1
|
Sun C, Ding Z, Li B, Chen S, Li E, Yang Q. New insights into Gremlin-1: A tumour microenvironment landscape re-engineer and potential therapeutic target. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119962. [PMID: 40250712 DOI: 10.1016/j.bbamcr.2025.119962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/24/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Gremlin-1 (GREM1), a well-known bone morphogenetic protein (BMP) antagonist, is highly expressed in various malignant tumours. However, the specific role of GREM1 in tumours remains controversial and may be attributed to the heterogeneity and complexity of the tumour microenvironment (TME). It is currently believed that GREM1 regulates the complex landscape of the TME, primarily by antagonising BMP signalling or BMP-independent pathways. Both GREM1 and BMP play dual roles in tumour progression. Therefore, the mutual crosstalk between tumour cells and tumour-associated fibroblasts and the regulation of various secreted factors in the TME affect the secretion level of GREM1, which in turn regulates the amplitude balance between GREM1 and BMP, affecting tumour progression. The inhibition of GREM1 activity in the TME can disrupt this amplitude balance and prevent the formation of a tumour-supportive microenvironment, demonstrating that GREM1 is a potential therapeutic target. In this study, we reviewed the specific signalling pathways via which GREM1 in the TME regulates epithelial-mesenchymal transition, construction of the tumour immune microenvironment, and maintenance of tumour cell stemness via BMP-dependent and BMP-independent regulation, and also summarised the latest clinical progress of GREM1.
Collapse
Affiliation(s)
- Chengpeng Sun
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang 330006, China; HuanKui Academy, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Zijun Ding
- School of Ophthalmology and Optometry, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Benjie Li
- Queen Mary School, Jiangxi Medical college, Nanchang University, Nanchang 330031, China
| | - Sihong Chen
- Queen Mary School, Jiangxi Medical college, Nanchang University, Nanchang 330031, China
| | - Enliang Li
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang 330006, China; Jiangxi Provincial Key Laboratory of Intelligent Medical Imaging, China.
| | - Qingping Yang
- Department of Reproductive Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17, Yongwai zheng Street, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
2
|
Wang L, Ruan M, Bu Q, Zhao C. Signaling Pathways Driving MSC Osteogenesis: Mechanisms, Regulation, and Translational Applications. Int J Mol Sci 2025; 26:1311. [PMID: 39941080 PMCID: PMC11818554 DOI: 10.3390/ijms26031311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Mesenchymal stem cells (MSCs) are crucial for skeletal development, homeostasis, and repair, primarily through their differentiation into osteoblasts and other skeletal lineage cells. Key signaling pathways, including Wnt, TGF-β/BMP, PTH, Hedgehog, and IGF, act as critical regulators of MSC osteogenesis, playing pivotal roles in maintaining bone homeostasis and facilitating regeneration. These pathways interact in distinct ways at various stages of bone development, mineralization, and remodeling. This review provides an overview of the molecular mechanisms by which these pathways regulate MSC osteogenesis, their influence on bone tissue formation, and their implications in bone diseases and therapeutic strategies. Additionally, we explore the potential applications of these pathways in bone tissue engineering, with a particular focus on promoting the use of MSCs as seed cells for bone defect repair. Ultimately, this review aims to highlight potential avenues for advancing bone biology research, treating bone disorders, and enhancing regenerative medicine.
Collapse
Affiliation(s)
| | | | | | - Chengzhu Zhao
- Laboratory of Skeletal Development and Regeneration, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
3
|
Dogan DY, Hornung I, Pettinato M, Pagani A, Baschant U, Seebohm G, Hofbauer LC, Silvestri L, Rauner M, Steinbicker AU. Bone phenotyping of murine hemochromatosis models with deficiencies of Hjv, Alk2, or Alk3: The influence of sex and the bone compartment. FASEB J 2024; 38:e70179. [PMID: 39545682 PMCID: PMC11698015 DOI: 10.1096/fj.202401015r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/08/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
Osteopenia is frequently observed in patients with iron overload, especially in those with HFE-dependent hereditary hemochromatosis (HH). Interestingly, not all mouse models of HH show bone loss, suggesting that iron overload alone may not suffice to induce bone loss. In this study, the bone phenotypes of Hjv-/- and hepatocyte-specific Alk2- and Alk3-deficient mice as additional mouse models of HH were investigated to further clarify, how high iron levels lead to bone loss and which signaling mechanisms are operational. Neither male nor female 12-week-old Hjv-/- mice had an altered trabecular or cortical bone mass or bone turnover, despite severe iron overload. Male 12-month-old Hjv-/- mice even presented with a higher femoral trabecular bone volume compared to wildtype mice. Similarly, female mice with hepatocyte-specific Alk2 or Alk3 deficiency did not show an altered bone phenotype at 3, 6, and 12 months of age. Male hepatocyte-specific Alk3-deficient mice also had a normal trabecular bone mass at all ages analyzed, despite showing increased bone resorption and decreased bone formation parameters. Interestingly, hepatocyte-specific Alk2-deficient mice showed reduced femoral trabecular bone at 6 months of age due to suppressed bone formation. Cortical thickness at the femur was reduced in both, 6-month-old male hepatocyte-specific Alk2- and Alk3-deficient mice. Raising hepatocyte-specific Alk2-deficient male mice on an iron-deficient diet rescued the bone phenotype. Taken together, despite iron overload, trabecular bone microarchitecture was not altered in mice deficient of Hjv or Alk3. Only male hepatocyte-specific Alk2-deficient mice showed site-specific lower trabecular and cortical bone mass at the femur, which was dependent on iron. Thus, bone loss does not correlate with the extent of iron overload in these mouse models, but may relate to the amount of iron-loaded macrophages, as precursors of osteoclasts, in the bone marrow.
Collapse
Affiliation(s)
- Deniz Y. Dogan
- Department of Anesthesia, Intensive Care and Pain MedicineGoethe University FrankfurtFrankfurtGermany
| | - Isabelle Hornung
- Department of Anesthesia, Intensive Care and Pain MedicineGoethe University FrankfurtFrankfurtGermany
| | - Mariateresa Pettinato
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Alessia Pagani
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Ulrike Baschant
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav CarusDresden University of TechnologyDresdenGermany
| | - Guiscard Seebohm
- IfGH– Cellular Electrophysiology, Department of Cardiology and AngiologyUniversity Hospital of MünsterMünsterGermany
| | - Lorenz C. Hofbauer
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav CarusDresden University of TechnologyDresdenGermany
| | - Laura Silvestri
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyIRCCS San Raffaele Scientific InstituteMilanItaly
- School of MedicineVita‐Salute San Raffaele UniversityMilanItaly
| | - Martina Rauner
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav CarusDresden University of TechnologyDresdenGermany
| | - Andrea U. Steinbicker
- Department of Anesthesia, Intensive Care and Pain MedicineGoethe University FrankfurtFrankfurtGermany
- Present address:
Faculty of Medicine and University Hospital of Cologne, Department of Anaesthesiology and Intensive Care MedicineUniversity of CologneCologneGermany
| |
Collapse
|
4
|
Enns CA, Zhang RH, Jue S, Zhang AS. Hepcidin expression is associated with increased γ-secretase-mediated cleavage of neogenin in the liver. J Biol Chem 2024; 300:107927. [PMID: 39454953 PMCID: PMC11599459 DOI: 10.1016/j.jbc.2024.107927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Neogenin (NEO1) is a ubiquitously expressed transmembrane protein. It interacts with hemojuvelin (HJV). Both NEO1 and HJV play pivotal roles in iron homeostasis by inducing hepcidin expression in the liver. Our previous studies demonstrated that this process depends on Neo1-Hjv interaction and showed that the Hjv-mediated hepcidin expression is correlated with the accumulation of a truncated and membrane-associated form of Neo1. In this study, we tested whether hepcidin expression is induced by increased γ-secretase-mediated cleavage of Neo1 in the liver. We found that Neo1 underwent cleavage of its ectodomain and intracellular domains by α- and γ-secretases, respectively, in hepatoma cells. Our in vitro studies suggest that γ-secretase is responsible for cleavage and release of the cytoplasmic domain of Neo1 in the Hjv-Neo1 complex. This process was enhanced by the inhibition of α-secretase proteolysis and by co-expression with the Neo1-binding partner, Alk3. Further in vivo studies indicated that Neo1 induction of hepcidin expression required γ-secretase cleavage. Interestingly, neither predicted form of γ-secretase-cleaved Neo1 was able to induce hepcidin when separately expressed in hepatocyte-specific Neo1 KO mice. These results imply that the function of Neo1 requires a de novo γ-secretase proteolysis. Additional studies revealed that in addition to the Hjv-binding domains, the function of Neo1 also required its C-terminal intracellular domain and the N-terminal immunoglobulin-like domains that are involved in Neo1 binding to Alk3. Together, our data support the idea that Neo1 induction of hepcidin is initiated as a full-length form and requires a de novo γ-secretase cleavage of Neo1's cytoplasmic domain.
Collapse
Affiliation(s)
- Caroline A Enns
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon, USA
| | - Richard H Zhang
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon, USA
| | - Shall Jue
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon, USA
| | - An-Sheng Zhang
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|
5
|
Zhang J, Jiang Y, Zhang Z, Li S, Fan H, Gu J, Mao R, Xu X. Repulsive guidance molecules b (RGMb): molecular mechanism, function and role in diseases. Expert Rev Mol Med 2024; 26:e24. [PMID: 39375839 PMCID: PMC11488336 DOI: 10.1017/erm.2024.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/23/2023] [Accepted: 06/11/2024] [Indexed: 10/09/2024]
Abstract
Repulsive guidance molecule b (RGMb), a glycosylphosphatidylinositol-anchored member of the RGM family, is initially identified as a co-receptor of bone morphogenetic protein (BMP) in the nervous system. The expression of RGMb is transcriptionally regulated by dorsal root ganglion 11 (DRG11), which is a transcription factor expressed in embryonic DRG and dorsal horn neurons and plays an important role in the development of sensory circuits. RGMb is involved in important physiological processes such as embryonic development, immune response, intercellular adhesion and tumorigenesis. Furthermore, RGMb is mainly involved in the regulation of RGMb-neogenin-Rho and BMP signalling pathways. The recent discovery of programmed death-ligand 2 (PD-L2)-RGMb binding reveals that the cell signalling network and functional regulation centred on RGMb are extremely complex. The latest report suggests that down-regulation of the PD-L2-RGMb pathway in the gut microbiota promotes an anti-tumour immune response, which defines a potentially effective immune strategy. However, the biological function of RGMb in a variety of human diseases has not been fully determined, and will remain an active research field. This article reviews the properties and functions of RGMb, focusing on its role under various physiological and pathological conditions.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Yijing Jiang
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Zijian Zhang
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Shilin Li
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Haowen Fan
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Jinhua Gu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong, Jiangsu, China
| | - Renfang Mao
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Xiaohong Xu
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong University, Nantong, Jiangsu, People's Republic of China
| |
Collapse
|
6
|
Quilez S, Dumontier E, Baim C, Kam J, Cloutier JF. Loss of Neogenin alters branchial arch development and leads to craniofacial skeletal defects. Front Cell Dev Biol 2024; 12:1256465. [PMID: 38404688 PMCID: PMC10884240 DOI: 10.3389/fcell.2024.1256465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/22/2024] [Indexed: 02/27/2024] Open
Abstract
The formation of complex structures, such as the craniofacial skeleton, requires precise and intricate two-way signalling between populations of cells of different embryonic origins. For example, the lower jaw, or mandible, arises from cranial neural crest cells (CNCCs) in the mandibular portion of the first branchial arch (mdBA1) of the embryo, and its development is regulated by signals from the ectoderm and cranial mesoderm (CM) within this structure. The molecular mechanisms underlying CM cell influence on CNCC development in the mdBA1 remain poorly defined. Herein we identified the receptor Neogenin as a key regulator of craniofacial development. We found that ablation of Neogenin expression via gene-targeting resulted in several craniofacial skeletal defects, including reduced size of the CNCC-derived mandible. Loss of Neogenin did not affect the formation of the mdBA1 CM core but resulted in altered Bmp4 and Fgf8 expression, increased apoptosis, and reduced osteoblast differentiation in the mdBA1 mesenchyme. Reduced BMP signalling in the mdBA1 of Neogenin mutant embryos was associated with alterations in the gene regulatory network, including decreased expression of transcription factors of the Hand, Msx, and Alx families, which play key roles in the patterning and outgrowth of the mdBA1. Tissue-specific Neogenin loss-of-function studies revealed that Neogenin expression in mesodermal cells contributes to mandible formation. Thus, our results identify Neogenin as a novel regulator of craniofacial skeletal formation and demonstrates it impinges on CNCC development via a non-cell autonomous mechanism.
Collapse
Affiliation(s)
- Sabrina Quilez
- The Neuro—Montreal Neurological Institute and Hospital, 3801 University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Emilie Dumontier
- The Neuro—Montreal Neurological Institute and Hospital, 3801 University, Montréal, QC, Canada
| | - Christopher Baim
- The Neuro—Montreal Neurological Institute and Hospital, 3801 University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Joseph Kam
- The Neuro—Montreal Neurological Institute and Hospital, 3801 University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Jean-François Cloutier
- The Neuro—Montreal Neurological Institute and Hospital, 3801 University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| |
Collapse
|
7
|
Wu M, Wu S, Chen W, Li YP. The roles and regulatory mechanisms of TGF-β and BMP signaling in bone and cartilage development, homeostasis and disease. Cell Res 2024; 34:101-123. [PMID: 38267638 PMCID: PMC10837209 DOI: 10.1038/s41422-023-00918-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Transforming growth factor-βs (TGF-βs) and bone morphometric proteins (BMPs) belong to the TGF-β superfamily and perform essential functions during osteoblast and chondrocyte lineage commitment and differentiation, skeletal development, and homeostasis. TGF-βs and BMPs transduce signals through SMAD-dependent and -independent pathways; specifically, they recruit different receptor heterotetramers and R-Smad complexes, resulting in unique biological readouts. BMPs promote osteogenesis, osteoclastogenesis, and chondrogenesis at all differentiation stages, while TGF-βs play different roles in a stage-dependent manner. BMPs and TGF-β have opposite functions in articular cartilage homeostasis. Moreover, TGF-β has a specific role in maintaining the osteocyte network. The precise activation of BMP and TGF-β signaling requires regulatory machinery at multiple levels, including latency control in the matrix, extracellular antagonists, ubiquitination and phosphorylation in the cytoplasm, nucleus-cytoplasm transportation, and transcriptional co-regulation in the nuclei. This review weaves the background information with the latest advances in the signaling facilitated by TGF-βs and BMPs, and the advanced understanding of their diverse physiological functions and regulations. This review also summarizes the human diseases and mouse models associated with disordered TGF-β and BMP signaling. A more precise understanding of the BMP and TGF-β signaling could facilitate the development of bona fide clinical applications in treating bone and cartilage disorders.
