1
|
Cohen MJ, Philippe B, Lipke PN. Endocytic tethers modulate unconventional GAPDH secretion. Cell Surf 2025; 13:100138. [PMID: 39830088 PMCID: PMC11742311 DOI: 10.1016/j.tcsw.2024.100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025] Open
Abstract
Yeast cell walls contain both classically-secreted and unconventionally-secreted proteins. The latter class lacks the signal sequence for translocation into the ER, therefore these proteins are transported to the wall by uncharacterized mechanisms. One such protein is the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) which is abundant in the cytosol, but also found in the yeast cell wall where it is enzymatically active. We screened diploid Saccharomyces cerevisiae homozygous gene deletions for changes in cell wall GAPDH activity. Deletions targeting endocytic tethers in the endolysosomal system had the largest effects on GAPDH secretion, including vps21, bro1, vps41, and pep12. The predominant GAPDH isoform Tdh3 was partially localized to endolysosomal compartments, including multivesicular bodies, which are common entry points to unconventional protein secretion pathways. Yeast lacking the endosomal Rab5-GTPase Vps21 had defects in GAPDH secretion as well as delayed entry into to the endolysosomal compartments. Therefore, we conclude that entry into the endolysosomal compartment facilitates non-conventional secretion of GAPDH.
Collapse
Affiliation(s)
- Michael J. Cohen
- Biology Department, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA
- The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Brianne Philippe
- Biology Department, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA
| | - Peter N. Lipke
- Biology Department, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA
- The Graduate Center of the City University of New York, New York, NY 10016, USA
| |
Collapse
|
2
|
Kirwan KR, Puerta-Alvarado V, Waites CL. Axonal transport of CHMP2b is regulated by kinesin-binding protein and disrupted by CHMP2b intron5. Life Sci Alliance 2025; 8:e202402934. [PMID: 40021219 PMCID: PMC11871287 DOI: 10.26508/lsa.202402934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 03/03/2025] Open
Abstract
CHMP2b is a core component of the ESCRT pathway that catalyzes formation of multivesicular bodies for endolysosomal protein degradation. Although mutation/loss-of-function of CHMP2b promotes presynaptic dysfunction and degeneration, indicating its critical role in presynaptic protein homeostasis, the mechanisms responsible for CHMP2b localization and recruitment to synapses remain unclear. Here, we characterize CHMP2b axonal trafficking and show that its transport and recruitment to presynaptic boutons, as well as its cotransport with other ESCRT proteins, are regulated by neuronal activity. In contrast, the frontotemporal dementia-causative CHMP2bintron5 mutation exhibits little processive movement or presynaptic localization in the presence or absence of neuronal activity. Instead, CHMP2bintron5 transport vesicles exhibit oscillatory behavior reminiscent of a tug-of-war between kinesin and dynein motor proteins. We show that this phenotype is caused by deficient binding of CHMP2bintron5 to kinesin-binding protein, which we identify as a key regulator of CHMP2b transport. These findings shed light on the mechanisms of CHMP2b axonal trafficking and synaptic localization, and their disruption by CHMP2bintron5.
Collapse
Affiliation(s)
- Konner R Kirwan
- Neurobiology and Behavior PhD Program, Columbia University, New York, NY, USA
| | | | - Clarissa L Waites
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
- Department of Neuroscience, Columbia University, New York, NY, USA
| |
Collapse
|
3
|
Fundora KA, Zhuang Y, Hamamoto K, Wang G, Chen L, Hattori T, Liang X, Bao L, Vangala V, Tian F, Takahashi Y, Wang HG. DBeQ derivative targets vacuolar protein sorting 4 functions in cancer cells and suppresses tumor growth in mice. J Pharmacol Exp Ther 2025; 392:103524. [PMID: 40147096 DOI: 10.1016/j.jpet.2025.103524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
Vacuolar protein sorting 4 (VPS4) is an AAA-ATPase that catalyzes the endosomal sorting complex required for transport-III disassembly, mediating various cellular membrane-remodeling processes including endolysosomal membrane repair and autophagosome closure. Humans have 2 VPS4 paralogs, VPS4A and VPS4B, and the loss of either paralog has been identified in a significant proportion of cancers, rendering them dependent on the remaining paralog for survival. In this study, we explored VPS4 inhibition as an anticancer strategy by investigating the mechanisms of VPS4 inhibition-induced cell death and developing small-molecule compounds that target VPS4 functions. We found that genetic inhibition of VPS4 triggered both caspase-8 (CASP8)-dependent apoptosis and caspase-independent cell death in osteosarcoma cells. We synthesized approximately 100 derivatives of the VPS4 and related AAA-ATPase valosin-containing protein inhibitor DBeQ and screened for their inhibitory effects on VPS4 ATPase activity using the EnzChek phosphate assay and a high-content assay monitoring GFP-CHMP4B puncta formation. In cells, the lead compound 4-107 caused endolysosomal damage, disrupted subsequent membrane repair, inhibited autophagy, and led to the accumulation of the endosomal sorting complex required for transport on membranes. These effects were accompanied by the stabilization of CASP8 on autophagosomal membranes, leading to the induction of CASP8-mediated apoptosis. Notably, the CASP8-mediated cell death induced by 4-107 was further enhanced by the loss of either VPS4 paralog. Moreover, 4-107 exhibited antitumor activity in a syngeneic mouse model of neuroblastoma. Our findings provide an important step for targeting VPS4 in cancer and developing VPS4 inhibitors as a cancer treatment strategy. SIGNIFICANCE STATEMENT: VPS4A and VPS4B, paralogs of the AAA-ATPase VPS4, are critical for cancer cell survival. This study reports that 4-107, a DBeQ derivative, inhibits VPS4 ATPase activity, induces CASP8-mediated apoptosis, and suppresses tumor growth in mice. This study supports the further development of VPS4A/B inhibitors as a promising anticancer treatment strategy.
Collapse
Affiliation(s)
- Kevin A Fundora
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Yan Zhuang
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Kouta Hamamoto
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Guifang Wang
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Longgui Chen
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Tatsuya Hattori
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Xinwen Liang
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Lei Bao
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Venugopal Vangala
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Fang Tian
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Yoshinori Takahashi
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania.
| | - Hong-Gang Wang
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania.
| |
Collapse
|
4
|
Souza DP, Espadas J, Chaaban S, Moody ERR, Hatano T, Balasubramanian M, Williams TA, Roux A, Baum B. Asgard archaea reveal the conserved principles of ESCRT-III membrane remodeling. SCIENCE ADVANCES 2025; 11:eads5255. [PMID: 39919172 PMCID: PMC11804906 DOI: 10.1126/sciadv.ads5255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/07/2025] [Indexed: 02/09/2025]
Abstract
ESCRT-III proteins assemble into composite polymers that undergo stepwise changes in composition and structure to deform membranes across the tree of life. Here, using a phylogenetic analysis, we demonstrate that the two endosomal sorting complex required for transport III (ESCRT-III) proteins present in eukaryote's closest Asgard archaeal relatives are evolutionarily related to the B- and A-type eukaryotic paralogs that initiate and execute membrane remodeling, respectively. We show that Asgard ESCRT-IIIB assembles into parallel arrays on planar membranes to initiate membrane deformation, from where it recruits ESCRT-IIIA to generate composite polymers. Last, we show that Asgard ESCRT-IIIA is able to remodel membranes into tubes as a likely prelude to scission. Together, these data reveal a set of conserved principles governing ESCRT-III-dependent membrane remodeling that first emerged in a two-component ESCRT-III system in archaea.
Collapse
Affiliation(s)
| | - Javier Espadas
- Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Sami Chaaban
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Edmund R. R. Moody
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Tomoyuki Hatano
- Centre for Mechanochemical Cell Biology, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Mohan Balasubramanian
- Centre for Mechanochemical Cell Biology, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Tom A. Williams
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Buzz Baum
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| |
Collapse
|
5
|
Javed R, Mari M, Trosdal E, Duque T, Paddar MA, Allers L, Mudd MH, Claude-Taupin A, Akepati PR, Hendrix E, He Y, Salemi M, Phinney B, Uchiyama Y, Reggiori F, Deretic V. ATG9A facilitates the closure of mammalian autophagosomes. J Cell Biol 2025; 224:e202404047. [PMID: 39745851 PMCID: PMC11694768 DOI: 10.1083/jcb.202404047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/29/2024] [Accepted: 11/11/2024] [Indexed: 01/04/2025] Open
Abstract
Canonical autophagy captures within specialized double-membrane organelles, termed autophagosomes, an array of cytoplasmic components destined for lysosomal degradation. An autophagosome is completed when the growing phagophore undergoes ESCRT-dependent membrane closure, a prerequisite for its subsequent fusion with endolysosomal organelles and degradation of the sequestered cargo. ATG9A, a key integral membrane protein of the autophagy pathway, is best known for its role in the formation and expansion of phagophores. Here, we report a hitherto unappreciated function of mammalian ATG9A in directing autophagosome closure. ATG9A partners with IQGAP1 and key ESCRT-III component CHMP2A to facilitate this final stage in autophagosome formation. Thus, ATG9A is a central hub governing all major aspects of autophagosome membrane biogenesis, from phagophore formation to its closure, and is a unique ATG factor with progressive functionalities affecting the physiological outputs of autophagy.
Collapse
Affiliation(s)
- Ruheena Javed
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Muriel Mari
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Einar Trosdal
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Thabata Duque
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Masroor Ahmad Paddar
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Lee Allers
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Michal H. Mudd
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Aurore Claude-Taupin
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Prithvi Reddy Akepati
- Gastroenterology Division, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Emily Hendrix
- Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, NM, USA
| | - Yi He
- Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, NM, USA
| | - Michelle Salemi
- Proteomics Core Facility, UC Davis Genome Center, University of California, Davis, Davis, CA, USA
| | - Brett Phinney
- Proteomics Core Facility, UC Davis Genome Center, University of California, Davis, Davis, CA, USA
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Vojo Deretic
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
6
|
Yanagawa K, Kuma A, Hamasaki M, Kita S, Yamamuro T, Nishino K, Nakamura S, Omori H, Kaminishi T, Oikawa S, Kato Y, Edahiro R, Kawagoe R, Taniguchi T, Tanaka Y, Shima T, Tabata K, Iwatani M, Bekku N, Hanayama R, Okada Y, Akimoto T, Kosako H, Takahashi A, Shimomura I, Sakata Y, Yoshimori T. The Rubicon-WIPI axis regulates exosome biogenesis during ageing. Nat Cell Biol 2024; 26:1558-1570. [PMID: 39174742 DOI: 10.1038/s41556-024-01481-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 07/15/2024] [Indexed: 08/24/2024]
Abstract
Cells release intraluminal vesicles in multivesicular bodies as exosomes to communicate with other cells. Although recent studies suggest an intimate link between exosome biogenesis and autophagy, the detailed mechanism is not fully understood. Here we employed comprehensive RNA interference screening for autophagy-related factors and discovered that Rubicon, a negative regulator of autophagy, is essential for exosome release. Rubicon recruits WIPI2d to endosomes to promote exosome biogenesis. Interactome analysis of WIPI2d identified the ESCRT components that are required for intraluminal vesicle formation. Notably, we found that Rubicon is required for an age-dependent increase of exosome release in mice. In addition, small RNA sequencing of serum exosomes revealed that Rubicon determines the fate of exosomal microRNAs associated with cellular senescence and longevity pathways. Taken together, our current results suggest that the Rubicon-WIPI axis functions as a key regulator of exosome biogenesis and is responsible for age-dependent changes in exosome quantity and quality.
Collapse
Affiliation(s)
- Kyosuke Yanagawa
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Akiko Kuma
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Japan
- Health Promotion System Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Maho Hamasaki
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Shunbun Kita
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
- Tokyo New Drug Research Laboratories, Pharmaceutical Business Unit, Kowa Company, Higashimurayama, Japan
| | - Tadashi Yamamuro
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Kohei Nishino
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Shuhei Nakamura
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Suita, Japan
- Department of Biochemistry, Nara Medical University, Kashihara, Japan
| | - Hiroko Omori
- Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Tatsuya Kaminishi
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Satoshi Oikawa
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Waseda Institute for Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Yoshio Kato
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Ryuya Edahiro
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryosuke Kawagoe
- i2i-Labo, Yokohama Research Center, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Yokohama, Japan
| | - Takako Taniguchi
- i2i-Labo, Yokohama Research Center, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Yokohama, Japan
| | - Yoko Tanaka
- Division of Cellular Senescence, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takayuki Shima
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Biochemistry, Nara Medical University, Kashihara, Japan
| | - Keisuke Tabata
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Miki Iwatani
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Nao Bekku
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Rikinari Hanayama
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Genome Informatics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory of Statistical Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
- WPI Premium Research Institute for Human Metaverse Medicine, Osaka University, Suita, Japan
| | - Takayuki Akimoto
- Laboratory of Muscle Biology, Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Akiko Takahashi
- Division of Cellular Senescence, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Japan.
