1
|
Kiratitanaporn W, Guan J, Tang M, Xiang Y, Lu TY, Balayan A, Lao A, Berry DB, Chen S. 3D Printing of a Biomimetic Myotendinous Junction Assisted by Artificial Intelligence. Biomater Sci 2024; 12:6047-6062. [PMID: 39446075 DOI: 10.1039/d4bm00892h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The myotendinous junction (MTJ) facilitates force transmission between muscle and tendon to produce joint movement. The complex microarchitecture and regional mechanical heterogeneity of the myotendinous junction pose major challenges in creating this interface in vitro. Engineering this junction in vitro is challenging due to substantial fabrication difficulties in creating scaffolds with intricate microarchitecture and stiffness heterogeneity to mimic the native muscle-tendon interface. To address the current challenges in creating the MTJ in vitro, digital light processing (DLP)-based 3D printing was used to fabricate poly(glycerol sebacate)acrylate (PGSA)-based muscle-tendon scaffolds with physiologically informed microstructure and mechanical properties. Local mechanical properties in various regions of the scaffold were tuned by adjusting the exposure time and light intensity used during the continuous DLP-based 3D printing process to match the mechanical properties present in distinct regions of native muscle-tendon tissue using printing parameters defined by an artificial intelligence-trained algorithm. To evaluate how the presence of zonal stiffness regions can affect the phenotype of a 3D-printed MTJ in vitro model, three 3D-printed PGSA-based scaffold conditions were investigated: (1) a scaffold with muscle-informed mechanical properties in its entirety without zonal stiffness regions, (2) a scaffold with one end possessing native muscle stiffness and the other end possessing native tendon stiffness, and (3) a scaffold with three distinct regions whose stiffness values correspond to those of muscle on one end of the scaffold, MTJ in the middle junction of the scaffold, and tendon on the other end of the scaffold. The scaffold containing regional mechanical heterogeneity most similar to the native MTJ (condition 3) was found to enhance the expression of MTJ-related markers compared to those without the presence of zonal stiffness regions. Overall, the DLP-based 3D printing platform and biomaterial system developed in this study could serve as a useful tool for mimicking the complexity of the native MTJ, which possesses inherent geometric and mechanical heterogeneity.
Collapse
Affiliation(s)
- Wisarut Kiratitanaporn
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Jiaao Guan
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Min Tang
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yi Xiang
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ting-Yu Lu
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Alis Balayan
- School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Alison Lao
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - David B Berry
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Orthopedic Surgery, University of California San Diego, La Jolla, CA, 92093, USA
| | - Shaochen Chen
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
2
|
Pasaribu KM, Mahendra IP, Karina M, Masruchin N, Sholeha NA, Gea S, Gupta A, Johnston B, Radecka I. A review: Current trends and future perspectives of bacterial nanocellulose-based wound dressings. Int J Biol Macromol 2024; 279:135602. [PMID: 39276891 DOI: 10.1016/j.ijbiomac.2024.135602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/28/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Bacterial cellulose (BC) has gained significant attention as a base material for wound dressings due to its superior physical properties, biocompatibility, and non-toxicity. However, to produce wound dressings that actively facilitate wound healing, BC modification is essential. To provide a comprehensive analysis of the potential research developments and the trends in bacterial cellulose-based wound dressings (BCWD), this review focuses on the BCWD research conducted in the last decade. The review highlights the optimization of BC usage as a base material for active wound dressing, including the incorporation of miscellaneous materials and the enhancement of BC properties such as ultra-transparency, anti-leakage, stretchability/flexibility, adhesiveness, conductivity, injectability, pattern, and pH-sensor ability.
Collapse
Affiliation(s)
- Khatarina Meldawati Pasaribu
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency of Indonesia (BRIN), Cibinong 16911, Indonesia; Research Collaboration Center for Biomass and Biorefinery, Padjajaran Science and Technopark, Jl. Ir. Soekarno, Km.21, Jatinangor 45363, Indonesia; Research Collaboration Center for Nanocellulose, BRIN - UNAND, Padang 25163, Indonesia; Cellulosic and Functional Materials Research Centre, Universitas Sumatera Utara, Jl. Bioteknologi No.1, Medan 20155, Indonesia.
| | - I Putu Mahendra
- Program Studi Kimia, Jurusan Sains, Institut Teknologi Sumatera, Jalan Terusan Ryacudu, Way Hui, Jati Agung, Lampung Selatan 35365, Indonesia
| | - Myrtha Karina
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency of Indonesia (BRIN), Cibinong 16911, Indonesia; Research Collaboration Center for Biomass and Biorefinery, Padjajaran Science and Technopark, Jl. Ir. Soekarno, Km.21, Jatinangor 45363, Indonesia; Research Collaboration Center for Nanocellulose, BRIN - UNAND, Padang 25163, Indonesia
| | - Nanang Masruchin
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency of Indonesia (BRIN), Cibinong 16911, Indonesia; Research Collaboration Center for Biomass and Biorefinery, Padjajaran Science and Technopark, Jl. Ir. Soekarno, Km.21, Jatinangor 45363, Indonesia; Research Collaboration Center for Nanocellulose, BRIN - UNAND, Padang 25163, Indonesia
| | - Novia Amalia Sholeha
- College of Vocational Studies, Bogor Agricultural University (IPB University), Jalan Kumbang No. 14, Bogor 16151, Indonesia
| | - Saharman Gea
- Cellulosic and Functional Materials Research Centre, Universitas Sumatera Utara, Jl. Bioteknologi No.1, Medan 20155, Indonesia; Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Jl. Bioteknologi No. 1, Medan 20155, Indonesia
| | - Abhishek Gupta
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; School of Pharmacy, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK.
| | - Brian Johnston
- Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK
| | - Izabela Radecka
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK
| |
Collapse
|
3
|
Wu Y, Liu W, Li J, Shi H, Ma S, Wang D, Pan B, Xiao R, Jiang H, Liu X. Decreased Tiam1-mediated Rac1 activation is responsible for impaired directional persistence of chondrocyte migration in microtia. J Cell Mol Med 2024; 28:e18443. [PMID: 38837873 PMCID: PMC11149491 DOI: 10.1111/jcmm.18443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 06/07/2024] Open
Abstract
The human auricle has a complex structure, and microtia is a congenital malformation characterized by decreased size and loss of elaborate structure in the affected ear with a high incidence. Our previous studies suggest that inadequate cell migration is the primary cytological basis for the pathogenesis of microtia, however, the underlying mechanism is unclear. Here, we further demonstrate that microtia chondrocytes show a decreased directional persistence during cell migration. Directional persistence can define a leading edge associated with oriented movement, and any mistakes would affect cell function and tissue morphology. By the screening of motility-related genes and subsequent confirmations, active Rac1 (Rac1-GTP) is identified to be critical for the impaired directional persistence of microtia chondrocytes migration. Moreover, Rho guanine nucleotide exchange factors (GEFs) and Rho GTPase-activating proteins (GAPs) are detected, and overexpression of Tiam1 significantly upregulates the level of Rac1-GTP and improves directional migration in microtia chondrocytes. Consistently, decreased expression patterns of Tiam1 and active Rac1 are found in microtia mouse models, Bmp5se/J and Prkralear-3J/GrsrJ. Collectively, our results provide new insights into microtia development and therapeutic strategies of tissue engineering for microtia patients.
Collapse
Affiliation(s)
- Yi Wu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Wei Liu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Jia Li
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Hang Shi
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Shize Ma
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Di Wang
- Department of Auricular Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Bo Pan
- Department of Auricular Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Ran Xiao
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Haiyue Jiang
- Department of Auricular Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Xia Liu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Kiratitanaporn W, Guan J, Berry DB, Lao A, Chen S. Multimodal Three-Dimensional Printing for Micro-Modulation of Scaffold Stiffness Through Machine Learning. Tissue Eng Part A 2024; 30:280-292. [PMID: 37747804 DOI: 10.1089/ten.tea.2023.0193] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
The ability to precisely control a scaffold's microstructure and geometry with light-based three-dimensional (3D) printing has been widely demonstrated. However, the modulation of scaffold's mechanical properties through prescribed printing parameters is still underexplored. This study demonstrates a novel 3D-printing workflow to create a complex, elastomeric scaffold with precision-engineered stiffness control by utilizing machine learning. Various printing parameters, including the exposure time, light intensity, printing infill, laser pump current, and printing speed were modulated to print poly (glycerol sebacate) acrylate (PGSA) scaffolds with mechanical properties ranging from 49.3 ± 3.3 kPa to 2.8 ± 0.3 MPa. This enables flexibility in spatial stiffness modulation in addition to high-resolution scaffold fabrication. Then, a neural network-based machine learning model was developed and validated to optimize printing parameters to yield scaffolds with user-defined stiffness modulation for two different vat photopolymerization methods: a digital light processing (DLP)-based 3D printer was utilized to rapidly fabricate stiffness-modulated scaffolds with features on the hundreds of micron scale and a two-photon polymerization (2PP) 3D printer was utilized to print fine structures on the submicron scale. A novel 3D-printing workflow was designed to utilize both DLP-based and 2PP 3D printers to create multiscale scaffolds with precision-tuned stiffness control over both gross and fine geometric features. The described workflow can be used to fabricate scaffolds for a variety of tissue engineering applications, specifically for interfacial tissue engineering for which adjacent tissues possess heterogeneous mechanical properties (e.g., muscle-tendon).
Collapse
Affiliation(s)
- Wisarut Kiratitanaporn
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Jiaao Guan
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California, USA
| | - David B Berry
- Department of Orthopedic Surgery, University of California San Diego, La Jolla, California, USA
| | - Alison Lao
- Department of NanoEngineering, University of California San Diego, La Jolla, California, USA
| | - Shaochen Chen
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California, USA
- Department of NanoEngineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
5
|
Bickel MA, Sherry DM, Bullen EC, Vance ML, Jones KL, Howard EW, Conley SM. Microvascular smooth muscle cells exhibit divergent phenotypic switching responses to platelet-derived growth factor and insulin-like growth factor 1. Microvasc Res 2024; 151:104609. [PMID: 37716411 PMCID: PMC10842624 DOI: 10.1016/j.mvr.2023.104609] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
OBJECTIVE Vascular smooth muscle cell (VSMC) phenotypic switching is critical for normal vessel formation, vascular stability, and healthy brain aging. Phenotypic switching is regulated by mediators including platelet derived growth factor (PDGF)-BB, insulin-like growth factor (IGF-1), as well as transforming growth factor-β (TGF-β) and endothelin-1 (ET-1), but much about the role of these factors in microvascular VSMCs remains unclear. METHODS We used primary rat microvascular VSMCs to explore PDGF-BB- and IGF-1-induced phenotypic switching. RESULTS PDGF-BB induced an early proliferative response, followed by formation of polarized leader cells and rapid, directionally coordinated migration. In contrast, IGF-1 induced cell hypertrophy, and only a small degree of migration by unpolarized cells. TGF-β and ET-1 selectively inhibit PDGF-BB-induced VSMC migration primarily by repressing migratory polarization and formation of leader cells. Contractile genes were downregulated by both growth factors, while other genes were differentially regulated by PDGF-BB and IGF-1. CONCLUSIONS These studies indicate that PDGF-BB and IGF-1 stimulate different types of microvascular VSMC phenotypic switching characterized by different modes of cell migration. Our studies are consistent with a chronic vasoprotective role for IGF-1 in VSMCs in the microvasculature while PDGF is more involved in VSMC proliferation and migration in response to acute activities such as neovascularization. Better understanding of the nuances of the phenotypic switching induced by these growth factors is important for our understanding of a variety of microvascular diseases.