Collapse
Affiliation(s)
- Mengrui Wu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Shali Wu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
8
|
Chan NT, Lee MS, Wang Y, Galipeau J, Li WJ, Xu W. CTR9 drives osteochondral lineage differentiation of human mesenchymal stem cells via epigenetic regulation of BMP-2 signaling. SCIENCE ADVANCES 2022; 8:eadc9222. [PMID: 36383652 PMCID: PMC9668309 DOI: 10.1126/sciadv.adc9222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/19/2022] [Indexed: 05/06/2023]
Abstract
Cell fate determination of human mesenchymal stem/stromal cells (hMSCs) is precisely regulated by lineage-specific transcription factors and epigenetic enzymes. We found that CTR9, a key scaffold subunit of polymerase-associated factor complex (PAFc), selectively regulates hMSC differentiation to osteoblasts and chondrocytes, but not to adipocytes. An in vivo ectopic osteogenesis assay confirmed the essentiality of CTR9 in hMSC-derived bone formation. CTR9 counteracts the activity of Enhancer Of Zeste 2 (EZH2), the epigenetic enzyme that deposits H3K27me3, in hMSCs. Accordingly, CTR9 knockdown (KD) hMSCs gain H3K27me3 mark, and the osteogenic differentiation defects of CTR9 KD hMSCs can be partially rescued by treatment with EZH2 inhibitors. Transcriptome analyses identified bone morphology protein-2 (BMP-2) as a downstream effector of CTR9. BMP-2 secretion, membrane anchorage, and the BMP-SMAD pathway were impaired in CTR9 KD MSCs, and the effects were rescued by BMP-2 supplementation. This study uncovers an epigenetic mechanism engaging the CTR9-H3K27me3-BMP-2 axis to regulate the osteochondral lineage differentiation of hMSCs.
Collapse
Affiliation(s)
- Ngai Ting Chan
- McArdle Laboratory for Cancer Research, Wisconsin Institute for Medical Research, University of Wisconsin Carbone Comprehensive Cancer Center, Madison, WI 53706, USA
| | - Ming-Song Lee
- Department of Orthopedics and Rehabilitation, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yidan Wang
- McArdle Laboratory for Cancer Research, Wisconsin Institute for Medical Research, University of Wisconsin Carbone Comprehensive Cancer Center, Madison, WI 53706, USA
| | - Jacques Galipeau
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Wan-Ju Li
- Department of Orthopedics and Rehabilitation, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Wei Xu
- McArdle Laboratory for Cancer Research, Wisconsin Institute for Medical Research, University of Wisconsin Carbone Comprehensive Cancer Center, Madison, WI 53706, USA
| |
Collapse
|
9
|
Novak R, Ahmad YA, Timaner M, Bitman-Lotan E, Oknin-Vaisman A, Horwitz R, Hartmann O, Reissland M, Buck V, Rosenfeldt M, Nikomarov D, Diefenbacher ME, Shaked Y, Orian A. RNF4~RGMb~BMP6 axis required for osteogenic differentiation and cancer cell survival. Cell Death Dis 2022; 13:820. [PMID: 36153321 PMCID: PMC9509360 DOI: 10.1038/s41419-022-05262-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 01/23/2023]
Abstract
Molecular understanding of osteogenic differentiation (OD) of human bone marrow-derived mesenchymal stem cells (hBMSCs) is important for regenerative medicine and has direct implications for cancer. We report that the RNF4 ubiquitin ligase is essential for OD of hBMSCs, and that RNF4-deficient hBMSCs remain as stalled progenitors. Remarkably, incubation of RNF4-deficient hBMSCs in conditioned media of differentiating hBMSCs restored OD. Transcriptional analysis of RNF4-dependent gene signatures identified two secreted factors that act downstream of RNF4 promoting OD: (1) BMP6 and (2) the BMP6 co-receptor, RGMb (Dragon). Indeed, knockdown of either RGMb or BMP6 in hBMSCs halted OD, while only the combined co-addition of purified RGMb and BMP6 proteins to RNF4-deficient hBMSCs fully restored OD. Moreover, we found that the RNF4-RGMb-BMP6 axis is essential for survival and tumorigenicity of osteosarcoma and therapy-resistant melanoma cells. Importantly, patient-derived sarcomas such as osteosarcoma, Ewing sarcoma, liposarcomas, and leiomyosarcomas exhibit high levels of RNF4 and BMP6, which are associated with reduced patient survival. Overall, we discovered that the RNF4~BMP6~RGMb axis is required for both OD and tumorigenesis.
Collapse
Affiliation(s)
- Rostislav Novak
- grid.6451.60000000121102151Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center Technion- IIT, Haifa, 3109 610 Israel ,Rambam Health Campus Center, Haifa, 3109610 Israel
| | - Yamen Abu Ahmad
- grid.6451.60000000121102151Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center Technion- IIT, Haifa, 3109 610 Israel
| | - Michael Timaner
- grid.6451.60000000121102151Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center Technion- IIT, Haifa, 3109 610 Israel
| | - Eliya Bitman-Lotan
- grid.6451.60000000121102151Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center Technion- IIT, Haifa, 3109 610 Israel
| | - Avital Oknin-Vaisman
- grid.6451.60000000121102151Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center Technion- IIT, Haifa, 3109 610 Israel
| | - Roi Horwitz
- grid.6451.60000000121102151Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center Technion- IIT, Haifa, 3109 610 Israel
| | - Oliver Hartmann
- grid.8379.50000 0001 1958 8658Department of Pathology, University of Würzburg, Würzburg, Germany
| | - Michaela Reissland
- grid.8379.50000 0001 1958 8658Protein Stability and Cancer Group, University of Würzburg, Department of Biochemistry and Molecular Biology, Würzburg, Germany
| | - Viktoria Buck
- grid.8379.50000 0001 1958 8658Department of Pathology, University of Würzburg, Würzburg, Germany
| | - Mathias Rosenfeldt
- grid.8379.50000 0001 1958 8658Department of Pathology, University of Würzburg, Würzburg, Germany
| | | | - Markus Elmar Diefenbacher
- grid.8379.50000 0001 1958 8658Protein Stability and Cancer Group, University of Würzburg, Department of Biochemistry and Molecular Biology, Würzburg, Germany
| | - Yuval Shaked
- grid.6451.60000000121102151Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center Technion- IIT, Haifa, 3109 610 Israel
| | - Amir Orian
- grid.6451.60000000121102151Rappaport Research Institute and Faculty of Medicine, Technion Integrative Cancer Center Technion- IIT, Haifa, 3109 610 Israel
| |
Collapse
|
10
|
Jiawei Yanghe Decoction Regulates Bone-Lipid Balance through the BMP-SMAD Signaling Pathway to Promote Osteogenic Differentiation of Bone Mesenchymal Stem Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2885419. [PMID: 35769158 PMCID: PMC9236768 DOI: 10.1155/2022/2885419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/21/2022] [Indexed: 11/17/2022]
Abstract
Background The Jiawei Yanghe decoction (JWYHD) is a traditional Chinese medicine formula for the treatment of osteoporosis, but its therapeutic mechanism has not been fully elucidated, and the therapeutic target of the intervention disease needs to be further verified. The dysfunction of bone mesenchymal stem cells (BMSCs) is considered to be an important pathogenesis of postmenopausal osteoporosis (PMOP). The purpose of this study was to explore how JWYHD regulates BMSC differentiation through the BMP-SMAD signal pathway. Methods In the in vivo study, we used an ovariectomized PMOP rat (n = 36, 2-month-old, 200 ± 20 g) model and femur micro-CT analysis to study the effect of JWYHD on bone loss in rats. By immunofluorescence, the translocation expression of BMP2, a key protein in the pathway, was detected. Serum bone metabolism was detected by an enzyme-linked immunosorbent assay (ELISA). Alkaline phosphatase (ALP) activity was detected by alkaline phosphatase staining (ALPS), osteogenesis and matrix mineralization were detected by alizarin red staining (ARS), the adipogenic ability of BMSCs was detected by oil red staining (ORS), and CFU is used to detect the ability of cells to form colonies. The expression of related proteins was detected by western blotting. Results In vivo and in vitro, the OP phenotypes of SD rats induced by ovariectomy (OVX) included impaired bone mineral density and microstructure, abnormal bone metabolism, and impaired MSC differentiation potential. JWYHD treatment reversed this trend and restored the differentiation potential of MSCs. JWYHD medicated serum and direct intervention of drugs activated the BMP-SMAD signaling pathway, promoted the osteogenic differentiation of BMSCs, and inhibited their adipogenic differentiation. Conclusions Our data identified that JWYHD is an effective alternative drug for the treatment of PMOP that functions to stimulate the differentiation of BMSCs into osteoblasts in the BMP-SMAD signaling-dependent mechanism.
Collapse
|
11
|
Copola AGL, Dos Santos ÍGD, Coutinho LL, Del-Bem LEV, de Almeida Campos-Junior PH, da Conceição IMCA, Nogueira JM, do Carmo Costa A, Silva GAB, Jorge EC. Transcriptomic characterization of the molecular mechanisms induced by RGMa during skeletal muscle nuclei accretion and hypertrophy. BMC Genomics 2022; 23:188. [PMID: 35255809 PMCID: PMC8902710 DOI: 10.1186/s12864-022-08396-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 02/15/2022] [Indexed: 12/02/2022] Open
Abstract
Background The repulsive guidance molecule a (RGMa) is a GPI-anchor axon guidance molecule first found to play important roles during neuronal development. RGMa expression patterns and signaling pathways via Neogenin and/or as BMP coreceptors indicated that this axon guidance molecule could also be working in other processes and diseases, including during myogenesis. Previous works from our research group have consistently shown that RGMa is expressed in skeletal muscle cells and that its overexpression induces both nuclei accretion and hypertrophy in muscle cell lineages. However, the cellular components and molecular mechanisms induced by RGMa during the differentiation of skeletal muscle cells are poorly understood. In this work, the global transcription expression profile of RGMa-treated C2C12 myoblasts during the differentiation stage, obtained by RNA-seq, were reported. Results RGMa treatment could modulate the expression pattern of 2,195 transcripts in C2C12 skeletal muscle, with 943 upregulated and 1,252 downregulated. Among them, RGMa interfered with the expression of several RNA types, including categories related to the regulation of RNA splicing and degradation. The data also suggested that nuclei accretion induced by RGMa could be due to their capacity to induce the expression of transcripts related to ‘adherens junsctions’ and ‘extracellular-cell adhesion’, while RGMa effects on muscle hypertrophy might be due to (i) the activation of the mTOR-Akt independent axis and (ii) the regulation of the expression of transcripts related to atrophy. Finally, RGMa induced the expression of transcripts that encode skeletal muscle structural proteins, especially from sarcolemma and also those associated with striated muscle cell differentiation. Conclusions These results provide comprehensive knowledge of skeletal muscle transcript changes and pathways in response to RGMa. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08396-w.
Collapse
Affiliation(s)
- Aline Gonçalves Lio Copola
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31.270-901, Brasil
| | - Íria Gabriela Dias Dos Santos
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31.270-901, Brasil
| | - Luiz Lehmann Coutinho
- Departamento de Zootecnia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brasil
| | - Luiz Eduardo Vieira Del-Bem
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | | | | | - Júlia Meireles Nogueira
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31.270-901, Brasil
| | - Alinne do Carmo Costa
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31.270-901, Brasil
| | - Gerluza Aparecida Borges Silva
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31.270-901, Brasil
| | - Erika Cristina Jorge
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31.270-901, Brasil.
| |
Collapse
|
12
|
Mechanical regulation of bone remodeling. Bone Res 2022; 10:16. [PMID: 35181672 PMCID: PMC8857305 DOI: 10.1038/s41413-022-00190-4] [Citation(s) in RCA: 215] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/04/2021] [Accepted: 12/13/2021] [Indexed: 12/17/2022] Open
Abstract
Bone remodeling is a lifelong process that gives rise to a mature, dynamic bone structure via a balance between bone formation by osteoblasts and resorption by osteoclasts. These opposite processes allow the accommodation of bones to dynamic mechanical forces, altering bone mass in response to changing conditions. Mechanical forces are indispensable for bone homeostasis; skeletal formation, resorption, and adaptation are dependent on mechanical signals, and loss of mechanical stimulation can therefore significantly weaken the bone structure, causing disuse osteoporosis and increasing the risk of fracture. The exact mechanisms by which the body senses and transduces mechanical forces to regulate bone remodeling have long been an active area of study among researchers and clinicians. Such research will lead to a deeper understanding of bone disorders and identify new strategies for skeletal rejuvenation. Here, we will discuss the mechanical properties, mechanosensitive cell populations, and mechanotransducive signaling pathways of the skeletal system.