- Health Promotion System Science, Graduate School of Medicine, Osaka University, Suita, Japan.
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan.
| |
Collapse
|
7
|
Vatanparast M, Merkel L, Amari K. Exogenous Application of dsRNA in Plant Protection: Efficiency, Safety Concerns and Risk Assessment. Int J Mol Sci 2024; 25:6530. [PMID: 38928236 PMCID: PMC11204322 DOI: 10.3390/ijms25126530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The use of double-stranded RNA (dsRNA) for plant protection shows great potential as a sustainable alternative to traditional pesticides. This review summarizes the current state of knowledge on using exogenous dsRNA in plant protection and includes the latest findings on the safety and efficiency of this strategy. The review also emphasizes the need for a cautious and comprehensive approach, considering safety considerations such as off-target effects and formulation challenges. The regulatory landscape in different regions is also discussed, underscoring the need for specific guidelines tailored to dsRNA-based pesticides. The review provides a crucial resource for researchers, regulators, and industry stakeholders, promoting a balanced approach incorporating innovation with thorough safety assessments. The continuous dialog emphasized in this review is essential for shaping the future of dsRNA-based plant protection. As the field advances, collaboration among scientists, regulators, and industry partners will play a vital role in establishing guidelines and ensuring the responsible, effective, and sustainable use of dsRNA in agriculture.
Collapse
Affiliation(s)
| | | | - Khalid Amari
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plant, Institute for Biosafety in Plant Biotechnology, D-06484 Quedlinburg, Germany
| |
Collapse
|
8
|
René CA, Parks RJ. Bioengineering extracellular vesicle cargo for optimal therapeutic efficiency. Mol Ther Methods Clin Dev 2024; 32:101259. [PMID: 38770107 PMCID: PMC11103572 DOI: 10.1016/j.omtm.2024.101259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Extracellular vesicles (EVs) have the innate ability to carry proteins, lipids, and nucleic acids between cells, and thus these vesicles have gained much attention as potential therapeutic delivery vehicles. Many strategies have been explored to enhance the loading of specific cargoes of interest into EVs, which could result in the delivery of more therapeutic to recipient cells, thus enhancing therapeutic efficacy. In this review, we discuss the natural biogenesis of EVs, the mechanism by which proteins and nucleic acids are selected for inclusion in EVs, and novel methods that have been employed to enhance loading of specific cargoes into EVs. As well, we discuss biodistribution of administered EVs in vivo and summarize clinical trials that have attempted to harness the therapeutic potential of EVs.
Collapse
Affiliation(s)
- Charlotte A. René
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Robin J. Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department of Medicine, The Ottawa Hospital and University of Ottawa, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
9
|
Qin F, Cai B, Wang P, Cao R, Zhang Y, Wen H, Zheng Y, Zhao W, Gao C, Liu B. LTN1 promotes RLR degradation to inhibit immune response to RNA virus through the ESCRT pathway. Autophagy 2024; 20:1270-1285. [PMID: 38060409 PMCID: PMC11210911 DOI: 10.1080/15548627.2023.2291939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 06/22/2024] Open
Abstract
The excessive activation of immune responses will trigger autoimmune diseases or inflammatory injury. The endosomal sorting complexes required for transport (ESCRT) system can capture and mediate ubiquitinated protein degradation, which timely terminates signaling pathway hyperactivation. However, whether the ESCRT system participates in regulating RIGI-like receptor (RLR)-mediated antiviral responses remains unknown. In this study, we show that LTN1/listerin, a major component of RQC, can recruit E3 ubiquitin ligase TRIM27 to trigger K63-linked polyubiquitination of RIGI and IFIH1/MDA5. This K63-linked polyubiquitination facilitates the sorting and degradation of RIGI and IFIH1 proteins through the ESCRT-dependent pathway. Concordantly, LTN1 deficiency enhances the innate antiviral response to infection with RNA viruses. Thus, our work uncovers a new mechanism for RIGI and IFIH1 degradation and identifies the role of LTN1 in negatively regulating RLR-mediated antiviral innate immunity, which may provide new targets for the intervention of viral infection.Abbreviation: 5'-pppRNA: 5' triphosphate double stranded RNA; ATG5: autophagy related 5; ATG7: autophagy related 7; BafA1: bafilomycin A1; ESCRT: endosomal sorting complexes required for transport; CHX: cycloheximide; IFIH1/MDA5: interferon induced with helicase C domain 1; IFN: interferon; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; RIGI: RNA sensor RIG-I; RLR: RIGI-like receptors; RQC: ribosome-associated protein quality control; SeV: Sendai virus; TRIM27: tripartite motif-containing 27; VSV: vesicular stomatitis virus; VPS4: vacuolar protein sorting 4.
Collapse
Affiliation(s)
- Fei Qin
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Baoshan Cai
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Peng Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Runyu Cao
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Yuling Zhang
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Hongling Wen
- Department of Microbiological Laboratory Technology, School of Public Health, Shandong University, Jinan, Shandong, China
| | - Yi Zheng
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Wei Zhao
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Bingyu Liu
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| |
Collapse
|
10
|
Yun J, Saddawi-Konefka R, Goldenson B, Al-Msari R, Bernareggi D, Thangaraj JL, Tang S, Patel SH, Luna SM, Gutkind JS, Kaufman D. CHMP2A regulates broad immune cell-mediated antitumor activity in an immunocompetent in vivo head and neck squamous cell carcinoma model. J Immunother Cancer 2024; 12:e007187. [PMID: 38702144 PMCID: PMC11086353 DOI: 10.1136/jitc-2023-007187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Natural killer (NK) cells are key effector cells of antitumor immunity. However, tumors can acquire resistance programs to escape NK cell-mediated immunosurveillance. Identifying mechanisms that mediate this resistance enables us to define approaches to improve immune-mediate antitumor activity. In previous studies from our group, a genome-wide CRISPR-Cas9 screen identified Charged Multivesicular Body Protein 2A (CHMP2A) as a novel mechanism that mediates tumor intrinsic resistance to NK cell activity. METHODS Here, we use an immunocompetent mouse model to demonstrate that CHMP2A serves as a targetable regulator of not only NK cell-mediated immunity but also other immune cell populations. Using the recently characterized murine 4MOSC model system, a syngeneic, tobacco-signature murine head and neck squamous cell carcinoma model, we deleted mCHMP2A using CRISPR/Cas9-mediated knock-out (KO), following orthotopic transplantation into immunocompetent hosts. RESULTS We found that mCHMP2A KO in 4MOSC1 cells leads to more potent NK-mediated tumor cell killing in vitro in these tumor cells. Moreover, following orthotopic transplantation, KO of mCHMP2A in 4MOSC1 cells, but not the more immune-resistant 4MOSC2 cells enables both T cells and NK cells to better mediate antitumor activity compared with wild type (WT) tumors. However, there was no difference in tumor development between WT and mCHMP2A KO 4MOSC1 or 4MOSC2 tumors when implanted in immunodeficient mice. Mechanistically, we find that mCHMP2A KO 4MOSC1 tumors transplanted into the immunocompetent mice had significantly increased CD4+T cells, CD8+T cells. NK cell, as well as fewer myeloid-derived suppressor cells (MDSC). CONCLUSIONS Together, these studies demonstrate that CHMP2A is a targetable inhibitor of cellular antitumor immunity.
Collapse
Affiliation(s)
- Jiyoung Yun
- Moores Cancer Center, University of California-San Diego, La Jolla, California, USA
- Dept. of Medicine, University of California-San Diego, La Jolla, California, USA
- Sanford Stem Cell Institute, University of California-San Diego, La Jolla, California, USA
| | - Robert Saddawi-Konefka
- Moores Cancer Center, University of California-San Diego, La Jolla, California, USA
- Dept. of Otolaryngology-Head and Neck Surgery, University of California-San Diego, La Jolla, California, USA
| | - Benjamin Goldenson
- Moores Cancer Center, University of California-San Diego, La Jolla, California, USA
- Dept. of Medicine, University of California-San Diego, La Jolla, California, USA
- Sanford Stem Cell Institute, University of California-San Diego, La Jolla, California, USA
| | - Riyam Al-Msari
- Moores Cancer Center, University of California-San Diego, La Jolla, California, USA
| | - Davide Bernareggi
- Dept. of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Jaya L Thangaraj
- Dept. of Medicine, University of California-San Diego, La Jolla, California, USA
- Sanford Stem Cell Institute, University of California-San Diego, La Jolla, California, USA
| | - Shiqi Tang
- Moores Cancer Center, University of California-San Diego, La Jolla, California, USA
| | - Sonam H Patel
- Moores Cancer Center, University of California-San Diego, La Jolla, California, USA
| | - Sarah M Luna
- Moores Cancer Center, University of California-San Diego, La Jolla, California, USA
| | - J Silvio Gutkind
- Moores Cancer Center, University of California-San Diego, La Jolla, California, USA
- Dept. of Pharmacology, University of California School of Medicine, La Jolla, California, USA
| | - Dan Kaufman
- Moores Cancer Center, University of California-San Diego, La Jolla, California, USA
- Dept. of Medicine, University of California-San Diego, La Jolla, California, USA
- Sanford Stem Cell Institute, University of California-San Diego, La Jolla, California, USA
| |
Collapse
|
11
|
Bai L, Sun Y, Yue X, Ji N, Yan F, Yang T, Feng G, Guo Y, Li Z. Multifaceted interactions between host ESCRT-III and budded virus-related proteins involved in entry and egress of the baculovirus Autographa californica multiple nucleopolyhedrovirus. J Virol 2024; 98:e0190023. [PMID: 38289107 PMCID: PMC10878073 DOI: 10.1128/jvi.01900-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 02/21/2024] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) is a conserved protein machine mediating membrane remodeling and scission. In the context of viral infection, different components of the ESCRT-III complex, which serve as the core machinery to catalyze membrane fission, are involved in diverse viruses' entry, replication, and/or budding. However, the interplay between ESCRT-III and viral factors in the virus life cycle, especially for that of large enveloped DNA viruses, is largely unknown. Recently, the ESCRT-III components Vps2B, Vps20, Vps24, Snf7, Vps46, and Vps60 were determined for entry and/or egress of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV). Here, we identified the final three ESCRT-III components Chm7, Ist1, and Vps2A of Spodoptera frugiperda. Overexpression of the dominant-negative forms of these proteins or RNAi downregulation of their transcripts significantly reduced infectious budded viruses (BVs) production of AcMNPV. Quantitative PCR together with confocal and transmission electron microscopy analysis revealed that these proteins were required for internalization and trafficking of BV during entry and egress of nucleocapsids. In infected Sf9 cells, nine ESCRT-III components were distributed on the nuclear envelope and plasma membrane, and except for Chm7, the other components were also localized to the intranuclear ring zone. Y2H and BiFC analysis revealed that 42 out of 64 BV-related proteins including 35 BV structural proteins and 7 non-BV structural proteins interacted with single or multiple ESCRT-III components. By further mapping the interactome of 64 BV-related proteins, we established the interaction networks of ESCRT-III and the viral protein complexes involved in BV entry and egress.IMPORTANCEFrom archaea to eukaryotes, the endosomal sorting complex required for transport (ESCRT)-III complex is hijacked by many enveloped and nonenveloped DNA or RNA viruses for efficient replication. However, the mechanism of ESCRT-III recruitment, especially for that of large enveloped DNA viruses, remains elusive. Recently, we found the ESCRT-III components Vps2B, Vps20, Vps24, Snf7, Vps46, and Vps60 are necessary for the entry and/or egress of budded viruses (BVs) of Autographa californica multiple nucleopolyhedrovirus. Here, we demonstrated that the other three ESCRT-III components Chm7, Ist1, and Vps2A play similar roles in BV infection. By determining the subcellular localization of ESCRT-III components in infected cells and mapping the interaction of nine ESCRT-III components and 64 BV-related proteins, we built the interaction networks of ESCRT-III and the viral protein complexes involved in BV entry and egress. These studies provide a fundamental basis for understanding the mechanism of the ESCRT-mediated membrane remodeling for replication of baculoviruses.
