1
|
Ren F, Yi Y, Lu T, Liu X, Cui G, Huang S, Parada LF, Chen J. Synthetic lethality through Gsk3β inhibition in glioma stem cells via the WNT-WWC1-YAP axis. Oncogene 2025:10.1038/s41388-025-03418-9. [PMID: 40269262 DOI: 10.1038/s41388-025-03418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 04/06/2025] [Accepted: 04/11/2025] [Indexed: 04/25/2025]
Abstract
Glioblastoma (GBM) is an aggressive brain tumor driven by glioma stem cells (GSCs), which contribute to tumor growth and therapeutic resistance. This study investigates the effects of Gsk3β inhibition on GSC viability, focusing on the role of the canonical WNT signaling pathway. We found that Gsk3β inhibition activates the WNT pathway, leading to upregulation of Wwc1, which downregulates Yap via Lats1 phosphorylation. This reduces GSC proliferation, self-renewal, and enhances chemosensitivity. Analysis of clinical datasets revealed that WNT pathway activation correlates with improved prognosis in proneural gliomas, particularly in IDH1-mutated tumors. Our findings suggest that targeting the WNT-WWC1-YAP axis, particularly through Gsk3β inhibition, could induce synthetic lethality in GSCs and provide a promising therapeutic strategy for gliomas. These results highlight the potential of exploiting WNT-induced synthetic lethality as a novel approach for glioma treatment.
Collapse
Affiliation(s)
- Fangfang Ren
- National Institute of Biological Sciences, Beijing, China
| | - Yulan Yi
- Institute of Functional Nano and Soft Materials (FUNSOM) & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, China
| | - Ting Lu
- Department of Neurosurgery, First affiliated Hospital of Soochow University, Suzhou, China
| | - Xinze Liu
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Chinese Institute for Brain Research, Beijing, Beijing, China
| | - Gang Cui
- Department of Neurosurgery, First affiliated Hospital of Soochow University, Suzhou, China
| | - Song Huang
- National Institute of Biological Sciences, Beijing, China
| | - Luis F Parada
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Jian Chen
- Institute of Functional Nano and Soft Materials (FUNSOM) & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, China.
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Chinese Institute for Brain Research, Beijing, Beijing, China.
- Changping Laboratory, Beijing, China.
| |
Collapse
|
2
|
Lee JW, Lee KA, Jang IH, Nam K, Kim SH, Kyung M, Cho KC, Lee JH, You H, Kim EK, Koh YH, Lee H, Park J, Hwang SY, Chung YW, Ryu CM, Kwon Y, Roh SH, Ryu JH, Lee WJ. Microbiome-emitted scents activate olfactory neuron-independent airway-gut-brain axis to promote host growth in Drosophila. Nat Commun 2025; 16:2199. [PMID: 40038269 PMCID: PMC11880416 DOI: 10.1038/s41467-025-57484-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 02/13/2025] [Indexed: 03/06/2025] Open
Abstract
While it is now accepted that the microbiome has strong impacts on animal growth promotion, the exact mechanism has remained elusive. Here we show that microbiome-emitted scents contain volatile somatotrophic factors (VSFs), which promote host growth in an olfaction-independent manner in Drosophila. We found that inhaled VSFs are readily sensed by olfactory receptor 42b non-neuronally expressed in subsets of tracheal airway cells, enteroendocrine cells, and enterocytes. Olfaction-independent sensing of VSFs activates the airway-gut-brain axis by regulating Hippo, FGF and insulin-like growth factor signaling pathways, which are required for airway branching, organ oxygenation and body growth. We found that a mutant microbiome that did not produce (2R,3R)-2,3-butanediol failed to activate the airway-gut-brain axis for host growth. Importantly, forced inhalation of (2R,3R)-2,3-butanediol completely reversed these defects. Our discovery of contact-independent and olfaction-independent airborne interactions between host and microbiome provides a novel perspective on the role of the airway-gut-brain axis in microbiome-controlled host development.
Collapse
Affiliation(s)
- Jin-Woo Lee
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Kyung-Ah Lee
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Saeloun Bio Inc., Seoul, South Korea
| | - In-Hwan Jang
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Kibum Nam
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Sung-Hee Kim
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Minsoo Kyung
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Kyu-Chan Cho
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ji-Hoon Lee
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Hyejin You
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Eun-Kyoung Kim
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Young Hoon Koh
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Hansol Lee
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Junsun Park
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Soo-Yeon Hwang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Youn Wook Chung
- Severance Biomedical Science Institute, Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, South Korea
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Soung-Hun Roh
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Ji-Hwan Ryu
- Severance Biomedical Science Institute, Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Won-Jae Lee
- School of Biological Sciences, Seoul National University, Seoul, South Korea.
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.
- Wide River Institute of Immunology, Seoul National University, Hongcheon, South Korea.
| |
Collapse
|
3
|
Wang J, Shen D, Jiang J, Hu L, Fang K, Xie C, Shen N, Zhou Y, Wang Y, Du S, Meng S. Dietary Palmitic Acid Drives a Palmitoyltransferase ZDHHC15-YAP Feedback Loop Promoting Tumor Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409883. [PMID: 39686664 PMCID: PMC11809420 DOI: 10.1002/advs.202409883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Indexed: 12/18/2024]
Abstract
Elevated uptake of saturated fatty acid palmitic acid (PA) is associated with tumor metastasis; however, the precise mechanisms remain partially understood, hindering the development of therapy for PA-driven tumor metastasis. The Hippo-Yes-associated protein (Hippo/YAP) pathway is implicated in cancer progression. Here it is shown that a high-palm oil diet potentiates tumor metastasis in murine xenografts in part through YAP. It is found that the palmitoyltransferase ZDHHC15 is a YAP-regulated gene that forms a feedback loop with YAP. Notably, PA drives the ZDHHC15-YAP feedback loop, thus enforces YAP signaling, and hence promotes tumor metastasis in murine xenografts. In addition, it is shown that ZDHHC15 associates with Kidney and brain protein (KIBRA, also known as WW- and C2 domain-containing protein 1, WWC1), an upstream component of Hippo signaling, and mediates its palmitoylation. KIBRA palmitoylation leads to its degradation and regulates its subcellular localization and activity toward the Hippo/YAP pathway. Moreover, PA enhances KIBRA palmitoylation and degradation. It is further shown that combinatorial targeting of YAP and fatty acid synthesis exhibits augmented effects against metastasis formation in mice fed with a Palm diet. Collectively, these findings uncover a ZDHHC15-YAP feedback loop as a previously unrecognized mechanism underlying PA-promoted tumor metastasis and support targeting YAP and fatty acid synthesis as potential therapeutic targets in PA-driven tumor metastasis.
Collapse
Affiliation(s)
- Jianxin Wang
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalian116044China
| | - Dachuan Shen
- Department of OncologyAffiliated Zhongshan Hospital of Dalian UniversityDalian116001China
| | - Jian Jiang
- Central Hospital of Dalian University of TechnologyDepartment of Spine SurgeryDalian116033China
| | - Lulu Hu
- Department of Laboratory MedicineQingdao Central HospitalUniversity of Health and Rehabilitation Sciences NO.369Dengyun Road, Qingdao National High‐tech Industrial Development ZoneQingdaoChina
| | - Kun Fang
- Central LaboratoryCancer Hospital of China Medical UniversityCancer Hospital of Dalian University of TechnologyLiaoning Cancer Hospital & InstituteShenyang110042China
| | - Chunrui Xie
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalian116044China
| | - Ning Shen
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalian116044China
| | - Yuzhao Zhou
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalian116044China
| | - Yifei Wang
- Department of Obstetrics and GynecologyAffiliated Zhongshan Hospital of Dalian UniversityDalian116001China
| | - Sha Du
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalian116044China
| | - Songshu Meng
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalian116044China
| |
Collapse
|
4
|
Wang X, Zhu R, Yu P, Qi S, Zhong Z, Jin R, Wang Y, Gu Y, Ye D, Chen K, Shu Y, Wang Y, Yu FX. WWC proteins-mediated compensatory mechanism restricts schwannomatosis driven by NF2 loss of function. SCIENCE ADVANCES 2025; 11:eadp4765. [PMID: 39841844 PMCID: PMC11753430 DOI: 10.1126/sciadv.adp4765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025]
Abstract
NF2-related schwannomatosis, previously known as neurofibromatosis type 2, is a genetic disorder characterized by nerve tumors due to NF2 gene mutations. Mice with Nf2 deletion develop schwannomas slowly with low penetrance, hence inconvenient for preclinical studies. Here, we show that NF2, by recruiting E3 ubiquitin ligases β-TrCP1/2, promotes WWC1-3 ubiquitination and degradation. In NF2 mutated cells, WWC1-3 accumulation is a compensatory mechanism to prevent YAP/TAZ hyperactivation and rapid tumorigenesis. Accordingly, we generate a synthetic mouse model with complete penetrance and short latency by concurrently deleting Nf2 and Wwc1/2 in Schwann cells. This model closely resembles NF2-related schwannomatosis in patients, as confirmed by histological and single-cell transcriptome analysis. Moreover, a cell line from mouse schwannomas and a syngeneic tumor model in immune-competent mice are established. Furthermore, a screen using established models has identified candidate drugs that effectively suppress schwannoma progression. Hence, this work has developed rapid and transplantable models that will facilitate both basic and translational research on NF2-related schwannomatosis.
Collapse
Affiliation(s)
- Xueying Wang
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rui Zhu
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Pengcheng Yu
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Sixian Qi
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhenxing Zhong
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ruxin Jin
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Wang
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuan Gu
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dan Ye
- Huashan Hospital and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kang Chen
- Department of Obstetrics and Gynecology and Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Yilai Shu
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yi Wang
- Department of Neurology, Children’s Hospital of Fudan University, National Children’s Medical Center, Fudan University, Shanghai, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Chen X, Zhou X, Xie X, Li B, Zhao T, Yu H, Xing D, Wu J, Li C. Functional Verification of Differentially Expressed Genes Following DENV2 Infection in Aedes aegypti. Viruses 2025; 17:67. [PMID: 39861856 PMCID: PMC11769442 DOI: 10.3390/v17010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
The dengue virus (DENV) is primarily transmitted by Aedes aegypti. Investigating genes associated with mosquito susceptibility to DENV2 offers a theoretical foundation for targeted interventions to regulate or block viral replication and transmission within mosquitoes. Based on the transcriptomic analyses of the midgut and salivary glands from Aedes aegypti infected with DENV2, alongside analyses of Aag2 cell infections, 24 genes potentially related to the regulation of Aedes aegypti infection with DENV2 were selected. By establishing transient transfection and overexpression models of Aedes aegypti Aag2 cells, and mosquito target gene interference models, the difference in viral load before and after treatment was compared, and the effects of DEGs on viral replication were evaluated. After overexpressing 24 DEGs in Aag2 cells, 19 DEGs showed a significant difference in DENV2 RNA copies in the cell supernatant (p < 0.05). In adult mosquitoes, knocking down defensin-A, defensin-A-like, and SMCT1 respectively reduced the DENV2 RNA copies, while knocking down UGT2B1 and ND4 respectively increased the DENV2 RNA copies. In this study, to assess the role of genes related to DENV2 replication, and transient transfection and overexpression models in Aag2 cells and mosquito gene knockdown models were established, and five genes, defensin-A, defensin-A-like, SMCT1, UGT2B1, and ND4, were found to have an impact on the replication of DENV2, providing a reference basis for studying the complex mechanism of mosquito-virus interactions.
Collapse
Affiliation(s)
- Xiaoli Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China (H.Y.)
| | - Xinyu Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China (H.Y.)
| | - Xiaoxue Xie
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China (H.Y.)
| | - Bo Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China (H.Y.)
| | - Teng Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China (H.Y.)
| | - Haotian Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China (H.Y.)
| | - Dan Xing
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China (H.Y.)
| | - Jiahong Wu
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Chunxiao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China (H.Y.)
