair the bactericidal function and enable uncontrolled osteolytic destruction. These findings redefine MEK1 as a metabolic-immune checkpoint and highlight its druggable vulnerability in osteomyelitis.
Collapse
Affiliation(s)
- Xiaohu Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Xin Guan
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chubin Cheng
- The Second People's Hospital of Shenzhen City (the First Affiliated Hospital of Shenzhen University), Shenzhen, 518000, China
| | - Zhantao Deng
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Zeng Li
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yuanchen Ma
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yanjie Xie
- Department of Health Management Center, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Qiujian Zheng
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| |
Collapse
|
2
|
Sasikumar DSN, Thiruselvam P, Sundararajan V, Ravindran R, Gunasekaran S, Madathil D, Kaliamurthi S, Peslherbe GH, Selvaraj G, Sudhakaran SL. Insights into dietary phytochemicals targeting Parkinson's disease key genes and pathways: A network pharmacology approach. Comput Biol Med 2024; 172:108195. [PMID: 38460310 DOI: 10.1016/j.compbiomed.2024.108195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/26/2024] [Accepted: 02/18/2024] [Indexed: 03/11/2024]
Abstract
Parkinson's disease (PD) is a complex neurological disease associated with the degeneration of dopaminergic neurons. Oxidative stress is a key player in instigating apoptosis in dopaminergic neurons. To improve the survival of neurons many dietary phytochemicals have gathered significant attention recently. Thus, the present study implements a comprehensive network pharmacology approach to unravel the mechanisms of action of dietary phytochemicals that benefit disease management. A literature search was performed to identify ligands (i.e., comprising dietary phytochemicals and Food and Drug Administration pre-approved PD drugs) in the PubMed database. Targets associated with selected ligands were extracted from the search tool for interactions of chemicals (STITCH) database. Then, the construction of a gene-gene interaction (GGI) network, analysis of hub-gene, functional and pathway enrichment, associated transcription factors, miRNAs, ligand-target interaction network, docking were performed using various bioinformatics tools together with molecular dynamics (MD) simulations. The database search resulted in 69 ligands and 144 unique targets. GGI and subsequent topological measures indicate histone acetyltransferase p300 (EP300), mitogen-activated protein kinase 1 (MAPK1) or extracellular signal-regulated kinase (ERK)2, and CREB-binding protein (CREBBP) as hub genes. Neurodegeneration, MAPK signaling, apoptosis, and zinc binding are key pathways and gene ontology terms. hsa-miR-5692a and SCNA gene-associated transcription factors interact with all the 3 hub genes. Ligand-target interaction (LTI) network analysis suggest rasagiline and baicalein as candidate ligands targeting MAPK1. Rasagiline and baicalein form stable complexes with the Y205, K330, and V173 residues of MAPK1. Computational molecular insights suggest that baicalein and rasagiline are promising preclinical candidates for PD management.
Collapse
Affiliation(s)
- Devi Soorya Narayana Sasikumar
- Integrative Multiomics Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632014, India
| | - Premkumar Thiruselvam
- Integrative Multiomics Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632014, India
| | - Vino Sundararajan
- Integrative Multiomics Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632014, India
| | - Radhika Ravindran
- Department of Biotechnology, Indian Institute of Technology (Madras), Chennai, TN, 600036, India
| | - Shoba Gunasekaran
- Department of Biotechnology, Dwaraka Doss Goverdhan Doss Vaishnav College, Chennai, TN, 600106, India
| | - Deepa Madathil
- Jindal Institute of Behavioral Sciences, O.P Jindal Global University, Sonipat, Haryana, 131001, India
| | - Satyavani Kaliamurthi
- Centre for Research in Molecular Modeling (CERMM), Department of Chemistry and Biochemistry, Concordia University, Loyola Campus, Montreal, QC, H4B 1R6, Canada
| | - Gilles H Peslherbe
- Centre for Research in Molecular Modeling (CERMM), Department of Chemistry and Biochemistry, Concordia University, Loyola Campus, Montreal, QC, H4B 1R6, Canada
| | - Gurudeeban Selvaraj
- Centre for Research in Molecular Modeling (CERMM), Department of Chemistry and Biochemistry, Concordia University, Loyola Campus, Montreal, QC, H4B 1R6, Canada; Bioinformatics Unit, Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS) University, Chennai, TN, 600077, India.
| | - Sajitha Lulu Sudhakaran
- Integrative Multiomics Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632014, India.
| |
Collapse
|
3
|
Tierney MT, Polak L, Yang Y, Abdusselamoglu MD, Baek I, Stewart KS, Fuchs E. Vitamin A resolves lineage plasticity to orchestrate stem cell lineage choices. Science 2024; 383:eadi7342. [PMID: 38452090 PMCID: PMC11177320 DOI: 10.1126/science.adi7342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024]
Abstract
Lineage plasticity-a state of dual fate expression-is required to release stem cells from their niche constraints and redirect them to tissue compartments where they are most needed. In this work, we found that without resolving lineage plasticity, skin stem cells cannot effectively generate each lineage in vitro nor regrow hair and repair wounded epidermis in vivo. A small-molecule screen unearthed retinoic acid as a critical regulator. Combining high-throughput approaches, cell culture, and in vivo mouse genetics, we dissected its roles in tissue regeneration. We found that retinoic acid is made locally in hair follicle stem cell niches, where its levels determine identity and usage. Our findings have therapeutic implications for hair growth as well as chronic wounds and cancers, where lineage plasticity is unresolved.
Collapse
Affiliation(s)
- Matthew T Tierney
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University; New York, NY 10065, USA
| | - Lisa Polak
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University; New York, NY 10065, USA
| | | | - Merve Deniz Abdusselamoglu
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University; New York, NY 10065, USA
| | | | - Katherine S Stewart
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University; New York, NY 10065, USA
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University; New York, NY 10065, USA
| |
Collapse
|
4
|
Devasahayam Arokia Balaya R, Palollathil A, Kumar STA, Chandrasekaran J, Upadhyay SS, Parate SS, Sajida M, Karthikkeyan G, Prasad TSK. Role of Hemigraphis alternata in wound healing: metabolomic profiling and molecular insights into mechanisms. Sci Rep 2024; 14:3872. [PMID: 38365839 PMCID: PMC10873326 DOI: 10.1038/s41598-024-54352-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/12/2024] [Indexed: 02/18/2024] Open
Abstract
Hemigraphis alternata (H. alternata), commonly known as Red Flame Ivy, is widely recognized for its wound healing capabilities. However, the pharmacologically active plant components and their mechanisms of action in wound healing are yet to be determined. This study presents the mass spectrometry-based global metabolite profiling of aqueous and ethanolic extract of H. alternata leaves. The analysis identified 2285 metabolites from 24,203 spectra obtained in both positive and negative polarities. The identified metabolites were classified under ketones, carboxylic acids, primary aliphatic amines, steroids and steroid derivatives. We performed network pharmacology analysis to explore metabolite-protein interactions and identified 124 human proteins as targets for H. alternata metabolites. Among these, several of them were implicated in wound healing including prothrombin (F2), alpha-2A adrenergic receptor (ADRA2A) and fibroblast growth factor receptor 1 (FGFR1). Gene ontology analysis of target proteins enriched cellular functions related to glucose metabolic process, platelet activation, membrane organization and response to wounding. Additionally, pathway enrichment analysis revealed potential molecular network involved in wound healing. Moreover, in-silico docking analysis showed strong binding energy between H. alternata metabolites with identified protein targets (F2 and PTPN11). Furthermore, the key metabolites involved in wound healing were further validated by multiple reaction monitoring-based targeted analysis.
Collapse
Affiliation(s)
- Rex Devasahayam Arokia Balaya
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India, 575018
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Akhina Palollathil
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India, 575018
| | - Sumaithangi Thattai Arun Kumar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India, 575018
| | - Jaikanth Chandrasekaran
- Department of Pharmacology, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, 600116, India
| | - Shubham Sukerndeo Upadhyay
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India, 575018
| | - Sakshi Sanjay Parate
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India, 575018
| | - M Sajida
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Gayathree Karthikkeyan
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India, 575018
| | | |
Collapse
|
5
|
Luna AJ, Young JM, Sterk RT, Bondu V, Schultz FA, Kusewitt DF, Kang H, Ozbun MA. The antiviral effects of a MEK1/2 inhibitor promote tumor regression in a preclinical model of human papillomavirus infection-induced tumorigenesis. Antiviral Res 2023; 216:105667. [PMID: 37429527 PMCID: PMC10530289 DOI: 10.1016/j.antiviral.2023.105667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Human papillomaviruses (HPVs) are a significant public health concern due to their widespread transmission, morbidity, and oncogenic potential. Despite efficacious vaccines, millions of unvaccinated individuals and those with existing infections will develop HPV-related diseases for the next two decades and beyond. The continuing burden of HPV-related diseases is exacerbated by the lack of effective therapies or cures for infections, highlighting the need to identify and develop antivirals. The experimental murine papillomavirus type 1 (MmuPV1) model provides opportunities to study papillomavirus pathogenesis in cutaneous epithelium, the oral cavity, and the anogenital tract. However, to date the MmuPV1 infection model has not been used to demonstrate the effectiveness of potential antivirals. We previously reported that inhibitors of cellular MEK/ERK signaling suppress oncogenic HPV early gene expression in three-dimensional tissue cultures. Herein, we adapted the MmuPV1 infection model to determine whether MEK inhibitors have anti-papillomavirus properties in vivo. We demonstrate that oral delivery of a MEK1/2 inhibitor promotes papilloma regression in immunodeficient mice that otherwise would have developed persistent infections. Quantitative histological analyses reveal that inhibition of MEK/ERK signaling reduces E6/E7 mRNA, MmuPV1 DNA, and L1 protein expression within MmuPV1-induced lesions. These data suggest that MEK1/2 signaling is essential for both early and late MmuPV1 replication events supporting our previous findings with oncogenic HPVs. We also provide evidence that MEK inhibitors protect mice from developing secondary tumors. Thus, our data suggest that MEK inhibitors have potent antiviral and anti-tumor properties in a preclinical mouse model and merit further investigation as papillomavirus antiviral therapies.
Collapse
Affiliation(s)
- Adrian J Luna
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Jesse M Young
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Rosa T Sterk
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Virginie Bondu
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Fred A Schultz
- Department of Pathology, The University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Donna F Kusewitt
- Department of Pathology, The University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA; The University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, 87131, USA
| | - Huining Kang
- Department of Internal Medicine, Division of Epidemiology, Biostatistics and Preventive Medicine, The University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA; The University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, 87131, USA
| | - Michelle A Ozbun
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA; The University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, 87131, USA.
| |
Collapse
|
6
|
Luna AJ, Young JM, Sterk RT, Bondu V, Schultz FA, Kusewitt DF, Kang H, Ozbun MA. Inhibition of Cellular MEK/ERK Signaling Suppresses Murine Papillomavirus Type 1 Replicative Activities and Promotes Tumor Regression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532042. [PMID: 36993217 PMCID: PMC10054951 DOI: 10.1101/2023.03.14.532042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Human papillomaviruses (HPVs) are a significant public health concern due to their widespread transmission, morbidity, and oncogenic potential. Despite efficacious vaccines, millions of unvaccinated individuals and those with existing infections will develop HPV-related diseases for the next two decades. The continuing burden of HPV-related diseases is exacerbated by the lack of effective therapies or cures for most infections, highlighting the need to identify and develop antivirals. The experimental murine papillomavirus type 1 (MmuPV1) model provides opportunities to study papillomavirus pathogenesis in cutaneous epithelium, the oral cavity, and the anogenital tract. However, to date the MmuPV1 infection model has not been used to demonstrate the effectiveness of potential antivirals. We previously reported that inhibitors of cellular MEK/ERK signaling suppress oncogenic HPV early gene expression in vitro . Herein, we adapted the MmuPV1 infection model to determine whether MEK inhibitors have anti-papillomavirus properties in vivo . We demonstrate that oral delivery of a MEK1/2 inhibitor promotes papilloma regression in immunodeficient mice that otherwise would have developed persistent infections. Quantitative histological analyses revealed that inhibition of MEK/ERK signaling reduces E6/E7 mRNAs, MmuPV1 DNA, and L1 protein expression within MmuPV1-induced lesions. These data suggest that MEK1/2 signaling is essential for both early and late MmuPV1 replication events supporting our previous findings with oncogenic HPVs. We also provide evidence that MEK inhibitors protect mice from developing secondary tumors. Thus, our data suggest that MEK inhibitors have potent anti-viral and anti-tumor properties in a preclinical mouse model and merit further investigation as papillomavirus antiviral therapies. Significance Statement Persistent human papillomavirus (HPV) infections cause significant morbidity and oncogenic HPV infections can progress to anogenital and oropharyngeal cancers. Despite the availability of effective prophylactic HPV vaccines, millions of unvaccinated individuals, and those currently infected will develop HPV-related diseases over the next two decades and beyond. Thus, it remains critical to identify effective antivirals against papillomaviruses. Using a mouse papillomavirus model of HPV infection, this study reveals that cellular MEK1/2 signaling supports viral tumorigenesis. The MEK1/2 inhibitor, trametinib, demonstrates potent antiviral activities and promotes tumor regression. This work provides insight into the conserved regulation of papillomavirus gene expression by MEK1/2 signaling and reveals this cellular pathway as a promising therapeutic target for the treatment of papillomavirus diseases.