Collapse
Affiliation(s)
- Lisha Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaorong Yue
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Ning Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Fanye Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Tian Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Guozhong Feng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Ya Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhaofei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
12
|
Wang W, Wu X, Zheng J, Yin R, Li Y, Wu X, Xu L, Jin Z. Utilizing exosomes as sparking clinical biomarkers and therapeutic response in acute myeloid leukemia. Front Immunol 2024; 14:1315453. [PMID: 38292478 PMCID: PMC10824954 DOI: 10.3389/fimmu.2023.1315453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
Acute myeloid leukemia (AML) is a malignant clonal tumor originating from immature myeloid hematopoietic cells in the bone marrow with rapid progression and poor prognosis. Therefore, an in-depth exploration of the pathogenesis of AML can provide new ideas for the treatment of AML. In recent years, it has been found that exosomes play an important role in the pathogenesis of AML. Exosomes are membrane-bound extracellular vesicles (EVs) that transfer signaling molecules and have attracted a large amount of attention, which are key mediators of intercellular communication. Extracellular vesicles not only affect AML cells and normal hematopoietic cells but also have an impact on the bone marrow microenvironment and immune escape, thereby promoting the progression of AML and leading to refractory relapse. It is worth noting that exosomes and the various molecules they contain are expected to become the new markers for disease monitoring and prognosis of AML, and may also function as drug carriers and vaccines to enhance the treatment of leukemia. In this review, we mainly summarize to reveal the role of exosomes in AML pathogenesis, which helps us elucidate the application of exosomes in AML diagnosis and treatment.
Collapse
Affiliation(s)
- Wandi Wang
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiaofang Wu
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Jiamian Zheng
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Ran Yin
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Yangqiu Li
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiuli Wu
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Ling Xu
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Zhenyi Jin
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis and Infection Prevention and Control, Jinan University, Guangzhou, China
| |
Collapse
|
13
|
Clippinger AK, Naismith TV, Yoo W, Jansen S, Kast DJ, Hanson PI. IST1 regulates select recycling pathways. Traffic 2024; 25:e12921. [PMID: 37926552 PMCID: PMC11027954 DOI: 10.1111/tra.12921] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 08/21/2023] [Accepted: 09/23/2023] [Indexed: 11/07/2023]
Abstract
ESCRTs (Endosomal Sorting Complex Required for Transports) are a modular set of protein complexes with membrane remodeling activities that include the formation and release of intraluminal vesicles (ILVs) to generate multivesicular endosomes. While most of the 12 ESCRT-III proteins are known to play roles in ILV formation, IST1 has been associated with a wider range of endosomal remodeling events. Here, we extend previous studies of IST1 function in endosomal trafficking and confirm that IST1, along with its binding partner CHMP1B, contributes to scission of early endosomal carriers. Functionally, depleting IST1 impaired delivery of transferrin receptor from early/sorting endosomes to the endocytic recycling compartment and instead increased its rapid recycling to the plasma membrane via peripheral endosomes enriched in the clathrin adaptor AP-1. IST1 is also important for export of mannose 6-phosphate receptor from early/sorting endosomes. Examination of IST1 binding partners on endosomes revealed that IST1 interacts with the MIT domain-containing sorting nexin SNX15, a protein previously reported to regulate endosomal recycling. Our kinetic and spatial analyses establish that SNX15 and IST1 occupy a clathrin-containing subdomain on the endosomal perimeter distinct from those previously implicated in cargo retrieval or degradation. Using live-cell microscopy, we see that SNX15 and CHMP1B alternately recruit IST1 to this subdomain or the base of endosomal tubules. These findings indicate that IST1 contributes to a subset of recycling pathways from the early/sorting endosome.
Collapse
Affiliation(s)
- Amy K Clippinger
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Teresa V Naismith
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Wonjin Yoo
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Silvia Jansen
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - David J Kast
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Phyllis I Hanson
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
14
|
Pfitzner AK, Zivkovic H, Bernat-Silvestre C, West M, Peltier T, Humbert F, Odorizzi G, Roux A. Vps60 initiates alternative ESCRT-III filaments. J Cell Biol 2023; 222:e202206028. [PMID: 37768378 PMCID: PMC10538557 DOI: 10.1083/jcb.202206028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 03/08/2023] [Accepted: 06/12/2023] [Indexed: 09/29/2023] Open
Abstract
Endosomal sorting complex required for transport-III (ESCRT-III) participates in essential cellular functions, from cell division to endosome maturation. The remarkable increase of its subunit diversity through evolution may have enabled the acquisition of novel functions. Here, we characterize a novel ESCRT-III copolymer initiated by Vps60. Membrane-bound Vps60 polymers recruit Vps2, Vps24, Did2, and Ist1, as previously shown for Snf7. Snf7- and Vps60-based filaments can coexist on membranes without interacting as their polymerization and recruitment of downstream subunits remain spatially and biochemically separated. In fibroblasts, Vps60/CHMP5 and Snf7/CHMP4 are both recruited during endosomal functions and cytokinesis, but their localization is segregated and their recruitment dynamics are different. Contrary to Snf7/CHMP4, Vps60/CHMP5 is not recruited during nuclear envelope reformation. Taken together, our results show that Vps60 and Snf7 form functionally distinct ESCRT-III polymers, supporting the notion that diversification of ESCRT-III subunits through evolution is linked to the acquisition of new cellular functions.
Collapse
Affiliation(s)
| | - Henry Zivkovic
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | | | - Matt West
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Tanner Peltier
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Frédéric Humbert
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Greg Odorizzi
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
- National Center of Competence in Research in Chemical Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
15
|
Ader NR, Chen L, Surovtsev IV, Chadwick WL, Rodriguez EC, King MC, Lusk CP. An ESCRT grommet cooperates with a diffusion barrier to maintain nuclear integrity. Nat Cell Biol 2023; 25:1465-1477. [PMID: 37783794 PMCID: PMC11365527 DOI: 10.1038/s41556-023-01235-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/17/2023] [Indexed: 10/04/2023]
Abstract
The molecular mechanisms by which the endosomal sorting complexes required for transport (ESCRT) proteins contribute to the integrity of the nuclear envelope (NE) barrier are not fully defined. We leveraged the single NE hole generated by mitotic extrusion of the Schizosaccharomyces pombe spindle pole body to reveal two modes of ESCRT function executed by distinct complements of ESCRT-III proteins, both dependent on CHMP7/Cmp7. A grommet-like function is required to restrict the NE hole in anaphase B, whereas replacement of Cmp7 by a sealing module ultimately closes the NE in interphase. Without Cmp7, nucleocytoplasmic compartmentalization remains intact despite NE discontinuities of up to 540 nm, suggesting mechanisms to limit diffusion through these holes. We implicate spindle pole body proteins as key components of a diffusion barrier acting with Cmp7 in anaphase B. Thus, NE remodelling mechanisms cooperate with proteinaceous diffusion barriers beyond nuclear pore complexes to maintain the nuclear compartment.
Collapse
Affiliation(s)
- Nicholas R Ader
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Linda Chen
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Ivan V Surovtsev
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
- Department of Physics, Yale University, New Haven, CT, USA
| | | | - Elisa C Rodriguez
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Megan C King
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA.
- Department of Molecular, Cell and Developmental Biology, Yale University, New Haven, CT, USA.
| | - C Patrick Lusk
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
16
|
Nagano M, Aoshima K, Shimamura H, Siekhaus DE, Toshima JY, Toshima J. Distinct role of TGN-resident clathrin adaptors for Vps21p activation in the TGN-endosome trafficking pathway. J Cell Sci 2023; 136:jcs261448. [PMID: 37539494 DOI: 10.1242/jcs.261448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023] Open
Abstract
Clathrin-mediated vesicle trafficking plays central roles in post-Golgi transport. In yeast (Saccharomyces cerevisiae), the AP-1 complex and GGA adaptors are predicted to generate distinct transport vesicles at the trans-Golgi network (TGN), and the epsin-related proteins Ent3p and Ent5p (collectively Ent3p/5p) act as accessories for these adaptors. Recently, we showed that vesicle transport from the TGN is crucial for yeast Rab5 (Vps21p)-mediated endosome formation, and that Ent3p/5p are crucial for this process, whereas AP-1 and GGA adaptors are dispensable. However, these observations were incompatible with previous studies showing that these adaptors are required for Ent3p/5p recruitment to the TGN, and thus the overall mechanism responsible for regulation of Vps21p activity remains ambiguous. Here, we investigated the functional relationships between clathrin adaptors in post-Golgi-mediated Vps21p activation. We show that AP-1 disruption in the ent3Δ5Δ mutant impaired transport of the Vps21p guanine nucleotide exchange factor Vps9p transport to the Vps21p compartment and severely reduced Vps21p activity. Additionally, GGA adaptors, the phosphatidylinositol-4-kinase Pik1p and Rab11 GTPases Ypt31p and Ypt32p were found to have partially overlapping functions for recruitment of AP-1 and Ent3p/5p to the TGN. These findings suggest a distinct role of clathrin adaptors for Vps21p activation in the TGN-endosome trafficking pathway.
Collapse
Affiliation(s)
- Makoto Nagano
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Kaito Aoshima
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Hiroki Shimamura
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | | | - Junko Y Toshima
- School of Health Science, Tokyo University of Technology, 5-23-22 Nishikamada, Ota-ku, Tokyo 144-8535, Japan
| | - Jiro Toshima
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| |
Collapse
|
17
|
Clippinger AK, Naismith TV, Yoo W, Jansen S, Kast D, Hanson PI. IST1 regulates select endosomal recycling pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551359. [PMID: 37577466 PMCID: PMC10418098 DOI: 10.1101/2023.07.31.551359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
ESCRTs (Endosomal Sorting Complex Required for Transport) are a modular set of protein complexes with membrane remodeling activities that include the formation and release of intralumenal vesicles (ILVs) to generate multivesicular endosomes. While most of the 12 ESCRT-III proteins are known to play roles in ILV formation, IST1 has been associated with a wider range of endosomal remodeling events. Here, we extend previous studies of IST1 function in endosomal trafficking and confirm that IST1, along with its binding partner CHMP1B, contributes to scission of early endosomal carriers. Depleting IST1 impaired delivery of transferrin receptor from early/sorting endosomes to the endocytic recycling compartment and instead increased its rapid recycling to the plasma membrane via peripheral endosomes enriched in the clathrin adaptor AP-1. IST1 is also important for export of mannose 6-phosphate receptor from early/sorting endosomes. Examination of IST1 binding partners on endosomes revealed that IST1 interacts with the MIT domain-containing sorting nexin SNX15, a protein previously reported to regulate endosomal recycling. Our kinetic and spatial analyses establish that SNX15 and IST1 occupy a clathrin-containing subdomain on the endosomal perimeter distinct from those previously implicated in cargo retrieval or degradation. Using live-cell microscopy we see that SNX15 and CHMP1B alternately recruit IST1 to this subdomain or the base of endosomal tubules. These findings indicate that IST1 contributes to a subset of recycling pathways from the early/sorting endosome.
Collapse
|
18
|
Rädler J, Gupta D, Zickler A, Andaloussi SE. Exploiting the biogenesis of extracellular vesicles for bioengineering and therapeutic cargo loading. Mol Ther 2023; 31:1231-1250. [PMID: 36805147 PMCID: PMC10188647 DOI: 10.1016/j.ymthe.2023.02.013] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Extracellular vesicles (EVs) are gaining increasing attention for diagnostic and therapeutic applications in various diseases. These natural nanoparticles benefit from favorable safety profiles and unique biodistribution capabilities, rendering them attractive drug-delivery modalities over synthetic analogs. However, the widespread use of EVs is limited by technological shortcomings and biological knowledge gaps that fail to unravel their heterogeneity. An in-depth understanding of their biogenesis is crucial to unlocking their full therapeutic potential. Here, we explore how knowledge about EV biogenesis can be exploited for EV bioengineering to load therapeutic protein or nucleic acid cargos into or onto EVs. We summarize more than 75 articles and discuss their findings on the formation and composition of exosomes and microvesicles, revealing multiple pathways that may be stimulation and/or cargo dependent. Our analysis further identifies key regulators of natural EV cargo loading and we discuss how this knowledge is integrated to develop engineered EV biotherapeutics.
Collapse
Affiliation(s)
- Julia Rädler
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, 141 57 Huddinge, Sweden
| | - Dhanu Gupta
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, 141 57 Huddinge, Sweden; Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK
| | - Antje Zickler
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, 141 57 Huddinge, Sweden
| | - Samir El Andaloussi
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, 141 57 Huddinge, Sweden.
| |
Collapse
|
19
|
Jukic N, Perrino AP, Redondo-Morata L, Scheuring S. Structure and dynamics of ESCRT-III membrane remodeling proteins by high-speed atomic force microscopy. J Biol Chem 2023; 299:104575. [PMID: 36870686 PMCID: PMC10074808 DOI: 10.1016/j.jbc.2023.104575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Endosomal Sorting Complex Required for Transport (ESCRT) proteins assemble on the cytoplasmic leaflet of membranes and remodel them. ESCRT is involved in biological processes where membranes are bent away from the cytosol, constricted, and finally severed, such as in multi-vesicular body formation (in the endosomal pathway for protein sorting) or abscission during cell division. The ESCRT system is hijacked by enveloped viruses to allow buds of nascent virions to be constricted, severed and released. ESCRT-III proteins, the most downstream components of the ESCRT system, are monomeric and cytosolic in their autoinhibited conformation. They share a common architecture, a four-helix bundle with a fifth helix that interacts with this bundle to prevent polymerizing. Upon binding to negatively charged membranes, the ESCRT-III components adopt an activated state that allows them to polymerize into filaments and spirals, and to interact with the AAA-ATPase Vps4 for polymer remodeling. ESCRT-III has been studied with electron microscopy (EM) and fluorescence microscopy (FM); these methods provided invaluable information about ESCRT assembly structures or their dynamics, respectively, but neither approach provides detailed insights into both aspects simultaneously. High-speed atomic force microscopy (HS-AFM) has overcome this shortcoming, providing movies at high spatio-temporal resolution of biomolecular processes, significantly increasing our understanding of ESCRT-III structure and dynamics. Here, we review the contributions of HS-AFM in the analysis of ESCRT-III, focusing on recent developments of non-planar and deformable HS-AFM supports. We divide the HS-AFM observations into four sequential steps in the ESCRT-III lifecycle: 1) polymerization, 2) morphology, 3) dynamics, and 4) depolymerization.