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
6
|
Jeon S, Jeon Y, Lim JY, Kim Y, Cha B, Kim W. Emerging regulatory mechanisms and functions of biomolecular condensates: implications for therapeutic targets. Signal Transduct Target Ther 2025; 10:4. [PMID: 39757214 DOI: 10.1038/s41392-024-02070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 01/07/2025] Open
Abstract
Cells orchestrate their processes through complex interactions, precisely organizing biomolecules in space and time. Recent discoveries have highlighted the crucial role of biomolecular condensates-membrane-less assemblies formed through the condensation of proteins, nucleic acids, and other molecules-in driving efficient and dynamic cellular processes. These condensates are integral to various physiological functions, such as gene expression and intracellular signal transduction, enabling rapid and finely tuned cellular responses. Their ability to regulate cellular signaling pathways is particularly significant, as it requires a careful balance between flexibility and precision. Disruption of this balance can lead to pathological conditions, including neurodegenerative diseases, cancer, and viral infections. Consequently, biomolecular condensates have emerged as promising therapeutic targets, with the potential to offer novel approaches to disease treatment. In this review, we present the recent insights into the regulatory mechanisms by which biomolecular condensates influence intracellular signaling pathways, their roles in health and disease, and potential strategies for modulating condensate dynamics as a therapeutic approach. Understanding these emerging principles may provide valuable directions for developing effective treatments targeting the aberrant behavior of biomolecular condensates in various diseases.
Collapse
Affiliation(s)
- Soyoung Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Yeram Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Ji-Youn Lim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Yujeong Kim
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Boksik Cha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea.
| | - Wantae Kim
- Department of Life Science, University of Seoul, Seoul, South Korea.
| |
Collapse
|
7
|
Zhu R, Jiao Z, Yu FX. Advances towards potential cancer therapeutics targeting Hippo signaling. Biochem Soc Trans 2024; 52:2399-2413. [PMID: 39641583 DOI: 10.1042/bst20240244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024]
Abstract
Decades of research into the Hippo signaling pathway have greatly advanced our understanding of its roles in organ growth, tissue regeneration, and tumorigenesis. The Hippo pathway is frequently dysregulated in human cancers and is recognized as a prominent cancer signaling pathway. Hence, the Hippo pathway represents an ideal molecular target for cancer therapies. This review will highlight recent advancements in targeting the Hippo pathway for cancer treatment and discuss the potential opportunities for developing new therapeutic modalities.
Collapse
Affiliation(s)
- Rui Zhu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhihan Jiao
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
8
|
Park JJ, Lee SJ, Baek M, Lee OJ, Nam S, Kim J, Kim JY, Shin EY, Kim EG. FRMD6 determines the cell fate towards senescence: involvement of the Hippo-YAP-CCN3 axis. Cell Death Differ 2024; 31:1398-1409. [PMID: 38926528 PMCID: PMC11519602 DOI: 10.1038/s41418-024-01333-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Cellular senescence, a hallmark of aging, is pathogenically linked to the development of aging-related diseases. This study demonstrates that FRMD6, an upstream component of the Hippo/YAP signaling cascade, is a key regulator of senescence. Proteomic analysis revealed that FRMD6 is upregulated in senescent IMR90 fibroblasts under various senescence-inducing conditions. Silencing FRMD6 mitigated the senescence of IMR90 cells, suggesting its requirement in senescence. Conversely, the overexpression of FRMD6 alone induced senescence in cells and in lung tissue, establishing a causal link. The elevated FRMD6 levels correlated well with increased levels of the inhibitory phosphorylated YAP/TAZ. We identified cellular communication network factor 3 (CCN3), a key component of the senescence-associated secretory phenotype regulated by YAP, whose administration attenuated FRMD6-induced senescence in a dose-dependent manner. Mechanistically, FRMD6 interacted with and activated MST kinase, which led to YAP/TAZ inactivation. The expression of FRMD6 was regulated by the p53 and SMAD transcription factors in senescent cells. Accordingly, the expression of FRMD6 was upregulated by TGF-β treatment that activates those transcription factors. In TGF-β-treated IMR90 cells, FRMD6 mainly segregated with p21, a senescence marker, but rarely segregated with α-SMA, a myofibroblast marker, which suggests that FRMD6 has a role in directing cells towards senescence. Similarly, in TGF-β-enriched environments, such as fibroblastic foci (FF) from patients with idiopathic pulmonary fibrosis, FRMD6 co-localized with p16 in FF lining cells, while it was rarely detected in α-SMA-positive myofibroblasts that are abundant in FF. In sum, this study identifies FRMD6 as a novel regulator of senescence and elucidates the contribution of the FRMD6-Hippo/YAP-CCN3 axis to senescence.
Collapse
Affiliation(s)
- Jung-Jin Park
- Department of Biochemistry, Chungbuk National University, College of Medicine and Medical Research Center, Cheongju, 28644, Republic of Korea
| | - Su Jin Lee
- Department of Biochemistry, Chungbuk National University, College of Medicine and Medical Research Center, Cheongju, 28644, Republic of Korea
| | - Minwoo Baek
- Department of Biochemistry, Chungbuk National University, College of Medicine and Medical Research Center, Cheongju, 28644, Republic of Korea
| | - Ok-Jun Lee
- Department of Pathology, Chungbuk National University, College of Medicine and Medical Research Center, Cheongju, 28644, Republic of Korea
| | - Seungyoon Nam
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon, 21565, Republic of Korea
| | - Jaehong Kim
- Department of Biochemistry, College of Medicine, Gachon University, Incheon, 21999, Republic of Korea
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Eun-Young Shin
- Department of Biochemistry, Chungbuk National University, College of Medicine and Medical Research Center, Cheongju, 28644, Republic of Korea.
| | - Eung-Gook Kim
- Department of Biochemistry, Chungbuk National University, College of Medicine and Medical Research Center, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
9
|
Yang Y, Gan X, Zhang W, Zhu B, Huangfu Z, Shi X, Wang L. Research progress of the Hippo signaling pathway in renal cell carcinoma. Asian J Urol 2024; 11:511-520. [PMID: 39534002 PMCID: PMC11551326 DOI: 10.1016/j.ajur.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/15/2024] [Indexed: 11/16/2024] Open
Abstract
Objective This review aimed to summarize the role of the Hippo signaling pathway in renal cell carcinoma (RCC), a urologic malignancy with subtle initial symptoms and high mortality rates due to metastatic RCC. The Hippo signaling pathway, which regulates tissue and organ sizes, plays a crucial role in RCC progression and metastasis. Understanding the involvement of the Hippo signaling pathway in RCC provides valuable insights for the development of targeted therapies and improved patient outcomes. Methods In this review, we explored the impact of the Hippo signaling pathway on RCC. Through an analysis of existing literature, we examined its role in RCC progression and metastasis. Additionally, we discussed potential therapeutic strategies targeting the Hippo pathway for inhibiting RCC cell growth and invasion. We also highlighted the importance of investigating interactions between the Hippo pathway and other signaling pathways such as Wnt, transforming growth factor-beta, and PI3K/AKT, which may uncover additional therapeutic targets. Results The Hippo signaling pathway has shown promise as a target for inhibiting RCC cell growth and invasion. Studies have demonstrated its dysregulation in RCC, with altered expression of key components such as yes-associated protein/transcriptional coactivator with PDZ-binding motif (YAP/TAZ). Targeting the Hippo pathway has been associated with suppressed tumor growth and metastasis in preclinical models of RCC. Furthermore, investigating crosstalk between the Hippo pathway and other signaling pathways has revealed potential synergistic effects that could be exploited for therapeutic interventions. Conclusion Understanding the role of the Hippo signaling pathway in RCC is of paramount importance. Elucidating its functions and molecular interactions contributes to RCC diagnosis, treatment, and the discovery of novel mechanisms. This knowledge informs the development of innovative therapeutic strategies and opens new avenues for research in RCC. Further investigations are warranted to fully comprehend the complex interplay between the Hippo pathway and other signaling pathways, ultimately leading to improved outcomes for RCC patients.
Collapse
Affiliation(s)
- Yiren Yang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Xinxin Gan
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, China
| | - Wei Zhang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Baohua Zhu
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Zhao Huangfu
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Xiaolei Shi
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Linhui Wang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
10
|
Li M, Ding W, Deng Y, Zhao Y, Liu Q, Zhou Z. The AAA-ATPase Ter94 regulates wing size in Drosophila by suppressing the Hippo pathway. Commun Biol 2024; 7:533. [PMID: 38710747 PMCID: PMC11074327 DOI: 10.1038/s42003-024-06246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
Insect wing development is a fascinating and intricate process that involves the regulation of wing size through cell proliferation and apoptosis. In this study, we find that Ter94, an AAA-ATPase, is essential for proper wing size dependently on its ATPase activity. Loss of Ter94 enables the suppression of Hippo target genes. When Ter94 is depleted, it results in reduced wing size and increased apoptosis, which can be rescued by inhibiting the Hippo pathway. Biochemical experiments reveal that Ter94 reciprocally binds to Mer, a critical upstream component of the Hippo pathway, and disrupts its interaction with Ex and Kib. This disruption prevents the formation of the Ex-Mer-Kib complex, ultimately leading to the inactivation of the Hippo pathway and promoting proper wing development. Finally, we show that hVCP, the human homolog of Ter94, is able to substitute for Ter94 in modulating Drosophila wing size, underscoring their functional conservation. In conclusion, Ter94 plays a positive role in regulating wing size by interfering with the Ex-Mer-Kib complex, which results in the suppression of the Hippo pathway.
Collapse
Affiliation(s)
- Mingming Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Wenhao Ding
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Yanran Deng
- Key Laboratory of Biodiversity Conservation and Bioresource Utilization of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Yunhe Zhao
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Qingxin Liu
- College of Life Sciences, Shandong Agricultural University, Tai'an, China.
| | - Zizhang Zhou
- College of Life Sciences, Shandong Agricultural University, Tai'an, China.
- Key Laboratory of Biodiversity Conservation and Bioresource Utilization of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, China.
| |
Collapse
|
11
|
Kumar A, BharathwajChetty B, Manickasamy MK, Unnikrishnan J, Alqahtani MS, Abbas M, Almubarak HA, Sethi G, Kunnumakkara AB. Natural compounds targeting YAP/TAZ axis in cancer: Current state of art and challenges. Pharmacol Res 2024; 203:107167. [PMID: 38599470 DOI: 10.1016/j.phrs.2024.107167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Cancer has become a burgeoning global healthcare concern marked by its exponential growth and significant economic ramifications. Though advancements in the treatment modalities have increased the overall survival and quality of life, there are no definite treatments for the advanced stages of this malady. Hence, understanding the diseases etiologies and the underlying molecular complexities, will usher in the development of innovative therapeutics. Recently, YAP/TAZ transcriptional regulation has been of immense interest due to their role in development, tissue homeostasis and oncogenic transformations. YAP/TAZ axis functions as coactivators within the Hippo signaling cascade, exerting pivotal influence on processes such as proliferation, regeneration, development, and tissue renewal. In cancer, YAP is overexpressed in multiple tumor types and is associated with cancer stem cell attributes, chemoresistance, and metastasis. Activation of YAP/TAZ mirrors the cellular "social" behavior, encompassing factors such as cell adhesion and the mechanical signals transmitted to the cell from tissue structure and the surrounding extracellular matrix. Therefore, it presents a significant vulnerability in the clogs of tumors that could provide a wide window of therapeutic effectiveness. Natural compounds have been utilized extensively as successful interventions in the management of diverse chronic illnesses, including cancer. Owing to their capacity to influence multiple genes and pathways, natural compounds exhibit significant potential either as adjuvant therapy or in combination with conventional treatment options. In this review, we delineate the signaling nexus of YAP/TAZ axis, and present natural compounds as an alternate strategy to target cancer.
