1
|
Otsuki L, Plattner SA, Taniguchi-Sugiura Y, Falcon F, Tanaka EM. Molecular basis of positional memory in limb regeneration. Nature 2025:10.1038/s41586-025-09036-5. [PMID: 40399677 DOI: 10.1038/s41586-025-09036-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/16/2025] [Indexed: 05/23/2025]
Abstract
The amputation of a salamander limb triggers anterior and posterior connective tissue cells to form distinct signalling centres that together fuel regeneration1. Anterior and posterior identities are established during development and are thought to persist for the whole life in the form of positional memory2. However, the molecular basis of positional memory and whether positional memory can be altered remain unknown. Here, we identify a positive-feedback loop that is responsible for posterior identity in the limb of an axolotl (Ambystoma mexicanum). Posterior cells express residual Hand2 transcription factor from development, and this primes them to form a Shh signalling centre after limb amputation. During regeneration, Shh signalling is also upstream of Hand2 expression. After regeneration, Shh is shut down but Hand2 is sustained, safeguarding posterior memory. We used this regeneration circuitry to convert anterior cells to a posterior-cell memory state. Transient exposure of anterior cells to Shh during regeneration kick-started an ectopic Hand2-Shh loop, leading to stable Hand2 expression and lasting competence to express Shh. Our results implicate positive-feedback in the stability of positional memory and reveal that positional memory is reprogrammed more easily in one direction (anterior to posterior) than in the other. Modifying positional memory in regenerative cells changes their signalling outputs, which has implications for tissue engineering.
Collapse
Affiliation(s)
- L Otsuki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria.
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.
| | - S A Plattner
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Y Taniguchi-Sugiura
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - F Falcon
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - E M Tanaka
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria.
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.
| |
Collapse
|
2
|
Argall A, Ye S, Moccia A, Stone B, Hunter J, Garg V, Zhao MT. Characterization of an induced pluripotent stem cell line NCHi025-A from a 1-year-old female with pulmonary stenosis harboring a heterozygous HAND2 variant. Stem Cell Res 2025; 86:103733. [PMID: 40378586 DOI: 10.1016/j.scr.2025.103733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 05/01/2025] [Accepted: 05/07/2025] [Indexed: 05/19/2025] Open
Abstract
HAND2 is a transcription factor that plays a vital role in the development of the heart, limbs, and pharyngeal arch. Functional defects in HAND2 have been shown to cause congenital malformations in the extremities of the body and the heart. NCHi025-A iPSC line was generated from a 1-year-old female with pulmonary stenosis and harbors a novel de novo heterozygous variant of uncertain significance within HAND2 (NM_021973.3; c.247delG; p.Val83CysfsTer16). This variant causes a frameshift and premature stop codon that is predicted to truncate the protein. NCHi025-A is a pluripotent stem cell line that can be leveraged to investigate HAND2-associated phenotypic development.
Collapse
Affiliation(s)
- Aaron Argall
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Shiqiao Ye
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Amanda Moccia
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Brandon Stone
- Division of Genetics and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Jesse Hunter
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Vidu Garg
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA; Dorothy M Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ming-Tao Zhao
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA; Dorothy M Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
3
|
Fu M, Pang L, Wu Z, Wang M, Jin J, Ai S, Li X. Single-cell multi-omics delineates the dynamics of distinct epigenetic codes coordinating mouse gastrulation. BMC Genomics 2025; 26:454. [PMID: 40340740 PMCID: PMC12060302 DOI: 10.1186/s12864-025-11619-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 04/21/2025] [Indexed: 05/10/2025] Open
Abstract
Gastrulation represents a crucial stage in embryonic development and is tightly controlled by a complex network involving epigenetic reprogramming. However, the molecular coordination among distinct epigenetic layers entailing the progressive restriction of lineage potency remains unclear. Here, we present a multi-omics map of H3K27ac and H3K4me1 single-cell ChIP-seq profiles of mouse embryos collected at six sequential time points. Significant epigenetic priming, as reflected by H3K27ac signals, is evident, yet asynchronous cell fate commitment of each germ layer at distinct histone modification levels are observed. Integrated scRNA-seq and single-cell ChIP-seq analysis unveil a "time lag" transition pattern between enhancer activation and gene expression during germ-layer specification. Notably, by utilizing the H3K27ac and H3K4me1 co-marked active enhancers, we construct a gene regulatory network centered on pivotal transcription factors, highlighting the potential critical role of Cdkn1c in mesoderm lineage specification. Together, our study broadens the current understanding of intricate epigenetic regulatory networks governing mouse gastrulation and sheds light on their relevance to congenital diseases.
Collapse
Affiliation(s)
- Mingzhu Fu
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Long Pang
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhenwei Wu
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Mei Wang
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Jin Jin
- Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China.
| | - Shanshan Ai
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Department of Cardiology, Heart Center, First People's Hospital of Shunde, Southern Medical University, ShundeDistrict, Foshan, 528300, China.
| | - Xin Li
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China.
| |
Collapse
|
4
|
Aviñó-Esteban L, Cardona-Blaya H, Sharpe J. Spatio-temporal reconstruction of gene expression patterns in developing mice. Development 2025; 152:DEV204313. [PMID: 39982400 PMCID: PMC11883288 DOI: 10.1242/dev.204313] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025]
Abstract
Understanding gene regulation in organism development is crucial in biology. Techniques like whole-mount in situ hybridization can reveal spatial gene expression in organs and tissues. However, capturing time-lapse movies of gene expression dynamics in embryos developing in utero, such as mice, remains technically challenging beyond the early stages. To address this, we present a method to integrate static snapshots of gene expression patterns across limb developmental stages, creating a continuous 2D reconstruction of gene expression patterns over time. This method interpolates small tissue regions over time to create smooth temporal trajectories of gene expression. We successfully applied it to a number of key genes in limb development, including Sox9, Hand2, and Bmp2. This approach enables a detailed spatio-temporal mapping of gene expression, providing insights into developmental mechanisms. By estimating gene expression patterns at previously unobserved time points, it facilitates the comparison of these patterns across samples. The reconstructed trajectories offer high-quality data that will be useful to guide computational modeling and machine learning, advancing the study of developmental biology in systems where real-time imaging is technically difficult or impossible.
Collapse
Affiliation(s)
- Laura Aviñó-Esteban
- European Molecular Biology Laboratory (EMBL-Barcelona), Barcelona 08003, Spain
- Barcelona Collaboratorium for Modelling and Predictive Biology, Barcelona 08005, Spain
| | - Heura Cardona-Blaya
- European Molecular Biology Laboratory (EMBL-Barcelona), Barcelona 08003, Spain
| | - James Sharpe
- European Molecular Biology Laboratory (EMBL-Barcelona), Barcelona 08003, Spain
- Barcelona Collaboratorium for Modelling and Predictive Biology, Barcelona 08005, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona 08010, Spain
| |
Collapse
|
5
|
Casco-Robles MM, Ikeda R, Maruo F, Chiba C. Development of a ZRS Reporter System for the Newt ( Cynops pyrrhogaster) During Terrestrial Limb Regeneration. Biomedicines 2024; 12:2505. [PMID: 39595071 PMCID: PMC11591917 DOI: 10.3390/biomedicines12112505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Newts, a type of urodele amphibian, offer remarkable insights into regenerative medicine due to their extraordinary tissue regeneration capabilities-a challenging feat in humans. During limb regeneration of adult newts, fascinating cellular and molecular processes are revealed, including scarless healing, de-differentiation of mature cells, and regeneration of limbs and digits. Sonic hedgehog (Shh), crucial for vertebrate limb development, is regulated by the zone of polarizing activity regulatory sequence (ZRS) in the limb bud zone of polarizing activity (ZPA). The metamorphosed (terrestrial) newt can reactivate Shh during regeneration, facilitating proper limb patterning. Cell types capable of regulating the ZRS in metamorphosed newts remain unknown. The identification of such cell types provides invaluable insight into novel regenerative mechanisms. OBJECTIVE In this study, we developed the first newt ZRS reporter. METHODS We isolated and characterized the newt ZRS enhancer (nZRS), identifying conserved DNA binding sites. Several binding sites with medical relevance were conserved in the newt ZRS. In functional analysis, we developed a system composed of a transgenic nZRS reporter newt and a new newt anti-Shh antibody, which allowed Shh monitoring during limb regeneration. RESULTS We identified a group of Schwann cells capable of ZRS reporter and Shh protein expression during terrestrial limb regeneration. CONCLUSIONS This system provides a valuable in vivo approach for future genetic studies of patterning during limb regeneration.
Collapse
Affiliation(s)
- Martin Miguel Casco-Robles
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8572, Ibaraki, Japan; (F.M.); (C.C.)
| | - Ryosuke Ikeda
- Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8572, Ibaraki, Japan;
| | - Fumiaki Maruo
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8572, Ibaraki, Japan; (F.M.); (C.C.)
| | - Chikafumi Chiba
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8572, Ibaraki, Japan; (F.M.); (C.C.)
| |
Collapse
|
6
|
Plummer NW, Smith KG, Jensen P. A knock-in allele of Hand2 expressing Dre recombinase. Genesis 2024; 62:e23601. [PMID: 38703044 PMCID: PMC11088872 DOI: 10.1002/dvg.23601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/05/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024]
Abstract
HAND2 is a basic helix-loop-helix transcription factor with diverse functions during development. To facilitate the investigation of genetic and functional diversity among Hand2-expressing cells in the mouse, we have generated Hand2Dre, a knock-in allele expressing Dre recombinase. To avoid disrupting Hand2 function, the Dre cDNA is inserted at the 3' end of the Hand2 coding sequence following a viral 2A peptide. Hand2Dre homozygotes can therefore be used in complex crosses to increase the proportion of useful genotypes among offspring. Dre expression in mid-gestation Hand2Dre embryos is indistinguishable from wild-type Hand2 expression, and HandDre efficiently recombines rox target sites in vivo. In combination with existing Cre and Flp mouse lines, Hand2Dre will therefore extend the ability to perform genetic intersectional labeling, fate mapping, and functional manipulation of subpopulations of cells characterized by developmental expression of Hand2.
Collapse
Affiliation(s)
- Nicholas W. Plummer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA
| | - Kathleen G. Smith
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA
| | - Patricia Jensen
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
7
|
Soussi G, Girdziusaite A, Jhanwar S, Palacio V, Notaro M, Sheth R, Zeller R, Zuniga A. TBX3 is essential for establishment of the posterior boundary of anterior genes and upregulation of posterior genes together with HAND2 during the onset of limb bud development. Development 2024; 151:dev202722. [PMID: 38828908 PMCID: PMC11190573 DOI: 10.1242/dev.202722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/26/2024] [Indexed: 06/05/2024]
Abstract
During limb bud formation, axis polarities are established as evidenced by the spatially restricted expression of key regulator genes. In particular, the mutually antagonistic interaction between the GLI3 repressor and HAND2 results in distinct and non-overlapping anterior-distal Gli3 and posterior Hand2 expression domains. This is a hallmark of the establishment of antero-posterior limb axis polarity, together with spatially restricted expression of homeodomain and other transcriptional regulators. Here, we show that TBX3 is required for establishment of the posterior expression boundary of anterior genes in mouse limb buds. ChIP-seq and differential gene expression analysis of wild-type and mutant limb buds identifies TBX3-specific and shared TBX3-HAND2 target genes. High sensitivity fluorescent whole-mount in situ hybridisation shows that the posterior expression boundaries of anterior genes are positioned by TBX3-mediated repression, which excludes anterior genes such as Gli3, Alx4, Hand1 and Irx3/5 from the posterior limb bud mesenchyme. This exclusion delineates the posterior mesenchymal territory competent to establish the Shh-expressing limb bud organiser. In turn, HAND2 is required for Shh activation and cooperates with TBX3 to upregulate shared posterior identity target genes in early limb buds.
