1
|
Hogan BLM. Bud, branch, breathe! Building a mammalian lung over space and time. Dev Biol 2025; 522:64-75. [PMID: 40107482 DOI: 10.1016/j.ydbio.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/12/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
Many mammalian organs, such as the mammary and lachrymal glands, kidney and lungs develop by the process known as branching morphogenesis. An essential feature of this process is the reciprocal interaction between the inner branched tubular epithelium and the surrounding mesenchyme to optimize the final amount of epithelial tissue that is generated for specific functions. To achieve this expansion the initial epithelial population undergoes repeated rounds of bud formation, branch outgrowth and tip bifurcations, with each repertoire requiring dynamic changes in cell behavior. The process of branching morphogenesis was first studied experimentally by Grobstein and others who showed that the embryonic epithelium did not develop without so-called inductive signals from the mesenchyme. However, it was not known whether this activity was uniformly distributed throughout the mesoderm or localized to specific regions. The mouse lung was seen as a powerful system in which to investigate such questions since its early branching is highly stereotypic, both in vivo and in culture. This advantage was exploited by two young scientists, Alescio and Cassini, who used grafting techniques with explanted embryonic mouse lungs. They showed that mesenchyme from around distal buds could induce ectopic buds in the trachea and other non-branching regions of the epithelium. At the same time, distal regions denuded of their mesoderm failed to develop further. They speculated that inductive factors that promote bud formation and continued outgrowth in competent endoderm are specifically localized within the distal mesenchyme, establishing a conceptual framework for future experimentation. Since then, advances in many areas of biology and bioengineering have enabled the identification of gene regulatory networks, signaling pathways and biomechanical properties that mediate lung branching morphogenesis. However, a quantitative model of how these parameters are coordinated over space and time to control the pattern and scale of branching and the overall size of the lung, still remains elusive.
Collapse
Affiliation(s)
- Brigid L M Hogan
- Department of Cell Biology, Duke University Medical School, Durham, NC, 27710, USA.
| |
Collapse
|
2
|
Gerner-Mauro KN, Vila Ellis L, Wang G, Nayak R, Lwigale PY, Poché RA, Chen J. Morphogenic, molecular and cellular adaptations for unidirectional airflow in the chicken lung. Development 2025; 152:dev204346. [PMID: 40177910 PMCID: PMC12070062 DOI: 10.1242/dev.204346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/27/2025] [Indexed: 04/05/2025]
Abstract
Unidirectional airflow in the avian lung enables gas exchange during both inhalation and exhalation. The underlying developmental process and how it deviates from that of the bidirectional mammalian lung are poorly understood. Sampling key developmental stages with multiscale 3D imaging and single-cell transcriptomics, we delineate morphogenic, molecular and cellular features that accommodate the unidirectional airflow in the chicken lung. Primary termini of hyper-elongated branches undergo proximal-short and distal-long fusions, forming parabronchi for air conduction. Through the parabronchial smooth muscle, neoform termini extend radially to form gas-exchanging alveoli. Supporting this radial alveologenesis, branch stalks halt their proximalization, defined by SOX9-SOX2 transition, and become SOX9low parabronchi. Primary and secondary vascular plexi interface with primary and neoform termini, respectively. Single-cell and Stereo-seq spatial transcriptomics reveal a third, chicken-specific alveolar cell type expressing KRT14, hereby named luminal cells. Luminal, alveolar type 2 and alveolar type 1 cells sequentially occupy concentric zones radiating from the parabronchial lumen. Our study explores the evolutionary space of lung diversification and lays the foundation for functional analysis of species-specific genetic determinants.
Collapse
Affiliation(s)
- Kamryn N. Gerner-Mauro
- Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Development, Disease Models, and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lisandra Vila Ellis
- Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Cell & Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Guolun Wang
- Department of Pediatrics, Perinatal Institute Division of Pulmonary Biology, University of Cincinnati and Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Richa Nayak
- Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Cancer Biology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Peter Y. Lwigale
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Ross A. Poché
- Development, Disease Models, and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jichao Chen
- Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Pediatrics, Perinatal Institute Division of Pulmonary Biology, University of Cincinnati and Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
3
|
Mohr-Allen SR, Gleghorn JP, Varner VD. Fluid secretion and luminal pressure control lateral branching morphogenesis in the embryonic avian lung. Dev Biol 2025; 520:251-263. [PMID: 39870322 DOI: 10.1016/j.ydbio.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/20/2024] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
During lung development, the embryonic airway originates as a wishbone-shaped epithelial tube, which undergoes a series of branching events to build the bronchial tree. This process depends crucially on cell proliferation and is thought to involve distinct branching modes: lateral branching, wherein daughter branches emerge along the length of a parent branch, and bifurcations, wherein the tip of a parent branch splits to form two new daughter branches. The developing airway is fluid-filled, and previous studies have shown that altered luminal pressure can influence rates of branching morphogenesis. However, it is not clear if altered tissue mechanics influence patterns of proliferation along the embryonic airway epithelium nor if individual branching modes are affected differently by changes in luminal pressure. Here, we focused on mechanisms of lateral branching and used as a model system the embryonic avian lung, which forms exclusively via this branching mode during early development. We used microinjected fluid droplets or pharmacological modulators of fluid secretion to alter luminal fluid pressure either locally or globally within cultured embryonic lungs. Somewhat surprisingly, we found both local and global increases in luminal pressure to suppress the formation of new lateral branches while also promoting increased epithelial proliferation. In a consistent manner, decreased luminal pressure led to an increase in lateral branching morphogenesis. Morphometric analysis of airway branching patterns revealed that altered luminal pressure shifts the overall branching program, rather than simply changing rates of morphogenesis. Taken together, these results highlight the importance of mechanical forces during airway branching and suggest that different branching modes may be affected differently by luminal fluid pressure.
Collapse
Affiliation(s)
- Shelby R Mohr-Allen
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA; Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Victor D Varner
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA; Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
4
|
Guha Ray C, Haas PA. Unbuckling Mechanics of Epithelial Monolayers under Compression. PHYSICAL REVIEW LETTERS 2025; 134:118402. [PMID: 40192356 DOI: 10.1103/physrevlett.134.118402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/11/2025] [Indexed: 05/17/2025]
Abstract
When cell sheets fold during development, their apical or basal surfaces constrict and cell shapes approach the geometric singularity in which these surfaces vanish. Here, we reveal the mechanical consequences of this geometric singularity for tissue folding in a minimal vertex model of an epithelial monolayer. In simulations of the buckling of the epithelium under compression and numerical solutions of the corresponding continuum model, we discover an "unbuckling" bifurcation: at large compression, the buckling amplitude can decrease with increasing compression. By asymptotic solution of the continuum equations, we reveal that this bifurcation comes with a large stiffening of the epithelium. Our results thus provide the mechanical basis for absorption of compressive stresses by tissue folds such as the cephalic furrow during germband extension in Drosophila.
Collapse
Affiliation(s)
- Chandraniva Guha Ray
- Center for Systems Biology Dresden, Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany; , Pfotenhauerstraße 108, 01307 Dresden, Germany; and , Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Pierre A Haas
- Center for Systems Biology Dresden, Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany; , Pfotenhauerstraße 108, 01307 Dresden, Germany; and , Pfotenhauerstraße 108, 01307 Dresden, Germany
| |
Collapse
|
5
|
Andrews TGR, Priya R. The Mechanics of Building Functional Organs. Cold Spring Harb Perspect Biol 2025; 17:a041520. [PMID: 38886066 PMCID: PMC7616527 DOI: 10.1101/cshperspect.a041520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Organ morphogenesis is multifaceted, multiscale, and fundamentally a robust process. Despite the complex and dynamic nature of embryonic development, organs are built with reproducible size, shape, and function, allowing them to support organismal growth and life. This striking reproducibility of tissue form exists because morphogenesis is not entirely hardwired. Instead, it is an emergent product of mechanochemical information flow, operating across spatial and temporal scales-from local cellular deformations to organ-scale form and function, and back. In this review, we address the mechanical basis of organ morphogenesis, as understood by observations and experiments in living embryos. To this end, we discuss how mechanical information controls the emergence of a highly conserved set of structural motifs that shape organ architectures across the animal kingdom: folds and loops, tubes and lumens, buds, branches, and networks. Moving forward, we advocate for a holistic conceptual framework for the study of organ morphogenesis, which rests on an interdisciplinary toolkit and brings the embryo center stage.
Collapse
Affiliation(s)
| | - Rashmi Priya
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| |
Collapse
|
6
|
Fiore VF, Almagro J, Fuchs E. Shaping epithelial tissues by stem cell mechanics in development and cancer. Nat Rev Mol Cell Biol 2025:10.1038/s41580-024-00821-0. [PMID: 39881165 DOI: 10.1038/s41580-024-00821-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2024] [Indexed: 01/31/2025]
Abstract
Adult stem cells balance self-renewal and differentiation to build, maintain and repair tissues. The role of signalling pathways and transcriptional networks in controlling stem cell function has been extensively studied, but there is increasing appreciation that mechanical forces also have a crucial regulatory role. Mechanical forces, signalling pathways and transcriptional networks must be coordinated across diverse length and timescales to maintain tissue homeostasis and function. Such coordination between stem cells and neighbouring cells dictates when cells divide, migrate and differentiate. Recent advances in measuring and manipulating the mechanical forces that act upon and are produced by stem cells are providing new insights into development and disease. In this Review, we discuss the mechanical forces involved when epithelial stem cells construct their microenvironment and what happens in cancer when stem cell niche mechanics are disrupted or dysregulated. As the skin has evolved to withstand the harsh mechanical pressures from the outside environment, we often use the stem cells of mammalian skin epithelium as a paradigm for adult stem cells shaping their surrounding tissues.
Collapse
Affiliation(s)
- Vincent F Fiore
- Department of Immunology and Respiratory Diseases Research, Boehringer Ingelheim, Ridgefield, CT, USA.
| | - Jorge Almagro
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
7
|
Gerner-Mauro KN, Ellis LV, Wang G, Nayak R, Lwigale PY, Poché RA, Chen J. Morphogenic, molecular, and cellular adaptations for unidirectional airflow in the chicken lung. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608866. [PMID: 39229219 PMCID: PMC11370416 DOI: 10.1101/2024.08.20.608866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Unidirectional airflow in the avian lung enables gas exchange during both inhalation and exhalation. The underlying developmental process and how it deviates from that of the bidirectional mammalian lung are poorly understood. Sampling key developmental stages with multiscale 3D imaging and single-cell transcriptomics, we delineate morphogenic, molecular, and cellular features that accommodate the unidirectional airflow in the chicken lung. Primary termini of hyper-elongated branches are eliminated via proximal-short and distal-long fusions, forming parabronchi. Neoform termini extend radially through parabronchial smooth muscle to form gas-exchanging alveoli. Supporting this radial alveologenesis, branch stalks halt their proximalization, defined by SOX9-SOX2 transition, and become SOX9 low parabronchi. Primary and secondary vascular plexi interface with primary and neoform termini, respectively. Single-cell and Stereo-seq spatial transcriptomics reveal a third, chicken-specific alveolar cell type expressing KRT14, hereby named luminal cells. Luminal, alveolar type 2, and alveolar type 1 cells sequentially occupy concentric zones radiating from the parabronchial lumen. Our study explores the evolutionary space of lung diversification and lays the foundation for functional analysis of species-specific genetic determinants.