Collapse
Affiliation(s)
- Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Jyothsna Unnikrishnan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Hassan Ali Almubarak
- Division of Radiology, Department of Medicine, College of Medicine and Surgery, King Khalid University, Abha 61421, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India.
| |
Collapse
|
12
|
Zhang S, Zhang B, Liao Z, Chen Y, Guo W, Wu J, Liu H, Weng R, Su D, Chen G, Zhang Z, Li C, Long J, Xiao Y, Ma Y, Zhou T, Xu C, Su P. Hnrnpk protects against osteoarthritis through targeting WWC1 mRNA and inhibiting Hippo signaling pathway. Mol Ther 2024; 32:1461-1478. [PMID: 38414246 PMCID: PMC11081807 DOI: 10.1016/j.ymthe.2024.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/01/2024] [Accepted: 02/24/2024] [Indexed: 02/29/2024] Open
Abstract
Osteoarthritis (OA) is an age-related or post-traumatic degenerative whole joint disease characterized by the rupture of articular cartilage homeostasis, the regulatory mechanisms of which remain elusive. This study identifies the essential role of heterogeneous nuclear ribonucleoprotein K (hnRNPK) in maintaining articular cartilage homeostasis. Hnrnpk expression is markedly downregulated in human and mice OA cartilage. The deletion of Hnrnpk effectively accelerates the development of post-traumatic and age-dependent OA in mice. Mechanistically, the KH1 and KH2 domain of Hnrnpk bind and degrade the mRNA of WWC1. Hnrnpk deletion increases WWC1 expression, which in turn leads to the activation of Hippo signaling and ultimately aggravates OA. In particular, intra-articular injection of LPA and adeno-associated virus serotype 5 expressing WWC1 RNA interference ameliorates cartilage degeneration induced by Hnrnpk deletion, and intra-articular injection of adeno-associated virus serotype 5 expressing Hnrnpk protects against OA. Collectively, this study reveals the critical roles of Hnrnpk in inhibiting OA development through WWC1-dependent downregulation of Hippo signaling in chondrocytes and defines a potential target for the prevention and treatment of OA.
Collapse
Affiliation(s)
- Shun Zhang
- Department of Spine Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Baolin Zhang
- Department of Spine Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zhiheng Liao
- Department of Spine Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yuyu Chen
- Department of Plastic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Weimin Guo
- Department of Spine Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jinna Wu
- Department of Breast Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Hengyu Liu
- Department of Spine Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Ricong Weng
- Department of Spine Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Deying Su
- Research Center for Translational Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Gengjia Chen
- Department of Spine Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zhenzhen Zhang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Chuan Li
- Research Center for Translational Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jiahui Long
- Research Center for Translational Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Ya Xiao
- Research Center for Translational Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yuan Ma
- Department of Spine Surgery, the Sixth Affiliated Hospital of Xinjiang Medical University, Xinjiang Urumqi 830002, China
| | - Taifeng Zhou
- Department of Spine Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Caixia Xu
- Research Center for Translational Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.
| | - Peiqiang Su
- Department of Spine Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
13
|
Zhong Z, Jiao Z, Yu FX. The Hippo signaling pathway in development and regeneration. Cell Rep 2024; 43:113926. [PMID: 38457338 DOI: 10.1016/j.celrep.2024.113926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 03/10/2024] Open
Abstract
The Hippo signaling pathway is a central growth control mechanism in multicellular organisms. By integrating diverse mechanical, biochemical, and stress cues, the Hippo pathway orchestrates proliferation, survival, differentiation, and mechanics of cells, which in turn regulate organ development, homeostasis, and regeneration. A deep understanding of the regulation and function of the Hippo pathway therefore holds great promise for developing novel therapeutics in regenerative medicine. Here, we provide updates on the molecular organization of the mammalian Hippo signaling network, review the regulatory signals and functional outputs of the pathway, and discuss the roles of Hippo signaling in development and regeneration.
Collapse
Affiliation(s)
- Zhenxing Zhong
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhihan Jiao
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
14
|
Zhou HM, Chen DH, Diao WJ, Wu YF, Zhang JG, Zhong L, Jiang ZY, Zhang X, Liu GL, Li Q. Inhibition of RhoGEF/RhoA alleviates regorafenib resistance and cancer stemness via Hippo signaling pathway in hepatocellular carcinoma. Exp Cell Res 2024; 436:113956. [PMID: 38341081 DOI: 10.1016/j.yexcr.2024.113956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Patients with hepatocellular carcinoma (HCC) are vulnerable to drug resistance. Although drug resistance has been taken much attention to HCC therapy, little is known of regorafenib and regorafenib resistance (RR). This study aimed to determine the drug resistance pattern and the role of RhoA in RR. Two regorafenib-resistant cell lines were constructed based on Huh7 and Hep3B cell lines. In vitro and in vivo assays were conducted to study RhoA expression, the activity of Hippo signaling pathway and cancer stem cell (CSC) traits. The data showed that RhoA was highly expressed, Hippo signaling was hypoactivated and CSC traits were more prominent in RR cells. Inhibiting RhoA could reverse RR, and the alliance of RhoA inhibition and regorafenib synergistically attenuated CSC phenotype. Furthermore, inhibiting LARG/RhoA increased Kibra/NF2 complex formation, prevented YAP from shuttling into the nucleus and repressed CD44 mRNA expression. Clinically, the high expression of RhoA correlated with poor prognosis. LARG, RhoA, YAP1 and CD44 show positive correlation with each other. Thus, inhibition of RhoGEF/RhoA has the potential to reverse RR and repress CSC phenotype in HCC.
Collapse
Affiliation(s)
- He-Ming Zhou
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, 200080, PR China
| | - Da-Hong Chen
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, 200080, PR China
| | - Wen-Jing Diao
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, 200080, PR China
| | - Ya-Fei Wu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, 200080, PR China
| | - Ji-Gang Zhang
- Clinical Research Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, 200080, PR China
| | - Lin Zhong
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, 200080, PR China
| | - Zhong-Yi Jiang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, 200080, PR China
| | - Xue Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, 200080, PR China; Shanghai Eye Diseases Prevention & Treatment Center / Shanghai Eye Hospital, Shanghai, 200040, PR China
| | - Gao-Lin Liu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, 200080, PR China; Shanghai Eye Diseases Prevention & Treatment Center / Shanghai Eye Hospital, Shanghai, 200040, PR China
| | - Qin Li
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, 200080, PR China; Shanghai Eye Diseases Prevention & Treatment Center / Shanghai Eye Hospital, Shanghai, 200040, PR China.
| |
Collapse
|
15
|
Ma X, Mandausch FJ, Wu Y, Sahoo VK, Ma W, Leoni G, Hostiuc M, Wintgens JP, Qiu J, Kannaiyan N, Rossner MJ, Wehr MC. Comprehensive split TEV based protein-protein interaction screening reveals TAOK2 as a key modulator of Hippo signalling to limit growth. Cell Signal 2024; 113:110917. [PMID: 37813295 DOI: 10.1016/j.cellsig.2023.110917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
The conserved Hippo signalling pathway plays a crucial role in tumour formation by limiting tissue growth and proliferation. At the core of this pathway are tumour suppressor kinases STK3/4 and LATS1/2, which limit the activity of the oncogene YAP1, the primary downstream effector. Here, we employed a split TEV-based protein-protein interaction screen to assess the physical interactions among 28 key Hippo pathway components and potential upstream modulators. This screen led us to the discovery of TAOK2 as pivotal modulator of Hippo signalling, as it binds to the pathway's core kinases, STK3/4 and LATS1/2, and leads to their phosphorylation. Specifically, our findings revealed that TAOK2 binds to and phosphorylates LATS1, resulting in the reduction of YAP1 phosphorylation and subsequent transcription of oncogenes. Consequently, this decrease led to a decrease in cell proliferation and migration. Interestingly, a correlation was observed between reduced TAOK2 expression and decreased patient survival time in certain types of human cancers, including lung and kidney cancer as well as glioma. Moreover, in cellular models corresponding to these cancer types the downregulation of TAOK2 by CRISPR inhibition led to reduced phosphorylation of LATS1 and increased proliferation rates, supporting TAOK2's role as tumour suppressor gene. By contrast, overexpression of TAOK2 in these cellular models lead to increased phospho-LATS1 but reduced cell proliferation. As TAOK2 is a druggable kinase, targeting TAOK2 could serve as an attractive pharmacological approach to modulate cell growth and potentially offer strategies for combating cancer.
Collapse
Affiliation(s)
- Xiao Ma
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Fiona J Mandausch
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Yuxin Wu
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Vivek K Sahoo
- Systasy Bioscience GmbH, Balanstr. 6, 81669, Munich, Germany
| | - Wenbo Ma
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Giovanna Leoni
- Systasy Bioscience GmbH, Balanstr. 6, 81669, Munich, Germany
| | - Madalina Hostiuc
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Jan P Wintgens
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Jiajun Qiu
- Department of Otolaryngology Head & Neck Surgery, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | | | - Moritz J Rossner
- Systasy Bioscience GmbH, Balanstr. 6, 81669, Munich, Germany; Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Michael C Wehr
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany; Systasy Bioscience GmbH, Balanstr. 6, 81669, Munich, Germany.
| |
Collapse
|
16
|
Tokamov SA, Buiter S, Ullyot A, Scepanovic G, Williams AM, Fernandez-Gonzalez R, Horne-Badovinac S, Fehon RG. Cortical tension promotes Kibra degradation via Par-1. Mol Biol Cell 2024; 35:ar2. [PMID: 37903240 PMCID: PMC10881160 DOI: 10.1091/mbc.e23-06-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/01/2023] Open
Abstract
The Hippo pathway is an evolutionarily conserved regulator of tissue growth. Multiple Hippo signaling components are regulated via proteolytic degradation. However, how these degradation mechanisms are themselves modulated remains unexplored. Kibra is a key upstream pathway activator that promotes its own ubiquitin-mediated degradation upon assembling a Hippo signaling complex. Here, we demonstrate that Hippo complex-dependent Kibra degradation is modulated by cortical tension. Using classical genetic, osmotic, and pharmacological manipulations of myosin activity and cortical tension, we show that increasing cortical tension leads to Kibra degradation, whereas decreasing cortical tension increases Kibra abundance. Our study also implicates Par-1 in regulating Kib abundance downstream of cortical tension. We demonstrate that Par-1 promotes ubiquitin-mediated Kib degradation in a Hippo complex-dependent manner and is required for tension-induced Kib degradation. Collectively, our results reveal a previously unknown molecular mechanism by which cortical tension affects Hippo signaling and provide novel insights into the role of mechanical forces in growth control.
Collapse
Affiliation(s)
- Sherzod A. Tokamov
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
- Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Stephan Buiter
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Anne Ullyot
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Gordana Scepanovic
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Audrey Miller Williams
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Rodrigo Fernandez-Gonzalez
- Institute of Biomedical Engineering and Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Sally Horne-Badovinac
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
- Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Richard G. Fehon
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
- Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
17
|
Affiliation(s)
- Zhenxing Zhong
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhipeng Meng
- Department of Molecular and Cellular Pharmacology & Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami 33136, USA
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
18
|
Su D, Li Y, Zhang W, Gao H, Cheng Y, Hou Y, Li J, Ye Y, Lai Z, Li Z, Huang H, Li J, Li J, Cheng M, Nian C, Wu N, Zhou Z, Xing Y, Zhao Y, Liu H, Tang J, Chen Q, Hong L, Li W, Peng Z, Zhao B, Johnson RL, Liu P, Hong W, Chen L, Zhou D. SPTAN1/NUMB axis senses cell density to restrain cell growth and oncogenesis through Hippo signaling. J Clin Invest 2023; 133:e168888. [PMID: 37843276 PMCID: PMC10575737 DOI: 10.1172/jci168888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/22/2023] [Indexed: 10/17/2023] Open
Abstract
The loss of contact inhibition is a key step during carcinogenesis. The Hippo-Yes-associated protein (Hippo/YAP) pathway is an important regulator of cell growth in a cell density-dependent manner. However, how Hippo signaling senses cell density in this context remains elusive. Here, we report that high cell density induced the phosphorylation of spectrin α chain, nonerythrocytic 1 (SPTAN1), a plasma membrane-stabilizing protein, to recruit NUMB endocytic adaptor protein isoforms 1 and 2 (NUMB1/2), which further sequestered microtubule affinity-regulating kinases (MARKs) in the plasma membrane and rendered them inaccessible for phosphorylation and inhibition of the Hippo kinases sterile 20-like kinases MST1 and MST2 (MST1/2). WW45 interaction with MST1/2 was thereby enhanced, resulting in the activation of Hippo signaling to block YAP activity for cell contact inhibition. Importantly, low cell density led to SPTAN1 dephosphorylation and NUMB cytoplasmic location, along with MST1/2 inhibition and, consequently, YAP activation. Moreover, double KO of NUMB and WW45 in the liver led to appreciable organ enlargement and rapid tumorigenesis. Interestingly, NUMB isoforms 3 and 4, which have a truncated phosphotyrosine-binding (PTB) domain and are thus unable to interact with phosphorylated SPTAN1 and activate MST1/2, were selectively upregulated in liver cancer, which correlated with YAP activation. We have thus revealed a SPTAN1/NUMB1/2 axis that acts as a cell density sensor to restrain cell growth and oncogenesis by coupling external cell-cell contact signals to intracellular Hippo signaling.