Collapse
Affiliation(s)
- Geoffrey Soussi
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Ausra Girdziusaite
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Shalu Jhanwar
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Victorio Palacio
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | | | - Rushikesh Sheth
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Rolf Zeller
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Aimée Zuniga
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| |
Collapse
|
8
|
Bower G, Hollingsworth EW, Jacinto S, Clock B, Cao K, Liu M, Dziulko A, Alcaina-Caro A, Xu Q, Skowronska-Krawczyk D, Lopez-Rios J, Dickel DE, Bardet AF, Pennacchio LA, Visel A, Kvon EZ. Conserved Cis-Acting Range Extender Element Mediates Extreme Long-Range Enhancer Activity in Mammals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.26.595809. [PMID: 38826394 PMCID: PMC11142232 DOI: 10.1101/2024.05.26.595809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
While most mammalian enhancers regulate their cognate promoters over moderate distances of tens of kilobases (kb), some enhancers act over distances in the megabase range. The sequence features enabling such extreme-distance enhancer-promoter interactions remain elusive. Here, we used in vivo enhancer replacement experiments in mice to show that short- and medium-range enhancers cannot initiate gene expression at extreme-distance range. We uncover a novel conserved cis-acting element, Range EXtender (REX), that confers extreme-distance regulatory activity and is located next to a long-range enhancer of Sall1. The REX element itself has no endogenous enhancer activity. However, addition of the REX to other short- and mid-range enhancers substantially increases their genomic interaction range. In the most extreme example observed, addition of the REX increased the range of an enhancer by an order of magnitude, from its native 71kb to 840kb. The REX element contains highly conserved [C/T]AATTA homeodomain motifs. These motifs are enriched around long-range limb enhancers genome-wide, including the ZRS, a benchmark long-range limb enhancer of Shh. Mutating the [C/T]AATTA motifs within the ZRS does not affect its limb-specific enhancer activity at short range, but selectively abolishes its long-range activity, resulting in severe limb reduction in knock-in mice. In summary, we identify a sequence signature globally associated with long-range enhancer-promoter interactions and describe a prototypical REX element that is necessary and sufficient to confer extreme-distance gene activation by remote enhancers.
Collapse
Affiliation(s)
- Grace Bower
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA
| | - Ethan W. Hollingsworth
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA
- Medical Scientist Training Program, University of California, Irvine, CA 92967, USA
| | - Sandra Jacinto
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA
| | - Benjamin Clock
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA
| | - Kaitlyn Cao
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA
| | - Mandy Liu
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA
| | - Adam Dziulko
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ana Alcaina-Caro
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, 41013, Spain
| | - Qianlan Xu
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, University of California, Irvine, CA, USA
| | - Dorota Skowronska-Krawczyk
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, University of California, Irvine, CA, USA
| | - Javier Lopez-Rios
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, 41013, Spain
| | - Diane E. Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anaïs F. Bardet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U1258, 67400 Illkirch, France
| | - Len A. Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA 94720, USA
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
- School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Evgeny Z. Kvon
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA
| |
Collapse
|
9
|
Teng D, Ueda K, Honda T. HAND2 suppresses favipiravir efficacy in treatment of Borna disease virus infection. Antiviral Res 2024; 222:105812. [PMID: 38262560 DOI: 10.1016/j.antiviral.2024.105812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Borna disease virus (BoDV-1) is a bornavirus prototype that infects the central nervous system of various animal species and can cause fatal encephalitis in various animals including humans. Among the reported anti-BoDV-1 treatments, favipiravir (T-705) is one of the best candidates since it has been shown to be effective in reducing various bornavirus titers in cell culture. However, T-705 effectiveness on BoDV-1 is cell type-dependent, and the molecular mechanisms that explain this cell type-dependent difference remain unknown. In this study, we noticed a fact that T-705 efficiently suppressed BoDV-1 in infected 293T cells, but not in infected SH-SY5Y cells, and sought to identify protein(s) responsible for this cell-type-dependent difference in T-705 efficacy. By comparing the transcriptomes of BoDV-1-infected 293T and SH-SY5Y cells, we identified heart- and neural crest derivatives-expressed protein 2 (HAND2) as a candidate involved in T-705 interference. HAND2 overexpression partly attenuated the inhibitory effect of T-705, whereas HAND2 knockdown enhanced this effect. We also demonstrated an interaction between T-705 and HAND2. Furthermore, T-705 impaired HAND2-mediated host gene expression. Because HAND2 is an essential transcriptional regulator of embryogenesis, T-705 may exhibit its adverse effects such as teratogenicity and embryotoxicity through the impairment of HAND2 function. This study provides novel insights into the molecular mechanisms underlying T-705 interference in some cell types and inspires the development of improved T-705 derivatives for the treatment of RNA viruses.
Collapse
Affiliation(s)
- Da Teng
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keiji Ueda
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomoyuki Honda
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama 700-8558, Japan; Department of Virology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama 700-8558, Japan.
| |
Collapse
|
10
|
Ferguson CA, Firulli BA, Zoia M, Osterwalder M, Firulli AB. Identification and characterization of Hand2 upstream genomic enhancers active in developing stomach and limbs. Dev Dyn 2024; 253:215-232. [PMID: 37551791 PMCID: PMC11365009 DOI: 10.1002/dvdy.646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND The bHLH transcription factor HAND2 plays important roles in the development of the embryonic heart, face, limbs, and sympathetic and enteric nervous systems. To define how and when HAND2 regulates these developmental systems, requires understanding the transcriptional regulation of Hand2. RESULTS Remarkably, Hand2 is flanked by an extensive upstream gene desert containing a potentially diverse enhancer landscape. Here, we screened the regulatory interval 200 kb proximal to Hand2 for putative enhancers using evolutionary conservation and histone marks in Hand2-expressing tissues. H3K27ac signatures across embryonic tissues pointed to only two putative enhancer regions showing deep sequence conservation. Assessment of the transcriptional enhancer potential of these elements using transgenic reporter lines uncovered distinct in vivo enhancer activities in embryonic stomach and limb mesenchyme, respectively. Activity of the identified stomach enhancer was restricted to the developing antrum and showed expression within the smooth muscle and enteric neurons. Surprisingly, the activity pattern of the limb enhancer did not overlap Hand2 mRNA but consistently yielded a defined subectodermal anterior expression pattern within multiple transgenic lines. CONCLUSIONS Together, these results start to uncover the diverse regulatory potential inherent to the Hand2 upstream regulatory interval.
Collapse
Affiliation(s)
- Chloe A. Ferguson
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Beth A. Firulli
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Matteo Zoia
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Marco Osterwalder
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Anthony B. Firulli
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| |
Collapse
|
11
|
Lim F, Solvason JJ, Ryan GE, Le SH, Jindal GA, Steffen P, Jandu SK, Farley EK. Affinity-optimizing enhancer variants disrupt development. Nature 2024; 626:151-159. [PMID: 38233525 PMCID: PMC10830414 DOI: 10.1038/s41586-023-06922-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024]
Abstract
Enhancers control the location and timing of gene expression and contain the majority of variants associated with disease1-3. The ZRS is arguably the most well-studied vertebrate enhancer and mediates the expression of Shh in the developing limb4. Thirty-one human single-nucleotide variants (SNVs) within the ZRS are associated with polydactyly4-6. However, how this enhancer encodes tissue-specific activity, and the mechanisms by which SNVs alter the number of digits, are poorly understood. Here we show that the ETS sites within the ZRS are low affinity, and identify a functional ETS site, ETS-A, with extremely low affinity. Two human SNVs and a synthetic variant optimize the binding affinity of ETS-A subtly from 15% to around 25% relative to the strongest ETS binding sequence, and cause polydactyly with the same penetrance and severity. A greater increase in affinity results in phenotypes that are more penetrant and more severe. Affinity-optimizing SNVs in other ETS sites in the ZRS, as well as in ETS, interferon regulatory factor (IRF), HOX and activator protein 1 (AP-1) sites within a wide variety of enhancers, cause gain-of-function gene expression. The prevalence of binding sites with suboptimal affinity in enhancers creates a vulnerability in genomes whereby SNVs that optimize affinity, even slightly, can be pathogenic. Searching for affinity-optimizing SNVs in genomes could provide a mechanistic approach to identify causal variants that underlie enhanceropathies.
Collapse
Affiliation(s)
- Fabian Lim
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Joe J Solvason
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Genevieve E Ryan
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Sophia H Le
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Granton A Jindal
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Paige Steffen
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Simran K Jandu
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Emma K Farley
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
12
|
Ali S, Abrar M, Hussain I, Batool F, Raza RZ, Khatoon H, Zoia M, Visel A, Shubin NH, Osterwalder M, Abbasi AA. Identification of ancestral gnathostome Gli3 enhancers with activity in mammals. Dev Growth Differ 2024; 66:75-88. [PMID: 37925606 PMCID: PMC10841732 DOI: 10.1111/dgd.12901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/01/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Abstract
Abnormal expression of the transcriptional regulator and hedgehog (Hh) signaling pathway effector Gli3 is known to trigger congenital disease, most frequently affecting the central nervous system (CNS) and the limbs. Accurate delineation of the genomic cis-regulatory landscape controlling Gli3 transcription during embryonic development is critical for the interpretation of noncoding variants associated with congenital defects. Here, we employed a comparative genomic analysis on fish species with a slow rate of molecular evolution to identify seven previously unknown conserved noncoding elements (CNEs) in Gli3 intronic intervals (CNE15-21). Transgenic assays in zebrafish revealed that most of these elements drive activities in Gli3 expressing tissues, predominantly the fins, CNS, and the heart. Intersection of these CNEs with human disease associated SNPs identified CNE15 as a putative mammalian craniofacial enhancer, with conserved activity in vertebrates and potentially affected by mutation associated with human craniofacial morphology. Finally, comparative functional dissection of an appendage-specific CNE conserved in slowly evolving fish (elephant shark), but not in teleost (CNE14/hs1586) indicates co-option of limb specificity from other tissues prior to the divergence of amniotes and lobe-finned fish. These results uncover a novel subset of intronic Gli3 enhancers that arose in the common ancestor of gnathostomes and whose sequence components were likely gradually modified in other species during the process of evolutionary diversification.
Collapse
Affiliation(s)
- Shahid Ali
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad Pakistan
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
| | - Muhammad Abrar
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad Pakistan
| | - Irfan Hussain
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad Pakistan
| | - Fatima Batool
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad Pakistan
| | - Rabail Zehra Raza
- Department of Biological Sciences, Faculty of Multidisciplinary Studies, National University of Medical Sciences Rawalpindi, Pakistan
| | - Hizran Khatoon
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad Pakistan
| | - Matteo Zoia
- Department for Biomedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Axel Visel
- Environmental Genomics and System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- U.S. Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA 94720, USA
- School of Natural Sciences, University of California, Merced, Merced, CA 95343, USA
| | - Neil H. Shubin
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
| | - Marco Osterwalder
- Department for Biomedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Amir Ali Abbasi
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad Pakistan
| |
Collapse
|
13
|
Morabito A, Malkmus J, Pancho A, Zuniga A, Zeller R, Sheth R. Optimized protocol for whole-mount RNA fluorescent in situ hybridization using oxidation-mediated autofluorescence reduction on mouse embryos. STAR Protoc 2023; 4:102603. [PMID: 37742180 PMCID: PMC10522992 DOI: 10.1016/j.xpro.2023.102603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/28/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023] Open
Abstract
Tissue autofluorescence poses significant challenges for RNA and protein analysis using fluorescence-based techniques. Here, we present a protocol that combines oxidation-mediated autofluorescence reduction with detergent-based tissue permeabilization for whole-mount RNA-fluorescence in situ hybridization (FISH) on mouse embryonic limb buds. We describe the steps for embryo collection, fixation, photochemical bleaching, permeabilization, and RNA-FISH, followed by optical clearing of RNA-FISH and immunofluorescence samples for imaging. The protocol alleviates the need for digital image post-processing to remove autofluorescence and is applicable to other tissues, organs, and vertebrate embryos.
Collapse
Affiliation(s)
- Angela Morabito
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Jonas Malkmus
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Anna Pancho
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Aimée Zuniga
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Rolf Zeller
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Rushikesh Sheth
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland.
| |
Collapse
|
14
|
Hollingsworth EW, Liu TA, Jacinto SH, Chen CX, Alcantara JA, Kvon EZ. Rapid and Quantitative Functional Interrogation of Human Enhancer Variant Activity in Live Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.10.570890. [PMID: 38105996 PMCID: PMC10723448 DOI: 10.1101/2023.12.10.570890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Functional analysis of non-coding variants associated with human congenital disorders remains challenging due to the lack of efficient in vivo models. Here we introduce dual-enSERT, a robust Cas9-based two-color fluorescent reporter system which enables rapid, quantitative comparison of enhancer allele activities in live mice of any genetic background. We use this new technology to examine and measure the gain- and loss-of-function effects of enhancer variants linked to limb polydactyly, autism, and craniofacial malformation. By combining dual-enSERT with single-cell transcriptomics, we characterize variant enhancer alleles at cellular resolution, thereby implicating candidate molecular pathways in pathogenic enhancer misregulation. We further show that independent, polydactyly-linked enhancer variants lead to ectopic expression in the same cell populations, indicating shared genetic mechanisms underlying non-coding variant pathogenesis. Finally, we streamline dual-enSERT for analysis in F0 animals by placing both reporters on the same transgene separated by a synthetic insulator. Dual-enSERT allows researchers to go from identifying candidate enhancer variants to analysis of comparative enhancer activity in live embryos in under two weeks.
