1
|
Parsons VA, Vadlamudi S, Voos KM, Rohy AE, Moxley AH, Cannon ME, Rosen JD, Mills CA, Herring LE, Broadaway KA, Lorenzo DN, Mohlke KL. TBC1D30 regulates proinsulin and insulin secretion and is the target of a genomic association signal for proinsulin. Diabetologia 2025; 68:1169-1183. [PMID: 40064677 PMCID: PMC12068983 DOI: 10.1007/s00125-025-06391-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/03/2025] [Indexed: 05/13/2025]
Abstract
AIMS/HYPOTHESIS Components of the insulin processing and secretion pathways remain incompletely understood. Here, we examined a genome-wide association study (GWAS) signal for plasma proinsulin levels. Lead GWAS variant rs150781447-T encodes an Arg279Cys substitution in TBC1 domain family member 30 (TBC1D30), but no role for this protein in insulin processing or secretion has been established previously. This study aimed to evaluate whether TBC1D30 drives the GWAS association signal by determining whether TBC1D30 is involved in proinsulin secretion and, if so, to examine the effects of variant alleles and potential mechanisms. METHODS Using CRISPR/Cas9 genome editing to create double-strand breaks and prime editing to install substitutions in INS1 832/13 insulinoma cells, we generated clonal cell lines with altered TBC1D30, as well as homozygous and heterozygous lines carrying the lead GWAS variant. We characterised lines by Sanger sequencing, quantitative PCR and ELISAs to measure glucose-stimulated proinsulin and insulin secretion. We also tested the effects of TBC1D30 knockdown on proinsulin and insulin secretion in human islets. We further assessed TBC1D30's contribution to secretory pathways by examining the effects of altered gene function on intracellular proinsulin and insulin content and insulin localisation, and by identifying potential proteins that interact with TBC1D30 using affinity purification mass spectrometry. RESULTS Compared with mock-edited cells, cell lines with reduced TBC1D30 expression or altered Rab GTPase-activating protein (RabGAP) domain had significantly more secreted proinsulin, 1.8- and 2.6-fold more than controls, respectively. Similarly, cells expressing the variant substitution demonstrated increased proinsulin secretion. Cell lines with a partial deletion of a critical functional domain showed 1.8-fold higher expression of Tbc1d30 and at least 2.0-fold less secreted proinsulin. Cells with altered RabGAP domain sequence also demonstrated, to a lesser extent, changes in secreted insulin levels. TBC1D30 knockdown in human islets resulted in increased insulin secretion with no significant effect on proinsulin secretion. The effects of altered TBC1D30 on mislocalisation of insulin, intracellular proinsulin and insulin content and the identities of interacting proteins are consistent with a role for TBC1D30 in proinsulin and insulin secretion. CONCLUSIONS/INTERPRETATION These findings suggest that effects on TBC1D30 are responsible for the GWAS signal and that TBC1D30 plays a critical role in the secretion of mature insulin.
Collapse
Affiliation(s)
- Victoria A Parsons
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Swarooparani Vadlamudi
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kayleigh M Voos
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Abigail E Rohy
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anne H Moxley
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maren E Cannon
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jonathan D Rosen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christine A Mills
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura E Herring
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - K Alaine Broadaway
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Damaris N Lorenzo
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Jian L, Wang B, Gao Y, Xue Y, Guan Y, Qu Y, Liu K, Yan L, Li S, Luo H. Rab8a and Vps35 influence intracellular transport of vitamin E via α-Tocopherol transport protein in hepatocytes. Int J Biol Macromol 2025; 311:143021. [PMID: 40258550 DOI: 10.1016/j.ijbiomac.2025.143021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/23/2025]
Abstract
Of all the forms of vitamin E, α-tocopherol is distinguished as the primary ligand for the α-tocopherol transport protein (α-TTP), a pivotal factor in its secretion into the bloodstream and subsequent systemic distribution. Nevertheless, the intricate molecular mechanisms governing the transport of α-tocopherol via α-TTP have yet to be fully elucidated. In this research, Co-Immunoprecipitation (Co-IP)/LC-MS and His-pull-down assays were utilized to identify proteins interacting with α-TTP. Immunofluorescence staining and Co-IP/Western blotting further confirmed these interactions. Meanwhile, RNA-seq was utilized to discover α-tocopherol-related genes. Genes knockdown was conducted to examine the influence of related genes on vitamin E transport. The concentrations of intracellular and extracellular vitamin E were quantified using LC-MS and specific assay kits. Immunofluorescence staining showed colocalization of Rab8a, SNX3, SNX5, SNX17, and SNX27 with α-TTP, whereas Co-IP/Western blot analysis indicated a specific interaction among Vps35, Rab8a and α-TTP. Notably, the knockdown of Rab8a, SNX5, SNX17, and SNX27 individually influenced the vitamin E content both intracellularly and extracellularly, whereas knockdown of SNX3 did not show such effects in hepatocytes. This research highlights the crucial roles of Rab8a and Vps35 in α-tocopherol's intracellular transport probably by direct interaction with α-TTP, and their association with Retromer-SNX27, Commander-SNX17, and ESCPE1 complexes.
Collapse
Affiliation(s)
- Luyang Jian
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Bing Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuefeng Gao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ying Xue
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yongjuan Guan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yanghua Qu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kun Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Leyan Yan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuanghong Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hailing Luo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
3
|
Bradic I, Rewitz K. Steroid Signaling in Autophagy. J Mol Biol 2025:169134. [PMID: 40210154 DOI: 10.1016/j.jmb.2025.169134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/19/2025] [Accepted: 04/04/2025] [Indexed: 04/12/2025]
Abstract
Autophagy is a conserved cellular process essential for homeostasis and development that plays a central role in the degradation and recycling of cellular components. Recent studies reveal bidirectional interactions between autophagy and steroid-hormone signaling. Steroids are signaling molecules synthesized from cholesterol that regulate key physiological and developmental processes - including autophagic activity. Conversely, other work demonstrates that autophagy regulates steroid production by controlling the availability of precursor sterol substrate. Insights from Drosophila and mammalian models provide compelling evidence for the conservation of these mechanisms across species. In this review we explore how steroid hormones modulate autophagy in diverse tissues and contexts, such as metabolism and disease, and discuss advances in our understanding of autophagy's regulatory role in steroid hormone production. We examine the implications of these interactions for health and disease and offer perspectives on the potential for harnessing this functionality for addressing cholesterol-related disorders.
Collapse
Affiliation(s)
- Ivan Bradic
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, 2100 Copenhagen O, Denmark.
| |
Collapse
|
4
|
Benitez-Amaro A, Garcia E, LaChica Lhoëst MT, Polishchuk A, Zegri-Reiriz I, Vilades D, Guerra JM, Fernández-Del-Rio L, Mirabet S, Samouillan V, Shirihai O, Liesa M, Enrich C, Llorente-Cortés V. LRP1 immunotherapy enhances cardiomyocyte respiration by restricting cholesteryl ester accumulation in mitochondria. J Lipid Res 2025; 66:100783. [PMID: 40122209 PMCID: PMC12051619 DOI: 10.1016/j.jlr.2025.100783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/25/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025] Open
Abstract
Antibodies (Abs) targeting the P3 sequence (Gly1127-Cys1140) of LDL receptor-related protein 1 (anti-P3 Abs) inhibit the interaction between ApoB100 in cholesteryl ester (CE)-enriched lipoproteins and the CR9 domain in LDL receptor-related protein 1, preventing intracellular CE accumulation induced by a high-fat high-cholesterol (HFHC) diet in cardiomyocytes. This study examines (i) whether HFHC induces cholesterol accumulation in mitochondria, and impacts cardiac bioenergetics, and (ii) the effectiveness of anti-P3 Abs in mitigating HFHC-induced mitochondrial alterations. Cardiac tissue was homogenized, and mitochondria were isolated through subcellular fractionation. Thin layer chromatography demonstrated that HFHC induced the accumulation of CE in cardiac mitochondria, and that this process was significantly reduced by anti-P3 Abs. In line, transmission electron microscopy studies revealed that morphological changes induced by HFHC in cardiomyocyte mitochondria were reversed, at least in part, by anti-P3 Abs. Additionally, anti-P3 Abs promoted more extensive interactions between mitochondria and lipid droplets (LDs), accompanied by an increase in LD diameter and electrodensity in cardiomyocytes. Cardiac mitochondrial respiratory capacity assessed by Seahorse analysis showed that HFHC reduced CI/CIV and CII/CIV activity ratios, while anti-P3 Abs restored complex II/IV activity. In conclusion, by blocking CE uptake from lipoproteins, anti-P3 Abs reduce CE accumulation in the cardiomyocyte mitochondria and LDs, enhance bioenergetically favorable mitochondria/LD interactions, and improve cardiomyocyte respiratory function in hypercholesterolemic rabbits. These findings highlight the therapeutic potential of anti-P3 Abs in metabolic diseases by limiting CE loading of mitochondria and LDs in the heart and restoring cardiac bioenergetics.
Collapse
Affiliation(s)
- A Benitez-Amaro
- Lipids and Cardiovascular Pathology Group, Biomedical Research Institut of Barcelona, IIBB-CSIC, Barcelona, Spain; Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - E Garcia
- Lipids and Cardiovascular Pathology Group, Biomedical Research Institut of Barcelona, IIBB-CSIC, Barcelona, Spain; Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M T LaChica Lhoëst
- Lipids and Cardiovascular Pathology Group, Biomedical Research Institut of Barcelona, IIBB-CSIC, Barcelona, Spain; Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain; Departamento de Bioquímica y Biología Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - A Polishchuk
- Lipids and Cardiovascular Pathology Group, Biomedical Research Institut of Barcelona, IIBB-CSIC, Barcelona, Spain; Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - I Zegri-Reiriz
- Department of Cardiology, Hospital de la Santa Creu i Sant Pau, Institut de Recerca Sant Pau (IR SANT PAU), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - D Vilades
- Department of Cardiology, Hospital de la Santa Creu i Sant Pau, Institut de Recerca Sant Pau (IR SANT PAU), Universitat Autònoma de Barcelona, Barcelona, Spain; CIBERCV, Institute of Health Carlos III, Madrid, Spain
| | - J M Guerra
- Department of Cardiology, Hospital de la Santa Creu i Sant Pau, Institut de Recerca Sant Pau (IR SANT PAU), Universitat Autònoma de Barcelona, Barcelona, Spain; CIBERCV, Institute of Health Carlos III, Madrid, Spain
| | - L Fernández-Del-Rio
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA; Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - S Mirabet
- Department of Cardiology, Hospital de la Santa Creu i Sant Pau, Institut de Recerca Sant Pau (IR SANT PAU), Universitat Autònoma de Barcelona, Barcelona, Spain; CIBERCV, Institute of Health Carlos III, Madrid, Spain
| | - V Samouillan
- CIRIMAT, Université de Toulouse, Université Paul Sabatier, Equipe PHYPOL, Toulouse, France
| | - O Shirihai
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA; Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - M Liesa
- Institut de Biologia Molecular de Barcelona, IBMB, CSIC, Barcelona, Spain; CIBERDEM Institute of Health Carlos III, Madrid, Spain
| | - C Enrich
- Unitat de Biologia Cellular, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - V Llorente-Cortés
- Lipids and Cardiovascular Pathology Group, Biomedical Research Institut of Barcelona, IIBB-CSIC, Barcelona, Spain; Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain; CIBERCV, Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
5
|
Ferrari A, Tontonoz P. Nonvesicular cholesterol transport in physiology. J Clin Invest 2025; 135:e188127. [PMID: 40091839 PMCID: PMC11910210 DOI: 10.1172/jci188127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
In mammalian cells cholesterol can be synthesized endogenously or obtained exogenously through lipoprotein uptake. Plasma membrane (PM) is the primary intracellular destination for both sources of cholesterol, and maintaining appropriate membrane cholesterol levels is critical for cellular viability. The endoplasmic reticulum (ER) acts as a cellular cholesterol sensor, regulating synthesis in response to cellular needs and determining the metabolic fates of cholesterol. Upon reaching the ER, cholesterol can be esterified to facilitate its incorporation into lipoproteins and lipid droplets or converted into other molecules such as bile acids and oxysterols. In recent years, it has become clear that the intracellular redistribution of lipids, including cholesterol, is critical for the regulation of various biological processes. This Review highlights physiology and mechanisms of nonvesicular (protein-mediated) intracellular cholesterol trafficking, with a focus on the role of Aster proteins in PM to ER cholesterol transport.