Collapse
|
7
|
Moriizumi H, Kubota Y, Tsuchiya T, Naka R, Takekawa M. Caspase 3-specific cleavage of MEK1 suppresses ERK signaling and sensitizes cells to stress-induced apoptosis. FEBS Open Bio 2023; 13:684-700. [PMID: 36776127 PMCID: PMC10068311 DOI: 10.1002/2211-5463.13574] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/30/2023] [Accepted: 02/10/2023] [Indexed: 02/14/2023] Open
Abstract
Proper regulation of apoptotic cell death is crucial for normal development and homeostasis in multicellular organisms and is achieved by the balance between pro-apoptotic processes, such as caspase activation, and pro-survival signaling, such as extracellular signal-regulated kinase (ERK) activation. However, the functional interplay between these opposing signaling pathways remains incompletely understood. Here, we identified MAPK/ERK kinase (MEK) 1, a central component of the ERK pathway, as a specific substrate for the executioner caspase-3. During apoptosis, MEK1 is cleaved at an evolutionarily conserved Asp282 residue in the kinase domain, thereby losing its catalytic activity. Gene knockout experiments showed that MEK1 cleavage was mediated by caspase-3, but not by the other executioner caspases, caspase-6 or -7. Following exposure of cells to osmotic stress, elevated ERK activity gradually decreased, and this was accompanied by increased cleavage of MEK1. In contrast, the expression of a caspase-uncleavable MEK1(D282N) mutant in cells maintained stress-induced ERK activity and thereby attenuated apoptotic cell death. Thus, caspase-3-mediated, proteolytic inhibition of MEK1 sensitizes cells to apoptosis by suppressing pro-survival ERK signaling. Furthermore, we found that a RASopathy-associated MEK1(Y130C) mutation prevented this caspase-3-mediated proteolytic inactivation of MEK1 and efficiently protected cells from stress-induced apoptosis. Our data reveal the functional crosstalk between ERK-mediated cell survival and caspase-mediated cell death pathways and suggest that its dysregulation by a disease-associated MEK1 mutation is at least partly involved in the pathophysiology of congenital RASopathies.
Collapse
Affiliation(s)
- Hisashi Moriizumi
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yuji Kubota
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, Japan
| | - Tomoyuki Tsuchiya
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, Japan
| | - Ryosuke Naka
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, Japan
| | - Mutsuhiro Takekawa
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| |
Collapse
|
8
|
Brayford S, Duly A, Teo WS, Dwarte T, Gonzales-Aloy E, Ma Z, McVeigh L, Failes TW, Arndt GM, McCarroll JA, Kavallaris M. βIII-tubulin suppression enhances the activity of Amuvatinib to inhibit cell proliferation in c-Met positive non-small cell lung cancer cells. Cancer Med 2023; 12:4455-4471. [PMID: 35946957 PMCID: PMC9972117 DOI: 10.1002/cam4.5128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 11/07/2022] Open
Abstract
Non-Small Cell Lung Carcinoma (NSCLC) remains a leading cause of cancer death. Resistance to therapy is a significant problem, highlighting the need to find new ways of sensitising tumour cells to therapeutic agents. βIII-tubulin is associated with aggressive tumours and chemotherapy resistance in a range of cancers including NSCLC. βIII-tubulin expression has been shown to impact kinase signalling in NSCLC cells. Here, we sought to exploit this interaction by identifying co-activity between βIII-tubulin suppression and small-molecule kinase inhibitors. To achieve this, a forced-genetics approach combined with a high-throughput drug screen was used. We show that activity of the multi-kinase inhibitor Amuvatinib (MP-470) is enhanced by βIII-tubulin suppression in independent NSCLC cell lines. We also show that this compound significantly inhibits cell proliferation among βIII-tubulin knockdown cells expressing the receptor tyrosine kinase c-Met. Together, our results highlight that βIII-tubulin suppression combined with targeting specific receptor tyrosine kinases may represent a novel therapeutic approach for otherwise difficult-to-treat lung carcinomas.
Collapse
Affiliation(s)
- Simon Brayford
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.,Australian Centre for NanoMedicine, UNSW, Sydney, Australia.,School of Clinical Medicine, UNSW Medicine and Health, Sydney, Australia
| | - Alastair Duly
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.,Australian Centre for NanoMedicine, UNSW, Sydney, Australia
| | - Wee Siang Teo
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.,Australian Centre for NanoMedicine, UNSW, Sydney, Australia
| | - Tanya Dwarte
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.,Australian Centre for NanoMedicine, UNSW, Sydney, Australia
| | - Estrella Gonzales-Aloy
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.,Australian Centre for NanoMedicine, UNSW, Sydney, Australia
| | - Zerong Ma
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.,Australian Centre for NanoMedicine, UNSW, Sydney, Australia.,School of Clinical Medicine, UNSW Medicine and Health, Sydney, Australia
| | - Laura McVeigh
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.,Australian Centre for NanoMedicine, UNSW, Sydney, Australia.,School of Clinical Medicine, UNSW Medicine and Health, Sydney, Australia
| | - Timothy W Failes
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.,ACRF Drug Discovery Centre for Childhood Cancer, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Greg M Arndt
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.,School of Clinical Medicine, UNSW Medicine and Health, Sydney, Australia.,ACRF Drug Discovery Centre for Childhood Cancer, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Joshua A McCarroll
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.,Australian Centre for NanoMedicine, UNSW, Sydney, Australia.,School of Clinical Medicine, UNSW Medicine and Health, Sydney, Australia
| | - Maria Kavallaris
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.,Australian Centre for NanoMedicine, UNSW, Sydney, Australia.,School of Clinical Medicine, UNSW Medicine and Health, Sydney, Australia
| |
Collapse
|
9
|
Gong Y, Yang B, Zhang D, Zhang Y, Tang Z, Yang L, Coate KC, Yin L, Covington BA, Patel RS, Siv WA, Sellick K, Shou M, Chang W, Danielle Dean E, Powers AC, Chen W. Hyperaminoacidemia induces pancreatic α cell proliferation via synergism between the mTORC1 and CaSR-Gq signaling pathways. Nat Commun 2023; 14:235. [PMID: 36646689 PMCID: PMC9842633 DOI: 10.1038/s41467-022-35705-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/20/2022] [Indexed: 01/18/2023] Open
Abstract
Glucagon has emerged as a key regulator of extracellular amino acid (AA) homeostasis. Insufficient glucagon signaling results in hyperaminoacidemia, which drives adaptive proliferation of glucagon-producing α cells. Aside from mammalian target of rapamycin complex 1 (mTORC1), the role of other AA sensors in α cell proliferation has not been described. Here, using both genders of mouse islets and glucagon receptor (gcgr)-deficient zebrafish (Danio rerio), we show α cell proliferation requires activation of the extracellular signal-regulated protein kinase (ERK1/2) by the AA-sensitive calcium sensing receptor (CaSR). Inactivation of CaSR dampened α cell proliferation, which was rescued by re-expression of CaSR or activation of Gq, but not Gi, signaling in α cells. CaSR was also unexpectedly necessary for mTORC1 activation in α cells. Furthermore, coactivation of Gq and mTORC1 induced α cell proliferation independent of hyperaminoacidemia. These results reveal another AA-sensitive mediator and identify pathways necessary and sufficient for hyperaminoacidemia-induced α cell proliferation.
Collapse
Affiliation(s)
- Yulong Gong
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Bingyuan Yang
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Dingdong Zhang
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yue Zhang
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Zihan Tang
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Liu Yang
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Katie C Coate
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Linlin Yin
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Brittney A Covington
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Ravi S Patel
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Walter A Siv
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Katelyn Sellick
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Matthew Shou
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Wenhan Chang
- University of California San Francisco and San Francisco VA Medical Center, San Francisco, CA, 94158, USA
| | - E Danielle Dean
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Alvin C Powers
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN, 37232, USA
- VA Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
| | - Wenbiao Chen
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37232, USA.
| |
Collapse
|
10
|
Pearson AD, Allen C, Fangusaro J, Hutter C, Witt O, Weiner S, Reaman G, Russo M, Bandopadhayay P, Ahsan S, Barone A, Barry E, de Rojas T, Fisher M, Fox E, Bender JG, Gore L, Hargrave D, Hawkins D, Kreider B, Langseth AJ, Lesa G, Ligas F, Marotti M, Marshall LV, Nasri K, Norga K, Nysom K, Pappo A, Rossato G, Scobie N, Smith M, Stieglitz E, Weigel B, Weinstein A, Viana R, Karres D, Vassal G. Paediatric Strategy Forum for medicinal product development in mitogen-activated protein kinase pathway inhibitors: ACCELERATE in collaboration with the European Medicines Agency with participation of the Food and Drug Administration. Eur J Cancer 2022; 177:120-142. [PMID: 36335782 DOI: 10.1016/j.ejca.2022.09.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 01/06/2023]
Abstract
As the mitogen-activated protein kinase (MAPK) signalling pathway is activated in many paediatric cancers, it is an important therapeutic target. Currently, a range of targeted MAPK pathway inhibitors are being developed in adults. However, MAPK signals through many cascades and feedback loops and perturbing the MAPK pathway may have substantial influence on other pathways as well as normal development. In view of these issues, the ninth Paediatric Strategy Forum focused on MAPK inhibitors. Development of MAPK pathway inhibitors to date has been predominantly driven by adult indications such as malignant melanoma. However, these inhibitors may also target unmet needs in paediatric low-grade gliomas, high-grade gliomas, Langerhans cell histiocytosis, juvenile myelomonocytic leukaemia and several other paediatric conditions. Although MAPK inhibitors have demonstrated activity in paediatric cancer, the response rates and duration of responses needs improvement and better documentation. The rapid development and evaluation of combination approaches, based on a deep understanding of biology, is required to optimise responses and to avoid paradoxical tumour growth and other unintended consequences including severe toxicity. Better inhibitors with higher central nervous systempenetration for primary brain tumours and cancers with a propensity for central nervous system metastases need to be studied to determine if they are more effective than agents currently being used, and the optimum duration of therapy with MAPK inhibition needs to be determined. Systematic and coordinated clinical investigations to inform future treatment strategies with MAPK inhibitors, rather than use outside of clinical trials, are needed to fully assess the risks and benefits of these single agents and combination strategies in both front-line and in the refractory/relapse settings. Platform trials could address the investigation of multiple similar products and combinations. Accelerating the introduction of MAPK inhibitors into front-line paediatric studies is a priority, as is ensuring that these studies generate data appropriate for scientific and regulatory purposes. Early discussions with regulators are crucial, particularly if external controls are considered as randomised control trials in small patient populations can be challenging. Functional end-points specific to the populations in which they are studied, such as visual acuity, motor and neuro psychological function are important, as these outcomes are often more reflective of benefit for lower grade tumours (such as paediatric low-grade glioma and plexiform neurofibroma) and should be included in initial study designs for paediatric low-grade glioma. Early prospective discussions and agreements with regulators are necessary. Long-term follow-up of patients receiving MAPK inhibitors is crucial in view of their prolonged administration and the important involvement of this pathway in normal development. Further rational development, with a detailed understanding of biology of this class of products, is crucial to ensure they provide optimal benefit while minimising toxicity to children and adolescents with cancer.
Collapse
Affiliation(s)
| | - Carl Allen
- Texas Children Hospital, Houston, TX, USA; Baylor College of Medicine, Houston, TX, USA
| | - Jason Fangusaro
- Children's Healthcare of Atlanta, USA; Emory University School of Medicine, Atlanta, USA
| | - Caroline Hutter
- St. Anna Children's Hospital, Vienna, Austria; Children's Cancer Research Institute, Vienna, Austria
| | - Olaf Witt
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Heidelberg University Hospital, Heidelberg, Germany; German Cancer Research Center, Heidelberg, Germany
| | | | | | | | - Pratiti Bandopadhayay
- Department of Pediatrics, Harvard Medical School, Broad Institute, USA; Dana-Farber/Boston Children's Cancer and Blood Disorders Center, USA
| | | | - Amy Barone
- US Food and Drug Administration, Silver Springs, USA
| | - Elly Barry
- Day One Biopharmaceuticals, San Francisco, USA
| | | | - Michael Fisher
- The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Elizabeth Fox
- St Jude Children's Research Hospital, Tennessee, USA
| | | | - Lia Gore
- Children's Hospital Colorado, USA; University of Colorado, USA
| | - Darren Hargrave
- UCL Great Ormond Street Institute of Child Health, London UK
| | - Doug Hawkins
- Seattle Children's Hospital, USA; Children's Oncology Group, Seattle, USA
| | | | | | - Giovanni Lesa
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), Netherlands
| | - Franca Ligas
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), Netherlands
| | | | - Lynley V Marshall
- The Royal Marsden Hospital, London, UK; The Institute of Cancer Research, London, UK
| | | | - Koen Norga
- Antwerp University Hospital, Antwerp, Belgium; Paediatric Committee of the European Medicines Agency, (EMA), Netherlands; Federal Agency for Medicines and Health Products, Brussels, Belgium
| | | | - Alberto Pappo
- St Jude Children's Research Hospital, Tennessee, USA
| | | | | | | | | | | | | | - Ruth Viana
- Alexion Pharmaceuticals, Zurich, Switzerland
| | - Dominik Karres
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), Netherlands
| | - Gilles Vassal
- ACCELERATE, Europe; Gustave Roussy Cancer Centre, Paris, France
| |
Collapse
|
11
|
Kwon HN, Kurtzeborn K, Iaroshenko V, Jin X, Loh A, Escande-Beillard N, Reversade B, Park S, Kuure S. Omics profiling identifies the regulatory functions of the MAPK/ERK pathway in nephron progenitor metabolism. Development 2022; 149:276992. [PMID: 36189831 PMCID: PMC9641663 DOI: 10.1242/dev.200986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/25/2022] [Indexed: 11/07/2022]
Abstract
Nephron endowment is defined by fetal kidney growth and crucially dictates renal health in adults. Defects in the molecular regulation of nephron progenitors contribute to only a fraction of reduced nephron mass cases, suggesting alternative causative mechanisms. The importance of MAPK/ERK activation in nephron progenitor maintenance has been previously demonstrated, and here, we characterized the metabolic consequences of MAPK/ERK deficiency. Liquid chromatography/mass spectrometry-based metabolomics profiling identified 42 reduced metabolites, of which 26 were supported by in vivo transcriptional changes in MAPK/ERK-deficient nephron progenitors. Among these, mitochondria, ribosome and amino acid metabolism, together with diminished pyruvate and proline metabolism, were the most affected pathways. In vitro cultures of mouse kidneys demonstrated a dosage-specific function for pyruvate in controlling the shape of the ureteric bud tip, a regulatory niche for nephron progenitors. In vivo disruption of proline metabolism caused premature nephron progenitor exhaustion through their accelerated differentiation in pyrroline-5-carboxylate reductases 1 (Pycr1) and 2 (Pycr2) double-knockout kidneys. Pycr1/Pycr2-deficient progenitors showed normal cell survival, indicating no changes in cellular stress. Our results suggest that MAPK/ERK-dependent metabolism functionally participates in nephron progenitor maintenance by monitoring pyruvate and proline biogenesis in developing kidneys.