Collapse
Affiliation(s)
- Marisa A Bickel
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States of America
| | - David M Sherry
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States of America; Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States of America; Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States of America
| | - Elizabeth C Bullen
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States of America
| | - Michaela L Vance
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States of America
| | - Ken L Jones
- Bioinformatic Solutions, LLC, Sheridan, WY 82801, United States of America
| | - Eric W Howard
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States of America
| | - Shannon M Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States of America.
| |
Collapse
|
6
|
Islam M, Jones S, Ellis I. Role of Akt/Protein Kinase B in Cancer Metastasis. Biomedicines 2023; 11:3001. [PMID: 38002001 PMCID: PMC10669635 DOI: 10.3390/biomedicines11113001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Metastasis is a critical step in the process of carcinogenesis and a vast majority of cancer-related mortalities result from metastatic disease that is resistant to current therapies. Cell migration and invasion are the first steps of the metastasis process, which mainly occurs by two important biological mechanisms, i.e., cytoskeletal remodelling and epithelial to mesenchymal transition (EMT). Akt (also known as protein kinase B) is a central signalling molecule of the PI3K-Akt signalling pathway. Aberrant activation of this pathway has been identified in a wide range of cancers. Several studies have revealed that Akt actively engages with the migratory process in motile cells, including metastatic cancer cells. The downstream signalling mechanism of Akt in cell migration depends upon the tumour type, sites, and intracellular localisation of activated Akt. In this review, we focus on the role of Akt in the regulation of two events that control cell migration and invasion in various cancers including head and neck squamous cell carcinoma (HNSCC) and the status of PI3K-Akt pathway inhibitors in clinical trials in metastatic cancers.
Collapse
Affiliation(s)
- Mohammad Islam
- Unit of Cell and Molecular Biology, School of Dentistry, University of Dundee, Park Place, Dundee DD1 4HR, UK; (S.J.); (I.E.)
| | | | | |
Collapse
|
7
|
Qu C, Kan Y, Zuo H, Wu M, Dong Z, Wang X, Zhang Q, Wang H, Wang D, Chen J. Actin polymerization induces mitochondrial distribution during collective cell migration. J Genet Genomics 2023; 50:46-49. [PMID: 35577239 DOI: 10.1016/j.jgg.2022.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023]
Affiliation(s)
- Chen Qu
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Yating Kan
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Hui Zuo
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Mengqi Wu
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Zhixiang Dong
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Xinyi Wang
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Qing Zhang
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Heng Wang
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China.
| | - Dou Wang
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jiong Chen
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, China.
| |
Collapse
|
8
|
Barriga EH, Alasaadi DN, Mencarelli C, Mayor R, Pichaud F. RanBP1 plays an essential role in directed migration of neural crest cells during development. Dev Biol 2022; 492:79-86. [PMID: 36206829 DOI: 10.1016/j.ydbio.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/15/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022]
Abstract
Collective cell migration is essential for embryonic development, tissue regeneration and repair, and has been implicated in pathological conditions such as cancer metastasis. It is, in part, directed by external cues that promote front-to-rear polarity in individual cells. However, our understanding of the pathways that underpin the directional movement of cells in response to external cues remains incomplete. To examine this issue we made use of neural crest cells (NC), which migrate as a collective during development to generate vital structures including bones and cartilage. Using a candidate approach, we found an essential role for Ran-binding protein 1 (RanBP1), a key effector of the nucleocytoplasmic transport pathway, in enabling directed migration of these cells. Our results indicate that RanBP1 is required for establishing front-to-rear polarity, so that NCs are able to chemotax. Moreover, our work suggests that RanBP1 function in chemotaxis involves the polarity kinase LKB1/PAR4. We envisage that regulated nuclear export of LKB1 through Ran/RanBP1 is a key regulatory step required for establishing front-to-rear polarity and thus chemotaxis, during NC collective migration.
Collapse
Affiliation(s)
- Elias H Barriga
- Cell and Developmental Biology, University College London, London, WC1E 6BT, United Kingdom; Mechanisms of Morphogenesis Lab, Instituto Gulbenkian de Ciencia, Oeiras, 2780-156, Portugal
| | - Delan N Alasaadi
- Cell and Developmental Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Chiara Mencarelli
- Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Roberto Mayor
- Cell and Developmental Biology, University College London, London, WC1E 6BT, United Kingdom.
| | - Franck Pichaud
- Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, United Kingdom.
| |
Collapse
|
9
|
Kiratitanaporn W, Berry DB, Mudla A, Fried T, Lao A, Yu C, Hao N, Ward SR, Chen S. 3D printing a biocompatible elastomer for modeling muscle regeneration after volumetric muscle loss. BIOMATERIALS ADVANCES 2022; 142:213171. [PMID: 36341746 PMCID: PMC12045644 DOI: 10.1016/j.bioadv.2022.213171] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/21/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Volumetric muscle loss (VML) injuries due to trauma, tumor ablation, or other degenerative muscle diseases are debilitating and currently have limited options for self-repair. Advancements in 3D printing allow for the rapid fabrication of biocompatible scaffolds with designer patterns. However, the materials chosen are often stiff or brittle, which is not optimal for muscle tissue engineering. This study utilized a photopolymerizable biocompatible elastomer - poly (glycerol sebacate) acrylate (PGSA) - to develop an in vitro model of muscle regeneration and proliferation into an acellular scaffold after VML injury. Mechanical properties of the scaffold were tuned by controlling light intensity during the 3D printing process to match the specific tension of skeletal muscle. The effect of both geometric (channel sizes between 300 and 600 μm) and biologic (decellularized muscle extracellular matrix (dECM)) cues on muscle progenitor cell infiltration, proliferation, organization, and maturation was evaluated in vitro using a near-infrared fluorescent protein (iRFP) transfected cell line to assess cells in the 3D scaffold. Larger channel sizes and dECM coating were found to enhance cell proliferation and maturation, while no discernable effect on cell alignment was observed. In addition, a pilot experiment was carried out to evaluate the regenerative capacity of this scaffold in vivo after a VML injury. Overall, this platform demonstrates a simple model to study muscle progenitor recruitment and differentiation into acellular scaffolds after VML repair.
Collapse
Affiliation(s)
- Wisarut Kiratitanaporn
- Department of Bioengineering, University of California, 9500 Gilman Dr. San Diego, La Jolla, CA 92093, USA.
| | - David B Berry
- Department of NanoEngineering, University of California, 9500 Gilman Dr. San Diego, La Jolla, CA 92093, USA; Department of Orthopaedic Surgery, University of California, 9500 Gilman Dr. San Diego, La Jolla, CA 92093, USA.
| | - Anusorn Mudla
- Department of Section of Molecular Biology, Division of Biological Sciences, University of California, 9500 Gilman Dr. San Diego, La Jolla, CA, 92093, USA.
| | - Trevor Fried
- Department of Bioengineering, University of California, 9500 Gilman Dr. San Diego, La Jolla, CA 92093, USA.
| | - Alison Lao
- Department of NanoEngineering, University of California, 9500 Gilman Dr. San Diego, La Jolla, CA 92093, USA.
| | - Claire Yu
- Department of NanoEngineering, University of California, 9500 Gilman Dr. San Diego, La Jolla, CA 92093, USA.
| | - Nan Hao
- Department of Section of Molecular Biology, Division of Biological Sciences, University of California, 9500 Gilman Dr. San Diego, La Jolla, CA, 92093, USA.
| | - Samuel R Ward
- Department of Bioengineering, University of California, 9500 Gilman Dr. San Diego, La Jolla, CA 92093, USA; Department of Orthopaedic Surgery, University of California, 9500 Gilman Dr. San Diego, La Jolla, CA 92093, USA; Department of Radiology, University of California, 9500 Gilman Dr. San Diego, La Jolla, CA 92093, USA.
| | - Shaochen Chen
- Department of Bioengineering, University of California, 9500 Gilman Dr. San Diego, La Jolla, CA 92093, USA; Department of NanoEngineering, University of California, 9500 Gilman Dr. San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
10
|
Zhou S, Li P, Liu J, Liao J, Li H, Chen L, Li Z, Guo Q, Belguise K, Yi B, Wang X. Two Rac1 pools integrate the direction and coordination of collective cell migration. Nat Commun 2022; 13:6014. [PMID: 36224221 PMCID: PMC9556596 DOI: 10.1038/s41467-022-33727-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/30/2022] [Indexed: 11/11/2022] Open
Abstract
Integration of collective cell direction and coordination is believed to ensure collective guidance for efficient movement. Previous studies demonstrated that chemokine receptors PVR and EGFR govern a gradient of Rac1 activity essential for collective guidance of Drosophila border cells, whose mechanistic insight is unknown. By monitoring and manipulating subcellular Rac1 activity, here we reveal two switchable Rac1 pools at border cell protrusions and supracellular cables, two important structures responsible for direction and coordination. Rac1 and Rho1 form a positive feedback loop that guides mechanical coupling at cables to achieve migration coordination. Rac1 cooperates with Cdc42 to control protrusion growth for migration direction, as well as to regulate the protrusion-cable exchange, linking direction and coordination. PVR and EGFR guide correct Rac1 activity distribution at protrusions and cables. Therefore, our studies emphasize the existence of a balance between two Rac1 pools, rather than a Rac1 activity gradient, as an integrator for the direction and coordination of collective cell migration. Previous studies suggested a chemokine receptor governed gradient of Rac1 activity is essential for collective guidance of Drosophila border cells. Here, Zhou et al. report that two distinct Rac1 pools at protrusions and cables, not Rac1 activity gradient, integrate the direction and coordination for collective guidance.