Collapse
|
8
|
Paramore SV, Goodwin K, Fowler EW, Devenport D, Nelson CM. Mesenchymal Vangl1 and Vangl2 facilitate airway elongation and widening independently of the planar cell polarity complex. Development 2024; 151:dev202692. [PMID: 39225402 PMCID: PMC11385325 DOI: 10.1242/dev.202692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
Adult mammalian lungs exhibit a fractal pattern, as each successive generation of airways is a fraction of the size of the parental branch. Achieving this structure likely requires precise control of airway length and diameter, as the embryonic airways initially lack the fractal scaling observed in the adult. In monolayers and tubes, directional growth can be regulated by the planar cell polarity (PCP) complex. Here, we characterized the roles of PCP complex components in airway initiation, elongation and widening during branching morphogenesis of the lung. Using tissue-specific knockout mice, we surprisingly found that branching morphogenesis proceeds independently of PCP complex function in the lung epithelium. Instead, we found a previously unreported Celsr1-independent role for the PCP complex components Vangl1 and Vangl2 in the pulmonary mesenchyme, where they are required for branch initiation, elongation and widening. Our data thus reveal an explicit function for Vangl1 and Vangl2 that is independent of the core PCP complex, suggesting a functional diversification of PCP complex components in vertebrate development. These data also reveal an essential role for the embryonic mesenchyme in generating the fractal structure of airways in the mature lung.
Collapse
Affiliation(s)
- Sarah V. Paramore
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Eric W. Fowler
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Celeste M. Nelson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
9
|
Urciuolo F, Imparato G, Netti PA. Engineering Cell Instructive Microenvironments for In Vitro Replication of Functional Barrier Organs. Adv Healthc Mater 2024; 13:e2400357. [PMID: 38695274 DOI: 10.1002/adhm.202400357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/02/2024] [Indexed: 05/14/2024]
Abstract
Multicellular organisms exhibit synergistic effects among their components, giving rise to emergent properties crucial for their genesis and overall functionality and survival. Morphogenesis involves and relies upon intricate and biunivocal interactions among cells and their environment, that is, the extracellular matrix (ECM). Cells secrete their own ECM, which in turn, regulates their morphogenetic program by controlling time and space presentation of matricellular signals. The ECM, once considered passive, is now recognized as an informative space where both biochemical and biophysical signals are tightly orchestrated. Replicating this sophisticated and highly interconnected informative media in a synthetic scaffold for tissue engineering is unattainable with current technology and this limits the capability to engineer functional human organs in vitro and in vivo. This review explores current limitations to in vitro organ morphogenesis, emphasizing the interplay of gene regulatory networks, mechanical factors, and tissue microenvironment cues. In vitro efforts to replicate biological processes for barrier organs such as the lung and intestine, are examined. The importance of maintaining cells within their native microenvironmental context is highlighted to accurately replicate organ-specific properties. The review underscores the necessity for microphysiological systems that faithfully reproduce cell-native interactions, for advancing the understanding of developmental disorders and disease progression.
Collapse
Affiliation(s)
- Francesco Urciuolo
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI) and Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Piazzale Tecchio 80, Napoli, 80125, Italy
| | - Giorgia Imparato
- Centre for Advanced Biomaterials for Health Care (IIT@CRIB), Istituto Italiano di Tecnologia, L.go Barsanti e Matteucci, Napoli, 80125, Italy
| | - Paolo Antonio Netti
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI) and Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Piazzale Tecchio 80, Napoli, 80125, Italy
- Centre for Advanced Biomaterials for Health Care (IIT@CRIB), Istituto Italiano di Tecnologia, L.go Barsanti e Matteucci, Napoli, 80125, Italy
| |
Collapse
|
10
|
Luo Y, Cao K, Chiu J, Chen H, Wang HJ, Thornton ME, Grubbs BH, Kolb M, Parmacek MS, Mishina Y, Shi W. Defective mesenchymal Bmpr1a-mediated BMP signaling causes congenital pulmonary cysts. eLife 2024; 12:RP91876. [PMID: 38856718 PMCID: PMC11164533 DOI: 10.7554/elife.91876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
Abnormal lung development can cause congenital pulmonary cysts, the mechanisms of which remain largely unknown. Although the cystic lesions are believed to result directly from disrupted airway epithelial cell growth, the extent to which developmental defects in lung mesenchymal cells contribute to abnormal airway epithelial cell growth and subsequent cystic lesions has not been thoroughly examined. In the present study using genetic mouse models, we dissected the roles of bone morphogenetic protein (BMP) receptor 1a (Bmpr1a)-mediated BMP signaling in lung mesenchyme during prenatal lung development and discovered that abrogation of mesenchymal Bmpr1a disrupted normal lung branching morphogenesis, leading to the formation of prenatal pulmonary cystic lesions. Severe deficiency of airway smooth muscle cells and subepithelial elastin fibers were found in the cystic airways of the mesenchymal Bmpr1a knockout lungs. In addition, ectopic mesenchymal expression of BMP ligands and airway epithelial perturbation of the Sox2-Sox9 proximal-distal axis were detected in the mesenchymal Bmpr1a knockout lungs. However, deletion of Smad1/5, two major BMP signaling downstream effectors, from the lung mesenchyme did not phenocopy the cystic abnormalities observed in the mesenchymal Bmpr1a knockout lungs, suggesting that a Smad-independent mechanism contributes to prenatal pulmonary cystic lesions. These findings reveal for the first time the role of mesenchymal BMP signaling in lung development and a potential pathogenic mechanism underlying congenital pulmonary cysts.
Collapse
Affiliation(s)
- Yongfeng Luo
- Department of Surgery, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Ke Cao
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Joanne Chiu
- Department of Surgery, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Hui Chen
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Hong-Jun Wang
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Matthew E Thornton
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Brendan H Grubbs
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Martin Kolb
- Department of Medicine, McMaster UniversityHamiltonCanada
| | - Michael S Parmacek
- Department of Medicine, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Yuji Mishina
- Department of Biologic and Material Sciences, University of Michigan-Ann ArborAnn ArborUnited States
| | - Wei Shi
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of MedicineCincinnatiUnited States
| |
Collapse
|
11
|
Huycke TR, Häkkinen TJ, Miyazaki H, Srivastava V, Barruet E, McGinnis CS, Kalantari A, Cornwall-Scoones J, Vaka D, Zhu Q, Jo H, Oria R, Weaver VM, DeGrado WF, Thomson M, Garikipati K, Boffelli D, Klein OD, Gartner ZJ. Patterning and folding of intestinal villi by active mesenchymal dewetting. Cell 2024; 187:3072-3089.e20. [PMID: 38781967 PMCID: PMC11166531 DOI: 10.1016/j.cell.2024.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/30/2023] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Tissue folds are structural motifs critical to organ function. In the intestine, bending of a flat epithelium into a periodic pattern of folds gives rise to villi, finger-like protrusions that enable nutrient absorption. However, the molecular and mechanical processes driving villus morphogenesis remain unclear. Here, we identify an active mechanical mechanism that simultaneously patterns and folds the intestinal epithelium to initiate villus formation. At the cellular level, we find that PDGFRA+ subepithelial mesenchymal cells generate myosin II-dependent forces sufficient to produce patterned curvature in neighboring tissue interfaces. This symmetry-breaking process requires altered cell and extracellular matrix interactions that are enabled by matrix metalloproteinase-mediated tissue fluidization. Computational models, together with in vitro and in vivo experiments, revealed that these cellular features manifest at the tissue level as differences in interfacial tensions that promote mesenchymal aggregation and interface bending through a process analogous to the active dewetting of a thin liquid film.
Collapse
Affiliation(s)
- Tyler R Huycke
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA; Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Teemu J Häkkinen
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA; Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Hikaru Miyazaki
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA; Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Vasudha Srivastava
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Emilie Barruet
- Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA
| | - Christopher S McGinnis
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Ali Kalantari
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA; Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Jake Cornwall-Scoones
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Dedeepya Vaka
- Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA
| | - Qin Zhu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Hyunil Jo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Roger Oria
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Comprehensive Cancer Center, Helen Diller Family Cancer Research Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences, Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Comprehensive Cancer Center, Helen Diller Family Cancer Research Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences, Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Matt Thomson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Krishna Garikipati
- Departments of Mechanical Engineering, and Mathematics, University of Michigan, Ann Arbor, MI, USA
| | - Dario Boffelli
- Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA.
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
12
|
Banavar SP, Fowler EW, Nelson CM. Biophysics of morphogenesis in the vertebrate lung. Curr Top Dev Biol 2024; 160:65-86. [PMID: 38937031 DOI: 10.1016/bs.ctdb.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Morphogenesis is a physical process that sculpts the final functional forms of tissues and organs. Remarkably, the lungs of terrestrial vertebrates vary dramatically in form across species, despite providing the same function of transporting oxygen and carbon dioxide. These divergent forms arise from distinct physical processes through which the epithelium of the embryonic lung responds to the mechanical properties of its surrounding mesenchymal microenvironment. Here we compare the physical processes that guide folding of the lung epithelium in mammals, birds, and reptiles, and suggest a conceptual framework that reconciles how conserved molecular signaling generates divergent mechanical forces across these species.
Collapse
Affiliation(s)
- Samhita P Banavar
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ, United States
| | - Eric W Fowler
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ, United States
| | - Celeste M Nelson
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ, United States; Department of Molecular Biology, Princeton University, Princeton, NJ, United States.
| |
Collapse
|
13
|
Morales EA, Wang S. Salivary gland developmental mechanics. Curr Top Dev Biol 2024; 160:1-30. [PMID: 38937029 DOI: 10.1016/bs.ctdb.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The salivary gland undergoes branching morphogenesis to elaborate into a tree-like structure with numerous saliva-secreting acinar units, all joined by a hierarchical ductal system. The expansive epithelial surface generated by branching morphogenesis serves as the structural basis for the efficient production and delivery of saliva. Here, we elucidate the process of salivary gland morphogenesis, emphasizing the role of mechanics. Structurally, the developing salivary gland is characterized by a stratified epithelium tightly encased by the basement membrane, which is in turn surrounded by a mesenchyme consisting of a dense network of interstitial matrix and mesenchymal cells. Diverse cell types and extracellular matrices bestow this developing organ with organized, yet spatially varied mechanical properties. For instance, the surface epithelial sheet of the bud is highly fluidic due to its high cell motility and weak cell-cell adhesion, rendering it highly pliable. In contrast, the inner core of the bud is more rigid, characterized by reduced cell motility and strong cell-cell adhesion, which likely provide structural support for the tissue. The interactions between the surface epithelial sheet and the inner core give rise to budding morphogenesis. Furthermore, the basement membrane and the mesenchyme offer mechanical constraints that could play a pivotal role in determining the higher-order architecture of a fully mature salivary gland.