Collapse
|
13
|
De la Fuente-Hernandez MA, Sarabia-Sanchez MA, Melendez-Zajgla J, Maldonado-Lagunas V. Role of lncRNAs into Mesenchymal Stromal Cell Differentiation. Am J Physiol Cell Physiol 2022; 322:C421-C460. [PMID: 35080923 DOI: 10.1152/ajpcell.00364.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Currently, findings support that 75% of the human genome is actively transcribed, but only 2% is translated into a protein, according to databases such as ENCODE (Encyclopedia of DNA Elements) [1]. The development of high-throughput sequencing technologies, computational methods for genome assembly and biological models have led to the realization of the importance of the previously unconsidered non-coding fraction of the genome. Along with this, noncoding RNAs have been shown to be epigenetic, transcriptional and post-transcriptional regulators in a large number of cellular processes [2]. Within the group of non-coding RNAs, lncRNAs represent a fascinating field of study, given the functional versatility in their mode of action on their molecular targets. In recent years, there has been an interest in learning about lncRNAs in MSC differentiation. The aim of this review is to address the signaling mechanisms where lncRNAs are involved, emphasizing their role in either stimulating or inhibiting the transition to differentiated cell. Specifically, the main types of MSC differentiation are discussed: myogenesis, osteogenesis, adipogenesis and chondrogenesis. The description of increasingly new lncRNAs reinforces their role as players in the well-studied field of MSC differentiation, allowing a step towards a better understanding of their biology and their potential application in the clinic.
Collapse
Affiliation(s)
- Marcela Angelica De la Fuente-Hernandez
- Facultad de Medicina, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Laboratorio de Epigenética, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Miguel Angel Sarabia-Sanchez
- Facultad de Medicina, Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jorge Melendez-Zajgla
- Laboratorio de Genómica Funcional del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | | |
Collapse
|
14
|
Pawlak JB, Blobe GC. TGF-β superfamily co-receptors in cancer. Dev Dyn 2022; 251:137-163. [PMID: 33797167 PMCID: PMC8484463 DOI: 10.1002/dvdy.338] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 01/03/2023] Open
Abstract
Transforming growth factor-β (TGF-β) superfamily signaling via their cognate receptors is frequently modified by TGF-β superfamily co-receptors. Signaling through SMAD-mediated pathways may be enhanced or depressed depending on the specific co-receptor and cell context. This dynamic effect on signaling is further modified by the release of many of the co-receptors from the membrane to generate soluble forms that are often antagonistic to the membrane-bound receptors. The co-receptors discussed here include TβRIII (betaglycan), endoglin, BAMBI, CD109, SCUBE proteins, neuropilins, Cripto-1, MuSK, and RGMs. Dysregulation of these co-receptors can lead to altered TGF-β superfamily signaling that contributes to the pathophysiology of many cancers through regulation of growth, metastatic potential, and the tumor microenvironment. Here we describe the role of several TGF-β superfamily co-receptors on TGF-β superfamily signaling and the impact on cellular and physiological functions with a particular focus on cancer, including a discussion on recent pharmacological advances and potential clinical applications targeting these co-receptors.
Collapse
Affiliation(s)
| | - Gerard C. Blobe
- Department of Medicine, Duke University Medical Center,Department of Pharmacology and Cancer Biology, Duke University Medical Center,Corresponding author: Gerard Blobe, B354 LSRC, Box 91004 DUMC, Durham, NC 27708, , 919-668-1352
| |
Collapse
|
15
|
Netrin-1: An Emerging Player in Inflammatory Diseases. Cytokine Growth Factor Rev 2022; 64:46-56. [DOI: 10.1016/j.cytogfr.2022.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/12/2022] [Indexed: 12/14/2022]
|
16
|
Yanagi T, Kajiya H, Fujisaki S, Maeshiba M, Yanagi-S A, Yamamoto-M N, Kakura K, Kido H, Ohno J. Three-dimensional spheroids of dedifferentiated fat cells enhance bone regeneration. Regen Ther 2021; 18:472-479. [PMID: 34853808 PMCID: PMC8604680 DOI: 10.1016/j.reth.2021.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 11/15/2022] Open
Abstract
Introduction Mesenchymal stromal/stem cells (MSCs) are multipotent, self-renewing cells that are extensively used in tissue engineering. Dedifferentiated fat (DFAT) cells are derived from adipose tissues and are similar to MSCs. Three-dimensional (3D) spheroid cultures comprising MSCs mimic the biological microenvironment more accurately than two-dimensional cultures; however, it remains unclear whether DFAT cells in 3D spheroids possess high osteogenerative ability. Furthermore, it is unclear whether DFAT cells from 3D spheroids transplanted into calvarial bone defects are as effective as those from two-dimensional (2D) monolayers in promoting bone regeneration. Methods We compared the in vitro osteogenic potential of rat DFAT cells cultured under osteogenic conditions in 3D spheroids with that in 2D monolayers. Furthermore, to elucidate the ability of 3D spheroid DFAT cells to promote bone healing, we examined the in vivo osteogenic potential of transplanting DFAT cells from 3D spheroids or 2D monolayers into a rat calvarial defect model. Results Osteoblast differentiation stimulated by bone morphogenetic protein-2 (BMP-2) or osteogenesis-inducing medium upregulated osteogenesis-related molecules in 3D spheroid DFAT cells compared with 2D monolayer DFAT cells. BMP-2 activated phosphorylation in the canonical Smad 1/5 pathways in 3D spheroid DFAT cells but phosphorylated ERK1/2 and Smad2 in 2D monolayer DFAT cells. Regardless of osteogenic stimulation, the transplantation of 3D DFAT spheroid cells into rat calvarial defects promoted new bone formation at a greater extent than that of 2D DFAT cells. Conclusions Compared with 2D DFAT cells, 3D DFAT spheroid cells promote osteoblast differentiation and new bone formation via canonical Smad 1/5 signaling pathways. These results indicate that transplantation of DFAT cells from 3D spheroids, but not 2D monolayers, accelerates bone healing.
Collapse
Affiliation(s)
- Tsukasa Yanagi
- Oral Medicine Research Center, Fukuoka Dental College, 2-15-1Tamura, Fukuoka, Japan.,Department of Oral Rehabilitation, Fukuoka Dental College, 2-15-1Tamura, Fukuoka, Japan
| | - Hiroshi Kajiya
- Oral Medicine Research Center, Fukuoka Dental College, 2-15-1Tamura, Fukuoka, Japan.,Department of Physiological Science and Molecular Biology, Fukuoka Dental College, 2-15-1Tamura, Fukuoka, Japan
| | - Seiichi Fujisaki
- Oral Medicine Research Center, Fukuoka Dental College, 2-15-1Tamura, Fukuoka, Japan.,Department of Oral Rehabilitation, Fukuoka Dental College, 2-15-1Tamura, Fukuoka, Japan
| | - Munehisa Maeshiba
- Oral Medicine Research Center, Fukuoka Dental College, 2-15-1Tamura, Fukuoka, Japan.,Department of Oral Rehabilitation, Fukuoka Dental College, 2-15-1Tamura, Fukuoka, Japan
| | - Ayako Yanagi-S
- Department of Oral Rehabilitation, Fukuoka Dental College, 2-15-1Tamura, Fukuoka, Japan
| | - Nana Yamamoto-M
- Department of Odontology, Fukuoka Dental College, 2-15-1Tamura, Fukuoka, Japan
| | - Kae Kakura
- Department of Oral Rehabilitation, Fukuoka Dental College, 2-15-1Tamura, Fukuoka, Japan
| | - Hirofumi Kido
- Department of Oral Rehabilitation, Fukuoka Dental College, 2-15-1Tamura, Fukuoka, Japan
| | - Jun Ohno
- Oral Medicine Research Center, Fukuoka Dental College, 2-15-1Tamura, Fukuoka, Japan
| |
Collapse
|
17
|
Tsutsui K, Kim HS, Yoshikata C, Kimura K, Kubota Y, Shibata Y, Tian C, Liu J, Nishiwaki K. Repulsive guidance molecule acts in axon branching in Caenorhabditis elegans. Sci Rep 2021; 11:22370. [PMID: 34785759 PMCID: PMC8595726 DOI: 10.1038/s41598-021-01853-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/03/2021] [Indexed: 11/25/2022] Open
Abstract
Repulsive guidance molecules (RGMs) are evolutionarily conserved proteins implicated in repulsive axon guidance. Here we report the function of the Caenorhabditis elegans ortholog DRAG-1 in axon branching. The axons of hermaphrodite-specific neurons (HSNs) extend dorsal branches at the region abutting the vulval muscles. The drag-1 mutants exhibited defects in HSN axon branching in addition to a small body size phenotype. DRAG-1 expression in the hypodermal cells was required for the branching of the axons. Although DRAG-1 is normally expressed in the ventral hypodermis excepting the vulval region, its ectopic expression in vulval precursor cells was sufficient to induce the branching. The C-terminal glycosylphosphatidylinositol anchor of DRAG-1 was important for its function, suggesting that DRAG-1 should be anchored to the cell surface. Genetic analyses suggested that the membrane receptor UNC-40 acts in the same pathway with DRAG-1 in HSN branching. We propose that DRAG-1 expressed in the ventral hypodermis signals via the UNC-40 receptor expressed in HSNs to elicit branching activity of HSN axons.
Collapse
Affiliation(s)
- Kaname Tsutsui
- Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda, 669-1337, Japan
| | - Hon-Song Kim
- Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda, 669-1337, Japan
| | - Chizu Yoshikata
- Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda, 669-1337, Japan
| | - Kenji Kimura
- Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda, 669-1337, Japan
| | - Yukihiko Kubota
- Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda, 669-1337, Japan
| | - Yukimasa Shibata
- Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda, 669-1337, Japan
| | - Chenxi Tian
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Kiyoji Nishiwaki
- Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda, 669-1337, Japan.
| |
Collapse
|
18
|
Huang L, Fung E, Bose S, Popp A, Böser P, Memmott J, Kutskova YA, Miller R, Tarcsa E, Klein C, Veldman GM, Mueller BK, Cui YF. Elezanumab, a clinical stage human monoclonal antibody that selectively targets repulsive guidance molecule A to promote neuroregeneration and neuroprotection in neuronal injury and demyelination models. Neurobiol Dis 2021; 159:105492. [PMID: 34478849 DOI: 10.1016/j.nbd.2021.105492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022] Open
Abstract
Repulsive guidance molecule A (RGMa) is a potent inhibitor of axonal growth and a regulator of neuronal cell death. It is up-regulated following neuronal injury and accumulates in chronic neurodegenerative diseases. Neutralizing RGMa has the potential to promote neuroregeneration and neuroprotection. Previously we reported that a rat anti-N terminal RGMa (N-RGMa) antibody r5F9 and its humanized version h5F9 (ABT-207) promote neuroprotection and neuroregeneration in preclinical neurodegenerative disease models. However, due to its cross-reactivity to RGMc/hemojuvelin, ABT-207 causes iron accumulation in vivo, which could present a safety liability. Here we report the generation and characterization of a novel RGMa-selective anti-N-RGMa antibody elezanumab, which is currently under Phase 2 clinical evaluation in multiple disease indications. Elezanumab, a human monoclonal antibody generated by in vitro PROfusion mRNA display technology, competes with ABT-207 in binding to N-RGMa but lacks RGMc cross-reactivity with no impact on iron metabolism. It neutralizes repulsive activity of soluble RGMa in vitro and blocks membrane RGMa mediated BMP signaling. In the optic nerve crush and optic neuritis models, elezanumab promotes axonal regeneration and prevents retinal nerve fiber layer degeneration. In the spinal targeted experimental autoimmune encephalomyelitis (EAE) model, elezanumab promotes axonal regeneration and remyelination, decreases inflammatory lesion area and improves functional recovery. Finally, in the mouse cuprizone model, elezanumab reduces demyelination, which is consistent with its inhibitory effect on BMP signaling. Taken together, these preclinical data demonstrate that elezanumab has neuroregenerative and neuroprotective activities without impact on iron metabolism, thus providing a compelling rationale for its clinical development in neurodegenerative diseases.
Collapse
Affiliation(s)
- Lili Huang
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA.
| | - Emma Fung
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA.
| | - Sahana Bose
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA.
| | - Andreas Popp
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061, Ludwigshafen 67061, Germany.
| | - Preethne Böser
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061, Ludwigshafen 67061, Germany.
| | - John Memmott
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA.
| | - Yuliya A Kutskova
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA.
| | - Renee Miller
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA.
| | - Edit Tarcsa
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA.
| | - Corinna Klein
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061, Ludwigshafen 67061, Germany.
| | | | - Bernhard K Mueller
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061, Ludwigshafen 67061, Germany.
| | - Yi-Fang Cui
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061, Ludwigshafen 67061, Germany.
| |
Collapse
|
19
|
Enns CA, Jue S, Zhang AS. Hepatocyte neogenin is required for hemojuvelin-mediated hepcidin expression and iron homeostasis in mice. Blood 2021; 138:486-499. [PMID: 33824974 PMCID: PMC8370464 DOI: 10.1182/blood.2020009485] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/26/2021] [Indexed: 12/21/2022] Open
Abstract
Neogenin (NEO1) is a ubiquitously expressed multifunctional transmembrane protein. It interacts with hemojuvelin (HJV), a BMP coreceptor that plays a pivotal role in hepatic hepcidin expression. Earlier studies suggest that the function of HJV relies on its interaction with NEO1. However, the role of NEO1 in iron homeostasis remains controversial because of the lack of an appropriate animal model. Here, we generated a hepatocyte-specific Neo1 knockout (Neo1fl/fl;Alb-Cre+) mouse model that circumvented the developmental and lethality issues of the global Neo1 mutant. Results show that ablation of hepatocyte Neo1 decreased hepcidin expression and caused iron overload. This iron overload did not result from altered iron utilization by erythropoiesis. Replacement studies revealed that expression of the Neo1L1046E mutant that does not interact with Hjv, was unable to correct the decreased hepcidin expression and high serum iron in Neo1fl/fl;Alb-Cre+ mice. In Hjv-/- mice, expression of HjvA183R mutant that has reduced interaction with Neo1, also displayed a blunted induction of hepcidin expression. These observations indicate that Neo1-Hjv interaction is essential for hepcidin expression. Further analyses suggest that the Hjv binding triggered the cleavage of the Neo1 cytoplasmic domain by a protease, which resulted in accumulation of truncated Neo1 on the plasma membrane. Additional studies did not support that Neo1 functions by inhibiting Hjv shedding as previously proposed. Together, our data favor a model in which Neo1 interaction with Hjv leads to accumulation of cleaved Neo1 on the plasma membrane, where Neo1 acts as a scaffold to induce the Bmp signaling and hepcidin expression.