Collapse
Affiliation(s)
- Ethan W. Hollingsworth
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
- Medical Scientist Training Program, University of California, Irvine School of Medicine, Irvine, CA 92697, USA
| | - Taryn A. Liu
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Sandra H. Jacinto
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Cindy X. Chen
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Joshua A. Alcantara
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Evgeny Z. Kvon
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
15
|
Rosowski S, Remmert C, Marder M, Akishiba M, Bushe J, Feuchtinger A, Platen A, Ussar S, Theis F, Wiedenmann S, Meier M. Single-cell characterization of neovascularization using hiPSC-derived endothelial cells in a 3D microenvironment. Stem Cell Reports 2023; 18:1972-1986. [PMID: 37714147 PMCID: PMC10656300 DOI: 10.1016/j.stemcr.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 09/17/2023] Open
Abstract
The formation of vascular structures is fundamental for in vitro tissue engineering. Vascularization can enable the nutrient supply within larger structures and increase transplantation efficiency. We differentiated human induced pluripotent stem cells toward endothelial cells in 3D suspension culture. To investigate in vitro neovascularization and various 3D microenvironmental approaches, we designed a comprehensive single-cell transcriptomic study. Time-resolved single-cell transcriptomics of the endothelial and co-evolving mural cells gave insights into cell type development, stability, and plasticity. Transfer to a 3D hydrogel microenvironment induced neovascularization and facilitated tracing of migrating, coalescing, and tubulogenic endothelial cell states. During maturation, we monitored two pericyte subtypes evolving mural cells. Profiling cell-cell interactions between pericytes and endothelial cells revealed angiogenic signals during tubulogenesis. In silico discovered ligands were tested for their capability to attract endothelial cells. Our data, analyses, and results provide an in vitro roadmap to guide vascularization in future tissue engineering.
Collapse
Affiliation(s)
- Simon Rosowski
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Caroline Remmert
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Maren Marder
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Misao Akishiba
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Judith Bushe
- Research Unit Analytical Pathology, Helmholtz München, 85764 Neuherberg, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz München, 85764 Neuherberg, Germany
| | - Alina Platen
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Siegfried Ussar
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Fabian Theis
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany; Department of Mathematics, Technical University of Munich, 85748 Garching bei München, Germany
| | - Sandra Wiedenmann
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Matthias Meier
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany; University Leipzig, Center for Biotechnology and Biomedicine, Institute of Biochemistry, Leipzig, Germany.
| |
Collapse
|
16
|
Komatsu V, Cooper B, Yim P, Chan K, Gong W, Wheatley L, Rohs R, Fraser SE, Trinh LA. Hand2 represses non-cardiac cell fates through chromatin remodeling at cis- regulatory elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.23.559156. [PMID: 37790542 PMCID: PMC10542161 DOI: 10.1101/2023.09.23.559156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Developmental studies have revealed the importance of the transcription factor Hand2 in cardiac development. Hand2 promotes cardiac progenitor differentiation and epithelial maturation, while repressing other tissue types. The mechanisms underlying the promotion of cardiac fates are far better understood than those underlying the repression of alternative fates. Here, we assess Hand2-dependent changes in gene expression and chromatin remodeling in cardiac progenitors of zebrafish embryos. Cell-type specific transcriptome analysis shows a dual function for Hand2 in activation of cardiac differentiation genes and repression of pronephric pathways. We identify functional cis- regulatory elements whose chromatin accessibility are increased in hand2 mutant cells. These regulatory elements associate with non-cardiac gene expression, and drive reporter gene expression in tissues associated with Hand2-repressed genes. We find that functional Hand2 is sufficient to reduce non-cardiac reporter expression in cardiac lineages. Taken together, our data support a model of Hand2-dependent coordination of transcriptional programs, not only through transcriptional activation of cardiac and epithelial maturation genes, but also through repressive chromatin remodeling at the DNA regulatory elements of non-cardiac genes.
Collapse
|
17
|
Losa M, Barozzi I, Osterwalder M, Hermosilla-Aguayo V, Morabito A, Chacón BH, Zarrineh P, Girdziusaite A, Benazet JD, Zhu J, Mackem S, Capellini TD, Dickel D, Bobola N, Zuniga A, Visel A, Zeller R, Selleri L. A spatio-temporally constrained gene regulatory network directed by PBX1/2 acquires limb patterning specificity via HAND2. Nat Commun 2023; 14:3993. [PMID: 37414772 PMCID: PMC10325989 DOI: 10.1038/s41467-023-39443-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/14/2023] [Indexed: 07/08/2023] Open
Abstract
A lingering question in developmental biology has centered on how transcription factors with widespread distribution in vertebrate embryos can perform tissue-specific functions. Here, using the murine hindlimb as a model, we investigate the elusive mechanisms whereby PBX TALE homeoproteins, viewed primarily as HOX cofactors, attain context-specific developmental roles despite ubiquitous presence in the embryo. We first demonstrate that mesenchymal-specific loss of PBX1/2 or the transcriptional regulator HAND2 generates similar limb phenotypes. By combining tissue-specific and temporally controlled mutagenesis with multi-omics approaches, we reconstruct a gene regulatory network (GRN) at organismal-level resolution that is collaboratively directed by PBX1/2 and HAND2 interactions in subsets of posterior hindlimb mesenchymal cells. Genome-wide profiling of PBX1 binding across multiple embryonic tissues further reveals that HAND2 interacts with subsets of PBX-bound regions to regulate limb-specific GRNs. Our research elucidates fundamental principles by which promiscuous transcription factors cooperate with cofactors that display domain-restricted localization to instruct tissue-specific developmental programs.
Collapse
Affiliation(s)
- Marta Losa
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Orofacial Sciences and Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Iros Barozzi
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Marco Osterwalder
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department for Biomedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Viviana Hermosilla-Aguayo
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Orofacial Sciences and Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Angela Morabito
- Developmental Genetics, Department Biomedicine, University of Basel, Basel, Switzerland
| | - Brandon H Chacón
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Orofacial Sciences and Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Peyman Zarrineh
- School of Medical Sciences, University of Manchester, Manchester, UK
| | - Ausra Girdziusaite
- Developmental Genetics, Department Biomedicine, University of Basel, Basel, Switzerland
| | - Jean Denis Benazet
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Orofacial Sciences and Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Jianjian Zhu
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Susan Mackem
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Diane Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nicoletta Bobola
- School of Medical Sciences, University of Manchester, Manchester, UK
| | - Aimée Zuniga
- Developmental Genetics, Department Biomedicine, University of Basel, Basel, Switzerland
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- School of Natural Sciences, University of California, Merced, Merced, CA, 95343, USA
| | - Rolf Zeller
- Developmental Genetics, Department Biomedicine, University of Basel, Basel, Switzerland
| | - Licia Selleri
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Orofacial Sciences and Department of Anatomy, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
18
|
Kocere A, Lalonde RL, Mosimann C, Burger A. Lateral thinking in syndromic congenital cardiovascular disease. Dis Model Mech 2023; 16:dmm049735. [PMID: 37125615 PMCID: PMC10184679 DOI: 10.1242/dmm.049735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Syndromic birth defects are rare diseases that can present with seemingly pleiotropic comorbidities. Prime examples are rare congenital heart and cardiovascular anomalies that can be accompanied by forelimb defects, kidney disorders and more. Whether such multi-organ defects share a developmental link remains a key question with relevance to the diagnosis, therapeutic intervention and long-term care of affected patients. The heart, endothelial and blood lineages develop together from the lateral plate mesoderm (LPM), which also harbors the progenitor cells for limb connective tissue, kidneys, mesothelia and smooth muscle. This developmental plasticity of the LPM, which founds on multi-lineage progenitor cells and shared transcription factor expression across different descendant lineages, has the potential to explain the seemingly disparate syndromic defects in rare congenital diseases. Combining patient genome-sequencing data with model organism studies has already provided a wealth of insights into complex LPM-associated birth defects, such as heart-hand syndromes. Here, we summarize developmental and known disease-causing mechanisms in early LPM patterning, address how defects in these processes drive multi-organ comorbidities, and outline how several cardiovascular and hematopoietic birth defects with complex comorbidities may be LPM-associated diseases. We also discuss strategies to integrate patient sequencing, data-aggregating resources and model organism studies to mechanistically decode congenital defects, including potentially LPM-associated orphan diseases. Eventually, linking complex congenital phenotypes to a common LPM origin provides a framework to discover developmental mechanisms and to anticipate comorbidities in congenital diseases affecting the cardiovascular system and beyond.
Collapse
Affiliation(s)
- Agnese Kocere
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
- Department of Molecular Life Science, University of Zurich, 8057 Zurich, Switzerland
| | - Robert L. Lalonde
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| | - Christian Mosimann
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| | - Alexa Burger
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| |
Collapse
|
19
|
Durand M, Brehaut V, Clement G, Kelemen Z, Macé J, Feil R, Duville G, Launay-Avon A, Roux CPL, Lunn JE, Roudier F, Krapp A. The Arabidopsis transcription factor NLP2 regulates early nitrate responses and integrates nitrate assimilation with energy and carbon skeleton supply. THE PLANT CELL 2023; 35:1429-1454. [PMID: 36752317 PMCID: PMC10118280 DOI: 10.1093/plcell/koad025] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Nitrate signaling improves plant growth under limited nitrate availability and, hence, optimal resource use for crop production. Whereas several transcriptional regulators of nitrate signaling have been identified, including the Arabidopsis thaliana transcription factor NIN-LIKE PROTEIN7 (NLP7), additional regulators are expected to fine-tune this pivotal physiological response. Here, we characterized Arabidopsis NLP2 as a top-tier transcriptional regulator of the early nitrate response gene regulatory network. NLP2 interacts with NLP7 in vivo and shares key molecular features such as nitrate-dependent nuclear localization, DNA-binding motif, and some target genes with NLP7. Genetic, genomic, and metabolic approaches revealed a specific role for NLP2 in the nitrate-dependent regulation of carbon and energy-related processes that likely influence plant growth under distinct nitrogen environments. Our findings highlight the complementarity and specificity of NLP2 and NLP7 in orchestrating a multitiered nitrate regulatory network that links nitrate assimilation with carbon and energy metabolism for efficient nitrogen use and biomass production.
Collapse
Affiliation(s)
- Mickaël Durand
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, Versailles 78000, France
- UMR CNRS 7267, EBI Ecologie et Biologie des Interactions, Université de Poitiers, Poitiers, France
| | - Virginie Brehaut
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, Versailles 78000, France
| | - Gilles Clement
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, Versailles 78000, France
| | - Zsolt Kelemen
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, Versailles 78000, France
| | - Julien Macé
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm D-14476, Germany
| | - Garry Duville
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, Versailles 78000, France
| | - Alexandra Launay-Avon
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France
| | - Christine Paysant-Le Roux
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm D-14476, Germany
| | - François Roudier
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Anne Krapp
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, Versailles 78000, France
| |
Collapse
|
20
|
Feigin CY, Moreno JA, Ramos R, Mereby SA, Alivisatos A, Wang W, van Amerongen R, Camacho J, Rasweiler JJ, Behringer RR, Ostrow B, Plikus MV, Mallarino R. Convergent deployment of ancestral functions during the evolution of mammalian flight membranes. SCIENCE ADVANCES 2023; 9:eade7511. [PMID: 36961889 PMCID: PMC10038344 DOI: 10.1126/sciadv.ade7511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/21/2023] [Indexed: 05/20/2023]
Abstract
Lateral flight membranes, or patagia, have evolved repeatedly in diverse mammalian lineages. While little is known about patagium development, its recurrent evolution may suggest a shared molecular basis. By combining transcriptomics, developmental experiments, and mouse transgenics, we demonstrate that lateral Wnt5a expression in the marsupial sugar glider (Petaurus breviceps) promotes the differentiation of its patagium primordium. We further show that this function of Wnt5a reprises ancestral roles in skin morphogenesis predating mammalian flight and has been convergently used during patagium evolution in eutherian bats. Moreover, we find that many genes involved in limb development have been redeployed during patagium outgrowth in both the sugar glider and bat. Together, our findings reveal that deeply conserved genetic toolkits contribute to the evolutionary transition to flight in mammals.