Collapse
Affiliation(s)
- E Angelo Morales
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Shaohe Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States.
| |
Collapse
|
14
|
Luo Y, Cao K, Chiu J, Chen H, Wang HJ, Thornton ME, Grubbs BH, Kolb M, Parmacek MS, Mishina Y, Shi W. Defective mesenchymal Bmpr1a-mediated BMP signaling causes congenital pulmonary cysts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.26.559527. [PMID: 37808788 PMCID: PMC10557633 DOI: 10.1101/2023.09.26.559527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Abnormal lung development can cause congenital pulmonary cysts, the mechanisms of which remain largely unknown. Although the cystic lesions are believed to result directly from disrupted airway epithelial cell growth, the extent to which developmental defects in lung mesenchymal cells contribute to abnormal airway epithelial cell growth and subsequent cystic lesions has not been thoroughly examined. In the present study, we dissected the roles of BMP receptor 1a (Bmpr1a)-mediated BMP signaling in lung mesenchyme during prenatal lung development and discovered that abrogation of mesenchymal Bmpr1a disrupted normal lung branching morphogenesis, leading to the formation of prenatal pulmonary cystic lesions. Severe deficiency of airway smooth muscle cells and subepithelial elastin fibers were found in the cystic airways of the mesenchymal Bmpr1a knockout lungs. In addition, ectopic mesenchymal expression of BMP ligands and airway epithelial perturbation of the Sox2-Sox9 proximal-distal axis were detected in the mesenchymal Bmpr1a knockout lungs. However, deletion of Smad1/5, two major BMP signaling downstream effectors, from the lung mesenchyme did not phenocopy the cystic abnormalities observed in the mesenchymal Bmpr1a knockout lungs, suggesting that a Smad-independent mechanism contributes to prenatal pulmonary cystic lesions. These findings reveal for the first time the role of mesenchymal BMP signaling in lung development and a potential pathogenic mechanism underlying congenital pulmonary cysts.
Collapse
Affiliation(s)
- Yongfeng Luo
- Department of Surgery, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027
| | - Ke Cao
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Joanne Chiu
- Department of Surgery, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027
| | - Hui Chen
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Hong-Jun Wang
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Matthew E. Thornton
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Brendan H. Grubbs
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Martin Kolb
- Department of Medicine, McMaster University, Hamilton, ON, Canada L8N 4A6
| | - Michael S. Parmacek
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuji Mishina
- Department of Biologic and Material Sciences, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109
| | - Wei Shi
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
15
|
Hirashima T, Matsuda M. ERK-mediated curvature feedback regulates branching morphogenesis in lung epithelial tissue. Curr Biol 2024; 34:683-696.e6. [PMID: 38228149 DOI: 10.1016/j.cub.2023.12.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/06/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024]
Abstract
Intricate branching patterns emerge in internal organs due to the recurrent occurrence of simple deformations in epithelial tissues. During murine lung development, epithelial cells in distal tips of the single tube require fibroblast growth factor (FGF) signals emanating from their surrounding mesenchyme to form repetitive tip bifurcations. However, it remains unknown how the cells employ FGF signaling to convert their behaviors to achieve the recursive branching processes. Here, we show a mechano-chemical regulatory system underlying lung branching morphogenesis, orchestrated by extracellular signal-regulated kinase (ERK) as a downstream driver of FGF signaling. We found that tissue-scale curvature regulated ERK activity in the lung epithelium using two-photon live cell imaging and mechanical perturbations. ERK activation occurs specifically in epithelial tissues exhibiting positive curvature, regardless of whether the change in curvature was attributable to morphogenesis or perturbations. Moreover, ERK activation accelerates actin polymerization preferentially at the apical side of cells, mechanically contributing to the extension of the apical membrane, culminating in a reduction of epithelial tissue curvature. These results indicate the existence of a negative feedback loop between tissue curvature and ERK activity that transcends spatial scales. Our mathematical model confirms that this regulatory mechanism is sufficient to generate the recursive branching processes. Taken together, we propose that ERK orchestrates a curvature feedback loop pivotal to the self-organized patterning of tissues.
Collapse
Affiliation(s)
- Tsuyoshi Hirashima
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive MD9, Singapore 117593, Singapore; The Hakubi Center, Kyoto University, Yoshida-honmachi, Kyoto 606-8501, Japan; Graduate School of Biostudies, Kyoto University, Yoshidakone-cho, Kyoto 606-8501, Japan; Japan Science and Technology Agency, PRESTO, 4-1-8 Honchō, Kawaguchi 332-0012, Japan.
| | - Michiyuki Matsuda
- Graduate School of Biostudies, Kyoto University, Yoshidakone-cho, Kyoto 606-8501, Japan; Graduate School of Medicine, Kyoto University, Yoshidakone-cho, Kyoto 606-8501, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-honmachi, Kyoto 606-8317, Japan
| |
Collapse
|
16
|
Sumbal J, Fre S, Sumbalova Koledova Z. Fibroblast-induced mammary epithelial branching depends on fibroblast contractility. PLoS Biol 2024; 22:e3002093. [PMID: 38198514 PMCID: PMC10805323 DOI: 10.1371/journal.pbio.3002093] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 01/23/2024] [Accepted: 11/24/2023] [Indexed: 01/12/2024] Open
Abstract
Epithelial branching morphogenesis is an essential process in living organisms, through which organ-specific epithelial shapes are created. Interactions between epithelial cells and their stromal microenvironment instruct branching morphogenesis but remain incompletely understood. Here, we employed fibroblast-organoid or fibroblast-spheroid co-culture systems and time-lapse imaging to reveal that physical contact between fibroblasts and epithelial cells and fibroblast contractility are required to induce mammary epithelial branching. Pharmacological inhibition of ROCK or non-muscle myosin II, or fibroblast-specific knock-out of Myh9 abrogate fibroblast-induced epithelial branching. The process of fibroblast-induced branching requires epithelial proliferation and is associated with distinctive epithelial patterning of yes associated protein (YAP) activity along organoid branches, which is dependent on fibroblast contractility. Moreover, we provide evidence for the in vivo existence of contractile fibroblasts specifically surrounding terminal end buds (TEBs) of pubertal murine mammary glands, advocating for an important role of fibroblast contractility in branching in vivo. Together, we identify fibroblast contractility as a novel stromal factor driving mammary epithelial morphogenesis. Our study contributes to comprehensive understanding of overlapping but divergent employment of mechanically active fibroblasts in developmental versus tumorigenic programs.
Collapse
Affiliation(s)
- Jakub Sumbal
- Masaryk University, Faculty of Medicine, Department of Histology and Embryology, Brno, Czech Republic
- Institut Curie, Laboratory of Genetics and Developmental Biology, INSERM U934, CNRS UMR3215, PSL Université Paris, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Silvia Fre
- Institut Curie, Laboratory of Genetics and Developmental Biology, INSERM U934, CNRS UMR3215, PSL Université Paris, Paris, France
| | - Zuzana Sumbalova Koledova
- Masaryk University, Faculty of Medicine, Department of Histology and Embryology, Brno, Czech Republic
| |
Collapse
|
17
|
Wang Z, Servio P, Rey AD. Geometry-structure models for liquid crystal interfaces, drops and membranes: wrinkling, shape selection and dissipative shape evolution. SOFT MATTER 2023. [PMID: 38031449 DOI: 10.1039/d3sm01164j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
We review our recent contributions to anisotropic soft matter models for liquid crystal interfaces, drops and membranes, emphasizing validations with experimental and biological data, and with related theory and simulation literature. The presentation aims to illustrate and characterize the rich output and future opportunities of using a methodology based on the liquid crystal-membrane shape equation applied to static and dynamic pattern formation phenomena. The geometry of static and kinetic shapes is usually described with dimensional curvatures that co-mingle shape and curvedness. In this review, we systematically show how the application of a novel decoupled shape-curvedness framework to practical and ubiquitous soft matter phenomena, such as the shape of drops and tactoids and bending of evolving membranes, leads to deeper quantitative insights than when using traditional dimensional mean and Gaussian curvatures. The review focuses only on (1) statics of wrinkling and shape selection in liquid crystal interfaces and membranes; (2) kinetics and dissipative dynamics of shape evolution in membranes; and (3) computational methods for shape selection and shape evolution; due to various limitations other important topics are excluded. Finally, the outlook follows a similar structure. The main results include: (1) single and multiple wavelength corrugations in liquid crystal interfaces appear naturally in the presence of surface splay and bend orientation distortions with scaling laws governed by ratios of anchoring-to-isotropic tension energy; adding membrane elasticity to liquid crystal anchoring generates multiple scales wrinkling as in tulips; drops of liquid crystals encapsulates in membranes can adopt, according to the ratios of anchoring/tension/bending, families of shapes as multilobal, tactoidal, and serrated as observed in biological cells. (2) Mapping the liquid crystal director to a membrane unit normal. The dissipative shape evolution model with irreversible thermodynamics for flows dominated by bending rates, yields new insights. The model explains the kinetic stability of cylinders, while spheres and saddles are attractors. The model also adds to the evolving understanding of outer hair cells in the inner ear. (3) Computational soft matter geometry includes solving shape equations, trajectories on energy and orientation landscapes, and shape-curvedness evolutions on entropy production landscape with efficient numerical methods and adaptive approaches.
Collapse
Affiliation(s)
- Ziheng Wang
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, Québec, H3A 2B2, Canada.
| | - Phillip Servio
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, Québec, H3A 2B2, Canada.
| | - Alejandro D Rey
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, Québec, H3A 2B2, Canada.
| |
Collapse
|
18
|
Abstract
Multicellular organisms generate tissues of diverse shapes and functions from cells and extracellular matrices. Their adhesion molecules mediate cell-cell and cell-matrix interactions, which not only play crucial roles in maintaining tissue integrity but also serve as key regulators of tissue morphogenesis. Cells constantly probe their environment to make decisions: They integrate chemical and mechanical information from the environment via diffusible ligand- or adhesion-based signaling to decide whether to release specific signaling molecules or enzymes, to divide or differentiate, to move away or stay, or even whether to live or die. These decisions in turn modify their environment, including the chemical nature and mechanical properties of the extracellular matrix. Tissue morphology is the physical manifestation of the remodeling of cells and matrices by their historical biochemical and biophysical landscapes. We review our understanding of matrix and adhesion molecules in tissue morphogenesis, with an emphasis on key physical interactions that drive morphogenesis.