Collapse
Affiliation(s)
- Sijia Zhou
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Peng Li
- Department of Anaesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiaying Liu
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France.,Department of Anaesthesiology, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Juan Liao
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Li
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Lin Chen
- Department of Anaesthesiology, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhihua Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Qiongyu Guo
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Karine Belguise
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Bin Yi
- Department of Anaesthesiology, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China.
| | - Xiaobo Wang
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
11
|
Wang PY, Chakraborty A, Ma HJ, Wu JW, Jang ACC, Lin WC, Pi HW, Yeh CT, Cheng ML, Yu JS, Pai LM. Drosophila CTP synthase regulates collective cell migration by controlling the polarized endocytic cycle. Development 2022; 149:276132. [DOI: 10.1242/dev.200190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 07/12/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Phosphatidylinositol (PI) 4,5-bisphosphate (PIP2) is involved in many biological functions. However, the mechanisms of PIP2 in collective cell migration remain elusive. This study highlights the regulatory role of cytidine triphosphate synthase (CTPsyn) in collective border cell migration through regulating the asymmetrical distribution of PIP2. We demonstrated that border cell clusters containing mutant CTPsyn cells suppressed migration. CTPsyn was co-enriched with Actin at the leading edge of the Drosophila border cell cluster where PIP2 was enriched, and this enrichment depended on the CTPsyn activity. Genetic interactions of border cell migration were found between CTPsyn mutant and genes in PI biosynthesis. The CTPsyn reduction resulted in loss of the asymmetric activity of endocytosis recycling. Also, genetic interactions were revealed between components of the exocyst complex and CTPsyn mutant, indicating that CTPsyn activity regulates the PIP2-related asymmetrical exocytosis activity. Furthermore, CTPsyn activity is essential for RTK-polarized distribution in the border cell cluster. We propose a model in which CTPsyn activity is required for the asymmetrical generation of PIP2 to enrich RTK signaling through endocytic recycling in collective cell migration.
Collapse
Affiliation(s)
- Pei-Yu Wang
- College of Medicine, Chang Gung University 1 Department of Biochemistry and Molecular Biology , , Taoyuan 33302 , Taiwan
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University 2 , Taoyuan 33302 , Taiwan
| | - Archan Chakraborty
- College of Medicine, Chang Gung University 1 Department of Biochemistry and Molecular Biology , , Taoyuan 33302 , Taiwan
- Duke University 3 Pharmacology and Cancer Biology , , Durham, NC 27705 , USA
| | - Hsin-Ju Ma
- College of Medicine, Chang Gung University 1 Department of Biochemistry and Molecular Biology , , Taoyuan 33302 , Taiwan
| | - Jhen-Wei Wu
- National Cheng Kung University 4 Department of Biotechnology and Bioindustry Sciences , , Tainan City 701 , Taiwan
| | - Anna C.-C. Jang
- National Cheng Kung University 4 Department of Biotechnology and Bioindustry Sciences , , Tainan City 701 , Taiwan
| | - Wei-Cheng Lin
- College of Medicine, Chang Gung University 1 Department of Biochemistry and Molecular Biology , , Taoyuan 33302 , Taiwan
- Molecular Medicine Research Center, Chang Gung University 5 , Taoyuan 33302 , Taiwan
| | - Hai-Wei Pi
- Department of Biomedical Sciences, College of Medicine, Chang Gung University 6 , Taoyuan 33302 , Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University 7 , Taoyuan 33302 , Taiwan
| | - Chau-Ting Yeh
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University 7 , Taoyuan 33302 , Taiwan
- Liver Research Center, Chang Gung Memorial Hospital 8 , Linkou 333423 , Taiwan
| | - Mei-Ling Cheng
- Department of Biomedical Sciences, College of Medicine, Chang Gung University 6 , Taoyuan 33302 , Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University 7 , Taoyuan 33302 , Taiwan
- Healthy Aging Research Center, Chang Gung University 9 , Taoyuan 33302 , Taiwan
- Chang Gung Memorial Hospital 10 Clinical Metabolomics Core Laboratory , , Linkou 333423 , Taiwan
| | - Jau-Song Yu
- College of Medicine, Chang Gung University 1 Department of Biochemistry and Molecular Biology , , Taoyuan 33302 , Taiwan
- Molecular Medicine Research Center, Chang Gung University 5 , Taoyuan 33302 , Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University 7 , Taoyuan 33302 , Taiwan
- Liver Research Center, Chang Gung Memorial Hospital 8 , Linkou 333423 , Taiwan
| | - Li-Mei Pai
- College of Medicine, Chang Gung University 1 Department of Biochemistry and Molecular Biology , , Taoyuan 33302 , Taiwan
- Molecular Medicine Research Center, Chang Gung University 5 , Taoyuan 33302 , Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University 7 , Taoyuan 33302 , Taiwan
- Liver Research Center, Chang Gung Memorial Hospital 8 , Linkou 333423 , Taiwan
| |
Collapse
|
12
|
González-Ramírez MC, Rojo-Cortés F, Candia N, Garay-Montecinos J, Guzmán-Palma P, Campusano JM, Oliva C. Autocrine/Paracrine Slit–Robo Signaling Controls Optic Lobe Development in Drosophila melanogaster. Front Cell Dev Biol 2022; 10:874362. [PMID: 35982851 PMCID: PMC9380857 DOI: 10.3389/fcell.2022.874362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
Cell segregation mechanisms play essential roles during the development of the central nervous system (CNS) to support its organization into distinct compartments. The Slit protein is a secreted signal, classically considered a paracrine repellent for axonal growth through Robo receptors. However, its function in the compartmentalization of CNS is less explored. In this work, we show that Slit and Robo3 are expressed in the same neuronal population of the Drosophila optic lobe, where they are required for the correct compartmentalization of optic lobe neuropils by the action of an autocrine/paracrine mechanism. We characterize the endocytic route followed by the Slit/Robo3 complex and detected genetic interactions with genes involved in endocytosis and actin dynamics. Thus, we report that the Slit-Robo3 pathway regulates the morphogenesis of the optic lobe through an atypical autocrine/paracrine mechanism in addition to its role in axon guidance, and in association with proteins of the endocytic pathway and small GTPases.
Collapse
|
13
|
Qu C, Yang W, Kan Y, Zuo H, Wu M, Zhang Q, Wang H, Wang D, Chen J. RhoA/ROCK Signaling Regulates Drp1-Mediated Mitochondrial Fission During Collective Cell Migration. Front Cell Dev Biol 2022; 10:882581. [PMID: 35712666 PMCID: PMC9194559 DOI: 10.3389/fcell.2022.882581] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Collective migration plays critical roles in developmental, physiological and pathological processes, and requires a dynamic actomyosin network for cell shape change, cell adhesion and cell-cell communication. The dynamic network of mitochondria in individual cells is regulated by mitochondrial fission and fusion, and is required for cellular processes including cell metabolism, apoptosis and cell division. But whether mitochondrial dynamics interplays with and regulates actomyosin dynamics during collective migration is not clear. Here, we demonstrate that proper regulation of mitochondrial dynamics is critical for collective migration of Drosophila border cells during oogenesis, and misregulation of fission or fusion results in reduction of ATP levels. Specifically, Drp1 is genetically required for border cell migration, and Drp1-mediated mitochondrial fission promotes formation of leading protrusion, likely through its regulation of ATP levels. Reduction of ATP levels by drug treatment also affects protrusion formation as well as actomyosin dynamics. Importantly, we find that RhoA/ROCK signaling, which is essential for actin and myosin dynamics during border cell migration, could exert its effect on mitochondrial fission through regulating Drp1’s recruitment to mitochondria. These findings suggest that RhoA/ROCK signaling may couple or coordinate actomyosin dynamics with mitochondrial dynamics to achieve optimal actomyosin function, leading to protrusive and migratory behavior.
Collapse
Affiliation(s)
- Chen Qu
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Wen Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Yating Kan
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Hui Zuo
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Mengqi Wu
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Qing Zhang
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Heng Wang
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Heng Wang, ; Dou Wang, ; Jiong Chen,
| | - Dou Wang
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Heng Wang, ; Dou Wang, ; Jiong Chen,
| | - Jiong Chen
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Heng Wang, ; Dou Wang, ; Jiong Chen,
| |
Collapse
|
14
|
Recent Advances on Bacterial Cellulose-Based Wound Management: Promises and Challenges. INT J POLYM SCI 2022. [DOI: 10.1155/2022/1214734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Wound healing is a therapeutic challenge due to the complexity of the wound. Various wounds could cause severe physiological trauma and bring social and economic burdens to the patient. The conventional wound healing treatments using bandages and gauze are limited particularly due to their susceptibility to infection. Different types of wound dressing have developed in different physical forms such as sponges, hydrocolloids, films, membranes, and hydrogels. Each of these formulations possesses distinct characteristics making them appropriate for the treatment of a specific wound. In this review, the pathology and microbiology of wounds are introduced. Then, the most recent progress on bacterial cellulose- (BC-) based wound dressing discussed and highlighted their antibacterial and reepithelization properties in vitro and in vivo wound closure. Finally, the challenges and future perspectives on the development of BC-based wound dressing biomaterials are outlined.
Collapse
|
15
|
Felix M, Prasad M. Mapping Asymmetry in Collective Cell Migration: Lessons from Border Cells in Drosophila Oogenesis. Methods Mol Biol 2022; 2438:483-494. [PMID: 35147959 DOI: 10.1007/978-1-0716-2035-9_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Asymmetry in the migrating group of cells is critical for efficient directed movement observed in normal development and in pathological conditions like tumor cell metastasis. This is conspicuously detected at the level of polarized protrusions and differential localization of various polarity proteins in collectively moving clusters. Over the years, border cell migration in Drosophila oogenesis has emerged as an excellent model system for studying polarity in the migrating group of cells. Here we report two protocols employing live cell imaging and tissue immunohistochemistry to evaluate the polarity in migrating border cell clusters.