Collapse
Affiliation(s)
- Caroline A Enns
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR
| | - Shall Jue
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR
| | - An-Sheng Zhang
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR
| |
Collapse
|
20
|
Fujisaki S, Kajiya H, Yanagi T, Maeshiba M, Kakura K, Kido H, Ohno J. Enhancement of jaw bone regeneration via ERK1/2 activation using dedifferentiated fat cells. Cytotherapy 2021; 23:608-616. [PMID: 33863640 DOI: 10.1016/j.jcyt.2021.02.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND AIMS Mesenchymal stem/stromal cells (MSCs) are multipotent and self-renewing cells that are extensively used in tissue engineering. Adipose tissues are known to be the source of two types of MSCs; namely, adipose tissue-derived MSCs (ASCs) and dedifferentiated fat (DFAT) cells. Although ASCs are sometimes transplanted for clinical cytotherapy, the effects of DFAT cell transplantation on mandibular bone healing remain unclear. METHODS The authors assessed whether DFAT cells have osteogenerative potential compared with ASCs in rats in vitro. In addition, to elucidate the ability of DFAT cells to regenerate the jaw bone, the authors examined the effects of DFAT cells on new bone formation in a mandibular defect model in (i) 30-week-old rats and (ii) ovariectomy-induced osteoporotic rats in vivo. RESULTS Osteoblast differentiation with bone morphogenetic protein 2 (BMP-2) or osteogenesis-induced medium upregulated the osteogenesis-related molecules in DFAT cells compared with those in ASCs. BMP-2 activated the phosphorylation signaling pathways of ERK1/2 and Smad2 in DFAT cells, but minor Smad1/5/9 activation was noted in ASCs. The transplantation of DFAT cells into normal or ovariectomy-induced osteoporotic rats with mandibular defects promoted new bone formation compared with that seen with ASCs. CONCLUSIONS DFAT cells promoted osteoblast differentiation and new bone formation through ERK1/2 and Smad2 signaling pathways in vitro. The transplantation of DFAT cells promoted new mandibular bone formation in vivo compared with that seen with ASCs. These results suggest that transplantation of ERK1/2-activated DFAT cells shorten the mandibular bone healing process in cytotherapy.
Collapse
Affiliation(s)
- Seiichi Fujisaki
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan; Department of Oral Rehabilitation, Fukuoka Dental College, Fukuoka, Japan
| | - Hiroshi Kajiya
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan; Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan.
| | - Tsukasa Yanagi
- Department of Oral Rehabilitation, Fukuoka Dental College, Fukuoka, Japan
| | - Munehisa Maeshiba
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan; Department of Oral Rehabilitation, Fukuoka Dental College, Fukuoka, Japan
| | - Kae Kakura
- Department of Oral Rehabilitation, Fukuoka Dental College, Fukuoka, Japan
| | - Hirofumi Kido
- Department of Oral Rehabilitation, Fukuoka Dental College, Fukuoka, Japan
| | - Jun Ohno
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| |
Collapse
|
21
|
Netrin-1 functions as a suppressor of bone morphogenetic protein (BMP) signaling. Sci Rep 2021; 11:8585. [PMID: 33883596 PMCID: PMC8060280 DOI: 10.1038/s41598-021-87949-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 04/05/2021] [Indexed: 12/13/2022] Open
Abstract
Netrin-1 is a secreted protein that is well known for its involvement in axonal guidance during embryonic development and as an enhancer of cancer cell metastasis. Despite extensive efforts, the molecular mechanisms behind many of the physiological functions of netrin-1 have remained elusive. Here, we show that netrin-1 functions as a suppressor of bone morphogenetic protein (BMP) signaling in various cellular systems, including a mutually inhibitory interaction with the BMP-promoting function of leucine-rich repeats and immunoglobulin-like domains (LRIG) proteins. The BMP inhibitory function of netrin-1 in mouse embryonic fibroblasts was dependent on the netrin receptor neogenin, with the expression level regulated by both netrin-1 and LRIG proteins. Our results reveal a previously unrecognized function of netrin-1 that may help to explain several of the developmental, physiological, and cancer-promoting functions of netrins at the signal transduction level.
Collapse
|
22
|
Robinson RA, Griffiths SC, van de Haar LL, Malinauskas T, van Battum EY, Zelina P, Schwab RA, Karia D, Malinauskaite L, Brignani S, van den Munkhof MH, Düdükcü Ö, De Ruiter AA, Van den Heuvel DMA, Bishop B, Elegheert J, Aricescu AR, Pasterkamp RJ, Siebold C. Simultaneous binding of Guidance Cues NET1 and RGM blocks extracellular NEO1 signaling. Cell 2021; 184:2103-2120.e31. [PMID: 33740419 PMCID: PMC8063088 DOI: 10.1016/j.cell.2021.02.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 01/15/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
During cell migration or differentiation, cell surface receptors are simultaneously exposed to different ligands. However, it is often unclear how these extracellular signals are integrated. Neogenin (NEO1) acts as an attractive guidance receptor when the Netrin-1 (NET1) ligand binds, but it mediates repulsion via repulsive guidance molecule (RGM) ligands. Here, we show that signal integration occurs through the formation of a ternary NEO1-NET1-RGM complex, which triggers reciprocal silencing of downstream signaling. Our NEO1-NET1-RGM structures reveal a "trimer-of-trimers" super-assembly, which exists in the cell membrane. Super-assembly formation results in inhibition of RGMA-NEO1-mediated growth cone collapse and RGMA- or NET1-NEO1-mediated neuron migration, by preventing formation of signaling-compatible RGM-NEO1 complexes and NET1-induced NEO1 ectodomain clustering. These results illustrate how simultaneous binding of ligands with opposing functions, to a single receptor, does not lead to competition for binding, but to formation of a super-complex that diminishes their functional outputs.
Collapse
Affiliation(s)
- Ross A Robinson
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Samuel C Griffiths
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Lieke L van de Haar
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Tomas Malinauskas
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Eljo Y van Battum
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Pavol Zelina
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Rebekka A Schwab
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Dimple Karia
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Lina Malinauskaite
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Sara Brignani
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Marleen H van den Munkhof
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Özge Düdükcü
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Anna A De Ruiter
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Dianne M A Van den Heuvel
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Benjamin Bishop
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Jonathan Elegheert
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - A Radu Aricescu
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK; MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands.
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| |
Collapse
|
23
|
Hippocampal astrocytic neogenin regulating glutamate uptake, a critical pathway for preventing epileptic response. Proc Natl Acad Sci U S A 2021; 118:2022921118. [PMID: 33850017 DOI: 10.1073/pnas.2022921118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epilepsy, a common neurological disorder, is featured with recurrent seizures. Its underlying pathological mechanisms remain elusive. Here, we provide evidence for loss of neogenin (NEO1), a coreceptor for multiple ligands, including netrins and bone morphological proteins, in the development of epilepsy. NEO1 is reduced in hippocampi from patients with epilepsy based on transcriptome and proteomic analyses. Neo1 knocking out (KO) in mouse brains displays elevated epileptiform spikes and seizure susceptibility. These phenotypes were undetectable in mice, with selectively depleted NEO1 in excitatory (NeuroD6-Cre+) or inhibitory (parvalbumin+) neurons, but present in mice with specific hippocampal astrocytic Neo1 KO. Additionally, neurons in hippocampal dentate gyrus, a vulnerable region in epilepsy, in mice with astrocyte-specific Neo1 KO show reductions in inhibitory synaptic vesicles and the frequency of miniature inhibitory postsynaptic current(mIPSC), but increase of the duration of miniature excitatory postsynaptic current and tonic NMDA receptor currents, suggesting impairments in both GABAergic transmission and extracellular glutamate clearance. Further proteomic and cell biological analyses of cell-surface proteins identified GLAST, a glutamate-aspartate transporter that is marked reduced in Neo1 KO astrocytes and the hippocampus. NEO1 interacts with GLAST and promotes GLAST surface distribution in astrocytes. Expressing NEO1 or GLAST in Neo1 KO astrocytes in the hippocampus abolishes the epileptic phenotype. Taken together, these results uncover an unrecognized pathway of NEO1-GLAST in hippocampal GFAP+ astrocytes, which is critical for GLAST surface distribution and function, and GABAergic transmission, unveiling NEO1 as a valuable therapeutic target to protect the brain from epilepsy.
Collapse
|
24
|
Ren X, Yao LL, Pan JX, Zhang JS, Mei L, Wang YG, Xiong WC. Linking cortical astrocytic neogenin deficiency to the development of Moyamoya disease-like vasculopathy. Neurobiol Dis 2021; 154:105339. [PMID: 33775822 DOI: 10.1016/j.nbd.2021.105339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/02/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Moyamoya-like vasculopathy, the "puff of smoke"-like small vessels in the brain, is initially identified in patients with Moyamoya disease (MMD), a rare cerebrovascular disease, and later found in patients with various types of neurological conditions, including Down syndrome, Stroke, and vascular dementia. It is thus of interest to understand how this vasculopathy is developed. Here, we provided evidence for cortical astrocytic neogenin (NEO1) deficiency to be a risk factor for its development. NEO1, a member of deleted in colorectal cancer (DCC) family netrin receptors, was reduced in brain samples of patients with MMD. Astrocytic Neo1-loss resulted in an increase of small blood vessels (BVs) selectively in the cortex. These BVs were dysfunctional, with leaky blood-brain barrier (BBB), thin arteries, and accelerated hyperplasia in veins and capillaries, resembled to the features of moyamoya-like vasculopathy. Additionally, we found that both MMD patient and Neo1 mutant mice exhibited altered gene expression in their cortex in proteins critical for not only angiogenesis [e.g., an increase in vascular endothelial growth factor (VEGFa)], but also axon guidance (e.g., netrin family proteins) and inflammation. In aggregates, these results suggest a critical role of astrocytic NEO1-loss in the development of Moyamoya-like vasculopathy, providing a mouse model for investigating mechanisms of Moyamoya-like vasculopathy.
Collapse
Affiliation(s)
- Xiao Ren
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China; Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Ling-Ling Yao
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Jin-Xiu Pan
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Jun-Shi Zhang
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Lin Mei
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Yong-Gang Wang
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China; Beijing Tiantan Hospital, Capital Medical University, No.119, S 4th Ring W Rd, Fengtai District, Beijing 100070, China.
| | - Wen-Cheng Xiong
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
25
|
do Carmo Costa A, Copola AGL, Carvalho E Souza C, Nogueira JM, Silva GAB, Jorge EC. RGMa can induce skeletal muscle cell hyperplasia via association with neogenin signalling pathway. In Vitro Cell Dev Biol Anim 2021; 57:415-427. [PMID: 33748906 DOI: 10.1007/s11626-021-00555-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/15/2021] [Indexed: 11/29/2022]
Abstract
Although originally discovered inducing important biological functions in the nervous system, repulsive guidance molecule a (RGMa) has now been identified as a player in many other processes and diseases, including in myogenesis. RGMa is known to be expressed in skeletal muscle cells, from somites to the adult. Functional in vitro studies have revealed that RGMa overexpression could promote skeletal muscle cell hypertrophy and hyperplasia, as higher efficiency in cell fusion was observed. Here, we extend the potential role of RGMa during C2C12 cell differentiation in vitro. Our results showed that RGMa administrated as a recombinant protein during late stages of C2C12 myogenic differentiation could induce myoblast cell fusion and the downregulation of different myogenic markers, while its administration at early stages induced the expression of myogenic markers with no detectable morphological effects. We also found that RGMa effects on skeletal muscle hyperplasia are performed via neogenin receptor, possibly as part of a complex with other proteins. Additionally, we observed that RGMa-neogenin is not playing a role as an inhibitor of the BMP signalling in skeletal muscle cells. This work contributes to placing RGMa as a component of the mechanisms that determine skeletal cell fusion via neogenin receptor.
Collapse
Affiliation(s)
- Alinne do Carmo Costa
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Av Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31.270-901, Brazil
| | - Aline Gonçalves Lio Copola
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Av Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31.270-901, Brazil
| | - Clara Carvalho E Souza
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Av Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31.270-901, Brazil
| | - Júlia Meireles Nogueira
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Av Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31.270-901, Brazil
| | - Gerluza Aparecida Borges Silva
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Av Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31.270-901, Brazil
| | - Erika Cristina Jorge
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Av Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31.270-901, Brazil.
| |
Collapse
|
26
|
Renders S, Svendsen AF, Panten J, Rama N, Maryanovich M, Sommerkamp P, Ladel L, Redavid AR, Gibert B, Lazare S, Ducarouge B, Schönberger K, Narr A, Tourbez M, Dethmers-Ausema B, Zwart E, Hotz-Wagenblatt A, Zhang D, Korn C, Zeisberger P, Przybylla A, Sohn M, Mendez-Ferrer S, Heikenwälder M, Brune M, Klimmeck D, Bystrykh L, Frenette PS, Mehlen P, de Haan G, Cabezas-Wallscheid N, Trumpp A. Niche derived netrin-1 regulates hematopoietic stem cell dormancy via its receptor neogenin-1. Nat Commun 2021; 12:608. [PMID: 33504783 PMCID: PMC7840807 DOI: 10.1038/s41467-020-20801-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/14/2020] [Indexed: 01/30/2023] Open
Abstract
Haematopoietic stem cells (HSCs) are characterized by their self-renewal potential associated to dormancy. Here we identify the cell surface receptor neogenin-1 as specifically expressed in dormant HSCs. Loss of neogenin-1 initially leads to increased HSC expansion but subsequently to loss of self-renewal and premature exhaustion in vivo. Its ligand netrin-1 induces Egr1 expression and maintains quiescence and function of cultured HSCs in a Neo1 dependent manner. Produced by arteriolar endothelial and periarteriolar stromal cells, conditional netrin-1 deletion in the bone marrow niche reduces HSC numbers, quiescence and self-renewal, while overexpression increases quiescence in vivo. Ageing associated bone marrow remodelling leads to the decline of netrin-1 expression in niches and a compensatory but reversible upregulation of neogenin-1 on HSCs. Our study suggests that niche produced netrin-1 preserves HSC quiescence and self-renewal via neogenin-1 function. Decline of netrin-1 production during ageing leads to the gradual decrease of Neo1 mediated HSC self-renewal.