Collapse
Affiliation(s)
- Di Wu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA;
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA;
| | - Shaohe Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA;
| |
Collapse
|
19
|
White MJ, Singh T, Wang E, Smith Q, Kutys ML. 'Chip'-ing away at morphogenesis - application of organ-on-chip technologies to study tissue morphogenesis. J Cell Sci 2023; 136:jcs261130. [PMID: 37795818 PMCID: PMC10565497 DOI: 10.1242/jcs.261130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023] Open
Abstract
Emergent cell behaviors that drive tissue morphogenesis are the integrated product of instructions from gene regulatory networks, mechanics and signals from the local tissue microenvironment. How these discrete inputs intersect to coordinate diverse morphogenic events is a critical area of interest. Organ-on-chip technology has revolutionized the ability to construct and manipulate miniaturized human tissues with organotypic three-dimensional architectures in vitro. Applications of organ-on-chip platforms have increasingly transitioned from proof-of-concept tissue engineering to discovery biology, furthering our understanding of molecular and mechanical mechanisms that operate across biological scales to orchestrate tissue morphogenesis. Here, we provide the biological framework to harness organ-on-chip systems to study tissue morphogenesis, and we highlight recent examples where organ-on-chips and associated microphysiological systems have enabled new mechanistic insight in diverse morphogenic settings. We further highlight the use of organ-on-chip platforms as emerging test beds for cell and developmental biology.
Collapse
Affiliation(s)
- Matthew J. White
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Tania Singh
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
- UCSF-UC Berkeley Joint Program in Bioengineering, University of California San Francisco, San Francisco, CA 94143, USA
| | - Eric Wang
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA 92697, USA
| | - Quinton Smith
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Matthew L. Kutys
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
- UCSF-UC Berkeley Joint Program in Bioengineering, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
20
|
Myllymäki SM, Kaczyńska B, Lan Q, Mikkola ML. Spatially coordinated cell cycle activity and motility govern bifurcation of mammary branches. J Cell Biol 2023; 222:e202209005. [PMID: 37367826 PMCID: PMC10300433 DOI: 10.1083/jcb.202209005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 03/03/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Branching morphogenesis is an evolutionary solution to maximize epithelial function in a compact organ. It involves successive rounds of branch elongation and branch point formation to generate a tubular network. In all organs, branch points can form by tip splitting, but it is unclear how tip cells coordinate elongation and branching. Here, we addressed these questions in the embryonic mammary gland. Live imaging revealed that tips advance by directional cell migration and elongation relies upon differential cell motility that feeds a retrograde flow of lagging cells into the trailing duct, supported by tip proliferation. Tip bifurcation involved localized repression of cell cycle and cell motility at the branch point. Cells in the nascent daughter tips remained proliferative but changed their direction to elongate new branches. We also report the fundamental importance of epithelial cell contractility for mammary branching morphogenesis. The co-localization of cell motility, non-muscle myosin II, and ERK activities at the tip front suggests coordination/cooperation between these functions.
Collapse
Affiliation(s)
- Satu-Marja Myllymäki
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Beata Kaczyńska
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Qiang Lan
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Marja L. Mikkola
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
21
|
Abohalaka R. Bronchial epithelial and airway smooth muscle cell interactions in health and disease. Heliyon 2023; 9:e19976. [PMID: 37809717 PMCID: PMC10559680 DOI: 10.1016/j.heliyon.2023.e19976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Chronic pulmonary diseases such as asthma, COPD, and Idiopathic pulmonary fibrosis are significant causes of mortality and morbidity worldwide. Currently, there is no radical treatment for many chronic pulmonary diseases, and the treatment options focus on relieving the symptoms and improving lung function. Therefore, efficient therapeutic agents are highly needed. Bronchial epithelial cells and airway smooth muscle cells and their crosstalk play a significant role in the pathogenesis of these diseases. Thus, targeting the interactions of these two cell types could open the door to a new generation of effective therapeutic options. However, the studies on how these two cell types interact and how their crosstalk adds up to respiratory diseases are not well established. With the rise of modern research tools and technology, such as lab-on-a-chip, organoids, co-culture techniques, and advanced immunofluorescence imaging, a substantial degree of evidence about these cell interactions emerged. Hence, this contribution aims to summarize the growing evidence of bronchial epithelial cells and airway smooth muscle cells crosstalk under normal and pathophysiological conditions. The review first discusses the impact of airway smooth muscle cells on the epithelium in inflammatory settings. Later, it examines the role of airway smooth muscle cells in the early development of bronchial epithelial cells and their recovery after injury. Then, it deliberates the effects of both healthy and stressed epithelial cells on airway smooth muscle cells, taking into account three themes; contraction, migration, and proliferation.
Collapse
Affiliation(s)
- Reshed Abohalaka
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
22
|
Huycke TR, Miyazaki H, Häkkinen TJ, Srivastava V, Barruet E, McGinnis CS, Kalantari A, Cornwall-Scoones J, Vaka D, Zhu Q, Jo H, DeGrado WF, Thomson M, Garikipati K, Boffelli D, Klein OD, Gartner ZJ. Patterning and folding of intestinal villi by active mesenchymal dewetting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.25.546328. [PMID: 37425793 PMCID: PMC10326967 DOI: 10.1101/2023.06.25.546328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Tissue folding generates structural motifs critical to organ function. In the intestine, bending of a flat epithelium into a periodic pattern of folds gives rise to villi, the numerous finger-like protrusions that are essential for nutrient absorption. However, the molecular and mechanical mechanisms driving the initiation and morphogenesis of villi remain a matter of debate. Here, we identify an active mechanical mechanism that simultaneously patterns and folds intestinal villi. We find that PDGFRA+ subepithelial mesenchymal cells generate myosin II-dependent forces sufficient to produce patterned curvature in neighboring tissue interfaces. At the cell-level, this occurs through a process dependent upon matrix metalloproteinase-mediated tissue fluidization and altered cell-ECM adhesion. By combining computational models with in vivo experiments, we reveal these cellular features manifest at the tissue-level as differences in interfacial tensions that promote mesenchymal aggregation and interface bending through a process analogous to the active de-wetting of a thin liquid film.
Collapse
Affiliation(s)
- Tyler R. Huycke
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
- Equal contribution
| | - Hikaru Miyazaki
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
- Equal contribution
| | - Teemu J. Häkkinen
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
- Equal contribution
| | - Vasudha Srivastava
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Emilie Barruet
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Christopher S. McGinnis
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Ali Kalantari
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Jake Cornwall-Scoones
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Dedeepya Vaka
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Qin Zhu
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Hyunil Jo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Matt Thomson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Krishna Garikipati
- Departments of Mechanical Engineering, and Mathematics, University of Michigan, Ann Arbor, USA
| | - Dario Boffelli
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Ophir D. Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Zev J. Gartner
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
23
|
El Agha E, Thannickal VJ. The lung mesenchyme in development, regeneration, and fibrosis. J Clin Invest 2023; 133:e170498. [PMID: 37463440 DOI: 10.1172/jci170498] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Mesenchymal cells are uniquely located at the interface between the epithelial lining and the stroma, allowing them to act as a signaling hub among diverse cellular compartments of the lung. During embryonic and postnatal lung development, mesenchyme-derived signals instruct epithelial budding, branching morphogenesis, and subsequent structural and functional maturation. Later during adult life, the mesenchyme plays divergent roles wherein its balanced activation promotes epithelial repair after injury while its aberrant activation can lead to pathological remodeling and fibrosis that are associated with multiple chronic pulmonary diseases, including bronchopulmonary dysplasia, idiopathic pulmonary fibrosis, and chronic obstructive pulmonary disease. In this Review, we discuss the involvement of the lung mesenchyme in various morphogenic, neomorphogenic, and dysmorphogenic aspects of lung biology and health, with special emphasis on lung fibroblast subsets and smooth muscle cells, intercellular communication, and intrinsic mesenchymal mechanisms that drive such physiological and pathophysiological events throughout development, homeostasis, injury repair, regeneration, and aging.
Collapse
Affiliation(s)
- Elie El Agha
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Victor J Thannickal
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana, USA
| |
Collapse
|
24
|
Wu H, Wang P, Liu Z, Lu C, Yin W. Systematic Analysis of Smooth Muscle and Cartilage Ring Formation during Mouse Tracheal Tubulogenesis. Bio Protoc 2023; 13:e4711. [PMID: 37449041 PMCID: PMC10336568 DOI: 10.21769/bioprotoc.4711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/04/2022] [Accepted: 04/24/2023] [Indexed: 07/18/2023] Open
Abstract
The trachea tube is the exclusive route to allow gas exchange between the external environment and the lungs. Recent studies have shown the critical role of mesenchymal cells in tracheal tubulogenesis. Improved methods for studying the dynamics of the tracheal mesenchyme development are needed to investigate the cellular and molecular mechanisms during tracheal tubulogenesis. Here, we describe a detailed protocol for a systematic analysis of tracheal tube development to enable observing tracheal smooth muscle (SM) and cartilage ring formation. We describe immunostaining, confocal and stereomicroscopy imaging, and quantitative methods to study the process of tracheal SM and cartilage ring development, including SM cell alignment, polarization, and changes in cell shape as well as mesenchymal condensation. The technologies and approaches described here not only improve analysis of the patterning of the developing trachea but also help uncover the mechanisms underlying airway disease. This protocol also provides a useful technique to analyze cell organization, polarity, and nuclear shape in other organ systems.
Collapse
Affiliation(s)
- Haoyu Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, Guangdong Province, China
| | - Ping Wang
- Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Ziying Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chunyan Lu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenguang Yin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, Guangdong Province, China
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
| |
Collapse
|
25
|
Paramore SV, Goodwin K, Devenport D, Nelson CM. Mesenchymal Vangl facilitates airway elongation and widening independently of the planar cell polarity complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547543. [PMID: 37461477 PMCID: PMC10349956 DOI: 10.1101/2023.07.03.547543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
A hallmark of mammalian lungs is the fractal nature of the bronchial tree. In the adult, each successive generation of airways is a fraction of the size of the parental branch. This fractal structure is physiologically beneficial, as it minimizes the energy needed for breathing. Achieving this pattern likely requires precise control of airway length and diameter, as the branches of the embryonic airways initially lack the fractal scaling observed in those of the adult lung. In epithelial monolayers and tubes, directional growth can be regulated by the planar cell polarity (PCP) complex. Here, we comprehensively characterized the roles of PCP-complex components in airway initiation, elongation, and widening during branching morphogenesis of the murine lung. Using tissue-specific knockout mice, we surprisingly found that branching morphogenesis proceeds independently of PCP-component expression in the developing airway epithelium. Instead, we found a novel, Celsr1-independent role for the PCP component Vangl in the pulmonary mesenchyme. Specifically, mesenchymal loss of Vangl1/2 leads to defects in branch initiation, elongation, and widening. At the cellular level, we observe changes in the shape of smooth muscle cells that indicate a potential defect in collective mesenchymal rearrangements, which we hypothesize are necessary for lung morphogenesis. Our data thus reveal an explicit function for Vangl that is independent of the core PCP complex, suggesting a functional diversification of PCP components in vertebrate development. These data also reveal an essential role for the embryonic mesenchyme in generating the fractal structure of airways of the mature lung.