Collapse
Affiliation(s)
- Charles Y. Feigin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jorge A. Moreno
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Raul Ramos
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Sarah A. Mereby
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Ares Alivisatos
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Wei Wang
- Lewis Sigler Institute, Princeton University, Princeton, NJ 08544, USA
| | - Renée van Amerongen
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Jasmin Camacho
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - John J. Rasweiler
- Department of Obstetrics and Gynecology, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Richard R. Behringer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bruce Ostrow
- Department of Biology, Grand Valley State University, Allendale, MI 49401, USA
| | - Maksim V. Plikus
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Ricardo Mallarino
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
21
|
Bastide S, Chomsky E, Saudemont B, Loe-Mie Y, Schmutz S, Novault S, Marlow H, Tanay A, Spitz F. TATTOO-seq delineates spatial and cell type-specific regulatory programs in the developing limb. SCIENCE ADVANCES 2022; 8:eadd0695. [PMID: 36516250 PMCID: PMC9750149 DOI: 10.1126/sciadv.add0695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
The coordinated differentiation of progenitor cells into specialized cell types and their spatial organization into distinct domains is central to embryogenesis. Here, we developed and applied an unbiased spatially resolved single-cell transcriptomics method to identify the genetic programs underlying the emergence of specialized cell types during mouse limb development and their spatial integration. We identify multiple transcription factors whose expression patterns are predominantly associated with cell type specification or spatial position, suggesting two parallel yet highly interconnected regulatory systems. We demonstrate that the embryonic limb undergoes a complex multiscale reorganization upon perturbation of one of its spatial organizing centers, including the loss of specific cell populations, alterations of preexisting cell states' molecular identities, and changes in their relative spatial distribution. Our study shows how multidimensional single-cell, spatially resolved molecular atlases can allow the deconvolution of spatial identity and cell fate and reveal the interconnected genetic networks that regulate organogenesis and its reorganization upon genetic alterations.
Collapse
Affiliation(s)
- Sébastien Bastide
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- École Doctorale “Complexité du Vivant”, Sorbonne Université, 75005 Paris, France
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Elad Chomsky
- Department of Computer Science and Applied Mathematics, Weizmann Institute, Rehovot, Israel
- Department of Biological Regulation, Weizmann Institute, Rehovot, Israel
| | - Baptiste Saudemont
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
| | - Yann Loe-Mie
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- Hub de Bioinformatique et Biostatistique, Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Sandrine Schmutz
- Cytometry and Biomarkers, Center for Technological Resources and Research, Institut Pasteur, Paris, France
| | - Sophie Novault
- Cytometry and Biomarkers, Center for Technological Resources and Research, Institut Pasteur, Paris, France
| | - Heather Marlow
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, USA
| | - Amos Tanay
- Department of Computer Science and Applied Mathematics, Weizmann Institute, Rehovot, Israel
| | - François Spitz
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
22
|
Sun L, Rong X, Liu X, Yu Z, Zhang Q, Ren W, Yang G, Xu S. Evolutionary genetics of flipper forelimb and hindlimb loss from limb development-related genes in cetaceans. BMC Genomics 2022; 23:797. [DOI: 10.1186/s12864-022-09024-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
Abstract
Background
Cetacean hindlimbs were lost and their forelimb changed into flippers characterized by webbed digits and hyperphalangy, thus allowing them to adapt to a completely aquatic environment. However, the underlying molecular mechanism behind cetacean limb development remains poorly understood.
Results
In the present study, we explored the evolution of 16 limb-related genes and their cis-regulatory elements in cetaceans and compared them with that of other mammals. TBX5, a forelimb specific expression gene, was identified to have been under accelerated evolution in the ancestral branches of cetaceans. In addition, 32 cetacean-specific changes were examined in the SHH signaling network (SHH, PTCH1, TBX5, BMPs and SMO), within which mutations could yield webbed digits or an additional phalange. These findings thus suggest that the SHH signaling network regulates cetacean flipper formation. By contrast, the regulatory activity of the SHH gene enhancer—ZRS in cetaceans—was significantly lower than in mice, which is consistent with the cessation of SHH gene expression in the hindlimb bud during cetacean embryonic development. It was suggested that the decreased SHH activity regulated by enhancer ZRS might be one of the reasons for hindlimb degeneration in cetaceans. Interestingly, a parallel / convergent site (D42G) and a rapidly evolving CNE were identified in marine mammals in FGF10 and GREM1, respectively, and shown to be essential to restrict limb bud size; this is molecular evidence explaining the convergence of flipper-forelimb and shortening or degeneration of hindlimbs in marine mammals.
Conclusions
We did evolutionary analyses of 16 limb-related genes and their cis-regulatory elements in cetaceans and compared them with those of other mammals to provide novel insights into the molecular basis of flipper forelimb and hindlimb loss in cetaceans.
Collapse
|
23
|
Lex RK, Vokes SA. Timing is everything: Transcriptional repression is not the default mode for regulating Hedgehog signaling. Bioessays 2022; 44:e2200139. [PMID: 36251875 PMCID: PMC9691524 DOI: 10.1002/bies.202200139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/08/2022]
Abstract
Hedgehog (HH) signaling is a conserved pathway that drives developmental growth and is essential for the formation of most organs. The expression of HH target genes is regulated by a dual switch mechanism where GLI proteins function as bifunctional transcriptional activators (in the presence of HH signaling) and transcriptional repressors (in the absence of HH signaling). This results in a tight control of GLI target gene expression during rapidly changing levels of pathway activity. It has long been presumed that GLI proteins also repress target genes prior to the initial expression of HH in a given tissue. This idea forms the basis for the limb bud pre-patterning model for regulating digit number. Recent findings indicate that GLI repressor proteins are indeed present prior to HH signaling but contrary to this model, GLI proteins are inert as they do not regulate transcriptional responses or enhancer chromatin modifications at this time. These findings suggest that GLI transcriptional repressor activity is not a default state as assumed, but is itself regulated in an unknown fashion. We discuss these findings and their implications for understanding pre-patterning, digit regulation, and HH-driven disease.
Collapse
Affiliation(s)
- Rachel K. Lex
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109 USA
| | - Steven A. Vokes
- Department of Molecular Bioscienc es, University of Texas at Austin, 100 E 24th Street Stop A5000, Austin, TX 78712 USA
| |
Collapse
|
24
|
Fabik J, Psutkova V, Machon O. Meis2 controls skeletal formation in the hyoid region. Front Cell Dev Biol 2022; 10:951063. [PMID: 36247013 PMCID: PMC9554219 DOI: 10.3389/fcell.2022.951063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
A vertebrate skull is composed of many skeletal elements which display enormous diversity of shapes. Cranial bone formation embodies a multitude of processes, i.e., epithelial-mesenchymal induction, mesenchymal condensation, and endochondral or intramembranous ossification. Molecular pathways determining complex architecture and growth of the cranial skeleton during embryogenesis are poorly understood. Here, we present a model of the hyoid apparatus development in Wnt1-Cre2-induced Meis2 conditional knock-out (cKO) mice. Meis2 cKO embryos develop an aberrant hyoid apparatus—a complete skeletal chain from the base of the neurocranium to lesser horns of the hyoid, resembling extreme human pathologies of the hyoid-larynx region. We examined key stages of hyoid skeletogenesis to obtain a complex image of the hyoid apparatus formation. Lack of Meis2 resulted in ectopic loci of mesenchymal condensations, ectopic cartilage and bone formation, disinhibition of skeletogenesis, and elevated proliferation of cartilage precursors. We presume that all these mechanisms contribute to formation of the aberrant skeletal chain in the hyoid region. Moreover, Meis2 cKO embryos exhibit severely reduced expression of PBX1 and HAND2 in the hyoid region. Altogether, MEIS2 in conjunction with PBX1 and HAND2 affects mesenchymal condensation, specification and proliferation of cartilage precursors to ensure development of the anatomically correct hyoid apparatus.
Collapse
Affiliation(s)
- Jaroslav Fabik
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Viktorie Psutkova
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Ondrej Machon
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- *Correspondence: Ondrej Machon,
| |
Collapse
|
25
|
Haridhasapavalan KK, Sundaravadivelu PK, Joshi N, Das NJ, Mohapatra A, Voorkara U, Kaveeshwar V, Thummer RP. Generation of a recombinant version of a biologically active cell-permeant human HAND2 transcription factor from E. coli. Sci Rep 2022; 12:16129. [PMID: 36167810 PMCID: PMC9515176 DOI: 10.1038/s41598-022-19745-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Transcription factor HAND2 has a significant role in vascularization, angiogenesis, and cardiac neural crest development. It is one of the key cardiac factors crucial for the enhanced derivation of functional and mature myocytes from non-myocyte cells. Here, we report the generation of the recombinant human HAND2 fusion protein from the heterologous system. First, we cloned the full-length human HAND2 gene (only protein-coding sequence) after codon optimization along with the fusion tags (for cell penetration, nuclear translocation, and affinity purification) into the expression vector. We then transformed and expressed it in Escherichia coli strain, BL21(DE3). Next, the effect (in terms of expression) of tagging fusion tags with this recombinant protein at two different terminals was also investigated. Using affinity chromatography, we established the one-step homogeneous purification of recombinant human HAND2 fusion protein; and through circular dichroism spectroscopy, we established that this purified protein had retained its secondary structure. We then showed that this purified human protein could transduce the human cells and translocate to its nucleus. The generated recombinant HAND2 fusion protein showed angiogenic potential in the ex vivo chicken embryo model. Following transduction in MEF2C overexpressing cardiomyoblast cells, this purified recombinant protein synergistically activated the α-MHC promoter and induced GFP expression in the α-MHC-eGFP reporter assay. Prospectively, the purified bioactive recombinant HAND2 protein can potentially be a safe and effective molecular tool in the direct cardiac reprogramming process and other biological applications.
Collapse
Affiliation(s)
- Krishna Kumar Haridhasapavalan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Pradeep Kumar Sundaravadivelu
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Neha Joshi
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nayan Jyoti Das
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Anshuman Mohapatra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Udayashree Voorkara
- Department of Obstetrics and Gynaecology, SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara University, Dharwad, 580009, Karnataka, India
| | - Vishwas Kaveeshwar
- Central Research Laboratory, SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara University, Dharwad, 580009, Karnataka, India.
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
26
|
Zhu J, Patel R, Trofka A, Harfe BD, Mackem S. Sonic hedgehog is not a limb morphogen but acts as a trigger to specify all digits in mice. Dev Cell 2022; 57:2048-2062.e4. [PMID: 35977544 PMCID: PMC9709693 DOI: 10.1016/j.devcel.2022.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/03/2022] [Accepted: 07/26/2022] [Indexed: 11/03/2022]
Abstract
Limb patterning by Sonic hedgehog (Shh), via either graded spatial or temporal signal integration, is a paradigm for "morphogen" function, yet how Shh instructs distinct digit identities remains controversial. Here, we bypass the Shh requirement in cell survival during outgrowth and demonstrate that a transient, early Shh pulse is both necessary and sufficient for normal mouse limb development. Shh response is only short range and is limited to the Shh-expressing zone during this time window. Shh patterns digits 1-3, anterior to this zone, by an indirect mechanism rather than direct spatial or temporal signal integration. Using a genetic relay-signaling assay, we discover that Shh also specifies digit 1/thumb (thought to be exclusively Shh independent) indirectly, and this finding implicates Shh in a unique regulatory hierarchy for digit 1 evolutionary adaptations such as opposable thumbs. This study illuminates Shh as a trigger for an indirect downstream network that becomes rapidly self-sustaining, with mechanistic relevance for limb development, regeneration, and evolution.
Collapse
Affiliation(s)
- Jianjian Zhu
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, NCI, Frederick, MD, USA
| | - Rashmi Patel
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, NCI, Frederick, MD, USA
| | - Anna Trofka
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, NCI, Frederick, MD, USA
| | - Brian D Harfe
- College of Medicine, Department of Molecular Genetics and Microbiology and the Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Susan Mackem
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, NCI, Frederick, MD, USA.
| |
Collapse
|
27
|
Yuan Z, Yu X, Chen W, Chen D, Cai J, Jiang Y, Liu X, Wu Z, Wang L, Grady WM, Wang H. Epigenetic silencing and tumor suppressor gene of HAND2 by targeting ERK signaling in colorectal cancer. Cell Commun Signal 2022; 20:111. [PMID: 35870943 PMCID: PMC9308366 DOI: 10.1186/s12964-022-00878-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 04/07/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The screening biomarkers for early detection of colorectal cancer (CRC) is lacking. The aim is to identify epigenetic silenced genes and clarify its roles and underlying mechanism in CRC. We conducted integrative analyses of epigenome-wide Human Methylation 450 K arrays and transcriptome to screen out candidate epigenetic driver genes with transcription silencing. Methylated silencing HAND2 were identified and verified in large CRC cohort. The mechanism of HAND2 expression by promoter inhibition were clarified both in vitro and vivo assays. Cell biofunctional roles of HAND2 methylation was investigated in CRC cells. HAND2 reconstitution were constructed by lentivirus plasmid and tumor xenograft model of HAND2 were built subcutaneously. Genomic mRNA analysis by RNA-sequencing and subsequent GSEA analysis were performed to identify potential target of HAND2 and qPCR/WB was conducted to identify the results. RESULTS We firstly reported high frequency of HAND2 methylation in promoter in CRC and hypermethylation was negatively correlated with expression silencing and leaded to poor survival in several CRC cohort patients. 5-Aza treatment to demethylated HAND2 could revert its expression in CRC cells. Functionally, HAND2 reconstitution can inhibit cell proliferation, invasion and migration in vitro. In tumor xenograft, HAND2 reconstruction significantly repressed tumor growth when compared to control vector. Thousands of aberrant expressed genes were observed in the heatmap of RNA-sequencing data. HAND2 reconstitution could bind to ERK and reduce its phosphorylation by CoIP assay. These above results showed HAND2 reconstitution perturbed the activation of MAPK/ERK signaling by reduction of ERK phosphorylation. CONCLUSIONS HAND2 is one tumor suppressor by targeting ERK signaling and one potential epigenetic driver gene in CRC. Video Abstract.