Collapse
Affiliation(s)
- Martina Felix
- Department of Biological Sciences, Indian Institute of Science Education and Research-Kolkata, Nadia, West Bengal, India
| | - Mohit Prasad
- Department of Biological Sciences, Indian Institute of Science Education and Research-Kolkata, Nadia, West Bengal, India.
| |
Collapse
|
16
|
Wiener GI, Kadosh D, Weihs D. Mechanical interactions of invasive cancer cells through their substrate evolve from additive to synergistic. J Biomech 2021; 129:110759. [PMID: 34601215 DOI: 10.1016/j.jbiomech.2021.110759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/19/2021] [Accepted: 09/16/2021] [Indexed: 01/18/2023]
Abstract
Non-contacting, adjacent cancer cells can mechanically interact through their substrate to increase their invasive and migratory capacities that underly metastases-formation. Such mechanical interactions may induce additive or synergistic enhancement of invasiveness, potentially indicating different underlying force-mechanisms. To identify cell-cell-gel interactions, we monitor the time-evolution of three-dimensional traction strains induced by MDA-MB-231 breast cancer cells adhering on physiological-stiffness (1.8 kPa) collagen gels and compare to simulations. Single metastatic cells apply strain energies of 0.2-2 pJ (average 0.51 ± 0.06 pJ) at all observation times (30-174 min) inducing a mechanical volume-of-effect in the collagen gel that is initially (<60 min from seeding) on the cell-volume scale (∼3000 µm3) and on average increases with time from cell seeding. When cells adhere closely adjacent, at short times (<60 min) we distinguish the additive contributions of neighboring cells to the strains, while at longer times strain fields are synergistically amplified and may facilitate increased cooperative/collective cancer-cell-invasiveness. The results of well-spaced and closely adjacent cells at short times match our simulations of additive deformations induced by radially applied strains with experimentally based inverse-distance decay. We thus reveal a time-dependent evolution from additive to synergistic interactions of adjacently adhering cells that may facilitate metastatic invasion.
Collapse
Affiliation(s)
- Guy I Wiener
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Dana Kadosh
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel(1)
| | - Daphne Weihs
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
17
|
Jiang N, Mao M, Li X, Zhang W, He J, Li D. Advanced biofabrication strategies for biomimetic composite scaffolds to regenerate ligament‐bone interface. BIOSURFACE AND BIOTRIBOLOGY 2021. [DOI: 10.1049/bsb2.12021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Nan Jiang
- State Key Laboratory for Manufacturing Systems Engineering Xi’an Jiaotong University Xi’an Shaanxi China
- Department of Surgical Oncology Shaanxi Provincial People’s Hospital (Third Hospital of Medical College of Xi’an Jiaotong University) Xi’an Shaanxi China
| | - Mao Mao
- State Key Laboratory for Manufacturing Systems Engineering Xi’an Jiaotong University Xi’an Shaanxi China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices Xi’an Jiaotong University Xi’an Shaanxi China
| | - Xiao Li
- State Key Laboratory for Manufacturing Systems Engineering Xi’an Jiaotong University Xi’an Shaanxi China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices Xi’an Jiaotong University Xi’an Shaanxi China
| | - Weijie Zhang
- Department of Knee Joint Surgery Hong Hui Hospital Health Science Center Xi’an Jiaotong University Xi’an Shaanxi China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering Xi’an Jiaotong University Xi’an Shaanxi China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices Xi’an Jiaotong University Xi’an Shaanxi China
| | - Dichen Li
- State Key Laboratory for Manufacturing Systems Engineering Xi’an Jiaotong University Xi’an Shaanxi China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices Xi’an Jiaotong University Xi’an Shaanxi China
| |
Collapse
|
18
|
Regulation of collective cell polarity and migration using dynamically adhesive micropatterned substrates. Acta Biomater 2021; 126:291-300. [PMID: 33741539 DOI: 10.1016/j.actbio.2021.03.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022]
Abstract
Collective cell migration is a fundamental biological process in which groups of cells move together in a coordinated manner, and it is essential for tissue development and wound repair. However, the underlying mechanisms that orchestrate directionality in collectively migrating cells remain poorly understood. In this study, we employed dynamically adhesive micropatterned substrates to investigate the role of adhesive cues in directing epithelial migration. Our findings demonstrate that epithelial cells collectively polarize in response to asymmetric patterns of extracellular matrix (ECM), and the degree of polarization depends on the degree of asymmetry and requires calcium-dependent cell-cell adhesion. When released from the micropatterns, epithelial cells collectively migrate according to the direction of pre-established polarity, and cohesive migration specifically requires E-cadherin-containing adherens junctions. Finally, disruption of the microtubule network blocks collective polarization and functionally inhibits directed migration. Together, these results indicate that adhesive cues from the ECM guide collective epithelial polarity and migration, and this response depends on adherens junctions and microtubules. STATEMENT OF SIGNIFICANCE: This study employs a dynamically adhesive micropatterning platform to investigate the role of adhesive cues in directing the polarity and directional migration of epithelial cells. The findings demonstrate how asymmetric tissue geometry influences the collective directionality in simple epithelia and that this response is mediated by adherens junctions and the microtubule network. This work provides new insight into fundamental cellular processes involved in wound healing and has important implications for biomaterial and scaffold design.
Collapse
|
19
|
Colak-Champollion T, Lan L, Jadhav AR, Yamaguchi N, Venkiteswaran G, Patel H, Cammer M, Meier-Schellersheim M, Knaut H. Cadherin-Mediated Cell Coupling Coordinates Chemokine Sensing across Collectively Migrating Cells. Curr Biol 2020; 29:2570-2579.e7. [PMID: 31386838 DOI: 10.1016/j.cub.2019.06.061] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/08/2019] [Accepted: 06/21/2019] [Indexed: 10/26/2022]
Abstract
The directed migration of cells sculpts the embryo, contributes to homeostasis in the adult, and, when dysregulated, underlies many diseases [1, 2]. During these processes, cells move singly or as a collective. In both cases, they follow guidance cues, which direct them to their destination [3-6]. In contrast to single cells, collectively migrating cells need to coordinate with their neighbors to move together in the same direction. Recent studies suggest that leader cells in the front sense the guidance cue, relay the directional information to the follower cells in the back, and can pull the follower cells along [7-19]. In this manner, leader cells steer the collective and set the collective's overall speed. However, whether follower cells also participate in steering and speed setting of the collective is largely unclear. Using chimeras, we analyzed the role of leader and follower cells in the collectively migrating zebrafish posterior lateral line primordium. This tissue expresses the chemokine receptor Cxcr4 and is guided by the chemokine Cxcl12a [20-23]. We find that leader and follower cells need to sense the attractant Cxcl12a for efficient migration, are coupled to each other through cadherins, and require coupling to pull Cxcl12a-insensitive cells along. Analysis of cell dynamics in chimeric and protein-depleted primordia shows that Cxcl12a-sensing and cadherin-mediated adhesion contribute jointly to direct migration at both single-cell and tissue levels. These results suggest that all cells in the primordium need to sense the attractant and adhere to each other to coordinate their movements and migrate with robust directionality.
Collapse
Affiliation(s)
- Tugba Colak-Champollion
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Ling Lan
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Alisha R Jadhav
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Naoya Yamaguchi
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Gayatri Venkiteswaran
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Heta Patel
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Michael Cammer
- NYU Langone's Microscopy Laboratory, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Martin Meier-Schellersheim
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Holger Knaut
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
20
|
Alexandrova AY, Chikina AS, Svitkina TM. Actin cytoskeleton in mesenchymal-to-amoeboid transition of cancer cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:197-256. [PMID: 33066874 DOI: 10.1016/bs.ircmb.2020.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During development of metastasis, tumor cells migrate through different tissues and encounter different extracellular matrices. An ability of cells to adapt mechanisms of their migration to these diverse environmental conditions, called migration plasticity, gives tumor cells an advantage over normal cells for long distant dissemination. Different modes of individual cell motility-mesenchymal and amoeboid-are driven by different molecular mechanisms, which largely depend on functions of the actin cytoskeleton that can be modulated in a wide range by cellular signaling mechanisms in response to environmental conditions. Various triggers can switch one motility mode to another, but regulations of these transitions are incompletely understood. However, understanding of the mechanisms driving migration plasticity is instrumental for finding anti-cancer treatment capable to stop cancer metastasis. In this review, we discuss cytoskeletal features, which allow the individually migrating cells to switch between mesenchymal and amoeboid migrating modes, called mesenchymal-to-amoeboid transition (MAT). We briefly describe main characteristics of different cell migration modes, and then discuss the triggering factors that initiate MAT with special attention to cytoskeletal features essential for migration plasticity.
Collapse
Affiliation(s)
- Antonina Y Alexandrova
- Laboratory of Mechanisms of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Moscow, Russia.
| | - Aleksandra S Chikina
- Cell Migration and Invasion and Spatio-Temporal Regulation of Antigen Presentation teams, UMR144/U932 Institut Curie, Paris, France
| | - Tatyana M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
21
|
Roveimiab Z, Lin F, Anderson JE. Traction and attraction: haptotaxis substrates collagen and fibronectin interact with chemotaxis by HGF to regulate myoblast migration in a microfluidic device. Am J Physiol Cell Physiol 2020; 319:C75-C92. [PMID: 32348173 DOI: 10.1152/ajpcell.00417.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell migration is central to development, wound healing, tissue regeneration, and immunity. Despite extensive knowledge of muscle regeneration, myoblast migration during regeneration is not well understood. C2C12 mouse myoblast migration and morphology were investigated using a triple-docking polydimethylsiloxane-based microfluidic device in which cells moved under gravity-driven laminar flow on uniform (=) collagen (CN=), fibronectin (FN=), or opposing gradients (CN-FN or FN-CN). In haptotaxis experiments, migration was faster on FN= than on CN=. At 10 h, cells were more elongated on FN-CN and migration was faster than on the CN-FN substrate. Net migration distance on FN-CN at 10 h was greater than on CN-FN, as cells rapidly entered the channel as a larger population (bulk-cell movement, wave 1). Hepatocyte growth factor (HGF) stimulated rapid chemotaxis on FN= but not CN=, increasing migration speed at 10 h early in the channel at low HGF in a steep HGF gradient. HGF accelerated migration on FN= and bulk-cell movement on both uniform substrates. An HGF gradient also slowed cells in wave 2 moving on FN-CN, not CN-FN. Both opposing-gradient substrates affected the shape, speed, and net distance of migrating cells. Gradient and uniform configurations of HGF and substrate differentially influenced migration behavior. Therefore, haptotaxis substrate configuration potently modifies myoblast chemotaxis by HGF. Innovative microfluidic experiments advance our understanding of intricate complexities of myoblast migration. Findings can be leveraged to engineer muscle-tissue volumes for transplantation after serious injury. New analytical approaches may generate broader insights into cell migration.