Collapse
Affiliation(s)
- Hyuk Nam Kwon
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, FIN-00014, Finland,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, FIN-00014, Finland
| | - Kristen Kurtzeborn
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, FIN-00014, Finland,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, FIN-00014, Finland
| | - Vladislav Iaroshenko
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, FIN-00014, Finland,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, FIN-00014, Finland
| | - Xing Jin
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Seoul 08826, Korea
| | - Abigail Loh
- Institute of Molecular and Cellular Biology (IMCB), A*STAR, Singapore 138648, Singapore
| | - Nathalie Escande-Beillard
- Institute of Molecular and Cellular Biology (IMCB), A*STAR, Singapore 138648, Singapore,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, FIN-00014, Finland
| | - Bruno Reversade
- Institute of Molecular and Cellular Biology (IMCB), A*STAR, Singapore 138648, Singapore,Medical Genetics Department, School of Medicine, Koç University, Istanbul 34010, Turkey
| | - Sunghyouk Park
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Seoul 08826, Korea
| | - Satu Kuure
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, FIN-00014, Finland,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, FIN-00014, Finland,GM-unit, Laboratory Animal Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, FIN-00014, Finland,Author for correspondence ()
| |
Collapse
|
12
|
Avery TY, Köhler N, Zeiser R, Brummer T, Ruess DA. Onco-immunomodulatory properties of pharmacological interference with RAS-RAF-MEK-ERK pathway hyperactivation. Front Oncol 2022; 12:931774. [PMID: 35965494 PMCID: PMC9363660 DOI: 10.3389/fonc.2022.931774] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/30/2022] [Indexed: 12/25/2022] Open
Abstract
Hyperactivation of the RAS-RAF-MEK-ERK cascade - a mitogen-activated protein kinase pathway – has a well-known association with oncogenesis of leading tumor entities, including non-small cell lung cancer, colorectal carcinoma, pancreatic ductal adenocarcinoma, and malignant melanoma. Increasing evidence shows that genetic alterations leading to RAS-RAF-MEK-ERK pathway hyperactivation mediate contact- and soluble-dependent crosstalk between tumor, tumor microenvironment (TME) and the immune system resulting in immune escape mechanisms and establishment of a tumor-sustaining environment. Consequently, pharmacological interruption of this pathway not only leads to tumor-cell intrinsic disruptive effects but also modification of the TME and anti-tumor immunomodulation. At the same time, the importance of ERK signaling in immune cell physiology and potentiation of anti-tumor immune responses through ERK signaling inhibition within immune cell subsets has received growing appreciation. Specifically, a strong case was made for targeted MEK inhibition due to promising associated immune cell intrinsic modulatory effects. However, the successful transition of therapeutic agents interrupting RAS-RAF-MEK-ERK hyperactivation is still being hampered by significant limitations regarding durable efficacy, therapy resistance and toxicity. We here collate and summarize the multifaceted role of RAS-RAF-MEK-ERK signaling in physiology and oncoimmunology and outline the rationale and concepts for exploitation of immunomodulatory properties of RAS-RAF-MEK-ERK inhibition while accentuating the role of MEK inhibition in combinatorial and intermittent anticancer therapy. Furthermore, we point out the extensive scientific efforts dedicated to overcoming the challenges encountered during the clinical transition of various therapeutic agents in the search for the most effective and safe patient- and tumor-tailored treatment approach.
Collapse
Affiliation(s)
- Thomas Yul Avery
- Department of General and Visceral Surgery, Center of Surgery, Medical Center University of Freiburg, Freiburg, Germany
- *Correspondence: Thomas Yul Avery, ; Dietrich Alexander Ruess,
| | - Natalie Köhler
- Department of Medicine I - Medical Center, Medical Center University of Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I - Medical Center, Medical Center University of Freiburg, Freiburg, Germany
- German Cancer Consortium Deutsches Konsortium Translationale Krebsforschung (DKTK), partner site Freiburg, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Tilman Brummer
- German Cancer Consortium Deutsches Konsortium Translationale Krebsforschung (DKTK), partner site Freiburg, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), Faculty of Medicine, Medical Center University of Freiburg, Freiburg, Germany
| | - Dietrich Alexander Ruess
- Department of General and Visceral Surgery, Center of Surgery, Medical Center University of Freiburg, Freiburg, Germany
- German Cancer Consortium Deutsches Konsortium Translationale Krebsforschung (DKTK), partner site Freiburg, German Cancer Research Center Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
- *Correspondence: Thomas Yul Avery, ; Dietrich Alexander Ruess,
| |
Collapse
|
13
|
Huang CY, Su YC, Lu CY, Chiu PL, Chang YM, Ju DT, Chen RJ, Yang LY, Ho TJ, Kao HC. Edible folic acid and medicinal folinic acid produce cardioprotective effects in late-stage triple-transgenic Alzheimer's disease model mice by suppressing cardiac hypertrophy and fibrosis. ENVIRONMENTAL TOXICOLOGY 2022; 37:1740-1749. [PMID: 35286012 DOI: 10.1002/tox.23521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/15/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Some clinical studies have indicated the patients with Alzheimer's disease (AD) display an increased risk of cardiovascular disease (CVD). Here, to examine the relationship between AD and CVDs, we investigated the changes in heart function in triple-transgenic late-stage AD model mice (3× Tg-AD; APPSwe, PS1M146V, and tauP301L). We fed the AD mice folic acid (FA) or folinic acid (FN) and analyzed the protective effects of the compounds on the heart; specifically, 20-month-old triple-transgenic AD mice, weighing 34-55 g, were randomly allocated into three groups-the AD, AD + FA, and AD + FN groups-and subject to gastric feeding with FA or FN once daily at 12 mg/kg body weight (BW) for 3 months. Mouse BWs were assessed throughout the trial, at the end of which the animals were sacrificed using carbon dioxide suffocation. We found that BW, whole-heart weight, and left-ventricle weight were reduced in the AD + FA and AD + FN groups as compared with the measurements in the AD group. Furthermore, western blotting of excised heart tissue revealed that the levels of the hypertrophy-related protein markers phospho(p)-p38 and p-c-Jun were markedly decreased in the AD + FA group, whereas p-GATA4, and ANP were strongly reduced in the AD + FN group. Moreover, the fibrosis-related proteins uPA, MMP-2, MEK1/2 and SP-1 were decreased in the heart in both AD + FN group. In summary, our results indicate that FA and FN can exert anti-cardiac hypertrophy and fibrosis effects to protect the heart in aged triple-transgenic AD model mice, particular in FN.
Collapse
Affiliation(s)
- Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Yi-Chen Su
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Cheng-You Lu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | | | - Da-Tong Ju
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Laboratory for Neural Repair, China Medical University Hospital, Taichung, Taiwan
| | - Tsung-Jung Ho
- Integration Center of Traditional Chinese and Modern Medicine, HualienTzu Chi Hospital, Hualien, Taiwan
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
- School of Post-Baccalaure-ate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hui-Chuan Kao
- Department of Public Health, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
14
|
Comparative whole-genome transcriptome analysis in renal cell populations reveals high tissue specificity of MAPK/ERK targets in embryonic kidney. BMC Biol 2022; 20:112. [PMID: 35550069 PMCID: PMC9102746 DOI: 10.1186/s12915-022-01309-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 04/25/2022] [Indexed: 12/19/2022] Open
Abstract
Background MAPK/ERK signaling is a well-known mediator of extracellular stimuli controlling intracellular responses to growth factors and mechanical cues. The critical requirement of MAPK/ERK signaling for embryonic stem cell maintenance is demonstrated, but specific functions in progenitor regulation during embryonic development, and in particular kidney development remain largely unexplored. We previously demonstrated MAPK/ERK signaling as a key regulator of kidney growth through branching morphogenesis and normal nephrogenesis where it also regulates progenitor expansion. Here, we performed RNA sequencing-based whole-genome expression analysis to identify transcriptional MAPK/ERK targets in two distinct renal populations: the ureteric bud epithelium and the nephron progenitors. Results Our analysis revealed a large number (5053) of differentially expressed genes (DEGs) in nephron progenitors and significantly less (1004) in ureteric bud epithelium, reflecting likely heterogenicity of cell types. The data analysis identified high tissue-specificity, as only a fraction (362) of MAPK/ERK targets are shared between the two tissues. Tissue-specific MAPK/ERK targets participate in the regulation of mitochondrial energy metabolism in nephron progenitors, which fail to maintain normal mitochondria numbers in the MAPK/ERK-deficient tissue. In the ureteric bud epithelium, a dramatic decline in progenitor-specific gene expression was detected with a simultaneous increase in differentiation-associated genes, which was not observed in nephron progenitors. Our experiments in the genetic model of MAPK/ERK deficiency provide evidence that MAPK/ERK signaling in the ureteric bud maintains epithelial cells in an undifferentiated state. Interestingly, the transcriptional targets shared between the two tissues studied are over-represented by histone genes, suggesting that MAPK/ERK signaling regulates cell cycle progression and stem cell maintenance through chromosome condensation and nucleosome assembly. Conclusions Using tissue-specific MAPK/ERK inactivation and RNA sequencing in combination with experimentation in embryonic kidneys, we demonstrate here that MAPK/ERK signaling maintains ureteric bud tip cells, suggesting a regulatory role in collecting duct progenitors. We additionally deliver new mechanistic information on how MAPK/ERK signaling regulates progenitor maintenance through its effects on chromatin accessibility and energy metabolism. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01309-z.
Collapse
|
15
|
Gong KQ, Mikacenic C, Long ME, Frevert CW, Birkland TP, Charron J, Gharib SA, Manicone AM. MAP2K2 Delays Recovery in Murine Models of Acute Lung Injury and Associates with Acute Respiratory Distress Syndrome Outcome. Am J Respir Cell Mol Biol 2022; 66:555-563. [PMID: 35157553 PMCID: PMC9116357 DOI: 10.1165/rcmb.2021-0252oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 12/30/2021] [Indexed: 12/15/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) remains a significant problem in need of new pharmaceutical approaches to improve its resolution. Studies comparing gene expression signatures in rodents and humans with lung injury reveal conserved pathways, including MAPK (mitogen-activated protein kinase)/ERK (extracellular signal-related protein kinase) activation. In preclinical acute lung injury (ALI) models, inhibition of MAP2K1 (MAPK kinase 1)/MAP2K2 (MAPK kinase 2) improves measures of ALI. Myeloid cell deletion of MAP2K1 results in sustained MAP2K2 activation and nonresolving ALI, suggesting that MAP2K2 deactivation may be a key driver of ALI resolution. We used human genomic data from the iSPAAR (Identification of SNPs Predisposing to Altered Acute Lung Injury Risk) Consortium to assess genetic variants in MAP2K1 and MAP2K2 for association with mortality from ARDS. To determine the role of MAP2K2 in ALI recovery, we studied mice deficient in Map2k2 (Mek2-/-) and wild-type control mice in ALI models. We identified a MAP2K2 variant that was associated with death in ARDS and MAP2K2 expression. In Pseudomonas aeruginosa ALI, Mek2-/- mice had similar early alveolar neutrophilic recruitment but faster resolution of alveolar neutrophilia and vascular leak. Gene expression analysis revealed a role for MAP2K2 in promoting and sustaining select proinflammatory pathway activation in ALI. Bone marrow chimera studies indicate that leukocyte MAP2K2 is the key regulator of ALI duration. These studies implicate a role for MAP2K2 in ALI duration via transcriptional regulation of inflammatory programming with potential relevance to ARDS. Targeting leukocyte MAP2K2 may be an effective strategy to promote ALI resolution.
Collapse
Affiliation(s)
- Ke-Qin Gong
- Division of Pulmonary, Critical Care and Sleep Medicine, and
| | - Carmen Mikacenic
- Division of Pulmonary, Critical Care and Sleep Medicine, and
- Benaroya Research Institute, Seattle, Washington
| | - Matthew E. Long
- Division of Pulmonary, Critical Care and Sleep Medicine, and
- Division of Pulmonary, Critical Care and Sleep Medicine, the Ohio State University Wexner Medical Center, Columbus, Ohio; and
| | - Charles W. Frevert
- Division of Pulmonary, Critical Care and Sleep Medicine, and
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | | | - Jean Charron
- Oncology Division, Quebec University Hospital Center–Laval University Research Center, Laval University Research Center and Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec City, Quebec, Canada
| | - Sina A. Gharib
- Division of Pulmonary, Critical Care and Sleep Medicine, and
| | | |
Collapse
|
16
|
Chou YT, Bivona TG. Inhibition of SHP2 as an approach to block RAS-driven cancers. Adv Cancer Res 2022; 153:205-236. [PMID: 35101231 DOI: 10.1016/bs.acr.2021.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The non-receptor protein tyrosine phosphatase SHP2 (encoded by PTPN11) is a critical component of RAS/MAPK signaling by acting upstream of RAS to promote oncogenic signaling and tumor growth. Over three decades, SHP2 was considered "undruggable" because enzymatic active-site inhibitors generally showed off-target inhibition of other proteins and low membrane permeability. More recently, allosteric SHP2 inhibitors with striking inhibitory potency have been developed. These small molecules effectively block the signal transduction between receptor tyrosine kinases (RTKs) and RAS/MAPK signaling and show efficacy in preclinical cancer models. Moreover, clinical evaluation of these allosteric SHP2 inhibitors is ongoing. RAS proteins which harbor transforming properties by gain-of-function mutations are present in various cancer types. While inhibitors of KRASG12C show early clinical promise, resistance remains a challenge and other forms of oncogenic RAS remain to be selectively inhibited. Here, we summarize the role of SHP2 in RAS-driven cancers and the therapeutic potential of allosteric SHP2 inhibitors as a strategy to block RAS-driven cancers.