Collapse
|
6
|
Nguyen MKL, Pinkenburg C, Du JJ, Bernaus-Esqué M, Enrich C, Rentero C, Grewal T. The multiple facets of Rab proteins modulating the cellular distribution of cholesterol from the late endosomal compartment. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119896. [PMID: 39788156 DOI: 10.1016/j.bbamcr.2025.119896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/19/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Cholesterol is an essential lipid that ensures the functional integrity of mammalian cells. Most cells acquire cholesterol via endocytosis of low-density lipoproteins (LDL). Upon reaching late endosomes/lysosomes (LE/Lys), incoming ligands, including LDL-derived cholesterol, are distributed to other organelles. Niemann-Pick Type C1/2 (NPC1/2) proteins, members of the steroidogenic acute regulatory-related lipid transfer domain (StARD) and oxysterol-binding protein (OSBP) families facilitate the cellular distribution of cholesterol. NPC disease, a rare neurodegenerative disorder characterized by LE/Lys-cholesterol accumulation due to loss-of-function NPC1/2 mutations, underscores the physiological importance of LE/Lys-cholesterol distribution. Several Rab-GTPase family members, which play fundamental roles in directional membrane and lipid transport, including Rab7, 8 and 9, are critical for the delivery of cholesterol from LE/Lys to other organelles along vesicular and non-vesicular pathways. The insights gained from these regulatory circuits provide a foundation for the development of therapeutic strategies that could effectively address the cellular pathogenesis triggered by NPC1 deficiency and other lysosomal storage disorders.
Collapse
Affiliation(s)
- Mai Khanh Linh Nguyen
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Céline Pinkenburg
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Jonathan James Du
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Marc Bernaus-Esqué
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
7
|
Ludlaim AM, Waddington SN, McKay TR. Unifying biology of neurodegeneration in lysosomal storage diseases. J Inherit Metab Dis 2025; 48:e12833. [PMID: 39822020 PMCID: PMC11739831 DOI: 10.1002/jimd.12833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 01/19/2025]
Abstract
There are currently at least 70 characterised lysosomal storage diseases (LSD) resultant from inherited single-gene defects. Of these, at least 30 present with central nervous system (CNS) neurodegeneration and overlapping aetiology. Substrate accumulation and dysfunctional neuronal lysosomes are common denominator, but how variants in 30 different genes converge on this central cellular phenotype is unclear. Equally unresolved is how the accumulation of a diverse spectrum of substrates in the neuronal lysosomes results in remarkably similar neurodegenerative outcomes. Conversely, how is it that many other monogenic LSDs cause only visceral disease? Lysosomal substance accumulation in LSDs with CNS neurodegeneration (nLSD) includes lipofuscinoses, mucopolysaccharidoses, sphingolipidoses and glycoproteinoses. Here, we review the latest discoveries in the fundamental biology of four classes of nLSDs, comparing and contrasting new insights into disease mechanism with emerging evidence of unifying convergence.
Collapse
Affiliation(s)
- Anna M. Ludlaim
- Department of Life SciencesManchester Metropolitan UniversityManchesterUK
| | - Simon N. Waddington
- Gene Transfer Technology Group, EGA‐Institute for Women's HealthUniversity College LondonLondonUK
- Faculty of Health SciencesWits/SAMRC Antiviral Gene Therapy Research UnitJohannesburgSouth Africa
| | - Tristan R. McKay
- Department of Life SciencesManchester Metropolitan UniversityManchesterUK
| |
Collapse
|
8
|
Rubio V, McInchak N, Fernandez G, Benavides D, Herrera D, Jimenez C, Mesa H, Meade J, Zhang Q, Stawikowski MJ. Development and characterization of fluorescent cholesteryl probes with enhanced solvatochromic and pH-sensitive properties for live-cell imaging. Sci Rep 2024; 14:30777. [PMID: 39730504 DOI: 10.1038/s41598-024-80958-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/22/2024] [Indexed: 12/29/2024] Open
Abstract
We present novel fluorescent cholesteryl probes (CNDs) with a modular design based on the solvatochromic 1,8-phthalimide scaffold. We have explored how different modules-linkers and head groups-affect the ability of these probes to integrate into lipid membranes and how they distribute intracellularly in mouse astrocytes and fibroblasts targeting lysosomes and lipid droplets. Each compound was assessed for its solvatochromic behavior in organic solvents and model membranes. Molecular dynamics simulations and lipid partitioning using giant unilamellar vesicles showed how these analogs behave in model membranes compared to cholesterol. Live-cell imaging demonstrated distinct staining patterns and cellular uptake behaviors, further validating the utility of these probes in biological systems. We compared the empirical results with those of BODIPY-cholesterol, a well-regarded fluorescent cholesterol analog. The internalization efficiency of fluorescent CND probes varies in different cell types and is affected mainly by the head groups. Our results demonstrate that the modular design significantly simplifies the creation of fluorescent cholesteryl probes bearing distinct spectral, biophysical, and cellular targeting features. It is a valuable toolkit for imaging in live cells, measuring cellular membrane dynamics, and studying cholesterol-related processes.
Collapse
Affiliation(s)
- Vicente Rubio
- Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, USA
| | - Nicholas McInchak
- Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, USA
| | - Genesis Fernandez
- Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, USA
| | - Dana Benavides
- Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, USA
| | - Diana Herrera
- Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, USA
| | - Catherine Jimenez
- Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, USA
| | - Haylee Mesa
- Stiles-Nicholson Brain Institute, Florida Atlantic University, 5353 Parkside Dr, Jupiter, FL, 33458, USA
| | - Jonathan Meade
- Stiles-Nicholson Brain Institute, Florida Atlantic University, 5353 Parkside Dr, Jupiter, FL, 33458, USA
| | - Qi Zhang
- Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, 5353 Parkside Dr, Jupiter, FL, 33458, USA
| | - Maciej J Stawikowski
- Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science, Florida Atlantic University, 777 Glades Rd, Boca Raton, FL, 33431, USA.
| |
Collapse
|
9
|
Tengberg JF, Russo F, Benned-Jensen T, Nielsen J. LRRK2 and RAB8A regulate cell death after lysosomal damage in macrophages through cholesterol-related pathways. Neurobiol Dis 2024; 202:106728. [PMID: 39521098 DOI: 10.1016/j.nbd.2024.106728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Activating mutations in Leucine Rich Repeat Kinase 2 (LRRK2) are among the most common genetic causes of Parkinson's disease (PD). The mechanistic path from LRRK2 mutations to PD is not established, but several lines of data suggest that LRRK2 modulation of lysosomal function is involved. It has previously been shown that LRRK2 is recruited to lysosomes upon lysosomal damage leading to increased phosphorylation of its RAB GTPase substrates in macrophage-derived RAW 264.7 cells. Here, we find that LRRK2 kinase inhibition reduces cell death induced by the lysosomotropic compound LLOMe in RAW 264.7 cells showing that lysosomal damage and LRRK2 functionally interacts in both directions: lysosomal damage can lead to activation of LRRK2 signaling and LRRK2 inhibition can attenuate LLOMe-induced cell death. The effect is lysosome specific, as only lysosomal stressors and not a variety of other cell death inducers could be modulated by LRRK2 kinase inhibition. We show with timing and Lysotracker experiments that LRRK2 inhibition does not affect the immediate lysosomal permeabilization induced by LLOMe, but rather modulates the subsequent cellular response to lysosomal damage. siRNA-mediated knockdown of LRRK2 and its main substrates, the RAB GTPases, showed that LRRK2 and RAB8A knockdown could attenuate LLOMe-induced cell death, but not other RAB GTPases tested. An RNA sequencing study was done to identify downstream pathways modulated by LLOMe and LRRK2 inhibition. The most striking finding was that almost all cholesterol biosynthesis genes were strongly downregulated by LLOMe and upregulated with LRRK2 inhibition in combination with LLOMe treatment. To explore the functional relevance of the transcriptional changes, we pretreated cells with the NPC1 inhibitor U18666A that can lead to accumulation of lysosomal cholesterol. U18666A-treated cells were less sensitive to LLOMe-induced cell death, but the attenuation of cell death by LRRK2 inhibition was strongly reduced suggesting that LRRK2 inhibition and lysosomal cholesterol reduces cell death by overlapping mechanisms. Thus, our data demonstrates a LRRK2- and RAB8A-mediated attenuation of RAW 264.7 cell death induced by lysosomal damage that is modulated by lysosomal cholesterol.
Collapse
Affiliation(s)
- Josefine Fussing Tengberg
- Neuroscience, Molecular and Single Cell Pharmacology, H. Lundbeck A/S, Valby, 2500 Copenhagen, Denmark; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Francesco Russo
- Bioinformatics, H. Lundbeck A/S, Valby, 2500 Copenhagen, Denmark
| | - Tau Benned-Jensen
- Neuroscience, Molecular and Single Cell Pharmacology, H. Lundbeck A/S, Valby, 2500 Copenhagen, Denmark
| | - Jacob Nielsen
- Neuroscience, Molecular and Single Cell Pharmacology, H. Lundbeck A/S, Valby, 2500 Copenhagen, Denmark.
| |
Collapse
|
10
|
Rubio V, McInchak N, Fernandez G, Benavides D, Herrera D, Jimenez C, Mesa H, Meade J, Zhang Q, Stawikowski MJ. Modular Fluorescent Cholesterol Naphthalimide Probes And Their Application For Cholesterol Trafficking Studies In Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600118. [PMID: 38979187 PMCID: PMC11230193 DOI: 10.1101/2024.06.24.600118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Development of fluorescent cholesterol analogs to better understand subcellular cholesterol trafficking is of great interest for cell biology and medicine. Our approach utilizes a bifunctional 1,8-naphthalimide scaffold with a push-pull character, modified on one side with a head group and a linker on the other side connecting it to cholesterol via an ester bond. Through structure-function studies, we've explored how different substituents-linkers and head groups-affect the ability of these fluorescent cholesterol naphthalimide analogs (CNDs) to mimic natural cholesterol behavior at both molecular and cellular levels. We categorized the resulting analogs into three groups: neutral, charged, and those featuring a hydroxyl group. Each compound was assessed for its solvatochromic behavior in organic solvents and model membranes. Extensive all-atom molecular dynamics simulations helped us examine how these analogs perform in model membranes compared to cholesterol. Additionally, we investigated the partitioning of these fluorescent probes in phase-separated giant unilamellar vesicles. We evaluated the uptake and distribution of these probes within mouse fibroblast cells and astrocytes, for their subcellular distributions in lysosomes and compared that to BODIPY-cholesterol, a well-regarded fluorescent cholesterol analog. The internalization efficiency of the fluorescent probes varies in different cell types and is affected mainly by the head groups. Our results demonstrate that the modular design significantly simplifies the creation of fluorescent cholesterol probes bearing distinct spectral, biophysical, and cellular targeting features, which makes it a valuable toolkit for the investigation of subcellular distribution and trafficking of cholesterol and its derivatives.