Collapse
Affiliation(s)
| | | | | | - Celeste M Nelson
- Department of Molecular Biology
- Department of Chemical & Biological Engineering
| |
Collapse
|
26
|
Hallatschek O, Datta SS, Drescher K, Dunkel J, Elgeti J, Waclaw B, Wingreen NS. Proliferating active matter. NATURE REVIEWS. PHYSICS 2023; 5:1-13. [PMID: 37360681 PMCID: PMC10230499 DOI: 10.1038/s42254-023-00593-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 06/28/2023]
Abstract
The fascinating patterns of collective motion created by autonomously driven particles have fuelled active-matter research for over two decades. So far, theoretical active-matter research has often focused on systems with a fixed number of particles. This constraint imposes strict limitations on what behaviours can and cannot emerge. However, a hallmark of life is the breaking of local cell number conservation by replication and death. Birth and death processes must be taken into account, for example, to predict the growth and evolution of a microbial biofilm, the expansion of a tumour, or the development from a fertilized egg into an embryo and beyond. In this Perspective, we argue that unique features emerge in these systems because proliferation represents a distinct form of activity: not only do the proliferating entities consume and dissipate energy, they also inject biomass and degrees of freedom capable of further self-proliferation, leading to myriad dynamic scenarios. Despite this complexity, a growing number of studies document common collective phenomena in various proliferating soft-matter systems. This generality leads us to propose proliferation as another direction of active-matter physics, worthy of a dedicated search for new dynamical universality classes. Conceptual challenges abound, from identifying control parameters and understanding large fluctuations and nonlinear feedback mechanisms to exploring the dynamics and limits of information flow in self-replicating systems. We believe that, by extending the rich conceptual framework developed for conventional active matter to proliferating active matter, researchers can have a profound impact on quantitative biology and reveal fascinating emergent physics along the way.
Collapse
Affiliation(s)
- Oskar Hallatschek
- Departments of Physics and Integrative Biology, University of California, Berkeley, CA US
- Peter Debye Institute for Soft Matter Physics, Leipzig University, Leipzig, Germany
| | - Sujit S. Datta
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ USA
| | | | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Jens Elgeti
- Theoretical Physics of Living Matter, Institute of Biological Information Processing, Forschungszentrum Jülich, Jülich, Germany
| | - Bartek Waclaw
- Dioscuri Centre for Physics and Chemistry of Bacteria, Institute of Physical Chemistry PAN, Warsaw, Poland
- School of Physics and Astronomy, The University of Edinburgh, JCMB, Edinburgh, UK
| | - Ned S. Wingreen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ USA
- Department of Molecular Biology, Princeton University, Princeton, NJ USA
| |
Collapse
|
27
|
Cassel de Camps C, Mok S, Ashby E, Li C, Lépine P, Durcan TM, Moraes C. Compressive molding of engineered tissues via thermoresponsive hydrogel devices. LAB ON A CHIP 2023; 23:2057-2067. [PMID: 36916609 DOI: 10.1039/d3lc00007a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Biofabrication of tissues requires sourcing appropriate combinations of cells, and then arranging those cells into a functionally-useful construct. Recently, organoids with diverse cell populations have shown great promise as building blocks from which to assemble more complex structures. However, organoids typically adopt spherical or uncontrolled morphologies, which intrinsically limit the tissue structures that can be produced using this bioassembly technique. Here, we develop microfabricated smart hydrogel platforms in thermoresponsive poly(N-isopropylacrylamide) to compressively mold microtissues such as spheroids or organoids into customized forms, on demand. These Compressive Hydrogel Molders (CHyMs) compact at cell culture temperatures to force loaded tissues into a new shape, and then expand to release the tissues for downstream applications. As a first demonstration, breast cancer spheroids were biaxially compacted in cylindrical cavities, and uniaxially compacted in rectangular ones. Spheroid shape changes persisted after the tissues were released from the CHyMs. We then demonstrate long-term molding of spherical brain organoids in ring-shaped CHyMs over one week. Fused bridges formed only when brain organoids were encased in Matrigel, and the resulting ring-shaped organoids expressed tissue markers that correspond with expected differentiation profiles. These results demonstrate that tissues differentiate appropriately even during long-term molding in a CHyM. This platform hence provides a new tool to shape pre-made tissues as desired, via temporary compression and release, allowing an exploration of alternative organoid geometries as building blocks for bioassembly applications.
Collapse
Affiliation(s)
| | - Stephanie Mok
- Department of Chemical Engineering, McGill University, Montréal, H3A 0C5 QC, Canada
| | - Emily Ashby
- Department of Chemical Engineering, McGill University, Montréal, H3A 0C5 QC, Canada
| | - Chen Li
- Department of Chemical Engineering, McGill University, Montréal, H3A 0C5 QC, Canada
| | - Paula Lépine
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montréal, H3A 2B4 QC, Canada
| | - Thomas M Durcan
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montréal, H3A 2B4 QC, Canada
| | - Christopher Moraes
- Department of Biomedical Engineering, McGill University, Montréal, H3A 2B4 QC, Canada.
- Department of Chemical Engineering, McGill University, Montréal, H3A 0C5 QC, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, H3A 1A3 QC, Canada
- Division of Experimental Medicine, McGill University, Montréal, H4A 3J1, QC, Canada
| |
Collapse
|
28
|
Goodwin K, Nelson CM. Analysis of Cre lines for targeting embryonic airway smooth muscle. Dev Biol 2023; 496:63-72. [PMID: 36706974 PMCID: PMC10041960 DOI: 10.1016/j.ydbio.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/09/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
During development of the embryonic mouse lung, the pulmonary mesenchyme differentiates into smooth muscle that wraps around the airway epithelium. Inhibiting smooth muscle differentiation leads to cystic airways, while enhancing it stunts epithelial branching. These findings support a conceptual model wherein the differentiation of smooth muscle sculpts the growing epithelium into branches at precise positions and with stereotyped morphologies. Unfortunately, most approaches to manipulate the differentiation of airway smooth muscle rely on pharmacological or physical perturbations that are conducted ex vivo. Here, we explored the use of diphtheria toxin-based genetic ablation strategies to eliminate airway smooth muscle in the embryonic mouse lung. Surprisingly, neither airway smooth muscle wrapping nor epithelial branching were affected in embryos in which the expression of diphtheria toxin or its receptor were driven by several different smooth muscle-specific Cre lines. Close examination of spatial patterns of Cre activity in the embryonic lung revealed that none of these commonly used Cre lines target embryonic airway smooth muscle robustly or specifically. Our findings demonstrate the need for airway smooth muscle-specific Cre lines that are active in the embryonic lung, and serve as a resource for researchers contemplating the use of these commonly used Cre lines for studying embryonic airway smooth muscle.
Collapse
Affiliation(s)
- Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Celeste M Nelson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
29
|
Goodwin K, Lemma B, Zhang P, Boukind A, Nelson CM. Plasticity in airway smooth muscle differentiation during mouse lung development. Dev Cell 2023; 58:338-347.e4. [PMID: 36868232 PMCID: PMC10149112 DOI: 10.1016/j.devcel.2023.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/27/2022] [Accepted: 02/06/2023] [Indexed: 03/05/2023]
Abstract
It has been proposed that smooth muscle differentiation may physically sculpt airway epithelial branches in mammalian lungs. Serum response factor (SRF) acts with its co-factor myocardin to activate the expression of contractile smooth muscle markers. In the adult, however, smooth muscle exhibits a variety of phenotypes beyond contractile, and these are independent of SRF/myocardin-induced transcription. To determine whether a similar phenotypic plasticity is exhibited during development, we deleted Srf from the mouse embryonic pulmonary mesenchyme. Srf-mutant lungs branch normally, and the mesenchyme displays mechanical properties indistinguishable from controls. scRNA-seq identified an Srf-null smooth muscle cluster, wrapping the airways of mutant lungs, which lacks contractile smooth muscle markers but retains many features of control smooth muscle. Srf-null embryonic airway smooth muscle exhibits a synthetic phenotype, compared with the contractile phenotype of mature wild-type airway smooth muscle. Our findings identify plasticity in embryonic airway smooth muscle and demonstrate that a synthetic smooth muscle layer promotes airway branching morphogenesis.
Collapse
Affiliation(s)
- Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Bezia Lemma
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Pengfei Zhang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Adam Boukind
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Celeste M Nelson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
30
|
Gonçalves AN, Moura RS, Correia-Pinto J, Nogueira-Silva C. Intraluminal chloride regulates lung branching morphogenesis: involvement of PIEZO1/PIEZO2. Respir Res 2023; 24:42. [PMID: 36740669 PMCID: PMC9901166 DOI: 10.1186/s12931-023-02328-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 01/13/2023] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Clinical and experimental evidence shows lung fluid volume as a modulator of fetal lung growth with important value in treating fetal lung hypoplasia. Thus, understanding the mechanisms underlying these morphological dynamics has been the topic of multiple investigations with, however, limited results, partially due to the difficulty of capturing or recapitulating these movements in the lab. In this sense, this study aims to establish an ex vivo model allowing the study of lung fluid function in branching morphogenesis and identify the subsequent molecular/ cellular mechanisms. METHODS Ex vivo lung explant culture was selected as a model to study branching morphogenesis, and intraluminal injections were performed to change the composition of lung fluid. Distinct chloride (Cl-) concentrations (5.8, 29, 143, and 715 mM) or Cl- channels inhibitors [antracene-9-carboxylic acid (A9C), cystic fibrosis transmembrane conductance regulator inhibitor172 (CFTRinh), and calcium-dependent Cl- channel inhibitorA01 (CaCCinh)] were injected into lung lumen at two timepoints, day0 (D0) and D2. At D4, morphological and molecular analyses were performed in terms of branching morphogenesis, spatial distribution (immunofluorescence), and protein quantification (western blot) of mechanoreceptors (PIEZO1 and PIEZO2), neuroendocrine (bombesin, ghrelin, and PGP9.5) and smooth muscle [alpha-smooth muscle actin (α-SMA) and myosin light chain 2 (MLC2)] markers. RESULTS For the first time, we described effective intraluminal injections at D0 and D2 and demonstrated intraluminal movements at D4 in ex vivo lung explant cultures. Through immunofluorescence assay in in vivo and ex vivo branching morphogenesis, we show that PGP9.5 colocalizes with PIEZO1 and PIEZO2 receptors. Fetal lung growth is increased at higher [Cl-], 715 mM Cl-, through the overexpression of PIEZO1, PIEZO2, ghrelin, bombesin, MLC2, and α-SMA. In contrast, intraluminal injection of CFTRinh or CaCCinh decreases fetal lung growth and the expression of PIEZO1, PIEZO2, ghrelin, bombesin, MLC2, and α-SMA. Finally, the inhibition of PIEZO1/PIEZO2 by GsMTx4 decreases branching morphogenesis and ghrelin, bombesin, MLC2, and α-SMA expression in an intraluminal injection-independent manner. CONCLUSIONS Our results identify PIEZO1/PIEZO2 expressed in neuroendocrine cells as a regulator of fetal lung growth induced by lung fluid.