Collapse
Affiliation(s)
- Yu-Ting Chou
- Department of Medicine, Division of Hematology and Oncology, and The Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, United States
| | - Trever G Bivona
- Department of Medicine, Division of Hematology and Oncology, and The Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, United States.
| |
Collapse
|
17
|
Houde N, Beuret L, Bonaud A, Fortier-Beaulieu SP, Truchon-Landry K, Aoidi R, Pic É, Alouche N, Rondeau V, Schlecht-Louf G, Balabanian K, Espéli M, Charron J. Fine-tuning of MEK signaling is pivotal for limiting B and T cell activation. Cell Rep 2022; 38:110223. [PMID: 35021072 DOI: 10.1016/j.celrep.2021.110223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 10/05/2021] [Accepted: 12/15/2021] [Indexed: 01/17/2023] Open
Abstract
MEK1 and MEK2, the only known activators of ERK, are attractive therapeutic candidates for both cancer and autoimmune diseases. However, how MEK signaling finely regulates immune cell activation is only partially understood. To address this question, we specifically delete Mek1 in hematopoietic cells in the Mek2 null background. Characterization of an allelic series of Mek mutants reveals the presence of distinct degrees of spontaneous B cell activation, which are inversely proportional to the levels of MEK proteins and ERK activation. While Mek1 and Mek2 null mutants have a normal lifespan, 1Mek1 and 1Mek2 mutants retaining only one functional Mek1 or Mek2 allele in hematopoietic cell lineages die from glomerulonephritis and lymphoproliferative disorders, respectively. This establishes that the fine-tuning of the ERK/MAPK pathway is critical to regulate B and T cell activation and function and that each MEK isoform plays distinct roles during lymphocyte activation and disease development.
Collapse
Affiliation(s)
- Nicolas Houde
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology Axis), L'Hôtel-Dieu de Québec, 9, Rue McMahon, Québec, QC G1R 3S3 Canada
| | - Laurent Beuret
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology Axis), L'Hôtel-Dieu de Québec, 9, Rue McMahon, Québec, QC G1R 3S3 Canada
| | - Amélie Bonaud
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, INSERM U1160, Paris 75010, France; OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris 75010, France
| | - Simon-Pierre Fortier-Beaulieu
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology Axis), L'Hôtel-Dieu de Québec, 9, Rue McMahon, Québec, QC G1R 3S3 Canada
| | - Kim Truchon-Landry
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology Axis), L'Hôtel-Dieu de Québec, 9, Rue McMahon, Québec, QC G1R 3S3 Canada
| | - Rifdat Aoidi
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology Axis), L'Hôtel-Dieu de Québec, 9, Rue McMahon, Québec, QC G1R 3S3 Canada
| | - Émilie Pic
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology Axis), L'Hôtel-Dieu de Québec, 9, Rue McMahon, Québec, QC G1R 3S3 Canada
| | - Nagham Alouche
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, INSERM U1160, Paris 75010, France; OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris 75010, France
| | - Vincent Rondeau
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, INSERM U1160, Paris 75010, France; OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris 75010, France
| | - Géraldine Schlecht-Louf
- Université Paris-Saclay, INSERM, Inflammation, Microbiome and Immunosurveillance, Clamart 92140, France
| | - Karl Balabanian
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, INSERM U1160, Paris 75010, France; OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris 75010, France
| | - Marion Espéli
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, INSERM U1160, Paris 75010, France; OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris 75010, France
| | - Jean Charron
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology Axis), L'Hôtel-Dieu de Québec, 9, Rue McMahon, Québec, QC G1R 3S3 Canada; Department of Molecular Biology, Medical Biochemistry & Pathology, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
18
|
Delta/Jagged-mediated Notch signaling induces the differentiation of agr2-positive epidermal mucous cells in zebrafish embryos. PLoS Genet 2021; 17:e1009969. [PMID: 34962934 PMCID: PMC8746730 DOI: 10.1371/journal.pgen.1009969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 01/10/2022] [Accepted: 11/27/2021] [Indexed: 11/25/2022] Open
Abstract
Teleosts live in aquatic habitats, where they encounter ionic and acid-base fluctuations as well as infectious pathogens. To protect from these external challenges, the teleost epidermis is composed of living cells, including keratinocytes and ionocytes that maintain body fluid ionic homeostasis, and mucous cells that secret mucus. While ionocyte progenitors are known to be specified by Delta-Notch-mediated lateral inhibition during late gastrulation and early segmentation, it remains unclear how epidermal mucous cells (EMCs) are differentiated and maintained. Here, we show that Delta/Jagged-mediated activation of Notch signaling induces the differentiation of agr2-positive (agr2+) EMCs in zebrafish embryos during segmentation. We demonstrated that agr2+ EMCs contain cytoplasmic secretory granules and express muc5.1 and muc5.2. Reductions in agr2+ EMC number were observed in mib mutants and notch3 MOs-injected notch1a mutants, while increases in agr2+ cell number were detected in notch1a- and X-Su(H)/ANK-overexpressing embryos. Treatment with γ-secretase inhibitors further revealed that Notch signaling is required during bud to 15 hpf for the differentiation of agr2+ EMCs. Increased agr2+ EMC numbers were also observed in jag1a-, jag1b-, jag2a- and dlc-overexpressing, but not jag2b-overexpressing embryos. Meanwhile, reductions in agr2+ EMC numbers were detected in jag1a morphants, jag1b mutants, jag2a mutants and dlc morphants, but not jag2b mutants. Reduced numbers of pvalb8-positive epidermal cells were also observed in mib or jag2a mutants and jag1a or jag1b morphants, while increased pvalb8-positive epidermal cell numbers were detected in notch1a-overexpressing, but not dlc-overexpressing embryos. BrdU labeling further revealed that the agr2+ EMC population is maintained by proliferation. Cell lineage experiments showed that agr2+ EMCs are derived from the same ectodermal precursors as keratinocytes or ionocytes. Together, our results indicate that specification of agr2+ EMCs in zebrafish embryos is induced by DeltaC/Jagged-dependent activation of Notch1a/3 signaling, and the cell population is maintained by proliferation. As aquatic organisms, fish must tolerate environmental challenges that include acid-base fluctuations and water-borne pathogens. The skin provides a first line of defense against these challenges, and specific cell types in the tissue are responsible for different protective functions. For example, keratinocytes provide body coverage, ionocytes are responsible for maintaining body fluid ionic homeostasis, and epidermal mucous cells generate a protective layer of mucus that covers the entire fish surface. In this study, we uncovered the developmental process in zebrafish that underlies the generation of epidermal mucous cells. First, we characterized epidermal mucous cells according to their expression of a particular gene, agr2. Then, we found that these cells differentiate soon after ionocytes and keratinocytes, and the molecular pathways that guide differentiation of all three cell types involve similar signals. While ionocytes and keratinocytes are known to be specified by Delta-Notch-mediated lateral inhibition, we found that epidermal mucous cells are specified by activation of Notch by Delta and Jagged ligands. Thus, our results suggest that the specification of these major cell types in the epidermis occurs via a streamlined Notch-dependent process. This utilization of temporally distinct signaling events can therefore generate diverse cell types in the fish epidermis.
Collapse
|
19
|
Müller L, Hatzfeld M, Keil R. Desmosomes as Signaling Hubs in the Regulation of Cell Behavior. Front Cell Dev Biol 2021; 9:745670. [PMID: 34631720 PMCID: PMC8495202 DOI: 10.3389/fcell.2021.745670] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022] Open
Abstract
Desmosomes are intercellular junctions, which preserve tissue integrity during homeostatic and stress conditions. These functions rely on their unique structural properties, which enable them to respond to context-dependent signals and transmit them to change cell behavior. Desmosome composition and size vary depending on tissue specific expression and differentiation state. Their constituent proteins are highly regulated by posttranslational modifications that control their function in the desmosome itself and in addition regulate a multitude of desmosome-independent functions. This review will summarize our current knowledge how signaling pathways that control epithelial shape, polarity and function regulate desmosomes and how desmosomal proteins transduce these signals to modulate cell behavior.
Collapse
Affiliation(s)
- Lisa Müller
- Department for Pathobiochemistry, Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Mechthild Hatzfeld
- Department for Pathobiochemistry, Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - René Keil
- Department for Pathobiochemistry, Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
20
|
Droll S, Bao X. Oh, the Mutations You'll Acquire! A Systematic Overview of Cutaneous Squamous Cell Carcinoma. Cell Physiol Biochem 2021; 55:89-119. [PMID: 34553848 PMCID: PMC8579759 DOI: 10.33594/000000433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2021] [Indexed: 12/15/2022] Open
Abstract
Nearly two million cases of cutaneous squamous cell carcinoma (cSCC) are diagnosed every year in the United States alone. cSCC is notable for both its prevalence and its propensity for invasion and metastasis. For many patients, surgery is curative. However, patients experiencing immunosuppression or recurrent, advanced, and metastatic disease still face limited therapeutic options and significant mortality. cSCC forms after decades of sun exposure and possesses the highest known mutation rate of all cancers. This mutational burden complicates efforts to identify the primary factors driving cSCC initiation and progression, which in turn hinders the development of targeted therapeutics. In this review, we summarize the mutations and alterations that have been observed in patients’ cSCC tumors, affecting signaling pathways, transcriptional regulators, and the microenvironment. We also highlight novel therapeutic opportunities in development and clinical trials.
Collapse
Affiliation(s)
- Stephenie Droll
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Xiaomin Bao
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA, .,Department of Dermatology, Northwestern University, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| |
Collapse
|
21
|
Beuret L, Fortier-Beaulieu SP, Rondeau V, Roy S, Houde N, Balabanian K, Espéli M, Charron J. Mek1 and Mek2 Functional Redundancy in Erythropoiesis. Front Cell Dev Biol 2021; 9:639022. [PMID: 34386488 PMCID: PMC8353236 DOI: 10.3389/fcell.2021.639022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/21/2021] [Indexed: 12/23/2022] Open
Abstract
Several studies have established the crucial role of the extracellular signal–regulated kinase (ERK)/mitogen-activated protein kinase pathway in hematopoietic cell proliferation and differentiation. MEK1 and MEK2 phosphorylate and activate ERK1 and ERK2. However, whether MEK1 and MEK2 differentially regulate these processes is unknown. To define the function of Mek genes in the activation of the ERK pathway during hematopoiesis, we generated a mutant mouse line carrying a hematopoietic-specific deletion of the Mek1 gene function in a Mek2 null background. Inactivation of both Mek1 and Mek2 genes resulted in death shortly after birth with a severe anemia revealing the essential role of the ERK pathway in erythropoiesis. Mek1 and Mek2 functional ablation also affected lymphopoiesis and myelopoiesis. In contrast, mice that retained one functional Mek1 (1Mek1) or Mek2 (1Mek2) allele in hematopoietic cells were viable and fertile. 1Mek1 and 1Mek2 mutants showed mild signs of anemia and splenomegaly, but the half-life of their red blood cells and the response to erythropoietic stress were not altered, suggesting a certain level of Mek redundancy for sustaining functional erythropoiesis. However, subtle differences in multipotent progenitor distribution in the bone marrow were observed in 1Mek1 mice, suggesting that the two Mek genes might differentially regulate early hematopoiesis.
Collapse
Affiliation(s)
- Laurent Beuret
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology), Québec, QC, Canada
| | - Simon-Pierre Fortier-Beaulieu
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology), Québec, QC, Canada
| | - Vincent Rondeau
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, Paris, France.,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Sophie Roy
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology), Québec, QC, Canada
| | - Nicolas Houde
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology), Québec, QC, Canada
| | - Karl Balabanian
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, Paris, France.,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Marion Espéli
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, Paris, France.,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Jean Charron
- Centre de Recherche sur le Cancer de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval (Oncology), Québec, QC, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC, Canada
| |
Collapse
|
22
|
Yu F, Cai M, Shao L, Zhang J. Targeting Protein Kinases Degradation by PROTACs. Front Chem 2021; 9:679120. [PMID: 34277564 PMCID: PMC8279777 DOI: 10.3389/fchem.2021.679120] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/15/2021] [Indexed: 12/30/2022] Open
Abstract
Kinase dysregulation is greatly associated with cell proliferation, migration and survival, indicating the importance of kinases as therapeutic targets for anticancer drug development. However, traditional kinase inhibitors binding to catalytic or allosteric sites are associated with significant challenges. The emergence of resistance and targeting difficult-to-degrade and multi-domain proteins are significant limiting factors affecting the efficacy of targeted anticancer drugs. The next-generation treatment approaches seem to have overcome these concerns, and the use of proteolysis targeting chimera (PROTAC) technology is one such method. PROTACs bind to proteins of interest and recruit E3 ligase for degrading the whole target protein via the ubiquitin-proteasome pathway. This review provides a detailed summary of the most recent signs of progress in PROTACs targeting different kinases, primarily focusing on new chemical entities in medicinal chemistry.