Collapse
Affiliation(s)
- Simon Renders
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Arthur Flohr Svendsen
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jasper Panten
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Nicolas Rama
- Apoptosis, Cancer and Development Laboratory, Equipe labellisée "La Ligue," LabEx DEVweCAN, Institut Convergence Rabelais, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon1, Centre Léon Bérard, 69008, Lyon, France
| | - Maria Maryanovich
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Pia Sommerkamp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Luisa Ladel
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany
| | - Anna Rita Redavid
- Apoptosis, Cancer and Development Laboratory, Equipe labellisée "La Ligue," LabEx DEVweCAN, Institut Convergence Rabelais, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon1, Centre Léon Bérard, 69008, Lyon, France
| | - Benjamin Gibert
- Apoptosis, Cancer and Development Laboratory, Equipe labellisée "La Ligue," LabEx DEVweCAN, Institut Convergence Rabelais, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon1, Centre Léon Bérard, 69008, Lyon, France
| | - Seka Lazare
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Benjamin Ducarouge
- Apoptosis, Cancer and Development Laboratory, Equipe labellisée "La Ligue," LabEx DEVweCAN, Institut Convergence Rabelais, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon1, Centre Léon Bérard, 69008, Lyon, France
| | | | - Andreas Narr
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Manon Tourbez
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bertien Dethmers-Ausema
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Erik Zwart
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Agnes Hotz-Wagenblatt
- Core Facility Omics IT and Data Management, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dachuan Zhang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Claudia Korn
- Wellcome Trust/MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AH, UK
- Department of Haematology, University of Cambridge, Cambridge, CB2 0AH, UK
- NHS Blood and Transplant, Cambridge, CB2 0PT, UK
| | - Petra Zeisberger
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany
| | - Adriana Przybylla
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany
| | - Markus Sohn
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany
| | - Simon Mendez-Ferrer
- Wellcome Trust/MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AH, UK
- Department of Haematology, University of Cambridge, Cambridge, CB2 0AH, UK
- NHS Blood and Transplant, Cambridge, CB2 0PT, UK
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Maik Brune
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany
| | - Daniel Klimmeck
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany
| | - Leonid Bystrykh
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory, Equipe labellisée "La Ligue," LabEx DEVweCAN, Institut Convergence Rabelais, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon1, Centre Léon Bérard, 69008, Lyon, France
| | - Gerald de Haan
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany.
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany.
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany.
| |
Collapse
|
27
|
Kong S, Zhou Z, Zhou T, Zhao J, Chen L, Lin H, Pu F, Ke Q, Bai H, Xu P. Genome-Wide Association Study of Body Shape-Related Traits in Large Yellow Croaker (Larimichthys crocea). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:631-643. [PMID: 32666363 DOI: 10.1007/s10126-020-09983-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
Large yellow croaker (Larimichthys crocea) is one of the most important cultured marine fish on the southeast coast of China. Its body shape is important for the aquaculture industry since it affects the behavior such as swimming, ingesting, and evading, as well as customer preference. Due to the greater consumer demand of small head, slender body large yellow croaker, selecting and breeding of slender individuals with the assistance of genetic markers will benefit the industry quickly. In this study, several traits were employed to represent body shape, including body depth/body length (BD/BL), body thickness/body length (BT/BL), caudal peduncle depth/caudal peduncle length (CPDLR), tail length/body length (TL/BL), and body area/head area (BA/HA). Genome-wide association study was conducted with a panmictic population of 280 individuals to identify SNP and genes potentially associated with body shape. A set of 20 SNPs on 12 chromosomes were identified to be significantly associated with body shape-related traits. Besides, 5 SNPs were identified to be suggestive associated with CPDLR and BT/BL. Surrounding these SNPs, we found some body shape-related candidate genes, including fabp1, acrv1, bcor, mstn, bambi, and neo1, which involved in lipid metabolism, TGF-β signaling, and BMP pathway and other important regulatory pathways. These results will be useful for the understanding of the genetic basis of body shape formation and helpful for body shape controlling of large yellow croaker by using marker-assisted selection.
Collapse
Affiliation(s)
- Shengnan Kong
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352103, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Zhixiong Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Tao Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Ji Zhao
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352103, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Lin Chen
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Huanling Lin
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Fei Pu
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352103, China
| | - Qiaozhen Ke
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352103, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Huaqiang Bai
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Peng Xu
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352103, China.
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
28
|
Hart CG, Karimi-Abdolrezaee S. Bone morphogenetic proteins: New insights into their roles and mechanisms in CNS development, pathology and repair. Exp Neurol 2020; 334:113455. [PMID: 32877654 DOI: 10.1016/j.expneurol.2020.113455] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023]
Abstract
Bone morphogenetic proteins (BMPs) are a highly conserved and diverse family of proteins that play essential roles in various stages of development including the formation and patterning of the central nervous system (CNS). Bioavailability and function of BMPs are regulated by input from a plethora of transcription factors and signaling pathways. Intriguingly, recent literature has uncovered novel roles for BMPs in regulating homeostatic and pathological responses in the adult CNS. Basal levels of BMP ligands and receptors are widely expressed in the adult brain and spinal cord with differential expression patterns across CNS regions, cell types and subcellular locations. Recent evidence indicates that several BMP isoforms are transiently or chronically upregulated in the aged or pathological CNS. Genetic knockout and pharmacological studies have elucidated that BMPs regulate several aspects of CNS injury and repair including cell survival and differentiation, reactive astrogliosis and glial scar formation, axon regeneration, and myelin preservation and repair. Several BMP isoforms can be upregulated in the injured or diseased CNS simultaneously yet exert complementary or opposing effects on the endogenous cell responses after injury. Emerging studies also show that dysregulation of BMPs is associated with various CNS pathologies. Interestingly, modulation of BMPs can lead to beneficial or detrimental effects on CNS injury and repair mechanisms in a ligand, temporally or spatially specific manner, which reflect the complexity of BMP signaling. Given the significance of BMPs in neurodevelopment, a better understanding of their role in the context of injury may provide new therapeutic targets for the pathologic CNS. This review will provide a timely overview on the foundation and recent advancements in knowledge regarding the role and mechanisms of BMP signaling in the developing and adult CNS, and their implications in pathological responses and repair processes after injury or diseases.
Collapse
Affiliation(s)
- Christopher G Hart
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
29
|
Qian H, Lei T, Ye Z, Hu Y, Lei P. From the Performance to the Essence: The Biological Mechanisms of How Tantalum Contributes to Osteogenesis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5162524. [PMID: 32802853 PMCID: PMC7403943 DOI: 10.1155/2020/5162524] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022]
Abstract
Despite the brilliant bioactive performance of tantalum as an orthopedic biomaterial verified through laboratory researches and clinical practice in the past decades, scarce evidences about the essential mechanisms of how tantalum contributes to osteogenesis were systematically discussed. Up to now, a few studies have uncovered preliminarily the biological mechanism of tantalum in osteogenic differentiation and osteogenesis; it is of great necessity to map out the panorama through which tantalum contributes to new bone formation. This minireview summarized current advances to demonstrate the probable signaling pathways and underlying molecular cascades through which tantalum orchestrates osteogenesis, which mainly contain Wnt/β-catenin signaling pathway, BMP signaling pathway, TGF-β signaling pathway, and integrin signaling pathway. Limits of subsistent studies and further work are also discussed, providing a novel vision for the study and application of tantalum.
Collapse
Affiliation(s)
- Hu Qian
- Department of Orthopedics, Xiangya Hospital of Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China
- Xiangya School of Medicine, Central South University, 172 Tongzipo Road, Changsha, 410008 Hunan, China
| | - Ting Lei
- Department of Orthopedics, Xiangya Hospital of Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Zhimin Ye
- Xiangya School of Medicine, Central South University, 172 Tongzipo Road, Changsha, 410008 Hunan, China
| | - Yihe Hu
- Department of Orthopedics, Xiangya Hospital of Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Pengfei Lei
- Department of Orthopedics, Xiangya Hospital of Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China
| |
Collapse
|
30
|
Malinauskas T, Peer TV, Bishop B, Mueller TD, Siebold C. Repulsive guidance molecules lock growth differentiation factor 5 in an inhibitory complex. Proc Natl Acad Sci U S A 2020; 117:15620-15631. [PMID: 32576689 PMCID: PMC7354924 DOI: 10.1073/pnas.2000561117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Repulsive guidance molecules (RGMs) are cell surface proteins that regulate the development and homeostasis of many tissues and organs, including the nervous, skeletal, and immune systems. They control fundamental biological processes, such as migration and differentiation by direct interaction with the Neogenin (NEO1) receptor and function as coreceptors for the bone morphogenetic protein (BMP)/growth differentiation factor (GDF) family. We determined crystal structures of all three human RGM family members in complex with GDF5, as well as the ternary NEO1-RGMB-GDF5 assembly. Surprisingly, we show that all three RGMs inhibit GDF5 signaling, which is in stark contrast to RGM-mediated enhancement of signaling observed for other BMPs, like BMP2. Despite their opposite effect on GDF5 signaling, RGMs occupy the BMP type 1 receptor binding site similar to the observed interactions in RGM-BMP2 complexes. In the NEO1-RGMB-GDF5 complex, RGMB physically bridges NEO1 and GDF5, suggesting cross-talk between the GDF5 and NEO1 signaling pathways. Our crystal structures, combined with structure-guided mutagenesis of RGMs and BMP ligands, binding studies, and cellular assays suggest that RGMs inhibit GDF5 signaling by competing with GDF5 type 1 receptors. While our crystal structure analysis and in vitro binding data initially pointed towards a simple competition mechanism between RGMs and type 1 receptors as a possible basis for RGM-mediated GDF5 inhibition, further experiments utilizing BMP2-mimicking GDF5 variants clearly indicate a more complex mechanism that explains how RGMs can act as a functionality-changing switch for two structurally and biochemically similar signaling molecules.
Collapse
Affiliation(s)
- Tomas Malinauskas
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN Oxford, United Kingdom;
| | - Tina V Peer
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute, University of Würzburg, 97082 Würzburg, Germany
| | - Benjamin Bishop
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN Oxford, United Kingdom
| | - Thomas D Mueller
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute, University of Würzburg, 97082 Würzburg, Germany
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN Oxford, United Kingdom;
| |
Collapse
|
31
|
Lin S, Liu W, Chen CL, Sun D, Hu JX, Li L, Ye J, Mei L, Xiong WC. Neogenin-loss in neural crest cells results in persistent hyperplastic primary vitreous formation. J Mol Cell Biol 2020; 12:17-31. [PMID: 31336386 PMCID: PMC7053014 DOI: 10.1093/jmcb/mjz076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/07/2019] [Accepted: 06/12/2019] [Indexed: 01/25/2023] Open
Abstract
Neogenin is a transmembrane receptor critical for multiple cellular processes, including neurogenesis, astrogliogenesis, endochondral bone formation, and iron homeostasis. Here we present evidence that loss of neogenin contributes to pathogenesis of persistent hyperplastic primary vitreous (PHPV) formation, a genetic disorder accounting for ~ 5% of blindness in the USA. Selective loss of neogenin in neural crest cells (as observed in Wnt1-Cre; Neof/f mice), but not neural stem cells (as observed in GFAP-Cre and Nestin-Cre; Neof/f mice), resulted in a dysregulation of neural crest cell migration or delamination, exhibiting features of PHPV-like pathology (e.g. elevated retrolental mass), unclosed retinal fissure, and microphthalmia. These results demonstrate an unrecognized function of neogenin in preventing PHPV pathogenesis, implicating neogenin regulation of neural crest cell delamination/migration and retinal fissure formation as potential underlying mechanisms of PHPV.
Collapse
Affiliation(s)
- Sen Lin
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Augusta University, Augusta, GA 30912, USA
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Chongqing, China
| | - Wei Liu
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Augusta University, Augusta, GA 30912, USA
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Chongqing, China
| | - Chun-Lin Chen
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Augusta University, Augusta, GA 30912, USA
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Chongqing, China
| | - Dong Sun
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Augusta University, Augusta, GA 30912, USA
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jin-Xia Hu
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Augusta University, Augusta, GA 30912, USA
| | - Lei Li
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Augusta University, Augusta, GA 30912, USA
| | - Jian Ye
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Chongqing, China
| | - Lin Mei
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Augusta University, Augusta, GA 30912, USA
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Wen-Cheng Xiong
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Augusta University, Augusta, GA 30912, USA
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
32
|
Toyoda E, Sato M, Takahashi T, Maehara M, Okada E, Wasai S, Iijima H, Nonaka K, Kawaguchi Y, Watanabe M. Transcriptomic and Proteomic Analyses Reveal the Potential Mode of Action of Chondrocyte Sheets in Hyaline Cartilage Regeneration. Int J Mol Sci 2019; 21:ijms21010149. [PMID: 31878307 PMCID: PMC6981399 DOI: 10.3390/ijms21010149] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/15/2019] [Accepted: 12/22/2019] [Indexed: 12/20/2022] Open
Abstract
Chondrocyte sheet transplantation is a novel and promising approach to treating patients who have cartilage defects associated with osteoarthritis. Hyaline cartilage regeneration by autologous chondrocyte sheets has already been demonstrated in clinical research. In this study, the efficacy of polydactyly-derived chondrocyte sheets (PD sheets) as an allogeneic alternative to standard chondrocyte sheets was examined using an orthotopic xenogeneic transplantation model. In addition, the expression of genes and the secreted proteins in the PD sheets was analyzed using a microarray and a DNA aptamer array. The efficacy of PD sheets with respect to cartilage defects was assessed using histological scores, after which the expressions of genes and proteins exhibiting a correlation to efficacy were identified. Enrichment analysis of efficacy-correlated genes and proteins showed that they were associated with extracellular matrices, skeletal development, and angiogenesis. Eight genes (ESM1, GREM1, SERPINA3, DKK1, MIA, NTN4, FABP3, and PDGFA) exhibited a positive correlation with the efficacy of PD sheets, and three genes (RARRES2, APOE, and PGF) showed a negative correlation for both transcriptomic and proteomic analyses. Among these, MIA, DKK1, and GREM1 involved in skeletal development pathways and ESM1 involved in the angiogenesis pathway exhibited a correlation between the amount of secretion and efficacy. These results suggest that these secreted factors may prove useful for predicting PD sheet efficacy and may therefore contribute to hyaline cartilage regeneration via PD sheets.