Collapse
Affiliation(s)
- Ana N. Gonçalves
- grid.10328.380000 0001 2159 175XSchool of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus de Gualtar, Gualtar, 4710-057 Braga, Portugal ,grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rute S. Moura
- grid.10328.380000 0001 2159 175XSchool of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus de Gualtar, Gualtar, 4710-057 Braga, Portugal ,grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Correia-Pinto
- grid.10328.380000 0001 2159 175XSchool of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus de Gualtar, Gualtar, 4710-057 Braga, Portugal ,grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal ,Department of Pediatric Surgery, Hospital de Braga, Braga, Portugal
| | - Cristina Nogueira-Silva
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus de Gualtar, Gualtar, 4710-057, Braga, Portugal. .,Life and Health Sciences Research Institute/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal. .,Department of Obstetrics and Gynecology, Hospital de Braga, Braga, Portugal.
| |
Collapse
|
31
|
Neumann NM, Kim DM, Huebner RJ, Ewald AJ. Collective cell migration is spatiotemporally regulated during mammary epithelial bifurcation. J Cell Sci 2023; 136:jcs259275. [PMID: 36602106 PMCID: PMC10112963 DOI: 10.1242/jcs.259275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/22/2022] [Indexed: 01/06/2023] Open
Abstract
Branched epithelial networks are generated through an iterative process of elongation and bifurcation. We sought to understand bifurcation of the mammary epithelium. To visualize this process, we utilized three-dimensional (3D) organotypic culture and time-lapse confocal microscopy. We tracked cell migration during bifurcation and observed local reductions in cell speed at the nascent bifurcation cleft. This effect was proximity dependent, as individual cells approaching the cleft reduced speed, whereas cells exiting the cleft increased speed. As the cells slow down, they orient both migration and protrusions towards the nascent cleft, while cells in the adjacent branches orient towards the elongating tips. We next tested the hypothesis that TGF-β signaling controls mammary branching by regulating cell migration. We first validated that addition of TGF-β1 (TGFB1) protein increased cleft number, whereas inhibition of TGF-β signaling reduced cleft number. Then, consistent with our hypothesis, we observed that pharmacological inhibition of TGF-β1 signaling acutely decreased epithelial migration speed. Our data suggest a model for mammary epithelial bifurcation in which TGF-β signaling regulates cell migration to determine the local sites of bifurcation and the global pattern of the tubular network.
Collapse
Affiliation(s)
- Neil M. Neumann
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Daniel M. Kim
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Robert J. Huebner
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Andrew J. Ewald
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
32
|
Ni K, Che B, Yang C, Qin Y, Gu R, Wang C, Luo M, Deng L. Emerging toolset of three-dimensional pulmonary cell culture models for simulating lung pathophysiology towards mechanistic elucidation and therapeutic treatment of SARS-COV-2 infection. Front Pharmacol 2022; 13:1033043. [PMID: 36578545 PMCID: PMC9790924 DOI: 10.3389/fphar.2022.1033043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
The ongoing COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) poses a never before seen challenge to human health and the world economy. However, it is difficult to widely use conventional animal and cell culture models in understanding the underlying pathological mechanisms of COVID-19, which in turn hinders the development of relevant therapeutic treatments, including drugs. To overcome this challenge, various three-dimensional (3D) pulmonary cell culture models such as organoids are emerging as an innovative toolset for simulating the pathophysiology occurring in the respiratory system, including bronchial airways, alveoli, capillary network, and pulmonary interstitium, which provide a robust and powerful platform for studying the process and underlying mechanisms of SARS-CoV-2 infection among the potential primary targets in the lung. This review introduces the key features of some of these recently developed tools, including organoid, lung-on-a-chip, and 3D bioprinting, which can recapitulate different structural compartments of the lung and lung function, in particular, accurately resembling the human-relevant pathophysiology of SARS-CoV-2 infection in vivo. In addition, the recent progress in developing organoids for alveolar and airway disease modeling and their applications for discovering drugs against SARS-CoV-2 infection are highlighted. These innovative 3D cell culture models together may hold the promise to fully understand the pathogenesis and eventually eradicate the pandemic of COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mingzhi Luo
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou, Jiangsu, China
| | - Linhong Deng
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou, Jiangsu, China
| |
Collapse
|
33
|
Paramore SV, Goodwin K, Nelson CM. How to build an epithelial tree. Phys Biol 2022; 19. [DOI: 10.1088/1478-3975/ac9e38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022]
Abstract
Abstract
Nature has evolved a variety of mechanisms to build epithelial trees of diverse architectures within different organs and across species. Epithelial trees are elaborated through branch initiation and extension, and their morphogenesis ends with branch termination. Each of these steps of the branching process can be driven by the actions of epithelial cells themselves (epithelial-intrinsic mechanisms) or by the cells of their surrounding tissues (epithelial-extrinsic mechanisms). Here, we describe examples of how these mechanisms drive each stage of branching morphogenesis, drawing primarily from studies of the lung, kidney, salivary gland, mammary gland, and pancreas, all of which contain epithelial trees that form through collective cell behaviors. Much of our understanding of epithelial branching comes from experiments using mice, but we also include examples here from avian and reptilian models. Throughout, we highlight how distinct mechanisms are employed in different organs and species to build epithelial trees. We also highlight how similar morphogenetic motifs are used to carry out conserved developmental programs or repurposed to support novel ones. Understanding the unique strategies used by nature to build branched epithelia from across the tree of life can help to inspire creative solutions to problems in tissue engineering and regenerative medicine.
Collapse
|
34
|
Yue H, Yang X, Ji X, Wu X, Li G, Sang N. Time series of transcriptome analysis in entire lung development stages provide insights into the origin of NO 2 related lung diseases. ENVIRONMENT INTERNATIONAL 2022; 168:107454. [PMID: 35963059 DOI: 10.1016/j.envint.2022.107454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Lung growth is a critical window, when exposure to various pollutants can disturb the finely-tuned lung development and enhance risk of long-term structural and functional sequelae of lung. In this study, pregnant C57/6 mice were treated with NO2, and lungs of fetus/offspring were collected at different developmental windows and dynamic lung development was determined. The results showed that maternal NO2 exposure suppressed fetal weight, implying that fetal development can be disturbed. The time-series RNA-seq analysis of lungs showed that maternal NO2 exposure induced significant time-dependent changes in the expression profiles of genes associated with lung vein myocardium development in fetus/offspring. Most of these genes in NO2 exposure group were suppressed at middle gestation and at birth. Our results also indicated that the gene expressions of Nkx2.5 in NO2 exposure were suppressed to 0.27- and 0.44-fold of the corresponding Air group at E13.5 and PND1, and restored at later time points. This indicated that the transcription factor Nkx2.5 played an important role in abnormal lung development in fetus/offspring caused by maternal NO2 exposure. Importantly, gene expressions of lung vein myocardium development were related to transcription factors (TFs) and lung functions, and TFs showed similar trends with lung function. These results provide a comprehensive view of the adverse effects of maternal NO2 exposure on fetal lung development by uncovering molecular targets and related signaling pathways at the transcriptional level.
Collapse
Affiliation(s)
- Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Xiaowen Yang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Xiaotong Ji
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Xiaoyun Wu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
35
|
Peak KE, Mohr-Allen SR, Gleghorn JP, Varner VD. Focal sources of FGF-10 promote the buckling morphogenesis of the embryonic airway epithelium. Biol Open 2022; 11:bio059436. [PMID: 35979841 PMCID: PMC9536751 DOI: 10.1242/bio.059436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/11/2022] [Indexed: 12/01/2022] Open
Abstract
During airway branching morphogenesis, focal regions of FGF-10 expression in the pulmonary mesenchyme are thought to provide a local guidance cue, which promotes chemotactically the directional outgrowth of the airway epithelium. Here, however, we show that an ectopic source of FGF-10 induces epithelial buckling morphogenesis and the formation of multiple new supernumerary buds. FGF-10-induced budding can be modulated by altered epithelial tension and luminal fluid pressure. Increased tension suppresses the formation of ectopic branches, while a collapse of the embryonic airway promotes more expansive buckling and additional FGF-10-induced supernumerary buds. Our results indicate that a focal source of FGF-10 can promote epithelial buckling and suggest that the overall branching pattern cannot be explained entirely by the templated expression of FGF-10. Both FGF-10-mediated cell behaviors and exogenous mechanical forces must be integrated to properly shape the bronchial tree.
Collapse
Affiliation(s)
- Kara E Peak
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Shelby R Mohr-Allen
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Victor D Varner
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
36
|
Muscular hydraulics drive larva-polyp morphogenesis. Curr Biol 2022; 32:4707-4718.e8. [PMID: 36115340 DOI: 10.1016/j.cub.2022.08.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 07/14/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022]
Abstract
Development is a highly dynamic process in which organisms often experience changes in both form and behavior, which are typically coupled to each other. However, little is known about how organismal-scale behaviors such as body contractility and motility impact morphogenesis. Here, we use the cnidarian Nematostella vectensis as a developmental model to uncover a mechanistic link between organismal size, shape, and behavior. Using quantitative live imaging in a large population of developing animals, combined with molecular and biophysical experiments, we demonstrate that the muscular-hydraulic machinery that controls body movement also drives larva-polyp morphogenesis. We show that organismal size largely depends on cavity inflation through fluid uptake, whereas body shape is constrained by the organization of the muscular system. The generation of ethograms identifies different trajectories of size and shape development in sessile and motile animals, which display distinct patterns of body contractions. With a simple theoretical model, we conceptualize how pressures generated by muscular hydraulics can act as a global mechanical regulator that coordinates tissue remodeling. Altogether, our findings illustrate how organismal contractility and motility behaviors can influence morphogenesis.