Collapse
Affiliation(s)
- Dongxue Su
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Yuxi Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Weiji Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Huan Gao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Yao Cheng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Yongqiang Hou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Junhong Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Yi Ye
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Zhangjian Lai
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Zhe Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Haitao Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Jiaxin Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Jinhuan Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Mengyu Cheng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Cheng Nian
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Na Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Zhien Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Yunzhi Xing
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Yu Zhao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - He Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Jiayu Tang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Qinghua Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Lixin Hong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Wengang Li
- Department of Hepatobiliary and Pancreatic and Organ Transplantation Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zhihai Peng
- Department of Hepatobiliary and Pancreatic and Organ Transplantation Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Bin Zhao
- The MOE Key Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Randy L. Johnson
- Department of Cancer Biology, University of Texas, M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Pingguo Liu
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Department of Hepatobiliary Surgery, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (ASTAR), Singapore, Singapore
| | - Lanfen Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (ASTAR), Singapore, Singapore
| | - Dawang Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| |
Collapse
|
19
|
Tokamov SA, Nouri N, Rich A, Buiter S, Glotzer M, Fehon RG. Apical polarity and actomyosin dynamics control Kibra subcellular localization and function in Drosophila Hippo signaling. Dev Cell 2023; 58:1864-1879.e4. [PMID: 37729921 PMCID: PMC10591919 DOI: 10.1016/j.devcel.2023.08.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/02/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023]
Abstract
The Hippo pathway is an evolutionarily conserved regulator of tissue growth that integrates inputs from both polarity and actomyosin networks. An upstream activator of the Hippo pathway, Kibra, localizes at the junctional and medial regions of the apical cortex in epithelial cells, and medial accumulation promotes Kibra activity. Here, we demonstrate that cortical Kibra distribution is controlled by a tug-of-war between apical polarity and actomyosin dynamics. We show that while the apical polarity network, in part via atypical protein kinase C (aPKC), tethers Kibra at the junctional cortex to silence its activity, medial actomyosin flows promote Kibra-mediated Hippo complex formation at the medial cortex, thereby activating the Hippo pathway. This study provides a mechanistic understanding of the relationship between the Hippo pathway, polarity, and actomyosin cytoskeleton, and it offers novel insights into how fundamental features of epithelial tissue architecture can serve as inputs into signaling cascades that control tissue growth, patterning, and morphogenesis.
Collapse
Affiliation(s)
- Sherzod A Tokamov
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA; Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Nicki Nouri
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Ashley Rich
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Stephan Buiter
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Michael Glotzer
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Richard G Fehon
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA; Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
20
|
Gou J, Zhang T, Othmer HG. The Interaction of Mechanics and the Hippo Pathway in Drosophila melanogaster. Cancers (Basel) 2023; 15:4840. [PMID: 37835534 PMCID: PMC10571775 DOI: 10.3390/cancers15194840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Drosophila melanogaster has emerged as an ideal system for studying the networks that control tissue development and homeostasis and, given the similarity of the pathways involved, controlled and uncontrolled growth in mammalian systems. The signaling pathways used in patterning the Drosophila wing disc are well known and result in the emergence of interaction of these pathways with the Hippo signaling pathway, which plays a central role in controlling cell proliferation and apoptosis. Mechanical effects are another major factor in the control of growth, but far less is known about how they exert their control. Herein, we develop a mathematical model that integrates the mechanical interactions between cells, which occur via adherens and tight junctions, with the intracellular actin network and the Hippo pathway so as to better understand cell-autonomous and non-autonomous control of growth in response to mechanical forces.
Collapse
Affiliation(s)
- Jia Gou
- Department of Mathematics, University of California, Riverside, CA 92507, USA;
| | - Tianhao Zhang
- School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Hans G. Othmer
- School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
21
|
Cao R, Zhu R, Sha Z, Qi S, Zhong Z, Zheng F, Lei Y, Tan Y, Zhu Y, Wang Y, Wang Y, Yu FX. WWC1/2 regulate spinogenesis and cognition in mice by stabilizing AMOT. Cell Death Dis 2023; 14:491. [PMID: 37528078 PMCID: PMC10394084 DOI: 10.1038/s41419-023-06020-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 07/16/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023]
Abstract
WWC1 regulates episodic learning and memory, and genetic nucleotide polymorphism of WWC1 is associated with neurodegenerative diseases such as Alzheimer's disease. However, the molecular mechanism through which WWC1 regulates neuronal function has not been fully elucidated. Here, we show that WWC1 and its paralogs (WWC2/3) bind directly to angiomotin (AMOT) family proteins (Motins), and recruit USP9X to deubiquitinate and stabilize Motins. Deletion of WWC genes in different cell types leads to reduced protein levels of Motins. In mice, neuron-specific deletion of Wwc1 and Wwc2 results in reduced expression of Motins and lower density of dendritic spines in the cortex and hippocampus, in association with impaired cognitive functions such as memory and learning. Interestingly, ectopic expression of AMOT partially rescues the neuronal phenotypes associated with Wwc1/2 deletion. Thus, WWC proteins modulate spinogenesis and cognition, at least in part, by regulating the protein stability of Motins.
Collapse
Affiliation(s)
- Runyi Cao
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Rui Zhu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhao Sha
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Sixian Qi
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhenxing Zhong
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Fengyun Zheng
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yubin Lei
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yanfeng Tan
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yuwen Zhu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yu Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Yi Wang
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, No. 399 Wanyuan Road, Shanghai, 201102, China.
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
22
|
Abstract
The Hippo pathway is an evolutionarily conserved pathway with crucial roles in development, organ size control, tissue homeostasis and cancer. Over two decades of research have elucidated the core Hippo pathway kinase cascade, but its precise organization has not been fully understood. In this issue of The EMBO Journal, Qi et al (2023) report a new model of two modules for the Hippo kinase cascade, providing new insights into this long-standing question.
Collapse
Affiliation(s)
- Han Han
- Department of Developmental and Cell BiologyUniversity of California IrvineIrvineCAUSA
| | - Wenqi Wang
- Department of Developmental and Cell BiologyUniversity of California IrvineIrvineCAUSA
| |
Collapse
|
23
|
Qi S, Zhong Z, Zhu Y, Wang Y, Ma M, Wang Y, Liu X, Jin R, Jiao Z, Zhu R, Sha Z, Dang K, Liu Y, Lim D, Mao J, Zhang L, Yu F. Two Hippo signaling modules orchestrate liver size and tumorigenesis. EMBO J 2023; 42:e112126. [PMID: 36919851 PMCID: PMC10233384 DOI: 10.15252/embj.2022112126] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 02/12/2023] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
The Hippo pathway is a central regulator of organ size and tumorigenesis and is commonly depicted as a kinase cascade, with an increasing number of regulatory and adaptor proteins linked to its regulation over recent years. Here, we propose that two Hippo signaling modules, MST1/2-SAV1-WWC1-3 (HPO1) and MAP4K1-7-NF2 (HPO2), together regulate the activity of LATS1/2 kinases and YAP/TAZ transcriptional co-activators. In mouse livers, the genetic inactivation of either HPO1 or HPO2 module results in partial activation of YAP/TAZ, bile duct hyperplasia, and hepatocellular carcinoma (HCC). On the contrary, inactivation of both HPO1 and HPO2 modules results in full activation of YAP/TAZ, rapid development of intrahepatic cholangiocarcinoma (iCCA), and early lethality. Interestingly, HPO1 has a predominant role in regulating organ size. HPO1 inactivation causes a homogenous YAP/TAZ activation and cell proliferation across the whole liver, resulting in a proportional and rapid increase in liver size. Thus, this study has reconstructed the order of the Hippo signaling network and suggests that LATS1/2 and YAP/TAZ activities are finetuned by HPO1 and HPO2 modules to cause different cell fates, organ size changes, and tumorigenesis trajectories.
Collapse
Affiliation(s)
- Sixian Qi
- Institute of PediatricsChildren's Hospital of Fudan UniversityShanghaiChina
- The Shanghai Key Laboratory of Medical Epigenetics, The International Co‐laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Zhenxing Zhong
- Institute of PediatricsChildren's Hospital of Fudan UniversityShanghaiChina
- The Shanghai Key Laboratory of Medical Epigenetics, The International Co‐laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yuwen Zhu
- Institute of PediatricsChildren's Hospital of Fudan UniversityShanghaiChina
- The Shanghai Key Laboratory of Medical Epigenetics, The International Co‐laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yebin Wang
- Institute of PediatricsChildren's Hospital of Fudan UniversityShanghaiChina
- The Shanghai Key Laboratory of Medical Epigenetics, The International Co‐laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Mingyue Ma
- Institute of PediatricsChildren's Hospital of Fudan UniversityShanghaiChina
- The Shanghai Key Laboratory of Medical Epigenetics, The International Co‐laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yu Wang
- Institute of PediatricsChildren's Hospital of Fudan UniversityShanghaiChina
- The Shanghai Key Laboratory of Medical Epigenetics, The International Co‐laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Xincheng Liu
- Institute of PediatricsChildren's Hospital of Fudan UniversityShanghaiChina
- The Shanghai Key Laboratory of Medical Epigenetics, The International Co‐laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Ruxin Jin
- Institute of PediatricsChildren's Hospital of Fudan UniversityShanghaiChina
- The Shanghai Key Laboratory of Medical Epigenetics, The International Co‐laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Zhihan Jiao
- Institute of PediatricsChildren's Hospital of Fudan UniversityShanghaiChina
- The Shanghai Key Laboratory of Medical Epigenetics, The International Co‐laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Rui Zhu
- Institute of PediatricsChildren's Hospital of Fudan UniversityShanghaiChina
- The Shanghai Key Laboratory of Medical Epigenetics, The International Co‐laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Zhao Sha
- Institute of PediatricsChildren's Hospital of Fudan UniversityShanghaiChina
- The Shanghai Key Laboratory of Medical Epigenetics, The International Co‐laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Kyvan Dang
- Department of Molecular, Cell and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Ying Liu
- Department of Pathology, School of Basic Medical Sciences, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Dae‐Sik Lim
- Department of Biological Sciences, National Creative Research Initiatives CenterKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
| | - Junhao Mao
- Department of Molecular, Cell and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Lei Zhang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Fa‐Xing Yu
- Institute of PediatricsChildren's Hospital of Fudan UniversityShanghaiChina
- The Shanghai Key Laboratory of Medical Epigenetics, The International Co‐laboratory of Medical Epigenetics and Metabolism, The State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
24
|
Fulford AD, Enderle L, Rusch J, Hodzic D, Holder MV, Earl A, Oh RH, Tapon N, McNeill H. Expanded directly binds conserved regions of Fat to restrain growth via the Hippo pathway. J Cell Biol 2023; 222:e202204059. [PMID: 37071483 PMCID: PMC10120405 DOI: 10.1083/jcb.202204059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/26/2022] [Accepted: 02/09/2023] [Indexed: 04/19/2023] Open
Abstract
The Hippo pathway is a conserved and critical regulator of tissue growth. The FERM protein Expanded is a key signaling hub that promotes activation of the Hippo pathway, thereby inhibiting the transcriptional co-activator Yorkie. Previous work identified the polarity determinant Crumbs as a primary regulator of Expanded. Here, we show that the giant cadherin Fat also regulates Expanded directly and independently of Crumbs. We show that direct binding between Expanded and a highly conserved region of the Fat cytoplasmic domain recruits Expanded to the apicolateral junctional zone and stabilizes Expanded. In vivo deletion of Expanded binding regions in Fat causes loss of apical Expanded and promotes tissue overgrowth. Unexpectedly, we find Fat can bind its ligand Dachsous via interactions of their cytoplasmic domains, in addition to the known extracellular interactions. Importantly, Expanded is stabilized by Fat independently of Dachsous binding. These data provide new mechanistic insights into how Fat regulates Expanded, and how Hippo signaling is regulated during organ growth.