Collapse
Affiliation(s)
- Fei Yu
- Medical School of Kunming University of Science and Technology, Kunming, China
| | - Ming Cai
- Medical School of Kunming University of Science and Technology, Kunming, China
| | - Liang Shao
- Medical School of Kunming University of Science and Technology, Kunming, China
| | - Jihong Zhang
- Medical School of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
23
|
Ullah R, Yin Q, Snell AH, Wan L. RAF-MEK-ERK pathway in cancer evolution and treatment. Semin Cancer Biol 2021; 85:123-154. [PMID: 33992782 DOI: 10.1016/j.semcancer.2021.05.010] [Citation(s) in RCA: 247] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022]
Abstract
The RAF-MEK-ERK signaling cascade is a well-characterized MAPK pathway involved in cell proliferation and survival. The three-layered MAPK signaling cascade is initiated upon RTK and RAS activation. Three RAF isoforms ARAF, BRAF and CRAF, and their downstream MEK1/2 and ERK1/2 kinases constitute a coherently orchestrated signaling module that directs a range of physiological functions. Genetic alterations in this pathway are among the most prevalent in human cancers, which consist of numerous hot-spot mutations such as BRAFV600E. Oncogenic mutations in this pathway often override otherwise tightly regulated checkpoints to open the door for uncontrolled cell growth and neoplasia. The crosstalk between the RAF-MEK-ERK axis and other signaling pathways further extends the proliferative potential of this pathway in human cancers. In this review, we summarize the molecular architecture and physiological functions of the RAF-MEK-ERK pathway with emphasis on its dysregulations in human cancers, as well as the efforts made to target the RAF-MEK-ERK module using small molecule inhibitors.
Collapse
Affiliation(s)
- Rahim Ullah
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Qing Yin
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Aidan H Snell
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Lixin Wan
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA; Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
24
|
Merkel cell polyomavirus small tumour antigen activates the p38 MAPK pathway to enhance cellular motility. Biochem J 2021; 477:2721-2733. [PMID: 32639530 PMCID: PMC7398664 DOI: 10.1042/bcj20200399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/26/2022]
Abstract
Merkel cell carcinoma (MCC) is an aggressive skin cancer with high rates of recurrence and metastasis. Merkel cell polyomavirus (MCPyV) is associated with the majority of MCC cases. MCPyV-induced tumourigenesis is largely dependent on the expression of the small tumour antigen (ST). Recent findings implicate MCPyV ST expression in the highly metastatic nature of MCC by promoting cell motility and migration, through differential expression of cellular proteins that lead to microtubule destabilisation, filopodium formation and breakdown of cell-cell junctions. However, the molecular mechanisms which dysregulate these cellular processes are yet to be fully elucidated. Here, we demonstrate that MCPyV ST expression activates p38 MAPK signalling to drive cell migration and motility. Notably, MCPyV ST-mediated p38 MAPK signalling occurs through MKK4, as opposed to the canonical MKK3/6 signalling pathway. In addition, our results indicate that an interaction between MCPyV ST and the cellular phospatase subunit PP4C is essential for its effect on p38 MAPK signalling. These results provide novel opportunities for the treatment of metastatic MCC given the intense interest in p38 MAPK inhibitors as therapeutic agents.
Collapse
|
25
|
Cui N, Li L, Feng Q, Ma HM, Lei D, Zheng PS. Hexokinase 2 Promotes Cell Growth and Tumor Formation Through the Raf/MEK/ERK Signaling Pathway in Cervical Cancer. Front Oncol 2020; 10:581208. [PMID: 33324557 PMCID: PMC7725710 DOI: 10.3389/fonc.2020.581208] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/22/2020] [Indexed: 01/10/2023] Open
Abstract
Hexokinase 2 (HK2) is a member of the hexokinases (HK) that has been reported to be a key regulator during glucose metabolism linked to malignant growth in many types of cancers. In this study, stimulation of HK2 expression was observed in squamous cervical cancer (SCC) tissues, and HK2 expression promoted the proliferation of cervical cancer cells in vitro and tumor formation in vivo by accelerating cell cycle progression, upregulating cyclin A1, and downregulating p27 expression. Moreover, transcriptome sequencing analysis revealed that MAPK3 (ERK1) was upregulated in HK2-overexpressing HeLa cells. Further experiments found that the protein levels of p-Raf, p-MEK1/2, ERK1/2, and p-ERK1/2 were increased in HK2 over-expressing SiHa and HeLa cells. When ERK1/2 and p-ERK1/2 expression was blocked by an inhibitor (FR180204), reduced cyclin A1 expression was observed in HK2 over-expressing cells, with induced p27 expression and inhibited cell growth. Therefore, our data demonstrated that HK2 promoted the proliferation of cervical cancer cells by upregulating cyclin A1 and down-regulating p27 expression through the Raf/MEK/ERK signaling pathway.
Collapse
Affiliation(s)
- Nan Cui
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Section of Cancer Stem Cell Research, Ministry of Education of the People's Republic of China, Xi'an, China
| | - Lu Li
- Hebei Key Laboratory of Environment and Human Health, Department of Social Medicine and Health Care Management, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Qian Feng
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Section of Cancer Stem Cell Research, Ministry of Education of the People's Republic of China, Xi'an, China
| | - Hong-Mei Ma
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Section of Cancer Stem Cell Research, Ministry of Education of the People's Republic of China, Xi'an, China
| | - Dan Lei
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Section of Cancer Stem Cell Research, Ministry of Education of the People's Republic of China, Xi'an, China
| | - Peng-Sheng Zheng
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Section of Cancer Stem Cell Research, Ministry of Education of the People's Republic of China, Xi'an, China
| |
Collapse
|
26
|
Ling J, Sckaff M, Tiwari M, Chen Y, Li J, Jones J, Sen GL. RAS-mediated suppression of PAR3 and its effects on SCC initiation and tissue architecture occur independently of hyperplasia. J Cell Sci 2020; 133:jcs.249102. [PMID: 33172988 DOI: 10.1242/jcs.249102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Proper epithelial development and homeostasis depends on strict control of oriented cell division. Current evidence shows that this process is regulated by intrinsic polarity factors and external spatial cues. Owing to the lack of an appropriate model system that can recapitulate the architecture of the skin, deregulation of spindle orientation in human epithelial carcinoma has never been investigated. Here, using an inducible model of human squamous cell carcinoma (SCC), we demonstrate that RAS-dependent suppression of PAR3 (encoded by PARD3) accelerates epithelial disorganization during early tumorigenesis. Diminished PAR3 led to loss of E-cadherin-mediated cell adhesion, which in turn contributed to misoriented cell division. Pharmacological inhibition of the MAPK pathway downstream of RAS activation reversed the defects in PAR3 expression, E-cadherin-mediated cell adhesion and mitotic spindle orientation. Thus, temporal analysis of human neoplasia provides a powerful approach to study cellular and molecular transformations during early oncogenesis, which allowed identification of PAR3 as a critical regulator of tissue architecture during initial human SCC development.
Collapse
Affiliation(s)
- Ji Ling
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - Maria Sckaff
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - Manisha Tiwari
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - Yifang Chen
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - Jingting Li
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - Jackson Jones
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - George L Sen
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA 92093-0869, USA
| |
Collapse
|
27
|
Deaver JW, López SM, Ryan PJ, Nghiem PP, Riechman SE, Fluckey JD. Regulation of cellular anabolism by mTOR: or how I learned to stop worrying and love translation. SPORTS MEDICINE AND HEALTH SCIENCE 2020; 2:195-201. [PMID: 35782997 PMCID: PMC9219308 DOI: 10.1016/j.smhs.2020.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- J. William Deaver
- Department of Health and Kinesiology, 107 Gilchrist Building, 2929 Research Parkway, Texas A&M University, College Station, TX, USA
| | - Sara Mata López
- Department of Veterinary Integrative Biosciences, 402 Raymond Stotzer Pkwy Building 2, Texas A&M University, College Station, TX, USA
| | - Patrick J. Ryan
- Department of Health and Kinesiology, 107 Gilchrist Building, 2929 Research Parkway, Texas A&M University, College Station, TX, USA
| | - Peter P. Nghiem
- Department of Veterinary Integrative Biosciences, 402 Raymond Stotzer Pkwy Building 2, Texas A&M University, College Station, TX, USA
| | - Steven E. Riechman
- Department of Health and Kinesiology, 107 Gilchrist Building, 2929 Research Parkway, Texas A&M University, College Station, TX, USA
| | - James D. Fluckey
- Department of Health and Kinesiology, 107 Gilchrist Building, 2929 Research Parkway, Texas A&M University, College Station, TX, USA
- Corresponding author. Department of Health and Kinesiology, 107 Gilchrist Building, Room 313, 2929 Research Parkway, Texas A&M University, College Station, TX, 77843-4243, USA.
| |
Collapse
|
28
|
The Role of microRNAs in Organismal and Skin Aging. Int J Mol Sci 2020; 21:ijms21155281. [PMID: 32722415 PMCID: PMC7432402 DOI: 10.3390/ijms21155281] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/11/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
The aging process starts directly after birth and lasts for the entire lifespan; it manifests itself with a decline in an organism’s ability to adapt and is linked to the development of age-related diseases that eventually lead to premature death. This review aims to explore how microRNAs (miRNAs) are involved in skin functioning and aging. Recent evidence has suggested that miRNAs regulate all aspects of cutaneous biogenesis, functionality, and aging. It has been noted that some miRNAs were down-regulated in long-lived individuals, such as let-7, miR-17, and miR-34 (known as longevity-related miRNAs). They are conserved in humans and presumably promote lifespan prolongation; conversely, they are up-regulated in age-related diseases, like cancers. The analysis of the age-associated cutaneous miRNAs revealed the increased expression of miR-130, miR-138, and miR-181a/b in keratinocytes during replicative senescence. These miRNAs affected cell proliferation pathways via targeting the p63 and Sirtuin 1 mRNAs. Notably, miR-181a was also implicated in skin immunosenescence, represented by the Langerhans cells. Dermal fibroblasts also expressed increased the levels of the biomarkers of aging that affect telomere maintenance and all phases of the cellular life cycle, such as let-7, miR-23a-3p, 34a-5p, miR-125a, miR-181a-5p, and miR-221/222-3p. Among them, the miR-34 family, stimulated by ultraviolet B irradiation, deteriorates collagen in the extracellular matrix due to the activation of the matrix metalloproteinases and thereby potentiates wrinkle formation. In addition to the pro-aging effects of miRNAs, the plausible antiaging activity of miR-146a that antagonized the UVA-induced inhibition of proliferation and suppressed aging-related genes (e.g., p21WAF-1, p16, and p53) through targeting Smad4 has also been noticed. Nevertheless, the role of miRNAs in skin aging is still not fully elucidated and needs to be further discovered and explained.
Collapse
|
29
|
Abstract
Cell death is an important facet of animal development. In some developing tissues, death is the ultimate fate of over 80% of generated cells. Although recent studies have delineated a bewildering number of cell death mechanisms, most have only been observed in pathological contexts, and only a small number drive normal development. This Primer outlines the important roles, different types and molecular players regulating developmental cell death, and discusses recent findings with which the field currently grapples. We also clarify terminology, to distinguish between developmental cell death mechanisms, for which there is evidence for evolutionary selection, and cell death that follows genetic, chemical or physical injury. Finally, we suggest how advances in understanding developmental cell death may provide insights into the molecular basis of developmental abnormalities and pathological cell death in disease.
Collapse
Affiliation(s)
- Piya Ghose
- Department of Biology, The University of Texas at Arlington, 655 Mitchell St., Arlington, TX 76019, USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
30
|
Drosten M, Barbacid M. Targeting the MAPK Pathway in KRAS-Driven Tumors. Cancer Cell 2020; 37:543-550. [PMID: 32289276 DOI: 10.1016/j.ccell.2020.03.013] [Citation(s) in RCA: 320] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/26/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022]
Abstract
KRAS mutations occur in a quarter of all of human cancers, yet no selective drug has been approved to treat these tumors. Despite the recent development of drugs that block KRASG12C, the majority of KRAS oncoproteins remain undruggable. Here, we review recent efforts to validate individual components of the mitogen-activated protein kinase (MAPK) pathway as targets to treat KRAS-mutant cancers by comparing genetic information derived from experimental mouse models of KRAS-driven lung and pancreatic tumors with the outcome of selective MAPK inhibitors in clinical trials. We also review the potential of RAF1 as a key target to block KRAS-mutant cancers.
Collapse
Affiliation(s)
- Matthias Drosten
- Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| | - Mariano Barbacid
- Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| |
Collapse
|
31
|
Takahagi A, Shindo T, Chen-Yoshikawa TF, Yoshizawa A, Gochi F, Miyamoto E, Saito M, Tanaka S, Motoyama H, Aoyama A, Takaori-Kondo A, Date H. Trametinib Attenuates Delayed Rejection and Preserves Thymic Function in Rat Lung Transplantation. Am J Respir Cell Mol Biol 2020; 61:355-366. [PMID: 30849233 DOI: 10.1165/rcmb.2018-0188oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Delayed immunological rejection after human lung transplantation causes chronic lung allograft dysfunction, which is associated with high mortality. Delayed rejection may be attributable to indirect alloantigen presentation by host antigen-presenting cells; however, its pathophysiology is not fully understood. The mitogen-activated protein kinase pathway is activated in T cells upon stimulation, and we previously showed that the MEK inhibitor, trametinib, suppresses graft-versus-host disease after murine bone marrow transplantation. We investigated whether trametinib suppresses graft rejection after two types of rat lung transplantation and analyzed its immunological mode of action. Major histocompatibility complex-mismatched transplantation from brown Norway rats into Lewis rats and minor histocompatibility antigen-mismatched transplantation from Fischer 344 rats into Lewis rats were performed. Cyclosporine (CsA) and/or trametinib were administered alone or consecutively. Acute and delayed rejection, lymphocyte infiltration, and pulmonary function were evaluated. Administration of trametinib after CsA suppressed delayed rejection, reduced inflammatory cell infiltration and fibrosis within the graft, and preserved pulmonary functions at Day 28. Trametinib suppressed functional differentiation of T and B cells in the periphery but preserved thymic T cell differentiation. Donor B cells within the graft disappeared by Day 14, indicating that delayed graft rejection at Day 28 was mainly due to indirect presentation by host antigen-presenting cells. Finally, trametinib administration without CsA preconditioning suppressed rejection after minor histocompatibility antigen-mismatched transplantation. Trametinib attenuates delayed rejection upon major histocompatibility complex-mismatched transplantation by suppressing indirect presentation and is a promising candidate to treat chronic lung allograft dysfunction in humans.
