1
|
Di Stefano J, Di Marco F, Cicalini I, FitzGerald U, Pieragostino D, Verhoye M, Ponsaerts P, Van Breedam E. Generation, interrogation, and future applications of microglia-containing brain organoids. Neural Regen Res 2025; 20:3448-3460. [PMID: 39665813 PMCID: PMC11974650 DOI: 10.4103/nrr.nrr-d-24-00921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 12/13/2024] Open
Abstract
Brain organoids encompass a large collection of in vitro stem cell-derived 3D culture systems that aim to recapitulate multiple aspects of in vivo brain development and function. First, this review provides a brief introduction to the current state-of-the-art for neuro-ectoderm brain organoid development, emphasizing their biggest advantages in comparison with classical two-dimensional cell cultures and animal models. However, despite their usefulness for developmental studies, a major limitation for most brain organoid models is the absence of contributing cell types from endodermal and mesodermal origin. As such, current research is highly investing towards the incorporation of a functional vasculature and the microglial immune component. In this review, we will specifically focus on the development of immune-competent brain organoids. By summarizing the different approaches applied to incorporate microglia, it is highlighted that immune-competent brain organoids are not only important for studying neuronal network formation, but also offer a clear future as a new tool to study inflammatory responses in vitro in 3D in a brain-like environment. Therefore, our main focus here is to provide a comprehensive overview of assays to measure microglial phenotype and function within brain organoids, with an outlook on how these findings could better understand neuronal network development or restoration, as well as the influence of physical stress on microglia-containing brain organoids. Finally, we would like to stress that even though the development of immune-competent brain organoids has largely evolved over the past decade, their full potential as a pre-clinical tool to study novel therapeutic approaches to halt or reduce inflammation-mediated neurodegeneration still needs to be explored and validated.
Collapse
Affiliation(s)
- Julia Di Stefano
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Wilrijk, Belgium
- Bio-Imaging Lab, University of Antwerp, Wilrijk, Belgium
| | - Federica Di Marco
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Ilaria Cicalini
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Una FitzGerald
- CÚRAM, Center for Research in Medical Devices, Biomedical Engineering, University of Galway, Ireland
- Galway Neuroscience Center, University of Galway, Ireland
| | - Damiana Pieragostino
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Wilrijk, Belgium
- μNEURO Research Center of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Wilrijk, Belgium
| | - Elise Van Breedam
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
2
|
Ashwlayan VD, Ratnesh RK, Sharma D, Sharma A, Sangal A, Saifi A, Singh J. A Comprehensive Review on Plant-Based Medications and Chemical Approaches for Autism Spectrum Disorders (ASDs) Psychopharmacotherapy. Indian J Microbiol 2025; 65:15-31. [PMID: 40371019 PMCID: PMC12069777 DOI: 10.1007/s12088-024-01265-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/16/2024] [Indexed: 05/16/2025] Open
Abstract
Gastrointestinal impairment induced sleep, behavioral and psychiatric disorders were reported in patients of autism spectrum disorders (ASDs). These may be life-long neuro-developmental disorders. Standardized diagnostic criteria for ASDs include: restricted and repetitive behavior, ongoing deficiencies in social interaction and communication. Pro-antioxidant and anti-inflammatory effects of dietry polyphenols/poly-phenol-rich derivatives as bioactive compounds enhanced permeability of blood brain barrier, consequently leads to delay in the onset of ASDs symptoms and can be effectively used in the management of ASDs. During the research on ASDs numerous therapeutic modalities, such as chemical and plant-based therapies, have been investigated. Due to their possible neuro-psychopharmacological benefits, plant-based treatments have attracted interest. These natural source therapies have demonstrated potential in reducing ASDs-related symptoms. Plant-based psycho-pharmaceuticals have been thoroughly investigated, and the investigations have confirmed their therapeutic effects. The therapeutic qualities of plants not only address the complex neurological aspects of ASDs but also provide a comprehensive approach to treatment. These substances may restore neurochemical equilibrium by focusing on particular biochemical pathways associated with the illness. Advancements in pharmacology and neurochemistry have enabled targeted interventions through chemical approaches. The treatment of ASDs approached through a combination of plant-based solutions and chemical methods can be better than one alone. By targeting the restorative properties of both natural compounds and synthesized chemicals, researchers aim to address the diverse range of symptoms and underlying neurobiological abnormalities associated with ASDs. Further clinical studies are required to validate the potential of bioactive molecules scientifically. Graphical Abstract
Collapse
Affiliation(s)
- Vrish Dhwaj Ashwlayan
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, U.P. 250005 India
| | - Ratneshwar Kumar Ratnesh
- Department of Electronics and Communication Engineering, Meerut Institute of Engineering and Technology, Meerut, U.P. 250005 India
| | - Divya Sharma
- Department of Computer Science, Deva Nagri College, Delhi Road, Meerut, U.P. 250002 India
| | - Alok Sharma
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, U.P. 250005 India
| | - Akansha Sangal
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, U.P. 250005 India
| | - Alimuddin Saifi
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, U.P. 250005 India
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, U.P. 221005 India
| |
Collapse
|
3
|
Soylu KO, Yemisci M, Karatas H. The link between spreading depolarization and innate immunity in the central nervous system. J Headache Pain 2025; 26:25. [PMID: 39901107 PMCID: PMC11792447 DOI: 10.1186/s10194-024-01938-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/12/2024] [Indexed: 02/05/2025] Open
Abstract
Spreading depolarization (SD) is a complex event that induces significant cellular stress in the central nervous system, leading to a robust inflammatory response without causing cell death in healthy tissues which may be called as neuro-parainflammation. Research has established a clear link between SD and the activation of pro-inflammatory pathways, particularly through the release of cytokines like interleukin-1β and tumor necrosis factor-α, and the involvement of inflammatory mediators such as cyclooxygenase-2 and high mobility group box 1 (HMGB1). Mechanistically, the opening of pannexin-1 (Panx1) channels and the activation of the (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome play critical roles in this process, facilitating the release of inflammatory signals that can exacerbate conditions like migraine. Furthermore, the interplay between neurons and glial cells, particularly astrocytes and microglia, underscores the intricate nature of neuroinflammation triggered by SD. Importantly, these findings indicate that these inflammatory processes may also have systemic implications, affecting immune responses beyond the central nervous system. Overall, this body of work highlights the need for further exploration of the mechanisms underlying SD-induced inflammation and potential therapeutic targets to mitigate neuroinflammatory disorders. Inflammation extends beyond the central nervous system to peripheral structures, including the meninges and trigeminovascular system, which are critical for headache initiation. Genetic factors, particularly familial hemiplegic migraine (FHM), exacerbate neuroinflammatory responses to SD, leading to increased susceptibility and prolonged headache behaviors. Collectively, these findings underscore the complex cellular interactions and innate inflammatory processes underlying SD and their relevance to migraine mechanisms, suggesting potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Kadir Oguzhan Soylu
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Türkiye
| | - Muge Yemisci
- Institute of Neurological Sciences and Psychiatry, Faculty of Medicine, Department of Neurology, Hacettepe University, Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Türkiye
| | - Hulya Karatas
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Türkiye.
| |
Collapse
|
4
|
Vadisiute A, Meijer E, Therpurakal RN, Mueller M, Szabó F, Messore F, Jursenas A, Bredemeyer O, Krone LB, Mann E, Vyazovskiy V, Hoerder-Suabedissen A, Molnár Z. Glial cells undergo rapid changes following acute chemogenetic manipulation of cortical layer 5 projection neurons. Commun Biol 2024; 7:1286. [PMID: 39384971 PMCID: PMC11464517 DOI: 10.1038/s42003-024-06994-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/30/2024] [Indexed: 10/11/2024] Open
Abstract
Bidirectional communication between neurons and glial cells is crucial to establishing and maintaining normal brain function. Some of these interactions are activity-dependent, yet it remains largely unexplored how acute changes in neuronal activity affect glial-to-neuron and neuron-to-glial dynamics. Here, we use excitatory and inhibitory designer receptors exclusively activated by designer drugs (DREADD) to study the effects of acute chemogenetic manipulations of a subpopulation of layer 5 cortical projection and dentate gyrus neurons in adult (Rbp4Cre) mouse brains. We show that acute chemogenetic neuronal activation reduces synaptic density, and increases microglia and astrocyte reactivity, but does not affect parvalbumin (PV+) neurons, only perineuronal nets (PNN). Conversely, acute silencing increases synaptic density and decreases glial reactivity. We show fast glial response upon clozapine-N-oxide (CNO) administration in cortical and subcortical regions. Together, our work provides evidence of fast, activity-dependent, bidirectional interactions between neurons and glial cells.
Collapse
Affiliation(s)
- Auguste Vadisiute
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, United Kingdom.
- St John's College, University of Oxford, St Giles', Oxford, United Kingdom.
| | - Elise Meijer
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, United Kingdom
| | - Rajeevan Narayanan Therpurakal
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, United Kingdom
- Department of Neurology, Düsseldorf University Hospital, Düsseldorf, Germany
| | - Marissa Mueller
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, United Kingdom
| | - Florina Szabó
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, United Kingdom
| | - Fernando Messore
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, United Kingdom
| | | | - Oliver Bredemeyer
- St John's College, University of Oxford, St Giles', Oxford, United Kingdom
| | - Lukas B Krone
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, United Kingdom
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Centre for Experimental Neurology, University of Bern, Bern, Switzerland
| | - Ed Mann
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, United Kingdom
| | - Vladyslav Vyazovskiy
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, United Kingdom
- Kavli Institute for Nanoscience Discovery, Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, United Kingdom
- Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, United Kingdom
| | - Anna Hoerder-Suabedissen
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, United Kingdom
- Kavli Institute for Nanoscience Discovery, Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, United Kingdom
- Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, United Kingdom
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, United Kingdom.
- St John's College, University of Oxford, St Giles', Oxford, United Kingdom.
| |
Collapse
|
5
|
Ferreira RO, Assoni AF, da Silva MVR, da Rocha LA, de Castro MV, Bertola D, Zatz M. Immunocompetent Brain Organoids with Microglia Allow Advanced Aging Research. Methods Mol Biol 2024. [PMID: 39316336 DOI: 10.1007/7651_2024_565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Aging is a complex and multifactorial process that significantly affects brain function and health, since it is commonly associated with the emergence of neurodegenerative diseases. Recent advances in stem cell technology have facilitated the development of brain organoids, three-dimensional structures that mimic key aspects of brain architecture and functionality. By incorporating microglia, the resident monocyte-derived immune cells of the central nervous system, immunocompetent brain organoids can provide a more physiologically relevant model for studying brain aging. This chapter explores the methodology of immunocompetent brain organoids for advanced aging research, detailing protocols for their generation from a co-culture of neural stem cells and primitive macrophage progenitors.
Collapse
Affiliation(s)
- Raiane Oliveira Ferreira
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, Cidade Universitária, São Paulo, SP, Brazil.
| | - Amanda Faria Assoni
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, Cidade Universitária, São Paulo, SP, Brazil
| | - Monize Valéria Ramos da Silva
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, Cidade Universitária, São Paulo, SP, Brazil
| | - Letícia Alves da Rocha
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, Cidade Universitária, São Paulo, SP, Brazil
| | - Mateus Vidigal de Castro
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, Cidade Universitária, São Paulo, SP, Brazil
| | - Débora Bertola
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, Cidade Universitária, São Paulo, SP, Brazil
| | - Mayana Zatz
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, Cidade Universitária, São Paulo, SP, Brazil.
| |
Collapse
|
6
|
Kuhn MK, Proctor EA. Microglial Drivers of Alzheimer's Disease Pathology: An Evolution of Diverse Participating States. Proteins 2024:10.1002/prot.26723. [PMID: 39219300 PMCID: PMC11871049 DOI: 10.1002/prot.26723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 09/04/2024]
Abstract
Microglia, the resident immune-competent cells of the brain, become dysfunctional in Alzheimer's disease (AD), and their aberrant immune responses contribute to the accumulation of pathological proteins and neuronal injury. Genetic studies implicate microglia in the development of AD, prompting interest in developing immunomodulatory therapies to prevent or ameliorate disease. However, microglia take on diverse functional states in disease, playing both protective and detrimental roles in AD, which largely overlap and may shift over the disease course, complicating the identification of effective therapeutic targets. Extensive evidence gathered using transgenic mouse models supports an active role of microglia in pathology progression, though results vary and can be contradictory between different types of models and the degree of pathology at the time of study. Here, we review microglial immune signaling and responses that contribute to the accumulation and spread of pathological proteins or directly affect neuronal health. We additionally explore the use of induced pluripotent stem cell (iPSC)-derived models to study living human microglia and how they have contributed to our knowledge of AD and may begin to fill in the gaps left by mouse models. Ultimately, mouse and iPSC-derived models have their own limitations, and a comprehensive understanding of microglial dysfunction in AD will only be established by an integrated view across models and an appreciation for their complementary viewpoints and limitations.