Collapse
|
11
|
Potdar C, Jagtap S, Singh K, Yadav R, Pal PK, Datta I. Impaired Sonic Hedgehog Responsiveness of Induced Pluripotent Stem Cell-Derived Floor Plate Cells Carrying the LRRK2-I1371V Mutation Contributes to the Ontogenic Origin of Lower Dopaminergic Neuron Yield. Stem Cells Dev 2024; 33:306-320. [PMID: 38753688 DOI: 10.1089/scd.2023.0283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
Lower population of dopaminergic (DA) neurons is known to increase susceptibility to Parkinson's disease (PD), and our earlier study showed a lower yield of DA neurons in Leucine-Rich Repeat Kinase Isoleucine 1371 Valine (LRRK2-I1371V) mutation-carrying PD patient-derived induced Pluripotent Stem Cells (iPSCs). Although the role of Sonic Hedgehog (SHH) in DA neurogenesis of floor plate cells (FPCs) is known, the effect of LRRK2 mutations on SHH responsiveness of FPCs impacting DA neuronal yield has not been studied. We investigated SHH responsiveness of FPCs derived from LRRK2-I1371V PD patient iPSCs with regard to the expression of SHH receptors Patched1 (Ptch1) and Smoothened (Smo), in conjunction with nuclear Gli1 (glioma-associated oncogene 1) expression, intracellular Ca2+ rise, and cytosolic cyclic adenosine monophosphate (cAMP) levels upon SHH induction. In addition, we examined the mechanistic link with LRRK2-I1371V gain-of-function by assessing membrane fluidity and Rab8A and Rab10 phosphorylation in SH-SY5Y cells and healthy control (HC) FPCs overexpressing LRRK2-I1371V as well as FPCs. Although total expression of Ptch1 and Smo was comparable, receptor expression on cell surface was significantly lower in LRRK2-I1371V FPCs than in HC FPCs, with distinctly lower nuclear expression of the downstream transcription factor Gli1. HC-FPCs transfected with LRRK2-I1371V exhibited a similarly reduced cell surface expression of Ptch1 and Smo. Intracellular Ca2+ response was significantly lower with corresponding elevated cAMP levels in LRRK2-I1371V FPCs compared with HC FPCs upon SHH stimulation. The LRRK2-I1371V mutant FPCs and LRRK2-I1371V-transfected SH-SY5Y and HC FPCs too exhibited higher autophosphorylation of phospho LRRK2 (pLRRK2) serine1292 and serine935, as well as substrate phosphorylation of Rab8A and Rab10. Concurrent increase in membrane fluidity, accompanied by a decrease in membrane cholesterol, and lower expression of lipid raft marker caveolin 1 were also observed in them. These findings suggest that impaired SHH responsiveness of LRRK2-I1371V PD FPCs indeed leads to lower yield of DA neurons during ontogeny. Reduced cell surface expression of SHH receptors is influenced by alteration in membrane fluidity owing to the increased substrate phosphorylation of Rab8A and reduced membrane protein trafficking due to pRab10, both results of the LRRK2-I1371V mutation.
Collapse
Affiliation(s)
- Chandrakanta Potdar
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru, India
| | - Soham Jagtap
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru, India
| | - Khushboo Singh
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru, India
| | - Indrani Datta
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru, India
| |
Collapse
|
12
|
Kalinichenko L, Kornhuber J, Sinning S, Haase J, Müller CP. Serotonin Signaling through Lipid Membranes. ACS Chem Neurosci 2024; 15:1298-1320. [PMID: 38499042 PMCID: PMC10995955 DOI: 10.1021/acschemneuro.3c00823] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/20/2024] Open
Abstract
Serotonin (5-HT) is a vital modulatory neurotransmitter responsible for regulating most behaviors in the brain. An inefficient 5-HT synaptic function is often linked to various mental disorders. Primarily, membrane proteins controlling the expression and activity of 5-HT synthesis, storage, release, receptor activation, and inactivation are critical to 5-HT signaling in synaptic and extra-synaptic sites. Moreover, these signals represent information transmission across membranes. Although the lipid membrane environment is often viewed as fairly stable, emerging research suggests significant functional lipid-protein interactions with many synaptic 5-HT proteins. These protein-lipid interactions extend to almost all the primary lipid classes that form the plasma membrane. Collectively, these lipid classes and lipid-protein interactions affect 5-HT synaptic efficacy at the synapse. The highly dynamic lipid composition of synaptic membranes suggests that these lipids and their interactions with proteins may contribute to the plasticity of the 5-HT synapse. Therefore, this broader protein-lipid model of the 5-HT synapse necessitates a reconsideration of 5-HT's role in various associated mental disorders.
Collapse
Affiliation(s)
- Liubov
S. Kalinichenko
- Department
of Psychiatry and Psychotherapy, University
Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Johannes Kornhuber
- Department
of Psychiatry and Psychotherapy, University
Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Steffen Sinning
- Department
of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Jana Haase
- School
of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Christian P. Müller
- Department
of Psychiatry and Psychotherapy, University
Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
- Institute
of Psychopharmacology, Central Institute of Mental Health, Medical
Faculty Mannheim, Heidelberg University, 69047, Mannheim, Germany
| |
Collapse
|
13
|
Korucu AN, Inandiklioglu N. Is STARD3 A New Biomarker for Breast Cancer? Eur J Breast Health 2024; 20:89-93. [PMID: 38571685 PMCID: PMC10985577 DOI: 10.4274/ejbh.galenos.2024.2024-1-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/17/2024] [Indexed: 04/05/2024]
Abstract
Despite advances in diagnosis and treatment, breast cancer is still one of the three most common cancers in the world and a significant cause of morbidity and mortality. Lipids play a role in many basic physiological pathways in cells, from regulating cell homeostasis to energy expenditure. As in many types of cancer, changes in lipid metabolism and their relationship have been reported in breast cancer. The STARD3 gene encodes a member of the subfamily of lipid trafficking proteins. It is a sterol-binding protein that mediates the transport of cholesterol from the endoplasmic reticulum to endosomes. It has been shown that STARD3 is correlated with human epidermal growth factor receptor 2 (HER2) amplification since it has the same localization as HER2 in the chromosome. In this review, we aimed to emphasize that investigating lipid metabolism together with the STARD3 biomarker has great potential not only for subtype-specific strategies but also for patient-specific strategies.
Collapse
Affiliation(s)
| | - Nihal Inandiklioglu
- Department of Medical Biology, Yozgat Bozok University Faculty of Medicine, Yozgat, Turkey
| |
Collapse
|
14
|
Fang XX, Wei P, Zhao K, Sheng ZC, Song BL, Yin L, Luo J. Fatty acid-binding proteins 3, 7, and 8 bind cholesterol and facilitate its egress from lysosomes. J Cell Biol 2024; 223:e202211062. [PMID: 38429999 PMCID: PMC10909654 DOI: 10.1083/jcb.202211062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/22/2023] [Accepted: 01/18/2024] [Indexed: 03/03/2024] Open
Abstract
Cholesterol from low-density lipoprotein (LDL) can be transported to many organelle membranes by non-vesicular mechanisms involving sterol transfer proteins (STPs). Fatty acid-binding protein (FABP) 7 was identified in our previous study searching for new regulators of intracellular cholesterol trafficking. Whether FABP7 is a bona fide STP remains unknown. Here, we found that FABP7 deficiency resulted in the accumulation of LDL-derived cholesterol in lysosomes and reduced cholesterol levels on the plasma membrane. A crystal structure of human FABP7 protein in complex with cholesterol was resolved at 2.7 Å resolution. In vitro, FABP7 efficiently transported the cholesterol analog dehydroergosterol between the liposomes. Further, the silencing of FABP3 and 8, which belong to the same family as FABP7, caused robust cholesterol accumulation in lysosomes. These two FABP proteins could transport dehydroergosterol in vitro as well. Collectively, our results suggest that FABP3, 7, and 8 are a new class of STPs mediating cholesterol egress from lysosomes.
Collapse
Affiliation(s)
- Xian-Xiu Fang
- The Institute for Advanced Studies, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Pengcheng Wei
- The Institute for Advanced Studies, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Kai Zhao
- The Institute for Advanced Studies, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Zhao-Chen Sheng
- The Institute for Advanced Studies, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Bao-Liang Song
- The Institute for Advanced Studies, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Lei Yin
- The Institute for Advanced Studies, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jie Luo
- The Institute for Advanced Studies, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Abstract
Cholesterol is an essential lipid species of mammalian cells. Cells acquire it through synthesis in the endoplasmic reticulum (ER) and uptake from lipoprotein particles. Newly synthesized cholesterol is efficiently distributed from the ER to other organelles via lipid-binding/transfer proteins concentrated at membrane contact sites (MCSs) to reach the trans-Golgi network, endosomes, and plasma membrane. Lipoprotein-derived cholesterol is exported from the plasma membrane and endosomal compartments via a combination of vesicle/tubule-mediated membrane transport and transfer through MCSs. In this review, we provide an overview of intracellular cholesterol trafficking pathways, including cholesterol flux from the ER to other membranes, cholesterol uptake from lipoprotein donors and transport from the plasma membrane to the ER, cellular cholesterol efflux to lipoprotein acceptors, as well as lipoprotein cholesterol secretion from enterocytes, hepatocytes, and astrocytes. We also briefly discuss human diseases caused by defects in these processes and therapeutic strategies available in such conditions.
Collapse
Affiliation(s)
- Elina Ikonen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00100 Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
| |
Collapse
|
16
|
Li L, Li J, Yuan L. A direct interaction between CENTLEIN and RABIN8 is required for primary cilium formation. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1434-1444. [PMID: 37475549 PMCID: PMC10520482 DOI: 10.3724/abbs.2023064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
Primary cilia are formed in nearly all growth-arrested cells and are essential for mammalian development and tissue homeostasis. Defects in primary cilia result in a range of disorders in humans, named ciliopathies. The spatiotemporal localization of RABIN8 on the pericentrosome is an early step in ciliogenesis. Here, we show that CENTLEIN depletion causes the persistent accumulation of RABIN8 on the pericentrosome and primary cilium loss in hTERT-immortalized retinal pigment epithelial cells and murine embryonic fibroblasts. CENTLEIN interacts with RABIN8 directly. A stretch of a 31-amino acid sequence located in the 200‒230 region of the RABIN8 GEF domain is responsible for its physical interaction with CENTLEIN, while expression of the full-length but not the internal deletion lacking the RABIN8-binding site of CENTLEIN largely rescues the ciliogenesis defect provoked by CENTLEIN depletion. Expression of activated RAB8A partially reverses cilium loss in CENTLEIN-null RPE1 cells, so the functional importance of the CENTLEIN-RABIN8 interaction is defined.
Collapse
Affiliation(s)
- Liansheng Li
- />Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijing101408China
| | - Junlin Li
- />Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijing101408China
| | - Li Yuan
- />Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijing101408China
| |
Collapse
|
17
|
Sterling FR, D'Amico J, Brumfield AM, Huegel KL, Vaughan PS, Morris K, Schwarz S, Joyce MV, Boggess B, Champion MM, Maciuba K, Allen P, Marasco E, Koch G, Gonzalez P, Hodges S, Leahy S, Gerstbauer E, Hinchcliffe EH, Vaughan KT. StARD9 is a novel lysosomal kinesin required for membrane tubulation, cholesterol transport and Purkinje cell survival. J Cell Sci 2023; 136:292582. [PMID: 36861884 DOI: 10.1242/jcs.260662] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/18/2023] [Indexed: 03/03/2023] Open
Abstract
The pathological accumulation of cholesterol is a signature feature of Niemann-Pick type C (NPC) disease, in which excessive lipid levels induce Purkinje cell death in the cerebellum. NPC1 encodes a lysosomal cholesterol-binding protein, and mutations in NPC1 drive cholesterol accumulation in late endosomes and lysosomes (LE/Ls). However, the fundamental role of NPC proteins in LE/L cholesterol transport remains unclear. Here, we demonstrate that NPC1 mutations impair the projection of cholesterol-containing membrane tubules from the surface of LE/Ls. A proteomic survey of purified LE/Ls identified StARD9 as a novel lysosomal kinesin responsible for LE/L tubulation. StARD9 contains an N-terminal kinesin domain, a C-terminal StART domain, and a dileucine signal shared with other lysosome-associated membrane proteins. Depletion of StARD9 disrupts LE/L tubulation, paralyzes bidirectional LE/L motility and induces accumulation of cholesterol in LE/Ls. Finally, a novel StARD9 knock-out mouse recapitulates the progressive loss of Purkinje cells in the cerebellum. Together, these studies identify StARD9 as a microtubule motor protein responsible for LE/L tubulation and provide support for a novel model of LE/L cholesterol transport that becomes impaired in NPC disease.