Collapse
Affiliation(s)
- Zixu Yuan
- Department of Colorectal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China.
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, D4-100, Seattle, WA, 98109, USA.
| | - Xihu Yu
- Department of Colorectal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wenle Chen
- Department of Colorectal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Daici Chen
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jian Cai
- Department of Colorectal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yingming Jiang
- Department of Colorectal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Xiaoxia Liu
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zhijie Wu
- Department of Colorectal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Lei Wang
- Department of Colorectal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - William M Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, D4-100, Seattle, WA, 98109, USA.
| | - Hui Wang
- Department of Colorectal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China.
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
28
|
Lopatka A, Moon AM. Complex functional redundancy of Tbx2 and Tbx3 in mouse limb development. Dev Dyn 2022; 251:1613-1627. [PMID: 35506352 DOI: 10.1002/dvdy.484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/07/2022] Open
Abstract
The limb phenotypes of Tbx2 and Tbx3 mutants are distinct: loss of Tbx2 results in isolated duplication of digit 4 in the hindlimb while loss of Tbx3 results in anterior polydactyly and posterior oligodactly in the forelimb. In the face of such disparate phenotypes, we sought to determine whether Tbx2 and Tbx3 have functional redundancy during development of the mouse limb. We found that sequential loss of alleles generates defects that are not simply additive of those observed in single mutants and that multiple structures in both the forelimb and hindlimb display compound sensitivity to decreased gene dosage. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Alika Lopatka
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania, USA
| | - Anne M Moon
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania, USA
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA
- The Mindich Child Health and Development Institute, Hess Center for Science and Medicine at Mount Sinai, New York, USA
| |
Collapse
|
29
|
Prummel KD, Crowell HL, Nieuwenhuize S, Brombacher EC, Daetwyler S, Soneson C, Kresoja-Rakic J, Kocere A, Ronner M, Ernst A, Labbaf Z, Clouthier DE, Firulli AB, Sánchez-Iranzo H, Naganathan SR, O'Rourke R, Raz E, Mercader N, Burger A, Felley-Bosco E, Huisken J, Robinson MD, Mosimann C. Hand2 delineates mesothelium progenitors and is reactivated in mesothelioma. Nat Commun 2022; 13:1677. [PMID: 35354817 PMCID: PMC8967825 DOI: 10.1038/s41467-022-29311-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/04/2022] [Indexed: 01/27/2023] Open
Abstract
The mesothelium lines body cavities and surrounds internal organs, widely contributing to homeostasis and regeneration. Mesothelium disruptions cause visceral anomalies and mesothelioma tumors. Nonetheless, the embryonic emergence of mesothelia remains incompletely understood. Here, we track mesothelial origins in the lateral plate mesoderm (LPM) using zebrafish. Single-cell transcriptomics uncovers a post-gastrulation gene expression signature centered on hand2 in distinct LPM progenitor cells. We map mesothelial progenitors to lateral-most, hand2-expressing LPM and confirm conservation in mouse. Time-lapse imaging of zebrafish hand2 reporter embryos captures mesothelium formation including pericardium, visceral, and parietal peritoneum. We find primordial germ cells migrate with the forming mesothelium as ventral migration boundary. Functionally, hand2 loss disrupts mesothelium formation with reduced progenitor cells and perturbed migration. In mouse and human mesothelioma, we document expression of LPM-associated transcription factors including Hand2, suggesting re-initiation of a developmental program. Our data connects mesothelium development to Hand2, expanding our understanding of mesothelial pathologies.
Collapse
Affiliation(s)
- Karin D Prummel
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
- Structural and Computational Biology Unit, EMBL, Heidelberg, Germany
| | - Helena L Crowell
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zürich, Switzerland
| | - Susan Nieuwenhuize
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Eline C Brombacher
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephan Daetwyler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, United States
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Charlotte Soneson
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zürich, Switzerland
| | - Jelena Kresoja-Rakic
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, University Hospital Zurich, Zürich, Switzerland
| | - Agnese Kocere
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Manuel Ronner
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, University Hospital Zurich, Zürich, Switzerland
| | | | - Zahra Labbaf
- Institute for Cell Biology, ZMBE, Muenster, Germany
| | - David E Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anthony B Firulli
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis, IN, USA
| | - Héctor Sánchez-Iranzo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC-ISCIII), Madrid, Spain
- Institute of Biological and Chemical System - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Sundar R Naganathan
- Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Rebecca O'Rourke
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Erez Raz
- Institute for Cell Biology, ZMBE, Muenster, Germany
| | - Nadia Mercader
- Institute of Anatomy, University of Bern, Bern, Switzerland
- Centro Nacional de Investigaciones Cardiovasculares (CNIC-ISCIII), Madrid, Spain
| | - Alexa Burger
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Emanuela Felley-Bosco
- Laboratory of Molecular Oncology, Department of Thoracic Surgery, University Hospital Zurich, Zürich, Switzerland
| | - Jan Huisken
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Morgridge Institute for Research, Madison, WI, USA
| | - Mark D Robinson
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zürich, Switzerland
| | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
30
|
GLI transcriptional repression is inert prior to Hedgehog pathway activation. Nat Commun 2022; 13:808. [PMID: 35145123 PMCID: PMC8831537 DOI: 10.1038/s41467-022-28485-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/28/2022] [Indexed: 12/28/2022] Open
Abstract
The Hedgehog (HH) pathway regulates a spectrum of developmental processes through the transcriptional mediation of GLI proteins. GLI repressors control tissue patterning by preventing sub-threshold activation of HH target genes, presumably even before HH induction, while lack of GLI repression activates most targets. Despite GLI repression being central to HH regulation, it is unknown when it first becomes established in HH-responsive tissues. Here, we investigate whether GLI3 prevents precocious gene expression during limb development. Contrary to current dogma, we find that GLI3 is inert prior to HH signaling. While GLI3 binds to most targets, loss of Gli3 does not increase target gene expression, enhancer acetylation or accessibility, as it does post-HH signaling. Furthermore, GLI repression is established independently of HH signaling, but after its onset. Collectively, these surprising results challenge current GLI pre-patterning models and demonstrate that GLI repression is not a default state for the HH pathway. GLI repression has been presumed to be the default transcriptional state and important for pre-patterning tissues. Challenging current models, the authors show that GLI3 repression is inert in the limb bud before the onset of Hedgehog signaling.
Collapse
|
31
|
Wang DH, Wu XM, Chen JS, Cai ZG, An JH, Zhang MY, Li Y, Li FP, Hou R, Liu YL. Isolation and characterization mesenchymal stem cells from red panda ( Ailurus fulgens styani) endometrium. CONSERVATION PHYSIOLOGY 2022; 10:coac004. [PMID: 35211318 PMCID: PMC8862722 DOI: 10.1093/conphys/coac004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/30/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Endometrial mesenchymal stem cells (eMSCs) are undifferentiated endometrial cells with self-renewal, multidirectional differentiation and high proliferation potential. Nowadays, eMSCs have been found in a few species, but it has never been reported in endangered wild animals, especially the red panda. In this study, we successfully isolated and characterized the eMSCs derived from red panda. Red panda eMSCs were fibroblast-like, had a strong proliferative potential and a stable chromosome number. Pluripotency genes including Klf4, Sox2 and Thy1 were highly expressed in eMSCs. Besides, cultured eMSCs were positive for MSC markers CD44, CD49f and CD105 and negative for endothelial cell marker CD31 and haematopoietic cell marker CD34. Moreover, no reference RNA-seq was used to analyse the eMSCs transcriptional expression profile and key pathways. Compared with skin fibroblast cell group, 9104 differentially expressed genes (DEGs) were identified, among which are 5034 genes upregulated, 4070 genes downregulated and the top 20 enrichment pathways of DEGs in Gene Ontology (GO) and the Kyoto Encyclopedia of Genes Genomes (KEGG) mainly associated with G-protein coupled receptor signalling pathway, carbohydrate derivative binding, nucleoside binding, ribosome biogenesis, cell cycle, DNA replication, Ras signalling pathway and purine metabolism. Among the DEGs, some representative genes about promoting MSCs differentiation and proliferation were upregulated and promoting fibroblasts proliferation were downregulated in eMSCs group. Red panda eMSCs also had multiple differentiation ability and could differentiate into adipocytes, chondrocytes and hepatocytes. In conclusion, we, for the first time, isolated and characterized the red panda eMSCs with ability of multiplication and multilineage differentiation in vitro. The new multipotential stem cell could be beneficial not only for the germ plasm resources conservation of red panda, but also for basic or pre-clinical studies in the future.
Collapse
Affiliation(s)
- Dong-Hui Wang
- Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Academy of Giant Panda, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
| | - Xue-Mei Wu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
| | - Jia-Song Chen
- Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Academy of Giant Panda, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
| | - Zhi-Gang Cai
- Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Academy of Giant Panda, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
| | - Jun-Hui An
- Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Academy of Giant Panda, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
| | - Ming-Yue Zhang
- Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Academy of Giant Panda, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
| | - Yuan Li
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
| | - Fei-Ping Li
- Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Academy of Giant Panda, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Academy of Giant Panda, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
| | - Yu-Liang Liu
- Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
- Sichuan Academy of Giant Panda, 1375 Panda Road, Northern Suburb, Chengdu, 610081, Sichuan Province, China
| |
Collapse
|
32
|
Gamart J, Barozzi I, Laurent F, Reinhardt R, Martins LR, Oberholzer T, Visel A, Zeller R, Zuniga A. SMAD4 target genes are part of a transcriptional network that integrates the response to BMP and SHH signaling during early limb bud patterning. Development 2021; 148:273522. [PMID: 34822715 PMCID: PMC8714076 DOI: 10.1242/dev.200182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/03/2021] [Indexed: 12/13/2022]
Abstract
SMAD4 regulates gene expression in response to BMP and TGFβ signal transduction, and is required for diverse morphogenetic processes, but its target genes have remained largely elusive. Here, we identify the SMAD4 target genes in mouse limb buds using an epitope-tagged Smad4 allele for ChIP-seq analysis in combination with transcription profiling. This analysis shows that SMAD4 predominantly mediates BMP signal transduction during early limb bud development. Unexpectedly, the expression of cholesterol biosynthesis enzymes is precociously downregulated and intracellular cholesterol levels are reduced in Smad4-deficient limb bud mesenchymal progenitors. Most importantly, our analysis reveals a predominant function of SMAD4 in upregulating target genes in the anterior limb bud mesenchyme. Analysis of differentially expressed genes shared between Smad4- and Shh-deficient limb buds corroborates this function of SMAD4 and also reveals the repressive effect of SMAD4 on posterior genes that are upregulated in response to SHH signaling. This analysis uncovers opposing trans-regulatory inputs from SHH- and SMAD4-mediated BMP signal transduction on anterior and posterior gene expression during the digit patterning and outgrowth in early limb buds. Summary: The transcriptional targets of SMAD4 in early limb buds are identified and the largely opposing impact of BMP and SHH signaling on early digit patterning and outgrowth is revealed.