Collapse
Affiliation(s)
- Eriko Toyoda
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Masato Sato
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
- Correspondence: ; Tel.: +81-463-93-1121; Fax: +81-463-96-4404
| | - Takumi Takahashi
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Miki Maehara
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Eri Okada
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Shiho Wasai
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Hiroshi Iijima
- DNA Chip Research Inc., 1-15-1, Minato-ku, Tokyo 105-0022, Japan
| | - Ken Nonaka
- DNA Chip Research Inc., 1-15-1, Minato-ku, Tokyo 105-0022, Japan
| | - Yuka Kawaguchi
- CellSeed Inc., 2-5-10, Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Masahiko Watanabe
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| |
Collapse
|
33
|
Bone secreted factors induce cellular quiescence in prostate cancer cells. Sci Rep 2019; 9:18635. [PMID: 31819067 PMCID: PMC6901558 DOI: 10.1038/s41598-019-54566-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/12/2019] [Indexed: 12/20/2022] Open
Abstract
Disseminated tumor cells (DTCs) undergo a dormant state in the distant metastatic site(s) before becoming overt metastatic diseases. In prostate cancer (PCa), bone metastasis can occur years after prostatectomy, suggesting that bone may provide dormancy-inducing factors. To search for these factors, we prepared conditioned media (CM) from calvariae. Using live-cell imaging, we found that Calvarial-CM treatment increased cellular quiescence in C4-2B4 PCa cells. Mass spectrometry analysis of Calvarial-CM identified 132 secreted factors. Western blot and ELISA analyses confirmed the presence of several factors, including DKK3, BMP1, neogenin and vasorin in the Calvarial-CM. qRT-PCR analysis of total calvariae versus isolated osteoblasts showed that DKK3, BMP1, vasorin and neogenin are mainly expressed by osteoblasts, while MIA, LECT1, NGAL and PEDF are expressed by other calvarial cells. Recombinant human DKK3, BMP1, vasorin, neogenin, MIA and NGAL treatment increased cellular quiescence in both C4-2b and C4-2B4 PCa cells. Mechanistically, DKK3, vasorin and neogenin, but not BMP1, increased dormancy through activating the p38MAPK signaling pathway. Consistently, DKK3, vasorin and neogenin failed to induce dormancy in cells expressing dominant-negative p38αMAPK while BMP1 remained active, suggesting that BMP1 uses an alternative dormancy signaling pathway. Thus, bone secretes multiple dormancy-inducing factors that employ distinct signaling pathways to induce DTC dormancy in bone.
Collapse
|
34
|
Rgma-Induced Neo1 Proteolysis Promotes Neural Tube Morphogenesis. J Neurosci 2019; 39:7465-7484. [PMID: 31399534 DOI: 10.1523/jneurosci.3262-18.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 07/01/2019] [Accepted: 07/31/2019] [Indexed: 01/02/2023] Open
Abstract
Neuroepithelial cell (NEC) elongation is one of several key cell behaviors that mediate the tissue-level morphogenetic movements that shape the neural tube (NT), the precursor of the brain and spinal cord. However, the upstream signals that promote NEC elongation have been difficult to tease apart from those regulating apico-basal polarity and hingepoint formation, due to their confounding interdependence. The Repulsive Guidance Molecule a (Rgma)/Neogenin 1 (Neo1) signaling pathway plays a conserved role in NT formation (neurulation) and is reported to regulate both NEC elongation and apico-basal polarity, through signal transduction events that have not been identified. We examine here the role of Rgma/Neo1 signaling in zebrafish (sex unknown), an organism that does not use hingepoints to shape its hindbrain, thereby enabling a direct assessment of the role of this pathway in NEC elongation. We confirm that Rgma/Neo1 signaling is required for microtubule-mediated NEC elongation, and demonstrate via cell transplantation that Neo1 functions cell autonomously to promote elongation. However, in contrast to previous findings, our data do not support a role for this pathway in establishing apical junctional complexes. Last, we provide evidence that Rgma promotes Neo1 glycosylation and intramembrane proteolysis, resulting in the production of a transient, nuclear intracellular fragment (NeoICD). Partial rescue of Neo1a and Rgma knockdown embryos by overexpressing neoICD suggests that this proteolytic cleavage is essential for neurulation. Based on these observations, we propose that RGMA-induced NEO1 proteolysis orchestrates NT morphogenesis by promoting NEC elongation independently of the establishment of apical junctional complexes.SIGNIFICANCE STATEMENT The neural tube, the CNS precursor, is shaped during neurulation. Neural tube defects occur frequently, yet underlying genetic risk factors are poorly understood. Neuroepithelial cell (NEC) elongation is essential for proper completion of neurulation. Thus, connecting NEC elongation with the molecular pathways that control this process is expected to reveal novel neural tube defect risk factors and increase our understanding of NT development. Effectors of cell elongation include microtubules and microtubule-associated proteins; however, upstream regulators remain controversial due to the confounding interdependence of cell elongation and establishment of apico-basal polarity. Here, we reveal that Rgma-Neo1 signaling controls NEC elongation independently of the establishment of apical junctional complexes and identify Rgma-induced Neo1 proteolytic cleavage as a key upstream signaling event.
Collapse
|
35
|
Yu S, Leung KM, Kim HY, Umetsu SE, Xiao Y, Albacker LA, Lee HJ, Umetsu DT, Freeman GJ, DeKruyff RH. Blockade of RGMb inhibits allergen-induced airways disease. J Allergy Clin Immunol 2019; 144:94-108.e11. [PMID: 30703386 PMCID: PMC8088837 DOI: 10.1016/j.jaci.2018.12.1022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 11/20/2018] [Accepted: 12/07/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Allergic asthma causes morbidity in many subjects, and novel precision-directed treatments would be valuable. OBJECTIVE We sought to examine the role of a novel innate molecule, repulsive guidance molecule b (RGMb), in murine models of allergic asthma. METHODS In models of allergic asthma using ovalbumin or cockroach allergen, mice were treated with anti-RGMb or control mAb and examined for airway inflammation and airway hyperreactivity (AHR), a cardinal feature of asthma. The mechanisms by which RGMb causes airways disease were also examined. RESULTS We found that blockade of RGMb by treatment with anti-RGMb mAb effectively blocked the development of airway inflammation and AHR. Importantly, blockade of RGMb completely blocked the development of airway inflammation and AHR, even if treatment occurred only during the challenge (effector) phase. IL-25 played an important role in these models of asthma because IL-25 receptor-deficient mice did not develop disease after sensitization and challenge with allergen. RGMb was expressed primarily by innate cells in the lungs, including bronchial epithelial cells (known producers of IL-25), activated eosinophils, and interstitial macrophages, which in the inflamed lung expressed the IL-25 receptor and produced IL-5 and IL-13. We also found that neogenin, the canonical receptor for RGMb, was expressed by interstitial macrophages and bronchial epithelial cells in the inflamed lung, suggesting that an innate RGMb-neogenin axis might modulate allergic asthma. CONCLUSIONS These results demonstrate an important role for a novel innate pathway in regulating type 2 inflammation in patients with allergic asthma involving RGMb and RGMb-expressing cells, such as interstitial macrophages and bronchial epithelial cells. Moreover, targeting this previously unappreciated innate pathway might provide an important treatment option for allergic asthma.
Collapse
Affiliation(s)
- Sanhong Yu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, Mass; Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Krystle M Leung
- Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Hye-Young Kim
- Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Sarah E Umetsu
- Department of Pathology, University of California, San Francisco, Calif
| | - Yanping Xiao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, Mass
| | - Lee A Albacker
- Boston Children's Hospital, Harvard Medical School, Boston, Mass; Immunology Program, Harvard Medical School, Boston, Mass
| | - Hyun-Jun Lee
- Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Dale T Umetsu
- Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, Mass
| | - Rosemarie H DeKruyff
- Boston Children's Hospital, Harvard Medical School, Boston, Mass; Sean N Parker Center for Allergy and Asthma Research, Department of Medicine, Stanford University, Stanford, Calif.
| |
Collapse
|
36
|
Wang B, Pan JX, Yu H, Xiong L, Zhao K, Xiong S, Guo JP, Lin S, Sun D, Zhao L, Guo H, Mei L, Xiong WC. Lack of Myosin X Enhances Osteoclastogenesis and Increases Cell Surface Unc5b in Osteoclast-Lineage Cells. J Bone Miner Res 2019; 34:939-954. [PMID: 30645777 PMCID: PMC7105956 DOI: 10.1002/jbmr.3667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/23/2018] [Accepted: 01/05/2019] [Indexed: 01/08/2023]
Abstract
Normal bone mass is maintained by balanced bone formation and resorption. Myosin X (Myo10), an unconventional "myosin tail homology 4-band 4.1, ezrin, radixin, moesin" (MyTH4-FERM) domain containing myosin, is implicated in regulating osteoclast (OC) adhesion, podosome positioning, and differentiation in vitro. However, evidence is lacking for Myo10 in vivo function. Here we show that mice with Myo10 loss of function, Myo10m/m , exhibit osteoporotic deficits, which are likely due to the increased OC genesis and bone resorption because bone formation is unchanged. Similar deficits are detected in OC-selective Myo10 conditional knockout (cko) mice, indicating a cell autonomous function of Myo10. Further mechanistic studies suggest that Unc-5 Netrin receptor B (Unc5b) protein levels, in particular its cell surface level, are higher in the mutant OCs, but lower in RAW264.7 cells or HEK293 cells expressing Myo10. Suppressing Unc5b expression in bone marrow macrophages (BMMs) from Myo10m/m mice by infection with lentivirus of Unc5b shRNA markedly impaired RANKL-induced OC genesis. Netrin-1, a ligand of Unc5b, increased RANKL-induced OC formation in BMMs from both wild-type and Myo10m/m mice. Taken together, these results suggest that Myo10 plays a negative role in OC formation, likely by inhibiting Unc5b cell-surface targeting, and suppressing Netrin-1 promoted OC genesis. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Bo Wang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.,Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jin-Xiu Pan
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Huali Yu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.,Key laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin, China
| | - Lei Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Kai Zhao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Shan Xiong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jun-Peng Guo
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Sen Lin
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Dong Sun
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Lu Zhao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.,Key laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin, China
| | - Haohan Guo
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
37
|
Lu Y, Li Y, Wang Z, Xie S, Wang Q, Lei X, Ruan Y, Li J. Downregulation of RGMA by HIF-1A/miR-210-3p axis promotes cell proliferation in oral squamous cell carcinoma. Biomed Pharmacother 2019; 112:108608. [PMID: 30798120 DOI: 10.1016/j.biopha.2019.108608] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/16/2019] [Accepted: 01/23/2019] [Indexed: 12/15/2022] Open
Abstract
Repulsive guidance molecules comprise a group of proteins that play an important role in carcinogenesis through interactions with their receptors, but their function in oral squamous cell carcinoma (OSCC) is unclear. Here, we investigated the potential role of the RGM family members in oral cancer pathogenesis. Our study showed that only RGMA was significantly downregulated in the OSCC tissues analyzed by TCGA and validated this finding in OSCC cells. The decreased expression of RGMA was strongly associated with the T stage and with poor prognosis. The ectopic expression of RGMA significantly inhibited the proliferation of OSCC cells both in vitro and in vivo. Moreover, we confirmed that RGMA was a target of miR-210-3p in OSCC and miR-210-3p overexpression contributed to the acceleration of OSCC growth. Further experiments revealed that HIF1A specifically interacted with the promoter of miR-210-3p and enhanced its expression. In summary, our research indicates that RGMA is regulated by the HIF1A/miR-210-3p axis and inhibits OSCC cell proliferation; thus, in the future, the development of therapies that target the HIF1A/miR-210-3p/RGMA axis may aid in the treatment of aggressive cancers.
Collapse
Affiliation(s)
- Yingjuan Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yingru Li
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Department of Gastroenterology, Hernia and Abdominal Wall Surgery, The sixth affiliated Hospital, Sun Yat_Sen University, Guangzhou, 510120, China
| | - Zhangsong Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Shule Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Qing Wang
- Department of Dentistry, Weifang Peoples' Hospital, Weifang, 261000, Shandong Province, China
| | - Xinyuan Lei
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yi Ruan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Jinsong Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
38
|
Yang C, Ren J, Li B, Jin C, Ma C, Cheng C, Sun Y, Shi X. Identification of gene biomarkers in patients with postmenopausal osteoporosis. Mol Med Rep 2018; 19:1065-1073. [PMID: 30569177 PMCID: PMC6323213 DOI: 10.3892/mmr.2018.9752] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 09/18/2018] [Indexed: 12/17/2022] Open
Abstract
Postmenopausal osteoporosis (PMOP) is a major public health concern worldwide. The present study aimed to provide evidence to assist in the development of specific novel biomarkers for PMOP. Differentially expressed genes (DEGs) were identified between PMOP and normal controls by integrated microarray analyses of the Gene Expression Omnibus (GEO) database, and the optimal diagnostic gene biomarkers for PMOP were identified with LASSO and Boruta algorithms. Classification models, including support vector machine (SVM), decision tree and random forests models, were established to test the diagnostic value of identified gene biomarkers for PMOP. Functional annotations and protein‑protein interaction (PPI) network constructions were also conducted. Integrated microarray analyses (GSE56815, GSE13850 and GSE7429) of the GEO database were employed, and 1,320 DEGs were identified between PMOP and normal controls. An 11‑gene combination was also identified as an optimal biomarker for PMOP by feature selection and classification methods using SVM, decision tree and random forest models. This combination was comprised of the following genes: Dehydrogenase E1 and transketolase domain containing 1 (DHTKD1), osteoclast stimulating factor 1 (OSTF1), G protein‑coupled receptor 116 (GPR116), BCL2 interacting killer, adrenoceptor β1 (ADRB1), neogenin 1 (NEO1), RB binding protein 4 (RBBP4), GPR87, cylicin 2, EF‑hand calcium binding domain 1 and DEAH‑box helicase 35. RBBP4 (degree=12) was revealed to be the hub gene of this PMOP‑specific PPI network. Among these 11 genes, three genes (OSTF1, ADRB1 and NEO1) were speculated to serve roles in PMOP by regulating the balance between bone formation and bone resorption, while two genes (GPR87 and GPR116) may be involved in PMOP by regulating the nuclear factor‑κB signaling pathway. Furthermore, DHTKD1 and RBBP4 may be involved in PMOP by regulating mitochondrial dysfunction and interacting with ESR1, respectively. In conclusion, the findings of the current study provided an insight for exploring the mechanism and developing novel biomarkers for PMOP. Further studies are required to test the diagnostic value for PMOP prior to use in a clinical setting.