Collapse
Affiliation(s)
- Madison K. Kuhn
- Department of Biomedical Engineering, Penn State University
- Department of Neurosurgery, Penn State College of Medicine
- Department of Pharmacology, Penn State College of Medicine
- Center for Neural Engineering, Penn State University
| | - Elizabeth A. Proctor
- Department of Biomedical Engineering, Penn State University
- Department of Neurosurgery, Penn State College of Medicine
- Department of Pharmacology, Penn State College of Medicine
- Center for Neural Engineering, Penn State University
- Department of Engineering Science & Mechanics, Penn State University
| |
Collapse
|
7
|
Kim K, Cho HR, Kim BY, Kim J, Park D, Kwon RJ, Son Y. Oxysterol Induces Expression of 60 kDa Chaperone Protein on Cell Surface of Microglia. Int J Mol Sci 2024; 25:9073. [PMID: 39201760 PMCID: PMC11354638 DOI: 10.3390/ijms25169073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Microglia, essential immune cells in the brain, play crucial roles in neuroinflammation by performing various functions such as neurogenesis, synaptic pruning, and pathogen defense. These cells are activated by inflammatory factors like β-amyloid (Aβ) and oxysterols, leading to morphological and functional changes, including the secretion of inflammatory cytokines and the upregulation of MHC class II molecules. This study focused on identifying specific markers for microglial activation, with a particular emphasis on the roles of oxysterols in this process. We used the HMC3 human microglial cell line to investigate the induction of heat shock protein 60 (HSP60), a chaperonin protein by oxysterols, specifically in the presence of 25-hydroxycholesterol (25OHChol) and 27-hydroxycholesterol (27OHChol). Our findings obtained by the proteomics approach revealed that these oxysterols significantly increased HSP60 expression on microglial cells. This induction was further confirmed using Western blot analysis and immunofluorescence microscopy. Additionally, Aβ1-42 also promoted HSP60 expression, indicating its role as a microglial activator. HSP60 involved in protein folding and immune modulation was identified as a potential marker for microglial activation. This study underscores the importance of HSP60 in the inflammatory response of microglia, suggesting its utility as a target for new therapeutic approaches in neuroinflammatory diseases such as Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Koanhoi Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (K.K.); (J.K.); (D.P.)
| | - Hyok-rae Cho
- Department of Neurosurgery, College of Medicine, Kosin University, Busan 49267, Republic of Korea;
| | - Bo-young Kim
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea;
| | - Jaesung Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (K.K.); (J.K.); (D.P.)
| | - Dongha Park
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (K.K.); (J.K.); (D.P.)
| | - Ryuk Jun Kwon
- Family Medicine Clinic and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
- Department of Family Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yonghae Son
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (K.K.); (J.K.); (D.P.)
| |
Collapse
|
8
|
Fernandes DC, Eto SF, Baldassi AC, Balbuena TS, Charlie-Silva I, de Andrade Belo MA, Pizauro JM. Meningitis caused by Aeromonas hydrophila in Oreochromis niloticus: Proteomics and druggability of virulence factors. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109687. [PMID: 38866348 DOI: 10.1016/j.fsi.2024.109687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Meningitis caused by Gram-negative bacteria is a serious public health problem, causing morbidity and mortality in both children and adults. Here, we propose a novel experimental model using Nile tilapia (Oreochromis niloticus) to study neuroinflammation. The fish were infected with Aeromonas hydrophila, and the course of infection was monitored in the peripheral blood. Septicemia was obvious in the blood, while in the brain tissue, infection of the meninges was present. The histopathological examination showed suppurative meningitis, and the cellular immune response in the brain tissue during infection was mediated by microglia. These cells were morphologically characterized and phenotyped by MHC class II markers and CD68. The increased production of TNF-α, IL-1β and iNOS supported the infiltration of these cells during the neuroinflammatory process. In the proteomic analysis of A. hydrophila isolated from brain tissue, we found chemotactic and transport proteins, proteolytic enzymes and enzymes associated with the dismutation of nitric oxide (NO), as well as motor proteins and those responsible for cell division. After characterizing the most abundant proteins during the course of infection, we investigated the druggability index of these proteins and identified promising peptide sequences as molecular targets that are similar among bacteria. Thus, these findings deepened the understanding of the pathophysiology of meningitis caused by A. hydrophila. Moreover, through the proteomics analysis, important mechanisms and pathways used by the pathogen to subvert the host response were revealed, providing insights for the development of novel antibiotics and vaccines.
Collapse
Affiliation(s)
- Dayanne Carla Fernandes
- Institute of Chemistry, São Paulo State University (Unesp), Araraquara, Sao Paulo, SP, Brazil.
| | - Silas Fernandes Eto
- Laboratory Center of Excellence in New Target Discovery (CENTD) Special Laboratory, Butantan Institute, São Paulo, SP, Brazil
| | - Amanda Cristina Baldassi
- Department of Technology, School of Agrarian and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, Sao Paulo, SP, Brazil
| | - Thiago Santana Balbuena
- Department of Technology, School of Agrarian and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, Sao Paulo, SP, Brazil
| | - Ives Charlie-Silva
- Institute of Chemistry, São Paulo State University (Unesp), Araraquara, Sao Paulo, SP, Brazil
| | | | - João Martins Pizauro
- Department of Technology, School of Agrarian and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, Sao Paulo, SP, Brazil
| |
Collapse
|
9
|
Olveda GE, Barasa MN, Hill RA. Microglial phagocytosis of single dying oligodendrocytes is mediated by CX3CR1 but not MERTK. Cell Rep 2024; 43:114385. [PMID: 38935500 PMCID: PMC11304498 DOI: 10.1016/j.celrep.2024.114385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/10/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024] Open
Abstract
Oligodendrocyte death is common in aging and neurodegenerative disease. In these conditions, dying oligodendrocytes must be efficiently removed to allow remyelination and to prevent a feedforward degenerative cascade. Removal of this cellular debris is thought to primarily be carried out by resident microglia. To investigate the cellular dynamics underlying how microglia do this, we use a single-cell cortical demyelination model combined with longitudinal intravital imaging of dual-labeled transgenic mice. Following phagocytosis, single microglia clear the targeted oligodendrocyte and its myelin sheaths in one day via a precise, rapid, and stereotyped sequence. Deletion of the fractalkine receptor, CX3CR1, delays the microglial phagocytosis of the cell soma but has no effect on clearance of myelin sheaths. Unexpectedly, deletion of the phosphatidylserine receptor, MERTK, has no effect on oligodendrocyte or myelin sheath clearance. Thus, separate molecular signals are used to detect, engage, and clear distinct sub-compartments of dying oligodendrocytes to maintain tissue homeostasis.
Collapse
Affiliation(s)
- Genaro E Olveda
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Maryanne N Barasa
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Robert A Hill
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
10
|
Han T, Xu Y, Sun L, Hashimoto M, Wei J. Microglial response to aging and neuroinflammation in the development of neurodegenerative diseases. Neural Regen Res 2024; 19:1241-1248. [PMID: 37905870 PMCID: PMC11467914 DOI: 10.4103/1673-5374.385845] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/30/2023] [Accepted: 07/17/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT Cellular senescence and chronic inflammation in response to aging are considered to be indicators of brain aging; they have a great impact on the aging process and are the main risk factors for neurodegeneration. Reviewing the microglial response to aging and neuroinflammation in neurodegenerative diseases will help understand the importance of microglia in neurodegenerative diseases. This review describes the origin and function of microglia and focuses on the role of different states of the microglial response to aging and chronic inflammation on the occurrence and development of neurodegenerative diseases, including Alzheimer's disease, Huntington's chorea, and Parkinson's disease. This review also describes the potential benefits of treating neurodegenerative diseases by modulating changes in microglial states. Therefore, inducing a shift from the neurotoxic to neuroprotective microglial state in neurodegenerative diseases induced by aging and chronic inflammation holds promise for the treatment of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Tingting Han
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Yuxiang Xu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Lin Sun
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan Province, China
| | - Makoto Hashimoto
- Department of Basic Technology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| |
Collapse
|
11
|
Boreland AJ, Stillitano AC, Lin HC, Abbo Y, Hart RP, Jiang P, Pang ZP, Rabson AB. Sustained type I interferon signaling after human immunodeficiency virus type 1 infection of human iPSC derived microglia and cerebral organoids. iScience 2024; 27:109628. [PMID: 38628961 PMCID: PMC11019286 DOI: 10.1016/j.isci.2024.109628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/01/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1)-associated neurocognitive disorder (HAND) affects up to half of people living with HIV-1 and causes long term neurological consequences. The pathophysiology of HIV-1-induced glial and neuronal functional deficits in humans remains enigmatic. To bridge this gap, we established a model simulating HIV-1 infection in the central nervous system using human induced pluripotent stem cell (iPSC)-derived microglia combined with sliced neocortical organoids. Incubation of microglia with two replication-competent macrophage-tropic HIV-1 strains (JRFL and YU2) elicited productive infection and inflammatory activation. RNA sequencing revealed significant and sustained activation of type I interferon signaling pathways. Incorporating microglia into sliced neocortical organoids extended the effects of aberrant type I interferon signaling in a human neural context. Collectively, our results illuminate a role for persistent type I interferon signaling in HIV-1-infected microglia in a human neural model, suggesting its potential significance in the pathogenesis of HAND.
Collapse
Affiliation(s)
- Andrew J. Boreland
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08854, USA
| | - Alessandro C. Stillitano
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Hsin-Ching Lin
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Yara Abbo
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Ronald P. Hart
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Peng Jiang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Zhiping P. Pang
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08854, USA
| | - Arnold B. Rabson
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
- Departments of Pharmacology, Pathology & Laboratory Medicine, and Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| |
Collapse
|
12
|
Tang Y, Wu X, Li J, Li Y, Xu X, Li G, Zhang P, Qin C, Wu LJ, Tang Z, Tian DS. The Emerging Role of Microglial Hv1 as a Target for Immunomodulation in Myelin Repair. Aging Dis 2024; 15:1176-1203. [PMID: 38029392 PMCID: PMC11081154 DOI: 10.14336/ad.2023.1107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
In the central nervous system (CNS), the myelin sheath ensures efficient interconnection between neurons and contributes to the regulation of the proper function of neuronal networks. The maintenance of myelin and the well-organized subtle process of myelin plasticity requires cooperation among myelin-forming cells, glial cells, and neural networks. The process of cooperation is fragile, and the balance is highly susceptible to disruption by microenvironment influences. Reactive microglia play a critical and complicated role in the demyelination and remyelination process. Recent studies have shown that the voltage-gated proton channel Hv1 is selectively expressed in microglia in CNS, which regulates intracellular pH and is involved in the production of reactive oxygen species, underlying multifaceted roles in maintaining microglia function. This paper begins by examining the molecular mechanisms of demyelination and emphasizes the crucial role of the microenvironment in demyelination. It focuses specifically on the role of Hv1 in myelin repair and its therapeutic potential in CNS demyelinating diseases.