Collapse
Affiliation(s)
- Nebojsa Jukic
- Weill Cornell Medicine, Physiology, Biophysics and Systems Biology Graduate Program, New York, NY 10065, USA
| | - Alma P Perrino
- Weill Cornell Medicine, Department of Anesthesiology, 1300 York Avenue, New York, NY 10065, USA
| | - Lorena Redondo-Morata
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Simon Scheuring
- Weill Cornell Medicine, Department of Anesthesiology, 1300 York Avenue, New York, NY 10065, USA; Weill Cornell Medicine, Department of Physiology and Biophysics, 1300 York Avenue, New York, NY 10065, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York, NY 14853, USA.
| |
Collapse
|
20
|
Cohen-Barak E, Danial-Farran N, Chervinsky E, Alimi-Kasem O, Zagairy F, Livneh I, Mawassi B, Hreish M, Khayat M, Lossos A, Meiner V, Ehilevitch N, Weiss K, Shalev S. A homozygous variant in CHMP3 is associated with complex hereditary spastic paraplegia. J Med Genet 2023; 60:233-240. [PMID: 35710109 DOI: 10.1136/jmedgenet-2022-108508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/07/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Monogenic neurodegenerative diseases represent a heterogeneous group of disorders caused by mutations in genes involved in various cellular functions including autophagy, which mediates degradation of cytoplasmic contents by their transport into lysosomes. Abnormal autophagy is associated with hereditary ataxia and spastic paraplegia, amyotrophic lateral sclerosis and frontal dementia, characterised by intracellular accumulation of non-degraded proteins. We investigated the genetic basis of complex HSP in a consanguineous family of Arab-Muslim origin, consistent with autosomal recessive inheritance. METHODS Exome sequencing was followed by variant filtering and Sanger sequencing for validation and familial segregation. Studies for mRNA and protein expression used real-time PCR and immunoblots. Patients' primary fibroblasts were analysed using electron microscopy, immunofluorescence, western blot analysis and ectopic plasmid expression for its impact on autophagy. RESULTS We identified a homozygous missense variant in CHMP3 (Chr2:86507484 GRCh38 (NM_016079.4): c.518C>T, p.Thr173Ile), which encodes CHMP3 protein. Segregation analysis validated the presence of the homozygous variant in five affected individuals, while healthy family members were found either heterozygous or wild type for this variant. Primary patient's fibroblasts showed significantly reduced levels of CHMP3. Electron microscopy disclosed accumulation of endosomes, autophagosomes and autolysosomes in patient's fibroblasts, which correlated with higher levels of autophagy markers, p62 and LC3-II. Ectopic expression of wild-type CHMP3 in primary patient fibroblasts led to reduction of the p62 particles accumulation and number of endosomes and autophagosomes compared with control. CONCLUSIONS Reduced level of CHMP3 is associated with complex spastic paraplegia phenotype, through aberrant autophagy mechanisms.
Collapse
Affiliation(s)
- Eran Cohen-Barak
- Department of Dermatology, Emek Medical Center, Afula, Israel .,Technion Israel Institute of Technology, The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
| | | | | | | | - Fadia Zagairy
- Department of Dermatology, Emek Medical Center, Afula, Israel
| | - Ido Livneh
- Technion Israel Institute of Technology, The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
| | - Bannan Mawassi
- Department of Dermatology, Emek Medical Center, Afula, Israel
| | - Maysa Hreish
- Department of Dermatology, Emek Medical Center, Afula, Israel
| | - Morad Khayat
- Genetic Institute, Emek Medical Center, Afula, Israel
| | | | | | | | - Karin Weiss
- Technion Israel Institute of Technology, The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel.,Rambam Health Care Campus, Haifa, Israel
| | - Stavit Shalev
- Technion Israel Institute of Technology, The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel.,Emek Medical Center, Pediatric Department A and Genetic Institute, Afula, Israel
| |
Collapse
|
21
|
Cyanobacterial membrane dynamics in the light of eukaryotic principles. Biosci Rep 2023; 43:232406. [PMID: 36602300 PMCID: PMC9950537 DOI: 10.1042/bsr20221269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Intracellular compartmentalization is a hallmark of eukaryotic cells. Dynamic membrane remodeling, involving membrane fission/fusion events, clearly is crucial for cell viability and function, as well as membrane stabilization and/or repair, e.g., during or after injury. In recent decades, several proteins involved in membrane stabilization and/or dynamic membrane remodeling have been identified and described in eukaryotes. Yet, while typically not having a cellular organization as complex as eukaryotes, also bacteria can contain extra internal membrane systems besides the cytoplasmic membranes (CMs). Thus, also in bacteria mechanisms must have evolved to stabilize membranes and/or trigger dynamic membrane remodeling processes. In fact, in recent years proteins, which were initially defined being eukaryotic inventions, have been recognized also in bacteria, and likely these proteins shape membranes also in these organisms. One example of a complex prokaryotic inner membrane system is the thylakoid membrane (TM) of cyanobacteria, which contains the complexes of the photosynthesis light reaction. Cyanobacteria are evolutionary closely related to chloroplasts, and extensive remodeling of the internal membrane systems has been observed in chloroplasts and cyanobacteria during membrane biogenesis and/or at changing light conditions. We here discuss common principles guiding eukaryotic and prokaryotic membrane dynamics and the proteins involved, with a special focus on the dynamics of the cyanobacterial TMs and CMs.
Collapse
|
22
|
Romano JD, Mayoral J, Guevara RB, Rivera-Cuevas Y, Carruthers VB, Weiss LM, Coppens I. Toxoplasma gondii scavenges mammalian host organelles through the usurpation of host ESCRT-III and Vps4A. J Cell Sci 2023; 136:jcs260159. [PMID: 36718630 PMCID: PMC10022688 DOI: 10.1242/jcs.260159] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 01/19/2023] [Indexed: 02/01/2023] Open
Abstract
Intracellular pathogens exploit cellular resources through host cell manipulation. Within its nonfusogenic parasitophorous vacuole (PV), Toxoplasma gondii targets host nutrient-filled organelles and sequesters them into the PV through deep invaginations of the PV membrane (PVM) that ultimately detach from this membrane. Some of these invaginations are generated by an intravacuolar network (IVN) of parasite-derived tubules attached to the PVM. Here, we examined the usurpation of host ESCRT-III and Vps4A by the parasite to create PVM buds and vesicles. CHMP4B associated with the PVM/IVN, and dominant-negative (DN) CHMP4B formed many long PVM invaginations containing CHMP4B filaments. These invaginations were shorter in IVN-deficient parasites, suggesting cooperation between the IVN and ESCRT. In infected cells expressing Vps4A-DN, enlarged intra-PV structures containing host endolysosomes accumulated, reflecting defects in PVM scission. Parasite mutants lacking T. gondii (Tg)GRA14 or TgGRA64, which interact with ESCRT, reduced CHMP4B-DN-induced PVM invaginations and intra-PV host organelles, with greater defects in a double knockout, revealing the exploitation of ESCRT to scavenge host organelles by Toxoplasma.
Collapse
Affiliation(s)
- Julia D. Romano
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Joshua Mayoral
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rebekah B. Guevara
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yolanda Rivera-Cuevas
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Vern B. Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Louis M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
23
|
Stefańska K, Józkowiak M, Angelova Volponi A, Shibli JA, Golkar-Narenji A, Antosik P, Bukowska D, Piotrowska-Kempisty H, Mozdziak P, Dzięgiel P, Podhorska-Okołów M, Zabel M, Dyszkiewicz-Konwińska M, Kempisty B. The Role of Exosomes in Human Carcinogenesis and Cancer Therapy-Recent Findings from Molecular and Clinical Research. Cells 2023; 12:cells12030356. [PMID: 36766698 PMCID: PMC9913699 DOI: 10.3390/cells12030356] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Exosomes are biological nanoscale spherical lipid bilayer vesicles, 40-160 nm in diameter, produced by most mammalian cells in both physiological and pathological conditions. Exosomes are formed via the endosomal sorting complex required for transport (ESCRT). The primary function of exosomes is mediating cell-to-cell communication. In terms of cancer, exosomes play important roles as mediators of intercellular communication, leading to tumor progression. Moreover, they can serve as biomarkers for cancer detection and progression. Therefore, their utilization in cancer therapies has been suggested, either as drug delivery carriers or as a diagnostic tool. However, exosomes were also reported to be involved in cancer drug resistance via transferring information of drug resistance to sensitive cells. It is important to consider the current knowledge regarding the role of exosomes in cancer, drug resistance, cancer therapies, and their clinical application in cancer therapies.
Collapse
Affiliation(s)
- Katarzyna Stefańska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Cellivia 3 S.A., 61-623 Poznan, Poland
| | - Małgorzata Józkowiak
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
| | - Ana Angelova Volponi
- Centre for Craniofacial and Regenerative Biology, Dental Institute, King’s College London, London WC2R 2LS, UK
| | - Jamil Awad Shibli
- Department of Periodontology and Oral Implantology, University of Guarulhos, Guarulhos 07030-010, Brazil
| | - Afsaneh Golkar-Narenji
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paul Mozdziak
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Marzenna Podhorska-Okołów
- Division of Ultrastructural Research, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Division of Anatomy and Histology, University of Zielona Góra, 65-046 Zielona Góra, Poland
| | - Marta Dyszkiewicz-Konwińska
- Department of Biomaterials and Experimental Dentistry, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Bartosz Kempisty
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 601 77 Brno, Czech Republic
- Correspondence:
| |
Collapse
|
24
|
Azad K, Guilligay D, Boscheron C, Maity S, De Franceschi N, Sulbaran G, Effantin G, Wang H, Kleman JP, Bassereau P, Schoehn G, Roos WH, Desfosses A, Weissenhorn W. Structural basis of CHMP2A-CHMP3 ESCRT-III polymer assembly and membrane cleavage. Nat Struct Mol Biol 2023; 30:81-90. [PMID: 36604498 DOI: 10.1038/s41594-022-00867-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 10/12/2022] [Indexed: 01/07/2023]
Abstract
The endosomal sorting complex required for transport (ESCRT) is a highly conserved protein machinery that drives a divers set of physiological and pathological membrane remodeling processes. However, the structural basis of ESCRT-III polymers stabilizing, constricting and cleaving negatively curved membranes is yet unknown. Here we present cryo-EM structures of membrane-coated CHMP2A-CHMP3 filaments from Homo sapiens of two different diameters at 3.3 and 3.6 Å resolution. The structures reveal helical filaments assembled by CHMP2A-CHMP3 heterodimers in the open ESCRT-III conformation, which generates a partially positive charged membrane interaction surface, positions short N-terminal motifs for membrane interaction and the C-terminal VPS4 target sequence toward the tube interior. Inter-filament interactions are electrostatic, which may facilitate filament sliding upon VPS4-mediated polymer remodeling. Fluorescence microscopy as well as high-speed atomic force microscopy imaging corroborate that VPS4 can constrict and cleave CHMP2A-CHMP3 membrane tubes. We therefore conclude that CHMP2A-CHMP3-VPS4 act as a minimal membrane fission machinery.