Collapse
Affiliation(s)
- Chenggang Yang
- Department of Research and Development, Gu'an Bojian Bio‑Technology Co., Ltd., Langfang, Hebei 065000, P.R. China
| | - Jing Ren
- Department of Big Data, Beijing Medintell Bioinformatic Technology Co., Ltd., Beijing 100081, P.R. China
| | - Bangling Li
- Department of Big Data, Beijing Medintell Bioinformatic Technology Co., Ltd., Beijing 100081, P.R. China
| | - Chuandi Jin
- Department of Big Data, Beijing Medintell Bioinformatic Technology Co., Ltd., Beijing 100081, P.R. China
| | - Cui Ma
- Department of Research and Development, Gu'an Bojian Bio‑Technology Co., Ltd., Langfang, Hebei 065000, P.R. China
| | - Cheng Cheng
- Department of Big Data, Beijing Medintell Bioinformatic Technology Co., Ltd., Beijing 100081, P.R. China
| | - Yaolan Sun
- Department of Big Data, Beijing Medintell Bioinformatic Technology Co., Ltd., Beijing 100081, P.R. China
| | - Xiaofeng Shi
- Department of Research and Development, Gu'an Bojian Bio‑Technology Co., Ltd., Langfang, Hebei 065000, P.R. China
| |
Collapse
|
39
|
Neogenin in Amygdala for Neuronal Activity and Information Processing. J Neurosci 2018; 38:9600-9613. [PMID: 30228230 DOI: 10.1523/jneurosci.0433-18.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 11/21/2022] Open
Abstract
Fear learning and memory are vital for livings to survive, dysfunctions in which have been implicated in various neuropsychiatric disorders. Appropriate neuronal activation in amygdala is critical for fear memory. However, the underlying regulatory mechanisms are not well understood. Here we report that Neogenin, a DCC (deleted in colorectal cancer) family receptor, which plays important roles in axon navigation and adult neurogenesis, is enriched in excitatory neurons in BLA (Basolateral amygdala). Fear memory is impaired in male Neogenin mutant mice. The number of cFos+ neurons in response to tone-cued fear training was reduced in mutant mice, indicating aberrant neuronal activation in the absence of Neogenin. Electrophysiological studies show that Neogenin mutation reduced the cortical afferent input to BLA pyramidal neurons and compromised both induction and maintenance of Long-Term Potentiation evoked by stimulating cortical afferent, suggesting a role of Neogenin in synaptic plasticity. Concomitantly, there was a reduction in spine density and in frequency of miniature excitatory postsynaptic currents (mEPSCs), but not miniature inhibitory postsynaptic currents, suggesting a role of Neogenin in forming excitatory synapses. Finally, ablating Neogenin in the BLA in adult male mice impaired fear memory likely by reducing mEPSC frequency in BLA excitatory neurons. These results reveal an unrecognized function of Neogenin in amygdala for information processing by promoting and maintaining neurotransmission and synaptic plasticity and provide insight into molecular mechanisms of neuronal activation in amygdala.SIGNIFICANCE STATEMENT Appropriate neuronal activation in amygdala is critical for information processing. However, the underlying regulatory mechanisms are not well understood. Neogenin is known to regulate axon navigation and adult neurogenesis. Here we show that it is critical for neurotransmission and synaptic plasticity in the amygdala and thus fear memory by using a combination of genetic, electrophysiological, behavioral techniques. Our studies identify a novel function of Neogenin and provide insight into molecular mechanisms of neuronal activation in amygdala for fear processing.
Collapse
|
40
|
Coffin JD, Homer-Bouthiette C, Hurley MM. Fibroblast Growth Factor 2 and Its Receptors in Bone Biology and Disease. J Endocr Soc 2018; 2:657-671. [PMID: 29942929 PMCID: PMC6009610 DOI: 10.1210/js.2018-00105] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/23/2018] [Indexed: 01/24/2023] Open
Abstract
The fibroblast growth factor (FGF) regulatory axis is phylogenetically ancient, evolving into a large mammalian/human gene family of 22 ligands that bind to four receptor tyrosine kinases for a complex physiologic system controlling cell growth, differentiation, and metabolism. The tissue targets for the primary FGF function are mainly in cartilage and in bone for morphogenesis, mineralization, and metabolism. A multitude of complexities in the FGF ligand-receptor signaling pathways have made translation into therapies for FGF-related bone disorders such as osteomalacia, osteoarthritis, and osteoporosis difficult but not impossible.
Collapse
Affiliation(s)
| | | | - Marja Marie Hurley
- Department of Medicine, University of Connecticut School of Medicine, UCONN Health, Farmington, Connecticut
| |
Collapse
|
41
|
Enoki Y, Sato T, Kokabu S, Hayashi N, Iwata T, Yamato M, Usui M, Matsumoto M, Tomoda T, Ariyoshi W, Nishihara T, Yoda T. Netrin-4 Promotes Differentiation and Migration of Osteoblasts. ACTA ACUST UNITED AC 2018; 31:793-799. [PMID: 28882944 DOI: 10.21873/invivo.11132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 05/27/2017] [Accepted: 05/29/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND/AIM While netrin-4 plays a vital role in the vascular system, the role of netrin-1 in osteoblast differentiation is not well understood. In this study we explored whether netrin-4 has functional roles in osteoblasts. MATERIALS AND METHODS Quantitative reverse-transcriptase polymerase chain reaction (PCR), RNA interference, the generation of plasmids, transfections, measurement of alkaline phosphatase activity, a mineralization assay, a migration assay and a cell proliferation assay were performed. RESULTS Netrin-4 expression was up-regulated during osteoblast differentiation and an RNA interference experiment showed that small interfering RNA used to silence netrin-4 inhibited osteoblast differentiation. Recombinant mouse netrin-4 promoted alkaline phosphatase (ALP) activity of osteoblasts and enhancement of calcium deposits. Moreover, we constructed a vector containing the netrin-4 gene on the basis of the plasmid pcDNA3.1/V5-His. Overexpression of netrin-4 enhanced differentiation of osteoblasts. Finally, recombinant mouse netrin-4 promoted cell migration of osteoblasts. CONCLUSION Netrin-4 promotes differentiation and migration of osteoblasts.
Collapse
Affiliation(s)
- Yuichiro Enoki
- Department of Oral and Maxillofacial Surgery, Saitama Medical University, Saitama, Japan
| | - Tsuyoshi Sato
- Department of Oral and Maxillofacial Surgery, Saitama Medical University, Saitama, Japan
| | - Shoichiro Kokabu
- Department of Oral and Maxillofacial Surgery, Saitama Medical University, Saitama, Japan.,Division of Molecular Signaling and Biochemistry, Department of Health Promotion and Kyushu Dental University, Fukuoka, Japan
| | - Naoki Hayashi
- Department of Oral and Maxillofacial Surgery, Saitama Medical University, Saitama, Japan
| | - Takanori Iwata
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Michihiko Usui
- Division of Periodontology, Department of Cardiology and Periodontology, Kyushu Dental University, Fukuoka, Japan
| | - Masahito Matsumoto
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Taketo Tomoda
- Department of Oral and Maxillofacial Surgery, Saitama Medical University, Saitama, Japan
| | - Wataru Ariyoshi
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Fukuoka, Japan
| | - Tatsuji Nishihara
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Fukuoka, Japan
| | - Tetsuya Yoda
- Department of Oral and Maxillofacial Surgery, Saitama Medical University, Saitama, Japan
| |
Collapse
|
42
|
Sato T, Kokabu S, Enoki Y, Hayashi N, Matsumoto M, Nakahira M, Sugasawa M, Yoda T. Functional Roles of Netrin-1 in Osteoblast Differentiation. ACTA ACUST UNITED AC 2018; 31:321-328. [PMID: 28438858 DOI: 10.21873/invivo.11062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 01/23/2023]
Abstract
AIM Recent studies have demonstrated that netrin-1 plays a vital role in bone metabolism. Previous studies have shown that osteoblasts produce netrin-1 which affects osteoclast differentiation. However, the role of netrin-1 in osteoblast differentiation is not well understood. In this study, we explored the roles of netrin-1 in osteoblasts. MATERIALS AND METHODS Quantitative reverse-transcriptase polymerase chain reaction (qPCR), RNA interference for netrin receptors, the generation of netrin-1 plasmid, transfection of plasmids, and cell proliferation assay were performed. RESULTS During osteoblast differentiation by ascorbic acid, netrin-1 expression was significantly decreased. Gene expression related with osteoblast differentiation was down-regulated by netrin-1 treatment. We also found that osteoblast differentiation by bone morphogenetic protein-4 (BMP-4) was inhibited in the presence of recombinant netrin-1. Forced expression of both BMP-4 and netrin-1 significantly decreased alkaline phosphatase expression. On the other hand, Unc5b, neogenin, and A2b which belong to netrin receptors were expressed by osteoblasts. Moreover, alkaline phosphatase expression was significantly decreased by knockdown for the combination of two receptors among these receptors. CONCLUSION Netrin-1 is involved in the regulation of osteoblast differentiation.
Collapse
Affiliation(s)
- Tsuyoshi Sato
- Department of Oral and Maxillofacial Surgery, Saitama Medical University, Saitama, Japan
| | - Shoichiro Kokabu
- Department of Oral and Maxillofacial Surgery, Saitama Medical University, Saitama, Japan.,Division of Molecular Signaling and Biochemistry, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Japan
| | - Yuichiro Enoki
- Department of Oral and Maxillofacial Surgery, Saitama Medical University, Saitama, Japan
| | - Naoki Hayashi
- Department of Oral and Maxillofacial Surgery, Saitama Medical University, Saitama, Japan
| | - Masahito Matsumoto
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Mitsuhiko Nakahira
- Department of Head and Neck Surgery, Saitama Medical University International Medical Center, Saitama, Japan
| | - Masashi Sugasawa
- Department of Head and Neck Surgery, Saitama Medical University International Medical Center, Saitama, Japan
| | - Tetsuya Yoda
- Department of Oral and Maxillofacial Surgery, Saitama Medical University, Saitama, Japan
| |
Collapse
|
43
|
Sun D, Sun XD, Zhao L, Lee DH, Hu JX, Tang FL, Pan JX, Mei L, Zhu XJ, Xiong WC. Neogenin, a regulator of adult hippocampal neurogenesis, prevents depressive-like behavior. Cell Death Dis 2018; 9:8. [PMID: 29311593 PMCID: PMC5849041 DOI: 10.1038/s41419-017-0019-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/19/2017] [Accepted: 10/02/2017] [Indexed: 11/09/2022]
Abstract
Adult neurogenesis in hippocampal dentate gyrus (DG) is a complex, but precisely controlled process. Dysregulation of this event contributes to multiple neurological disorders, including major depression. Thus, it is of considerable interest to investigate how adult hippocampal neurogenesis is regulated. Here, we present evidence for neogenin, a multifunctional transmembrane receptor, to regulate adult mouse hippocampal neurogenesis. Loss of neogenin in adult neural stem cells (NSCs) or neural progenitor cells (NPCs) impaired NSCs/NPCs proliferation and neurogenesis, whereas increased their astrocytic differentiation. Mechanistic studies revealed a role for neogenin to positively regulate Gli1, a crucial downstream transcriptional factor of sonic hedgehog, and expression of Gli1 into neogenin depleted NSCs/NPCs restores their proliferation. Further morphological and functional studies showed additional abnormities, including reduced dendritic branches and spines, and impaired glutamatergic neuro-transmission, in neogenin-depleted new-born DG neurons; and mice with depletion of neogenin in NSCs/NPCs exhibited depressive-like behavior. These results thus demonstrate unrecognized functions of neogenin in adult hippocampal NSCs/NPCs-promoting NSCs/NPCs proliferation and neurogenesis and preventing astrogliogenesis and depressive-like behavior, and suggest neogenin regulation of Gli1 signaling as a possible underlying mechanism.
Collapse
Affiliation(s)
- Dong Sun
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin, 130024, China.,Department of Neuroscience & Regenerative Medicine and Department of Neurology, Augusta University, Augusta, GA, 30912, USA
| | - Xiang-Dong Sun
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Augusta University, Augusta, GA, 30912, USA
| | - Lu Zhao
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin, 130024, China.,Department of Neuroscience & Regenerative Medicine and Department of Neurology, Augusta University, Augusta, GA, 30912, USA
| | - Dae-Hoon Lee
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Augusta University, Augusta, GA, 30912, USA
| | - Jin-Xia Hu
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Augusta University, Augusta, GA, 30912, USA.,Department of Neurology, The affiliated hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, China
| | - Fu-Lei Tang
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Augusta University, Augusta, GA, 30912, USA
| | - Jin-Xiu Pan
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Augusta University, Augusta, GA, 30912, USA
| | - Lin Mei
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Augusta University, Augusta, GA, 30912, USA
| | - Xiao-Juan Zhu
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin, 130024, China.
| | - Wen-Cheng Xiong
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
44
|
Nickel J, Ten Dijke P, Mueller TD. TGF-β family co-receptor function and signaling. Acta Biochim Biophys Sin (Shanghai) 2018; 50:12-36. [PMID: 29293886 DOI: 10.1093/abbs/gmx126] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/08/2017] [Indexed: 01/04/2023] Open
Abstract
Transforming growth factor-β (TGF-β) family members, which include TGF-βs, activins and bone morphogenetic proteins, are pleiotropic cytokines that elicit cell type-specific effects in a highly context-dependent manner in many different tissues. These secreted protein ligands signal via single-transmembrane Type I and Type II serine/threonine kinase receptors and intracellular SMAD transcription factors. Deregulation in signaling has been implicated in a broad array of diseases, and implicate the need for intricate fine tuning in cellular signaling responses. One important emerging mechanism by which TGF-β family receptor signaling intensity, duration, specificity and diversity are regulated and/or mediated is through cell surface co-receptors. Here, we provide an overview of the co-receptors that have been identified for TGF-β family members. While some appear to be specific to TGF-β family members, others are shared with other pathways and provide possible ways for signal integration. This review focuses on novel functions of TGF-β family co-receptors, which continue to be discovered.