Collapse
Affiliation(s)
- Yingxin Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jiarui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yuanwei Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaoxiao Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Gaigai Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ping Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
13
|
Di Martino E, Rayasam A, Vexler ZS. Brain Maturation as a Fundamental Factor in Immune-Neurovascular Interactions in Stroke. Transl Stroke Res 2024; 15:69-86. [PMID: 36705821 PMCID: PMC10796425 DOI: 10.1007/s12975-022-01111-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 01/28/2023]
Abstract
Injuries in the developing brain cause significant long-term neurological deficits. Emerging clinical and preclinical data have demonstrated that the pathophysiology of neonatal and childhood stroke share similar mechanisms that regulate brain damage, but also have distinct molecular signatures and cellular pathways. The focus of this review is on two different diseases-neonatal and childhood stroke-with emphasis on similarities and distinctions identified thus far in rodent models of these diseases. This includes the susceptibility of distinct cell types to brain injury with particular emphasis on the role of resident and peripheral immune populations in modulating stroke outcome. Furthermore, we discuss some of the most recent and relevant findings in relation to the immune-neurovascular crosstalk and how the influence of inflammatory mediators is dependent on specific brain maturation stages. Finally, we comment on the current state of treatments geared toward inducing neuroprotection and promoting brain repair after injury and highlight that future prophylactic and therapeutic strategies for stroke should be age-specific and consider gender differences in order to achieve optimal translational success.
Collapse
Affiliation(s)
- Elena Di Martino
- Department of Neurology, University California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA
| | - Aditya Rayasam
- Department of Neurology, University California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA
| | - Zinaida S Vexler
- Department of Neurology, University California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA.
| |
Collapse
|
14
|
Olveda GE, Barasa MN, Hill RA. Microglial phagocytosis of single dying oligodendrocytes is mediated by CX3CR1 but not MERTK. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.11.570620. [PMID: 38168326 PMCID: PMC10760041 DOI: 10.1101/2023.12.11.570620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Oligodendrocyte death is common in aging and neurodegenerative diseases. In these conditions, single dying oligodendrocytes must be efficiently removed to allow remyelination and prevent a feed-forward degenerative cascade. Here we used a single-cell cortical demyelination model combined with longitudinal intravital imaging of dual-labeled transgenic mice to investigate the cellular dynamics underlying how brain resident microglia remove these cellular debris. Following phagocytic engagement, single microglia cleared the targeted oligodendrocyte and its myelin sheaths in one day via a precise, rapid, and stereotyped sequence. Deletion of the fractalkine receptor, CX3CR1, delayed microglia engagement with the cell soma but unexpectedly did not affect the clearance of myelin sheaths. Furthermore, and in contrast to previous reports in other demyelination models, deletion of the phosphatidylserine receptor, MERTK, did not affect oligodendrocyte or myelin sheath clearance. Thus, distinct molecular signals are used to detect, engage, and clear sub-compartments of dying oligodendrocytes to maintain tissue homeostasis.
Collapse
Affiliation(s)
- Genaro E. Olveda
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Maryanne N. Barasa
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Robert A. Hill
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
15
|
Katkar G, Ghosh P. Macrophage states: there's a method in the madness. Trends Immunol 2023; 44:954-964. [PMID: 37945504 PMCID: PMC11266835 DOI: 10.1016/j.it.2023.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023]
Abstract
Single-cell approaches have shone a spotlight on discrete context-specific tissue macrophage states, deconstructed to their most minute details. Machine-learning (ML) approaches have recently challenged that dogma by revealing a context-agnostic continuum of states shared across tissues. Both approaches agree that 'brake' and 'accelerator' macrophage subpopulations must be balanced to achieve homeostasis. Both approaches also highlight the importance of ensemble fluidity as subpopulations switch between wide ranges of accelerator and brake phenotypes to mount the most optimal wholistic response to any threat. A full comprehension of the rules that govern these brake and accelerator states is a promising avenue because it can help formulate precise macrophage re-education therapeutic strategies that might selectively boost or suppress disease-associated states and phenotypes across various tissues.
Collapse
Affiliation(s)
- Gajanan Katkar
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA, 92093, USA.
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA, 92093, USA; Department of Medicine, University of California, San Diego, CA, 92093, USA.
| |
Collapse
|
16
|
Dong X, Hong H, Cui Z. Function of GSK‑3 signaling in spinal cord injury (Review). Exp Ther Med 2023; 26:541. [PMID: 37869638 PMCID: PMC10587879 DOI: 10.3892/etm.2023.12240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/10/2023] [Indexed: 10/24/2023] Open
Abstract
Spinal cord injury (SCI) is a major social problem with a heavy burden on patient physiology and psychology. Glial scar formation and irreversible neuron loss are the two key points during SCI progression. During the acute phase of spinal cord injury, glial scars form, limiting the progression of inflammation. However, in the subacute or chronic phase, glial scarring inhibits axon regeneration. Following spinal cord injury, irreversible loss of neurons leads to further aggravation of spinal cord injury. Several therapies have been developed to improve either glial scar or neuron loss; however, few therapies reach the stage of clinical trials and there are no mainstream therapies for SCI. Exploring the key mechanism of SCI is crucial for finding further treatments. Glycogen synthase kinase-3 (GSK-3) is a widely expressed kinase with important physiological and pathophysiological functions in vivo. Dysfunction of the GSK-3 signaling pathway during SCI has been widely discussed for controlling neurite growth in vitro and in vivo, improving the proliferation and neuronal differentiation of endogenous neural stem cells and functional recovery from spinal cord injury. SCI can decrease the phosphorylated (p)/total (t)-GSK-3β ratio, which leads to an increase in apoptosis, whereas treatment with GSK-3 inhibitors can promote neurogenesis. In addition, several therapies for the treatment of SCI involve signaling pathways associated with GSK-3. Furthermore, signaling pathways associated with GSK-3 also participate in the pathological process of neuropathic pain that remains following SCI. The present review summarized the roles of GSK-3 signaling in SCI to aid in the understanding of GSK-3 signaling during the pathological processes of SCI and to provide evidence for the development of comprehensive treatments.
Collapse
Affiliation(s)
- Xiong Dong
- Department of Spinal Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hongxiang Hong
- Department of Spinal Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhiming Cui
- Department of Spinal Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
17
|
Boreland AJ, Stillitano AC, Lin HC, Abbo Y, Hart RP, Jiang P, Pang ZP, Rabson AB. Dysregulated neuroimmune interactions and sustained type I interferon signaling after human immunodeficiency virus type 1 infection of human iPSC derived microglia and cerebral organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.25.563950. [PMID: 37961371 PMCID: PMC10634901 DOI: 10.1101/2023.10.25.563950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Human immunodeficiency virus type-1 (HIV-1) associated neurocognitive disorder (HAND) affects up to half of HIV-1 positive patients with long term neurological consequences, including dementia. There are no effective therapeutics for HAND because the pathophysiology of HIV-1 induced glial and neuronal functional deficits in humans remains enigmatic. To bridge this knowledge gap, we established a model simulating HIV-1 infection in the central nervous system using human induced pluripotent stem cell (iPSC) derived microglia combined with sliced neocortical organoids. Upon incubation with two replication-competent macrophage-tropic HIV-1 strains (JRFL and YU2), we observed that microglia not only became productively infected but also exhibited inflammatory activation. RNA sequencing revealed a significant and sustained activation of type I interferon signaling pathways. Incorporating microglia into sliced neocortical organoids extended the effects of aberrant type I interferon signaling in a human neural context. Collectively, our results illuminate the role of persistent type I interferon signaling in HIV-1 infected microglial in a human neural model, suggesting its potential significance in the pathogenesis of HAND.
Collapse
Affiliation(s)
- Andrew J. Boreland
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
- Department of Neuroscience, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Alessandro C. Stillitano
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Hsin-Ching Lin
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Yara Abbo
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Ronald P. Hart
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ
| | - Peng Jiang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ
| | - Zhiping P. Pang
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
- Department of Neuroscience, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Arnold B. Rabson
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
- Department of Pharmacology, Pathology & Laboratory Medicine, and Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| |
Collapse
|
18
|
Son Y, Yeo IJ, Hong JT, Eo SK, Lee D, Kim K. Side-Chain Immune Oxysterols Induce Neuroinflammation by Activating Microglia. Int J Mol Sci 2023; 24:15288. [PMID: 37894967 PMCID: PMC10607006 DOI: 10.3390/ijms242015288] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
In individuals with Alzheimer's disease, the brain exhibits elevated levels of IL-1β and oxygenated cholesterol molecules (oxysterols). This study aimed to investigate the effects of side-chain oxysterols on IL-1β expression using HMC3 microglial cells and ApoE-deficient mice. Treatment of HMC3 cells with 25-hydroxycholesterol (25OHChol) and 27-hydroxycholesterol (27OHChol) led to increased IL-1β expression at the transcript and protein levels. Additionally, these oxysterols upregulated the surface expression of MHC II, a marker of activated microglia. Immunohistochemistry performed on the mice showed increased microglial expression of IL-1β and MHC II when fed a high-cholesterol diet. However, cholesterol and 24s-hydroxycholesterol did not increase IL-1β transcript levels or MHC II expression. The extent of IL-1β increase induced by 25OHChol and 27OHChol was comparable to that caused by oligomeric β-amyloid, and the IL-1β expression induced by the oxysterols was not impaired by polymyxin B, which inhibited lipopolysaccharide-induced IL-1β expression. Both oxysterols enhanced the phosphorylation of Akt, ERK, and Src, and inhibition of these kinase pathways with pharmacological inhibitors suppressed the expression of IL-1β and MHC II. The pharmacological agents chlorpromazine and cyclosporin A also impaired the oxysterol-induced expression of IL-1β and upregulation of MHC II. Overall, these findings suggest that dysregulated cholesterol metabolism leading to elevated levels of side-chain oxysterols, such as 25OHChol and 27OHChol, can activate microglia to secrete IL-1β through a mechanism amenable to pharmacologic intervention. The activation of microglia and subsequent neuroinflammation elicited by the immune oxysterols can contribute to the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yonghae Son
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Gyeongnam, Republic of Korea;
| | - In-Jun Yeo
- College of Pharmacy, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Gyeongbuk, Republic of Korea;
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osong-eup, Heungdeok-gu, Cheongju 28160, Chungbuk, Republic of Korea;
| | - Jin-Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osong-eup, Heungdeok-gu, Cheongju 28160, Chungbuk, Republic of Korea;
| | - Seong-Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Jeonbuk, Republic of Korea;
| | - Dongjun Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Gyeongnam, Republic of Korea
| | - Koanhoi Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Gyeongnam, Republic of Korea;
| |
Collapse
|
19
|
Chen R, Routh BN, Gaudet AD, Fonken LK. Circadian Regulation of the Neuroimmune Environment Across the Lifespan: From Brain Development to Aging. J Biol Rhythms 2023; 38:419-446. [PMID: 37357738 PMCID: PMC10475217 DOI: 10.1177/07487304231178950] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Circadian clocks confer 24-h periodicity to biological systems, to ultimately maximize energy efficiency and promote survival in a world with regular environmental light cycles. In mammals, circadian rhythms regulate myriad physiological functions, including the immune, endocrine, and central nervous systems. Within the central nervous system, specialized glial cells such as astrocytes and microglia survey and maintain the neuroimmune environment. The contributions of these neuroimmune cells to both homeostatic and pathogenic demands vary greatly across the day. Moreover, the function of these cells changes across the lifespan. In this review, we discuss circadian regulation of the neuroimmune environment across the lifespan, with a focus on microglia and astrocytes. Circadian rhythms emerge in early life concurrent with neuroimmune sculpting of brain circuits and wane late in life alongside increasing immunosenescence and neurodegeneration. Importantly, circadian dysregulation can alter immune function, which may contribute to susceptibility to neurodevelopmental and neurodegenerative diseases. In this review, we highlight circadian neuroimmune interactions across the lifespan and share evidence that circadian dysregulation within the neuroimmune system may be a critical component in human neurodevelopmental and neurodegenerative diseases.