Collapse
Affiliation(s)
- Ziba Roveimiab
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Francis Lin
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Judy E Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
22
|
High Content Imaging of Barrett's-Associated High-Grade Dysplasia Cells After siRNA Library Screening Reveals Acid-Responsive Regulators of Cellular Transitions. Cell Mol Gastroenterol Hepatol 2020; 10:601-622. [PMID: 32416156 PMCID: PMC7408447 DOI: 10.1016/j.jcmgh.2020.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Esophageal adenocarcinoma (EAC) develops from within Barrett's esophagus (BE) concomitant with gastroesophageal reflux disease (GERD). Wound healing processes and cellular transitions, such as epithelial-mesenchymal transitions, may contribute to the development of BE and the eventual migratory escape of metastatic cancer cells. Herein, we attempt to identify the genes underlying esophageal cellular transitions and their potential regulation by the low pH environments observed in GERD and commonly encountered by escaping cancer cells. METHODS Small interfering RNA library screening and high-content imaging analysis outlined changes in BE high-grade dysplasia (HGD) and EAC cell morphologies after gene silencing. Gene expression microarray data and low pH exposures studies modeling GERD-associated pulses (pH 4.0, 10 min) and tumor microenvironments (pH 6.0, constant) were used. RESULTS Statistical analysis of small interfering RNA screening data defined 207 genes (Z-score >2.0), in 12 distinct morphologic clusters, whose suppression significantly altered BE-HGD cell morphology. The most significant genes in this list included KIF11, RRM2, NUBP2, P66BETA, DUX1, UBE3A, ITGB8, GAS1, GPS1, and PRC1. Guided by gene expression microarray study data, both pulsatile and constant low pH exposures were observed to suppress the expression of GPS1 and RRM2 in a nonoverlapping temporal manner in both BE-HGD and EAC cells, with no changes observed in squamous esophageal cells. Functional studies uncovered that GPS1 and RRM2 contributed to amoeboid and mesenchymal cellular transitions, respectively, as characterized by differential rates of cell motility, pseudopodia formation, and altered expression of the mesenchymal markers vimentin and E-cadherin. CONCLUSIONS Collectively, we have shown that low pH microenvironments associated with GERD, and tumor invasive edges, can modulate the expression of genes that triggered esophageal cellular transitions potentially critical to colonization and invasion.
Collapse
|
23
|
Jiang N, He J, Zhang W, Li D, Lv Y. Directed differentiation of BMSCs on structural/compositional gradient nanofibrous scaffolds for ligament-bone osteointegration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110711. [DOI: 10.1016/j.msec.2020.110711] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/26/2020] [Accepted: 01/30/2020] [Indexed: 12/11/2022]
|
24
|
Anguiano M, Morales X, Castilla C, Pena AR, Ederra C, Martínez M, Ariz M, Esparza M, Amaveda H, Mora M, Movilla N, Aznar JMG, Cortés-Domínguez I, Ortiz-de-Solorzano C. The use of mixed collagen-Matrigel matrices of increasing complexity recapitulates the biphasic role of cell adhesion in cancer cell migration: ECM sensing, remodeling and forces at the leading edge of cancer invasion. PLoS One 2020; 15:e0220019. [PMID: 31945053 PMCID: PMC6964905 DOI: 10.1371/journal.pone.0220019] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/02/2020] [Indexed: 11/19/2022] Open
Abstract
The migration of cancer cells is highly regulated by the biomechanical properties of their local microenvironment. Using 3D scaffolds of simple composition, several aspects of cancer cell mechanosensing (signal transduction, EMC remodeling, traction forces) have been separately analyzed in the context of cell migration. However, a combined study of these factors in 3D scaffolds that more closely resemble the complex microenvironment of the cancer ECM is still missing. Here, we present a comprehensive, quantitative analysis of the role of cell-ECM interactions in cancer cell migration within a highly physiological environment consisting of mixed Matrigel-collagen hydrogel scaffolds of increasing complexity that mimic the tumor microenvironment at the leading edge of cancer invasion. We quantitatively show that the presence of Matrigel increases hydrogel stiffness, which promotes β1 integrin expression and metalloproteinase activity in H1299 lung cancer cells. Then, we show that ECM remodeling activity causes matrix alignment and compaction that favors higher tractions exerted by the cells. However, these traction forces do not linearly translate into increased motility due to a biphasic role of cell adhesions in cell migration: at low concentration Matrigel promotes migration-effective tractions exerted through a high number of small sized focal adhesions. However, at high Matrigel concentration, traction forces are exerted through fewer, but larger focal adhesions that favor attachment yielding lower cell motility.
Collapse
Affiliation(s)
- María Anguiano
- IDISNA, Ciberonc and Solid Tumours and Biomarkers Program, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Xabier Morales
- IDISNA, Ciberonc and Solid Tumours and Biomarkers Program, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Carlos Castilla
- IDISNA, Ciberonc and Solid Tumours and Biomarkers Program, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Alejandro Rodríguez Pena
- IDISNA, Ciberonc and Solid Tumours and Biomarkers Program, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Cristina Ederra
- IDISNA, Ciberonc and Solid Tumours and Biomarkers Program, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Martín Martínez
- Neuroimaging Laboratory, Division of Neurosciences, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Mikel Ariz
- IDISNA, Ciberonc and Solid Tumours and Biomarkers Program, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Maider Esparza
- IDISNA, Ciberonc and Solid Tumours and Biomarkers Program, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Hippolyte Amaveda
- Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - Mario Mora
- Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - Nieves Movilla
- Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - José Manuel García Aznar
- Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - Iván Cortés-Domínguez
- IDISNA, Ciberonc and Solid Tumours and Biomarkers Program, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Carlos Ortiz-de-Solorzano
- IDISNA, Ciberonc and Solid Tumours and Biomarkers Program, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
- * E-mail:
| |
Collapse
|
25
|
Rap1 Negatively Regulates the Hippo Pathway to Polarize Directional Protrusions in Collective Cell Migration. Cell Rep 2019; 22:2160-2175. [PMID: 29466741 DOI: 10.1016/j.celrep.2018.01.080] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 12/12/2017] [Accepted: 01/25/2018] [Indexed: 02/08/2023] Open
Abstract
In collective cell migration, directional protrusions orient cells in response to external cues, which requires coordinated polarity among the migrating cohort. However, the molecular mechanism has not been well defined. Drosophila border cells (BCs) migrate collectively and invade via the confined space between nurse cells, offering an in vivo model to examine how group polarity is organized. Here, we show that the front/back polarity of BCs requires Rap1, hyperactivation of which disrupts cluster polarity and induces misoriented protrusions and loss of asymmetry in the actin network. Conversely, hypoactive Rap1 causes fewer protrusions and cluster spinning during migration. A forward genetic screen revealed that downregulation of the Hippo (Hpo) pathway core components hpo or mats enhances the Rap1V12-induced migration defect and misdirected protrusions. Mechanistically, association of Rap1V12 with the kinase domain of Hpo suppresses its activity, which releases Hpo signaling-mediated suppression of F-actin elongation, promoting cellular protrusions in collective cell migration.
Collapse
|
26
|
Le LV, Mkrtschjan MA, Russell B, Desai TA. Hang on tight: reprogramming the cell with microstructural cues. Biomed Microdevices 2019; 21:43. [PMID: 30955102 PMCID: PMC6791714 DOI: 10.1007/s10544-019-0394-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cells interact intimately with complex microdomains in their extracellular matrix (ECM) and maintain a delicate balance of mechanical forces through mechanosensitive cellular components. Tissue injury results in acute degradation of the ECM and disruption of cell-ECM contacts, manifesting in loss of cytoskeletal tension, leading to pathological cell transformation and the onset of disease. Recently, microscale hydrogel constructs have been developed to provide cells with microdomains to form focal adhesion binding sites, which enable restoration of cytoskeletal tension. These synthetic anchors can recapitulate the complex 3D architecture of the native ECM to provide microtopographical cues. The mechanical deformation of proteins at the cell surface can activate signaling cascades to modulate downstream gene-level transcription, making this a unique materials-based approach for reprogramming cell behavior. An overview of the mechanisms underlying these mechanosensitive interactions in fibroblasts, stem and other cell types is provided to review their effects on cellular reprogramming. Recent investigations on the fabrication, functionalization and implementation of these materials and microtopographical features for drug testing and therapeutic applications are discussed.
Collapse
Affiliation(s)
- Long V Le
- Department of Bioengineering and Therapeutic Sciences, University of California, 1700 4th St Rm 204, San Francisco, CA, 94158, USA
| | - Michael A Mkrtschjan
- Department of Bioengineering, University of Illinois, Chicago, 835 S. Wolcott, Chicago, IL, 60612, USA
| | - Brenda Russell
- Department of Physiology and Biophysics, University of Illinois, Chicago, 835 S. Wolcott, Chicago, IL, 60612, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, 1700 4th St Rm 204, San Francisco, CA, 94158, USA.
| |
Collapse
|
27
|
Yu C, Ma X, Zhu W, Wang P, Miller KL, Stupin J, Koroleva-Maharajh A, Hairabedian A, Chen S. Scanningless and continuous 3D bioprinting of human tissues with decellularized extracellular matrix. Biomaterials 2019; 194:1-13. [PMID: 30562651 PMCID: PMC6339581 DOI: 10.1016/j.biomaterials.2018.12.009] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/02/2018] [Accepted: 12/08/2018] [Indexed: 12/11/2022]
Abstract
Decellularized extracellular matrices (dECMs) have demonstrated excellent utility as bioscaffolds in recapitulating the complex biochemical microenvironment, however, their use as bioinks in 3D bioprinting to generate functional biomimetic tissues has been limited by their printability and lack of tunable physical properties. Here, we describe a method to produce photocrosslinkable tissue-specific dECM bioinks for fabricating patient-specific tissues with high control over complex microarchitecture and mechanical properties using a digital light processing (DLP)-based scanningless and continuous 3D bioprinter. We demonstrated that tissue-matched dECM bioinks provided a conducive environment for maintaining high viability and maturation of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes and hepatocytes. Microscale patterning also guided spontaneous cellular reorganization into predesigned striated heart and lobular liver structures through biophysical cues. Our methodology enables a light-based approach to rapidly bioprint dECM bioinks with accurate tissue-scale design to engineer physiologically-relevant functional human tissues for applications in biology, regenerative medicine, and diagnostics.
Collapse
Affiliation(s)
- Claire Yu
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Xuanyi Ma
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Wei Zhu
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Pengrui Wang
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Kathleen L Miller
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Jacob Stupin
- Chemical Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Anna Koroleva-Maharajh
- Chemical Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Alexandria Hairabedian
- Chemical Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Shaochen Chen
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA; Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA; Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA; Chemical Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
28
|
de Groot SC, Sliedregt K, van Benthem PPG, Rivolta MN, Huisman MA. Building an Artificial Stem Cell Niche: Prerequisites for Future 3D-Formation of Inner Ear Structures-Toward 3D Inner Ear Biotechnology. Anat Rec (Hoboken) 2019; 303:408-426. [PMID: 30635991 PMCID: PMC7065153 DOI: 10.1002/ar.24067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/03/2018] [Accepted: 08/23/2018] [Indexed: 01/19/2023]
Abstract
In recent years, there has been an increased interest in stem cells for the purpose of regenerative medicine to deliver a wide range of therapies to treat many diseases. However, two‐dimensional cultures of stem cells are of limited use when studying the mechanism of pathogenesis of diseases and the feasibility of a treatment. Therefore, research is focusing on the strengths of stem cells in the three‐dimensional (3D) structures mimicking organs, that is, organoids, or organ‐on‐chip, for modeling human biology and disease. As 3D technology advances, it is necessary to know which signals stem cells need to multiply and differentiate into complex structures. This holds especially true for the complex 3D structure of the inner ear. Recent work suggests that although other factors play a role, the extracellular matrix (ECM), including its topography, is crucial to mimic a stem cell niche in vitro and to drive stem cells toward the formation of the tissue of interest. Technological developments have led to the investigation of biomaterials that closely resemble the native ECM. In the fast forward moving research of organoids and organs‐on‐chip, the inner ear has hardly received attention. This review aims to provide an overview, by describing the general context in which cells, matrix and morphogens cooperate in order to build a tissue, to facilitate research in 3D inner ear technology. Anat Rec, 303:408–426, 2020. © 2019 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.