Collapse
Affiliation(s)
- Julie Gamart
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Iros Barozzi
- Functional Genomics Department, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Frédéric Laurent
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Robert Reinhardt
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Laurène Ramos Martins
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Thomas Oberholzer
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Axel Visel
- Functional Genomics Department, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,US Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA.,School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Rolf Zeller
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Aimée Zuniga
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| |
Collapse
|
33
|
The Shh/ Gli3 gene regulatory network precedes the origin of paired fins and reveals the deep homology between distal fins and digits. Proc Natl Acad Sci U S A 2021; 118:2100575118. [PMID: 34750251 PMCID: PMC8673081 DOI: 10.1073/pnas.2100575118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 11/18/2022] Open
Abstract
In this study, we show that the inactivation of the gli3 gene in medaka fish results in the formation of larger dorsal and paired fins. These mutant fins display multiple radial bones and fin rays which resemble polydactyly in Gli3-deficient mice. Our molecular and genetic analyses indicate that the size of fish fins is controlled by an ancient mechanism mediated by SHH-GLI signaling that appeared prior to the evolutionary appearance of paired fins. We also show that the key regulatory networks that mediate the expansion of digit progenitor cells in tetrapods were already in place in the fins of the last common ancestor between ray and lobe-finned fishes, suggesting an ancient similarity between distal fins and digits. One of the central problems of vertebrate evolution is understanding the relationship among the distal portions of fins and limbs. Lacking comparable morphological markers of these regions in fish and tetrapods, these relationships have remained uncertain for the past century and a half. Here we show that Gli3 functions in controlling the proliferative expansion of distal progenitors are shared among dorsal and paired fins as well as tetrapod limbs. Mutant knockout gli3 fins in medaka (Oryzias latipes) form multiple radials and rays, in a pattern reminiscent of the polydactyly observed in Gli3-null mutant mice. In limbs, Gli3 controls both anterior–posterior patterning and cell proliferation, two processes that can be genetically uncoupled. In situ hybridization, quantification of proliferation markers, and analysis of regulatory regions reveal that in paired and dorsal fins, gli3 plays a main role in controlling proliferation but not in patterning. Moreover, gli3 down-regulation in shh mutant fins rescues fin loss in a manner similar to how Gli3 deficiency restores digits in the limbs of Shh mutant mouse embryos. We hypothesize that the Gli3/Shh gene pathway preceded the origin of paired appendages and was originally involved in modulating cell proliferation. Accordingly, the distal regions of dorsal fins, paired fins, and limbs retain a deep regulatory and functional homology that predates the origin of paired appendages.
Collapse
|
34
|
Conserved and species-specific chromatin remodeling and regulatory dynamics during mouse and chicken limb bud development. Nat Commun 2021; 12:5685. [PMID: 34584102 PMCID: PMC8479071 DOI: 10.1038/s41467-021-25935-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
Chromatin remodeling and genomic alterations impact spatio-temporal regulation of gene expression, which is central to embryonic development. The analysis of mouse and chicken limb development provides important insights into the morphoregulatory mechanisms, however little is known about the regulatory differences underlying their morphological divergence. Here, we identify the underlying shared and species-specific epigenomic and genomic variations. In mouse forelimb buds, we observe striking synchrony between the temporal dynamics of chromatin accessibility and gene expression, while their divergence in chicken wing buds uncovers species-specific regulatory heterochrony. In silico mapping of transcription factor binding sites and computational footprinting establishes the developmental time-restricted transcription factor-DNA interactions. Finally, the construction of target gene networks for HAND2 and GLI3 transcriptional regulators reveals both conserved and species-specific interactions. Our analysis reveals the impact of genome evolution on the regulatory interactions orchestrating vertebrate limb bud morphogenesis and provides a molecular framework for comparative Evo-Devo studies. The vertebrate limb bud is a paradigm to uncover the fundamental mechanisms that govern embryogenesis and evolutionary diversification. Here the authors compare mouse and chicken limb bud development to study the impact of genome evolution on conserved and divergent gene regulatory interactions.
Collapse
|
35
|
Xu H, Xiang M, Qin Y, Cheng H, Chen D, Fu Q, Zhang KK, Xie L. Tbx5 inhibits hedgehog signaling in determination of digit identity. Hum Mol Genet 2021; 29:1405-1416. [PMID: 31373354 DOI: 10.1093/hmg/ddz185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/02/2019] [Accepted: 07/18/2019] [Indexed: 01/27/2023] Open
Abstract
Dominant TBX5 mutation causes Holt-Oram syndrome (HOS), which is characterized by limb defects in humans, but the underlying mechanistic basis is unclear. We used a mouse model with Tbx5 conditional knockdown in Hh-receiving cells (marked by Gli1+) during E8 to E10.5, a previously established model to study atrial septum defects, which displayed polydactyly or hypodactyly. The results suggested that Tbx5 is required for digit identity in a subset of limb mesenchymal cells. Specifically, Tbx5 deletion in this cell population decreased cell apoptosis and increased the proliferation of handplate mesenchymal cells. Furthermore, Tbx5 was found to negatively regulate the Hh-signaling activity through transcriptional regulation of Ptch1, a known Hh-signaling repressor. Repression of Hh-signaling through Smo co-mutation in Tbx5 heterozygotes rescued the limb defects, thus placing Tbx5 upstream of Hh-signaling in limb defects. This work reveals an important missing component necessary for understanding not only limb development but also the molecular and genetic mechanisms underlying HOS.
Collapse
Affiliation(s)
- Huiting Xu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA.,Hubei Cancer Hospital, Wuhan, Hubei 430079, China
| | - Menglan Xiang
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Yushu Qin
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Henghui Cheng
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA.,Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Duohua Chen
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA.,Department of Food Science, Changsha University, Changsha, Hunan 410078, China
| | - Qiang Fu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA.,Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ke K Zhang
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA.,Center for Epigenetics & Disease Prevention, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Linglin Xie
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA.,Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
36
|
Giroud M, Tsokanos FF, Caratti G, Kotschi S, Khani S, Jouffe C, Vogl ES, Irmler M, Glantschnig C, Gil-Lozano M, Hass D, Khan AA, Garcia MR, Mattijssen F, Maida A, Tews D, Fischer-Posovszky P, Feuchtinger A, Virtanen KA, Beckers J, Wabitsch M, Uhlenhaut H, Blüher M, Tuckermann J, Scheideler M, Bartelt A, Herzig S. HAND2 is a novel obesity-linked adipogenic transcription factor regulated by glucocorticoid signalling. Diabetologia 2021; 64:1850-1865. [PMID: 34014371 PMCID: PMC8245394 DOI: 10.1007/s00125-021-05470-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/18/2021] [Indexed: 11/01/2022]
Abstract
AIMS/HYPOTHESIS Adipocytes are critical cornerstones of energy metabolism. While obesity-induced adipocyte dysfunction is associated with insulin resistance and systemic metabolic disturbances, adipogenesis, the formation of new adipocytes and healthy adipose tissue expansion are associated with metabolic benefits. Understanding the molecular mechanisms governing adipogenesis is of great clinical potential to efficiently restore metabolic health in obesity. Here we investigate the role of heart and neural crest derivatives-expressed 2 (HAND2) in adipogenesis. METHODS Human white adipose tissue (WAT) was collected from two cross-sectional studies of 318 and 96 individuals. In vitro, for mechanistic experiments we used primary adipocytes from humans and mice as well as human multipotent adipose-derived stem (hMADS) cells. Gene silencing was performed using siRNA or genetic inactivation in primary adipocytes from loxP and or tamoxifen-inducible Cre-ERT2 mouse models with Cre-encoding mRNA or tamoxifen, respectively. Adipogenesis and adipocyte metabolism were measured by Oil Red O staining, quantitative PCR (qPCR), microarray, glucose uptake assay, western blot and lipolysis assay. A combinatorial RNA sequencing (RNAseq) and ChIP qPCR approach was used to identify target genes regulated by HAND2. In vivo, we created a conditional adipocyte Hand2 deletion mouse model using Cre under control of the Adipoq promoter (Hand2AdipoqCre) and performed a large panel of metabolic tests. RESULTS We found that HAND2 is an obesity-linked white adipocyte transcription factor regulated by glucocorticoids that was necessary but insufficient for adipocyte differentiation in vitro. In a large cohort of humans, WAT HAND2 expression was correlated to BMI. The HAND2 gene was enriched in white adipocytes compared with brown, induced early in differentiation and responded to dexamethasone (DEX), a typical glucocorticoid receptor (GR, encoded by NR3C1) agonist. Silencing of NR3C1 in hMADS cells or deletion of GR in a transgenic conditional mouse model results in diminished HAND2 expression, establishing that adipocyte HAND2 is regulated by glucocorticoids via GR in vitro and in vivo. Furthermore, we identified gene clusters indirectly regulated by the GR-HAND2 pathway. Interestingly, silencing of HAND2 impaired adipocyte differentiation in hMADS and primary mouse adipocytes. However, a conditional adipocyte Hand2 deletion mouse model using Cre under control of the Adipoq promoter did not mirror these effects on adipose tissue differentiation, indicating that HAND2 was required at stages prior to Adipoq expression. CONCLUSIONS/INTERPRETATION In summary, our study identifies HAND2 as a novel obesity-linked adipocyte transcription factor, highlighting new mechanisms of GR-dependent adipogenesis in humans and mice. DATA AVAILABILITY Array data have been submitted to the GEO database at NCBI (GSE148699).
Collapse
Affiliation(s)
- Maude Giroud
- Institute for Diabetes and Cancer (IDC); Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
| | - Foivos-Filippos Tsokanos
- Institute for Diabetes and Cancer (IDC); Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
| | - Giorgio Caratti
- Institute for Comparative Molecular Endocrinology, Universität Ulm, Ulm, Germany
| | - Stefan Kotschi
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
| | - Sajjad Khani
- Institute for Diabetes and Cancer (IDC); Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
| | - Céline Jouffe
- Institute for Diabetes and Cancer (IDC); Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Elena S Vogl
- Institute for Diabetes and Cancer (IDC); Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christina Glantschnig
- Institute for Diabetes and Cancer (IDC); Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
| | - Manuel Gil-Lozano
- Institute for Diabetes and Cancer (IDC); Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
| | - Daniela Hass
- Institute for Diabetes and Cancer (IDC); Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
| | - Asrar Ali Khan
- Institute for Diabetes and Cancer (IDC); Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
| | - Marcos Rios Garcia
- Institute for Diabetes and Cancer (IDC); Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
| | - Frits Mattijssen
- Institute for Diabetes and Cancer (IDC); Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
| | - Adriano Maida
- Institute for Diabetes and Cancer (IDC); Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
| | - Daniel Tews
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Pamela Fischer-Posovszky
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Center Munich, Neuherberg, Germany
| | | | - Johannes Beckers
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Experimental Genetics, TUM School of Life Sciences, Technische Universität München, Freising, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Henriette Uhlenhaut
- Institute for Diabetes and Cancer (IDC); Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Metabolic Programming, TUM School of Life Sciences Weihenstephan and ZIEL Institute for Food & Health, Munich, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Jan Tuckermann
- Institute for Comparative Molecular Endocrinology, Universität Ulm, Ulm, Germany
| | - Marcel Scheideler
- Institute for Diabetes and Cancer (IDC); Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
| | - Alexander Bartelt
- Institute for Diabetes and Cancer (IDC); Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC); Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany.
- Molecular Metabolic Control, Medical Faculty, Technical University Munich, Munich, Germany.
| |
Collapse
|
37
|
Delgado I, Giovinazzo G, Temiño S, Gauthier Y, Balsalobre A, Drouin J, Torres M. Control of mouse limb initiation and antero-posterior patterning by Meis transcription factors. Nat Commun 2021; 12:3086. [PMID: 34035267 PMCID: PMC8149412 DOI: 10.1038/s41467-021-23373-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 04/21/2021] [Indexed: 12/31/2022] Open
Abstract
Meis1 and Meis2 are homeodomain transcription factors that regulate organogenesis through cooperation with Hox proteins. Elimination of Meis genes after limb induction has shown their role in limb proximo-distal patterning; however, limb development in the complete absence of Meis function has not been studied. Here, we report that Meis1/2 inactivation in the lateral plate mesoderm of mouse embryos leads to limb agenesis. Meis and Tbx factors converge in this function, extensively co-binding with Tbx to genomic sites and co-regulating enhancers of Fgf10, a critical factor in limb initiation. Limbs with three deleted Meis alleles show proximal-specific skeletal hypoplasia and agenesis of posterior skeletal elements. This failure in posterior specification results from an early role of Meis factors in establishing the limb antero-posterior prepattern required for Shh activation. Our results demonstrate roles for Meis transcription factors in early limb development and identify their involvement in previously undescribed interaction networks that regulate organogenesis.
Collapse
Affiliation(s)
- Irene Delgado
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Giovanna Giovinazzo
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Susana Temiño
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Yves Gauthier
- Laboratoire de Génétique Moléculaire, Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
| | - Aurelio Balsalobre
- Laboratoire de Génétique Moléculaire, Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
| | - Jacques Drouin
- Laboratoire de Génétique Moléculaire, Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
| | - Miguel Torres
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
38
|
Tissières V, Geier F, Kessler B, Wolf E, Zeller R, Lopez-Rios J. Gene Regulatory and Expression Differences between Mouse and Pig Limb Buds Provide Insights into the Evolutionary Emergence of Artiodactyl Traits. Cell Rep 2021; 31:107490. [PMID: 32268095 PMCID: PMC7166081 DOI: 10.1016/j.celrep.2020.03.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 08/19/2019] [Accepted: 03/16/2020] [Indexed: 10/28/2022] Open
Abstract
Digit loss/reductions are evolutionary adaptations in cursorial mammals such as pigs. To gain mechanistic insight into these processes, we performed a comparative molecular analysis of limb development in mouse and pig embryos, which revealed a loss of anterior-posterior polarity during distal progression of pig limb bud development. These alterations in pig limb buds are paralleled by changes in the mesenchymal response to Sonic hedgehog (SHH) signaling, which is altered upstream of the reduction and loss of Fgf8 expression in the ectoderm that overlaps the reduced and vestigial digit rudiments of the pig handplate, respectively. Furthermore, genome-wide open chromatin profiling using equivalent developmental stages of mouse and pig limb buds reveals the functional divergence of about one-third of the regulatory genome. This study uncovers widespread alterations in the regulatory landscapes of genes essential for limb development that likely contributed to the morphological diversion of artiodactyl limbs from the pentadactyl archetype of tetrapods.