Collapse
Affiliation(s)
- Ruizhuo Chen
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - Brandy N. Routh
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
- Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
| | - Andrew D. Gaudet
- Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
- Department of Psychology, The University of Texas at Austin, Austin, Texas
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Laura K. Fonken
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
- Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
20
|
Heron R, Amato C, Wood W, Davidson AJ. Understanding the diversity and dynamics of in vivo efferocytosis: Insights from the fly embryo. Immunol Rev 2023; 319:27-44. [PMID: 37589239 PMCID: PMC10952863 DOI: 10.1111/imr.13266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
The clearance of dead and dying cells, termed efferocytosis, is a rapid and efficient process and one that is critical for organismal health. The extraordinary speed and efficiency with which dead cells are detected and engulfed by immune cells within tissues presents a challenge to researchers who wish to unravel this fascinating process, since these fleeting moments of uptake are almost impossible to catch in vivo. In recent years, the fruit fly (Drosophila melanogaster) embryo has emerged as a powerful model to circumvent this problem. With its abundance of dying cells, specialist phagocytes and relative ease of live imaging, the humble fly embryo provides a unique opportunity to catch and study the moment of cell engulfment in real-time within a living animal. In this review, we explore the recent advances that have come from studies in the fly, and how live imaging and genetics have revealed a previously unappreciated level of diversity in the efferocytic program. A variety of efferocytic strategies across the phagocytic cell population ensure efficient and rapid clearance of corpses wherever death is encountered within the varied and complex setting of a multicellular living organism.
Collapse
Affiliation(s)
- Rosalind Heron
- Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
| | - Clelia Amato
- Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
| | - Will Wood
- Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
| | - Andrew J. Davidson
- Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
- School of Cancer SciencesWolfson Wohl Cancer Research Centre, University of GlasgowGlasgowUK
| |
Collapse
|
21
|
Baek SY, Lee J, Kim T, Lee H, Choi HS, Park H, Koh M, Kim E, Jung ME, Iliopoulos D, Lee JY, Kim J, Lee S. Development of a novel histone deacetylase inhibitor unveils the role of HDAC11 in alleviating depression by inhibition of microglial activation. Biomed Pharmacother 2023; 166:115312. [PMID: 37567072 DOI: 10.1016/j.biopha.2023.115312] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023] Open
Abstract
Histone deacetylases (HDACs) are key epigenetic regulators and classified into four subtypes. Despite the various roles of each HDAC isoform, the lack of selective HDAC inhibitors has limited the elucidation of their roles in biological systems. HDAC11, the sole class-IV HDAC, is highly expressed in the brain, however, the role of HDAC11 in microglia is not fully understood. Based on the modification of MC1568, we developed a novel HDAC inhibitor, 5. Interestingly, 5 suppresses lipopolysaccharide-induced microglial activation by the initiation of autophagy and subsequent inhibition of nitric oxide production. Furthermore, we demonstrated that 5 significantly alleviates depression-like behavior by inhibiting microglial activation in mouse brain. Our discovery reveals that specific pharmacological regulation of HDAC11 induces autophagy and reactive nitrogen species balance in microglia for the first time, which makes HDAC11 a new therapeutic target for depressive disorder.
Collapse
Affiliation(s)
- Soo Yeon Baek
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Jeehee Lee
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea; Department of HY-KIST Bio-convergence, Hanyang University, Seoul 04763, South Korea
| | - Taegwan Kim
- Department of Chemistry and Integrative Institute of Basic Science, Soongsil University, Seoul 06978, South Korea
| | - Hyelim Lee
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Hoon-Seong Choi
- Research Animal Resources Center, Research Resources Division, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Hahnbeom Park
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Minseob Koh
- Department of Chemistry, Pusan National University, Busan 46241, South Korea
| | - Eunha Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - Michael E Jung
- Department of Chemistry & Biochemistry, University of California at Los Angeles (UCLA), Los Angeles, CA 90095-1569, USA
| | - Dimitrios Iliopoulos
- Center for Systems Biomedicine, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Jeong-Yeon Lee
- Department of Pathology, College of Medicine, Hanyang University, Seoul 04763, South Korea
| | - Jonghoon Kim
- Department of Chemistry and Integrative Institute of Basic Science, Soongsil University, Seoul 06978, South Korea.
| | - Sanghee Lee
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea; Department of HY-KIST Bio-convergence, Hanyang University, Seoul 04763, South Korea.
| |
Collapse
|
22
|
Kuhn MK, Fleeman RM, Beidler LM, Snyder AM, Chan DC, Proctor EA. Amyloid-β Pathology-Specific Cytokine Secretion Suppresses Neuronal Mitochondrial Metabolism. Cell Mol Bioeng 2023; 16:405-421. [PMID: 37811007 PMCID: PMC10550897 DOI: 10.1007/s12195-023-00782-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/28/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Neuroinflammation and metabolic dysfunction are early alterations in Alzheimer's disease (AD) brain that are thought to contribute to disease onset and progression. Glial activation due to protein deposition results in cytokine secretion and shifts in brain metabolism, which have been observed in AD patients. However, the mechanism by which this immunometabolic feedback loop can injure neurons and cause neurodegeneration remains unclear. Methods We used Luminex XMAP technology to quantify hippocampal cytokine concentrations in the 5xFAD mouse model of AD at milestone timepoints in disease development. We used partial least squares regression to build cytokine signatures predictive of disease progression, as compared to healthy aging in wild-type littermates. We applied the disease-defining cytokine signature to wild-type primary neuron cultures and measured downstream changes in gene expression using the NanoString nCounter system and mitochondrial function using the Seahorse Extracellular Flux live-cell analyzer. Results We identified a pattern of up-regulated IFNγ, IP-10/CXCL10, and IL-9 as predictive of advanced disease. When healthy neurons were exposed to these cytokines in proportions found in diseased brain, gene expression of mitochondrial electron transport chain complexes, including ATP synthase, was suppressed. In live cells, basal and maximal mitochondrial respiration were impaired following cytokine stimulation. Conclusions We identify a pattern of cytokine secretion predictive of progressing amyloid-β pathology in the 5xFAD mouse model of AD that reduces expression of mitochondrial electron transport complexes and impairs mitochondrial respiration in healthy neurons. We establish a mechanistic link between disease-specific immune cues and impaired neuronal metabolism, potentially causing neuronal vulnerability and susceptibility to degeneration in AD. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-023-00782-y.
Collapse
Affiliation(s)
- Madison K. Kuhn
- Department of Neurosurgery, Penn State College of Medicine, Hershey, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA USA
| | - Rebecca M. Fleeman
- Department of Neurosurgery, Penn State College of Medicine, Hershey, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA USA
| | - Lynne M. Beidler
- Department of Microbiology & Immunology, Penn State College of Medicine, Hershey, PA USA
| | - Amanda M. Snyder
- Department of Neurology, Penn State College of Medicine, Hershey, PA USA
| | - Dennis C. Chan
- Department of Neurosurgery, Penn State College of Medicine, Hershey, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA USA
| | - Elizabeth A. Proctor
- Department of Neurosurgery, Penn State College of Medicine, Hershey, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA USA
- Department of Engineering Science & Mechanics, Pennsylvania State University, University Park, PA USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA USA
| |
Collapse
|
23
|
Dermitzakis I, Theotokis P, Evangelidis P, Delilampou E, Evangelidis N, Chatzisavvidou A, Avramidou E, Manthou ME. CNS Border-Associated Macrophages: Ontogeny and Potential Implication in Disease. Curr Issues Mol Biol 2023; 45:4285-4300. [PMID: 37232741 PMCID: PMC10217436 DOI: 10.3390/cimb45050272] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Being immune privileged, the central nervous system (CNS) is constituted by unique parenchymal and non-parenchymal tissue-resident macrophages, namely, microglia and border-associated macrophages (BAMs), respectively. BAMs are found in the choroid plexus, meningeal and perivascular spaces, playing critical roles in maintaining CNS homeostasis while being phenotypically and functionally distinct from microglial cells. Although the ontogeny of microglia has been largely determined, BAMs need comparable scrutiny as they have been recently discovered and have not been thoroughly explored. Newly developed techniques have transformed our understanding of BAMs, revealing their cellular heterogeneity and diversity. Recent data showed that BAMs also originate from yolk sac progenitors instead of bone marrow-derived monocytes, highlighting the absolute need to further investigate their repopulation pattern in adult CNS. Shedding light on the molecular cues and drivers orchestrating BAM generation is essential for delineating their cellular identity. BAMs are receiving more attention since they are gradually incorporated into neurodegenerative and neuroinflammatory disease evaluations. The present review provides insights towards the current understanding regarding the ontogeny of BAMs and their involvement in CNS diseases, paving their way into targeted therapeutic strategies and precision medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (P.T.); (P.E.); (E.D.); (N.E.); (A.C.); (E.A.)
| |
Collapse
|
24
|
Anwer DM, Gubinelli F, Kurt YA, Sarauskyte L, Jacobs F, Venuti C, Sandoval IM, Yang Y, Stancati J, Mazzocchi M, Brandi E, O’Keeffe G, Steece-Collier K, Li JY, Deierborg T, Manfredsson FP, Davidsson M, Heuer A. A comparison of machine learning approaches for the quantification of microglial cells in the brain of mice, rats and non-human primates. PLoS One 2023; 18:e0284480. [PMID: 37126506 PMCID: PMC10150977 DOI: 10.1371/journal.pone.0284480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Microglial cells are brain-specific macrophages that swiftly react to disruptive events in the brain. Microglial activation leads to specific modifications, including proliferation, morphological changes, migration to the site of insult, and changes in gene expression profiles. A change in inflammatory status has been linked to many neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. For this reason, the investigation and quantification of microglial cells is essential for better understanding their role in disease progression as well as for evaluating the cytocompatibility of novel therapeutic approaches for such conditions. In the following study we implemented a machine learning-based approach for the fast and automatized quantification of microglial cells; this tool was compared with manual quantification (ground truth), and with alternative free-ware such as the threshold-based ImageJ and the machine learning-based Ilastik. We first trained the algorithms on brain tissue obtained from rats and non-human primate immunohistochemically labelled for microglia. Subsequently we validated the accuracy of the trained algorithms in a preclinical rodent model of Parkinson's disease and demonstrated the robustness of the algorithms on tissue obtained from mice, as well as from images provided by three collaborating laboratories. Our results indicate that machine learning algorithms can detect and quantify microglial cells in all the three mammalian species in a precise manner, equipotent to the one observed following manual counting. Using this tool, we were able to detect and quantify small changes between the hemispheres, suggesting the power and reliability of the algorithm. Such a tool will be very useful for investigation of microglial response in disease development, as well as in the investigation of compatible novel therapeutics targeting the brain. As all network weights and labelled training data are made available, together with our step-by-step user guide, we anticipate that many laboratories will implement machine learning-based quantification of microglial cells in their research.