Collapse
Affiliation(s)
| | - Karen Sliedregt
- Wageningen University and Research, Wageningen, the Netherlands
| | - Peter Paul G van Benthem
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Marcelo N Rivolta
- Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Margriet A Huisman
- Hair Science Institute, Maastricht, Maastricht, the Netherlands.,Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
29
|
Torroba B, Herrera A, Menendez A, Pons S. PI3K regulates intraepithelial cell positioning through Rho GTP-ases in the developing neural tube. Dev Biol 2018; 436:42-54. [DOI: 10.1016/j.ydbio.2018.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 12/25/2022]
|
30
|
A hybrid computational model for collective cell durotaxis. Biomech Model Mechanobiol 2018; 17:1037-1052. [DOI: 10.1007/s10237-018-1010-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/17/2018] [Indexed: 12/17/2022]
|
31
|
Yan H, Wu L, Shih C, Hou S, Shi J, Mao T, Chen W, Melvin B, Rigby RJ, Chen Y, Jiang H, Friedel RH, Vinuesa CG, Qi H. Plexin B2 and Semaphorin 4C Guide T Cell Recruitment and Function in the Germinal Center. Cell Rep 2018; 19:995-1007. [PMID: 28467912 DOI: 10.1016/j.celrep.2017.04.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 02/20/2017] [Accepted: 04/06/2017] [Indexed: 01/05/2023] Open
Abstract
Follicular T helper (TFH) cells orchestrate the germinal center (GC) response locally. TFH localization in GCs is controlled by chemo-guidance cues and antigen-specific adhesion. Here. we define an antigen-independent, contact-dependent, adhesive guidance system for TFH cells. Unusual for amoeboid cell migration, the system is composed of transmembrane plexin B2 (PlxnB2) molecule, which is highly expressed by GC B cells, and its transmembrane binding partner semaphorin 4C (Sema4C), which is upregulated on TFH cells. Sema4C on TFH cells serves as a receptor to sense the GC-presented PlxnB2 cue and biases TFH migration inwards at the GC edge to promote GC access. The absence of PlxnB2 from the GC or Sema4C from TFH cells causes TFH accumulation along the GC border, impairs T-B cell interactions in the GC, and is associated with defective plasma cell production and affinity maturation. Therefore, Sema4C and PlxnB2 regulate GC TFH recruitment and function and optimize antibody responses.
Collapse
Affiliation(s)
- Hu Yan
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Longyan Wu
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Changming Shih
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Shiyue Hou
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jingwen Shi
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tianyang Mao
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wenbin Chen
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bhavani Melvin
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Robert J Rigby
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Yingjia Chen
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haochen Jiang
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Roland H Friedel
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carola G Vinuesa
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Hai Qi
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
32
|
Aizel K, Clark AG, Simon A, Geraldo S, Funfak A, Vargas P, Bibette J, Vignjevic DM, Bremond N. A tuneable microfluidic system for long duration chemotaxis experiments in a 3D collagen matrix. LAB ON A CHIP 2017; 17:3851-3861. [PMID: 29022983 DOI: 10.1039/c7lc00649g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In many cell types, migration can be oriented towards a chemical stimulus. In mammals, for example, embryonic cells migrate to follow developmental cues, immune cells migrate toward sites of inflammation, and cancer cells migrate away from the primary tumour and toward blood vessels during metastasis. Understanding how cells migrate in 3D environments in response to chemical cues is thus crucial to understanding directed migration in normal and disease states. To date, chemotaxis in mammalian cells has been primarily studied using 2D migration models. However, it is becoming increasingly clear that the mechanisms by which cells migrate in 2D and 3D environments dramatically differ, and cells in their native environments are confronted with a complex chemical milieu. To address these issues, we developed a microfluidic device to monitor the behaviour of cells embedded in a 3D collagen matrix in the presence of complex concentration fields of chemoattractants. This tuneable microsystem enables the generation of (1) homogeneous, stationary gradients set by a purely diffusive mechanism, or (2) spatially evolving, stationary gradients, set by a convection-diffusion mechanism. The device allows for stable gradients over several days and is large enough to study the behaviour of large cell aggregates. We observe that primary mature dendritic cells respond uniformly to homogeneous diffusion gradients, while cell behaviour is highly position-dependent in spatially variable convection-diffusion gradients. In addition, we demonstrate a directed response of cancer cells migrating away from tumour-like aggregates in the presence of soluble chemokine gradients. Together, this microfluidic device is a powerful system to observe the response of different cells and aggregates to tuneable chemical gradients.
Collapse
Affiliation(s)
- Koceila Aizel
- Laboratoire Colloïdes et Matériaux Divisés, CNRS UMR 8231, Chemistry Biology & Innovation, ESPCI Paris, PSL Research University, 10 rue Vauquelin, F-75005 Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Stepanik V, Dunipace L, Bae YK, Macabenta F, Sun J, Trisnadi N, Stathopoulos A. The migrations of Drosophila muscle founders and primordial germ cells are interdependent. Development 2017; 143:3206-15. [PMID: 27578182 DOI: 10.1242/dev.134346] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 07/29/2016] [Indexed: 12/31/2022]
Abstract
Caudal visceral mesoderm (CVM) cells migrate from posterior to anterior of the Drosophila embryo as two bilateral streams of cells to support the specification of longitudinal muscles along the midgut. To accomplish this long-distance migration, CVM cells receive input from their environment, but little is known about how this collective cell migration is regulated. In a screen we found that wunen mutants exhibit CVM cell migration defects. Wunens are lipid phosphate phosphatases known to regulate the directional migration of primordial germ cells (PGCs). PGC and CVM cell types interact while PGCs are en route to the somatic gonadal mesoderm, and previous studies have shown that CVM impacts PGC migration. In turn, we found here that CVM cells exhibit an affinity for PGCs, localizing to the position of PGCs whether mislocalized or trapped in the endoderm. In the absence of PGCs, CVM cells exhibit subtle changes, including more cohesive movement of the migrating collective, and an increased number of longitudinal muscles is found at anterior sections of the larval midgut. These data demonstrate that PGC and CVM cell migrations are interdependent and suggest that distinct migrating cell types can coordinately influence each other to promote effective cell migration during development.
Collapse
Affiliation(s)
- Vincent Stepanik
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Leslie Dunipace
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Young-Kyung Bae
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Frank Macabenta
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jingjing Sun
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nathanie Trisnadi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Angelike Stathopoulos
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
34
|
Devreotes PN, Bhattacharya S, Edwards M, Iglesias PA, Lampert T, Miao Y. Excitable Signal Transduction Networks in Directed Cell Migration. Annu Rev Cell Dev Biol 2017; 33:103-125. [PMID: 28793794 DOI: 10.1146/annurev-cellbio-100616-060739] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although directed migration of eukaryotic cells may have evolved to escape nutrient depletion, it has been adopted for an extensive range of physiological events during development and in the adult organism. The subversion of these movements results in disease, such as cancer. Mechanisms of propulsion and sensing are extremely diverse, but most eukaryotic cells move by extending actin-filled protrusions termed macropinosomes, pseudopodia, or lamellipodia or by extension of blebs. In addition to motility, directed migration involves polarity and directional sensing. The hundreds of gene products involved in these processes are organized into networks of parallel and interconnected pathways. Many of these components are activated or inhibited coordinately with stimulation and on each spontaneously extended protrusion. Moreover, these networks display hallmarks of excitability, including all-or-nothing responsiveness and wave propagation. Cellular protrusions result from signal transduction waves that propagate outwardly from an origin and drive cytoskeletal activity. The range of the propagating waves and hence the size of the protrusions can be altered by lowering or raising the threshold for network activation, with larger and wider protrusions favoring gliding or oscillatory behavior over amoeboid migration. Here, we evaluate the variety of models of excitable networks controlling directed migration and outline critical tests. We also discuss the utility of this emerging view in producing cell migration and in integrating the various extrinsic cues that direct migration.
Collapse
Affiliation(s)
- Peter N Devreotes
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205;
| | - Sayak Bhattacharya
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218
| | - Marc Edwards
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205;
| | - Pablo A Iglesias
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205; .,Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218
| | - Thomas Lampert
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205;
| | - Yuchuan Miao
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205;
| |
Collapse
|
35
|
Heyart B, Weidt A, Wisotzki EI, Zink M, Mayr SG. Micropatterning of reagent-free, high energy crosslinked gelatin hydrogels for bioapplications. J Biomed Mater Res B Appl Biomater 2017; 106:320-330. [PMID: 28140524 DOI: 10.1002/jbm.b.33849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/21/2016] [Accepted: 12/26/2016] [Indexed: 12/28/2022]
Abstract
Hydrogels are crosslinked polymeric gels of great interest in the field of tissue engineering, particularly as biocompatible cell or drug carriers. Reagent-free electron irradiated gelatin is simple to manufacture, inexpensive and biocompatible. Here, the potential to micropattern gelatin hydrogel surfaces during electron irradiation crosslinking was demonstrated as a promising microfabrication technique to produce thermally stable structures on highly relevant length scales for bioapplications. In the present work, grooves of 3.75 to 170 µm width and several hundred nanometers depth were transferred onto gelatin hydrogels during electron irradiation and characterized by 3D confocal microscopy after exposure to ambient and physiological conditions. The survival and influence of these microstructures on cellular growth was further characterized using NIH 3T3 fibroblasts. Topographical modifications produced surface structures on which the cultured fibroblasts attached and responded by adapting their morphologies. This developed technique allows for simple and effective structuring of gelatin and opens up new possibilities for irradiation crosslinked hydrogels in biomedical applications in which cell attachment and contact guidance are favored. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 320-330, 2018.