Collapse
Affiliation(s)
| | - Takero Shindo
- Department of Hematology/Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan; and
| | | | - Akihiko Yoshizawa
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | | | | | | | | | | | | | - Akifumi Takaori-Kondo
- Department of Hematology/Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan; and
| | | |
Collapse
|
32
|
Wang W, Ma J, Sun X, Ba W, Meng X, Zhu Y, Leng L, Li C. A systems biology approach for defining the potential molecular framework of idiopathic hypereosinophilic syndrome with cutaneous involvement. Biochem Biophys Res Commun 2020; 524:567-574. [PMID: 32019674 DOI: 10.1016/j.bbrc.2020.01.131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 01/23/2020] [Indexed: 11/18/2022]
Abstract
Hypereosinophilic syndrome (HES) is a rare multisystem disease that predominantly includes skin with severe and persistent itching. A lack of understanding about the pathological condition and mechanism of dermatosis caused by HES hinders its treatment. In the present study, we applied a quantitative proteomics approach to characterize the cellular responses of skin tissue to idiopathic HES (IHES) at the proteome level. We identified hundreds of skin tissue proteins that were differentially expressed between IHES patients and healthy individuals. IHES patients display severely damaged microenvironment, including extracellular matrix (ECM) organization and disassembly, immune disorders, decreased metabolic capacity, and susceptibility to microbial infection. Moreover, there was abnormal proliferation of basal epidermal stem cells, which was closely related to high expression of the epigenetic regulator, histone deacetylase 2, providing mechanistic insight into the abnormal epidermal thickening of IHES skin tissues. Overall, our study provides a comprehensive framework for a system-level understanding of IHES-induced dermatosis (IHESiD) tissues at the protein and cell pathway levels. Our findings may facilitate a new approach to diagnosis and treatment to alleviate skin clinical symptoms, monitor the activity of IHES, and determine therapeutic effects.
Collapse
Affiliation(s)
- Wenjuan Wang
- Department of Dermatology, PLA General Hospital, Beijing, China
| | - Jie Ma
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing, China
| | - Xuer Sun
- Tissue Engineering Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Wei Ba
- Department of Dermatology, PLA General Hospital, Beijing, China
| | - Xianfu Meng
- Department of Dermatology, PLA General Hospital, Beijing, China
| | - Yunping Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing, China
| | - Ling Leng
- Department of Medical Science Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| | - Chengxin Li
- Department of Dermatology, PLA General Hospital, Beijing, China.
| |
Collapse
|
33
|
Leng L, Ma J, Sun X, Guo B, Li F, Zhang W, Chang M, Diao J, Wang Y, Wang W, Wang S, Zhu Y, He F, Reid LM, Wang Y. Comprehensive proteomic atlas of skin biomatrix scaffolds reveals a supportive microenvironment for epidermal development. J Tissue Eng 2020; 11:2041731420972310. [PMID: 33224464 PMCID: PMC7658515 DOI: 10.1177/2041731420972310] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 10/20/2020] [Indexed: 12/31/2022] Open
Abstract
Biomaterial scaffolds are increasingly being used to drive tissue regeneration. The limited success so far in human tissues rebuilding and therapy application may be due to inadequacy of the functionality biomaterial scaffold. We developed a new decellularized method to obtain complete anatomical skin biomatrix scaffold in situ with extracellular matrix (ECM) architecture preserved, in this study. We described a skin scaffold map by integrated proteomics and systematically analyzed the interaction between ECM proteins and epidermal cells in skin microenvironment on this basis. They were used to quantify structure and function of the skin's Matrisome, comprised of core ECM components and ECM-associated soluble signals that are key regulators of epidermal development. We especially revealed that ECM played a role in determining the fate of epidermal stem cells through hemidesmosome components. These concepts not only bring us a new understanding of the role of the skin ECM niche, they also provide an attractive combinational strategy based on tissue engineering principles with skin biomatrix scaffold materials for the acceleration and enhancement of tissue regeneration.
Collapse
Affiliation(s)
- Ling Leng
- Stem cell and Regenerative Medicine Lab, Department of Medical Science Research Center, Translational Medicine Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Department of Stem Cell and Regenerative Medicine Laboratory, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Jie Ma
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing, China
| | - Xuer Sun
- Department of Stem Cell and Regenerative Medicine Laboratory, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Baolin Guo
- Department of Stem Cell and Regenerative Medicine Laboratory, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Fanlu Li
- Department of Stem Cell and Regenerative Medicine Laboratory, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Wei Zhang
- Department of Stem Cell and Regenerative Medicine Laboratory, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Mingyang Chang
- Department of Stem Cell and Regenerative Medicine Laboratory, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Jinmei Diao
- Department of Stem Cell and Regenerative Medicine Laboratory, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Yi Wang
- Department of Stem Cell and Regenerative Medicine Laboratory, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Wenjuan Wang
- Department of Dermatology, Chinese PLA General Hospital, Beijing, China
| | - Shuyong Wang
- Department of Stem Cell and Regenerative Medicine Laboratory, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Yunping Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing, China
- Basic Medical School, Anhui Medical University, Anhui, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing, China
| | - Lola M Reid
- Department of Cell Biology and Physiology Program in Molecular Biology and Biotechnology, Lineberger Cancer Center, University of North Carolina School of Medicine, Chapel Hill, USA
| | - Yunfang Wang
- Department of Stem Cell and Regenerative Medicine Laboratory, Institute of Health Service and Transfusion Medicine, Beijing, China
- Translational Research Center, Beijing Tsinghua Chang Gung Hospital, Beijing, China
| |
Collapse
|
34
|
Huynh MM, Jayanthan A, Pambid MR, Los G, Dunn SE. RSK2: a promising therapeutic target for the treatment of triple-negative breast cancer. Expert Opin Ther Targets 2019; 24:1-5. [PMID: 31875730 DOI: 10.1080/14728222.2020.1709824] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- My-My Huynh
- Phoenix Molecular Designs, Vancouver, British Columbia, Canada
| | | | | | - Gerrit Los
- Phoenix Molecular Designs, San Diego, CA, USA
| | - Sandra E Dunn
- Phoenix Molecular Designs, Vancouver, British Columbia, Canada.,Phoenix Molecular Designs, San Diego, CA, USA
| |
Collapse
|
35
|
Long ME, Gong KQ, Eddy WE, Volk JS, Morrell ED, Mikacenic C, West TE, Skerrett SJ, Charron J, Liles WC, Manicone AM. MEK1 regulates pulmonary macrophage inflammatory responses and resolution of acute lung injury. JCI Insight 2019; 4:132377. [PMID: 31801908 PMCID: PMC6962022 DOI: 10.1172/jci.insight.132377] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022] Open
Abstract
The MEK1/2-ERK1/2 pathway has been implicated in regulating the inflammatory response to lung injury and infection, and pharmacologic MEK1/2 inhibitor compounds are reported to reduce detrimental inflammation in multiple animal models of disease, in part through modulation of leukocyte responses. However, the specific contribution of myeloid MEK1 in regulating acute lung injury (ALI) and its resolution remain unknown. Here, the role of myeloid Mek1 was investigated in a murine model of LPS-induced ALI (LPS-ALI) by genetic deletion using the Cre-floxed system (LysMCre × Mekfl), and human alveolar macrophages from healthy volunteers and patients with acute respiratory distress syndrome (ARDS) were obtained to assess activation of the MEK1/2-ERK1/2 pathway. Myeloid Mek1 deletion results in a failure to resolve LPS-ALI, and alveolar macrophages lacking MEK1 had increased activation of MEK2 and the downstream target ERK1/2 on day 4 of LPS-ALI. The clinical significance of these findings is supported by increased activation of the MEK1/2-ERK1/2 pathway in alveolar macrophages from patients with ARDS compared with alveolar macrophages from healthy volunteers. This study reveals a critical role for myeloid MEK1 in promoting resolution of LPS-ALI and controlling the duration of macrophage proinflammatory responses.
Collapse
Affiliation(s)
- Matthew E. Long
- Center for Lung Biology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Ke-Qin Gong
- Center for Lung Biology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - William E. Eddy
- Center for Lung Biology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Joseph S. Volk
- Center for Lung Biology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Eric D. Morrell
- Center for Lung Biology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Carmen Mikacenic
- Center for Lung Biology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - T. Eoin West
- Center for Lung Biology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Shawn J. Skerrett
- Center for Lung Biology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Jean Charron
- CHU de Québec-Université Laval Research Center (Oncology division), Université Laval Cancer Research Center and Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec, Canada
| | - W. Conrad Liles
- Center for Lung Biology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Anne M. Manicone
- Center for Lung Biology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
36
|
Cai P, Otten ABC, Cheng B, Ishii MA, Zhang W, Huang B, Qu K, Sun BK. A genome-wide long noncoding RNA CRISPRi screen identifies PRANCR as a novel regulator of epidermal homeostasis. Genome Res 2019; 30:22-34. [PMID: 31804951 PMCID: PMC6961571 DOI: 10.1101/gr.251561.119] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022]
Abstract
Genome-wide association studies indicate that many disease susceptibility regions reside in non-protein-coding regions of the genome. Long noncoding RNAs (lncRNAs) are a major component of the noncoding genome, but their biological impacts are not fully understood. Here, we performed a CRISPR interference (CRISPRi) screen on 2263 epidermis-expressed lncRNAs and identified nine novel candidate lncRNAs regulating keratinocyte proliferation. We further characterized a top hit from the screen, progenitor renewal associated non-coding RNA (PRANCR), using RNA interference–mediated knockdown and phenotypic analysis in organotypic human tissue. PRANCR regulates keratinocyte proliferation, cell cycle progression, and clonogenicity. PRANCR-deficient epidermis displayed impaired stratification with reduced expression of differentiation genes that are altered in human skin diseases, including keratins 1 and 10, filaggrin, and loricrin. Transcriptome analysis showed that PRANCR controls the expression of 1136 genes, with strong enrichment for late cell cycle genes containing a CHR promoter element. In addition, PRANCR depletion led to increased levels of both total and nuclear CDKN1A (also known as p21), which is known to govern both keratinocyte proliferation and differentiation. Collectively, these data show that PRANCR is a novel lncRNA regulating epidermal homeostasis and identify other lncRNA candidates that may have roles in this process as well.
Collapse
Affiliation(s)
- Pengfei Cai
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Auke B C Otten
- Department of Dermatology, University of California-San Diego, La Jolla, California 92109, USA
| | - Binbin Cheng
- Department of Dermatology, University of California-San Diego, La Jolla, California 92109, USA
| | - Mitsuhiro A Ishii
- Department of Dermatology, University of California-San Diego, La Jolla, California 92109, USA
| | - Wen Zhang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Beibei Huang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Kun Qu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.,CAS Center for Excellence in Molecular Cell Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Bryan K Sun
- Department of Dermatology, University of California-San Diego, La Jolla, California 92109, USA
| |
Collapse
|
37
|
Wei J, Hu J, Wang L, Xie L, Jin MS, Chen X, Liu J, Jin J. Discovery of a First-in-Class Mitogen-Activated Protein Kinase Kinase 1/2 Degrader. J Med Chem 2019; 62:10897-10911. [PMID: 31730343 DOI: 10.1021/acs.jmedchem.9b01528] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
MEK1 and MEK2 (also known as MAP2K1 and MAP2K2) are the "gatekeepers" of the ERK signaling output with redundant roles in controlling ERK activity. Numerous inhibitors targeting MEK1/2 have been developed including three FDA-approved drugs. However, acquired resistance to MEK1/2 inhibitors has been observed in patients, and new therapeutic strategies are needed to overcome the resistance. Here, we report a first-in-class degrader of MEK1/2, MS432 (23), which potently and selectively degraded MEK1 and MEK2 in a VHL E3 ligase- and proteasome-dependent manner and suppressed ERK phosphorylation in cells. It inhibited colorectal cancer and melanoma cell proliferation much more effectively than its negative control MS432N (24), and its effect was phenocopied by MEK1/2 knockdown. Compound 23 was highly selective for MEK1/2 in global proteomic profiling studies. It was also bioavailable in mice and can be used for in vivo efficacy studies. We provide two well-characterized chemical tools to the biomedical community.
Collapse
Affiliation(s)
- Jieli Wei
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Jianping Hu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Li Wang
- Department of Biochemistry and Biophysics , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Ling Xie
- Department of Biochemistry and Biophysics , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Margaret S Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Xian Chen
- Department of Biochemistry and Biophysics , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Jing Liu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| |
Collapse
|
38
|
Pedro MP, Salinas Parra N, Gutkind JS, Iglesias-Bartolome R. Activation of G-Protein Coupled Receptor-Gαi Signaling Increases Keratinocyte Proliferation and Reduces Differentiation, Leading to Epidermal Hyperplasia. J Invest Dermatol 2019; 140:1195-1203.e3. [PMID: 31707029 DOI: 10.1016/j.jid.2019.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/07/2019] [Accepted: 10/19/2019] [Indexed: 12/28/2022]
Abstract
G-protein coupled receptors (GPCRs) and their associated heterotrimeric G proteins impinge on pathways that control epithelial cell self-renewal and differentiation. Although it is known that Gαs protein signaling regulates skin homeostasis in vivo, the role of GPCR-coupled Gαi proteins in the skin is unclear. Here, by using a chemogenetic approach, we demonstrate that GPCR-Gαi activation can regulate keratinocyte proliferation and differentiation and that overactivation of Gαi-signaling in the basal compartment of the mouse skin can lead to epidermal hyperplasia. Our results expand our understanding of the role of GPCR-cAMP signaling in skin homeostasis and reveal overlapping and divergent roles of the cAMP-regulating heterotrimeric Gαs and Gαi proteins in keratinocytes.