Collapse
Affiliation(s)
- Felicity R Sterling
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jon D'Amico
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | - Kara L Huegel
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Patricia S Vaughan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Kathryn Morris
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Shelby Schwarz
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Michelle V Joyce
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.,University of Notre Dame Proteomics and Mass Spectrometry Facility, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Bill Boggess
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.,University of Notre Dame Proteomics and Mass Spectrometry Facility, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Matthew M Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.,University of Notre Dame Proteomics and Mass Spectrometry Facility, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Kevin Maciuba
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Philip Allen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Eric Marasco
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Grant Koch
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Peter Gonzalez
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Shannon Hodges
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Shannon Leahy
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Erica Gerstbauer
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | - Kevin T Vaughan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.,Notre Dame Integrated Imaging Facility, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
18
|
Enrich C, Lu A, Tebar F, Rentero C, Grewal T. Ca 2+ and Annexins - Emerging Players for Sensing and Transferring Cholesterol and Phosphoinositides via Membrane Contact Sites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:393-438. [PMID: 36988890 DOI: 10.1007/978-3-031-21547-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Maintaining lipid composition diversity in membranes from different organelles is critical for numerous cellular processes. However, many lipids are synthesized in the endoplasmic reticulum (ER) and require delivery to other organelles. In this scenario, formation of membrane contact sites (MCS) between neighbouring organelles has emerged as a novel non-vesicular lipid transport mechanism. Dissecting the molecular composition of MCS identified phosphoinositides (PIs), cholesterol, scaffolding/tethering proteins as well as Ca2+ and Ca2+-binding proteins contributing to MCS functioning. Compelling evidence now exists for the shuttling of PIs and cholesterol across MCS, affecting their concentrations in distinct membrane domains and diverse roles in membrane trafficking. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) at the plasma membrane (PM) not only controls endo-/exocytic membrane dynamics but is also critical in autophagy. Cholesterol is highly concentrated at the PM and enriched in recycling endosomes and Golgi membranes. MCS-mediated cholesterol transfer is intensely researched, identifying MCS dysfunction or altered MCS partnerships to correlate with de-regulated cellular cholesterol homeostasis and pathologies. Annexins, a conserved family of Ca2+-dependent phospholipid binding proteins, contribute to tethering and untethering events at MCS. In this chapter, we will discuss how Ca2+ homeostasis and annexins in the endocytic compartment affect the sensing and transfer of cholesterol and PIs across MCS.
Collapse
Affiliation(s)
- Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.
| | - Albert Lu
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
19
|
Maja M, Tyteca D. Alteration of cholesterol distribution at the plasma membrane of cancer cells: From evidence to pathophysiological implication and promising therapy strategy. Front Physiol 2022; 13:999883. [PMID: 36439249 PMCID: PMC9682260 DOI: 10.3389/fphys.2022.999883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
Cholesterol-enriched domains are nowadays proposed to contribute to cancer cell proliferation, survival, death and invasion, with important implications in tumor progression. They could therefore represent promising targets for new anticancer treatment. However, although diverse strategies have been developed over the years from directly targeting cholesterol membrane content/distribution to adjusting sterol intake, all approaches present more or less substantial limitations. Those data emphasize the need to optimize current strategies, to develop new specific cholesterol-targeting anticancer drugs and/or to combine them with additional strategies targeting other lipids than cholesterol. Those objectives can only be achieved if we first decipher (i) the mechanisms that govern the formation and deformation of the different types of cholesterol-enriched domains and their interplay in healthy cells; (ii) the mechanisms behind domain deregulation in cancer; (iii) the potential generalization of observations in different types of cancer; and (iv) the specificity of some alterations in cancer vs. non-cancer cells as promising strategy for anticancer therapy. In this review, we will discuss the current knowledge on the homeostasis, roles and membrane distribution of cholesterol in non-tumorigenic cells. We will then integrate documented alterations of cholesterol distribution in domains at the surface of cancer cells and the mechanisms behind their contribution in cancer processes. We shall finally provide an overview on the potential strategies developed to target those cholesterol-enriched domains in cancer therapy.
Collapse
|
20
|
Lu A. Endolysosomal cholesterol export: More than just NPC1. Bioessays 2022; 44:e2200111. [PMID: 35934896 DOI: 10.1002/bies.202200111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/07/2022]
Abstract
NPC1 plays a central role in cholesterol egress from endolysosomes, a critical step for maintaining intracellular cholesterol homeostasis. Despite recent advances in the field, the full repertoire of molecules and pathways involved in this process remains unknown. Emerging evidence suggests the existence of NPC1-independent, alternative routes. These may involve vesicular and non-vesicular mechanisms, as well as release of extracellular vesicles. Understanding the underlying molecular mechanisms that bypass NPC1 function could have important implications for the development of therapies for lysosomal storage disorders. Here we discuss how cholesterol may be exported from lysosomes in which NPC1 function is impaired.
Collapse
Affiliation(s)
- Albert Lu
- Departament de Biomedicina, Unitat de Biologia Cellular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
21
|
Gu J, Zhu N, Li HF, Zhao TJ, Zhang CJ, Liao DF, Qin L. Cholesterol homeostasis and cancer: a new perspective on the low-density lipoprotein receptor. Cell Oncol 2022; 45:709-728. [PMID: 35864437 DOI: 10.1007/s13402-022-00694-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Disturbance of cholesterol homeostasis is considered as one of the manifestations of cancer. Cholesterol plays an essential role in the pleiotropic functions of cancer cells, including mediating membrane trafficking, intracellular signal transduction, and production of hormones and steroids. As a single transmembrane receptor, the low-density lipoprotein receptor (LDLR) can participate in intracellular cholesterol uptake and regulate cholesterol homeostasis. It has recently been found that LDLR is aberrantly expressed in a broad range of cancers, including colon cancer, prostate cancer, lung cancer, breast cancer and liver cancer. LDLR has also been found to be involved in various signaling pathways, such as the MAPK, NF-κB and PI3K/Akt signaling pathways, which affect cancer cells and their surrounding microenvironment. Moreover, LDLR may serve as an independent prognostic factor for lung cancer, breast cancer and pancreatic cancer, and is closely related to the survival of cancer patients. However, the role of LDLR in some cancers, such as prostate cancer, remains controversial. This may be due to the lack of normal feedback regulation of LDLR expression in cancer cells and the severe imbalance between LDLR-mediated cholesterol uptake and de novo biosynthesis of cholesterol. CONCLUSIONS The imbalance of cholesterol homeostasis caused by abnormal LDLR expression provides new therapeutic opportunities for cancer. LDLR interferes with the occurrence and development of cancer by modulating cholesterol homeostasis and may become a novel target for the development of anti-cancer drugs. Herein, we systematically review the contribution of LDLR to cancer progression, especially its dysregulation and underlying mechanism in various malignancies. Besides, potential targeting and immunotherapeutic options are proposed.
Collapse
Affiliation(s)
- Jia Gu
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Hong-Fang Li
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Tan-Jun Zhao
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Chan-Juan Zhang
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Duan-Fang Liao
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Li Qin
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
22
|
Maja M, Mohammed D, Dumitru AC, Verstraeten S, Lingurski M, Mingeot-Leclercq MP, Alsteens D, Tyteca D. Surface cholesterol-enriched domains specifically promote invasion of breast cancer cell lines by controlling invadopodia and extracellular matrix degradation. Cell Mol Life Sci 2022; 79:417. [PMID: 35819726 PMCID: PMC9276565 DOI: 10.1007/s00018-022-04426-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 12/14/2022]
Abstract
Tumor cells exhibit altered cholesterol content. However, cholesterol structural subcellular distribution and implication in cancer cell invasion are poorly understood mainly due to difficulties to investigate cholesterol both quantitatively and qualitatively and to compare isogenic cell models. Here, using the MCF10A cell line series (non-tumorigenic MCF10A, pre-malignant MCF10AT and malignant MCF10CAIa cells) as a model of breast cancer progression and the highly invasive MDA-MB-231 cell line which exhibits the common TP53 mutation, we investigated if cholesterol contributes to cancer cell invasion, whether the effects are specific to cancer cells and the underlying mechanism. We found that partial membrane cholesterol depletion specifically and reversibly decreased invasion of the malignant cell lines. Those cells exhibited dorsal surface cholesterol-enriched submicrometric domains and narrow ER-plasma membrane and ER-intracellular organelles contact sites. Dorsal cholesterol-enriched domains can be endocytosed and reach the cell ventral face where they were involved in invadopodia formation and extracellular matrix degradation. In contrast, non-malignant cells showed low cell invasion, low surface cholesterol exposure and cholesterol-dependent focal adhesions. The differential cholesterol distribution and role in breast cancer cell invasion provide new clues for the understanding of the molecular events underlying cellular mechanisms in breast cancer.
Collapse
Affiliation(s)
- Mauriane Maja
- CELL Unit and PICT Imaging Platform, de Duve Institute, UCLouvain, B1.75.05, avenue Hippocrate, 75, 1200, Brussels, Belgium
| | - Danahe Mohammed
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Ottignies-Louvain-la-Neuve, Belgium
| | - Andra C Dumitru
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Ottignies-Louvain-la-Neuve, Belgium
| | - Sandrine Verstraeten
- Cellular and Molecular Pharmacology Unit (FACM), Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Maxime Lingurski
- CELL Unit and PICT Imaging Platform, de Duve Institute, UCLouvain, B1.75.05, avenue Hippocrate, 75, 1200, Brussels, Belgium
| | | | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Ottignies-Louvain-la-Neuve, Belgium
| | - Donatienne Tyteca
- CELL Unit and PICT Imaging Platform, de Duve Institute, UCLouvain, B1.75.05, avenue Hippocrate, 75, 1200, Brussels, Belgium.
| |
Collapse
|
23
|
Linking Late Endosomal Cholesterol with Cancer Progression and Anticancer Drug Resistance. Int J Mol Sci 2022; 23:ijms23137206. [PMID: 35806209 PMCID: PMC9267071 DOI: 10.3390/ijms23137206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer cells undergo drastic metabolic adaptions to cover increased bioenergetic needs, contributing to resistance to therapies. This includes a higher demand for cholesterol, which often coincides with elevated cholesterol uptake from low-density lipoproteins (LDL) and overexpression of the LDL receptor in many cancers. This implies the need for cancer cells to accommodate an increased delivery of LDL along the endocytic pathway to late endosomes/lysosomes (LE/Lys), providing a rapid and effective distribution of LDL-derived cholesterol from LE/Lys to other organelles for cholesterol to foster cancer growth and spread. LDL-cholesterol exported from LE/Lys is facilitated by Niemann–Pick Type C1/2 (NPC1/2) proteins, members of the steroidogenic acute regulatory-related lipid transfer domain (StARD) and oxysterol-binding protein (OSBP) families. In addition, lysosomal membrane proteins, small Rab GTPases as well as scaffolding proteins, including annexin A6 (AnxA6), contribute to regulating cholesterol egress from LE/Lys. Here, we summarize current knowledge that links upregulated activity and expression of cholesterol transporters and related proteins in LE/Lys with cancer growth, progression and treatment outcomes. Several mechanisms on how cellular distribution of LDL-derived cholesterol from LE/Lys influences cancer cell behavior are reviewed, some of those providing opportunities for treatment strategies to reduce cancer progression and anticancer drug resistance.
Collapse
|
24
|
Yin L, Zhang L, Luo L, Liu Y, Wang F, Feng Y, Wang H, Han Y, Yan Y, Huang C, Fan S. Berbamine reduces body weight via suppression of small GTPase Rab8a activity and activation of paraventricular hypothalamic neurons in obese mice. Eur J Pharmacol 2022; 916:174679. [PMID: 34982965 DOI: 10.1016/j.ejphar.2021.174679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/22/2021] [Accepted: 12/02/2021] [Indexed: 11/03/2022]
Abstract
Small GTPase Rab8a is involved in fat-specific protein 27 (Fsp27) mediated lipid droplet accumulation in adipocytes. By screening inhibitors of Rab8a GTPase from a natural compound library, berbamine (BBM), a marketing drug for treatment of leukopenia in China, was identified to inhibit the activity of Rab8a GTPase and block the differentiation of 3T3-L1 adipocytes. Animal study showed that BBM could reduce body weight, improved glucose and lipid metabolic homeostasis in high-fat diet-induced obesity (DIO) C57BL/6 mice and db/db mice. Additional, BBM increased energy expenditure and inhibited food intake in mice but not in lean mice. Moreover, intracerebroventricular injection (i.c.v.) of BBM inhibited feeding behavior and increased c-Fos expression in paraventricular nucleus of the hypothalamus (PVH) of mice. Our data suggest that BBM may improve obesity through the inhibition of Rab8a GTPase activity and the activation of anorexigenic energy-sensing neuron in PVH.