Collapse
Affiliation(s)
- Benedikt Heyart
- Leibniz Institute for Surface Modification (IOM), Permoserstr. 15, 04318, Leipzig, Germany
| | - Astrid Weidt
- Soft Matter Physics Division, Institute for Experimental Physics 1, University of Leipzig, Linnéstr. 5, 04103, Leipzig, Germany
| | - Emilia I Wisotzki
- Leibniz Institute for Surface Modification (IOM), Permoserstr. 15, 04318, Leipzig, Germany
| | - Mareike Zink
- Soft Matter Physics Division, Institute for Experimental Physics 1, University of Leipzig, Linnéstr. 5, 04103, Leipzig, Germany
| | - Stefan G Mayr
- Leibniz Institute for Surface Modification (IOM), Permoserstr. 15, 04318, Leipzig, Germany.,Division of Surface Physics, Department of Physics and Earth Sciences, University of Leipzig, Leipzig, Germany
| |
Collapse
|
36
|
Gopal S, Veracini L, Grall D, Butori C, Schaub S, Audebert S, Camoin L, Baudelet E, Radwanska A, Beghelli-de la Forest Divonne S, Violette SM, Weinreb PH, Rekima S, Ilie M, Sudaka A, Hofman P, Van Obberghen-Schilling E. Fibronectin-guided migration of carcinoma collectives. Nat Commun 2017; 8:14105. [PMID: 28102238 PMCID: PMC5253696 DOI: 10.1038/ncomms14105] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 11/29/2016] [Indexed: 12/14/2022] Open
Abstract
Functional interplay between tumour cells and their neoplastic extracellular matrix plays a decisive role in malignant progression of carcinomas. Here we provide a comprehensive data set of the human HNSCC-associated fibroblast matrisome. Although much attention has been paid to the deposit of collagen, we identify oncofetal fibronectin (FN) as a major and obligate component of the matrix assembled by stromal fibroblasts from head and neck squamous cell carcinomas (HNSCC). FN overexpression in tumours from 435 patients corresponds to an independent unfavourable prognostic indicator. We show that migration of carcinoma collectives on fibrillar FN-rich matrices is achieved through αvβ6 and α9β1 engagement, rather than α5β1. Moreover, αvβ6-driven migration occurs independently of latent TGF-β activation and Smad-dependent signalling in tumour epithelial cells. These results provide insights into the adhesion-dependent events at the tumour–stroma interface that govern the collective mode of migration adopted by carcinoma cells to invade surrounding stroma in HNSCC. Tumour microenvironment influences the migration of cancer cells. Here the authors analyse the proteomic constitution of the extracellular matrix and identify a role for fibronectin in regulating the collective migration of squamous cell carcinoma cells.
Collapse
Affiliation(s)
- Sandeep Gopal
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose (iBV), Parc Valrose, 06100 Nice, France
| | - Laurence Veracini
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose (iBV), Parc Valrose, 06100 Nice, France
| | - Dominique Grall
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose (iBV), Parc Valrose, 06100 Nice, France
| | - Catherine Butori
- Université Côte d'Azur, Laboratoire de Pathologie Clinique et Expérimentale, Biobank [BB-0033-00025] CHU Nice-Pasteur, 06001 Nice, France
| | - Sébastien Schaub
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose (iBV), Parc Valrose, 06100 Nice, France
| | - Stéphane Audebert
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Luc Camoin
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Emilie Baudelet
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Agata Radwanska
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose (iBV), Parc Valrose, 06100 Nice, France
| | | | | | | | - Samah Rekima
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose (iBV), Parc Valrose, 06100 Nice, France
| | - Marius Ilie
- Université Côte d'Azur, Laboratoire de Pathologie Clinique et Expérimentale, Biobank [BB-0033-00025] CHU Nice-Pasteur, 06001 Nice, France
| | - Anne Sudaka
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose (iBV), Parc Valrose, 06100 Nice, France.,Centre Antoine Lacassagne, 06189 Nice, France
| | - Paul Hofman
- Université Côte d'Azur, Laboratoire de Pathologie Clinique et Expérimentale, Biobank [BB-0033-00025] CHU Nice-Pasteur, 06001 Nice, France
| | - Ellen Van Obberghen-Schilling
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose (iBV), Parc Valrose, 06100 Nice, France.,Centre Antoine Lacassagne, 06189 Nice, France
| |
Collapse
|
37
|
Tanja Mierke C. Physical role of nuclear and cytoskeletal confinements in cell migration mode selection and switching. AIMS BIOPHYSICS 2017. [DOI: 10.3934/biophy.2017.4.615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
38
|
Fang J. One further step to cell behaviour understanding. Inorg Chem Front 2017. [DOI: 10.1039/c7qi00103g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-assembled silver nanowires were applied to SERS-detectable and ordered-substrate-induced cellular growth to understand the stretched bimolecular behaviour.
Collapse
Affiliation(s)
- Jiye Fang
- Department of Chemistry
- State University of New York at Binghamton
- Binghamton
- USA
| |
Collapse
|
39
|
Cadherin-2 Is Required Cell Autonomously for Collective Migration of Facial Branchiomotor Neurons. PLoS One 2016; 11:e0164433. [PMID: 27716840 PMCID: PMC5055392 DOI: 10.1371/journal.pone.0164433] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/26/2016] [Indexed: 11/19/2022] Open
Abstract
Collective migration depends on cell-cell interactions between neighbors that contribute to their overall directionality, yet the mechanisms that control the coordinated migration of neurons remains to be elucidated. During hindbrain development, facial branchiomotor neurons (FBMNs) undergo a stereotypic tangential caudal migration from their place of birth in rhombomere (r)4 to their final location in r6/7. FBMNs engage in collective cell migration that depends on neuron-to-neuron interactions to facilitate caudal directionality. Here, we demonstrate that Cadherin-2-mediated neuron-to-neuron adhesion is necessary for directional and collective migration of FBMNs. We generated stable transgenic zebrafish expressing dominant-negative Cadherin-2 (Cdh2ΔEC) driven by the islet1 promoter. Cell-autonomous inactivation of Cadherin-2 function led to non-directional migration of FBMNs and a defect in caudal tangential migration. Additionally, mosaic analysis revealed that Cdh2ΔEC-expressing FBMNs are not influenced to migrate caudally by neighboring wild-type FBMNs due to a defect in collective cell migration. Taken together, our data suggest that Cadherin-2 plays an essential cell-autonomous role in mediating the collective migration of FBMNs.
Collapse
|
40
|
Ding S, Kingshott P, Thissen H, Pera M, Wang PY. Modulation of human mesenchymal and pluripotent stem cell behavior using biophysical and biochemical cues: A review. Biotechnol Bioeng 2016; 114:260-280. [DOI: 10.1002/bit.26075] [Citation(s) in RCA: 298] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/27/2016] [Accepted: 08/07/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Sheryl Ding
- Department of Chemistry and Biotechnology; Swinburne University of Technology; Hawthorn 3122 Victoria Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology; Swinburne University of Technology; Hawthorn 3122 Victoria Australia
| | | | - Martin Pera
- Department of Anatomy and Neuroscience, Walter and Eliza Hall Institute of Medical Research, Florey Neuroscience and Mental Health Institute; The University of Melbourne; Victoria Australia
| | - Peng-Yuan Wang
- Department of Chemistry and Biotechnology; Swinburne University of Technology; Hawthorn 3122 Victoria Australia
- CSIRO Manufacturing; Clayton Victoria Australia
- Department of Anatomy and Neuroscience, Walter and Eliza Hall Institute of Medical Research, Florey Neuroscience and Mental Health Institute; The University of Melbourne; Victoria Australia
- Graduate Institute of Nanomedicine and Medical Engineering; College of Biomedical Engineering; Taipei Medical University; Taipei Taiwan
| |
Collapse
|
41
|
Hu Y, You JO, Aizenberg J. Micropatterned Hydrogel Surface with High-Aspect-Ratio Features for Cell Guidance and Tissue Growth. ACS APPLIED MATERIALS & INTERFACES 2016; 8:21939-45. [PMID: 27089518 DOI: 10.1021/acsami.5b12268] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Surface topography has been introduced as a new tool to coordinate cell selection, growth, morphology, and differentiation. The materials explored so far for making such structural surfaces are mostly rigid and impermeable. Hydrogel, on the other hand, was proved a better synthetic media for cell culture because of its biocompatibility, softness, and high permeability. Herein, we fabricated a poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogel substrate with high-aspect-ratio surface microfeatures. Such structural surface could effectively guide the orientation and shape of human mesenchymal stem cells (HMSCs). Notably, on the flat hydrogel surface, cells rounded up, whereas on the microplate patterned hydrogel surface, cells elongated and aligned along the direction parallel to the plates. The microplates were 2 μm thick, 20 μm tall, and 10-50 μm wide. The interplate spacing was 5-15 μm, and the intercolumn spacing was 5 μm. The elongation of cell body was more pronounced on the patterns with narrower interplate spacing and wider plates. The cells behaved like soft solid. The competition between surface energy and elastic energy defined the shape of the cells on the structured surfaces. The soft permeable hydrogel scaffold with surface structures was also demonstrated as being viable for long-term cell culture, and could be used to generate interconnected tissues with finely tuned cell morphology and alignment across a few centimeter sizes.
Collapse
Affiliation(s)
- Yuhang Hu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Jin-Oh You
- John A. Paulson School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
- Department of Engineering Chemistry, Chungbuk National University , Cheongju 362-763, Republic of Korea
| | - Joanna Aizenberg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University , Cambridge, Massachusetts 02138, United States
- Department of Chemistry and Chemical Biology, Harvard University , Cambridge, Massachusetts 02138, United States
- Kavli Institute for Bionano Science and Technology, Harvard University , Cambridge, Massachusetts 02138, United States
| |
Collapse
|
42
|
Abstract
Cell migration in the “correct” direction is pivotal for many biological processes. Although most work is devoted to its molecular mechanisms, the cell’s preference for one direction over others, thus overcoming intrinsic random motility, epitomizes a profound principle that underlies all complex systems: the choice of one axis, in structure or motion, from a uniform or symmetric set of options. Explaining directional motility by an external chemo-attractant gradient does not solve but only shifts the problem of causation: whence the gradient? A new study in PLOS Biology shows cell migration in a self-generated gradient, offering an opportunity to take a broader look at the old dualism of extrinsic instruction versus intrinsic symmetry-breaking in cell biology. Directional cell motility is enabled by chemoattractant gradient and symmetry-breaking. This Primer argues that the recent observation of cells generating a gradient in a uniformly distributed nutrient reveals the multilayered nature of symmetry-breaking in cell locomotion.