Collapse
Affiliation(s)
- Danish M. Anwer
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University Lund, Sweden
| | - Francesco Gubinelli
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University Lund, Sweden
| | - Yunus A. Kurt
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University Lund, Sweden
| | - Livija Sarauskyte
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University Lund, Sweden
| | - Febe Jacobs
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University Lund, Sweden
| | - Chiara Venuti
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University Lund, Sweden
| | - Ivette M. Sandoval
- Barrow Neurological Institute, Parkinson’s Disease Research Unit, Department of Translational Neuroscience, Phoenix, Arizona, United States of America
| | - Yiyi Yang
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Jennifer Stancati
- Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States of America
| | - Martina Mazzocchi
- Brain Development and Repair Group, Department of Anatomy and Neuroscience University College Cork, Cork, Ireland
| | - Edoardo Brandi
- Neural Plasticity and Repair, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Gerard O’Keeffe
- Brain Development and Repair Group, Department of Anatomy and Neuroscience University College Cork, Cork, Ireland
| | - Kathy Steece-Collier
- Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States of America
| | - Jia-Yi Li
- Neural Plasticity and Repair, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Fredric P. Manfredsson
- Barrow Neurological Institute, Parkinson’s Disease Research Unit, Department of Translational Neuroscience, Phoenix, Arizona, United States of America
| | - Marcus Davidsson
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University Lund, Sweden
- Barrow Neurological Institute, Parkinson’s Disease Research Unit, Department of Translational Neuroscience, Phoenix, Arizona, United States of America
| | - Andreas Heuer
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University Lund, Sweden
| |
Collapse
|
25
|
Kuhn MK, Fleeman RM, Beidler LM, Snyder AM, Chan DC, Proctor EA. Alzheimer's disease-specific cytokine secretion suppresses neuronal mitochondrial metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536014. [PMID: 37066287 PMCID: PMC10104145 DOI: 10.1101/2023.04.07.536014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Introduction Neuroinflammation and metabolic dysfunction are early alterations in Alzheimer's disease brain that are thought to contribute to disease onset and progression. Glial activation due to protein deposition results in cytokine secretion and shifts in brain metabolism, which have been observed in Alzheimer's disease patients. However, the mechanism by which this immunometabolic feedback loop can injure neurons and cause neurodegeneration remains unclear. Methods We used Luminex XMAP technology to quantify hippocampal cytokine concentrations in the 5xFAD mouse model of Alzheimer's disease at milestone timepoints in disease development. We used partial least squares regression to build cytokine signatures predictive of disease progression, as compared to healthy aging in wild-type littermates. We applied the disease-defining cytokine signature to wild-type primary neuron cultures and measured downstream changes in gene expression using the NanoString nCounter system and mitochondrial function using the Seahorse Extracellular Flux live-cell analyzer. Results We identified a pattern of up-regulated IFNγ, IP-10, and IL-9 as predictive of advanced disease. When healthy neurons were exposed to these cytokines in proportions found in diseased brain, gene expression of mitochondrial electron transport chain complexes, including ATP synthase, was suppressed. In live cells, basal and maximal mitochondrial respiration were impaired following cytokine stimulation. Conclusions An Alzheimer's disease-specific pattern of cytokine secretion reduces expression of mitochondrial electron transport complexes and impairs mitochondrial respiration in healthy neurons. We establish a mechanistic link between disease-specific immune cues and impaired neuronal metabolism, potentially causing neuronal vulnerability and susceptibility to degeneration in Alzheimer's disease.
Collapse
Affiliation(s)
- Madison K. Kuhn
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA, USA
| | - Rebecca M. Fleeman
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Lynne M. Beidler
- Department of Microbiology & Immunology, Penn State College of Medicine, Hershey, PA, USA
| | - Amanda M. Snyder
- Department of Neurology, Penn State College of Medicine, Hershey, PA, USA
| | - Dennis C. Chan
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA, USA
| | - Elizabeth A. Proctor
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Department of Engineering Science & Mechanics, Pennsylvania State University, University Park, PA, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
26
|
Sierra-Martín A, Navascués J, Neubrand VE, Sepúlveda MR, Martín-Oliva D, Cuadros MA, Marín-Teva JL. LPS-stimulated microglial cells promote ganglion cell death in organotypic cultures of quail embryo retina. Front Cell Neurosci 2023; 17:1120400. [PMID: 37006469 PMCID: PMC10050569 DOI: 10.3389/fncel.2023.1120400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
During development microglia colonize the central nervous system (CNS) and play an important role in programmed cell death, not only because of their ability to remove dead cells by phagocytosis, but also because they can promote the death of neuronal and glial cells. To study this process, we used as experimental systems the developing in situ quail embryo retina and organotypic cultures of quail embryo retina explants (QEREs). In both systems, immature microglia show an upregulation of certain inflammatory markers, e.g., inducible NO synthase (iNOS), and nitric oxide (NO) under basal conditions, which can be further enhanced with LPS-treatment. Hence, we investigated in the present study the role of microglia in promoting ganglion cell death during retinal development in QEREs. Results showed that LPS-stimulation of microglia in QEREs increases (i) the percentage of retinal cells with externalized phosphatidylserine, (ii) the frequency of phagocytic contacts between microglial and caspase-3-positive ganglion cells, (iii) cell death in the ganglion cell layer, and (iv) microglial production of reactive oxygen/nitrogen species, such as NO. Furthermore, iNOS inhibition by L-NMMA decreases cell death of ganglion cells and increases the number of ganglion cells in LPS-treated QEREs. These data demonstrate that LPS-stimulated microglia induce ganglion cell death in cultured QEREs by a NO-dependent mechanism. The fact that phagocytic contacts between microglial and caspase-3-positive ganglion cells increase suggests that this cell death might be mediated by microglial engulfment, although a phagocytosis-independent mechanism cannot be excluded.
Collapse
|
27
|
Ayoub M, David LM, Shklyar B, Hakim-Mishnaevski K, Kurant E. Drosophila FGFR/Htl signaling shapes embryonic glia to phagocytose apoptotic neurons. Cell Death Discov 2023; 9:90. [PMID: 36898998 PMCID: PMC10006210 DOI: 10.1038/s41420-023-01382-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
Glial phagocytosis of apoptotic neurons is crucial for development and proper function of the central nervous system. Relying on transmembrane receptors located on their protrusions, phagocytic glia recognize and engulf apoptotic debris. Like vertebrate microglia, Drosophila phagocytic glial cells form an elaborate network in the developing brain to reach and remove apoptotic neurons. However, the mechanisms controlling creation of the branched morphology of these glial cells critical for their phagocytic ability remain unknown. Here, we demonstrate that during early embryogenesis, the Drosophila fibroblast growth factor receptor (FGFR) Heartless (Htl) and its ligand Pyramus are essential in glial cells for the formation of glial extensions, the presence of which strongly affects glial phagocytosis of apoptotic neurons during later stages of embryonic development. Reduction in Htl pathway activity results in shorter lengths and lower complexity of glial branches, thereby disrupting the glial network. Our work thus illuminates the important role Htl signaling plays in glial subcellular morphogenesis and in establishing glial phagocytic ability.
Collapse
Affiliation(s)
- Malak Ayoub
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 3498838, Haifa, Israel
| | - Li-Mor David
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 3498838, Haifa, Israel
| | - Boris Shklyar
- Bioimaging Unit, Faculty of Natural Sciences, University of Haifa, 3498838, Haifa, Israel
| | - Ketty Hakim-Mishnaevski
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 3498838, Haifa, Israel
| | - Estee Kurant
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 3498838, Haifa, Israel.
| |
Collapse
|
28
|
Chen LL, Fan YG, Zhao LX, Zhang Q, Wang ZY. The metal ion hypothesis of Alzheimer's disease and the anti-neuroinflammatory effect of metal chelators. Bioorg Chem 2023; 131:106301. [PMID: 36455485 DOI: 10.1016/j.bioorg.2022.106301] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/13/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD), characterized by the β-amyloid protein (Aβ) deposition and tau hyperphosphorylation, is the most common dementia with uncertain etiology. The clinical trials of Aβ monoclonal antibody drugs have almost failed, giving rise to great attention on the other etiologic hypothesis regarding AD such as metal ions dysmetabolism and chronic neuroinflammation. Mounting evidence revealed that the metal ions (iron, copper, and zinc) were dysregulated in the susceptible brain regions of AD patients, which was highly associated with Aβ deposition, tau hyperphosphorylation, neuronal loss, as well as neuroinflammation. Further studies uncovered that iron, copper and zinc could not only enhance the production of Aβ but also directly bind to Aβ and tau to promote their aggregations. In addition, the accumulation of iron and copper could respectively promote ferroptosis and cuproptosis. Therefore, the metal ion chelators were recognized as promising agents for treating AD. This review comprehensively summarized the effects of metal ions on the Aβ dynamics and tau phosphorylation in the progression of AD. Furthermore, taking chronic neuroinflammation contributes to the progression of AD, we also provided a summary of the mechanisms concerning metal ions on neuroinflammation and highlighted the metal ion chelators may be potential agents to alleviate neuroinflammation under the condition of AD. Nevertheless, more investigations regarding metal ions on neuroinflammation should be taken into practice, and the effects of metal ion chelators on neuroinflammation should gain more attention. Running title: Metal chelators against neuroinflammation.
Collapse
Affiliation(s)
- Li-Lin Chen
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Yong-Gang Fan
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Ling-Xiao Zhao
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Qi Zhang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Zhan-You Wang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| |
Collapse
|
29
|
Dean PT, Hooks SB. Pleiotropic effects of the COX-2/PGE2 axis in the glioblastoma tumor microenvironment. Front Oncol 2023; 12:1116014. [PMID: 36776369 PMCID: PMC9909545 DOI: 10.3389/fonc.2022.1116014] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/19/2022] [Indexed: 01/27/2023] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive form of malignant glioma. The GBM tumor microenvironment (TME) is a complex ecosystem of heterogeneous cells and signaling factors. Glioma associated macrophages and microglia (GAMs) constitute a significant portion of the TME, suggesting that their functional attributes play a crucial role in cancer homeostasis. In GBM, an elevated GAM population is associated with poor prognosis and therapeutic resistance. Neoplastic cells recruit these myeloid populations through release of chemoattractant factors and dysregulate their induction of inflammatory programs. GAMs become protumoral advocates through production a variety of cytokines, inflammatory mediators, and growth factors that can drive cancer proliferation, invasion, immune evasion, and angiogenesis. Among these inflammatory factors, cyclooxygenase-2 (COX-2) and its downstream product, prostaglandin E2 (PGE2), are highly enriched in GBM and their overexpression is positively correlated with poor prognosis in patients. Both tumor cells and GAMs have the ability to signal through the COX-2 PGE2 axis and respond in an autocrine/paracrine manner. In the GBM TME, enhanced signaling through the COX-2/PGE2 axis leads to pleotropic effects that impact GAM dynamics and drive tumor progression.
Collapse
|
30
|
Bolon B. Toxicologic Pathology Forum Opinion: Interpretation of Gliosis in the Brain and Spinal Cord Observed During Nonclinical Safety Studies. Toxicol Pathol 2023; 51:68-76. [PMID: 37057409 DOI: 10.1177/01926233231164557] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Gliosis, defined as a nonneoplastic reaction (hypertrophy and/or proliferation) of astrocytes and/or microglial cells, is a frequent finding in the central nervous system (CNS [brain and/or spinal cord]) in nonclinical safety studies. Gliosis in rodents and nonrodents occurs at low incidence as a spontaneous finding and is induced by various test articles (e.g., biomolecules, cell and gene therapies, small molecules) delivered centrally (i.e., by injection or infusion into cerebrospinal fluid or neural tissue) or systemically. Several CNS gliosis patterns occur in nonclinical species. First, gliosis may accompany degeneration and/or necrosis of cells (mainly neurons) or neural parenchyma (neuron processes and myelin). Second, gliosis often follows inflammation (i.e., leukocyte accumulation causing parenchymal damage) or neoplasm formation. Third, gliosis may appear as variably sized, randomly scattered foci of reactive glial cells in the absence of visible parenchymal damage or inflammation. In interpreting test article-related CNS gliosis, adversity is indicated by parenchymal injury (e.g., degeneration, necrosis, or inflammation) and not the mere existence of a glial reaction. In the absence of clear structural damage to the parenchyma, gliosis as a standalone CNS finding should be interpreted as a nonadverse reaction to regional alterations in microenvironmental conditions rather than as evidence of a glial reaction associated with neurotoxicity.
Collapse
|
31
|
Kim UJ, Hong N, Ahn JC. Photobiomodulation Attenuated Cognitive Dysfunction and Neuroinflammation in a Prenatal Valproic Acid-Induced Autism Spectrum Disorder Mouse Model. Int J Mol Sci 2022; 23:ijms232416099. [PMID: 36555737 PMCID: PMC9785820 DOI: 10.3390/ijms232416099] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by social communication and interaction disorders, as well as repetitive and restrictive behaviors. To date, no effective treatment strategies have been identified. However, photobiomodulation (PBM) is emerging as a promising treatment for neurological and neuropsychiatric disorders. We used mice exposed to valproic acid (VPA) as a model of ASD and found that pathological behavioral and histological changes that may have been induced by VPA were attenuated by PBM treatment. Pregnant mice that had been exposed to VPA were treated with PBM three times. Thereafter, we evaluated the offspring for developmental disorders, motor function, hyperactivity, repetitive behaviors, and cognitive impairment. PBM attenuated many of the pathological behaviors observed in the VPA-induced ASD mouse model. In addition, pathophysiological analyses confirmed that the increase in activated microglia and astrocytes observed in the VPA-induced ASD mouse model was attenuated by PBM treatment. This suggests that PBM can counteract the behavioral changes caused by neuroinflammation in ASD. Therefore, our data show that PBM has therapeutic potential and may reduce the prevalence of neurodevelopmental disorders such as ASD.