Collapse
Affiliation(s)
- Liufang Yin
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Lijun Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lingling Luo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yalei Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Fei Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yaru Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hongqing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yongli Han
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yingxuan Yan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
25
|
Olkkonen VM, Ikonen E. Cholesterol transport in the late endocytic pathway: Roles of ORP family proteins. J Steroid Biochem Mol Biol 2022; 216:106040. [PMID: 34864207 DOI: 10.1016/j.jsbmb.2021.106040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 12/29/2022]
Abstract
Oxysterol-binding protein (OSBP) homologues, designated ORP or OSBPL proteins, constitute one of the largest families of intracellular lipid-binding/transfer proteins (LTP). This review summarizes the mounting evidence that several members of this family participate in the machinery facilitating cholesterol trafficking in the late endocytic pathway. There are indications that OSBP, besides acting as a cholesterol/phosphatidylinositol 4-phosphate (PI4P) exchanger at the endoplasmic reticulum (ER)-trans-Golgi network (TGN) membrane contact sites (MCS), also exchanges these lipids at ER-lysosome (Lys) contacts, increasing Lys cholesterol content. The long isoform of ORP1 (ORP1L), which also targets ER-late endosome (LE)/Lys MCS, has the capacity to mediate cholesterol transport either from ER to LE or in the opposite direction. Moreover, it regulates the motility, positioning and fusion of LE as well as autophagic flux. ORP2, the closest relative of ORP1, is mainly cytosolic, but also targets PI(4,5)P2-rich endosomal compartments. Our latest data suggest that ORP2 transfers cholesterol from LE to recycling endosomes (RE) in exchange for PI(4,5)P2, thus stimulating the recruitment of focal adhesion kinase (FAK) on the RE and cell adhesion. FAK activates phosphoinositide kinase on the RE to enhance PI(4,5)P2 synthesis. ORP2 in turn transfers PI(4,5)P2 from RE to LE, thus regulating LE tubule formation and transport activity.
Collapse
Affiliation(s)
- Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland.
| | - Elina Ikonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland; Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
26
|
Islam MM, Hlushchenko I, Pfisterer SG. Low-Density Lipoprotein Internalization, Degradation and Receptor Recycling Along Membrane Contact Sites. Front Cell Dev Biol 2022; 10:826379. [PMID: 35141225 PMCID: PMC8819725 DOI: 10.3389/fcell.2022.826379] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Low-density lipoprotein (LDL) internalization, degradation, and receptor recycling is a fundamental process underlying hypercholesterolemia, a high blood cholesterol concentration, affecting more than 40% of the western population. Membrane contact sites influence endosomal dynamics, plasma membrane lipid composition, and cellular cholesterol distribution. However, if we focus on LDL-related trafficking events we mostly discuss them in an isolated fashion, without cellular context. It is our goal to change this perspective and to highlight that all steps from LDL internalization to receptor recycling are likely associated with dynamic membrane contact sites in which endosomes engage with the endoplasmic reticulum and other organelles.
Collapse
|
27
|
Jose J, Hoque M, Engel J, Beevi SS, Wahba M, Georgieva MI, Murphy KJ, Hughes WE, Cochran BJ, Lu A, Tebar F, Hoy AJ, Timpson P, Rye KA, Enrich C, Rentero C, Grewal T. Annexin A6 and NPC1 regulate LDL-inducible cell migration and distribution of focal adhesions. Sci Rep 2022; 12:596. [PMID: 35022465 PMCID: PMC8755831 DOI: 10.1038/s41598-021-04584-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/22/2021] [Indexed: 12/22/2022] Open
Abstract
Cholesterol is considered indispensable for cell motility, but how physiological cholesterol pools enable cells to move forward remains to be clarified. The majority of cells obtain cholesterol from the uptake of Low-Density lipoproteins (LDL) and here we demonstrate that LDL stimulates A431 squamous epithelial carcinoma and Chinese hamster ovary (CHO) cell migration and invasion. LDL also potentiated epidermal growth factor (EGF) -stimulated A431 cell migration as well as A431 invasion in 3-dimensional environments, using organotypic assays. Blocking cholesterol export from late endosomes (LE), using Niemann Pick Type C1 (NPC1) mutant cells, pharmacological NPC1 inhibition or overexpression of the annexin A6 (AnxA6) scaffold protein, compromised LDL-inducible migration and invasion. Nevertheless, NPC1 mutant cells established focal adhesions (FA) that contain activated focal adhesion kinase (pY397FAK, pY861FAK), vinculin and paxillin. Compared to controls, NPC1 mutants display increased FA numbers throughout the cell body, but lack LDL-inducible FA formation at cell edges. Strikingly, AnxA6 depletion in NPC1 mutant cells, which restores late endosomal cholesterol export in these cells, increases their cell motility and association of the cholesterol biosensor D4H with active FAK at cell edges, indicating that AnxA6-regulated transport routes contribute to cholesterol delivery to FA structures, thereby improving NPC1 mutant cell migratory behaviour.
Collapse
Affiliation(s)
- Jaimy Jose
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Monira Hoque
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia.,Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, NSW, 2000, Australia
| | - Johanna Engel
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Syed S Beevi
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia.,KIMS Foundation and Research Centre, KIMS Hospitals, 1-8-31/1, Minister Road, Secunderabad, Telangana, 500003, India
| | - Mohamed Wahba
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Mariya Ilieva Georgieva
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Kendelle J Murphy
- Cancer Research Program, Garvan Institute of Medical Research and Kinghorn Cancer Centre, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2010, Australia
| | - William E Hughes
- Children's Medical Research Institute, University of Sydney, Westmead, NSW, 2145, Australia
| | - Blake J Cochran
- School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Albert Lu
- Departament de Biomedicina, Unitat de Biologia Cellular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain.,Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cellular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain.,Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Andrew J Hoy
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Paul Timpson
- Cancer Research Program, Garvan Institute of Medical Research and Kinghorn Cancer Centre, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2010, Australia
| | - Kerry-Anne Rye
- School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cellular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain.,Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cellular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain. .,Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
28
|
Lu A. Sorting (Nexin-13) out Novel Insights into Endolysosomal Cholesterol Export. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2022; 5:25152564221114513. [PMID: 37366510 PMCID: PMC10243570 DOI: 10.1177/25152564221114513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/28/2022] [Accepted: 07/21/2022] [Indexed: 06/28/2023]
Abstract
Transport in and out of the endolysosomal compartment represents a key step in the regulation of cellular cholesterol homeostasis. Despite important recent advances, how LDL-derived, free cholesterol is exported from the lumen of endolysosomes to other organelles is still a matter of debate. We recently devised a CRISPR/Cas9 genome-scale strategy to uncover genes involved in the regulation of endolysosomal cholesterol homeostasis and the functionally linked phospholipid, bis(monoacylglycerol)-phosphate. This approach confirmed known genes and pathways involved in this process, and more importantly revealed previously unrecognized roles for new players, such as Sorting Nexin-13 (SNX13). Here we discuss the unexpected regulatory role of SNX13 in endolysosomal cholesterol export.
Collapse
Affiliation(s)
- Albert Lu
- Departament de Biomedicina, Unitat de Biologia Cel·lular,
Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut
d’Investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
29
|
Regulation of low-density lipoprotein receptor expression in triple negative breast cancer by EGFR-MAPK signaling. Sci Rep 2021; 11:17927. [PMID: 34504181 PMCID: PMC8429745 DOI: 10.1038/s41598-021-97327-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 08/24/2021] [Indexed: 11/15/2022] Open
Abstract
Expression of the low-density lipoprotein receptor (LDLR) has been shown to play a critical role in hypercholesterolemia-associated breast cancer growth and is associated with shorter recurrence-free survival in human breast cancer studies. We sought to identify how circulating LDL cholesterol and tumor LDLR might accelerate oncogenic processes by determining whether increased LDLR expression and cholesterol uptake are associated with the activation of the epidermal growth factor receptor (EGFR) signaling pathway in triple negative breast cancer (TNBC) cell lines. EGF stimulation of MDA-MB-468 (MDA468) cells activated p44/42MAPK (MAPK), increased expression of LDLR, and fluorescent LDL cholesterol uptake. However, stimulation of MDA-MB-231 (MDA231) cells with EGF did not lead to increased expression of LDLR despite inducing phosphorylation of EGFR. Inhibition of MAPK using UO126 in MDA231 cells reduced LDLR expression, and in MDA468 cells, UO126 impaired the LDLR increase in response to EGF. MDA468 cells exposed to the transcription inhibitor, Actinomycin, prior to treatment with EGF showed reduced degradation of LDLR mRNA compared to vehicle-treated cells. Our results suggest that the EGF-associated increase in LDLR protein expression is cell line-specific. The common pathway regulating LDLR expression was MAPK in both TNBC cell lines.
Collapse
|
30
|
Schoop V, Martello A, Eden ER, Höglinger D. Cellular cholesterol and how to find it. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158989. [PMID: 34118431 DOI: 10.1016/j.bbalip.2021.158989] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 01/06/2023]
Abstract
Cholesterol is an essential component of eukaryotic cellular membranes. Information about its subcellular localization and transport pathways inside cells are key for the understanding and treatment of cholesterol-related diseases. In this review we give an overview over the most commonly used methods that contributed to our current understanding of subcellular cholesterol localization and transport routes. First, we discuss methods that provide insights into cholesterol metabolism based on readouts of downstream effects such as esterification. Subsequently, we focus on the use of cholesterol-binding molecules as probes that facilitate visualization and quantification of sterols inside of cells. Finally, we explore different analogues of cholesterol which, when taken up by living cells, are integrated and transported in a similar fashion as endogenous sterols. Taken together, we highlight the challenges and advantages of each method such that researchers studying aspects of cholesterol transport may choose the most pertinent approach for their problem.
Collapse
Affiliation(s)
- Valentin Schoop
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany
| | - Andrea Martello
- University College London (UCL), Institute of Ophthalmology, EC1V 9EL London, United Kingdom
| | - Emily R Eden
- University College London (UCL), Institute of Ophthalmology, EC1V 9EL London, United Kingdom
| | - Doris Höglinger
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany.
| |
Collapse
|
31
|
Takahashi K, Kanerva K, Vanharanta L, Almeida‐Souza L, Lietha D, Olkkonen VM, Ikonen E. ORP2 couples LDL-cholesterol transport to FAK activation by endosomal cholesterol/PI(4,5)P 2 exchange. EMBO J 2021; 40:e106871. [PMID: 34124795 PMCID: PMC8281050 DOI: 10.15252/embj.2020106871] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022] Open
Abstract
Low-density lipoprotein (LDL)-cholesterol delivery from late endosomes to the plasma membrane regulates focal adhesion dynamics and cell migration, but the mechanisms controlling it are poorly characterized. Here, we employed auxin-inducible rapid degradation of oxysterol-binding protein-related protein 2 (ORP2/OSBPL2) to show that endogenous ORP2 mediates the transfer of LDL-derived cholesterol from late endosomes to focal adhesion kinase (FAK)-/integrin-positive recycling endosomes in human cells. In vitro, cholesterol enhances membrane association of FAK to PI(4,5)P2 -containing lipid bilayers. In cells, ORP2 stimulates FAK activation and PI(4,5)P2 generation in endomembranes, enhancing cell adhesion. Moreover, ORP2 increases PI(4,5)P2 in NPC1-containing late endosomes in a FAK-dependent manner, controlling their tubulovesicular trafficking. Together, these results provide evidence that ORP2 controls FAK activation and LDL-cholesterol plasma membrane delivery by promoting bidirectional cholesterol/PI(4,5)P2 exchange between late and recycling endosomes.
Collapse
Affiliation(s)
- Kohta Takahashi
- Department of Anatomy and Stem Cells and Metabolism Research ProgramFaculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
- Present address:
Laboratory of Microbiology and ImmunologyGraduate School of Pharmaceutical SciencesChiba UniversityChibaJapan
| | - Kristiina Kanerva
- Department of Anatomy and Stem Cells and Metabolism Research ProgramFaculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| | - Lauri Vanharanta
- Department of Anatomy and Stem Cells and Metabolism Research ProgramFaculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| | - Leonardo Almeida‐Souza
- Helsinki Institute of Life Science, HiLIFEUniversity of HelsinkiHelsinkiFinland
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
| | - Daniel Lietha
- Centro de Investigaciones Biológicas Margarita Salas (CIB)Spanish National Research Council (CSIC)MadridSpain
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| | - Elina Ikonen
- Department of Anatomy and Stem Cells and Metabolism Research ProgramFaculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| |
Collapse
|
32
|
Ikonen E, Zhou X. Cholesterol transport between cellular membranes: A balancing act between interconnected lipid fluxes. Dev Cell 2021; 56:1430-1436. [PMID: 34004151 DOI: 10.1016/j.devcel.2021.04.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022]
Abstract
Cholesterol represents the most abundant single lipid in mammalian cells. How its asymmetric distribution between subcellular membranes is achieved and maintained attracts considerable interest. One of the challenges is that cholesterol rarely is transported alone, but rather is coupled with heterotypic transport and metabolism of other lipids, in particular phosphoinositides, phosphatidylserine, and sphingolipids. This perspective summarizes the major exo- and endocytic cholesterol transport routes and how lipid transfer proteins at membrane contacts and membrane transport intersect along these routes. It discusses the co-transport of cholesterol with other lipids in mammalian cells and reviews emerging evidence related to the physiological relevance of this process.