Collapse
Affiliation(s)
- Alexander D. Fulford
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, USA
| | - Leonie Enderle
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Jannette Rusch
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, USA
| | - Didier Hodzic
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, USA
| | - Maxine V. Holder
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, London, UK
| | - Alex Earl
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, USA
| | - Robin Hyunseo Oh
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Nicolas Tapon
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, London, UK
| | - Helen McNeill
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, USA
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
25
|
Bonello TT, Cai D, Fletcher GC, Wiengartner K, Pengilly V, Lange KS, Liu Z, Lippincott‐Schwartz J, Kavran JM, Thompson BJ. Phase separation of Hippo signalling complexes. EMBO J 2023; 42:e112863. [PMID: 36807601 PMCID: PMC10015380 DOI: 10.15252/embj.2022112863] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/12/2023] [Accepted: 01/23/2023] [Indexed: 02/22/2023] Open
Abstract
The Hippo pathway was originally discovered to control tissue growth in Drosophila and includes the Hippo kinase (Hpo; MST1/2 in mammals), scaffold protein Salvador (Sav; SAV1 in mammals) and the Warts kinase (Wts; LATS1/2 in mammals). The Hpo kinase is activated by binding to Crumbs-Expanded (Crb-Ex) and/or Merlin-Kibra (Mer-Kib) proteins at the apical domain of epithelial cells. Here we show that activation of Hpo also involves the formation of supramolecular complexes with properties of a biomolecular condensate, including concentration dependence and sensitivity to starvation, macromolecular crowding, or 1,6-hexanediol treatment. Overexpressing Ex or Kib induces formation of micron-scale Hpo condensates in the cytoplasm, rather than at the apical membrane. Several Hippo pathway components contain unstructured low-complexity domains and purified Hpo-Sav complexes undergo phase separation in vitro. Formation of Hpo condensates is conserved in human cells. We propose that apical Hpo kinase activation occurs in phase separated "signalosomes" induced by clustering of upstream pathway components.
Collapse
Affiliation(s)
- Teresa T Bonello
- EMBL Australia, John Curtin School of Medical ResearchAustralian National UniversityCanberraACTAustralia
| | - Danfeng Cai
- HHMI Janelia Research CampusAshburnVAUSA
- Department of Biochemistry and Molecular BiologyBloomberg School of Public HealthBaltimoreMDUSA
| | | | - Kyler Wiengartner
- Department of Biochemistry and Molecular BiologyBloomberg School of Public HealthBaltimoreMDUSA
| | - Victoria Pengilly
- EMBL Australia, John Curtin School of Medical ResearchAustralian National UniversityCanberraACTAustralia
| | - Kimberly S Lange
- Department of Biochemistry and Molecular BiologyBloomberg School of Public HealthBaltimoreMDUSA
| | - Zhe Liu
- HHMI Janelia Research CampusAshburnVAUSA
| | | | - Jennifer M Kavran
- Department of Biochemistry and Molecular BiologyBloomberg School of Public HealthBaltimoreMDUSA
- Department of Biophysics and Biophysical Chemistry, and Department of OncologyJohns Hopkins School of MedicineBaltimoreMDUSA
| | - Barry J Thompson
- EMBL Australia, John Curtin School of Medical ResearchAustralian National UniversityCanberraACTAustralia
- Epithelial Biology LaboratoryThe Francis Crick InstituteLondonUK
| |
Collapse
|
26
|
Kasiah J, McNeill H. Fat and Dachsous cadherins in mammalian development. Curr Top Dev Biol 2023; 154:223-244. [PMID: 37100519 DOI: 10.1016/bs.ctdb.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Cell growth and patterning are critical for tissue development. Here we discuss the evolutionarily conserved cadherins, Fat and Dachsous, and the roles they play during mammalian tissue development and disease. In Drosophila, Fat and Dachsous regulate tissue growth via the Hippo pathway and planar cell polarity (PCP). The Drosophila wing has been an ideal tissue to observe how mutations in these cadherins affect tissue development. In mammals, there are multiple Fat and Dachsous cadherins, which are expressed in many tissues, but mutations in these cadherins that affect growth and tissue organization are context dependent. Here we examine how mutations in the Fat and Dachsous mammalian genes affect development in mammals and contribute to human disease.
Collapse
Affiliation(s)
- Jennysue Kasiah
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Helen McNeill
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States.
| |
Collapse
|
27
|
Wang L, Choi K, Su T, Li B, Wu X, Zhang R, Driskill JH, Li H, Lei H, Guo P, Chen EH, Zheng Y, Pan D. Multiphase coalescence mediates Hippo pathway activation. Cell 2022; 185:4376-4393.e18. [PMID: 36318920 PMCID: PMC9669202 DOI: 10.1016/j.cell.2022.09.036] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/29/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
The function of biomolecular condensates is often restricted by condensate dissolution. Whether condensates can be suppressed without condensate dissolution is unclear. Here, we show that upstream regulators of the Hippo signaling pathway form functionally antagonizing condensates, and their coalescence into a common phase provides a mode of counteracting the function of biomolecular condensates without condensate dissolution. Specifically, the negative regulator SLMAP forms Hippo-inactivating condensates to facilitate pathway inhibition by the STRIPAK complex. In response to cell-cell contact or osmotic stress, the positive regulators AMOT and KIBRA form Hippo-activating condensates to facilitate pathway activation. The functionally antagonizing SLMAP and AMOT/KIBRA condensates further coalesce into a common phase to inhibit STRIPAK function. These findings provide a paradigm for restricting the activity of biomolecular condensates without condensate dissolution, shed light on the molecular principles of multiphase organization, and offer a conceptual framework for understanding upstream regulation of the Hippo signaling pathway.
Collapse
Affiliation(s)
- Li Wang
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kyungsuk Choi
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ting Su
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bing Li
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaofeng Wu
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ruihui Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jordan H Driskill
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hongde Li
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Huiyan Lei
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pengfei Guo
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elizabeth H Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yonggang Zheng
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
28
|
Wu H, Zhu N, Liu J, Ma J, Jiao R. Shaggy regulates tissue growth through Hippo pathway in Drosophila. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2131-2144. [PMID: 36057002 DOI: 10.1007/s11427-022-2156-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
The evolutionarily conserved Hippo pathway coordinates cell proliferation, differentiation and apoptosis to regulate organ growth and tumorigenesis. Hippo signaling activity is tightly controlled by various upstream signals including growth factors and cell polarity, but the full extent to which the pathway is regulated during development remains to be resolved. Here, we report the identification of Shaggy, the homolog of mammalian Gsk3β, as a novel regulator of the Hippo pathway in Drosophila. Our results show that Shaggy promotes the expression of Hippo target genes in a manner that is dependent on its kinase activity. Loss of Shaggy leads to Yorkie inhibition and downregulation of Hippo pathway target genes. Mechanistically, Shaggy acts upstream of the Hippo pathway and negatively regulates the abundance of the FERM domain containing adaptor protein Expanded. Our results reveal that Shaggy is functionally required for Crumbs/Slmb-mediated downregulation of Expanded in vivo, providing a potential molecular link between cellular architecture and the Hippo signaling pathway.
Collapse
Affiliation(s)
- Honggang Wu
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China.
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Nannan Zhu
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiyong Liu
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jun Ma
- Women's Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, 311121, China
| | - Renjie Jiao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China.
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
29
|
Song L, Han X, Li Y, Han X, Zhao M, Li C, Wang P, Wang J, Dong Y, Cong L, Han X, Hou T, Liu K, Wang Y, Qiu C, Du Y. Thalamic gray matter volume mediates the association between KIBRA polymorphism and olfactory function among older adults: a population-based study. Cereb Cortex 2022; 33:3664-3673. [PMID: 35972417 PMCID: PMC10068283 DOI: 10.1093/cercor/bhac299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 11/12/2022] Open
Abstract
The kidney and brain expressed protein (KIBRA) rs17070145 polymorphism is associated with both structure and activation of the olfactory cortex. However, no studies have thus far examined whether KIBRA can be linked with olfactory function and whether brain structure plays any role in the association. We addressed these questions in a population-based cross-sectional study among rural-dwelling older adults. This study included 1087 participants derived from the Multidomain Interventions to Delay Dementia and Disability in Rural China, who underwent the brain MRI scans in August 2018 to October 2020; of these, 1016 took the 16-item Sniffin' Sticks identification test and 634 (62.40%) were defined with olfactory impairment (OI). Data were analyzed using the voxel-based morphometry analysis and general linear, logistic, and structural equation models. The KIBRA rs17070145 C-allele (CC or CT vs. TT genotype) was significantly associated with greater gray matter volume (GMV) mainly in the bilateral orbitofrontal cortex and left thalamus (P < 0.05) and with the multi-adjusted odds ratio of 0.73 (95% confidence interval 0.56-0.95) for OI. The left thalamic GMV could mediate 8.08% of the KIBRA-olfaction association (P < 0.05). These data suggest that the KIBRA rs17070145 C-allele is associated with a reduced likelihood of OI among older adults, partly mediated through left thalamic GMV.
Collapse
Affiliation(s)
- Lin Song
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong, PR China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, 250021 Jinan, Shandong, PR China
| | - Xiaodong Han
- Department of Neurology, Shandong Provincial Hospital, Shandong University, 250021 Jinan, Shandong, PR China
| | - Yuanjing Li
- Department of Neurobiology, Care Sciences and Society, Aging Research Center and Center for Alzheimer Research, Karolinska Institutet-Stockholm University, 17177 Stockholm, Sweden
| | - Xiaolei Han
- Department of Neurology, Shandong Provincial Hospital, Shandong University, 250021 Jinan, Shandong, PR China
| | - Mingqing Zhao
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong, PR China
| | - Chunyan Li
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong, PR China
| | - Pin Wang
- Department of Neurology, Shandong Provincial Hospital, Shandong University, 250021 Jinan, Shandong, PR China
| | - Jiafeng Wang
- Department of Neurology, Shandong Provincial Hospital, Shandong University, 250021 Jinan, Shandong, PR China
| | - Yi Dong
- Department of Neurology, Shandong Provincial Hospital, Shandong University, 250021 Jinan, Shandong, PR China
| | - Lin Cong
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong, PR China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, 250021 Jinan, Shandong, PR China
| | - Xiaojuan Han
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong, PR China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, 250021 Jinan, Shandong, PR China
| | - Tingting Hou
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong, PR China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, 250021 Jinan, Shandong, PR China
| | - Keke Liu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong, PR China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, 250021 Jinan, Shandong, PR China
| | - Yongxiang Wang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong, PR China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, 250021 Jinan, Shandong, PR China
| | - Chengxuan Qiu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong, PR China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, 250021 Jinan, Shandong, PR China.,Department of Neurobiology, Care Sciences and Society, Aging Research Center and Center for Alzheimer Research, Karolinska Institutet-Stockholm University, 17177 Stockholm, Sweden
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong, PR China.,Department of Neurology, Shandong Provincial Hospital, Shandong University, 250021 Jinan, Shandong, PR China
| |
Collapse
|
30
|
Guo CL. Self-Sustained Regulation or Self-Perpetuating Dysregulation: ROS-dependent HIF-YAP-Notch Signaling as a Double-Edged Sword on Stem Cell Physiology and Tumorigenesis. Front Cell Dev Biol 2022; 10:862791. [PMID: 35774228 PMCID: PMC9237464 DOI: 10.3389/fcell.2022.862791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/29/2022] [Indexed: 12/19/2022] Open
Abstract
Organ development, homeostasis, and repair often rely on bidirectional, self-organized cell-niche interactions, through which cells select cell fate, such as stem cell self-renewal and differentiation. The niche contains multiplexed chemical and mechanical factors. How cells interpret niche structural information such as the 3D topology of organs and integrate with multiplexed mechano-chemical signals is an open and active research field. Among all the niche factors, reactive oxygen species (ROS) have recently gained growing interest. Once considered harmful, ROS are now recognized as an important niche factor in the regulation of tissue mechanics and topology through, for example, the HIF-YAP-Notch signaling pathways. These pathways are not only involved in the regulation of stem cell physiology but also associated with inflammation, neurological disorder, aging, tumorigenesis, and the regulation of the immune checkpoint molecule PD-L1. Positive feedback circuits have been identified in the interplay of ROS and HIF-YAP-Notch signaling, leading to the possibility that under aberrant conditions, self-organized, ROS-dependent physiological regulations can be switched to self-perpetuating dysregulation, making ROS a double-edged sword at the interface of stem cell physiology and tumorigenesis. In this review, we discuss the recent findings on how ROS and tissue mechanics affect YAP-HIF-Notch-PD-L1 signaling, hoping that the knowledge can be used to design strategies for stem cell-based and ROS-targeting therapy and tissue engineering.