Collapse
Affiliation(s)
- Ui-Jin Kim
- Department of Medical Laser, Graduate School, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Namgue Hong
- Medical Laser Research Center, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Correspondence: (N.H.); (J.-C.A.)
| | - Jin-Chul Ahn
- Department of Biomedical Science, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Correspondence: (N.H.); (J.-C.A.)
| |
Collapse
|
32
|
Priyathilaka TT, Laaker CJ, Herbath M, Fabry Z, Sandor M. Modeling infectious diseases of the central nervous system with human brain organoids. Transl Res 2022; 250:18-35. [PMID: 35811019 PMCID: PMC11185418 DOI: 10.1016/j.trsl.2022.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 10/17/2022]
Abstract
Bacteria, fungi, viruses, and protozoa are known to infect and induce diseases in the human central nervous system (CNS). Modeling the mechanisms of interaction between pathogens and the CNS microenvironment is essential to understand their pathophysiology and develop new treatments. Recent advancements in stem cell technologies have allowed for the creation of human brain organoids, which more closely resembles the human CNS microenvironment when compared to classical 2-dimensional (2D) cultures. Now researchers can utilize these systems to investigate and reinvestigate questions related to CNS infection in a human-derived brain organoid system. Here in this review, we highlight several infectious diseases which have been tested in human brain organoids and compare similarities in response to these pathogens across different investigations. We also provide a brief overview of some recent advancements which can further enrich this model to develop new and better therapies to treat brain infections.
Collapse
Affiliation(s)
- Thanthrige Thiunuwan Priyathilaka
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin
| | - Collin James Laaker
- Neuroscience Training Program, University of Wisconsin Madison, Madison, Wisconsin
| | - Melinda Herbath
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin
| | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin
| | - Matyas Sandor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin.
| |
Collapse
|
33
|
Cabirol MJ, Cardoit L, Courtand G, Mayeur ME, Simmers J, Pascual O, Thoby-Brisson M. Microglia shape the embryonic development of mammalian respiratory networks. eLife 2022; 11:80352. [PMID: 36321865 PMCID: PMC9629827 DOI: 10.7554/elife.80352] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Microglia, brain-resident macrophages, play key roles during prenatal development in defining neural circuitry function, including ensuring proper synaptic wiring and maintaining homeostasis. Mammalian breathing rhythmogenesis arises from interacting brainstem neural networks that are assembled during embryonic development, but the specific role of microglia in this process remains unknown. Here, we investigated the anatomical and functional consequences of respiratory circuit formation in the absence of microglia. We first established the normal distribution of microglia within the wild-type (WT, Spi1+/+ (Pu.1 WT)) mouse (Mus musculus) brainstem at embryonic ages when the respiratory networks are known to emerge (embryonic day (E) 14.5 for the parafacial respiratory group (epF) and E16.5 for the preBötzinger complex (preBötC)). In transgenic mice depleted of microglia (Spi1−/− (Pu.1 KO) mutant), we performed anatomical staining, calcium imaging, and electrophysiological recordings of neuronal activities in vitro to assess the status of these circuits at their respective times of functional emergence. Spontaneous respiratory-related activity recorded from reduced in vitro preparations showed an abnormally slow rhythm frequency expressed by the epF at E14.5, the preBötC at E16.5, and in the phrenic motor nerves from E16.5 onwards. These deficits were associated with a reduced number of active epF neurons, defects in commissural projections that couple the bilateral preBötC half-centers, and an accompanying decrease in their functional coordination. These abnormalities probably contribute to eventual neonatal death, since plethysmography revealed that E18.5 Spi1−/− embryos are unable to sustain breathing activity ex utero. Our results thus point to a crucial contribution of microglia in the proper establishment of the central respiratory command during embryonic development.
Collapse
Affiliation(s)
- Marie-Jeanne Cabirol
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS, Université de Bordeaux, Bordeaux, France
| | - Laura Cardoit
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS, Université de Bordeaux, Bordeaux, France
| | - Gilles Courtand
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS, Université de Bordeaux, Bordeaux, France
| | - Marie-Eve Mayeur
- MeLis INSERM U1314-CNRS UMR 5284, Faculté Rockefeller, Lyon, France
| | - John Simmers
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS, Université de Bordeaux, Bordeaux, France
| | - Olivier Pascual
- MeLis INSERM U1314-CNRS UMR 5284, Faculté Rockefeller, Lyon, France
| | - Muriel Thoby-Brisson
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
34
|
Preeti K, Sood A, Fernandes V. Metabolic Regulation of Glia and Their Neuroinflammatory Role in Alzheimer's Disease. Cell Mol Neurobiol 2022; 42:2527-2551. [PMID: 34515874 PMCID: PMC11421648 DOI: 10.1007/s10571-021-01147-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is an aging-related neurodegenerative disorder. It is characterized clinically by progressive memory loss and impaired cognitive function. Its progression occurs from neuronal synapse loss to amyloid pathology and Tau deposit which eventually leads to the compromised neuronal function. Neurons in central nervous tissue work in a composite and intricate network with the glia and vascular cells. Microglia and astrocytes are becoming the prime focus due to their involvement in various aspects of neurophysiology, such as trophic support to neurons, synaptic modulation, and brain surveillance. AD is also often considered as the sequela of prolonged metabolic dyshomeostasis. The neuron and glia have different metabolic profiles as cytosolic glycolysis and mitochondrial-dependent oxidative phosphorylation (OXPHOS), especially under dyshomeostasis or with aging pertaining to their unique genetic built-up. Various efforts are being put in to decipher the role of mitochondrial dynamics regarding their trafficking, fission/fusion imbalance, and mitophagy spanning over both neurons and glia to improve aging-related brain health. The mitochondrial dysfunction may lead to activation in various signaling mechanisms causing metabolic reprogramming in glia cells, further accelerating AD-related pathogenic events. The glycolytic-dominant astrocytes switch to the neurotoxic phenotype, i.e., disease-associated astrocyte under metabolic stress. The microglia also transform from resting to reactive phenotype, i.e., disease-associated microglia. It may also exist in otherwise a misconception an M1, glycolytic, or M2, an OXPHOS-dependent phenotype. Further, glial transformation plays a vital role in regulating hallmarks of AD pathologies like synapse maintenance, amyloid, and Tau clearance. In this updated review, we have tried to emphasize the metabolic regulation of glial reactivity, mitochondrial quality control mechanisms, and their neuroinflammatory response in Alzheimer's progression.
Collapse
Affiliation(s)
- Kumari Preeti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| | - Anika Sood
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Valencia Fernandes
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| |
Collapse
|
35
|
Beeken J, Kessels S, Rigo JM, Alpizar YA, Nguyen L, Brône B. p27 kip1 Modulates the Morphology and Phagocytic Activity of Microglia. Int J Mol Sci 2022; 23:10432. [PMID: 36142366 PMCID: PMC9499407 DOI: 10.3390/ijms231810432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
p27kip1 is a multifunctional protein that promotes cell cycle exit by blocking the activity of cyclin/cyclin-dependent kinase complexes as well as migration and motility via signaling pathways that converge on the actin and microtubule cytoskeleton. Despite the broad characterization of p27kip1 function in neural cells, little is known about its relevance in microglia. Here, we studied the role of p27kip1 in microglia using a combination of in vitro and in situ approaches. While the loss of p27kip1 did not affect microglial density in the cerebral cortex, it altered their morphological complexity in situ. However, despite the presence of p27kip1 in microglial processes, as shown by immunofluorescence in cultured cells, loss of p27kip1 did not change microglial process motility and extension after applying laser-induced brain damage in cortical brain slices. Primary microglia lacking p27kip1 showed increased phagocytic uptake of synaptosomes, while a cell cycle dead variant negatively affected phagocytosis. These findings indicate that p27kip1 plays specific roles in microglia.
Collapse
Affiliation(s)
- Jolien Beeken
- UHasselt, Hasselt University, BIOMED, 3500 Hasselt, Belgium
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sar-Tilman, 4000 Liège, Belgium
| | - Sofie Kessels
- UHasselt, Hasselt University, BIOMED, 3500 Hasselt, Belgium
| | | | | | - Laurent Nguyen
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sar-Tilman, 4000 Liège, Belgium
| | - Bert Brône
- UHasselt, Hasselt University, BIOMED, 3500 Hasselt, Belgium
| |
Collapse
|
36
|
Wieghofer P, Engelbert M, Chui TYP, Rosen RB, Sakamoto T, Sebag J. Hyalocyte origin, structure, and imaging. EXPERT REVIEW OF OPHTHALMOLOGY 2022; 17:233-248. [PMID: 36632192 PMCID: PMC9831111 DOI: 10.1080/17469899.2022.2100762] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/08/2022] [Indexed: 01/14/2023]
Abstract
Introduction Hyalocytes have been recognized as resident tissue macrophages of the vitreous body since the mid-19th century. Despite this, knowledge about their origin, turnover, and dynamics is limited. Areas covered Historically, initial studies on the origin of hyalocytes used light and electron microscopy. Modern investigations across species including rodents and humans will be described. Novel imaging is now available to study human hyalocytes in vivo. The shared ontogeny with retinal microglia and their eventual interdependence as well as differences will be discussed. Expert opinion Owing to a common origin as myeloid cells, hyalocytes and retinal microglia have similarities, but hyalocytes appear to be distinct as resident macrophages of the vitreous body.
Collapse
Affiliation(s)
- Peter Wieghofer
- Cellular Neuroanatomy, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Universitätsstraße 2, 86159 Augsburg, Germany
| | - Michael Engelbert
- Vitreous Retina Macula Consultants of New York, New York, NY 10022, USA
- LuEsther T. Mertz Retinal Research Center, Manhattan Eye, Ear and Throat Hospital, New York, NY 10065, USA
- Department of Ophthalmology, New York University School of Medicine, New York, NY 10016, USA
| | - Toco YP Chui
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York; Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Richard B Rosen
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York; Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Taiji Sakamoto
- Department of Ophthalmology, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - J Sebag
- Doheny Eye Institute, UCLA, Los Angeles, CA, USA
- Clinical Ophthalmology, Stein Eye Institute, Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- VMR Institute for Vitreous Macula Retina, Huntington Beach, CA, USA
| |
Collapse
|
37
|
Mhatre SD, Iyer J, Petereit J, Dolling-Boreham RM, Tyryshkina A, Paul AM, Gilbert R, Jensen M, Woolsey RJ, Anand S, Sowa MB, Quilici DR, Costes SV, Girirajan S, Bhattacharya S. Artificial gravity partially protects space-induced neurological deficits in Drosophila melanogaster. Cell Rep 2022; 40:111279. [PMID: 36070701 PMCID: PMC10503492 DOI: 10.1016/j.celrep.2022.111279] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/16/2022] [Accepted: 08/05/2022] [Indexed: 02/03/2023] Open
Abstract
Spaceflight poses risks to the central nervous system (CNS), and understanding neurological responses is important for future missions. We report CNS changes in Drosophila aboard the International Space Station in response to spaceflight microgravity (SFμg) and artificially simulated Earth gravity (SF1g) via inflight centrifugation as a countermeasure. While inflight behavioral analyses of SFμg exhibit increased activity, postflight analysis displays significant climbing defects, highlighting the sensitivity of behavior to altered gravity. Multi-omics analysis shows alterations in metabolic, oxidative stress and synaptic transmission pathways in both SFμg and SF1g; however, neurological changes immediately postflight, including neuronal loss, glial cell count alterations, oxidative damage, and apoptosis, are seen only in SFμg. Additionally, progressive neuronal loss and a glial phenotype in SF1g and SFμg brains, with pronounced phenotypes in SFμg, are seen upon acclimation to Earth conditions. Overall, our results indicate that artificial gravity partially protects the CNS from the adverse effects of spaceflight.