Collapse
Affiliation(s)
- Elina Ikonen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland.
| | - Xin Zhou
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| |
Collapse
|
33
|
Wong LH, Edgar JR, Martello A, Ferguson BJ, Eden ER. Exploiting Connections for Viral Replication. Front Cell Dev Biol 2021; 9:640456. [PMID: 33816489 PMCID: PMC8012536 DOI: 10.3389/fcell.2021.640456] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/01/2021] [Indexed: 12/16/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the COVID-19 (coronavirus disease 2019) pandemic, is a positive strand RNA (+RNA) virus. Like other +RNA viruses, SARS-CoV-2 is dependent on host cell metabolic machinery to survive and replicate, remodeling cellular membranes to generate sites of viral replication. Viral RNA-containing double-membrane vesicles (DMVs) are a striking feature of +RNA viral replication and are abundant in SARS-CoV-2-infected cells. Their generation involves rewiring of host lipid metabolism, including lipid biosynthetic pathways. Viruses can also redirect lipids from host cell organelles; lipid exchange at membrane contact sites, where the membranes of adjacent organelles are in close apposition, has been implicated in the replication of several +RNA viruses. Here we review current understanding of DMV biogenesis. With a focus on the exploitation of contact site machinery by +RNA viruses to generate replication organelles, we discuss evidence that similar mechanisms support SARS-CoV-2 replication, protecting its RNA from the host cell immune response.
Collapse
Affiliation(s)
| | - James R. Edgar
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | - Brian J. Ferguson
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Emily R. Eden
- UCL Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|
34
|
Folylpoly-ɣ-glutamate synthetase association to the cytoskeleton: Implications to folate metabolon compartmentalization. J Proteomics 2021; 239:104169. [PMID: 33676037 DOI: 10.1016/j.jprot.2021.104169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/03/2021] [Accepted: 02/19/2021] [Indexed: 11/23/2022]
Abstract
Folates are essential for nucleotide biosynthesis, amino acid metabolism and cellular proliferation. Following carrier-mediated uptake, folates are polyglutamylated by folylpoly-ɣ-glutamate synthetase (FPGS), resulting in their intracellular retention. FPGS appears as a long isoform, directed to mitochondria via a leader sequence, and a short isoform reported as a soluble cytosolic protein (cFPGS). However, since folates are labile and folate metabolism is compartmentalized, we herein hypothesized that cFPGS is associated with the cytoskeleton, to couple folate uptake and polyglutamylation and channel folate polyglutamates to metabolon compartments. We show that cFPGS is a cytoskeleton-microtubule associated protein: Western blot analysis revealed that endogenous cFPGS is associated with the insoluble cellular fraction, i.e., cytoskeleton and membranes, but not with the cytosol. Mass spectrometry analysis identified the putative cFPGS interactome primarily consisting of microtubule subunits and cytoskeletal motor proteins. Consistently, immunofluorescence microscopy with cytosol-depleted cells demonstrated the association of cFPGS with the cytoskeleton and unconventional myosin-1c. Furthermore, since anti-microtubule, anti-actin cytoskeleton, and coatomer dissociation-inducing agents yielded perinuclear pausing of cFPGS, we propose an actin- and microtubule-dependent transport of cFPGS between the ER-Golgi and the plasma membrane. These novel findings support the coupling of folate transport with polyglutamylation and folate channeling to intracellular metabolon compartments. SIGNIFICANCE: FPGS, an essential enzyme catalyzing intracellular folate polyglutamylation and efficient retention, was described as a soluble cytosolic enzyme in the past 40 years. However, based on the lability of folates and the compartmentalization of folate metabolism and nucleotide biosynthesis, we herein hypothesized that cytoplasmic FPGS is associated with the cytoskeleton, to couple folate transport and polyglutamylation as well as channel folate polyglutamates to biosynthetic metabolon compartments. Indeed, using complementary techniques including Mass-spectrometry proteomics and fluorescence microscopy, we show that cytoplasmic FPGS is associated with the cytoskeleton and unconventional myosin-1c. This novel cytoskeletal localization of cytoplasmic FPGS supports the dynamic channeling of polyglutamylated folates to metabolon compartments to avoid oxidation and intracellular dilution of folates, while enhancing folate-dependent de novo biosynthesis of nucleotides and DNA/protein methylation.
Collapse
|
35
|
Loss of NPC1 enhances phagocytic uptake and impairs lipid trafficking in microglia. Nat Commun 2021; 12:1158. [PMID: 33627648 PMCID: PMC7904859 DOI: 10.1038/s41467-021-21428-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/27/2021] [Indexed: 02/08/2023] Open
Abstract
Niemann-Pick type C disease is a rare neurodegenerative disorder mainly caused by mutations in NPC1, resulting in abnormal late endosomal/lysosomal lipid storage. Although microgliosis is a prominent pathological feature, direct consequences of NPC1 loss on microglial function remain not fully characterized. We discovered pathological proteomic signatures and phenotypes in NPC1-deficient murine models and demonstrate a cell autonomous function of NPC1 in microglia. Loss of NPC1 triggers enhanced phagocytic uptake and impaired myelin turnover in microglia that precede neuronal death. Npc1−/− microglia feature a striking accumulation of multivesicular bodies and impaired trafficking of lipids to lysosomes while lysosomal degradation function remains preserved. Molecular and functional defects were also detected in blood-derived macrophages of NPC patients that provide a potential tool for monitoring disease. Our study underscores an essential cell autonomous role for NPC1 in immune cells and implies microglial therapeutic potential. Niemann-Pick type C disease is a rare childhood neurodegenerative disorder predominantly caused by mutations in NPC1, resulting in abnormal late endosomal and lysosomal defects. Here the authors show that NPC1 disruption largely impairs microglial function.
Collapse
|
36
|
Hitching a ride to the top: peroxisomes fuel cilium with cholesterol. SCIENCE CHINA-LIFE SCIENCES 2021; 64:478-481. [PMID: 33420924 DOI: 10.1007/s11427-020-1866-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022]
|
37
|
Vos DY, van de Sluis B. Function of the endolysosomal network in cholesterol homeostasis and metabolic-associated fatty liver disease (MAFLD). Mol Metab 2021; 50:101146. [PMID: 33348067 PMCID: PMC8324686 DOI: 10.1016/j.molmet.2020.101146] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/26/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023] Open
Abstract
Background Metabolic-associated fatty liver disease (MAFLD), also known as non-alcoholic fatty liver disease, has become the leading cause of chronic liver disease worldwide. In addition to hepatic accumulation of triglycerides, dysregulated cholesterol metabolism is an important contributor to the pathogenesis of MAFLD. Maintenance of cholesterol homeostasis is highly dependent on cellular cholesterol uptake and, subsequently, cholesterol transport to other membrane compartments, such as the endoplasmic reticulum (ER). Scope of review The endolysosomal network is key for regulating cellular homeostasis and adaptation, and emerging evidence has shown that the endolysosomal network is crucial to maintain metabolic homeostasis. In this review, we will summarize our current understanding of the role of the endolysosomal network in cholesterol homeostasis and its implications in MAFLD pathogenesis. Major conclusions Although multiple endolysosomal proteins have been identified in the regulation of cholesterol uptake, intracellular transport, and degradation, their physiological role is incompletely understood. Further research should elucidate their role in controlling metabolic homeostasis and development of fatty liver disease. The intracellular cholesterol transport is tightly regulated by the endocytic and lysosomal network. Dysfunction of the endolysosomal network affects hepatic lipid homeostasis. The endosomal sorting of lipoprotein receptors is precisely regulated and is not a bulk process.
Collapse
Affiliation(s)
- Dyonne Y Vos
- Department of Pediatrics, section Molecular Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bart van de Sluis
- Department of Pediatrics, section Molecular Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
38
|
Koponen A, Pan G, Kivelä AM, Ralko A, Taskinen JH, Arora A, Kosonen R, Kari OK, Ndika J, Ikonen E, Cho W, Yan D, Olkkonen VM. ORP2, a cholesterol transporter, regulates angiogenic signaling in endothelial cells. FASEB J 2020; 34:14671-14694. [DOI: 10.1096/fj.202000202r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/22/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Annika Koponen
- Minerva Foundation Institute for Medical ResearchBiomedicum 2U Helsinki Finland
| | - Guoping Pan
- Department of Biology Jinan University Guangzhou China
| | - Annukka M. Kivelä
- Minerva Foundation Institute for Medical ResearchBiomedicum 2U Helsinki Finland
| | - Arthur Ralko
- Department of Chemistry University of Illinois at Chicago Chicago IL USA
| | - Juuso H. Taskinen
- Minerva Foundation Institute for Medical ResearchBiomedicum 2U Helsinki Finland
| | - Amita Arora
- Minerva Foundation Institute for Medical ResearchBiomedicum 2U Helsinki Finland
| | - Riikka Kosonen
- Minerva Foundation Institute for Medical ResearchBiomedicum 2U Helsinki Finland
| | - Otto K. Kari
- Drug Research Program Division of Pharmaceutical Biosciences Faculty of Pharmacy University of Helsinki Helsinki Finland
| | - Joseph Ndika
- Human Microbiome Research Faculty of Medicine University of Helsinki Helsinki Finland
| | - Elina Ikonen
- Minerva Foundation Institute for Medical ResearchBiomedicum 2U Helsinki Finland
- Department of Anatomy Faculty of Medicine University of Helsinki Helsinki Finland
| | - Wonhwa Cho
- Department of Chemistry University of Illinois at Chicago Chicago IL USA
| | - Daoguang Yan
- Department of Biology Jinan University Guangzhou China
| | - Vesa M. Olkkonen
- Minerva Foundation Institute for Medical ResearchBiomedicum 2U Helsinki Finland
- Department of Anatomy Faculty of Medicine University of Helsinki Helsinki Finland
| |
Collapse
|
39
|
Lietha D, Izard T. Roles of Membrane Domains in Integrin-Mediated Cell Adhesion. Int J Mol Sci 2020; 21:ijms21155531. [PMID: 32752284 PMCID: PMC7432473 DOI: 10.3390/ijms21155531] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
The composition and organization of the plasma membrane play important functional and regulatory roles in integrin signaling, which direct many physiological and pathological processes, such as development, wound healing, immunity, thrombosis, and cancer metastasis. Membranes are comprised of regions that are thick or thin owing to spontaneous partitioning of long-chain saturated lipids from short-chain polyunsaturated lipids into domains defined as ordered and liquid-disorder domains, respectively. Liquid-ordered domains are typically 100 nm in diameter and sometimes referred to as lipid rafts. We posit that integrin β senses membrane thickness and that mechanical force on the membrane regulates integrin activation through membrane thinning. This review examines what we know about the nature and mechanism of the interaction of integrins with the plasma membrane and its effects on regulating integrins and its binding partners.