Collapse
Affiliation(s)
- Chin-Lin Guo
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
31
|
Terry BK, Kim S. The Role of Hippo-YAP/TAZ Signaling in Brain Development. Dev Dyn 2022; 251:1644-1665. [PMID: 35651313 DOI: 10.1002/dvdy.504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 11/08/2022] Open
Abstract
In order for our complex nervous system to develop normally, both precise spatial and temporal regulation of a number of different signaling pathways is critical. During both early embryogenesis and in organ development, one pathway that has been repeatedly implicated is the Hippo-YAP/TAZ signaling pathway. The paralogs YAP and TAZ are transcriptional co-activators that play an important role in cell proliferation, cell differentiation, and organ growth. Regulation of these proteins by the Hippo kinase cascade is therefore important for normal development. In this article, we review the growing field of research surrounding the role of Hippo-YAP/TAZ signaling in normal and atypical brain development. Starting from the development of the neural tube to the development and refinement of the cerebral cortex, cerebellum, and ventricular system, we address the typical role of these transcriptional co-activators, the functional consequences that manipulation of YAP/TAZ and their upstream regulators have on brain development, and where further research may be of benefit. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bethany K Terry
- Shriners Hospitals Pediatrics Research Center, Department of Neural Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA.,Biomedical Sciences Graduate Program, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Seonhee Kim
- Shriners Hospitals Pediatrics Research Center, Department of Neural Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA
| |
Collapse
|
32
|
Pan D. The unfolding of the Hippo signaling pathway. Dev Biol 2022; 487:1-9. [PMID: 35405135 DOI: 10.1016/j.ydbio.2022.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 12/15/2022]
Abstract
The development of a functional organ requires not only patterning mechanisms that confer proper identities to individual cells, but also growth-regulatory mechanisms that specify the final size of the organ. At the turn of the 21st century, comprehensive genetic screens in model organisms had successfully uncovered the major signaling pathways that mediate pattern formation in metazoans. In contrast, signaling pathways dedicated to growth control were less explored. The past two decades has witnessed the emergence of the Hippo signaling pathway as a central mediator of organ size control through coordinated regulation of cell proliferation and apoptosis. Here I reflect on the early discoveries in Drosophila that elucidated the core kinase cascade and transcriptional machinery of the Hippo pathway, highlight its deep evolutionary conservation from humans to unicellular relatives of metazoan, and discuss the complex regulation of Hippo signaling by upstream inputs. This historical perspective underscores the importance of model organisms in uncovering fundamental and universal mechanisms of life processes.
Collapse
Affiliation(s)
- Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390-9040, USA.
| |
Collapse
|
33
|
Kim CL, Lim SB, Kim K, Jeong HS, Mo JS. Phosphorylation analysis of the Hippo-YAP pathway using Phos-tag. J Proteomics 2022; 261:104582. [DOI: 10.1016/j.jprot.2022.104582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 03/22/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
|
34
|
Qi S, Zhu Y, Liu X, Li P, Wang Y, Zeng Y, Yu A, Wang Y, Sha Z, Zhong Z, Zhu R, Yuan H, Ye D, Huang S, Ling C, Xu Y, Zhou D, Zhang L, Yu FX. WWC proteins mediate LATS1/2 activation by Hippo kinases and imply a tumor suppression strategy. Mol Cell 2022; 82:1850-1864.e7. [DOI: 10.1016/j.molcel.2022.03.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 02/09/2022] [Accepted: 03/21/2022] [Indexed: 12/30/2022]
|
35
|
Moon S, Hwang S, Kim B, Lee S, Kim H, Lee G, Hong K, Song H, Choi Y. Hippo Signaling in the Endometrium. Int J Mol Sci 2022; 23:ijms23073852. [PMID: 35409214 PMCID: PMC8998929 DOI: 10.3390/ijms23073852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 01/27/2023] Open
Abstract
The uterus is essential for embryo implantation and fetal development. During the estrous cycle, the uterine endometrium undergoes dramatic remodeling to prepare for pregnancy. Angiogenesis is an essential biological process in endometrial remodeling. Steroid hormones regulate the series of events that occur during such remodeling. Researchers have investigated the potential factors, including angiofactors, involved in endometrial remodeling. The Hippo signaling pathway discovered in the 21st century, plays important roles in various cellular functions, including cell proliferation and cell death. However, its role in the endometrium remains unclear. In this review, we describe the female reproductive system and its association with the Hippo signaling pathway, as well as novel Hippo pathway genes and potential target genes.
Collapse
|
36
|
Ramaccini D, Pedriali G, Perrone M, Bouhamida E, Modesti L, Wieckowski MR, Giorgi C, Pinton P, Morciano G. Some Insights into the Regulation of Cardiac Physiology and Pathology by the Hippo Pathway. Biomedicines 2022; 10:biomedicines10030726. [PMID: 35327528 PMCID: PMC8945338 DOI: 10.3390/biomedicines10030726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 11/16/2022] Open
Abstract
The heart is one of the most fascinating organs in living beings. It beats up to 100,000 times a day throughout the lifespan, without resting. The heart undergoes profound anatomical, biochemical, and functional changes during life, from hypoxemic fetal stages to a completely differentiated four-chambered cardiac muscle. In the middle, many biological events occur after and intersect with each other to regulate development, organ size, and, in some cases, regeneration. Several studies have defined the essential roles of the Hippo pathway in heart physiology through the regulation of apoptosis, autophagy, cell proliferation, and differentiation. This molecular route is composed of multiple components, some of which were recently discovered, and is highly interconnected with multiple known prosurvival pathways. The Hippo cascade is evolutionarily conserved among species, and in addition to its regulatory roles, it is involved in disease by drastically changing the heart phenotype and its function when its components are mutated, absent, or constitutively activated. In this review, we report some insights into the regulation of cardiac physiology and pathology by the Hippo pathway.
Collapse
Affiliation(s)
- Daniela Ramaccini
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy; (D.R.); (G.P.); (E.B.)
| | - Gaia Pedriali
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy; (D.R.); (G.P.); (E.B.)
| | - Mariasole Perrone
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (M.P.); (L.M.); (C.G.)
| | - Esmaa Bouhamida
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy; (D.R.); (G.P.); (E.B.)
| | - Lorenzo Modesti
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (M.P.); (L.M.); (C.G.)
| | - Mariusz R. Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland;
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (M.P.); (L.M.); (C.G.)
| | - Paolo Pinton
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy; (D.R.); (G.P.); (E.B.)
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (M.P.); (L.M.); (C.G.)
- Correspondence: (P.P.); (G.M.); Tel.: +39-0532-455-802 (P.P.); +39-0532-455-804 (G.M.)
| | - Giampaolo Morciano
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy; (D.R.); (G.P.); (E.B.)
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (M.P.); (L.M.); (C.G.)
- Correspondence: (P.P.); (G.M.); Tel.: +39-0532-455-802 (P.P.); +39-0532-455-804 (G.M.)
| |
Collapse
|
37
|
Wang G, Zhai C, Ji X, Wang E, Zhao S, Qian C, Yu D, Wang Y, Wu S. C‐terminal‐mediated homodimerization of Expanded is critical for its ability to promote Hippo signaling in
Drosophila. FEBS Lett 2022; 596:1628-1638. [DOI: 10.1002/1873-3468.14332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Guiping Wang
- The State Key Laboratory of Medicinal Chemical Biology Tianjin Key Laboratory of Protein Sciences College of Life Sciences Nankai University Tianjin 300071 China
| | - Chaojun Zhai
- The State Key Laboratory of Medicinal Chemical Biology Tianjin Key Laboratory of Protein Sciences College of Life Sciences Nankai University Tianjin 300071 China
| | - Xiaohui Ji
- The State Key Laboratory of Medicinal Chemical Biology Tianjin Key Laboratory of Protein Sciences College of Life Sciences Nankai University Tianjin 300071 China
| | - Enlin Wang
- The State Key Laboratory of Medicinal Chemical Biology Tianjin Key Laboratory of Protein Sciences College of Life Sciences Nankai University Tianjin 300071 China
| | - Shanshan Zhao
- The State Key Laboratory of Medicinal Chemical Biology Tianjin Key Laboratory of Protein Sciences College of Life Sciences Nankai University Tianjin 300071 China
| | - Chenxi Qian
- The State Key Laboratory of Medicinal Chemical Biology Tianjin Key Laboratory of Protein Sciences College of Life Sciences Nankai University Tianjin 300071 China
| | - Dongyue Yu
- The State Key Laboratory of Medicinal Chemical Biology Tianjin Key Laboratory of Protein Sciences College of Life Sciences Nankai University Tianjin 300071 China
| | - Yunfeng Wang
- The State Key Laboratory of Medicinal Chemical Biology Tianjin Key Laboratory of Protein Sciences College of Life Sciences Nankai University Tianjin 300071 China
| | - Shian Wu
- The State Key Laboratory of Medicinal Chemical Biology Tianjin Key Laboratory of Protein Sciences College of Life Sciences Nankai University Tianjin 300071 China
| |
Collapse
|
38
|
Zarka M, Haÿ E, Cohen-Solal M. YAP/TAZ in Bone and Cartilage Biology. Front Cell Dev Biol 2022; 9:788773. [PMID: 35059398 PMCID: PMC8764375 DOI: 10.3389/fcell.2021.788773] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022] Open
Abstract
YAP and TAZ were initially described as the main regulators of organ growth during development and more recently implicated in bone biology. YAP and TAZ are regulated by mechanical and cytoskeletal cues that lead to the control of cell fate in response to the cellular microenvironment. The mechanical component represents a major signal for bone tissue adaptation and remodelling, so YAP/TAZ contributes significantly in bone and cartilage homeostasis. Recently, mice and cellular models have been developed to investigate the precise roles of YAP/TAZ in bone and cartilage cells, and which appear to be crucial. This review provides an overview of YAP/TAZ regulation and function, notably providing new insights into the role of YAP/TAZ in bone biology.