Collapse
Affiliation(s)
- Sui Huang
- Institute for Systems Biology, Seattle, Washington
- * E-mail:
| |
Collapse
|
43
|
Driever W. A Cue for Driving Large-Scale Cell Movement. Dev Cell 2016; 37:201-2. [PMID: 27165548 DOI: 10.1016/j.devcel.2016.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The earliest cell movements that initiate gastrulation in the vertebrate embryo have always fascinated embryologists, but signals controlling this large-scale morphogenesis where nearly all cells move have been elusive. Reporting in Developmental Cell, Szabó et al. (2016) uncover a mechanism for morphogenesis based on complement system C3a/C3aR-directed chemotaxis.
Collapse
Affiliation(s)
- Wolfgang Driever
- Developmental Biology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
44
|
Radial Glial Cell-Neuron Interaction Directs Axon Formation at the Opposite Side of the Neuron from the Contact Site. J Neurosci 2016; 35:14517-32. [PMID: 26511243 DOI: 10.1523/jneurosci.1266-15.2015] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
How extracellular cues direct axon-dendrite polarization in mouse developing neurons is not fully understood. Here, we report that the radial glial cell (RGC)-cortical neuron interaction directs axon formation at the opposite side of the neuron from the contact site. N-cadherin accumulates at the contact site between the RGC and cortical neuron. Inhibition of the N-cadherin-mediated adhesion decreases this oriented axon formation in vitro, and disrupts the axon-dendrite polarization in vivo. Furthermore, the RGC-neuron interaction induces the polarized distribution of active RhoA at the contacting neurite and active Rac1 at the opposite neurite. Inhibition of Rho-Rho-kinase signaling in a neuron impairs the oriented axon formation in vitro, and prevents axon-dendrite polarization in vivo. Collectively, these results suggest that the N-cadherin-mediated radial glia-neuron interaction determines the contacting neurite as the leading process for radial glia-guided neuronal migration and directs axon formation to the opposite side acting through the Rho family GTPases.
Collapse
|
45
|
Riccio P, Cebrian C, Zong H, Hippenmeyer S, Costantini F. Ret and Etv4 Promote Directed Movements of Progenitor Cells during Renal Branching Morphogenesis. PLoS Biol 2016; 14:e1002382. [PMID: 26894589 PMCID: PMC4760680 DOI: 10.1371/journal.pbio.1002382] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/13/2016] [Indexed: 11/18/2022] Open
Abstract
Branching morphogenesis of the epithelial ureteric bud forms the renal collecting duct system and is critical for normal nephron number, while low nephron number is implicated in hypertension and renal disease. Ureteric bud growth and branching requires GDNF signaling from the surrounding mesenchyme to cells at the ureteric bud tips, via the Ret receptor tyrosine kinase and coreceptor Gfrα1; Ret signaling up-regulates transcription factors Etv4 and Etv5, which are also critical for branching. Despite extensive knowledge of the genetic control of these events, it is not understood, at the cellular level, how renal branching morphogenesis is achieved or how Ret signaling influences epithelial cell behaviors to promote this process. Analysis of chimeric embryos previously suggested a role for Ret signaling in promoting cell rearrangements in the nephric duct, but this method was unsuited to study individual cell behaviors during ureteric bud branching. Here, we use Mosaic Analysis with Double Markers (MADM), combined with organ culture and time-lapse imaging, to trace the movements and divisions of individual ureteric bud tip cells. We first examine wild-type clones and then Ret or Etv4 mutant/wild-type clones in which the mutant and wild-type sister cells are differentially and heritably marked by green and red fluorescent proteins. We find that, in normal kidneys, most individual tip cells behave as self-renewing progenitors, some of whose progeny remain at the tips while others populate the growing UB trunks. In Ret or Etv4 MADM clones, the wild-type cells generated at a UB tip are much more likely to remain at, or move to, the new tips during branching and elongation, while their Ret-/- or Etv4-/- sister cells tend to lag behind and contribute only to the trunks. By tracking successive mitoses in a cell lineage, we find that Ret signaling has little effect on proliferation, in contrast to its effects on cell movement. Our results show that Ret/Etv4 signaling promotes directed cell movements in the ureteric bud tips, and suggest a model in which these cell movements mediate branching morphogenesis.
Collapse
Affiliation(s)
- Paul Riccio
- Department of Genetics and Development, Columbia University, New York, New York, United States of America
| | - Cristina Cebrian
- Department of Genetics and Development, Columbia University, New York, New York, United States of America
| | - Hui Zong
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Simon Hippenmeyer
- Developmental Neurobiology, IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria
| | - Frank Costantini
- Department of Genetics and Development, Columbia University, New York, New York, United States of America
| |
Collapse
|
46
|
Lebreton G, Casanova J. Ligand-binding and constitutive FGF receptors in single Drosophila tracheal cells: Implications for the role of FGF in collective migration. Dev Dyn 2015; 245:372-8. [PMID: 26342211 DOI: 10.1002/dvdy.24345] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 09/01/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The migration of individual cells relies on their capacity to evaluate differences across their bodies and to move either toward or against a chemoattractant or a chemorepellent signal respectively. However, the direction of collective migration is believed to depend on the internal organization of the cell cluster while the role of the external signal is limited to single out some cells in the cluster, conferring them with motility properties. RESULTS Here we analyzed the role of Fibroblast Growth Factor (FGF) signaling in collective migration in the Drosophila trachea. While ligand-binding FGF receptor (FGFR) activity in a single cell can drive migration of a tracheal cluster, we show that activity from a constitutively activated FGFR cannot-an observation that contrasts with previously analyzed cases. CONCLUSIONS Our results indicate that individual cells in the tracheal cluster can "read" differences in the distribution of FGFR activity and lead migration of the cluster accordingly. Thus, FGF can act as a chemoattractant rather than as a motogen in collective cell migration. This finding has many implications in both development and pathology.
Collapse
Affiliation(s)
- Gaëlle Lebreton
- Institut de Biologia Molecular de Barcelona (CSIC) and Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Catalonia, Spain
| | - Jordi Casanova
- Institut de Biologia Molecular de Barcelona (CSIC) and Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Catalonia, Spain
| |
Collapse
|
47
|
Mikami T, Yoshida K, Sawada H, Esaki M, Yasumura K, Ono M. Inhibition of Rho-associated kinases disturbs the collective cell migration of stratified TE-10 cells. Biol Res 2015; 48:48. [PMID: 26330114 PMCID: PMC4556056 DOI: 10.1186/s40659-015-0039-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 08/12/2015] [Indexed: 11/10/2022] Open
Abstract
Background The collective cell migration of stratified epithelial cells is considered to be an important phenomenon in wound healing, development, and cancer invasion; however, little is known about the mechanisms involved. Furthermore, whereas Rho family proteins, including RhoA, play important roles in cell migration, the exact role of Rho-associated coiled coil-containing protein kinases (ROCKs) in cell migration is controversial and might be cell-type dependent. Here, we report the development of a novel modified scratch assay that was used to observe the collective cell migration of stratified TE-10 cells derived from a human esophageal cancer specimen. Results Desmosomes were found between the TE-10 cells and microvilli of the surface of the cell sheet. The leading edge of cells in the cell sheet formed a simple layer and moved forward regularly; these rows were followed by the stratified epithelium. ROCK inhibitors and ROCK small interfering RNAs (siRNAs) disturbed not only the collective migration of the leading edge of this cell sheet, but also the stratified layer in the rear. In contrast, RhoA siRNA treatment resulted in more rapid migration of the leading rows and disturbed movement of the stratified portion. Conclusions The data presented in this study suggest that ROCKs play an important role in mediating the collective migration of TE-10 cell sheets. In addition, differences between the effects of siRNAs targeting either RhoA or ROCKs suggested that distinct mechanisms regulate the collective cell migration in the simple epithelium of the wound edge versus the stratified layer of the epithelium. Electronic supplementary material The online version of this article (doi:10.1186/s40659-015-0039-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Taro Mikami
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama, Kanagawa-ken, Japan. .,Department of Plastic and Reconstructive Surgery, Fujisawa Shounandai Hospital, Fujisawa, Kanagawa-ken, Japan. .,Department of Plastic and Reconstructive Surgery, Yokohama City University Hospital, Yokohama, Kanagawa-ken, Japan.
| | - Keiichiro Yoshida
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama, Kanagawa-ken, Japan.
| | - Hajime Sawada
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama, Kanagawa-ken, Japan.
| | - Michiyo Esaki
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama, Kanagawa-ken, Japan.
| | - Kazunori Yasumura
- Department of Plastic and Reconstructive Surgery, Yokohama City University Hospital, Yokohama, Kanagawa-ken, Japan.
| | - Michio Ono
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama, Kanagawa-ken, Japan.
| |
Collapse
|
48
|
Collective cell migration: guidance principles and hierarchies. Trends Cell Biol 2015; 25:556-66. [DOI: 10.1016/j.tcb.2015.06.003] [Citation(s) in RCA: 227] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/21/2015] [Accepted: 06/08/2015] [Indexed: 12/18/2022]
|
49
|
Gjorevski N, Piotrowski AS, Varner VD, Nelson CM. Dynamic tensile forces drive collective cell migration through three-dimensional extracellular matrices. Sci Rep 2015; 5:11458. [PMID: 26165921 PMCID: PMC4499882 DOI: 10.1038/srep11458] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/27/2015] [Indexed: 01/07/2023] Open
Abstract
Collective cell migration drives tissue remodeling during development, wound repair, and metastatic invasion. The physical mechanisms by which cells move cohesively through dense three-dimensional (3D) extracellular matrix (ECM) remain incompletely understood. Here, we show directly that migration of multicellular cohorts through collagenous matrices occurs via a dynamic pulling mechanism, the nature of which had only been inferred previously in 3D. Tensile forces increase at the invasive front of cohorts, serving a physical, propelling role as well as a regulatory one by conditioning the cells and matrix for further extension. These forces elicit mechanosensitive signaling within the leading edge and align the ECM, creating microtracks conducive to further migration. Moreover, cell movements are highly correlated and in phase with ECM deformations. Migrating cohorts use spatially localized, long-range forces and consequent matrix alignment to navigate through the ECM. These results suggest biophysical forces are critical for 3D collective migration.
Collapse
Affiliation(s)
- Nikolce Gjorevski
- Department of Chemical &Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Alexandra S Piotrowski
- Department of Chemical &Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Victor D Varner
- Department of Chemical &Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Celeste M Nelson
- 1] Department of Chemical &Biological Engineering, Princeton University, Princeton, NJ 08544, USA [2] Department of Molecular Biology Princeton University, Princeton, NJ 08544
| |
Collapse
|
50
|
Arrayed three-dimensional structures designed to induce and maintain a cell pattern by a topographical effect on cell behavior. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 49:256-261. [DOI: 10.1016/j.msec.2015.01.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/21/2014] [Accepted: 01/06/2015] [Indexed: 11/17/2022]
|