Collapse
Affiliation(s)
- Virginie Tissières
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, 41013 Seville, Spain
| | - Florian Geier
- Bioinformatics Core Facility, Department of Biomedicine, University of Basel and University Hospital, 4053 Basel, Switzerland; Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Barbara Kessler
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Rolf Zeller
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Javier Lopez-Rios
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, 41013 Seville, Spain.
| |
Collapse
|
39
|
Yuan X, Scott IC, Wilson MD. Heart Enhancers: Development and Disease Control at a Distance. Front Genet 2021; 12:642975. [PMID: 33777110 PMCID: PMC7987942 DOI: 10.3389/fgene.2021.642975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/29/2021] [Indexed: 12/14/2022] Open
Abstract
Bound by lineage-determining transcription factors and signaling effectors, enhancers play essential roles in controlling spatiotemporal gene expression profiles during development, homeostasis and disease. Recent synergistic advances in functional genomic technologies, combined with the developmental biology toolbox, have resulted in unprecedented genome-wide annotation of heart enhancers and their target genes. Starting with early studies of vertebrate heart enhancers and ending with state-of-the-art genome-wide enhancer discovery and testing, we will review how studying heart enhancers in metazoan species has helped inform our understanding of cardiac development and disease.
Collapse
Affiliation(s)
- Xuefei Yuan
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ian C. Scott
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Michael D. Wilson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
40
|
Meyer A, Schloissnig S, Franchini P, Du K, Woltering JM, Irisarri I, Wong WY, Nowoshilow S, Kneitz S, Kawaguchi A, Fabrizius A, Xiong P, Dechaud C, Spaink HP, Volff JN, Simakov O, Burmester T, Tanaka EM, Schartl M. Giant lungfish genome elucidates the conquest of land by vertebrates. Nature 2021; 590:284-289. [PMID: 33461212 PMCID: PMC7875771 DOI: 10.1038/s41586-021-03198-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/06/2021] [Indexed: 01/29/2023]
Abstract
Lungfishes belong to lobe-fined fish (Sarcopterygii) that, in the Devonian period, 'conquered' the land and ultimately gave rise to all land vertebrates, including humans1-3. Here we determine the chromosome-quality genome of the Australian lungfish (Neoceratodus forsteri), which is known to have the largest genome of any animal. The vast size of this genome, which is about 14× larger than that of humans, is attributable mostly to huge intergenic regions and introns with high repeat content (around 90%), the components of which resemble those of tetrapods (comprising mainly long interspersed nuclear elements) more than they do those of ray-finned fish. The lungfish genome continues to expand independently (its transposable elements are still active), through mechanisms different to those of the enormous genomes of salamanders. The 17 fully assembled lungfish macrochromosomes maintain synteny to other vertebrate chromosomes, and all microchromosomes maintain conserved ancient homology with the ancestral vertebrate karyotype. Our phylogenomic analyses confirm previous reports that lungfish occupy a key evolutionary position as the closest living relatives to tetrapods4,5, underscoring the importance of lungfish for understanding innovations associated with terrestrialization. Lungfish preadaptations to living on land include the gain of limb-like expression in developmental genes such as hoxc13 and sall1 in their lobed fins. Increased rates of evolution and the duplication of genes associated with obligate air-breathing, such as lung surfactants and the expansion of odorant receptor gene families (which encode proteins involved in detecting airborne odours), contribute to the tetrapod-like biology of lungfishes. These findings advance our understanding of this major transition during vertebrate evolution.
Collapse
Affiliation(s)
- Axel Meyer
- Department of Biology, University of Konstanz, Konstanz, Germany.
| | | | - Paolo Franchini
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Kang Du
- Developmental Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, USA
| | | | - Iker Irisarri
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
| | - Wai Yee Wong
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | | | - Susanne Kneitz
- Biochemistry and Cell Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Akane Kawaguchi
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | | | - Peiwen Xiong
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Corentin Dechaud
- Institut de Génomique Fonctionnelle, École Normale Superieure, Université Claude Bernard, Lyon, France
| | - Herman P Spaink
- Faculty of Science, Universiteit Leiden, Leiden, The Netherlands
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle, École Normale Superieure, Université Claude Bernard, Lyon, France
| | - Oleg Simakov
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria.
| | | | - Elly M Tanaka
- Research Institute of Molecular Pathology (IMP), Vienna, Austria.
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany.
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, USA.
| |
Collapse
|
41
|
Wright CM, Schneider S, Smith-Edwards KM, Mafra F, Leembruggen AJL, Gonzalez MV, Kothakapa DR, Anderson JB, Maguire BA, Gao T, Missall TA, Howard MJ, Bornstein JC, Davis BM, Heuckeroth RO. scRNA-Seq Reveals New Enteric Nervous System Roles for GDNF, NRTN, and TBX3. Cell Mol Gastroenterol Hepatol 2021; 11:1548-1592.e1. [PMID: 33444816 PMCID: PMC8099699 DOI: 10.1016/j.jcmgh.2020.12.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Bowel function requires coordinated activity of diverse enteric neuron subtypes. Our aim was to define gene expression in these neuron subtypes to facilitate development of novel therapeutic approaches to treat devastating enteric neuropathies, and to learn more about enteric nervous system function. METHODS To identify subtype-specific genes, we performed single-nucleus RNA-seq on adult mouse and human colon myenteric plexus, and single-cell RNA-seq on E17.5 mouse ENS cells from whole bowel. We used immunohistochemistry, select mutant mice, and calcium imaging to validate and extend results. RESULTS RNA-seq on 635 adult mouse colon myenteric neurons and 707 E17.5 neurons from whole bowel defined seven adult neuron subtypes, eight E17.5 neuron subtypes and hundreds of differentially expressed genes. Manually dissected human colon myenteric plexus yielded RNA-seq data from 48 neurons, 3798 glia, 5568 smooth muscle, 377 interstitial cells of Cajal, and 2153 macrophages. Immunohistochemistry demonstrated differential expression for BNC2, PBX3, SATB1, RBFOX1, TBX2, and TBX3 in enteric neuron subtypes. Conditional Tbx3 loss reduced NOS1-expressing myenteric neurons. Differential Gfra1 and Gfra2 expression coupled with calcium imaging revealed that GDNF and neurturin acutely and differentially regulate activity of ∼50% of myenteric neurons with distinct effects on smooth muscle contractions. CONCLUSION Single cell analyses defined genes differentially expressed in myenteric neuron subtypes and new roles for TBX3, GDNF and NRTN. These data facilitate molecular diagnostic studies and novel therapeutics for bowel motility disorders.
Collapse
Affiliation(s)
- Christina M Wright
- Department of Pediatrics, Abramson Research Center, Children's Hospital of Philadelphia Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sabine Schneider
- Department of Pediatrics, Abramson Research Center, Children's Hospital of Philadelphia Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kristen M Smith-Edwards
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania; Center for Neuroscience at the University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Fernanda Mafra
- Center for Applied Genomics, Abramson Research Center, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania
| | | | - Michael V Gonzalez
- Center for Applied Genomics, Abramson Research Center, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania
| | - Deepika R Kothakapa
- Department of Pediatrics, Abramson Research Center, Children's Hospital of Philadelphia Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jessica B Anderson
- Department of Pediatrics, Abramson Research Center, Children's Hospital of Philadelphia Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Beth A Maguire
- Department of Pediatrics, Abramson Research Center, Children's Hospital of Philadelphia Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tao Gao
- Department of Pediatrics, Abramson Research Center, Children's Hospital of Philadelphia Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tricia A Missall
- Department of Dermatology, University of Florida, Gainesville, Florida
| | - Marthe J Howard
- Department of Neurosciences, University of Toledo Health Sciences Campus, Toledo, Ohio
| | - Joel C Bornstein
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Brian M Davis
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania; Center for Neuroscience at the University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert O Heuckeroth
- Department of Pediatrics, Abramson Research Center, Children's Hospital of Philadelphia Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
42
|
Elliott KH, Chen X, Salomone J, Chaturvedi P, Schultz PA, Balchand SK, Servetas JD, Zuniga A, Zeller R, Gebelein B, Weirauch MT, Peterson KA, Brugmann SA. Gli3 utilizes Hand2 to synergistically regulate tissue-specific transcriptional networks. eLife 2020; 9:e56450. [PMID: 33006313 PMCID: PMC7556880 DOI: 10.7554/elife.56450] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022] Open
Abstract
Despite a common understanding that Gli TFs are utilized to convey a Hh morphogen gradient, genetic analyses suggest craniofacial development does not completely fit this paradigm. Using the mouse model (Mus musculus), we demonstrated that rather than being driven by a Hh threshold, robust Gli3 transcriptional activity during skeletal and glossal development required interaction with the basic helix-loop-helix TF Hand2. Not only did genetic and expression data support a co-factorial relationship, but genomic analysis revealed that Gli3 and Hand2 were enriched at regulatory elements for genes essential for mandibular patterning and development. Interestingly, motif analysis at sites co-occupied by Gli3 and Hand2 uncovered mandibular-specific, low-affinity, 'divergent' Gli-binding motifs (dGBMs). Functional validation revealed these dGBMs conveyed synergistic activation of Gli targets essential for mandibular patterning and development. In summary, this work elucidates a novel, sequence-dependent mechanism for Gli transcriptional activity within the craniofacial complex that is independent of a graded Hh signal.
Collapse
Affiliation(s)
- Kelsey H Elliott
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research FoundationCincinnatiUnited States
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
| | - Joseph Salomone
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research FoundationCincinnatiUnited States
- Medical-Scientist Training Program, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Praneet Chaturvedi
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
| | - Preston A Schultz
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
| | - Sai K Balchand
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
| | | | - Aimée Zuniga
- Developmental Genetics, Department of Biomedicine, University of BaselBaselSwitzerland
| | - Rolf Zeller
- Developmental Genetics, Department of Biomedicine, University of BaselBaselSwitzerland
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
| | - Matthew T Weirauch
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
- Center for Autoimmune Genomics and Etiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
| | | | - Samantha A Brugmann
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
- Shriners Children’s HospitalCincinnatiUnited States
| |
Collapse
|
43
|
Hand2 Selectively Reorganizes Chromatin Accessibility to Induce Pacemaker-like Transcriptional Reprogramming. Cell Rep 2020; 27:2354-2369.e7. [PMID: 31116981 PMCID: PMC6657359 DOI: 10.1016/j.celrep.2019.04.077] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/25/2019] [Accepted: 04/17/2019] [Indexed: 01/01/2023] Open
Abstract
Gata4, Hand2, Mef2c, and Tbx5 (GHMT) can reprogram transduced fibroblasts into induced pacemaker-like myocytes (iPMs), but the underlying mechanisms remain obscure. Here, we explore the role of Hand2 in iPM formation by using a combination of transcriptome, genome, and biochemical as-says. We found many shared transcriptional signatures between iPMs and the endogenous sinoatrial node (SAN), yet key regulatory networks remain missing. We demonstrate that Hand2 augments chromatin accessibility at loci involved in sarcomere organization, electrical coupling, and membrane depolarization. Focusing on an established cardiac Hand2 cistrome, we observe selective reorganization of chromatin accessibility to promote pacemaker-specific gene expression. Moreover, we identify a Hand2 cardiac subtype diversity (CSD) domain through biochemical analysis of the N terminus. By integrating our RNA-seq and ATAC-seq datasets, we highlight desmosome organization as a hallmark feature of iPM formation. Collectively, our results illuminate Hand2-dependent mechanisms that may guide future efforts to rationally improve iPM formation. Gata4, Hand2, Mef2c, and Tbx5 can reprogram fibroblasts into cardiomyocyte-like cells, including induced pacemakers (iPMs). Fernandez-Perez et al. show that Hand2 coordinates this process by influencing chromatin accessibility and gene expression in fibroblasts undergoing iPM lineage conversion. These insights could eventually inform the production of superior replacement cells.