Collapse
Affiliation(s)
- Mylène Zarka
- INSERM UMR 1132 BIOSCAR, Hôpital Lariboisière, Paris, France.,Faculté de Santé, Université de Paris, Paris, France
| | - Eric Haÿ
- INSERM UMR 1132 BIOSCAR, Hôpital Lariboisière, Paris, France.,Faculté de Santé, Université de Paris, Paris, France
| | - Martine Cohen-Solal
- INSERM UMR 1132 BIOSCAR, Hôpital Lariboisière, Paris, France.,Faculté de Santé, Université de Paris, Paris, France
| |
Collapse
|
39
|
Sang Q, Wang G, Morton DB, Wu H, Xie B. The ZO-1 protein Polychaetoid as an upstream regulator of the Hippo pathway in Drosophila. PLoS Genet 2021; 17:e1009894. [PMID: 34748546 PMCID: PMC8610254 DOI: 10.1371/journal.pgen.1009894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 11/23/2021] [Accepted: 10/19/2021] [Indexed: 01/15/2023] Open
Abstract
The generation of a diversity of photoreceptor (PR) subtypes with different spectral sensitivities is essential for color vision in animals. In the Drosophila eye, the Hippo pathway has been implicated in blue- and green-sensitive PR subtype fate specification. Specifically, Hippo pathway activation promotes green-sensitive PR fate at the expense of blue-sensitive PRs. Here, using a sensitized triple heterozygote-based genetic screening approach, we report the identification of the single Drosophila zonula occludens-1 (ZO-1) protein Polychaetoid (Pyd) as a new regulator of the Hippo pathway during the blue- and green-sensitive PR subtype binary fate choice. We demonstrate that Pyd acts upstream of the core components and the upstream regulator Pez in the Hippo pathway. Furthermore, We found that Pyd represses the activity of Su(dx), a E3 ligase that negatively regulates Pez and can physically interact with Pyd, during PR subtype fate specification. Together, our results identify a new mechanism underlying the Hippo signaling pathway in post-mitotic neuronal fate specification. The Hippo signaling pathway was originally discovered for its critical role in tissue growth and organ size control. Its evolutionarily conserved roles in various biological processes, including cell differentiation, stem cell regeneration and homeostasis, innate immune biology, as well as tumorigenesis, have been subsequently found in other species. During the development of the Drosophila eye, the Hippo pathway promotes green- and represses blue-sensitive photoreceptor (PR) subtype fate specification. Taking advantage of this binary PR fate choice, we screened Drosophila chromosomal deficiency lines to seek new regulators of the Hippo signaling pathway. We identified the Drosophila membrane-associated ZO-1 protein Pyd as an upstream regulator of the Hippo pathway to specify PR subtypes. Our results have demonstrated that Pyd represses Su(dx)’s activity in the Hippo pathway to specify PR subtypes. Our results demonstrate a new mechanism underlying the Hippo signaling pathway in post-mitotic neuronal fate specification.
Collapse
Affiliation(s)
- Qingliang Sang
- Integrative Biomedical and Diagnostic Sciences Department, School of Dentistry, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Gang Wang
- Integrative Biomedical and Diagnostic Sciences Department, School of Dentistry, Oregon Health and Science University, Portland, Oregon, United States of America
| | - David B. Morton
- Integrative Biomedical and Diagnostic Sciences Department, School of Dentistry, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Hui Wu
- Integrative Biomedical and Diagnostic Sciences Department, School of Dentistry, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Baotong Xie
- Integrative Biomedical and Diagnostic Sciences Department, School of Dentistry, Oregon Health and Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
40
|
Pojer JM, Manning SA, Kroeger B, Kondo S, Harvey KF. The Hippo pathway uses different machinery to control cell fate and organ size. iScience 2021; 24:102830. [PMID: 34355153 PMCID: PMC8322298 DOI: 10.1016/j.isci.2021.102830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 06/01/2021] [Accepted: 07/07/2021] [Indexed: 11/21/2022] Open
Abstract
The Hippo pathway is a conserved signaling network that regulates organ growth and cell fate. One such cell fate decision is that of R8 photoreceptor cells in the Drosophila eye, where Hippo specifies whether cells sense blue or green light. We show that only a subset of proteins that control organ growth via the Hippo pathway also regulate R8 cell fate choice, including the STRIPAK complex, Tao, Pez, and 14-3-3 proteins. Furthermore, key Hippo pathway proteins were primarily cytoplasmic in R8 cells rather than localized to specific membrane domains, as in cells of growing epithelial organs. Additionally, Warts was the only Hippo pathway protein to be differentially expressed between R8 subtypes, while central Hippo pathway proteins were expressed at dramatically lower levels in adult and pupal eyes than in growing larval eyes. Therefore, we reveal several important differences in Hippo signaling in the contexts of organ growth and cell fate.
Collapse
Affiliation(s)
- Jonathan M. Pojer
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Samuel A. Manning
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Benjamin Kroeger
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Shu Kondo
- Laboratory of Invertebrate Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, Japan
| | - Kieran F. Harvey
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
41
|
Hwang D, Kim M, Kim S, Kwon MR, Kang YS, Kim D, Kang HC, Lim DS. AMOTL2 mono-ubiquitination by WWP1 promotes contact inhibition by facilitating LATS activation. Life Sci Alliance 2021; 4:4/10/e202000953. [PMID: 34404733 PMCID: PMC8372784 DOI: 10.26508/lsa.202000953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 11/24/2022] Open
Abstract
This work reveals a novel function of WWP1 E3 ligase in the mono-ubiquitination of AMOTL2, which enables the binding and activation of LATS kinases upon contact inhibition. Contact inhibition is a key cellular phenomenon that prevents cells from hyper-proliferating upon reaching confluence. Although not fully characterized, a critical driver of this process is the Hippo signaling pathway, whose downstream effector yes-associated protein plays pivotal roles in cell growth and differentiation. Here, we provide evidence that the E3 ligase WWP1 (WW-domain containing protein 1) mono-ubiquitinates AMOTL2 (angiomotin-like 2) at K347 and K408. Mono-ubiquitinated AMOTL2, in turn, interacts with the kinase LATS2, which facilitates recruitment of the upstream Hippo pathway component SAV1 and ultimately promotes yes-associated protein phosphorylation and subsequent cytoplasmic sequestration and/or degradation. Furthermore, contact inhibition induced by high cell density promoted the localization and stabilization of WWP1 at cell junctions, where it interacted with Crumbs polarity proteins. Notably, the Crumbs complex was functionally important for AMOTL2 mono-ubiquitination and LATS activation under high cell density conditions. These findings delineate a functionally important molecular mechanism in which AMOTL2 mono-ubiquitination by WWP1 at cell junctions and LATS activation are tightly coupled to upstream cell density cues.
Collapse
Affiliation(s)
- Daehee Hwang
- National Creative Research Center for Cell Plasticity, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Miju Kim
- National Creative Research Center for Cell Plasticity, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Soyeon Kim
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Korea
| | - Mi Ra Kwon
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Korea
| | - Ye-Seul Kang
- National Creative Research Center for Cell Plasticity, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Dahyun Kim
- National Creative Research Center for Cell Plasticity, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Ho-Chul Kang
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Korea
| | - Dae-Sik Lim
- National Creative Research Center for Cell Plasticity, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| |
Collapse
|
42
|
Kim SW, Chu J, Do SI, Na K. Low KIBRA Expression Is Associated with Poor Prognosis in Patients with Triple-Negative Breast Cancer. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:837. [PMID: 34441043 PMCID: PMC8398918 DOI: 10.3390/medicina57080837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022]
Abstract
Background and Objectives: Kidney and brain protein (KIBRA) is a protein encoded by the WW and C2 domain containing 1 (WWC1) gene and is involved in the Hippo signaling pathway. Recent studies have revealed the prognostic value of KIBRA expression; however, its role in breast cancer remains unclear. The aim of this study was to examine KIBRA expression in relation to the clinical and pathological characteristics of patients with breast cancer and to disease outcomes. Materials and Methods: We analyzed the expression of KIBRA and its correlation with event-free survival (EFS) outcomes in resected samples from 486 patients with breast cancer. Results: KIBRA expression was significantly different among the molecular subgroups (low KIBRA expression: luminal A, 46.7% versus 50.0%, p = 0.641; luminal B, 32.7% versus 71.7%, p < 0.001; human epidermal growth factor receptor 2 (HER2)-enriched, 64.9% versus 45.5%. p = 0.001; triple-negative, 73.6% versus 43.8%, p < 0.001). Low KIBRA expression was also associated with high nuclear grade (60.4% versus 37.8%, p < 0.001), high histologic grade (58.7% versus 37.0%, p < 0.001), and estrogen receptor (ER) negativity (54.2% versus 23.6%, p < 0.001). Low KIBRA expression was significantly associated with poor EFS (p = 0.041; hazard ratio (HR) 1.658; 95% confidence interval (CI), 1.015-2.709). Low KIBRA expression was an independent indicator of poor prognosis (p = 0.001; HR = 3.952; 95% CI = 1.542-10.133) in triple-negative breast cancer (TNBC). Conclusion: Low KIBRA expression was associated with higher histological grade, ER negativity and poor EFS of breast cancer. In particular, our data highlight KIBRA expression status as a potential prognostic marker for TNBC.
Collapse
Affiliation(s)
- So-Woon Kim
- Department of Pathology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (S.-W.K.); (K.N.)
| | - Jinah Chu
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul 03181, Korea;
| | - Sung-Im Do
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul 03181, Korea;
| | - Kiyong Na
- Department of Pathology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (S.-W.K.); (K.N.)
| |
Collapse
|
43
|
Li FL, Guan KL. The two sides of Hippo pathway in cancer. Semin Cancer Biol 2021; 85:33-42. [PMID: 34265423 DOI: 10.1016/j.semcancer.2021.07.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 02/08/2023]
Abstract
The Hippo signaling pathway was originally characterized by genetic studies in Drosophila to regulate tissue growth and organ size, and the core components of this pathway are highly conserved in mammals. Studies over the past two decades have revealed critical physiological and pathological functions of the Hippo tumor-suppressor pathway, which is tightly regulated by a broad range of intracellular and extracellular signals. These properties enable the Hippo pathway to serve as an important controller in organismal development and adult tissue homeostasis. Dysregulation of the Hippo signaling has been observed in many cancer types, suggesting the possibility of cancer treatment by targeting the Hippo pathway. The general consensus is that Hippo has tumor suppressor function. However, growing evidence also suggests that the function of the Hippo pathway in malignancy is cancer context dependent as recent studies indicating tumor promoting function of LATS. This article surveys the Hippo pathway signaling mechanisms and then reviews both the tumor suppressing and promoting function of this pathway. A comprehensive understanding of the dual roles of the Hippo pathway in cancer will benefit future therapeutic targeting of the Hippo pathway for cancer treatment.
Collapse
Affiliation(s)
- Fu-Long Li
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Kun-Liang Guan
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
44
|
Kwon H, Kim J, Jho EH. Role of the Hippo pathway and mechanisms for controlling cellular localization of YAP/TAZ. FEBS J 2021; 289:5798-5818. [PMID: 34173335 DOI: 10.1111/febs.16091] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/05/2021] [Accepted: 06/24/2021] [Indexed: 12/26/2022]
Abstract
The Hippo pathway is a crucial signaling mechanism that inhibits the growth of cells and organs during development and in disease. When the Hippo pathway is activated, YAP/TAZ transcriptional coactivators are phosphorylated by upstream kinases, preventing nuclear localization of YAP/TAZ. However, when the Hippo pathway is inhibited, YAP/TAZ localize mainly in the nucleus and induce the expression of target genes related to cell proliferation. Abnormal proliferation of cells is one of the hallmarks of cancer initiation, and activation of Hippo pathway dampens such cell proliferation. Various types of diseases including cancer can occur due to the dysregulation of the Hippo pathway. Therefore, a better understanding of the Hippo pathway signaling mechanisms, and in particular how YAP/TAZ exist in the nucleus, may lead to the identification of new therapeutic targets for treating cancer and other diseases. In this review, we summarize the overall Hippo pathway and discuss mechanisms related to nuclear localization of YAP/TAZ.