Collapse
Affiliation(s)
- Daniel Lietha
- Cell Signaling and Adhesion Group, Structural and Chemical Biology, Margarita Salas Center for Biological Research (CIB-CSIC), E-28040 Madrid, Spain;
| | - Tina Izard
- Cell Adhesion Laboratory, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
- Correspondence:
| |
Collapse
|
40
|
Meneses-Salas E, García-Melero A, Kanerva K, Blanco-Muñoz P, Morales-Paytuvi F, Bonjoch J, Casas J, Egert A, Beevi SS, Jose J, Llorente-Cortés V, Rye KA, Heeren J, Lu A, Pol A, Tebar F, Ikonen E, Grewal T, Enrich C, Rentero C. Annexin A6 modulates TBC1D15/Rab7/StARD3 axis to control endosomal cholesterol export in NPC1 cells. Cell Mol Life Sci 2020; 77:2839-2857. [PMID: 31664461 PMCID: PMC7326902 DOI: 10.1007/s00018-019-03330-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 01/23/2023]
Abstract
Cholesterol accumulation in late endosomes is a prevailing phenotype of Niemann-Pick type C1 (NPC1) mutant cells. Likewise, annexin A6 (AnxA6) overexpression induces a phenotype reminiscent of NPC1 mutant cells. Here, we demonstrate that this cellular cholesterol imbalance is due to AnxA6 promoting Rab7 inactivation via TBC1D15, a Rab7-GAP. In NPC1 mutant cells, AnxA6 depletion and eventual Rab7 activation was associated with peripheral distribution and increased mobility of late endosomes. This was accompanied by an enhanced lipid accumulation in lipid droplets in an acyl-CoA:cholesterol acyltransferase (ACAT)-dependent manner. Moreover, in AnxA6-deficient NPC1 mutant cells, Rab7-mediated rescue of late endosome-cholesterol export required the StAR-related lipid transfer domain-3 (StARD3) protein. Electron microscopy revealed a significant increase of membrane contact sites (MCS) between late endosomes and ER in NPC1 mutant cells lacking AnxA6, suggesting late endosome-cholesterol transfer to the ER via Rab7 and StARD3-dependent MCS formation. This study identifies AnxA6 as a novel gatekeeper that controls cellular distribution of late endosome-cholesterol via regulation of a Rab7-GAP and MCS formation.
Collapse
Affiliation(s)
- Elsa Meneses-Salas
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Ana García-Melero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Kristiina Kanerva
- Faculty of Medicine, Anatomy, University of Helsinki, 00014, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland
| | - Patricia Blanco-Muñoz
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Frederic Morales-Paytuvi
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Júlia Bonjoch
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Josefina Casas
- Research Unit on BioActive Molecules (RUBAM), Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Antonia Egert
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Syed S Beevi
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Jaimy Jose
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Vicenta Llorente-Cortés
- Lipids and Cardiovascular Pathology Group, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
- CIBERCV, Institute of Health Carlos III, Madrid, Spain
- Biomedical Research Institute of Barcelona-CSIC, Barcelona, Spain
| | - Kerry-Anne Rye
- School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Joerg Heeren
- Department of Biochemistry and Molecular Biology II: Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Albert Lu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, USA
| | - Albert Pol
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avaçats (ICREA), 08010, Barcelona, Spain
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Elina Ikonen
- Faculty of Medicine, Anatomy, University of Helsinki, 00014, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia.
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain.
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain.
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.
| |
Collapse
|
41
|
Marek M, Vincenzetti V, Martin SG. Sterol biosensor reveals LAM-family Ltc1-dependent sterol flow to endosomes upon Arp2/3 inhibition. J Cell Biol 2020; 219:e202001147. [PMID: 32320462 PMCID: PMC7265315 DOI: 10.1083/jcb.202001147] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 01/01/2023] Open
Abstract
Sterols are crucial components of biological membranes, which are synthetized in the ER and accumulate in the plasma membrane (PM). Here, by applying a genetically encoded sterol biosensor (D4H), we visualize a sterol flow between PM and endosomes in the fission yeast Schizosaccharomyces pombe. Using time-lapse and correlative light-electron microscopy, we found that inhibition of Arp2/3-dependent F-actin assembly promotes the reversible relocalization of D4H from the PM to internal sterol-rich compartments (STRIC) labeled by synaptobrevin Syb1. Retrograde sterol internalization to STRIC is independent of endocytosis or an intact Golgi, but depends on Ltc1, a LAM/StARkin-family protein localized to ER-PM contact sites. The PM in ltc1Δ cells over-accumulates sterols and upon Arp2/3 inhibition forms extended ER-interacting invaginations, indicating that sterol transfer contributes to PM size homeostasis. Anterograde sterol movement from STRIC is independent of canonical vesicular trafficking but requires Arp2/3, suggesting a novel role for this complex. Thus, transfer routes orthogonal to vesicular trafficking govern the flow of sterols in the cell.
Collapse
Affiliation(s)
| | | | - Sophie G. Martin
- Department of Fundamental Microbiology, University of Lausanne, Switzerland
| |
Collapse
|
42
|
Miyamoto T, Hosoba K, Itabashi T, Iwane AH, Akutsu SN, Ochiai H, Saito Y, Yamamoto T, Matsuura S. Insufficiency of ciliary cholesterol in hereditary Zellweger syndrome. EMBO J 2020; 39:e103499. [PMID: 32368833 PMCID: PMC7298307 DOI: 10.15252/embj.2019103499] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 03/13/2020] [Accepted: 03/20/2020] [Indexed: 11/22/2022] Open
Abstract
Primary cilia are antenna‐like organelles on the surface of most mammalian cells that receive sonic hedgehog (Shh) signaling in embryogenesis and carcinogenesis. Cellular cholesterol functions as a direct activator of a seven‐transmembrane oncoprotein called Smoothened (Smo) and thereby induces Smo accumulation on the ciliary membrane where it transduces the Shh signal. However, how cholesterol is supplied to the ciliary membrane remains unclear. Here, we report that peroxisomes are essential for the transport of cholesterol into the ciliary membrane. Zellweger syndrome (ZS) is a peroxisome‐deficient hereditary disorder with several ciliopathy‐related features and cells from these patients showed a reduced cholesterol level in the ciliary membrane. Reverse genetics approaches revealed that the GTP exchange factor Rabin8, the Rab GTPase Rab10, and the microtubule minus‐end‐directed kinesin KIFC3 form a peroxisome‐associated complex to control the movement of peroxisomes along microtubules, enabling communication between peroxisomes and ciliary pocket membranes. Our findings suggest that insufficient ciliary cholesterol levels may underlie ciliopathies.
Collapse
Affiliation(s)
- Tatsuo Miyamoto
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Kosuke Hosoba
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.,Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takeshi Itabashi
- Laboratory for Cell Field Structure, RIKEN Center for Biosystems Dynamics Research, Higashi-Hiroshima, Japan
| | - Atsuko H Iwane
- Laboratory for Cell Field Structure, RIKEN Center for Biosystems Dynamics Research, Higashi-Hiroshima, Japan
| | - Silvia Natsuko Akutsu
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Ochiai
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yumiko Saito
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.,Program of Life and Environmental Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takashi Yamamoto
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.,Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Shinya Matsuura
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
43
|
Martello A, Platt FM, Eden ER. Staying in touch with the endocytic network: The importance of contacts for cholesterol transport. Traffic 2020; 21:354-363. [PMID: 32129938 PMCID: PMC8650999 DOI: 10.1111/tra.12726] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/21/2020] [Accepted: 03/02/2020] [Indexed: 12/16/2022]
Abstract
Cholesterol homeostasis is critical for cell function and human health. Cholesterol is heterogeneously distributed among cellular membranes, with the redistribution of endocytosed dietary cholesterol playing a pivotal role in the regulation of cholesterol homeostasis. While gaps remain in our understanding of intracellular dietary cholesterol transport, a highly complex network of pathways is starting to emerge, often involving inter‐dependent vesicular and non‐vesicular transport mechanisms. The last decade has seen a surge in interest in non‐vesicular transport and inter‐organellar communication at membrane contact sites. By providing platforms for protein interactions, signalling events, lipid exchange and calcium flux, membrane contact sites (MCS) are now appreciated as controlling the fate of large amounts of lipid and play central roles in the regulation and co‐ordination of endocytic trafficking. Here, we review the role of MCS in multiple pathways for cholesterol export from the endocytic pathway and highlight the intriguing interplay between vesicular and non‐vesicular transport mechanisms and relationship with neurodegenerative disease.
Collapse
Affiliation(s)
| | - Fran M Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | |
Collapse
|
44
|
Boutry M, Pierga A, Matusiak R, Branchu J, Houllegatte M, Ibrahim Y, Balse E, El Hachimi KH, Brice A, Stevanin G, Darios F. Loss of spatacsin impairs cholesterol trafficking and calcium homeostasis. Commun Biol 2019; 2:380. [PMID: 31637311 PMCID: PMC6797781 DOI: 10.1038/s42003-019-0615-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022] Open
Abstract
Mutations in SPG11, leading to loss of spatacsin function, impair the formation of membrane tubules in lysosomes and cause lysosomal lipid accumulation. However, the full nature of lipids accumulating in lysosomes and the physiological consequences of such accumulation are unknown. Here we show that loss of spatacsin inhibits the formation of tubules on lysosomes and prevents the clearance of cholesterol from this subcellular compartment. Accumulation of cholesterol in lysosomes decreases cholesterol levels in the plasma membrane, enhancing the entry of extracellular calcium by store-operated calcium entry and increasing resting cytosolic calcium levels. Higher cytosolic calcium levels promote the nuclear translocation of the master regulator of lysosomes TFEB, preventing the formation of tubules and the clearance of cholesterol from lysosomes. Our work reveals a homeostatic balance between cholesterol trafficking and cytosolic calcium levels and shows that loss of spatacsin impairs this homeostatic equilibrium.
Collapse
Affiliation(s)
- Maxime Boutry
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Inserm, U1127, F-75013 Paris, France
- CNRS, UMR 7225, F-75013 Paris, France
- Institut du Cerveau et de la Moelle Epinière, ICM, F-75013 Paris, France
- Ecole Pratique des Hautes Etudes, PSL Research University, Laboratoire de Neurogénétique, F-75013 Paris, France
- Present Address: Cell Biology Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON Canada
| | - Alexandre Pierga
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Inserm, U1127, F-75013 Paris, France
- CNRS, UMR 7225, F-75013 Paris, France
- Institut du Cerveau et de la Moelle Epinière, ICM, F-75013 Paris, France
| | - Raphaël Matusiak
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Inserm, U1127, F-75013 Paris, France
- CNRS, UMR 7225, F-75013 Paris, France
- Institut du Cerveau et de la Moelle Epinière, ICM, F-75013 Paris, France
| | - Julien Branchu
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Inserm, U1127, F-75013 Paris, France
- CNRS, UMR 7225, F-75013 Paris, France
- Institut du Cerveau et de la Moelle Epinière, ICM, F-75013 Paris, France
| | - Marc Houllegatte
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Inserm, U1127, F-75013 Paris, France
- CNRS, UMR 7225, F-75013 Paris, France
- Institut du Cerveau et de la Moelle Epinière, ICM, F-75013 Paris, France
- Ecole Pratique des Hautes Etudes, PSL Research University, Laboratoire de Neurogénétique, F-75013 Paris, France
| | - Yoan Ibrahim
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Inserm, U1127, F-75013 Paris, France
- CNRS, UMR 7225, F-75013 Paris, France
- Institut du Cerveau et de la Moelle Epinière, ICM, F-75013 Paris, France
| | - Elise Balse
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1166, F-75013 Paris, France
| | - Khalid-Hamid El Hachimi
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Inserm, U1127, F-75013 Paris, France
- CNRS, UMR 7225, F-75013 Paris, France
- Institut du Cerveau et de la Moelle Epinière, ICM, F-75013 Paris, France
- Ecole Pratique des Hautes Etudes, PSL Research University, Laboratoire de Neurogénétique, F-75013 Paris, France
| | - Alexis Brice
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Inserm, U1127, F-75013 Paris, France
- CNRS, UMR 7225, F-75013 Paris, France
- Institut du Cerveau et de la Moelle Epinière, ICM, F-75013 Paris, France
| | - Giovanni Stevanin
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Inserm, U1127, F-75013 Paris, France
- CNRS, UMR 7225, F-75013 Paris, France
- Institut du Cerveau et de la Moelle Epinière, ICM, F-75013 Paris, France
- Ecole Pratique des Hautes Etudes, PSL Research University, Laboratoire de Neurogénétique, F-75013 Paris, France
| | - Frédéric Darios
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Inserm, U1127, F-75013 Paris, France
- CNRS, UMR 7225, F-75013 Paris, France
- Institut du Cerveau et de la Moelle Epinière, ICM, F-75013 Paris, France
| |
Collapse
|
45
|
NPC1 regulates ER contacts with endocytic organelles to mediate cholesterol egress. Nat Commun 2019; 10:4276. [PMID: 31537798 PMCID: PMC6753064 DOI: 10.1038/s41467-019-12152-2] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 08/19/2019] [Indexed: 12/19/2022] Open
Abstract
Transport of dietary cholesterol from endocytic organelles to the endoplasmic reticulum (ER) is essential for cholesterol homoeostasis, but the mechanism and regulation of this transport remains poorly defined. Membrane contact sites (MCS), microdomains of close membrane apposition, are gaining attention as important platforms for non-vesicular, inter-organellar communication. Here we investigate the impact of ER-endocytic organelle MCS on cholesterol transport. We report a role for Niemann-Pick type C protein 1 (NPC1) in tethering ER-endocytic organelle MCS where it interacts with the ER-localised sterol transport protein Gramd1b to regulate cholesterol egress. We show that artificially tethering MCS rescues the cholesterol accumulation that characterises NPC1-deficient cells, consistent with direct lysosome to ER cholesterol transport across MCS. Finally, we identify an expanded population of lysosome-mitochondria MCS in cells depleted of NPC1 or Gramd1b that is dependent on the late endosomal sterol-binding protein STARD3, likely underlying the mitochondrial cholesterol accumulation in NPC1-deficient cells. Though endocytosed dietary cholesterol is transferred to the endoplasmic reticulum (ER), how this is regulated is unclear. Here, the authors report a role for Niemann-Pick Type C Protein 1 (NPC1) in tethering endocytic organelles to the ER, which may contribute to interorganelle cholesterol transport.