Collapse
Affiliation(s)
- Siddhita D Mhatre
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; KBR, NASA Ames Research Center, Moffett Field, CA 94035, USA; COSMIAC Research Center, University of New Mexico, Albuquerque, NM 87131, USA
| | - Janani Iyer
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; KBR, NASA Ames Research Center, Moffett Field, CA 94035, USA; Universities Space Research Association, Mountain View, CA 94043, USA
| | - Juli Petereit
- Nevada Bioinformatics Center, University of Nevada, Reno, NV 89557, USA
| | - Roberta M Dolling-Boreham
- Department of Electrical and Biomedical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada; Blue Marble Space Institute of Science, Seattle, WA 94035, USA
| | - Anastasia Tyryshkina
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Amber M Paul
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; Universities Space Research Association, Mountain View, CA 94043, USA; Blue Marble Space Institute of Science, Seattle, WA 94035, USA; NASA Postdoctoral Program, Universities Space Research Association, NASA Ames Research Center, Moffett Field, CA 94035, USA; Embry-Riddle Aeronautical University, Department of Human Factors and Behavioral Neurobiology, Daytona Beach, FL 32114, USA
| | - Rachel Gilbert
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; NASA Postdoctoral Program, Universities Space Research Association, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Matthew Jensen
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | | - Sulekha Anand
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA
| | - Marianne B Sowa
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - David R Quilici
- Nevada Proteomics Center, University of Nevada, Reno, NV 89557, USA
| | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Santhosh Girirajan
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Sharmila Bhattacharya
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; Biological and Physical Sciences Division, NASA Headquarters, Washington DC 20024, USA.
| |
Collapse
|
38
|
Pandey P, Kaur G, Babu K. Crosstalk between neurons and glia through G-protein coupled receptors: Insights from Caenorhabditis elegans. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 193:119-144. [PMID: 36357074 DOI: 10.1016/bs.pmbts.2022.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The past decades have witnessed a dogmatic shift from glia as supporting cells in the nervous system to their active roles in neurocentric functions. Neurons and glia communicate and show bidirectional responses through tripartite synapses. Studies across species indicate that neurotransmitters released by neurons are perceived by glial receptors, which allow for gliotransmitter release. These gliotransmitters can result in activation of neurons via neuronal GPCR receptors. However, studies of these molecular interactions are in their infancy. Caenorhabditis elegans has a conserved neuron-glia architectural repertoire with molecular and functional resemblance to mammals. Further, glia in C. elegans can be manipulated through ablation and mutations allowing for deciphering of glial dependent processes in vivo at single glial resolutions. Here, we will review recent findings from vertebrate and invertebrate organisms with a focus on how C. elegans can be used to advance our understanding of neuron-glia interactions through GPCRs.
Collapse
Affiliation(s)
- Pratima Pandey
- Indian Institute of Science Education and Research, Mohali, Punjab, India.
| | - Gazaldeep Kaur
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Kavita Babu
- Indian Institute of Science, Bangalore, Karnataka, India.
| |
Collapse
|
39
|
Abstract
Mounting evidence indicates that microglia, which are the resident immune cells of the brain, play critical roles in a diverse array of neurodevelopmental processes required for proper brain maturation and function. This evidence has ultimately led to growing speculation that microglial dysfunction may play a role in neurodevelopmental disorder (NDD) pathoetiology. In this review, we first provide an overview of how microglia mechanistically contribute to the sculpting of the developing brain and neuronal circuits. To provide an example of how disruption of microglial biology impacts NDD development, we also highlight emerging evidence that has linked microglial dysregulation to autism spectrum disorder pathogenesis. In recent years, there has been increasing interest in how the gut microbiome shapes microglial biology. In the last section of this review, we put a spotlight on this burgeoning area of microglial research and discuss how microbiota-dependent modulation of microglial biology is currently thought to influence NDD progression.
Collapse
Affiliation(s)
- John R Lukens
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia, USA;
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, Virginia, USA
| | - Ukpong B Eyo
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia, USA;
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
40
|
Sachdeva P, Mehdi I, Kaith R, Ahmad F, Anwar MS. Potential natural products for the management of autism spectrum disorder. IBRAIN 2022; 8:365-376. [PMID: 37786737 PMCID: PMC10528773 DOI: 10.1002/ibra.12050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 10/04/2023]
Abstract
Autism in a broader sense is a neurodevelopmental disorder, which frequently occurs during early childhood and can last for a lifetime. This condition is primarily defined by difficulties with social engagement, with individuals displaying repetitive and stereotyped behaviors. Numerous neuroanatomical investigations on autistic children have revealed that their brains grow atypically, resulting in atypical neurogenesis, neuronal migration, maturation, differentiation, and degeneration. Special education programs, speech therapy, and occupational therapy have all been used to address autism-related behavioral problems. While widely prescribed antidepressant drugs, antipsychotics, anticonvulsants, and stimulants have demonstrated response in autistic individuals. However, these medications do not fully reverse the core symptoms associated with autism spectrum disorder (ASD). The adverse reactions of ASD medicines and an increased risk of developing various other problems, such as obesity, dyslipidemia, diabetes mellitus, and thyroid disorders, prompted the researchers to investigate herbal medicines for the treatment of autistic individuals. Clinical trials are now being done to establish the efficacy of alternative techniques based on natural substances and to understand better the context in which they may be used to treat autism. This review of literature will look at crucial natural compounds derived from animals and plants that have shown promise as safe and effective autism treatment strategies.
Collapse
Affiliation(s)
- Punya Sachdeva
- Amity Institute of Neuropsychology and NeurosciencesAmity UniversityNoidaUttar PradeshIndia
| | - Intizaar Mehdi
- School of Studies in NeuroscienceJiwaji UniversityGwaliorMadhya PradeshIndia
| | - Rohit Kaith
- School of Studies in NeuroscienceJiwaji UniversityGwaliorMadhya PradeshIndia
| | - Faizan Ahmad
- Department of Medical Elementology and ToxicologyJamia Hamdard UniversityDelhiIndia
| | - Md Sheeraz Anwar
- Department of PsychologyUniversity of CampaniaLuigi VanvitelliCasertaItaly
| |
Collapse
|
41
|
Feng H, Cui Y, Liu J, Liu M, Zhou W, Yan Z, Zhang H, Wang Y, Wang X, Liu X, Chen N. Effects of 3-Methyladenine on Microglia Autophagy and Neuronal Apoptosis After Radiation-Induced Brain Injury. Dose Response 2022; 20:15593258221100593. [PMID: 35615570 PMCID: PMC9125074 DOI: 10.1177/15593258221100593] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/20/2022] [Indexed: 12/22/2022] Open
Abstract
Objective To determine the effect of the autophagy inhibitor, 3-methyladenine (3-MA), on cognitive function changes, microglia activity, neuronal apoptosis, and inflammation in rats following radiation-induced brain injury. Methods The following groups were established: control, model, and 3-MA. A rat model of radiation-induced brain injury was generated with a medium dose of X-rays. A Morris water maze was used to observe the cognitive function of the rats. H&E staining was used to observe the pathological changes in the hippocampus. The morphological and quantitative changes of neuronal nuclear (NeuN)-positive neurons and Iba-1-positive microglia in the ipsilateral hippocampus were analyzed by immunohistochemistry. Western blot analysis was done to measure the changes of NeuN ionized calcium binding adapter molecule 1(Iba-1) and apoptosis-related proteins. Immunofluorescence staining of Iba-1 and Microtuble-associated protein light chain 3 (LC3) was done to evaluate the changes in microglia autophagy. TUNEL staining was used to detect apoptosis in the hippocampus. Enzyme-Linked Immunosorbent Assay was used to detect the levels of TNF-α and IL-6 as a measure of the inflammatory response in the hippocampus. Results After irradiation, the nucleus of the neurons in the hippocampus was constricted, the pyramidal tract structure was disordered, neuronal apoptosis was increased (P < .001), the expression of microglia increased (P < .01), autophagy was increased (P < .05), and conversion of microglia to the M2 type increased (P < .05). After 3-MA administration, the level of autophagy decreased (P < .05), the damage to the hippocampal region was reduced, neuronal apoptosis decreased (P < .01), and the activity of the microglia decreased (P < .01). Conclusion Radiation can active the Microglia. 3-MA inhibits autophagy and excessive activity in microglia, and promotes the conversion of microglia from the M1 to the M2 type, thereby promoting the recovery of brain tissue following radiation exposure.
Collapse
Affiliation(s)
- Huichao Feng
- Department of Hematology, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Yahuan Cui
- Department of Hematology, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Jing Liu
- Department of Hematology, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Meiyi Liu
- Department of Hematology, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Wei Zhou
- Department of Hematology, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Zhenyu Yan
- Department of Hematology, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Haixia Zhang
- Department of Hematology, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Yingman Wang
- Department of Hematology, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Xueming Wang
- Department of Hematology, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Xiaomin Liu
- Gamma Knife Center, Department of Neurological Surgery, Tianjin University, Tianjin, China
| | - Naiyao Chen
- Department of Hematology, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| |
Collapse
|
42
|
Saba J, Couselo FL, Bruno J, Carniglia L, Durand D, Lasaga M, Caruso C. Neuroinflammation in Huntington's Disease: A Starring Role for Astrocyte and Microglia. Curr Neuropharmacol 2022; 20:1116-1143. [PMID: 34852742 PMCID: PMC9886821 DOI: 10.2174/1570159x19666211201094608] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/06/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative genetic disorder caused by a CAG repeat expansion in the huntingtin gene. HD causes motor, cognitive, and behavioral dysfunction. Since no existing treatment affects the course of this disease, new treatments are needed. Inflammation is frequently observed in HD patients before symptom onset. Neuroinflammation, characterized by the presence of reactive microglia, astrocytes and inflammatory factors within the brain, is also detected early. However, in comparison to other neurodegenerative diseases, the role of neuroinflammation in HD is much less known. Work has been dedicated to altered microglial and astrocytic functions in the context of HD, but less attention has been given to glial participation in neuroinflammation. This review describes evidence of inflammation in HD patients and animal models. It also discusses recent knowledge on neuroinflammation in HD, highlighting astrocyte and microglia involvement in the disease and considering anti-inflammatory therapeutic approaches.
Collapse
Affiliation(s)
- Julieta Saba
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico López Couselo
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julieta Bruno
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lila Carniglia
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniela Durand
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mercedes Lasaga
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carla Caruso
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina,Address correspondence to this author at the Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155 Piso 10, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina, Tel: +54 11 5285 3380; E-mail:
| |
Collapse
|
43
|
Prevot V, Sharif A. The polygamous GnRH neuron: Astrocytic and tanycytic communication with a neuroendocrine neuronal population. J Neuroendocrinol 2022; 34:e13104. [PMID: 35233849 DOI: 10.1111/jne.13104] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/12/2022] [Accepted: 01/30/2022] [Indexed: 11/28/2022]
Abstract
To ensure the survival of the species, hypothalamic neuroendocrine circuits controlling fertility, which converge onto neurons producing gonadotropin-releasing hormone (GnRH), must respond to fluctuating physiological conditions by undergoing rapid and reversible structural and functional changes. However, GnRH neurons do not act alone, but through reciprocal interactions with multiple hypothalamic cell populations, including several glial and endothelial cell types. For instance, it has long been known that in the hypothalamic median eminence, where GnRH axons terminate and release their neurohormone into the pituitary portal blood circulation, morphological plasticity displayed by distal processes of tanycytes modifies their relationship with adjacent neurons as well as the spatial properties of the neurohemal junction. These alterations not only regulate the capacity of GnRH neurons to release their neurohormone, but also the activation of discrete non-neuronal pathways that mediate feedback by peripheral hormones onto the hypothalamus. Additionally, a recent breakthrough has demonstrated that GnRH neurons themselves orchestrate the establishment of their neuroendocrine circuitry during postnatal development by recruiting an entourage of newborn astrocytes that escort them into adulthood and, via signalling through gliotransmitters such as prostaglandin E2, modulate their activity and GnRH release. Intriguingly, several environmental and behavioural toxins perturb these neuron-glia interactions and consequently, reproductive maturation and fertility. Deciphering the communication between GnRH neurons and other neural cell types constituting hypothalamic neuroendocrine circuits is thus critical both to understanding physiological processes such as puberty, oestrous cyclicity and aging, and to developing novel therapeutic strategies for dysfunctions of these processes, including the effects of endocrine disruptors.