Collapse
Affiliation(s)
- Kimi Azad
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Delphine Guilligay
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Cecile Boscheron
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Sourav Maity
- Moleculaire Biofysica, Zernike Institute, Rijksuniversiteit Groningen, Groningen, the Netherlands
| | - Nicola De Franceschi
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France.,Curie Institute, Laboratory of Physical Chemistry Curie, University of PSL, Sorbonne University, CNRS, Paris, France
| | - Guidenn Sulbaran
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Gregory Effantin
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Haiyan Wang
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Jean-Philippe Kleman
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Patricia Bassereau
- Curie Institute, Laboratory of Physical Chemistry Curie, University of PSL, Sorbonne University, CNRS, Paris, France
| | - Guy Schoehn
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike Institute, Rijksuniversiteit Groningen, Groningen, the Netherlands
| | - Ambroise Desfosses
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France.
| | - Winfried Weissenhorn
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France.
| |
Collapse
|
25
|
Seyedaghamiri F, Salimi L, Ghaznavi D, Sokullu E, Rahbarghazi R. Exosomes-based therapy of stroke, an emerging approach toward recovery. Cell Commun Signal 2022; 20:110. [PMID: 35869548 PMCID: PMC9308232 DOI: 10.1186/s12964-022-00919-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/11/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractBased on clinical observations, stroke is touted as one of the specific pathological conditions, affecting an individual’s life worldwide. So far, no effective treatment has been introduced to deal with stroke post-complications. Production and release of several neurotrophic factors by different cells exert positive effects on ischemic areas following stroke. As a correlate, basic and clinical studies have focused on the development and discovery of de novo modalities to introduce these factors timely and in appropriate doses into the affected areas. Exosomes (Exo) are non-sized vesicles released from many cells during pathological and physiological conditions and participate in intercellular communication. These particles transfer several arrays of signaling molecules, like several neurotrophic factors into the acceptor cells and induce specific signaling cascades in the favor of cell bioactivity. This review aimed to highlight the emerging role of exosomes as a therapeutic approach in the regeneration of ischemic areas.
Collapse
|
26
|
Zeng EZ, Chen I, Chen X, Yuan X. Exosomal MicroRNAs as Novel Cell-Free Therapeutics in Tissue Engineering and Regenerative Medicine. Biomedicines 2022; 10:2485. [PMID: 36289747 PMCID: PMC9598823 DOI: 10.3390/biomedicines10102485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/06/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound vesicles (50-1000 nm) that can be secreted by all cell types. Microvesicles and exosomes are the major subsets of EVs that exhibit the cell-cell communications and pathological functions of human tissues, and their therapeutic potentials. To further understand and engineer EVs for cell-free therapy, current developments in EV biogenesis and secretion pathways are discussed to illustrate the remaining gaps in EV biology. Specifically, microRNAs (miRs), as a major EV cargo that exert promising therapeutic results, are discussed in the context of biological origins, sorting and packing, and preclinical applications in disease progression and treatments. Moreover, advanced detection and engineering strategies for exosomal miRs are also reviewed. This article provides sufficient information and knowledge for the future design of EVs with specific miRs or protein cargos in tissue repair and regeneration.
Collapse
Affiliation(s)
- Eric Z. Zeng
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Isabelle Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- Los Altos High School, Los Altos, CA 94022, USA
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Xuegang Yuan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles (UCLA), Los Angeles, CA 95616, USA
| |
Collapse
|
27
|
Jiang X, Harker-Kirschneck L, Vanhille-Campos C, Pfitzner AK, Lominadze E, Roux A, Baum B, Šarić A. Modelling membrane reshaping by staged polymerization of ESCRT-III filaments. PLoS Comput Biol 2022; 18:e1010586. [PMID: 36251703 PMCID: PMC9612822 DOI: 10.1371/journal.pcbi.1010586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/27/2022] [Accepted: 09/19/2022] [Indexed: 12/24/2022] Open
Abstract
ESCRT-III filaments are composite cytoskeletal polymers that can constrict and cut cell membranes from the inside of the membrane neck. Membrane-bound ESCRT-III filaments undergo a series of dramatic composition and geometry changes in the presence of an ATP-consuming Vps4 enzyme, which causes stepwise changes in the membrane morphology. We set out to understand the physical mechanisms involved in translating the changes in ESCRT-III polymer composition into membrane deformation. We have built a coarse-grained model in which ESCRT-III polymers of different geometries and mechanical properties are allowed to copolymerise and bind to a deformable membrane. By modelling ATP-driven stepwise depolymerisation of specific polymers, we identify mechanical regimes in which changes in filament composition trigger the associated membrane transition from a flat to a buckled state, and then to a tubule state that eventually undergoes scission to release a small cargo-loaded vesicle. We then characterise how the location and kinetics of polymer loss affects the extent of membrane deformation and the efficiency of membrane neck scission. Our results identify the near-minimal mechanical conditions for the operation of shape-shifting composite polymers that sever membrane necks.
Collapse
Affiliation(s)
- Xiuyun Jiang
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Lena Harker-Kirschneck
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Christian Vanhille-Campos
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | - Elene Lominadze
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Buzz Baum
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Anđela Šarić
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
28
|
Dubey SK, Maulding K, Sung H, Lloyd TE. Nucleoporins are degraded via upregulation of ESCRT-III/Vps4 complex in Drosophila models of C9-ALS/FTD. Cell Rep 2022; 40:111379. [PMID: 36130523 PMCID: PMC10099287 DOI: 10.1016/j.celrep.2022.111379] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 03/22/2022] [Accepted: 08/28/2022] [Indexed: 11/03/2022] Open
Abstract
Disruption of the nuclear pore complex (NPC) and nucleocytoplasmic transport (NCT) have been implicated in the pathogenesis of neurodegenerative diseases. A GGGGCC hexanucleotide repeat expansion (HRE) in an intron of the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia, but the mechanism by which the HRE disrupts NCT is incompletely understood. We find that expression of GGGGCC repeats in Drosophila neurons induces proteasome-mediated degradation of select nucleoporins of the NPC. This process requires the Vps4 ATPase and the endosomal-sorting complex required for transport complex-III (ESCRT-III), as knockdown of ESCRT-III/Vps4 genes rescues nucleoporin levels, normalizes NCT, and suppresses GGGGCC-mediated neurodegeneration. GGGGCC expression upregulates nuclear ESCRT-III/Vps4 expression, and expansion microscopy demonstrates that the nucleoporins are translocated into the cytoplasm before undergoing proteasome-mediated degradation. These findings demonstrate a mechanism for nucleoporin degradation and NPC dysfunction in neurodegenerative disease.
Collapse
Affiliation(s)
- Sandeep Kumar Dubey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kirstin Maulding
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hyun Sung
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thomas E Lloyd
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
29
|
Wenzel DM, Mackay DR, Skalicky JJ, Paine EL, Miller MS, Ullman KS, Sundquist WI. Comprehensive analysis of the human ESCRT-III-MIT domain interactome reveals new cofactors for cytokinetic abscission. eLife 2022; 11:e77779. [PMID: 36107470 PMCID: PMC9477494 DOI: 10.7554/elife.77779] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
The 12 related human ESCRT-III proteins form filaments that constrict membranes and mediate fission, including during cytokinetic abscission. The C-terminal tails of polymerized ESCRT-III subunits also bind proteins that contain Microtubule-Interacting and Trafficking (MIT) domains. MIT domains can interact with ESCRT-III tails in many different ways to create a complex binding code that is used to recruit essential cofactors to sites of ESCRT activity. Here, we have comprehensively and quantitatively mapped the interactions between all known ESCRT-III tails and 19 recombinant human MIT domains. We measured 228 pairwise interactions, quantified 60 positive interactions, and discovered 18 previously unreported interactions. We also report the crystal structure of the SPASTIN MIT domain in complex with the IST1 C-terminal tail. Three MIT enzymes were studied in detail and shown to: (1) localize to cytokinetic midbody membrane bridges through interactions with their specific ESCRT-III binding partners (SPASTIN-IST1, KATNA1-CHMP3, and CAPN7-IST1), (2) function in abscission (SPASTIN, KATNA1, and CAPN7), and (3) function in the 'NoCut' abscission checkpoint (SPASTIN and CAPN7). Our studies define the human MIT-ESCRT-III interactome, identify new factors and activities required for cytokinetic abscission and its regulation, and provide a platform for analyzing ESCRT-III and MIT cofactor interactions in all ESCRT-mediated processes.
Collapse
Affiliation(s)
- Dawn M Wenzel
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Douglas R Mackay
- Department of Oncological Sciences, Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Jack J Skalicky
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Elliott L Paine
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Matthew S Miller
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Katharine S Ullman
- Department of Oncological Sciences, Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Wesley I Sundquist
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| |
Collapse
|
30
|
Jinesh GG, Brohl AS. Classical epithelial-mesenchymal transition (EMT) and alternative cell death process-driven blebbishield metastatic-witch (BMW) pathways to cancer metastasis. Signal Transduct Target Ther 2022; 7:296. [PMID: 35999218 PMCID: PMC9399134 DOI: 10.1038/s41392-022-01132-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/14/2022] [Accepted: 07/24/2022] [Indexed: 12/13/2022] Open
Abstract
Metastasis is a pivotal event that accelerates the prognosis of cancer patients towards mortality. Therapies that aim to induce cell death in metastatic cells require a more detailed understanding of the metastasis for better mitigation. Towards this goal, we discuss the details of two distinct but overlapping pathways of metastasis: a classical reversible epithelial-to-mesenchymal transition (hybrid-EMT)-driven transport pathway and an alternative cell death process-driven blebbishield metastatic-witch (BMW) transport pathway involving reversible cell death process. The knowledge about the EMT and BMW pathways is important for the therapy of metastatic cancers as these pathways confer drug resistance coupled to immune evasion/suppression. We initially discuss the EMT pathway and compare it with the BMW pathway in the contexts of coordinated oncogenic, metabolic, immunologic, and cell biological events that drive metastasis. In particular, we discuss how the cell death environment involving apoptosis, ferroptosis, necroptosis, and NETosis in BMW or EMT pathways recruits immune cells, fuses with it, migrates, permeabilizes vasculature, and settles at distant sites to establish metastasis. Finally, we discuss the therapeutic targets that are common to both EMT and BMW pathways.
Collapse
Affiliation(s)
- Goodwin G Jinesh
- Department of Molecular Oncology, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA. .,Sarcoma Department, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA.
| | - Andrew S Brohl
- Department of Molecular Oncology, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA. .,Sarcoma Department, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA.
| |
Collapse
|
31
|
Minamino N, Norizuki T, Mano S, Ebine K, Ueda T. Remodeling of organelles and microtubules during spermiogenesis in the liverwort Marchantia polymorpha. Development 2022; 149:276198. [DOI: 10.1242/dev.200951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/23/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Gametogenesis is an essential event for sexual reproduction in various organisms. Bryophytes employ motile sperm (spermatozoids) as male gametes, which locomote to the egg cells to accomplish fertilization. The spermatozoids of bryophytes harbor distinctive morphological characteristics, including a cell body with a helical shape and two flagella. During spermiogenesis, the shape and cellular contents of the spermatids are dynamically reorganized. However, the reorganization patterns of each organelle remain obscure. In this study, we classified the developmental processes during spermiogenesis in the liverwort Marchantia polymorpha according to changes in cellular and nuclear shapes and flagellar development. We then examined the remodeling of microtubules and the reorganization of endomembrane organelles. The results indicated that the state of glutamylation of tubulin changes during formation of the flagella and spline. We also found that the plasma membrane and endomembrane organelles are drastically reorganized in a precisely regulated manner, which involves the functions of endosomal sorting complexes required for transport (ESCRT) machineries in endocytic and vacuolar transport. These findings are expected to provide useful indices to classify developmental and subcellular processes of spermiogenesis in bryophytes.
Collapse
Affiliation(s)
- Naoki Minamino
- National Institute for Basic Biology 1 Division of Cellular Dynamics , , Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 , Japan
| | - Takuya Norizuki
- National Institute for Basic Biology 1 Division of Cellular Dynamics , , Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 , Japan
| | - Shoji Mano
- National Institute for Basic Biology 2 Laboratory of Organelle Regulation , , Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 , Japan
- SOKENDAI (The Graduate University for Advanced Studies) 3 Department of Basic Biology , , Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 , Japan
| | - Kazuo Ebine
- National Institute for Basic Biology 1 Division of Cellular Dynamics , , Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 , Japan
- SOKENDAI (The Graduate University for Advanced Studies) 3 Department of Basic Biology , , Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 , Japan
| | - Takashi Ueda
- National Institute for Basic Biology 1 Division of Cellular Dynamics , , Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 , Japan
- SOKENDAI (The Graduate University for Advanced Studies) 3 Department of Basic Biology , , Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 , Japan
| |
Collapse
|
32
|
Cada AK, Pavlin MR, Castillo JP, Tong AB, Larsen KP, Ren X, Yokom AL, Tsai FC, Shiah JV, Bassereau PM, Bustamante CJ, Hurley JH. Friction-driven membrane scission by the human ESCRT-III proteins CHMP1B and IST1. Proc Natl Acad Sci U S A 2022; 119:e2204536119. [PMID: 35858336 PMCID: PMC9303997 DOI: 10.1073/pnas.2204536119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/31/2022] [Indexed: 12/15/2022] Open
Abstract
The endosomal sorting complexes required for transport (ESCRT) system is an ancient and ubiquitous membrane scission machinery that catalyzes the budding and scission of membranes. ESCRT-mediated scission events, exemplified by those involved in the budding of HIV-1, are usually directed away from the cytosol ("reverse topology"), but they can also be directed toward the cytosol ("normal topology"). The ESCRT-III subunits CHMP1B and IST1 can coat and constrict positively curved membrane tubes, suggesting that these subunits could catalyze normal topology membrane severing. CHMP1B and IST1 bind and recruit the microtubule-severing AAA+ ATPase spastin, a close relative of VPS4, suggesting that spastin could have a VPS4-like role in normal-topology membrane scission. Here, we reconstituted the process in vitro using membrane nanotubes pulled from giant unilamellar vesicles using an optical trap in order to determine whether CHMP1B and IST1 are capable of membrane severing on their own or in concert with VPS4 or spastin. CHMP1B and IST1 copolymerize on membrane nanotubes, forming stable scaffolds that constrict the tubes, but do not, on their own, lead to scission. However, CHMP1B-IST1 scaffolded tubes were severed when an additional extensional force was applied, consistent with a friction-driven scission mechanism. We found that spastin colocalized with CHMP1B-enriched sites but did not disassemble the CHMP1B-IST1 coat from the membrane. VPS4 resolubilized CHMP1B and IST1 without leading to scission. These observations show that the CHMP1B-IST1 ESCRT-III combination is capable of severing membranes by a friction-driven mechanism that is independent of VPS4 and spastin.