Collapse
|
37
|
Patil LS, Varner VD. Toward Measuring the Mechanical Stresses Exerted by Branching Embryonic Airway Epithelial Explants in 3D Matrices of Matrigel. Ann Biomed Eng 2022; 50:1143-1157. [PMID: 35718813 PMCID: PMC9590229 DOI: 10.1007/s10439-022-02989-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 06/03/2022] [Indexed: 11/01/2022]
Abstract
Numerous organs in the bodies of animals, including the lung, kidney, and mammary gland, contain ramified networks of epithelial tubes. These structures arise during development via a process known as branching morphogenesis. Previous studies have shown that mechanical forces directly impact this process, but the patterns of mechanical stress exerted by branching embryonic epithelia are not well understood. This is, in part, owing to a lack of experimental tools. Traditional traction force microscopy assays rely on the use of compliant hydrogels with well-defined mechanical properties. Isolated embryonic epithelial explants, however, have only been shown to branch in three-dimensional matrices of reconstituted basement membrane protein, or Matrigel, a biomaterial with poorly characterized mechanical behavior, especially in the regime of large deformations. Here, to compute the traction stresses generated by branching epithelial explants, we quantified the finite-deformation constitutive behavior of gels of reconstituted basement membrane protein subjected to multi-axial mechanical loads. We then modified the mesenchyme-free assay for the ex vivo culture of isolated embryonic airway epithelial explants by suspending fluorescent microspheres within the surrounding gel and tracking their motion during culture. Surprisingly, the tracked bead motion was non-zero in regions of the gel far away from the explants, suggestive of passive swelling deformations within the matrix. To compute accurate traction stresses, these swelling deformations must be decomposed from those generated by the branching explants. We thus tracked the motion of beads suspended within cell-free matrices and quantified spatiotemporal patterns of gel swelling. Taken together, these passive swelling data can be combined with the measured mechanical properties of the gel to compute the traction forces exerted by intact embryonic epithelial explants.
Collapse
Affiliation(s)
- Lokesh S Patil
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Victor D Varner
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA.
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
38
|
Tsujikawa K, Saito K, Nagasaka A, Miyata T. Developmentally interdependent stretcher-compressor relationship between the embryonic brain and the surrounding scalp in the preosteogenic head. Dev Dyn 2022; 251:1107-1122. [PMID: 34997665 PMCID: PMC9306662 DOI: 10.1002/dvdy.451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND How developing brains mechanically interact with the surrounding embryonic scalp layers (ie, epidermal and mesenchymal) in the preosteogenic head remains unknown. Between embryonic day (E) 11 and E13 in mice, before ossification starts in the skull vault, the angle between the pons and the medulla decreases, raising the possibility that when the elastic scalp is directly pushed outward by the growing brain and thus stretched, it recoils inward in response, thereby confining and folding the brain. RESULTS Stress-release tests showed that the E11-13 scalp recoiled and that the in vivo prestretch prerequisite for this recoil was physically dependent on the brain (pressurization at 77-93 Pa) and on actomyosin and elastin within the scalp. In scalp-removed heads, brainstem folding was reduced, and the spreading of ink from the lateral ventricle to the spinal cord that occurred in scalp-intact embryos (with >5 μL injection) was lost, suggesting roles of the embryonic scalp in brain morphogenesis and cerebrospinal fluid homeostasis. Under nonstretched conditions, scalp cell proliferation declined, while the restretching of the shrunken scalp rescued scalp cell proliferation. CONCLUSIONS In the embryonic mouse head before ossification, a stretcher-compressor relationship elastically develops between the brain and the scalp, underlying their mechanically interdependent development.
Collapse
Affiliation(s)
- Koichiro Tsujikawa
- Department of Anatomy and Cell BiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Kanako Saito
- Department of Anatomy and Cell BiologyNagoya University Graduate School of MedicineNagoyaJapan
- Department of PhysiologyFujita Health UniversityToyoakeJapan
| | - Arata Nagasaka
- Division of AnatomyMeikai University School of DentistrySakadoJapan
| | - Takaki Miyata
- Department of Anatomy and Cell BiologyNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
39
|
Immunohistochemical Study of Smooth Muscle Cells and Elastin in Goose Lungs. FOLIA VETERINARIA 2022. [DOI: 10.2478/fv-2022-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
There are many differences (morphological, physiological and mechanical) between the lungs of birds and the lungs of mammals. Birds have a more efficient exchange of oxygen and carbon dioxide than mammals. In this article, we studied the presence of four antibodies (actin, α-smooth muscle actin, desmin and elastin) in the lungs of geese. Smooth muscle cells (SMCs) immunoreactive to actin, α-SMA and desmin were observed in the primary and secondary bronchi and arranged as a continuous layer. In the tertiary bronchus (parabronchus), immunoreactive cells on α-SMA and desmin were observed as aggregations of smooth muscle cells in the septum tips in atrial opening. A small number of α-SMA and desmin-positive cells were observed on the periphery of the parabronchi and between the air and blood capillaries. The elastic fibres were found in the large bronchi in connection with smooth muscle bands. In the parabronchi the elastic fibres form an elastic membrane lining the parabronchial lumen. In the blood vessels, the elastic fibres form the inner and outer elastic membrane. The individual elastic membranes connect neighbouring blood vessels.
Collapse
|
40
|
Guo H, Huang S, He B. Evidence for a Role of the Lateral Ectoderm in Drosophila Mesoderm Invagination. Front Cell Dev Biol 2022; 10:867438. [PMID: 35547820 PMCID: PMC9081377 DOI: 10.3389/fcell.2022.867438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/01/2022] [Indexed: 01/09/2023] Open
Abstract
The folding of two-dimensional epithelial sheets into specific three-dimensional structures is a fundamental tissue construction mechanism in animal development. A common mechanism that mediates epithelial folding is apical constriction, the active shrinking of cell apices driven by actomyosin contractions. It remains unclear whether cells outside of the constriction domain also contribute to folding. During Drosophila mesoderm invagination, ventrally localized mesoderm epithelium undergoes apical constriction and subsequently folds into a furrow. While the critical role of apical constriction in ventral furrow formation has been well demonstrated, it remains unclear whether, and if so, how the laterally localized ectodermal tissue adjacent to the mesoderm contributes to furrow invagination. In this study, we combine experimental and computational approaches to test the potential function of the ectoderm in mesoderm invagination. Through laser-mediated, targeted disruption of cell formation prior to gastrulation, we found that the presence of intact lateral ectoderm is important for the effective transition between apical constriction and furrow invagination in the mesoderm. In addition, using a laser-ablation approach widely used for probing tissue tension, we found that the lateral ectodermal tissues exhibit signatures of tissue compression when ablation was performed shortly before the onset of mesoderm invagination. These observations led to the hypothesis that in-plane compression from the surrounding ectoderm facilitates mesoderm invagination by triggering buckling of the mesoderm epithelium. In support of this notion, we show that the dynamics of tissue flow during mesoderm invagination displays characteristic of elastic buckling, and this tissue dynamics can be recapitulated by combining local apical constriction and global compression in a simulated elastic monolayer. We propose that Drosophila mesoderm invagination is achieved through epithelial buckling jointly mediated by apical constriction in the mesoderm and compression from the neighboring ectoderm.
Collapse
Affiliation(s)
| | | | - Bing He
- Department of Biological Sciences, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
41
|
Vignes H, Vagena-Pantoula C, Vermot J. Mechanical control of tissue shape: Cell-extrinsic and -intrinsic mechanisms join forces to regulate morphogenesis. Semin Cell Dev Biol 2022; 130:45-55. [PMID: 35367121 DOI: 10.1016/j.semcdb.2022.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022]
Abstract
During vertebrate development, cells must proliferate, move, and differentiate to form complex shapes. Elucidating the mechanisms underlying the molecular and cellular processes involved in tissue morphogenesis is essential to understanding developmental programmes. Mechanical stimuli act as a major contributor of morphogenetic processes and impact on cell behaviours to regulate tissue shape and size. Specifically, cell extrinsic physical forces are translated into biochemical signals within cells, through the process of mechanotransduction, activating multiple mechanosensitive pathways and defining cell behaviours. Physical forces generated by tissue mechanics and the extracellular matrix are crucial to orchestrate tissue patterning and cell fate specification. At the cell scale, the actomyosin network generates the cellular tension behind the tissue mechanics involved in building tissue. Thus, understanding the role of physical forces during morphogenetic processes requires the consideration of the contribution of cell intrinsic and cell extrinsic influences. The recent development of multidisciplinary approaches, as well as major advances in genetics, microscopy, and force-probing tools, have been key to push this field forward. With this review, we aim to discuss recent work on how tissue shape can be controlled by mechanical forces by focusing specifically on vertebrate organogenesis. We consider the influences of mechanical forces by discussing the cell-intrinsic forces (such as cell tension and proliferation) and cell-extrinsic forces (such as substrate stiffness and flow forces). We review recently described processes supporting the role of intratissue force generation and propagation in the context of shape emergence. Lastly, we discuss the emerging role of tissue-scale changes in tissue material properties, extrinsic forces, and shear stress on shape establishment.