Collapse
|
44
|
Garland MA, Geier MC, Bugel SM, Shankar P, Dunham CL, Brown JM, Tilton SC, Tanguay RL. Aryl Hydrocarbon Receptor Mediates Larval Zebrafish Fin Duplication Following Exposure to Benzofluoranthenes. Toxicol Sci 2020; 176:46-64. [PMID: 32384158 PMCID: PMC7357178 DOI: 10.1093/toxsci/kfaa063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) mediates developmental toxicity of several xenobiotic classes including polycyclic aromatic hydrocarbons. Using embryonic zebrafish, we previously identified 4 polycyclic aromatic hydrocarbons that caused a novel phenotype among AHR ligands-growth of a lateral, duplicate caudal fin fold. The window of sensitivity to the most potent inducer of this phenotype, benzo[k]fluoranthene (BkF), was prior to 36 h postfertilization (hpf), although the phenotype was not manifest until 60 hpf. AHR dependency via Ahr2 was demonstrated using morpholino knockdown. Hepatocyte ablation demonstrated that hepatic metabolism of BkF was not required for the phenotype, nor was it responsible for the window of sensitivity. RNA sequencing performed on caudal trunk tissue from BkF-exposed animals collected at 48, 60, 72, and 96 hpf showed upregulation of genes associated with AHR activation, appendage development, and tissue patterning. Genes encoding fibroblast growth factor and bone morphogenic protein ligands, along with retinaldehyde dehydrogenase, were prominently upregulated. Gene Ontology term analysis revealed that upregulated genes were enriched for mesoderm development and fin regeneration, whereas downregulated genes were enriched for Wnt signaling and neuronal development. MetaCore (Clarivate Analytics) systems analysis of orthologous human genes predicted that R-SMADs, AP-1, and LEF1 regulated the expression of an enriched number of gene targets across all time points. Our results demonstrate a novel aspect of AHR activity with implications for developmental processes conserved across vertebrate species.
Collapse
Affiliation(s)
- Michael A Garland
- Sinnhuber Aquatic Research Laboratory
- Department of Environmental and Molecular Toxicology
- Superfund Research Program, Oregon State University, Corvallis, Oregon 97333
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, and Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children-Northern California, Sacramento, CA 95817
| | - Mitra C Geier
- Sinnhuber Aquatic Research Laboratory
- Department of Environmental and Molecular Toxicology
- Superfund Research Program, Oregon State University, Corvallis, Oregon 97333
- Department of Pesticide Regulation, California Environmental Protection Agency, Sacramento, CA 95814
| | - Sean M Bugel
- Sinnhuber Aquatic Research Laboratory
- Department of Environmental and Molecular Toxicology
- Superfund Research Program, Oregon State University, Corvallis, Oregon 97333
| | - Prarthana Shankar
- Sinnhuber Aquatic Research Laboratory
- Department of Environmental and Molecular Toxicology
- Superfund Research Program, Oregon State University, Corvallis, Oregon 97333
| | - Cheryl L Dunham
- Sinnhuber Aquatic Research Laboratory
- Department of Environmental and Molecular Toxicology
- Superfund Research Program, Oregon State University, Corvallis, Oregon 97333
| | - Joseph M Brown
- Computational Biology and Bioinformatics, Pacific Northwest National Laboratories, Richland, Washington 99352
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112
| | - Susan C Tilton
- Sinnhuber Aquatic Research Laboratory
- Department of Environmental and Molecular Toxicology
- Superfund Research Program, Oregon State University, Corvallis, Oregon 97333
| | - Robyn L Tanguay
- Sinnhuber Aquatic Research Laboratory
- Department of Environmental and Molecular Toxicology
- Superfund Research Program, Oregon State University, Corvallis, Oregon 97333
| |
Collapse
|
45
|
Murata H, Tanaka S, Tsuzuki-Nakao T, Kido T, Kakita-Kobayashi M, Kida N, Hisamatsu Y, Tsubokura H, Hashimoto Y, Kitada M, Okada H. The transcription factor HAND2 up-regulates transcription of the IL15 gene in human endometrial stromal cells. J Biol Chem 2020; 295:9596-9605. [PMID: 32444497 DOI: 10.1074/jbc.ra120.012753] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/18/2020] [Indexed: 12/26/2022] Open
Abstract
Cyclic changes of the human endometrium, such as proliferation, secretion, and decidualization, occur during regular menstrual cycles. Heart- and neural crest derivatives-expressed transcript 2 (HAND2) is a key transcription factor in progestin-induced decidualization of human endometrial stromal cells (ESCs). It has been suggested that HAND2 regulates interleukin 15 (IL15), a key immune factor required for the activation and survival of uterine natural killer (uNK) cells. Activated uNK cells can promote spiral artery remodeling and secrete cytokines to induce immunotolerance. To date, no studies have evaluated the transcription factors that regulate IL15 expression in human ESCs. In the present study, we examined whether HAND2 controls IL15 transcriptional regulation in human ESCs. Quantitative RT-PCR and histological analyses revealed that HAND2 and IL15 levels increase considerably in the secretory phase of human endometrium tissues. Results from ChIP-quantitative PCR suggested that HAND2 binds to a putative HAND2 motif, which we identified in the upstream region of the human IL15 gene through in silico analysis. Using a luciferase reporter assay, we found that the upstream region of the human IL15 gene up-regulates reporter gene activities in response to estradiol and a progestin representative (medroxyprogesterone) in ESCs. The upstream region of the human IL15 gene also exhibited increasing responsiveness to transfection with a HAND2 expression vector. Of note, deletion and substitution variants of the putative HAND2 motif in the upstream region of IL15 did not respond to HAND2 transfection. These findings confirm that HAND2 directly up-regulates human IL15 transcription in ESCs.
Collapse
Affiliation(s)
- Hiromi Murata
- Department of Obstetrics and Gynecology, Kansai Medical University, Osaka, Japan
| | - Susumu Tanaka
- Department of Anatomy, Kansai Medical University, Osaka, Japan
| | - Tomoko Tsuzuki-Nakao
- Department of Obstetrics and Gynecology, Kansai Medical University, Osaka, Japan
| | - Takeharu Kido
- Department of Obstetrics and Gynecology, Kansai Medical University, Osaka, Japan
| | | | - Naoko Kida
- Department of Obstetrics and Gynecology, Kansai Medical University, Osaka, Japan
| | - Yoji Hisamatsu
- Department of Obstetrics and Gynecology, Kansai Medical University, Osaka, Japan
| | - Hiroaki Tsubokura
- Department of Obstetrics and Gynecology, Kansai Medical University, Osaka, Japan
| | - Yoshiko Hashimoto
- Department of Obstetrics and Gynecology, Kansai Medical University, Osaka, Japan
| | - Masaaki Kitada
- Department of Anatomy, Kansai Medical University, Osaka, Japan
| | - Hidetaka Okada
- Department of Obstetrics and Gynecology, Kansai Medical University, Osaka, Japan
| |
Collapse
|
46
|
Khan SF, Damerell V, Omar R, Du Toit M, Khan M, Maranyane HM, Mlaza M, Bleloch J, Bellis C, Sahm BDB, Peres J, ArulJothi KN, Prince S. The roles and regulation of TBX3 in development and disease. Gene 2020; 726:144223. [PMID: 31669645 PMCID: PMC7108957 DOI: 10.1016/j.gene.2019.144223] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022]
Abstract
TBX3, a member of the ancient and evolutionary conserved T-box transcription factor family, is a critical developmental regulator of several structures including the heart, mammary glands, limbs and lungs. Indeed, mutations in the human TBX3 lead to ulnar mammary syndrome which is characterized by several clinical malformations including hypoplasia of the mammary and apocrine glands, defects of the upper limb, areola, dental structures, heart and genitalia. In contrast, TBX3 has no known function in adult tissues but is frequently overexpressed in a wide range of epithelial and mesenchymal derived cancers. This overexpression greatly impacts several hallmarks of cancer including bypass of senescence, apoptosis and anoikis, promotion of proliferation, tumour formation, angiogenesis, invasion and metastatic capabilities as well as cancer stem cell expansion. The debilitating consequences of having too little or too much TBX3 suggest that its expression levels need to be tightly regulated. While we have a reasonable understanding of the mutations that result in low levels of functional TBX3 during development, very little is known about the factors responsible for the overexpression of TBX3 in cancer. Furthermore, given the plethora of oncogenic processes that TBX3 impacts, it must be regulating several target genes but to date only a few have been identified and characterised. Interestingly, while there is compelling evidence to support oncogenic roles for TBX3, a few studies have indicated that it may also have tumour suppressor functions in certain contexts. Together, the diverse functional elasticity of TBX3 in development and cancer is thought to involve, in part, the protein partners that it interacts with and this area of research has recently received some attention. This review provides an insight into the significance of TBX3 in development and cancer and identifies research gaps that need to be explored to shed more light on this transcription factor.
Collapse
Affiliation(s)
- Saif F Khan
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Victoria Damerell
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Rehana Omar
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Michelle Du Toit
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Mohsin Khan
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Hapiloe Mabaruti Maranyane
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Mihlali Mlaza
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Jenna Bleloch
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Claire Bellis
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Bianca D B Sahm
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa; Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP 11030-400, Brazil
| | - Jade Peres
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - K N ArulJothi
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Sharon Prince
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa.
| |
Collapse
|
47
|
A de novo TBX3 mutation presenting as dorsalization of the little fingers: A forme fruste phenotype of ulnar-mammary syndrome. Eur J Med Genet 2020; 63:103615. [DOI: 10.1016/j.ejmg.2019.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/30/2018] [Accepted: 01/12/2019] [Indexed: 11/24/2022]
|
48
|
Dynamic and self-regulatory interactions among gene regulatory networks control vertebrate limb bud morphogenesis. Curr Top Dev Biol 2020; 139:61-88. [DOI: 10.1016/bs.ctdb.2020.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Satterlee JW, Scanlon MJ. Coordination of Leaf Development Across Developmental Axes. PLANTS 2019; 8:plants8100433. [PMID: 31652517 PMCID: PMC6843618 DOI: 10.3390/plants8100433] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023]
Abstract
Leaves are initiated as lateral outgrowths from shoot apical meristems throughout the vegetative life of the plant. To achieve proper developmental patterning, cell-type specification and growth must occur in an organized fashion along the proximodistal (base-to-tip), mediolateral (central-to-edge), and adaxial–abaxial (top-bottom) axes of the developing leaf. Early studies of mutants with defects in patterning along multiple leaf axes suggested that patterning must be coordinated across developmental axes. Decades later, we now recognize that a highly complex and interconnected transcriptional network of patterning genes and hormones underlies leaf development. Here, we review the molecular genetic mechanisms by which leaf development is coordinated across leaf axes. Such coordination likely plays an important role in ensuring the reproducible phenotypic outcomes of leaf morphogenesis.
Collapse
Affiliation(s)
- James W Satterlee
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| | - Michael J Scanlon
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
50
|
Mori S, Sakakura E, Tsunekawa Y, Hagiwara M, Suzuki T, Eiraku M. Self-organized formation of developing appendages from murine pluripotent stem cells. Nat Commun 2019; 10:3802. [PMID: 31444329 PMCID: PMC6707191 DOI: 10.1038/s41467-019-11702-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 07/29/2019] [Indexed: 01/28/2023] Open
Abstract
Limb development starts with the formation of limb buds (LBs), which consist of tissues from two different germ layers; the lateral plate mesoderm-derived mesenchyme and ectoderm-derived surface epithelium. Here, we report means for induction of an LB-like mesenchymal/epithelial complex tissues from murine pluripotent stem cells (PSCs) in vitro. The LB-like tissues selectively differentiate into forelimb- or hindlimb-type mesenchymes, depending on a concentration of retinoic acid. Comparative transcriptome analysis reveals that the LB-like tissues show similar gene expression pattern to that seen in LBs. We also show that manipulating BMP signaling enables us to induce a thickened epithelial structure similar to the apical ectodermal ridge. Finally, we demonstrate that the induced tissues can contribute to endogenous digit tissue after transplantation. This PSC technology offers a first step for creating an artificial limb bud in culture and might open the door to inducing other mesenchymal/epithelial complex tissues from PSCs.
Collapse
Affiliation(s)
- Shunsuke Mori
- Laboratory of Developmental Systems, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan. .,Laboratory for in vitro Histogenesis, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan. .,Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| | - Eriko Sakakura
- Laboratory of Developmental Systems, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Yuji Tsunekawa
- Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan
| | - Masaya Hagiwara
- NanoSqure Research Institute, Osaka Prefecture University, Osaka, 599-8570, Japan
| | - Takayuki Suzuki
- Laboratory of Avian Bioscience, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8602, Japan
| | - Mototsugu Eiraku
- Laboratory of Developmental Systems, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan. .,Laboratory for in vitro Histogenesis, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan. .,Institute for Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|