Collapse
Affiliation(s)
- M Pilar Pedro
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Natalia Salinas Parra
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - J Silvio Gutkind
- Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Ramiro Iglesias-Bartolome
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
39
|
Vo AH, Swaggart KA, Woo A, Gao QQ, Demonbreun AR, Fallon KS, Quattrocelli M, Hadhazy M, Page PGT, Chen Z, Eskin A, Squire K, Nelson SF, McNally EM. Dusp6 is a genetic modifier of growth through enhanced ERK activity. Hum Mol Genet 2019; 28:279-289. [PMID: 30289454 DOI: 10.1093/hmg/ddy349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/26/2018] [Indexed: 12/21/2022] Open
Abstract
Like other single-gene disorders, muscular dystrophy displays a range of phenotypic heterogeneity even with the same primary mutation. Identifying genetic modifiers capable of altering the course of muscular dystrophy is one approach to deciphering gene-gene interactions that can be exploited for therapy development. To this end, we used an intercross strategy in mice to map modifiers of muscular dystrophy. We interrogated genes of interest in an interval on mouse chromosome 10 associated with body mass in muscular dystrophy as skeletal muscle contributes significantly to total body mass. Using whole-genome sequencing of the two parental mouse strains combined with deep RNA sequencing, we identified the Met62Ile substitution in the dual-specificity phosphatase 6 (Dusp6) gene from the DBA/2 J (D2) mouse strain. DUSP6 is a broadly expressed dual-specificity phosphatase protein, which binds and dephosphorylates extracellular-signal-regulated kinase (ERK), leading to decreased ERK activity. We found that the Met62Ile substitution reduced the interaction between DUSP6 and ERK resulting in increased ERK phosphorylation and ERK activity. In dystrophic muscle, DUSP6 Met62Ile is strongly upregulated to counteract its reduced activity. We found that myoblasts from the D2 background were insensitive to a specific small molecule inhibitor of DUSP6, while myoblasts expressing the canonical DUSP6 displayed enhanced proliferation after exposure to DUSP6 inhibition. These data identify DUSP6 as an important regulator of ERK activity in the setting of muscle growth and muscular dystrophy.
Collapse
Affiliation(s)
- Andy H Vo
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL
| | | | - Anna Woo
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL
| | - Quan Q Gao
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL
| | - Alexis R Demonbreun
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL
| | - Katherine S Fallon
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL
| | - Mattia Quattrocelli
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL
| | - Michele Hadhazy
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL
| | - Patrick G T Page
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL
| | - Zugen Chen
- Departments of Human Genetics and Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ascia Eskin
- Departments of Human Genetics and Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Kevin Squire
- Departments of Human Genetics and Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Stanley F Nelson
- Departments of Human Genetics and Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago IL
| |
Collapse
|
40
|
Zhao RZ, Jiang S, Zhang L, Yu ZB. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int J Mol Med 2019; 44:3-15. [PMID: 31115493 PMCID: PMC6559295 DOI: 10.3892/ijmm.2019.4188] [Citation(s) in RCA: 527] [Impact Index Per Article: 87.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/19/2019] [Indexed: 12/18/2022] Open
Abstract
The mammalian mitochondrial electron transport chain (ETC) includes complexes I-IV, as well as the electron transporters ubiquinone and cytochrome c. There are two electron transport pathways in the ETC: Complex I/III/IV, with NADH as the substrate and complex II/III/IV, with succinic acid as the substrate. The electron flow is coupled with the generation of a proton gradient across the inner membrane and the energy accumulated in the proton gradient is used by complex V (ATP synthase) to produce ATP. The first part of this review briefly introduces the structure and function of complexes I-IV and ATP synthase, including the specific electron transfer process in each complex. Some electrons are directly transferred to O2 to generate reactive oxygen species (ROS) in the ETC. The second part of this review discusses the sites of ROS generation in each ETC complex, including sites IF and IQ in complex I, site IIF in complex II and site IIIQo in complex III, and the physiological and pathological regulation of ROS. As signaling molecules, ROS play an important role in cell proliferation, hypoxia adaptation and cell fate determination, but excessive ROS can cause irreversible cell damage and even cell death. The occurrence and development of a number of diseases are closely related to ROS overproduction. Finally, proton leak and uncoupling proteins (UCPS) are discussed. Proton leak consists of basal proton leak and induced proton leak. Induced proton leak is precisely regulated and induced by UCPs. A total of five UCPs (UCP1-5) have been identified in mammalian cells. UCP1 mainly plays a role in the maintenance of body temperature in a cold environment through non-shivering thermogenesis. The core role of UCP2-5 is to reduce oxidative stress under certain conditions, therefore exerting cytoprotective effects. All diseases involving oxidative stress are associated with UCPs.
Collapse
Affiliation(s)
- Ru-Zhou Zhao
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Shuai Jiang
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lin Zhang
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhi-Bin Yu
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
41
|
The ERK MAPK Pathway Is Essential for Skeletal Development and Homeostasis. Int J Mol Sci 2019; 20:ijms20081803. [PMID: 31013682 PMCID: PMC6514701 DOI: 10.3390/ijms20081803] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/11/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are a family of protein kinases that function as key signal transducers of a wide spectrum of extracellular stimuli, including growth factors and pro-inflammatory cytokines. Dysregulation of the extracellular signal-regulated kinase (ERK) MAPK pathway is associated with human skeletal abnormalities including Noonan syndrome, neurofibromatosis type 1, and cardiofaciocutaneous syndrome. Here, we demonstrate that ERK activation in osteoprogenitors is required for bone formation during skeletal development and homeostasis. Deletion of Mek1 and Mek2, kinases upstream of ERK MAPK, in osteoprogenitors (Mek1OsxMek2−/−), resulted in severe osteopenia and cleidocranial dysplasia (CCD), similar to that seen in humans and mice with impaired RUNX2 function. Additionally, tamoxifen-induced deletion of Mek1 and Mek2 in osteoprogenitors in adult mice (Mek1Osx-ERTMek2−/−) significantly reduced bone mass. Mechanistically, this corresponded to decreased activation of osteoblast master regulators, including RUNX2, ATF4, and β-catenin. Finally, we identified potential regulators of osteoblast differentiation in the ERK MAPK pathway using unbiased phospho-mass spectrometry. These observations demonstrate essential roles of ERK activation in osteogenesis and bone formation.
Collapse
|
42
|
Kurtzeborn K, Kwon HN, Kuure S. MAPK/ERK Signaling in Regulation of Renal Differentiation. Int J Mol Sci 2019; 20:E1779. [PMID: 30974877 PMCID: PMC6479953 DOI: 10.3390/ijms20071779] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/20/2022] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are common birth defects derived from abnormalities in renal differentiation during embryogenesis. CAKUT is the major cause of end-stage renal disease and chronic kidney diseases in children, but its genetic causes remain largely unresolved. Here we discuss advances in the understanding of how mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) activity contributes to the regulation of ureteric bud branching morphogenesis, which dictates the final size, shape, and nephron number of the kidney. Recent studies also demonstrate that the MAPK/ERK pathway is directly involved in nephrogenesis, regulating both the maintenance and differentiation of the nephrogenic mesenchyme. Interestingly, aberrant MAPK/ERK signaling is linked to many cancers, and recent studies suggest it also plays a role in the most common pediatric renal cancer, Wilms' tumor.
Collapse
Affiliation(s)
- Kristen Kurtzeborn
- Helsinki Institute of Life Science, University of Helsinki, FIN-00014 Helsinki, Finland.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland.
| | - Hyuk Nam Kwon
- Helsinki Institute of Life Science, University of Helsinki, FIN-00014 Helsinki, Finland.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland.
| | - Satu Kuure
- Helsinki Institute of Life Science, University of Helsinki, FIN-00014 Helsinki, Finland.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland.
- GM-unit, Laboratory Animal Center, Helsinki Institute of Life Science, University of Helsinki, FIN-00014 Helsinki, Finland.
| |
Collapse
|
43
|
MAP kinase and autophagy pathways cooperate to maintain RAS mutant cancer cell survival. Proc Natl Acad Sci U S A 2019; 116:4508-4517. [PMID: 30709910 DOI: 10.1073/pnas.1817494116] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Oncogenic mutations in the small GTPase KRAS are frequently found in human cancers, and, currently, there are no effective targeted therapies for these tumors. Using a combinatorial siRNA approach, we analyzed a panel of KRAS mutant colorectal and pancreatic cancer cell lines for their dependency on 28 gene nodes that represent canonical RAS effector pathways and selected stress response pathways. We found that RAF node knockdown best differentiated KRAS mutant and KRAS WT cancer cells, suggesting RAF kinases are key oncoeffectors for KRAS addiction. By analyzing all 376 pairwise combination of these gene nodes, we found that cotargeting the RAF, RAC, and autophagy pathways can improve the capture of KRAS dependency better than targeting RAF alone. In particular, codepletion of the oncoeffector kinases BRAF and CRAF, together with the autophagy E1 ligase ATG7, gives the best therapeutic window between KRAS mutant cells and normal, untransformed cells. Distinct patterns of RAS effector dependency were observed across KRAS mutant cell lines, indicative of heterogeneous utilization of effector and stress response pathways in supporting KRAS addiction. Our findings revealed previously unappreciated complexity in the signaling network downstream of the KRAS oncogene and suggest rational target combinations for more effective therapeutic intervention.
Collapse
|
44
|
Diomede F, Zini N, Pizzicannella J, Merciaro I, Pizzicannella G, D’Orazio M, Piattelli A, Trubiani O. 5-Aza Exposure Improves Reprogramming Process Through Embryoid Body Formation in Human Gingival Stem Cells. Front Genet 2018; 9:419. [PMID: 30349553 PMCID: PMC6186780 DOI: 10.3389/fgene.2018.00419] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/06/2018] [Indexed: 12/18/2022] Open
Abstract
Embryoid bodies (EBs) are three-dimensional aggregates formed by pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells. They are used as an in vitro model to evaluate early extraembryonic tissue formation and differentiation process. In the adult organisms, cell differentiation is controlled and realized through the epigenetic regulation of gene expression, which consists of various mechanisms including DNA methylation. One demethylating agent is represented by 5-Azacytidine (5-Aza), considered able to induce epigenetic changes through gene derepression. Human gingival mesenchymal stem cells (hGMSCs), an easily accessible stem cells population, migrated from neural crest. They are particularly apt as an in vitro study model in regenerative medicine and in systemic diseases. The ability of 5-Aza treatment to induce hGMSCs toward a dedifferentiation stage and in particular versus EBs formation was investigated. For this purpose hGMSCs were treated for 48 h with 5-Aza (5 μM). After treatment, hGMSCs are organized as round 3D structures (EBs-hGMSCs). At light and transmission electron microscopy, the cells at the periphery of EBs-hGMSCs appear elongated, while ribbon-shaped cells and smaller cells with irregular shape surrounded by extracellular matrix were present in the center. By RT-PCR, EBs-hGMSCs expressed specific transcription markers related to the three germ layers as MAP-2, PAX-6 (ectoderm), MSX-1, Flk-1 (mesoderm), GATA-4, and GATA-6 (endoderm). Moreover, in EB-hGMSCs the overexpression of DNMT1 and ACH3 other than the down regulation of p21 was detectable. Immunofluorescence staining also showed a positivity for specific etodermal and mesodermal markers. In conclusion, 5-Aza was able to induce the direct conversion of adult hGMSCs into cells of three embryonic lineages: endoderm, ectoderm, and mesoderm, suggesting their possible application in autologous cell therapy for clinical organ repair.
Collapse
Affiliation(s)
- Francesca Diomede
- Department of Medical, Oral and Biotechnological Sciences, D’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Nicoletta Zini
- CNR-National Research Council of Italy, IGM, Bologna, Italy
- IRCCS, Rizzoli Orthopaedic Institute, Bologna, Italy
| | | | - Ilaria Merciaro
- Department of Medical, Oral and Biotechnological Sciences, D’Annunzio University of Chieti-Pescara, Chieti, Italy
| | | | - Monica D’Orazio
- Division of Rheumatology and Immunology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Adriano Piattelli
- Department of Medical, Oral and Biotechnological Sciences, D’Annunzio University of Chieti-Pescara, Chieti, Italy
- Chair of Biomaterials Engineering, Catholic University of San Antonio of Murcia (UCAM), Murcia, Spain
| | - Oriana Trubiani
- Department of Medical, Oral and Biotechnological Sciences, D’Annunzio University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
45
|
Bohush A, Niewiadomska G, Filipek A. Role of Mitogen Activated Protein Kinase Signaling in Parkinson's Disease. Int J Mol Sci 2018; 19:ijms19102973. [PMID: 30274251 PMCID: PMC6213537 DOI: 10.3390/ijms19102973] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/31/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder caused by insufficient dopamine production due to the loss of 50% to 70% of dopaminergic neurons. A shortage of dopamine, which is predominantly produced by the dopaminergic neurons within the substantia nigra, causes clinical symptoms such as reduction of muscle mass, impaired body balance, akinesia, bradykinesia, tremors, postural instability, etc. Lastly, this can lead to a total loss of physical movement and death. Since no cure for PD has been developed up to now, researchers using cell cultures and animal models focus their work on searching for potential therapeutic targets in order to develop effective treatments. In recent years, genetic studies have prominently advocated for the role of improper protein phosphorylation caused by a dysfunction in kinases and/or phosphatases as an important player in progression and pathogenesis of PD. Thus, in this review, we focus on the role of selected MAP kinases such as JNKs, ERK1/2, and p38 MAP kinases in PD pathology.