Collapse
Affiliation(s)
- A. King Cada
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - Mark R. Pavlin
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
- Graduate Group in Biophysics, University of California, Berkeley, CA 94720
| | - Juan P. Castillo
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Alexander B. Tong
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Kevin P. Larsen
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - Xuefeng Ren
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - Adam L. Yokom
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - Feng-Ching Tsai
- Laboratoire Physico-Chimie Curie, Institut Curie, Université Paris Sciences & Letters, CNRS UMR168, Sorbonne Université, Paris, 75005 France
| | - Jamie V. Shiah
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - Patricia M. Bassereau
- Laboratoire Physico-Chimie Curie, Institut Curie, Université Paris Sciences & Letters, CNRS UMR168, Sorbonne Université, Paris, 75005 France
| | - Carlos J. Bustamante
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
- Graduate Group in Biophysics, University of California, Berkeley, CA 94720
- Department of Chemistry, University of California, Berkeley, CA 94720
- Department of Physics, University of California, Berkeley, CA 94720
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
- Kavli Energy Nanoscience Institute, University of California, Berkeley, CA 94720
| | - James H. Hurley
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
- Graduate Group in Biophysics, University of California, Berkeley, CA 94720
- Helen Wills Institute of Neuroscience, University of California, Berkeley, CA 94720
| |
Collapse
|
33
|
Baeumers M, Schulz K, Klein T. Using Drosophila melanogaster to Analyse the Human Paralogs of the ESCRT-III Core Component Shrub/CHMP4/Snf7 and Its Interactions with Members of the LGD/CC2D1 Family. Int J Mol Sci 2022; 23:7507. [PMID: 35886850 PMCID: PMC9320689 DOI: 10.3390/ijms23147507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
The evolutionary conserved ESCRT-III complex is a device for membrane remodelling in various cellular processes, such as the formation of intraluminal vesicles (ILVs), cytokinesis, and membrane repair. The common theme of all these processes is the abscission of membrane away from the cytosol. At its heart in Drosophila is Shrub, CHMP4 in humans, which dynamically polymerises into filaments through electrostatic interactions among the protomers. For the full activity, Shrub/CHMP4 requires physical interaction with members of the Lgd protein family. This interaction is mediated by the odd-numbered DM14 domains of Lgd, which bind to the negative interaction surface of Shrub. While only one Lgd and one Shrub exist in the genome of Drosophila, mammals have two Lgd orthologs, LGD1/CC2D1B and LGD2/CC2D1A, as well as three CHMP4s in their genomes, CHMP4A, CHMP4B, and CHMP4C. The rationale for the diversification of the ESCRT components is not understood. We here use Drosophila as a model system to analyse the activity of the human orthologs of Shrub and Lgd at an organismal level. This enabled us to use the plethora of available techniques available for Drosophila. We present evidence that CHMP4B is the true ortholog of Shrub, while CHMP4A and CHMP4C have diverging activities. Nevertheless, CHMP4A and CHMP4C can enhance the activity of CHMP4B, raising the possibility that they can form heteropolymers in vivo. Our structure-function analysis of the LGD1 and LGD2 indicates that the C2 domain of the LGD proteins has a specific function beyond protein stability and subcellular localisation. Moreover, our data specify that CHMP4B interacts more efficiently with LGD1 than with LGD2.
Collapse
Affiliation(s)
- Miriam Baeumers
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany;
| | - Katharina Schulz
- Institut für Angewandte Bewegungswissenschaften, Professur für Sportmedizin/-Biologie, Technische Universität Chemnitz, Thüringer Weg 11, 09126 Chemnitz, Germany;
| | - Thomas Klein
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany;
| |
Collapse
|
34
|
Tseng CC, Piper RC, Katzmann DJ. Bro1 family proteins harmonize cargo sorting with vesicle formation. Bioessays 2022; 44:e2100276. [PMID: 35770783 PMCID: PMC9575758 DOI: 10.1002/bies.202100276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 11/06/2022]
Abstract
The Endosomal Sorting Complexes Required for Transport (ESCRTs) drive membrane remodeling in a variety of cellular processes that include the formation of endosomal intralumenal vesicles (ILVs) during multivesicular body (MVB) biogenesis. During MVB sorting, ESCRTs recognize ubiquitin (Ub) attached to membrane protein cargo and execute ILV formation by controlling the activities of ESCRT-III polymers regulated by the AAA-ATPase Vps4. Exactly how these events are coordinated to ensure proper cargo loading into ILVs remains unclear. Here we discuss recent work documenting the ability of Bro1, an ESCRT-associated Ub-binding protein, to coordinate ESCRT-III and Vps4-dependent ILV biogenesis with upstream events such as cargo recognition.
Collapse
Affiliation(s)
- Chun-Che Tseng
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA.,Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert C Piper
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - David J Katzmann
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA.,Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
35
|
The ESCRT Machinery: Remodeling, Repairing, and Sealing Membranes. MEMBRANES 2022; 12:membranes12060633. [PMID: 35736340 PMCID: PMC9229795 DOI: 10.3390/membranes12060633] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023]
Abstract
The ESCRT machinery is an evolutionarily conserved membrane remodeling complex that is used by the cell to perform reverse membrane scission in essential processes like protein degradation, cell division, and release of enveloped retroviruses. ESCRT-III, together with the AAA ATPase VPS4, harbors the main remodeling and scission function of the ESCRT machinery, whereas early-acting ESCRTs mainly contribute to protein sorting and ESCRT-III recruitment through association with upstream targeting factors. Here, we review recent advances in our understanding of the molecular mechanisms that underlie membrane constriction and scission by ESCRT-III and describe the involvement of this machinery in the sealing and repairing of damaged cellular membranes, a key function to preserve cellular viability and organellar function.
Collapse
|
36
|
Hatano T, Palani S, Papatziamou D, Salzer R, Souza DP, Tamarit D, Makwana M, Potter A, Haig A, Xu W, Townsend D, Rochester D, Bellini D, Hussain HMA, Ettema TJG, Löwe J, Baum B, Robinson NP, Balasubramanian M. Asgard archaea shed light on the evolutionary origins of the eukaryotic ubiquitin-ESCRT machinery. Nat Commun 2022; 13:3398. [PMID: 35697693 PMCID: PMC9192718 DOI: 10.1038/s41467-022-30656-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 05/10/2022] [Indexed: 11/23/2022] Open
Abstract
The ESCRT machinery, comprising of multiple proteins and subcomplexes, is crucial for membrane remodelling in eukaryotic cells, in processes that include ubiquitin-mediated multivesicular body formation, membrane repair, cytokinetic abscission, and virus exit from host cells. This ESCRT system appears to have simpler, ancient origins, since many archaeal species possess homologues of ESCRT-III and Vps4, the components that execute the final membrane scission reaction, where they have been shown to play roles in cytokinesis, extracellular vesicle formation and viral egress. Remarkably, metagenome assemblies of Asgard archaea, the closest known living relatives of eukaryotes, were recently shown to encode homologues of the entire cascade involved in ubiquitin-mediated membrane remodelling, including ubiquitin itself, components of the ESCRT-I and ESCRT-II subcomplexes, and ESCRT-III and Vps4. Here, we explore the phylogeny, structure, and biochemistry of Asgard homologues of the ESCRT machinery and the associated ubiquitylation system. We provide evidence for the ESCRT-I and ESCRT-II subcomplexes being involved in ubiquitin-directed recruitment of ESCRT-III, as it is in eukaryotes. Taken together, our analyses suggest a pre-eukaryotic origin for the ubiquitin-coupled ESCRT system and a likely path of ESCRT evolution via a series of gene duplication and diversification events.
Collapse
Grants
- MC_U105184326 Medical Research Council
- MC_UP_1201/27 Medical Research Council
- 203276/Z/16/Z Wellcome Trust
- Wellcome Trust
- WT101885MA Wellcome Trust
- Wellcome Trust (Wellcome)
- Leverhulme Trust
- Svenska Forskningsrådet Formas (Swedish Research Council Formas)
- Above funding attributed to the authors as follows (from paper acknowledgements): Computational analysis was facilitated by resources provided by the Swedish National Infrastructure for Computing (SNIC) at the Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX), partially funded by the Swedish Research Council through grant agreement no. 2018-05973. We thank the Warwick Proteomics RTP for mass spectrometry. MKB was supported by the Wellcome Trust (WT101885MA) and the European Research Council (ERC-2014-ADG No. 671083). Work by the NR laboratory was supported by start-up funds from the Division of Biomedical and Life Sciences (BLS, Lancaster University) and a Leverhulme Research Project Grant (RPG-2019-297). NR would like to thank Johanna Syrjanen for performing trial expressions of the Odinarchaeota ESCRT proteins, and Joseph Maman for helpful discussion regarding the SEC-MALS. NR, WX and AP would like to thank Charley Lai and Siu-Kei Yau for assistance with initial Odinarchaeota ESCRT protein purifications. DPS and BB would like to thank Chris Johnson at the MRC LMB Biophysics facility for performing the SEC-MALS assay on Heimdallarchaeotal Vps22. TH, HH, MB, RS, JL, D Tamarit, TE, DPS and BB received support from a Wellcome Trust collaborative award (203276/Z/16/Z). BB and DPS were supported by the MRC. D Tamarit was supported by the Swedish Research Council (International Postdoc grant 2018-06609).
Collapse
Affiliation(s)
- Tomoyuki Hatano
- Centre for Mechanochemical Cell Biology, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Saravanan Palani
- Centre for Mechanochemical Cell Biology, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Dimitra Papatziamou
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK
| | - Ralf Salzer
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Diorge P Souza
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Daniel Tamarit
- Laboratory of Microbiology, Wageningen University, 6708 WE, Wageningen, The Netherlands
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007, Uppsala, Sweden
| | - Mehul Makwana
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK
| | - Antonia Potter
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK
| | - Alexandra Haig
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK
| | - Wenjue Xu
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK
| | - David Townsend
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK
| | - David Rochester
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK
| | - Dom Bellini
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Hamdi M A Hussain
- Centre for Mechanochemical Cell Biology, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Thijs J G Ettema
- Laboratory of Microbiology, Wageningen University, 6708 WE, Wageningen, The Netherlands
| | - Jan Löwe
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Buzz Baum
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK.
| | - Nicholas P Robinson
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK.
| | - Mohan Balasubramanian
- Centre for Mechanochemical Cell Biology, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
37
|
Alsleben S, Kölling R. Vps68 cooperates with ESCRT-III in intraluminal vesicle formation. J Cell Sci 2022; 135:275091. [PMID: 35445263 DOI: 10.1242/jcs.259743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/31/2022] [Indexed: 11/20/2022] Open
Abstract
The endosomal sorting complex required for transport (ESCRT)-III mediates budding and abscission of intraluminal vesicles (ILVs) into multivesicular endosomes. To further define the role of the yeast ESCRT-III-associated protein Mos10 (also known as Vps60) in ILV formation, we screened for new interaction partners by using stable isotope labeling of amino acids in cell culture (SILAC) and mass spectrometry. Here, we focused on the newly identified interaction partner Vps68. Our data suggest that Vps68 cooperates with ESCRT-III in ILV formation. The deletion of VPS68 caused a sorting defect similar to that of the SNF7 deletion strain when the cargo load was high. The composition of ESCRT-III was altered, the level of core components was higher and the level of associated proteins was lower in the VPS68 deletion strain. Our data further indicate that at some point in the functional cycle of ESCRT-III, Snf7 could be replaced by Mos10. Vps68 has an unusual membrane topology. Two of its potential membrane helices are amphipathic helices that localize to the luminal side of the endosomal membrane. Based on this membrane topology, we propose that Vps68 and ESCRT-III cooperate in the abscission step by weakening the luminal and cytosolic leaflets of the bilayer at the abscission site.