Collapse
|
46
|
Wanikawa M, Nakamura H, Emori S, Hashimoto N, Murayama T. Accumulation of sphingomyelin in Niemann‐Pick disease type C cells disrupts Rab9‐dependent vesicular trafficking of cholesterol. J Cell Physiol 2019; 235:2300-2309. [DOI: 10.1002/jcp.29137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 08/23/2019] [Indexed: 01/19/2023]
Affiliation(s)
- Masahiro Wanikawa
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences Chiba University Chuo‐ku Chiba Japan
| | - Hiroyuki Nakamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences Chiba University Chuo‐ku Chiba Japan
| | - Shunsuke Emori
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences Chiba University Chuo‐ku Chiba Japan
| | - Naohiro Hashimoto
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences Chiba University Chuo‐ku Chiba Japan
| | - Toshihiko Murayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences Chiba University Chuo‐ku Chiba Japan
| |
Collapse
|
47
|
Luukkonen PK, Nick A, Hölttä-Vuori M, Thiele C, Isokuortti E, Lallukka-Brück S, Zhou Y, Hakkarainen A, Lundbom N, Peltonen M, Orho-Melander M, Orešič M, Hyötyläinen T, Hodson L, Ikonen E, Yki-Järvinen H. Human PNPLA3-I148M variant increases hepatic retention of polyunsaturated fatty acids. JCI Insight 2019; 4:127902. [PMID: 31434800 PMCID: PMC6777808 DOI: 10.1172/jci.insight.127902] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022] Open
Abstract
The common patatin-like phospholipase domain-containing protein 3 (PNPLA3) variant I148M predisposes to nonalcoholic liver disease but not its metabolic sequelae. We compared the handling of labeled polyunsaturated fatty acids (PUFAs) and saturated fatty acids (SFA) in vivo in humans and in cells harboring different PNPLA3 genotypes. In 148M homozygous individuals, triglycerides (TGs) in very low-density lipoproteins (VLDL) were depleted of PUFAs both under fasting and postprandial conditions compared with 148I homozygotes, and the PUFA/SFA ratio in VLDL-TGs was lower relative to the chylomicron precursor pool. In human PNPLA3-148M and PNPLA3-KO cells, PUFA but not SFA incorporation into TGs was increased at the expense of phosphatidylcholines, and under lipolytic conditions, PUFA-containing diacylglycerols (DAGs) accumulated compared with PNPLA3-148I cells. Polyunsaturated TGs were increased, while phosphatidylcholines (PCs) were decreased in the human liver in 148M homozygous individuals as compared with 148I homozygotes. We conclude that human PNPLA3-I148M is a loss-of-function allele that remodels liver TGs in a polyunsaturated direction by impairing hydrolysis/transacylation of PUFAs from DAGs to feed phosphatidylcholine synthesis.
Collapse
Affiliation(s)
- Panu K. Luukkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Auli Nick
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Faculty of Medicine, Department of Anatomy, University of Helsinki, Helsinki, Finland
| | - Maarit Hölttä-Vuori
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Faculty of Medicine, Department of Anatomy, University of Helsinki, Helsinki, Finland
| | | | - Elina Isokuortti
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Susanna Lallukka-Brück
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - You Zhou
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Antti Hakkarainen
- Department of Radiology, HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Nina Lundbom
- Department of Radiology, HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Markku Peltonen
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | | | - Matej Orešič
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
- School of Medical Sciences and
| | | | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Elina Ikonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Faculty of Medicine, Department of Anatomy, University of Helsinki, Helsinki, Finland
| | - Hannele Yki-Järvinen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
48
|
Pan X, Neufeld TP, O'Connor MB. A Tissue- and Temporal-Specific Autophagic Switch Controls Drosophila Pre-metamorphic Nutritional Checkpoints. Curr Biol 2019; 29:2840-2851.e4. [PMID: 31422886 DOI: 10.1016/j.cub.2019.07.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/24/2019] [Accepted: 07/10/2019] [Indexed: 01/28/2023]
Abstract
Properly timed production of steroid hormones by endocrine tissues regulates juvenile-to-adult transitions in both mammals (puberty) and holometabolous insects (metamorphosis). Nutritional conditions influence the temporal control of the transition, but the mechanisms responsible are ill defined. Here we demonstrate that autophagy acts as an endocrine organ-specific, nutritionally regulated gating mechanism to help ensure productive metamorphosis in Drosophila. Autophagy in the endocrine organ is specifically stimulated by nutrient restriction at the early, but not the late, third-instar larva stage. The timing of autophagy induction correlates with the nutritional checkpoints, which inhibit precocious metamorphosis during nutrient restriction in undersized larvae. Suppression of autophagy causes dysregulated pupariation of starved larvae, which leads to pupal lethality, whereas forced autophagy induction results in developmental delay/arrest in well-fed animals. Induction of autophagy disrupts production of the steroid hormone ecdysone at the time of pupariation not by destruction of hormone biosynthetic capacity but rather by limiting the availability of the steroid hormone precursor cholesterol in the endocrine cells via a lipophagy mechanism. Interestingly, autophagy in the endocrine organ functions by interacting with the endolysosome system, yet shows multiple features not fully consistent with a canonical autophagy process. Taken together, our findings demonstrate an autophagy mechanism in endocrine cells that helps shape the nutritional checkpoints and guarantee a successful juvenile-to-adult transition in animals confronting nutritional stress.
Collapse
Affiliation(s)
- Xueyang Pan
- Department of Genetics, Cell Biology and Development and the Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Thomas P Neufeld
- Department of Genetics, Cell Biology and Development and the Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael B O'Connor
- Department of Genetics, Cell Biology and Development and the Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
49
|
Heybrock S, Kanerva K, Meng Y, Ing C, Liang A, Xiong ZJ, Weng X, Ah Kim Y, Collins R, Trimble W, Pomès R, Privé GG, Annaert W, Schwake M, Heeren J, Lüllmann-Rauch R, Grinstein S, Ikonen E, Saftig P, Neculai D. Lysosomal integral membrane protein-2 (LIMP-2/SCARB2) is involved in lysosomal cholesterol export. Nat Commun 2019; 10:3521. [PMID: 31387993 PMCID: PMC6684646 DOI: 10.1038/s41467-019-11425-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 07/12/2019] [Indexed: 11/30/2022] Open
Abstract
The intracellular transport of cholesterol is subject to tight regulation. The structure of the lysosomal integral membrane protein type 2 (LIMP-2, also known as SCARB2) reveals a large cavity that traverses the molecule and resembles the cavity in SR-B1 that mediates lipid transfer. The detection of cholesterol within the LIMP-2 structure and the formation of cholesterol-like inclusions in LIMP-2 knockout mice suggested the possibility that LIMP2 transports cholesterol in lysosomes. We present results of molecular modeling, crosslinking studies, microscale thermophoresis and cell-based assays that support a role of LIMP-2 in cholesterol transport. We show that the cavity in the luminal domain of LIMP-2 can bind and deliver exogenous cholesterol to the lysosomal membrane and later to lipid droplets. Depletion of LIMP-2 alters SREBP-2-mediated cholesterol regulation, as well as LDL-receptor levels. Our data indicate that LIMP-2 operates in parallel with Niemann Pick (NPC)-proteins, mediating a slower mode of lysosomal cholesterol export.
Collapse
Affiliation(s)
- Saskia Heybrock
- Biochemisches Institut, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Kristiina Kanerva
- Faculty of Medicine, Anatomy and Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Ying Meng
- Department of Cell Biology, and Department of Pathology Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Chris Ing
- Program in Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, M5S 1A8, Canada
| | - Anna Liang
- Program in Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, M5S 1A8, Canada
| | - Zi-Jian Xiong
- Department of Biochemistry, University of Toronto, Toronto, M5S 1A8, Canada
| | - Xialian Weng
- Department of Cell Biology, and Department of Pathology Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Young Ah Kim
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Flushing, New York, USA
| | - Richard Collins
- Cell Biology Program, Hospital for Sick Children, Toronto, M5G 1X8, Canada
| | - William Trimble
- Department of Biochemistry, University of Toronto, Toronto, M5S 1A8, Canada
- Cell Biology Program, Hospital for Sick Children, Toronto, M5G 1X8, Canada
- Department of Physiology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Régis Pomès
- Program in Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, M5S 1A8, Canada
| | - Gilbert G Privé
- Department of Biochemistry, University of Toronto, Toronto, M5S 1A8, Canada
- Princes Margaret Cancer Centre, Toronto, ON, Canada
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium
| | - Michael Schwake
- Faculty of Chemistry, Biochemistry III, University of Bielefeld, 33615, Bielefeld, Germany
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Joerg Heeren
- Institut für Biochemie und Molekulare Zellbiologie, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg-Eppendorf, Germany
| | | | - Sergio Grinstein
- Department of Biochemistry, University of Toronto, Toronto, M5S 1A8, Canada.
- Cell Biology Program, Hospital for Sick Children, Toronto, M5G 1X8, Canada.
| | - Elina Ikonen
- Faculty of Medicine, Anatomy and Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland.
- Minerva Foundation Institute for Medical Research, Helsinki, Finland.
| | - Paul Saftig
- Biochemisches Institut, Christian-Albrechts-Universität Kiel, Kiel, Germany.
| | - Dante Neculai
- Department of Cell Biology, and Department of Pathology Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China.
| |
Collapse
|
50
|
Pinkwart K, Schneider F, Lukoseviciute M, Sauka-Spengler T, Lyman E, Eggeling C, Sezgin E. Nanoscale dynamics of cholesterol in the cell membrane. J Biol Chem 2019; 294:12599-12609. [PMID: 31270209 PMCID: PMC6709632 DOI: 10.1074/jbc.ra119.009683] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/26/2019] [Indexed: 12/22/2022] Open
Abstract
Cholesterol constitutes ∼30-40% of the mammalian plasma membrane, a larger fraction than of any other single component. It is a major player in numerous signaling processes as well as in shaping molecular membrane architecture. However, our knowledge of the dynamics of cholesterol in the plasma membrane is limited, restricting our understanding of the mechanisms regulating its involvement in cell signaling. Here, we applied advanced fluorescence imaging and spectroscopy approaches on in vitro (model membranes) and in vivo (live cells and embryos) membranes as well as in silico analysis to systematically study the nanoscale dynamics of cholesterol in biological membranes. Our results indicate that cholesterol diffuses faster than phospholipids in live membranes, but not in model membranes. Interestingly, a detailed statistical diffusion analysis suggested two-component diffusion for cholesterol in the plasma membrane of live cells. One of these components was similar to a freely diffusing phospholipid analogue, whereas the other one was significantly faster. When a cholesterol analogue was localized to the outer leaflet only, the fast diffusion of cholesterol disappeared, and it diffused similarly to phospholipids. Overall, our results suggest that cholesterol diffusion in the cell membrane is heterogeneous and that this diffusional heterogeneity is due to cholesterol's nanoscale interactions and localization in the membrane.
Collapse
Affiliation(s)
- Kerstin Pinkwart
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Falk Schneider
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Martyna Lukoseviciute
- Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Tatjana Sauka-Spengler
- Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Edward Lyman
- Departments of Physics and Astronomy and Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716
| | - Christian Eggeling
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom.,Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien Platz 4, 07743 Jena, Germany.,Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Erdinc Sezgin
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| |
Collapse
|