Collapse
Affiliation(s)
- Anastasiia Bohush
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | - Grazyna Niewiadomska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | - Anna Filipek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
46
|
ERK activating peptide, AES16-2M promotes wound healing through accelerating migration of keratinocytes. Sci Rep 2018; 8:14398. [PMID: 30258088 PMCID: PMC6158248 DOI: 10.1038/s41598-018-32851-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 09/13/2018] [Indexed: 11/09/2022] Open
Abstract
Wound healing is an important issue that influences quality of life, and the need for products associated with wound healing is growing annually. New materials and therapies for skin wounds are being continuously researched and developed in order to increase treatment efficacy. Here, we show that the peptide AES16-2M comprised of five short amino acid sequences (REGRT) demonstrates efficacy in wound healing. AES16-2M exerted more effective healing than the control in an acute wound model, and tissue regeneration was similar to that of normal tissue in AES16-2M-treated skin. We found that the increase in re-epithelialization by AES16-2M early in wound development was due to migration of keratinocytes; a scratch assay using a human keratinocyte cell line (HaCaT) also demonstrated effective wound closure by AES16-2M. The migration of keratinocytes effected by AES16-2M was promoted through ERK phosphorylation and blocked with U0126, an ERK inhibitor. Moreover, AES16-2M treatment stimulated human dermal fibroblast (HDF) migration as well as keratinocyte. Taken together, these results suggest that AES16-2M can be an effective therapeutic agent for wound healing by promoting migration of keratinocytes and fibroblasts via ERK phosphorylation.
Collapse
|
47
|
Ihermann-Hella A, Hirashima T, Kupari J, Kurtzeborn K, Li H, Kwon HN, Cebrian C, Soofi A, Dapkunas A, Miinalainen I, Dressler GR, Matsuda M, Kuure S. Dynamic MAPK/ERK Activity Sustains Nephron Progenitors through Niche Regulation and Primes Precursors for Differentiation. Stem Cell Reports 2018; 11:912-928. [PMID: 30220628 PMCID: PMC6178244 DOI: 10.1016/j.stemcr.2018.08.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 12/24/2022] Open
Abstract
The in vivo niche and basic cellular properties of nephron progenitors are poorly described. Here we studied the cellular organization and function of the MAPK/ERK pathway in nephron progenitors. Live-imaging of ERK activity by a Förster resonance energy transfer biosensor revealed a dynamic activation pattern in progenitors, whereas differentiating precursors exhibited sustained activity. Genetic experiments demonstrate that MAPK/ERK activity controls the thickness, coherence, and integrity of the nephron progenitor niche. Molecularly, MAPK/ERK activity regulates niche organization and communication with extracellular matrix through PAX2 and ITGA8, and is needed for CITED1 expression denoting undifferentiated status. MAPK/ERK activation in nephron precursors propels differentiation by priming cells for distal and proximal fates induced by the Wnt and Notch pathways. Thus, our results demonstrate a mechanism through which MAPK/ERK activity controls both progenitor maintenance and differentiation by regulating a distinct set of targets, which maintain the biomechanical milieu of tissue-residing progenitors and prime precursors for nephrogenesis.
Collapse
Affiliation(s)
| | - Tsuyoshi Hirashima
- Department of Pathology and Biology of Diseases, Graduate School of Medicine & Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Jussi Kupari
- HiLIFE and Medicum, University of Helsinki, Helsinki FIN-00014, Finland
| | | | - Hao Li
- HiLIFE and Medicum, University of Helsinki, Helsinki FIN-00014, Finland
| | - Hyuk Nam Kwon
- HiLIFE and Medicum, University of Helsinki, Helsinki FIN-00014, Finland
| | - Cristina Cebrian
- Developmental Biology Division, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | - Abdul Soofi
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Arvydas Dapkunas
- Medicum and Meilahti Clinical Proteomics Core Facility/HiLIFE, University of Helsinki, Helsinki FIN-00014, Finland
| | - Ilkka Miinalainen
- Department of Pathology (Biocenter Oulu), University of Oulu, Oulu 90220, Finland
| | - Gregory R Dressler
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michiyuki Matsuda
- Department of Pathology and Biology of Diseases, Graduate School of Medicine & Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Satu Kuure
- HiLIFE and Medicum, University of Helsinki, Helsinki FIN-00014, Finland; GM-Unit, LAC/ HiLIFE, and Medicum, University of Helsinki, Helsinki FIN-00014, Finland.
| |
Collapse
|
48
|
Youn DH, Park J, Kim HL, Jung Y, Kang J, Lim S, Song G, Kwak HJ, Um JY. Berberine Improves Benign Prostatic Hyperplasia via Suppression of 5 Alpha Reductase and Extracellular Signal-Regulated Kinase in Vivo and in Vitro. Front Pharmacol 2018; 9:773. [PMID: 30061836 PMCID: PMC6054997 DOI: 10.3389/fphar.2018.00773] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/26/2018] [Indexed: 12/29/2022] Open
Abstract
Benign prostate hyperplasia (BPH) is a common disease in elderly men, characterized by proliferated prostate and urinary tract symptoms. The hormonal cascade starting by the action of 5-alpha-reductase (5AR) is known to be one of the pathways responsible for the pathogenesis of BPH. Present investigation evaluated the capacity of berberine (BBR), a nature-derived compound abundant in Coptis japonica, in testosterone-induced BPH rats. Experimental BPH was induced by inguinal injection with testosterone propionate (TP) for 4 weeks. BBR or finasteride, a 5AR inhibitor as positive control, was treated for 4 weeks during BPH. BPH induced by TP evoked weight gaining and histological changes of prostate and BBR treatment improved all the detrimental effects not only weight reduction and histological changes but also suppression of prostate-specific antigen (PSA), which is elevated during BPH. Additionally, BBR suppressed TP-associated increase of 5AR, androgen receptor (AR) and steroid coactivator-1 (SRC-1), the key factors in the pathogenesis of BPH. To evaluate the underlying molecular mechanisms responsible for beneficial effects of BBR, we investigated whether these effects were associated with the mitogen-activated protein kinase pathway. BPH induced by TP showed increased phosphorylation of extracellular signal-regulated kinase (ERK), whereas this was suppressed by BBR treatment. On the other hand, c-jun-N-terminal kinase (JNK) and p38 mitogen-activated protein kinase was not changed in BPH rats. In in vitro study using RWPE-1 cells, a human prostate epithelial cell line. TP increased cell proliferation and BPH-related key factors such as PSA, AR, and 5AR in RWPE-1 cells, and those factors were significantly decreased in the presence of BBR. Furthermore, these proliferative effects in RWPE-1cells were attenuated by treatment with U0126, an ERK inhibitor, confirming BBR can relieve overgrowth of prostate via ERK-dependent signaling. The cotreatment of U0126 and BBR did not affect the change of 5AR nor proliferation compared with U0126 alone, suggesting that the effect of BBR was dependent on the action of ERK. In conclusion, this study shows that BBR can be used as a therapeutic agent for BPH by controlling hyperplasia of prostate through suppression of ERK mechanism.
Collapse
Affiliation(s)
- Dong-Hyun Youn
- Department of Pharmacology and Basic Research Laboratory for Comorbidity Regulation, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Jinbong Park
- Department of Pharmacology and Basic Research Laboratory for Comorbidity Regulation, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Hye-Lin Kim
- Department of Pharmacology and Basic Research Laboratory for Comorbidity Regulation, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Yunu Jung
- Department of Pharmacology and Basic Research Laboratory for Comorbidity Regulation, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - JongWook Kang
- Department of Pharmacology and Basic Research Laboratory for Comorbidity Regulation, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Seona Lim
- Department of Pharmacology and Basic Research Laboratory for Comorbidity Regulation, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Gahee Song
- Department of Pharmacology and Basic Research Laboratory for Comorbidity Regulation, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Hyun Jeong Kwak
- Department of Pharmacology and Basic Research Laboratory for Comorbidity Regulation, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jae-Young Um
- Department of Pharmacology and Basic Research Laboratory for Comorbidity Regulation, College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
49
|
Xia S, Menden HL, Korfhagen TR, Kume T, Sampath V. Endothelial immune activation programmes cell-fate decisions and angiogenesis by inducing angiogenesis regulator DLL4 through TLR4-ERK-FOXC2 signalling. J Physiol 2018; 596:1397-1417. [PMID: 29380370 DOI: 10.1113/jp275453] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/24/2018] [Indexed: 12/28/2022] Open
Abstract
KEY POINTS The mechanisms by which bacteria alter endothelial cell phenotypes and programme inflammatory angiogenesis remain unclear. In lung endothelial cells, we demonstrate that toll-like receptor 4 (TLR4) signalling induces activation of forkhead box protein C2 (FOXC2), a transcriptional factor implicated in lymphangiogenesis and endothelial specification, in an extracellular signal-regulated kinase (ERK)-dependent manner. TLR4-ERK-FOXC2 signalling regulates expression of the Notch ligand DLL4 and signals inflammatory angiogenesis in vivo and in vitro. Our work reveals a novel link between endothelial immune signalling (TLR pathway) and a vascular transcription factor, FOXC2, that regulates embryonic vascular development. This mechanism is likely to be relevant to pathological angiogenesis complicating inflammatory diseases in humans. ABSTRACT Endothelial cells (ECs) mediate a specific and robust immune response to bacteria in sepsis through the activation of toll-like receptor (TLR) signalling. The mechanisms by which bacterial ligands released during sepsis programme EC specification and altered angiogenesis remain unclear. We postulated that the forkhead box protein C2 (FOXC2) transcriptional factor directs EC cell-fate decisions and angiogenesis during TLR signalling. In human lung ECs, lipopolysaccharide (LPS) induced ERK phosphorylation, FOXC2, and delta-like 4 (DLL4, the master regulator of sprouting angiogenesis expression) in a TLR4-dependent manner. LPS-mediated ERK phosphorylation resulted in FOXC2-ERK protein ligation, ERK-dependent FOXC2 serine and threonine phosphorylation, and subsequent activation of DLL4 gene expression. Chemical inhibition of ERK or ERK-2 dominant negative transfection disrupted LPS-mediated FOXC2 phosphorylation and transcriptional activation of FOXC2. FOXC2-siRNA or ERK-inhibition attenuated LPS-induced DLL4 expression and angiogenic sprouting in vitro. In vivo, intraperitoneal LPS induced ERK and FOXC2 phosphorylation, FOXC2 binding to DLL4 promoter, and FOXC2/DLL4 expression in the lung. ERK-inhibition suppressed LPS-induced FOXC2 phosphorylation, FOXC2-DLL4 promoter binding, and induction of FOXC2 and DLL4 in mouse lung ECs. LPS induced aberrant retinal angiogenesis and DLL4 expression in neonatal mice, which was attenuated with ERK inhibition. FOXC2+/- mice treated with LPS showed a mitigated increase in FOXC2 and DLL4 compared to FOXC2+/+ mice. These data reveal a new mechanism (TLR4-ERK-FOXC2-DLL4) by which sepsis-induced EC TLR signalling programmes EC specification and altered angiogenesis.
Collapse
Affiliation(s)
- Sheng Xia
- Department of Pediatrics, Division of Neonatology, Children's Mercy, Kansas City, MO, USA
| | - Heather L Menden
- Department of Pediatrics, Division of Neonatology, Children's Mercy, Kansas City, MO, USA
| | - Thomas R Korfhagen
- Department of Pediatrics, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Tsutomu Kume
- Feinberg Cardiovascular Research Institute, Department of Medicine, Northwestern University School of Medicine, Chicago, IL, USA
| | - Venkatesh Sampath
- Department of Pediatrics, Division of Neonatology, Children's Mercy, Kansas City, MO, USA
| |
Collapse
|
50
|
Zhang L, Theodoropoulos PC, Eskiocak U, Wang W, Moon YA, Posner B, Williams NS, Wright WE, Kim SB, Nijhawan D, De Brabander JK, Shay JW. Selective targeting of mutant adenomatous polyposis coli (APC) in colorectal cancer. Sci Transl Med 2017; 8:361ra140. [PMID: 27798265 PMCID: PMC7262871 DOI: 10.1126/scitranslmed.aaf8127] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 09/15/2016] [Indexed: 12/22/2022]
Abstract
Mutations in the adenomatous polyposis coli (APC) gene are common in colorectal cancer (CRC), and more than 90% of those mutations generate stable truncated gene products. We describe a chemical screen using normal human colonic epithelial cells (HCECs) and a series of oncogenically progressed HCECs containing a truncated APC protein. With this screen, we identified a small molecule, TASIN-1 (truncated APC selective inhibitor-1), that specifically kills cells with APC truncations but spares normal and cancer cells with wild-type APC. TASIN-1 exerts its cytotoxic effects through inhibition of cholesterol biosynthesis. In vivo administration of TASIN-1 inhibits tumor growth of CRC cells with truncated APC but not APC wild-type CRC cells in xenograft models and in a genetically engineered CRC mouse model with minimal toxicity. TASIN-1 represents a potential therapeutic strategy for prevention and intervention in CRC with mutant APC.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Ugur Eskiocak
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wentian Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Young-Ah Moon
- Department of Molecular Medicine, Inha University College of Medicine, 100 Inha-ro, Nam-gu, Incheon 22212, Korea
| | - Bruce Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Noelle S Williams
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Woodring E Wright
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sang Bum Kim
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Deepak Nijhawan
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jef K De Brabander
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|