Collapse
Affiliation(s)
- Sören Alsleben
- Institut für Lebensmittelwissenschaft und Biotechnologie, Fg. Hefegenetik und Gärungstechnologie, Universität Hohenheim, 70599 Stuttgart, Germany
| | - Ralf Kölling
- Institut für Lebensmittelwissenschaft und Biotechnologie, Fg. Hefegenetik und Gärungstechnologie, Universität Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
38
|
Jukic N, Perrino AP, Humbert F, Roux A, Scheuring S. Snf7 spirals sense and alter membrane curvature. Nat Commun 2022; 13:2174. [PMID: 35449207 PMCID: PMC9023468 DOI: 10.1038/s41467-022-29850-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/03/2022] [Indexed: 11/25/2022] Open
Abstract
Endosomal Sorting Complex Required for Transport III (ESCRT-III) is a conserved protein system involved in many cellular processes resulting in membrane deformation and scission, topologically away from the cytoplasm. However, little is known about the transition of the planar membrane-associated protein assembly into a 3D structure. High-speed atomic force microscopy (HS-AFM) provided insights into assembly, structural dynamics and turnover of Snf7, the major ESCRT-III component, on planar supported lipid bilayers. Here, we develop HS-AFM experiments that remove the constraints of membrane planarity, crowdedness, and support rigidity. On non-planar membranes, Snf7 monomers are curvature insensitive, but Snf7-spirals selectively adapt their conformation to membrane geometry. In a non-crowded system, Snf7-spirals reach a critical radius, and remodel to minimize internal stress. On non-rigid supports, Snf7-spirals compact and buckle, deforming the underlying bilayer. These experiments provide direct evidence that Snf7 is sufficient to mediate topological transitions, in agreement with the loaded spiral spring model.
Collapse
Affiliation(s)
- Nebojsa Jukic
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Alma P Perrino
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Frédéric Humbert
- Department of Biochemistry, University of Geneva, CH-1211, Geneva, Switzerland
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, CH-1211, Geneva, Switzerland
- Swiss National Centre for Competence in Research Programme Chemical Biology, CH-1211, Geneva, Switzerland
| | - Simon Scheuring
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, 10065, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA.
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York, NY, 14853, USA.
| |
Collapse
|
39
|
Wei K, Huang H, Liu M, Shi D, Ma X. Platelet-Derived Exosomes and Atherothrombosis. Front Cardiovasc Med 2022; 9:886132. [PMID: 35498048 PMCID: PMC9051247 DOI: 10.3389/fcvm.2022.886132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/25/2022] [Indexed: 11/17/2022] Open
Abstract
Platelet-derived exosomes (PLT-Exos) are the main subtype of extracellular vesicles secreted by platelets, which carry proteins, nucleotides, lipids, and other substances to acceptor cells, playing an important role in intercellular communication. PLT-Exos increase with platelet activation and are involved in the process of atherothrombosis by delivering cargo to acceptor cells. Atherosclerotic plaque rupture, causing thrombosis and arterial occlusion, is the basic pathological change leading to cardiovascular events. PLT-Exos from different donors have different functions. PLT-Exos secreted by healthy volunteer or mice can inhibit platelet activation and inflammation of endothelial cells, thus exerting an antithrombotic effect, while PLT-Exos derived from some patients induce endothelial apoptosis and an inflammatory response to promote atherothrombosis. Furthermore, increased PLT-Exos reflect platelet activation and their cargoes also are derived from platelets; therefore, PLT-Exos can also be used as a biomarkers for the diagnosis and prognosis of cardiovascular disease. This article reviews the characteristics of PLT-Exos and discusses their role in cell-to-cell communication and atherothrombosis.
Collapse
Affiliation(s)
- Kangkang Wei
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Beijing, China
- Department of Integrated Chinese and Western Medicine, Peking University Health Science Center, Beijing, China
| | - Hongbo Huang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Min Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Dazhuo Shi
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Beijing, China
- Dazhuo Shi,
| | - Xiaojuan Ma
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Xiaojuan Ma,
| |
Collapse
|
40
|
Bernareggi D, Xie Q, Prager BC, Yun J, Cruz LS, Pham TV, Kim W, Lee X, Coffey M, Zalfa C, Azmoon P, Zhu H, Tamayo P, Rich JN, Kaufman DS. CHMP2A regulates tumor sensitivity to natural killer cell-mediated cytotoxicity. Nat Commun 2022; 13:1899. [PMID: 35393416 PMCID: PMC8990014 DOI: 10.1038/s41467-022-29469-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 03/09/2022] [Indexed: 02/08/2023] Open
Abstract
Natural killer (NK) cells are known to mediate killing of various cancer types, but tumor cells can develop resistance mechanisms to escape NK cell-mediated killing. Here, we use a "two cell type" whole genome CRISPR-Cas9 screening system to discover key regulators of tumor sensitivity and resistance to NK cell-mediated cytotoxicity in human glioblastoma stem cells (GSC). We identify CHMP2A as a regulator of GSC resistance to NK cell-mediated cytotoxicity and we confirm these findings in a head and neck squamous cells carcinoma (HNSCC) model. We show that deletion of CHMP2A activates NF-κB in tumor cells to mediate increased chemokine secretion that promotes NK cell migration towards tumor cells. In the HNSCC model we demonstrate that CHMP2A mediates tumor resistance to NK cells via secretion of extracellular vesicles (EVs) that express MICA/B and TRAIL. These secreted ligands induce apoptosis of NK cells to inhibit their antitumor activity. To confirm these in vitro studies, we demonstrate that deletion of CHMP2A in CAL27 HNSCC cells leads to increased NK cell-mediated killing in a xenograft immunodeficient mouse model. These findings illustrate a mechanism of tumor immune escape through EVs secretion and identify inhibition of CHMP2A and related targets as opportunities to improve NK cell-mediated immunotherapy.
Collapse
Affiliation(s)
- Davide Bernareggi
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Qi Xie
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
| | - Briana C Prager
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.,Cleveland Clinic Lerner College of Medicine at Cleveland Clinic & Case Western Reserve University, Cleveland, OH, USA
| | - Jiyoung Yun
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Luisjesus S Cruz
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Timothy V Pham
- Center for Novel Therapeutics and Moores Cancer Center, UCSD, San Diego, CA, USA
| | - William Kim
- Center for Novel Therapeutics and Moores Cancer Center, UCSD, San Diego, CA, USA.,Division of Medical Genetics, Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Xiqing Lee
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Michael Coffey
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Cristina Zalfa
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Pardis Azmoon
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Huang Zhu
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Pablo Tamayo
- Center for Novel Therapeutics and Moores Cancer Center, UCSD, San Diego, CA, USA.,Division of Medical Genetics, Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Jeremy N Rich
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Dan S Kaufman
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
41
|
Li Y, Huang L, Chen Y, Shi Y, Ze Y, Yao Y. Irradiated cell-derived exosomes transmit essential molecules inducing radiotherapy resistance. Int J Radiat Oncol Biol Phys 2022; 113:192-202. [PMID: 35217095 DOI: 10.1016/j.ijrobp.2022.01.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/11/2021] [Accepted: 01/23/2022] [Indexed: 02/05/2023]
Abstract
Radio-resistance has always been a major obstacle in radiation therapy (RT) progress. Radiotherapy (RT) leads to changes in the contents of released exosomes. The researches have shown that irradiated cell-derived exosomes influence recipient cell proliferation, migration, cell cycle arrest and apoptosis. All evidence indicates that exosomes play a significant role in radio-resistance. In this review, we describe the potential role of exosomes in cancer. We summarize that the irradiated cell-derived exosomes influence radio-resistance in recipient cells by three main mechanisms: 1) enhancing DNA repair, 2) regulating cell death signalling pathways, 3) inducing cancer cells to exhibit stem cell properties. We also discuss that the origin of the phenomenon might be the changes of molecular mechanisms of irradiated cell-derived exosomes formation affected by RT. Further, targeting exosomes as an adjuvant therapy might be a promising way for cancer treatments.
Collapse
Affiliation(s)
- Yiling Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Linyang Huang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yanchi Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yixin Shi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yiting Ze
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yang Yao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
42
|
Buysse D, West M, Leih M, Odorizzi G. Bro1 binds the Vps20 subunit of ESCRT-III and promotes ESCRT-III regulation by Doa4. Traffic 2022; 23:109-119. [PMID: 34908216 PMCID: PMC8792227 DOI: 10.1111/tra.12828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 11/19/2021] [Accepted: 12/09/2021] [Indexed: 02/03/2023]
Abstract
The budding of intralumenal vesicles (ILVs) at endosomes requires membrane scission by the ESCRT-III complex. This step is negatively regulated in yeast by Doa4, the ubiquitin hydrolase that deubiquitinates transmembrane proteins sorted as cargoes into ILVs. Doa4 acts non-enzymatically to inhibit ESCRT-III membrane scission activity by directly binding the Snf7 subunit of ESCRT-III. This interaction inhibits the remodeling/disassembly of Snf7 polymers required for the ILV membrane scission reaction. Thus, Doa4 is thought to have a structural role that delays ILV budding while it also functions enzymatically to deubiquitinate ILV cargoes. In this study, we show that Doa4 binding to Snf7 in vivo is antagonized by another ESCRT-III subunit, Vps20. Doa4 is restricted from interacting with Snf7 in yeast expressing a mutant Vps20 allele that constitutively binds Doa4. This inhibitory effect of Vps20 is suppressed by overexpression of another ESCRT-III-associated protein, Bro1. We show that Bro1 binds directly to Vps20, suggesting that Bro1 has a central role in relieving the antagonistic relationship that Vps20 has toward Doa4.
Collapse
Affiliation(s)
- Dalton Buysse
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Matt West
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Mitchell Leih
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Greg Odorizzi
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA,Author for correspondence ()
| |
Collapse
|
43
|
Kumar S, Javed R, Mudd M, Pallikkuth S, Lidke KA, Jain A, Tangavelou K, Gudmundsson SR, Ye C, Rusten TE, Anonsen JH, Lystad AH, Claude-Taupin A, Simonsen A, Salemi M, Phinney B, Li J, Guo LW, Bradfute SB, Timmins GS, Eskelinen EL, Deretic V. Mammalian hybrid pre-autophagosomal structure HyPAS generates autophagosomes. Cell 2021; 184:5950-5969.e22. [PMID: 34741801 PMCID: PMC8616855 DOI: 10.1016/j.cell.2021.10.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 05/12/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022]
Abstract
The biogenesis of mammalian autophagosomes remains to be fully defined. Here, we used cellular and in vitro membrane fusion analyses to show that autophagosomes are formed from a hitherto unappreciated hybrid membrane compartment. The autophagic precursors emerge through fusion of FIP200 vesicles, derived from the cis-Golgi, with endosomally derived ATG16L1 membranes to generate a hybrid pre-autophagosomal structure, HyPAS. A previously unrecognized apparatus defined here controls HyPAS biogenesis and mammalian autophagosomal precursor membranes. HyPAS can be modulated by pharmacological agents whereas its formation is inhibited upon severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or by expression of SARS-CoV-2 nsp6. These findings reveal the origin of mammalian autophagosomal membranes, which emerge via convergence of secretory and endosomal pathways, and show that this process is targeted by microbial factors such as coronaviral membrane-modulating proteins.