Collapse
Affiliation(s)
- Hyeryun Kwon
- Department of Life Science, University of Seoul, Korea
| | - Jiyoung Kim
- Department of Life Science, University of Seoul, Korea
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Korea
| |
Collapse
|
45
|
Yap1-Scribble polarization is required for hematopoietic stem cell division and fate. Blood 2021; 136:1824-1836. [PMID: 32483624 DOI: 10.1182/blood.2019004113] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
Yap1 and its paralogue Taz largely control epithelial tissue growth. We have identified that hematopoietic stem cell (HSC) fitness response to stress depends on Yap1 and Taz. Deletion of Yap1 and Taz induces a loss of HSC quiescence, symmetric self-renewal ability, and renders HSC more vulnerable to serial myeloablative 5-fluorouracil treatment. This effect depends on the predominant cytosolic polarization of Yap1 through a PDZ domain-mediated interaction with the scaffold Scribble. Scribble and Yap1 coordinate to control cytoplasmic Cdc42 activity and HSC fate determination in vivo. Deletion of Scribble disrupts Yap1 copolarization with Cdc42 and decreases Cdc42 activity, resulting in increased self-renewing HSC with competitive reconstitution advantages. These data suggest that Scribble/Yap1 copolarization is indispensable for Cdc42-dependent activity on HSC asymmetric division and fate. The combined loss of Scribble, Yap1, and Taz results in transcriptional upregulation of Rac-specific guanine nucleotide exchange factors, Rac activation, and HSC fitness restoration. Scribble links Cdc42 and the cytosolic functions of the Hippo signaling cascade in HSC fate determination.
Collapse
|
46
|
Pojer JM, Saiful Hilmi AJ, Kondo S, Harvey KF. Crumbs and the apical spectrin cytoskeleton regulate R8 cell fate in the Drosophila eye. PLoS Genet 2021; 17:e1009146. [PMID: 34097697 PMCID: PMC8211197 DOI: 10.1371/journal.pgen.1009146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 06/17/2021] [Accepted: 05/11/2021] [Indexed: 12/31/2022] Open
Abstract
The Hippo pathway is an important regulator of organ growth and cell fate. In the R8 photoreceptor cells of the Drosophila melanogaster eye, the Hippo pathway controls the fate choice between one of two subtypes that express either the blue light-sensitive Rhodopsin 5 (Hippo inactive R8 subtype) or the green light-sensitive Rhodopsin 6 (Hippo active R8 subtype). The degree to which the mechanism of Hippo signal transduction and the proteins that mediate it are conserved in organ growth and R8 cell fate choice is currently unclear. Here, we identify Crumbs and the apical spectrin cytoskeleton as regulators of R8 cell fate. By contrast, other proteins that influence Hippo-dependent organ growth, such as the basolateral spectrin cytoskeleton and Ajuba, are dispensable for the R8 cell fate choice. Surprisingly, Crumbs promotes the Rhodopsin 5 cell fate, which is driven by Yorkie, rather than the Rhodopsin 6 cell fate, which is driven by Warts and the Hippo pathway, which contrasts with its impact on Hippo activity in organ growth. Furthermore, neither the apical spectrin cytoskeleton nor Crumbs appear to regulate the Hippo pathway through mechanisms that have been observed in growing organs. Together, these results show that only a subset of Hippo pathway proteins regulate the R8 binary cell fate decision and that aspects of Hippo signalling differ between growing organs and post-mitotic R8 cells.
Collapse
Affiliation(s)
- Jonathan M. Pojer
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Abdul Jabbar Saiful Hilmi
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Shu Kondo
- Laboratory of Invertebrate Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Kieran F. Harvey
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
47
|
Brücher VC, Egbring C, Plagemann T, Nedvetsky PI, Höffken V, Pavenstädt H, Eter N, Kremerskothen J, Heiduschka P. Lack of WWC2 Protein Leads to Aberrant Angiogenesis in Postnatal Mice. Int J Mol Sci 2021; 22:5321. [PMID: 34070186 PMCID: PMC8158494 DOI: 10.3390/ijms22105321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 01/03/2023] Open
Abstract
The WWC protein family is an upstream regulator of the Hippo signalling pathway that is involved in many cellular processes. We examined the effect of an endothelium-specific WWC1 and/or WWC2 knock-out on ocular angiogenesis. Knock-outs were induced in C57BL/6 mice at the age of one day (P1) and evaluated at P6 (postnatal mice) or induced at the age of five weeks and evaluated at three months of age (adult mice). We analysed morphology of retinal vasculature in retinal flat mounts. In addition, in vivo imaging and functional testing by electroretinography were performed in adult mice. Adult WWC1/2 double knock-out mice differed neither functionally nor morphologically from the control group. In contrast, the retinas of the postnatal WWC knock-out mice showed a hyperproliferative phenotype with significantly enlarged areas of sprouting angiogenesis and a higher number of tip cells. The branching and end points in the peripheral plexus were significantly increased compared to the control group. The deletion of the WWC2 gene was decisive for these effects; while knocking out WWC1 showed no significant differences. The results hint strongly that WWC2 is an essential regulator of ocular angiogenesis in mice. As an activator of the Hippo signalling pathway, it prevents excessive proliferation during physiological angiogenesis. In adult animals, WWC proteins do not seem to be important for the maintenance of the mature vascular plexus.
Collapse
Affiliation(s)
- Viktoria Constanze Brücher
- Department of Ophthalmology, University of Münster Medical School, 48149 Münster, Germany; (V.C.B.); (C.E.); (T.P.); (N.E.)
| | - Charlotte Egbring
- Department of Ophthalmology, University of Münster Medical School, 48149 Münster, Germany; (V.C.B.); (C.E.); (T.P.); (N.E.)
| | - Tanja Plagemann
- Department of Ophthalmology, University of Münster Medical School, 48149 Münster, Germany; (V.C.B.); (C.E.); (T.P.); (N.E.)
- Department of Nephrology, Internal Medicine D, Hypertension and Rheumatology, University of Münster Medical School, 48149 Münster, Germany; (P.I.N.); (H.P.); (J.K.)
| | - Pavel I. Nedvetsky
- Department of Nephrology, Internal Medicine D, Hypertension and Rheumatology, University of Münster Medical School, 48149 Münster, Germany; (P.I.N.); (H.P.); (J.K.)
| | - Verena Höffken
- Medical Cell Biology, Medical Clinic D, University of Münster Medical School, 48149 Münster, Germany;
| | - Hermann Pavenstädt
- Department of Nephrology, Internal Medicine D, Hypertension and Rheumatology, University of Münster Medical School, 48149 Münster, Germany; (P.I.N.); (H.P.); (J.K.)
| | - Nicole Eter
- Department of Ophthalmology, University of Münster Medical School, 48149 Münster, Germany; (V.C.B.); (C.E.); (T.P.); (N.E.)
| | - Joachim Kremerskothen
- Department of Nephrology, Internal Medicine D, Hypertension and Rheumatology, University of Münster Medical School, 48149 Münster, Germany; (P.I.N.); (H.P.); (J.K.)
| | - Peter Heiduschka
- Department of Ophthalmology, University of Münster Medical School, 48149 Münster, Germany; (V.C.B.); (C.E.); (T.P.); (N.E.)
| |
Collapse
|
48
|
Swaroop B SS, Kanumuri R, Ezhil I, Naidu Sampangi JK, Kremerskothen J, Rayala SK, Venkatraman G. KIBRA connects Hippo signaling and cancer. Exp Cell Res 2021; 403:112613. [PMID: 33901448 DOI: 10.1016/j.yexcr.2021.112613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/14/2022]
Abstract
The Hippo signaling pathway is a tumor suppressor pathway that plays an important role in tissue homeostasis and organ size control. KIBRA is one of the many upstream regulators of the Hippo pathway. It functions as a tumor suppressor by positively regulating the core Hippo kinase cascade. However, there are accumulating shreds of evidence showing that KIBRA has an oncogenic function, which we speculate may arise from its functions away from the Hippo pathway. In this review, we have attempted to provide an overview of the Hippo signaling with a special emphasis on evidence showing the paradoxical role of KIBRA in cancer.
Collapse
Affiliation(s)
- Srikanth Swamy Swaroop B
- Department of Human Genetics, Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, 600116, Tamil Nadu, India; Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, 600036, Tamil Nadu, India
| | - Rahul Kanumuri
- Department of Human Genetics, Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, 600116, Tamil Nadu, India; Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, 600036, Tamil Nadu, India
| | - Inemai Ezhil
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, 600036, Tamil Nadu, India
| | - Jagadeesh Kumar Naidu Sampangi
- Department of Human Genetics, Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, 600116, Tamil Nadu, India
| | - Joachim Kremerskothen
- Department of Nephrology, Hypertension and Rheumatology, University Hospital Münster, Münster, Germany
| | - Suresh Kumar Rayala
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, 600036, Tamil Nadu, India.
| | - Ganesh Venkatraman
- Department of Human Genetics, Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, 600116, Tamil Nadu, India.
| |
Collapse
|
49
|
Wang G, Zhou Y, Chen W, Yang Y, Ye J, Ou H, Wu H. miR-21-5p promotes lung adenocarcinoma cell proliferation, migration and invasion via targeting WWC2. Cancer Biomark 2021; 28:549-559. [PMID: 32623387 DOI: 10.3233/cbm-201489] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Studies have suggested that miR-21-5p and WWC2 are key players in most cancer types, yet the underlying mechanisms in lung adenocarcinoma (LUAD) remain elusive. This study made in-depth research on the two factors-dependent mechanisms underlying LUAD occurrence and development. METHODS Bioinformatics methods were employed to identify the miRNA and its target gene of interest. In all, 20 pairs of LUAD tumor tissue samples and matched adjacent normal samples along with 5 LUAD cell lines were collected for evaluating the aberrant expression of miR-21-5p and WWC2. Dual-luciferase reporter assay was performed to validate the targeted relationship between miR-21-5p and WWC2. A series of in vitro experiments including colony formation assay, EdU, wound healing assay and Transwell were conducted for assessment of the LUAD cell biological behaviors. In addition, Western blot was carried out to determine the protein expression of epithelial-mesenchymal transition (EMT)-related proteins. RESULTS miR-21-5p was found to be considerably increased in LUAD tissue and cells relative to that in the adjacent tissue and the human bronchial epithelial cells, whereas WWC2 was significantly decreased. Dual-luciferase reporter assay revealed that miR-21-5p targeted WWC2 and down-regulated its expression. Besides, silencing miR-21-5p or overexpressing WWC2 played an inhibitory role in PC-9 cancer cell proliferation, migration and invasion, but such effect was suppressed when miR-21-5p was overexpressed. Furthermore, Western blot uncovered that WWC2 overexpression impeded the EMT process in LUAD cells. CONCLUSION miR-21-5p facilitates LUAD cell proliferation, migration and invasion through targeting WWC2, which provides a novel therapeutic target for LUAD treatment.
Collapse
|
50
|
Tokamov SA, Su T, Ullyot A, Fehon RG. Negative feedback couples Hippo pathway activation with Kibra degradation independent of Yorkie-mediated transcription. eLife 2021; 10:62326. [PMID: 33555257 PMCID: PMC7895526 DOI: 10.7554/elife.62326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/08/2021] [Indexed: 12/20/2022] Open
Abstract
The Hippo (Hpo) pathway regulates tissue growth in many animals. Multiple upstream components promote Hpo pathway activity, but the organization of these different inputs, the degree of crosstalk between them, and whether they are regulated in a distinct manner is not well understood. Kibra (Kib) activates the Hpo pathway by recruiting the core Hpo kinase cassette to the apical cortex. Here, we show that the Hpo pathway downregulates Drosophila Kib levels independently of Yorkie-mediated transcription. We find that Hpo signaling complex formation promotes Kib degradation via SCFSlimb-mediated ubiquitination, that this effect requires Merlin, Salvador, Hpo, and Warts, and that this mechanism functions independently of other upstream Hpo pathway activators. Moreover, Kib degradation appears patterned by differences in mechanical tension across the wing. We propose that Kib degradation mediated by Hpo pathway components and regulated by cytoskeletal tension serves to control Kib-driven Hpo pathway activation and ensure optimally scaled and patterned tissue growth.
Collapse
Affiliation(s)
- Sherzod A Tokamov
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States.,Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, United States
| | - Ting Su
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Anne Ullyot
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Richard G Fehon
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States.,Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, United States
| |
Collapse
|