Collapse
Affiliation(s)
- Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, FHU 1000 Days for Health, Lille, France
| | - Ariane Sharif
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, FHU 1000 Days for Health, Lille, France
| |
Collapse
|
44
|
Bianconi A, Aruta G, Rizzo F, Salvati LF, Zeppa P, Garbossa D, Cofano F. Systematic Review on Tumor Microenvironment in Glial Neoplasm: From Understanding Pathogenesis to Future Therapeutic Perspectives. Int J Mol Sci 2022; 23:4166. [PMID: 35456984 PMCID: PMC9029619 DOI: 10.3390/ijms23084166] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
Despite the multidisciplinary management in the treatment of glioblastomas, the average survival of GBM patients is still 15 months. In recent years, molecular biomarkers have gained more and more importance both in the diagnosis and therapy of glial tumors. At the same time, it has become clear that non neoplastic cells, which constitute about 30% of glioma mass, dramatically influence tumor growth, spread, and recurrence. This is the main reason why, in recent years, scientific research has been focused on understanding the function and the composition of tumor microenvironment and its role in gliomagenesis and recurrence. The aim of this review is to summarize the most recent discovery about resident microglia, tumor-associated macrophages, lymphocytes, and the role of extracellular vesicles and their bijective interaction with glioma cells. Moreover, we reported the most recent updates about new therapeutic strategies targeting immune system receptors and soluble factors. Understanding how glioma cells interact with non-neoplastic cells in tumor microenvironment is an essential step to comprehend mechanisms at the base of disease progression and to find new therapeutic strategies for GBM patients. However, no significant results have yet been obtained in studies targeting single molecules/pathways; considering the complex microenvironment, it is likely that only by using multiple therapeutic agents acting on multiple molecular targets can significant results be achieved.
Collapse
Affiliation(s)
- Andrea Bianconi
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (G.A.); (F.R.); (P.Z.); (D.G.); (F.C.)
| | - Gelsomina Aruta
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (G.A.); (F.R.); (P.Z.); (D.G.); (F.C.)
| | - Francesca Rizzo
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (G.A.); (F.R.); (P.Z.); (D.G.); (F.C.)
| | | | - Pietro Zeppa
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (G.A.); (F.R.); (P.Z.); (D.G.); (F.C.)
| | - Diego Garbossa
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (G.A.); (F.R.); (P.Z.); (D.G.); (F.C.)
| | - Fabio Cofano
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (G.A.); (F.R.); (P.Z.); (D.G.); (F.C.)
- Spine Surgery Unit, Humanitas Gradeningo, 10100 Turin, Italy
| |
Collapse
|
45
|
Lateralized deficits after unilateral AAV-vector based overexpression of alpha-synuclein in the midbrain of rats on drug-free behavioural tests. Behav Brain Res 2022; 429:113887. [DOI: 10.1016/j.bbr.2022.113887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 02/08/2023]
|
46
|
Jang H, Kim SH, Koh Y, Yoon KJ. Engineering Brain Organoids: Toward Mature Neural Circuitry with an Intact Cytoarchitecture. Int J Stem Cells 2022; 15:41-59. [PMID: 35220291 PMCID: PMC8889333 DOI: 10.15283/ijsc22004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/19/2022] [Indexed: 11/23/2022] Open
Abstract
The emergence of brain organoids as a model system has been a tremendously exciting development in the field of neuroscience. Brain organoids are a gateway to exploring the intricacies of human-specific neurogenesis that have so far eluded the neuroscience community. Regardless, current culture methods have a long way to go in terms of accuracy and reproducibility. To perfectly mimic the human brain, we need to recapitulate the complex in vivo context of the human fetal brain and achieve mature neural circuitry with an intact cytoarchitecture. In this review, we explore the major challenges facing the current brain organoid systems, potential technical breakthroughs to advance brain organoid techniques up to levels similar to an in vivo human developing brain, and the future prospects of this technology.
Collapse
Affiliation(s)
- Hyunsoo Jang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Seo Hyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Youmin Koh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Ki-Jun Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
- KAIST-Wonjin Cell Therapy Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| |
Collapse
|
47
|
Cuadros MA, Sepulveda MR, Martin-Oliva D, Marín-Teva JL, Neubrand VE. Microglia and Microglia-Like Cells: Similar but Different. Front Cell Neurosci 2022; 16:816439. [PMID: 35197828 PMCID: PMC8859783 DOI: 10.3389/fncel.2022.816439] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
Microglia are the tissue-resident macrophages of the central nervous parenchyma. In mammals, microglia are thought to originate from yolk sac precursors and posteriorly maintained through the entire life of the organism. However, the contribution of microglial cells from other sources should also be considered. In addition to “true” or “bona-fide” microglia, which are of embryonic origin, the so-called “microglia-like cells” are hematopoietic cells of bone marrow origin that can engraft the mature brain mainly under pathological conditions. These cells implement great parts of the microglial immune phenotype, but they do not completely adopt the “true microglia” features. Because of their pronounced similarity, true microglia and microglia-like cells are usually considered together as one population. In this review, we discuss the origin and development of these two distinct cell types and their differences. We will also review the factors determining the appearance and presence of microglia-like cells, which can vary among species. This knowledge might contribute to the development of therapeutic strategies aiming at microglial cells for the treatment of diseases in which they are involved, for example neurodegenerative disorders like Alzheimer’s and Parkinson’s diseases.
Collapse
Affiliation(s)
- Miguel A Cuadros
- Department of Cell Biology, Faculty of Science, University of Granada, Granada, Spain
| | - M Rosario Sepulveda
- Department of Cell Biology, Faculty of Science, University of Granada, Granada, Spain
| | - David Martin-Oliva
- Department of Cell Biology, Faculty of Science, University of Granada, Granada, Spain
| | - José L Marín-Teva
- Department of Cell Biology, Faculty of Science, University of Granada, Granada, Spain
| | - Veronika E Neubrand
- Department of Cell Biology, Faculty of Science, University of Granada, Granada, Spain
| |
Collapse
|
48
|
Xu F, Mu J, Teng Y, Zhang X, Sundaram K, Sriwastva MK, Kumar A, Lei C, Zhang L, Liu QM, Yan J, McClain CJ, Merchant ML, Zhang HG. Restoring Oat Nanoparticles Mediated Brain Memory Function of Mice Fed Alcohol by Sorting Inflammatory Dectin-1 Complex Into Microglial Exosomes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105385. [PMID: 34897972 PMCID: PMC8858573 DOI: 10.1002/smll.202105385] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/25/2021] [Indexed: 05/23/2023]
Abstract
Microglia modulate pro-inflammatory and neurotoxic activities. Edible plant-derived factors improve brain function. Current knowledge of the molecular interactions between edible plant-derived factors and the microglial cell is limited. Here an alcohol-induced chronic brain inflammation model is used to identify that the microglial cell is the novel target of oat nanoparticles (oatN). Oral administration of oatN inhibits brain inflammation and improves brain memory function of mice that are fed alcohol. Mechanistically, ethanol activates dectin-1 mediated inflammatory pathway. OatN is taken up by microglial cells via β-glucan mediated binding to microglial hippocalcin (HPCA) whereas oatN digalactosyldiacylglycerol (DGDG) prevents assess of oatN β-glucan to dectin-1. Subsequently endocytosed β-glucan/HPCA is recruited in an endosomal recycling compartment (ERC) via interaction with Rab11a. This complex then sequesters the dectin-1 in the ERC in an oatN β-glucan dependent manner and alters the location of dectin-1 from Golgi to early endosomes and lysosomes and increases exportation of dectin-1 into exosomes in an Rab11a dependent manner. Collectively, these cascading actions lead to preventing the activation of the alcoholic induced brain inflammation signing pathway(s). This coordinated assembling of the HPCA/Rab11a/dectin-1 complex by oral administration of oatN may contribute to the prevention of brain inflammation.
Collapse
Affiliation(s)
- Fangyi Xu
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Jingyao Mu
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Yun Teng
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Xiangcheng Zhang
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
- Department of ICU, the Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, 223300, China
| | - Kumaran Sundaram
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Mukesh K Sriwastva
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Anil Kumar
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Chao Lei
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Lifeng Zhang
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Qiaohong M Liu
- Peak Neuromonitoring Associates-Kentucky, Louisville, KY, 40202, USA
| | - Jun Yan
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Craig J McClain
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY, 40202, USA
| | - Michael L Merchant
- Kidney Disease Program and Clinical Proteomics Center, University of Louisville, Louisville, KY, 40202, USA
| | - Huang-Ge Zhang
- James Graham Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, 40202, USA
- Robley Rex Veterans Affairs Medical Center, Louisville, KY, 40206, USA
| |
Collapse
|
49
|
Method of Microglial DNA-RNA Purification from a Single Brain of an Adult Mouse. Methods Protoc 2021; 4:mps4040086. [PMID: 34940397 PMCID: PMC8704779 DOI: 10.3390/mps4040086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
Microglia, the resident brain immune effectors cells, show dynamic activation level changes for most neuropsychiatric diseases, reflecting their complex regulatory function and potential as a therapeutic target. Emerging single-cell molecular biology studies are used to investigate the genetic modification of individual cells to better understand complex gene regulatory pathways. Although multiple protocols for microglia isolation from adult mice are available, it is always challenging to get sufficient purified microglia from a single brain for simultaneous DNA and RNA extraction for subsequent downstream analysis. Moreover, for data comparison between treated and untreated groups, standardized cell isolation techniques are essential to decrease variability. Here, we present a combined method of microglia isolation from a single adult mouse brain, using a magnetic bead-based column separation technique, and a column-based extraction of purified DNA-RNA from the isolated microglia for downstream application. Our current method provides step-by-step instructions accompanied by visual explanations of important steps for isolating DNA-RNA simultaneously from a highly purified microglia population.
Collapse
|
50
|
Su R, Zhou T. Alpha-Synuclein Induced Immune Cells Activation and Associated Therapy in Parkinson's Disease. Front Aging Neurosci 2021; 13:769506. [PMID: 34803660 PMCID: PMC8602361 DOI: 10.3389/fnagi.2021.769506] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/04/2021] [Indexed: 12/30/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder closely related to immunity. An important aspect of the pathogenesis of PD is the interaction between α-synuclein and a series of immune cells. Studies have shown that accumulation of α-synuclein can induce an autoimmune response that accelerates the progression of PD. This study discusses the mechanisms underlying the interaction between α-synuclein and the immune system. During the development of PD, abnormally accumulated α-synuclein becomes an autoimmune antigen that binds to Toll-like receptors (TLRs) that activate microglia, which differentiate into the microglia type 1 (M1) subtype. The microglia activate intracellular inflammatory pathways, induce the release of proinflammatory cytokines, and promote the differentiation of cluster of differentiation 4 + (CD4 +) T cells into proinflammatory T helper type 1 (Th1) and T helper type 17 (Th17) subtypes. Given the important role of α-synuclein in the immune system of the patients with PD, identifying potential targets of immunotherapy related to α-synuclein is critical for slowing disease progression. An enhanced understanding of immune-associated mechanisms in PD can guide the development of associated therapeutic strategies in the future.
Collapse
Affiliation(s)
- Ruichen Su
- Queen Mary School of Nanchang University, Nanchang University, Nanchang, China
| | - Tian Zhou
- School of Basic Medical Science, Nanchang University, Nanchang, China
| |
Collapse
|