Collapse
Affiliation(s)
- Joachim Nickel
- Universitätsklinikum Würzburg, Lehrstuhl für Tissue Engineering und Regenerative Medizin und Fraunhofer Institut für Silicatforschung (ISC), Translationszentrum "Regenerative Therapien", Röntgenring 11, D-97070 Würzburg, Germany
| | - Peter Ten Dijke
- Department of Molecular and Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands
| | - Thomas D Mueller
- Lehrstuhl für molekulare Pflanzenphysiologie und Biophysik, Julius-von-Sachs Institut für Biowissenschaften, Universität Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| |
Collapse
|
45
|
Miyaguchi N, Kajiya H, Yamaguchi M, Sato A, Yasunaga M, Toshimitu T, Yanagi T, Matsumoto A, Kido H, Ohno J. Bone Morphogenetic Protein-2 Accelerates Osteogenic Differentiation in Spheroid-Derived Mesenchymal Stem Cells. J HARD TISSUE BIOL 2018. [DOI: 10.2485/jhtb.27.343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Naoyuki Miyaguchi
- Section of Oral Implantology, Department of Oral Rehabilitation, Fukuoka Dental College
- Research Center for Regenerative Medicine, Fukuoka Dental College
| | - Hiroshi Kajiya
- Research Center for Regenerative Medicine, Fukuoka Dental College
- Section of Cellular Physiology, Department of Physiological Science and Molecular Biology, Fukuoka Dental College
| | - Masahiro Yamaguchi
- Research Center for Regenerative Medicine, Fukuoka Dental College
- Section of Geriatric Dentistry, Department of General Dentistry, Fukuoka Dental College
| | - Ayako Sato
- Section of Oral Implantology, Department of Oral Rehabilitation, Fukuoka Dental College
- Research Center for Regenerative Medicine, Fukuoka Dental College
| | - Madoka Yasunaga
- Research Center for Regenerative Medicine, Fukuoka Dental College
- Section of Orthodontics, Department of Oral Growth and Development, Fukuoka Dental College
| | - Takuya Toshimitu
- Research Center for Regenerative Medicine, Fukuoka Dental College
- Dentistry for the Disabled, Department of Oral Growth and Development, Fukuoka Dental College
| | - Tsukasa Yanagi
- Section of Oral Implantology, Department of Oral Rehabilitation, Fukuoka Dental College
- Research Center for Regenerative Medicine, Fukuoka Dental College
| | - Ayako Matsumoto
- Section of Oral Implantology, Department of Oral Rehabilitation, Fukuoka Dental College
- Research Center for Regenerative Medicine, Fukuoka Dental College
| | - Hirofumi Kido
- Section of Oral Implantology, Department of Oral Rehabilitation, Fukuoka Dental College
| | - Jun Ohno
- Research Center for Regenerative Medicine, Fukuoka Dental College
| |
Collapse
|
46
|
Li J, Ye L, Shi X, Chen J, Feng F, Chen Y, Xiao Y, Shen J, Li P, Jiang WG, He J. Repulsive guidance molecule B inhibits metastasis and is associated with decreased mortality in non-small cell lung cancer. Oncotarget 2017; 7:15678-89. [PMID: 26910889 PMCID: PMC4941269 DOI: 10.18632/oncotarget.7463] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 01/26/2016] [Indexed: 11/25/2022] Open
Abstract
Repulsive guidance molecules (RGMs) are co-receptors of bone morphogenetic proteins (BMPs) and programmed death ligand 2 (PD-L2), and might be involved in lung and other cancers. We evaluated repulsive guidance molecule B (RGMB) expression in 165 non-small cell lung cancer (NSCLC) tumors and 22 normal lung tissue samples, and validated the results in an independent series of 131 samples. RGMB was downregulated in NSCLC (P ≤ 0.001), possibly through promoter hypermethylation. Reduced RGMB expression was observed in advanced-stage tumors (P = 0.017) and in tumors with vascular invasion (P < 0.01), and was significantly associated with poor overall survival (39 vs. 62 months, P < 0.001) and with disease-associated patient mortality (P = 0.015). RGMB knockdown promoted cell adhesion, invasion and migration, in both NSCLC cell lines and an in vivo mouse model, which enhanced metastatic potential. Conversely, RGMB overexpression and secretion suppressed cancer progression. The tumor-suppressing effect of RGMB was exerted through inhibition of the Smad1/5/8 pathway. Our results demonstrate that RGMB is an important inhibitor of NSCLC metastasis and that low RGMB expression is a novel predictor or a poor prognosis.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou 510530, China
| | - Lin Ye
- Cardiff-China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Xiaoshun Shi
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou 510530, China
| | - Jingyi Chen
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou 510530, China
| | - Fenglan Feng
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou 510530, China
| | - Yaoqi Chen
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou 510530, China
| | - Yiren Xiao
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jianfei Shen
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou 510530, China
| | - Peng Li
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Wen G Jiang
- Cardiff-China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Jianxing He
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou 510530, China
| |
Collapse
|
47
|
Kam JWK, Dumontier E, Baim C, Brignall AC, Mendes da Silva D, Cowan M, Kennedy TE, Cloutier JF. RGMB and neogenin control cell differentiation in the developing olfactory epithelium. Development 2017; 143:1534-46. [PMID: 27143755 DOI: 10.1242/dev.118638] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/29/2016] [Indexed: 12/25/2022]
Abstract
Cellular interactions are key for the differentiation of distinct cell types within developing epithelia, yet the molecular mechanisms engaged in these interactions remain poorly understood. In the developing olfactory epithelium (OE), neural stem/progenitor cells give rise to odorant-detecting olfactory receptor neurons (ORNs) and glial-like sustentacular (SUS) cells. Here, we show in mice that the transmembrane receptor neogenin (NEO1) and its membrane-bound ligand RGMB control the balance of neurons and glial cells produced in the OE. In this layered epithelium, neogenin is expressed in progenitor cells, while RGMB is restricted to adjacent newly born ORNs. Ablation of Rgmb via gene-targeting increases the number of dividing progenitor cells in the OE and leads to supernumerary SUS cells. Neogenin loss-of-function phenocopies these effects observed in Rgmb(-/-) mice, supporting the proposal that RGMB-neogenin signaling regulates progenitor cell numbers and SUS cell production. Interestingly, Neo1(-/-) mice also exhibit increased apoptosis of ORNs, implicating additional ligands in the neogenin-dependent survival of ORNs. Thus, our results indicate that RGMB-neogenin-mediated cell-cell interactions between newly born neurons and progenitor cells control the ratio of glia and neurons produced in the OE.
Collapse
Affiliation(s)
- Joseph Wai Keung Kam
- Montreal Neurological Institute, 3801 University, Montréal, Québec, Canada H3A 2B4 Department of Neurology and Neurosurgery, McGill University, 3801 University, Montréal, Québec, Canada H3A 2B4
| | - Emilie Dumontier
- Montreal Neurological Institute, 3801 University, Montréal, Québec, Canada H3A 2B4 Department of Neurology and Neurosurgery, McGill University, 3801 University, Montréal, Québec, Canada H3A 2B4
| | - Christopher Baim
- Montreal Neurological Institute, 3801 University, Montréal, Québec, Canada H3A 2B4 Department of Neurology and Neurosurgery, McGill University, 3801 University, Montréal, Québec, Canada H3A 2B4
| | - Alexandra C Brignall
- Montreal Neurological Institute, 3801 University, Montréal, Québec, Canada H3A 2B4 Department of Neurology and Neurosurgery, McGill University, 3801 University, Montréal, Québec, Canada H3A 2B4
| | - David Mendes da Silva
- Montreal Neurological Institute, 3801 University, Montréal, Québec, Canada H3A 2B4 Center for Neuroscience and Cell Biology and Department of Life Sciences, University of Coimbra, Rua Larga, Coimbra 3004-517, Portugal
| | - Mitra Cowan
- Centre de Recherches du Centre Hospitalier de l'Université de Montréal, 900 rue Saint-Denis, Montréal, Canada H2X 0A9
| | - Timothy E Kennedy
- Montreal Neurological Institute, 3801 University, Montréal, Québec, Canada H3A 2B4 Department of Neurology and Neurosurgery, McGill University, 3801 University, Montréal, Québec, Canada H3A 2B4 Department of Anatomy and Cell Biology, McGill University, 3640 University, Montréal, Québec, Canada H3A 0C7
| | - Jean-François Cloutier
- Montreal Neurological Institute, 3801 University, Montréal, Québec, Canada H3A 2B4 Department of Neurology and Neurosurgery, McGill University, 3801 University, Montréal, Québec, Canada H3A 2B4 Department of Anatomy and Cell Biology, McGill University, 3640 University, Montréal, Québec, Canada H3A 0C7
| |
Collapse
|
48
|
Hong N, Kim MH, Min CK, Kim HJ, Lee JH. The co-expression of Neogenin with SOX2 in hippocampal neurons. Biochem Biophys Res Commun 2017. [DOI: 10.1016/j.bbrc.2017.06.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Neogenin Promotes BMP2 Activation of YAP and Smad1 and Enhances Astrocytic Differentiation in Developing Mouse Neocortex. J Neurosci 2017; 36:5833-49. [PMID: 27225772 DOI: 10.1523/jneurosci.4487-15.2016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/17/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Neogenin, a DCC (deleted in colorectal cancer) family receptor, is highly expressed in neural stem cells (NSCs). However, its function in NSCs remains to be explored. Here we provide in vitro and in vivo evidence for neogenin's function in NSCs to promote neocortical astrogliogenesis, but not self-renewal or neural differentiation. Mechanistically, neogenin in neocortical NSCs was required for BMP2 activation of YAP (yes associated protein). The active/nuclear YAP stabilized phospho-Smad1/5/8 and was necessary for BMP2 induction of astrocytic differentiation. Deletion of yap in mouse neocortical NSCs caused a similar deficit in neocortical astrogliogenesis as that in neogenin mutant mice. Expression of YAP in neogenin mutant NSCs diminished the astrocytic differentiation deficit in response to BMP2. Together, these results reveal an unrecognized function of neogenin in increasing neocortical astrogliogenesis, and identify a pathway of BMP2-neogenin-YAP-Smad1 for astrocytic differentiation in developing mouse neocortex. SIGNIFICANCE STATEMENT Astrocytes, a major type of glial cells in the brain, play important roles in modulating synaptic transmission and information processing, and maintaining CNS homeostasis. The abnormal astrocytic differentiation during development contributes to dysfunctions of synaptic plasticity and neuropsychological disorders. Here we provide evidence for neogenin's function in regulation of the neocortical astrocyte differentiation during mouse brain development. We also provide evidence for the necessity of neogenin in BMP2/Smad1-induced astrocyte differentiation through YAP. Thus, our findings identify an unrecognized function of neogenin in mouse neocortical astrocyte differentiation, and suggest a signaling pathway, BMP2-neogenin-YAP-Smad1, underlying astrogliogenesis in developing mouse neocortex.
Collapse
|
50
|
Kim HK, Lee JS, Kim JH, Seon JK, Park KS, Jeong MH, Yoon TR. Bone-forming peptide-2 derived from BMP-7 enhances osteoblast differentiation from multipotent bone marrow stromal cells and bone formation. Exp Mol Med 2017; 49:e328. [PMID: 28496198 PMCID: PMC5454442 DOI: 10.1038/emm.2017.40] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 11/08/2016] [Accepted: 12/05/2016] [Indexed: 01/07/2023] Open
Abstract
Strategies for efficient osteogenic differentiation and bone formation from stem cells would have clinical applications in treating nonunion fracture healing. Many researchers have attempted to develop adjuvants as specific stimulators of bone formation for therapeutic use in patients with bone resorption. Therefore, development of specific stimulators of bone formation has therapeutic significance in the treatment of osteoporosis. To date, investigations of the mature forms of bone morphogenetic proteins (BMPs) have focused on regulation of bone generation. However, we previously identified new peptides from the immature precursor of BMP, and further analysis of these proteins should be performed. In this study, we identified a new peptide called bone-forming peptide-2 (BFP-2), which has stronger osteogenic differentiation-promoting activity than BMP-7. BFP-2 treatment of multipotent bone marrow stromal cells (BMSCs) induced expression of active alkaline phosphatase. In addition, BFP-2 enhanced CD44 and CD51 expression levels and increased Ca2+ content in BMSCs. Moreover, radiography at 8 weeks revealed that animals that had received transplants of BFP-2-treated BMSCs showed substantially increased bone formation compared with animals that had received BMSCs treated with BMP-7. Our findings indicate that BFP-2 may be useful in the development of adjuvant therapies for bone-related diseases.
Collapse
Affiliation(s)
- Hyung Keun Kim
- Cardiovascular Convergence Research Center of Chonnam National University Hospital, Gwangju, Korea.,Department of Orthopedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, Jeonnam, Korea
| | - Jun Sik Lee
- Department of Biology, Immunology Research Lab, BK21-plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Gwangju, Korea
| | - Ji Hyun Kim
- Cardiovascular Convergence Research Center of Chonnam National University Hospital, Gwangju, Korea.,Department of Orthopedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, Jeonnam, Korea
| | - Jong Keun Seon
- Department of Orthopedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, Jeonnam, Korea
| | - Kyung Soon Park
- Department of Orthopedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, Jeonnam, Korea
| | - Myung Ho Jeong
- Cardiovascular Convergence Research Center of Chonnam National University Hospital, Gwangju, Korea
| | - Taek Rim Yoon
- Cardiovascular Convergence Research Center of Chonnam National University Hospital, Gwangju, Korea.,Department of Orthopedics Surgery, Center for Joint Disease of Chonnam National University Hwasun Hospital, Jeonnam, Korea
| |
Collapse
|