Collapse
Affiliation(s)
- Suresh Kumar
- Autophagy Inflammation and Metabolism Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Ruheena Javed
- Autophagy Inflammation and Metabolism Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Michal Mudd
- Autophagy Inflammation and Metabolism Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Sandeep Pallikkuth
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA
| | - Keith A Lidke
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA
| | - Ashish Jain
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Karthikeyan Tangavelou
- Autophagy Inflammation and Metabolism Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | | | - Chunyan Ye
- Center for Global Health, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | | | | | | | - Aurore Claude-Taupin
- Autophagy Inflammation and Metabolism Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Anne Simonsen
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Michelle Salemi
- Proteomics Core, University of California Davis, Davis, CA, USA
| | - Brett Phinney
- Proteomics Core, University of California Davis, Davis, CA, USA
| | - Jing Li
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Lian-Wang Guo
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Steven B Bradfute
- Center for Global Health, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Graham S Timmins
- Autophagy Inflammation and Metabolism Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; School of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | | | - Vojo Deretic
- Autophagy Inflammation and Metabolism Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| |
Collapse
|
44
|
Pascual-Antón L, Cardeñes B, Sainz de la Cuesta R, González-Cortijo L, López-Cabrera M, Cabañas C, Sandoval P. Mesothelial-to-Mesenchymal Transition and Exosomes in Peritoneal Metastasis of Ovarian Cancer. Int J Mol Sci 2021; 22:ijms222111496. [PMID: 34768926 PMCID: PMC8584135 DOI: 10.3390/ijms222111496] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/21/2022] Open
Abstract
Most patients with ovarian cancer (OvCA) present peritoneal disseminated disease at the time of diagnosis. During peritoneal metastasis, cancer cells detach from the primary tumor and disseminate through the intraperitoneal fluid. The peritoneal mesothelial cell (PMC) monolayer that lines the abdominal cavity is the first barrier encountered by OvCA cells. Subsequent progression of tumors through the peritoneum leads to the accumulation into the peritoneal stroma of a sizeable population of carcinoma-associated fibroblasts (CAFs), which is mainly originated from a mesothelial-to-mesenchymal transition (MMT) process. A common characteristic of OvCA patients is the intraperitoneal accumulation of ascitic fluid, which is composed of cytokines, chemokines, growth factors, miRNAs, and proteins contained in exosomes, as well as tumor and mesothelial suspended cells, among other components that vary in proportion between patients. Exosomes are small extracellular vesicles that have been shown to mediate peritoneal metastasis by educating a pre-metastatic niche, promoting the accumulation of CAFs via MMT, and inducing tumor growth and chemoresistance. This review summarizes and discusses the pivotal role of exosomes and MMT as mediators of OvCA peritoneal colonization and as emerging diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Lucía Pascual-Antón
- Tissue and Organ Homeostasis Program, Cell-Cell Communication and Inflammation Unit, Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; (L.P.-A.); (B.C.); (M.L.-C.)
| | - Beatriz Cardeñes
- Tissue and Organ Homeostasis Program, Cell-Cell Communication and Inflammation Unit, Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; (L.P.-A.); (B.C.); (M.L.-C.)
| | | | | | - Manuel López-Cabrera
- Tissue and Organ Homeostasis Program, Cell-Cell Communication and Inflammation Unit, Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; (L.P.-A.); (B.C.); (M.L.-C.)
| | - Carlos Cabañas
- Tissue and Organ Homeostasis Program, Cell-Cell Communication and Inflammation Unit, Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; (L.P.-A.); (B.C.); (M.L.-C.)
- Department of Immunology, Ophthalmology and Otorhinolaryngology, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Lymphocyte Immunobiology Group, Inflammatory and Immune Disorders Area, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
- Correspondence: (C.C.); (P.S.); Tel.: +34-91-196-4513 (C.C.); +34-91-196-4707 (P.S.)
| | - Pilar Sandoval
- Tissue and Organ Homeostasis Program, Cell-Cell Communication and Inflammation Unit, Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; (L.P.-A.); (B.C.); (M.L.-C.)
- Correspondence: (C.C.); (P.S.); Tel.: +34-91-196-4513 (C.C.); +34-91-196-4707 (P.S.)
| |
Collapse
|
45
|
Rheinemann L, Downhour DM, Bredbenner K, Mercenne G, Davenport KA, Schmitt PT, Necessary CR, McCullough J, Schmitt AP, Simon SM, Sundquist WI, Elde NC. RetroCHMP3 blocks budding of enveloped viruses without blocking cytokinesis. Cell 2021; 184:5419-5431.e16. [PMID: 34597582 PMCID: PMC8929533 DOI: 10.1016/j.cell.2021.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 05/03/2021] [Accepted: 09/03/2021] [Indexed: 11/26/2022]
Abstract
Many enveloped viruses require the endosomal sorting complexes required for transport (ESCRT) pathway to exit infected cells. This highly conserved pathway mediates essential cellular membrane fission events, which restricts the acquisition of adaptive mutations to counteract viral co-option. Here, we describe duplicated and truncated copies of the ESCRT-III factor CHMP3 that block ESCRT-dependent virus budding and arose independently in New World monkeys and mice. When expressed in human cells, these retroCHMP3 proteins potently inhibit release of retroviruses, paramyxoviruses, and filoviruses. Remarkably, retroCHMP3 proteins have evolved to reduce interactions with other ESCRT-III factors and have little effect on cellular ESCRT processes, revealing routes for decoupling cellular ESCRT functions from viral exploitation. The repurposing of duplicated ESCRT-III proteins thus provides a mechanism to generate broad-spectrum viral budding inhibitors without blocking highly conserved essential cellular ESCRT functions.
Collapse
Affiliation(s)
- Lara Rheinemann
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Diane Miller Downhour
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Kate Bredbenner
- Laboratory of Cellular Biophysics, Rockefeller University, New York, NY 10065, USA
| | - Gaelle Mercenne
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Kristen A Davenport
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Phuong Tieu Schmitt
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Christina R Necessary
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - John McCullough
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Anthony P Schmitt
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sanford M Simon
- Laboratory of Cellular Biophysics, Rockefeller University, New York, NY 10065, USA.
| | - Wesley I Sundquist
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | - Nels C Elde
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
46
|
Paine KM, Ecclestone GB, MacDonald C. Fur4-mediated uracil-scavenging to screen for surface protein regulators. Traffic 2021; 22:397-408. [PMID: 34498791 PMCID: PMC8650575 DOI: 10.1111/tra.12815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/04/2021] [Accepted: 09/06/2021] [Indexed: 11/28/2022]
Abstract
Cell surface membrane proteins perform diverse and critical functions and are spatially and temporally regulated by membrane trafficking pathways. Although perturbations in these pathways underlie many pathologies, our understanding of these pathways at a mechanistic level remains incomplete. Using yeast as a model, we have developed an assay that reports on the surface activity of the uracil permease Fur4 in uracil auxotroph strains grown in the presence of limited uracil. This assay was used to screen a library of haploid deletion strains and identified mutants with both diminished and enhanced comparative growth in restricted uracil media. Factors identified, including various multisubunit complexes, were enriched for membrane trafficking and transcriptional functions, in addition to various uncharacterized genes. Bioinformatic analysis of expression profiles from many strains lacking transcription factors required for efficient uracil-scavenging validated particular hits from the screen, in addition to implicating essential genes not tested in the screen. Finally, we performed a secondary mating factor secretion screen to functionally categorize factors implicated in uracil-scavenging.
Collapse
Affiliation(s)
- Katherine M Paine
- York Biomedical Research Institute and Department of Biology, University of York, York, UK
| | - Gabrielle B Ecclestone
- York Biomedical Research Institute and Department of Biology, University of York, York, UK
| | - Chris MacDonald
- York Biomedical Research Institute and Department of Biology, University of York, York, UK
| |
Collapse
|
47
|
Liu C, Zeng Y, Li H, Yang C, Shen W, Xu M, Xiao Z, Chen T, Li B, Cao W, Jiang L, Otegui MS, Gao C. A plant-unique ESCRT component, FYVE4, regulates multivesicular endosome biogenesis and plant growth. THE NEW PHYTOLOGIST 2021; 231:193-209. [PMID: 33772801 DOI: 10.1111/nph.17358] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
During evolution, land plants generated unique proteins that participate in endosomal sorting and multivesicular endosome (MVE) biogenesis, many of them with specific phosphoinositide-binding capabilities. Nonetheless, the function of most plant phosphoinositide-binding proteins in endosomal trafficking remains elusive. Here, we analysed several Arabidopsis mutants lacking predicted phosphoinositide-binding proteins and first identified fyve4-1 as a mutant with a hypersensitive response to high-boron conditions and defects in degradative vacuolar sorting of membrane proteins such as the borate exporter BOR1-GFP. FYVE4 encodes a plant-unique, FYVE domain-containing protein that interacts with SNF7, a core component of ESCRT-III (Endosomal Sorting Complex Required for Transport III). FYVE4 affects the membrane association of the late-acting ESCRT components SNF7 and VPS4, and modulates the formation of intraluminal vesicles (ILVs) inside MVEs. The critical function of FYVE4 in the ESCRT pathway was further demonstrated by the strong genetic interactions with SNF7B and LIP5. Although the fyve4-1, snf7b and lip5 single mutants were viable, the fyve4-1 snf7b and fyve4-1 lip5 double mutants were seedling lethal, with strong defects in MVE biogenesis and vacuolar sorting of ubiquitinated membrane proteins. Taken together, we identified FYVE4 as a novel plant endosomal regulator, which functions in ESCRTing pathway to regulate MVE biogenesis.
Collapse
Affiliation(s)
- Chuanliang Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yonglun Zeng
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Hongbo Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Chao Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wenjin Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Min Xu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zhidan Xiao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Tongsheng Chen
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Baiying Li
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Wenhan Cao
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Marisa S Otegui
- Department of Botany, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
48
|
Rose KM. When in Need of an ESCRT: The Nature of Virus Assembly Sites Suggests Mechanistic Parallels between Nuclear Virus Egress and Retroviral Budding. Viruses 2021; 13:v13061138. [PMID: 34199191 PMCID: PMC8231873 DOI: 10.3390/v13061138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/17/2022] Open
Abstract
The proper assembly and dissemination of progeny virions is a fundamental step in virus replication. As a whole, viruses have evolved a myriad of strategies to exploit cellular compartments and mechanisms to ensure a successful round of infection. For enveloped viruses such as retroviruses and herpesviruses, acquisition and incorporation of cellular membrane is an essential process during the formation of infectious viral particles. To do this, these viruses have evolved to hijack the host Endosomal Sorting Complexes Required for Transport (ESCRT-I, -II, and -III) to coordinate the sculpting of cellular membrane at virus assembly and dissemination sites, in seemingly different, yet fundamentally similar ways. For instance, at the plasma membrane, ESCRT-I recruitment is essential for HIV-1 assembly and budding, while it is dispensable for the release of HSV-1. Further, HSV-1 was shown to recruit ESCRT-III for nuclear particle assembly and egress, a process not used by retroviruses during replication. Although the cooption of ESCRTs occurs in two separate subcellular compartments and at two distinct steps for these viral lifecycles, the role fulfilled by ESCRTs at these sites appears to be conserved. This review discusses recent findings that shed some light on the potential parallels between retroviral budding and nuclear egress and proposes a model where HSV-1 nuclear egress may occur through an ESCRT-dependent mechanism.
Collapse
Affiliation(s)
- Kevin M Rose
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California-Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
49
|
Banjade S, Shah YH, Tang S, Emr SD. Design principles of the ESCRT-III Vps24-Vps2 module. eLife 2021; 10:67709. [PMID: 34028356 PMCID: PMC8143795 DOI: 10.7554/elife.67709] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/11/2021] [Indexed: 12/16/2022] Open
Abstract
ESCRT-III polymerization is required for all endosomal sorting complex required for transport (ESCRT)-dependent events in the cell. However, the relative contributions of the eight ESCRT-III subunits differ between each process. The minimal features of ESCRT-III proteins necessary for function and the role for the multiple ESCRT-III subunits remain unclear. To identify essential features of ESCRT-III subunits, we previously studied the polymerization mechanisms of two ESCRT-III subunits Snf7 and Vps24, identifying the association of the helix-4 region of Snf7 with the helix-1 region of Vps24 (Banjade et al., 2019a). Here, we find that mutations in the helix-1 region of another ESCRT-III subunit Vps2 can functionally replace Vps24 in Saccharomyces cerevisiae. Engineering and genetic selections revealed the required features of both subunits. Our data allow us to propose three minimal features required for ESCRT-III function – spiral formation, lateral association of the spirals through heteropolymerization, and binding to the AAA + ATPase Vps4 for dynamic remodeling.
Collapse
Affiliation(s)
- Sudeep Banjade
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Yousuf H Shah
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Shaogeng Tang
- Department of Biochemistry, Stanford University, Stanford, United States
| | - Scott D Emr
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| |
Collapse
|
50
|
Genetic analysis of the Drosophila ESCRT-III complex protein, VPS24, reveals a novel function in lysosome homeostasis. PLoS One 2021; 16:e0251184. [PMID: 33956855 PMCID: PMC8101729 DOI: 10.1371/journal.pone.0251184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/21/2021] [Indexed: 12/28/2022] Open
Abstract
The ESCRT pathway is evolutionarily conserved across eukaryotes and plays key roles in a variety of membrane remodeling processes. A new Drosophila mutant recovered in our forward genetic screens for synaptic transmission mutants mapped to the vps24 gene encoding a subunit of the ESCRT-III complex. Molecular characterization indicated a loss of VPS24 function, however the mutant is viable and thus loss of VPS24 may be studied in a developed multicellular organism. The mutant exhibits deficits in locomotion and lifespan and, notably, these phenotypes are rescued by neuronal expression of wild-type VPS24. At the cellular level, neuronal and muscle cells exhibit marked expansion of a ubiquitin-positive lysosomal compartment, as well as accumulation of autophagic intermediates, and these phenotypes are rescued cell-autonomously. Moreover, VPS24 expression in glia suppressed the mutant phenotype in muscle, indicating a cell-nonautonomous function for VPS24 in protective intercellular signaling. Ultrastructural analysis of neurons and muscle indicated marked accumulation of the lysosomal compartment in the vps24 mutant. In the neuronal cell body, this included characteristic lysosomal structures associated with an expansive membrane compartment with a striking tubular network morphology. These findings further define the in vivo roles of VPS24 and the ESCRT pathway in lysosome homeostasis and their potential contributions to neurodegenerative diseases characterized by defective ESCRT or lysosome function.
Collapse
|