Collapse
Affiliation(s)
- Hélène Vignes
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique UMR7104, Institut National de la Santé et de la Recherche Médicale U1258 and Université de Strasbourg, Illkirch, France
| | | | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique UMR7104, Institut National de la Santé et de la Recherche Médicale U1258 and Université de Strasbourg, Illkirch, France; Department of Bioengineering, Imperial College London, London, United Kingdom.
| |
Collapse
|
42
|
Goodwin K, Jaslove JM, Tao H, Zhu M, Hopyan S, Nelson CM. Patterning the embryonic pulmonary mesenchyme. iScience 2022; 25:103838. [PMID: 35252804 PMCID: PMC8889149 DOI: 10.1016/j.isci.2022.103838] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/13/2021] [Accepted: 01/25/2022] [Indexed: 12/31/2022] Open
Abstract
Smooth muscle guides the morphogenesis of several epithelia during organogenesis, including the mammalian airways. However, it remains unclear how airway smooth muscle differentiation is spatiotemporally patterned and whether it originates from transcriptionally distinct mesenchymal progenitors. Using single-cell RNA-sequencing of embryonic mouse lungs, we show that the pulmonary mesenchyme contains a continuum of cell identities, but no transcriptionally distinct progenitors. Transcriptional variability correlates with spatially distinct sub-epithelial and sub-mesothelial mesenchymal compartments that are regulated by Wnt signaling. Live-imaging and tension-sensors reveal compartment-specific migratory behaviors and cortical forces and show that sub-epithelial mesenchyme contributes to airway smooth muscle. Reconstructing differentiation trajectories reveals early activation of cytoskeletal and Wnt signaling genes. Consistently, Wnt activation induces the earliest stages of smooth muscle differentiation and local accumulation of mesenchymal F-actin, which influences epithelial morphology. Our single-cell approach uncovers the principles of pulmonary mesenchymal patterning and identifies a morphogenetically active mesenchymal layer that sculpts the airway epithelium. The embryonic lung mesenchyme is organized into spatially distinct compartments Migratory behaviors and cortical forces differ between compartments Diffusion analysis recapitulates airway smooth muscle differentiation The early stages of smooth muscle differentiation influence airway branching
Collapse
Affiliation(s)
- Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Jacob M. Jaslove
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Graduate School of Biomedical Sciences, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Hirotaka Tao
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Min Zhu
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
| | - Sevan Hopyan
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
- Division of Orthopaedic Surgery, Hospital for Sick Children and University of Toronto, Toronto M5G 1X8, Canada
| | - Celeste M. Nelson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
- Corresponding author
| |
Collapse
|
43
|
Farahani PE, Nelson CM. Revealing epithelial morphogenetic mechanisms through live imaging. Curr Opin Genet Dev 2022; 72:61-68. [PMID: 34864332 PMCID: PMC8860867 DOI: 10.1016/j.gde.2021.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/08/2021] [Accepted: 10/20/2021] [Indexed: 02/03/2023]
Abstract
Epithelial morphogenesis is guided by mechanical forces and biochemical signals that vary spatiotemporally. As many morphogenetic events are driven by rapid cellular processes, understanding morphogenesis requires monitoring development in real time. Here, we discuss how live-imaging approaches can help identify morphogenetic mechanisms otherwise missed in static snapshots of development. We begin with a summary of live-imaging strategies, including recent advances that push the limits of spatiotemporal resolution and specimen size. We then describe recent efforts that employ live imaging to uncover morphogenetic mechanisms. We conclude by discussing how information collected from live imaging can be enhanced by genetically encoded biosensors and spatiotemporal perturbation techniques to determine the dynamics of patterning of developmental signals and their importance for guiding morphogenesis.
Collapse
Affiliation(s)
- Payam E Farahani
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Celeste M Nelson
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, United States; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States.
| |
Collapse
|
44
|
Jaslove JM, Goodwin K, Sundarakrishnan A, Spurlin JW, Mao S, Košmrlj A, Nelson CM. Transmural pressure signals through retinoic acid to regulate lung branching. Development 2022; 149:274047. [PMID: 35051272 PMCID: PMC8917413 DOI: 10.1242/dev.199726] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 12/10/2021] [Indexed: 01/22/2023]
Abstract
During development, the mammalian lung undergoes several rounds of branching, the rate of which is tuned by the relative pressure of the fluid within the lumen of the lung. We carried out bioinformatics analysis of RNA-sequencing of embryonic mouse lungs cultured under physiologic or sub-physiologic transmural pressure and identified transcription factor-binding motifs near genes whose expression changes in response to pressure. Surprisingly, we found retinoic acid (RA) receptor binding sites significantly overrepresented in the promoters and enhancers of pressure-responsive genes. Consistently, increasing transmural pressure activates RA signaling, and pharmacologically inhibiting RA signaling decreases airway epithelial branching and smooth muscle wrapping. We found that pressure activates RA signaling through the mechanosensor Yap. A computational model predicts that mechanical signaling through Yap and RA affects lung branching by altering the balance between epithelial proliferation and smooth muscle wrapping, which we test experimentally. Our results reveal that transmural pressure signals through RA to balance the relative rates of epithelial growth and smooth muscle differentiation in the developing mouse lung and identify RA as a previously unreported component in the mechanotransduction machinery of embryonic tissues.
Collapse
Affiliation(s)
- Jacob M. Jaslove
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,Graduate School of Biomedical Sciences, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Aswin Sundarakrishnan
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - James W. Spurlin
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA,Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Sheng Mao
- Department of Mechanics and Engineering Science, BIC-ESAT, College of Engineering, Peking University, Beijing 100871, People's Republic of China,Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Andrej Košmrlj
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA,Princeton Institute for the Science & Technology of Materials, Princeton, NJ 08544, USA
| | - Celeste M. Nelson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA,Author for correspondence ()
| |
Collapse
|
45
|
Palmer MA, Nerger BA, Goodwin K, Sudhakar A, Lemke SB, Ravindran PT, Toettcher JE, Košmrlj A, Nelson CM. Stress ball morphogenesis: How the lizard builds its lung. SCIENCE ADVANCES 2021; 7:eabk0161. [PMID: 34936466 PMCID: PMC8694616 DOI: 10.1126/sciadv.abk0161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
The function of the lung is closely coupled to its structural anatomy, which varies greatly across vertebrates. Although architecturally simple, a complex pattern of airflow is thought to be achieved in the lizard lung due to its cavernous central lumen and honeycomb-shaped wall. We find that the wall of the lizard lung is generated from an initially smooth epithelial sheet, which is pushed through holes in a hexagonal smooth muscle meshwork by forces from fluid pressure, similar to a stress ball. Combining transcriptomics with time-lapse imaging reveals that the hexagonal meshwork self-assembles in response to circumferential and axial stresses downstream of pressure. A computational model predicts the pressure-driven changes in epithelial topology, which we probe using optogenetically driven contraction of 3D-printed engineered muscle. These results reveal the physical principles used to sculpt the unusual architecture of the lizard lung, which could be exploited as a novel strategy to engineer tissues.
Collapse
Affiliation(s)
- Michael A. Palmer
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Bryan A. Nerger
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Anvitha Sudhakar
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Sandra B. Lemke
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | | | - Jared E. Toettcher
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Andrej Košmrlj
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
- Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, NJ 08544,USA
| | - Celeste M. Nelson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
46
|
Yang Y, Paivinen P, Xie C, Krup AL, Makela TP, Mostov KE, Reiter JF. Ciliary Hedgehog signaling patterns the digestive system to generate mechanical forces driving elongation. Nat Commun 2021; 12:7186. [PMID: 34893605 PMCID: PMC8664829 DOI: 10.1038/s41467-021-27319-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/08/2021] [Indexed: 11/24/2022] Open
Abstract
How tubular organs elongate is poorly understood. We found that attenuated ciliary Hedgehog signaling in the gut wall impaired patterning of the circumferential smooth muscle and inhibited proliferation and elongation of developing intestine and esophagus. Similarly, ablation of gut-wall smooth muscle cells reduced lengthening. Disruption of ciliary Hedgehog signaling or removal of smooth muscle reduced residual stress within the gut wall and decreased activity of the mechanotransductive effector YAP. Removing YAP in the mesenchyme also reduced proliferation and elongation, but without affecting smooth muscle formation, suggesting that YAP interprets the smooth muscle-generated force to promote longitudinal growth. Additionally, we developed an intestinal culture system that recapitulates the requirements for cilia and mechanical forces in elongation. Pharmacologically activating YAP in this system restored elongation of cilia-deficient intestines. Thus, our results reveal that ciliary Hedgehog signaling patterns the circumferential smooth muscle to generate radial mechanical forces that activate YAP and elongate the gut.
Collapse
Affiliation(s)
- Ying Yang
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Pekka Paivinen
- iCAN Digital Precision Cancer Medicine Flagship, Research Programs Unit, Faculty of Medicine and HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Chang Xie
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Alexis Leigh Krup
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Tomi P Makela
- iCAN Digital Precision Cancer Medicine Flagship, Research Programs Unit, Faculty of Medicine and HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Keith E Mostov
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
47
|
Rippa AL, Alpeeva EV, Vasiliev AV, Vorotelyak EA. Alveologenesis: What Governs Secondary Septa Formation. Int J Mol Sci 2021; 22:ijms222212107. [PMID: 34829987 PMCID: PMC8618598 DOI: 10.3390/ijms222212107] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/30/2022] Open
Abstract
The simplification of alveoli leads to various lung pathologies such as bronchopulmonary dysplasia and emphysema. Deep insight into the process of emergence of the secondary septa during development and regeneration after pneumonectomy, and into the contribution of the drivers of alveologenesis and neo-alveolarization is required in an efficient search for therapeutic approaches. In this review, we describe the formation of the gas exchange units of the lung as a multifactorial process, which includes changes in the actomyosin cytoskeleton of alveocytes and myofibroblasts, elastogenesis, retinoic acid signaling, and the contribution of alveolar mesenchymal cells in secondary septation. Knowledge of the mechanistic context of alveologenesis remains incomplete. The characterization of the mechanisms that govern the emergence and depletion of αSMA will allow for an understanding of how the niche of fibroblasts is changing. Taking into account the intense studies that have been performed on the pool of lung mesenchymal cells, we present data on the typing of interstitial fibroblasts and their role in the formation and maintenance of alveoli. On the whole, when identifying cell subpopulations in lung mesenchyme, one has to consider the developmental context, the changing cellular functions, and the lability of gene signatures.
Collapse
|
48
|
Jin Y, Liu L, Yu P, Lin F, Shi X, Guo J, Che B, Duan Y, Li J, Pan Y, Luo M, Deng L. Emergent Differential Organization of Airway Smooth Muscle Cells on Concave and Convex Tubular Surface. Front Mol Biosci 2021; 8:717771. [PMID: 34651014 PMCID: PMC8505749 DOI: 10.3389/fmolb.2021.717771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/13/2021] [Indexed: 02/05/2023] Open
Abstract
Airway smooth muscle cells (ASMCs) exist in a form of helical winding bundles within the bronchial airway wall. Such tubular tissue provides cells with considerable curvature as a physical constraint, which is widely thought as an important determinant of cell behaviors. However, this process is difficult to mimic in the conventional planar cell culture system. Here, we report a method to develop chips with cell-scale tubular (concave and convex) surfaces from fused deposition modeling 3D printing to explore how ASMCs adapt to the cylindrical curvature for morphogenesis and function. Results showed that ASMCs self-organized into two distinctively different patterns of orientation on the concave and convex surfaces, eventually aligning either invariably perpendicular to the cylinder axis on the concave surface or curvature-dependently angled on the convex surface. Such oriented alignments of the ASMCs were maintained even when the cells were in dynamic movement during migration and spreading along the tubular surfaces. Furthermore, the ASMCs underwent a phenotype transition on the tubular (both concave and convex) surfaces, significantly reducing contractility as compared to ASMCs cultured on a flat surface, which was reflected in the changes of proliferation, migration and gene expression of contractile biomarkers. Taken together, our study revealed a curvature-induced pattern formation and functional modulation of ASMCs in vitro, which is not only important to better understanding airway smooth muscle pathophysiology, but may also be useful in the development of new techniques for airway disease diagnosis and therapy such as engineering airway tissues or organoids.
Collapse
Affiliation(s)
- Yang Jin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Lei Liu
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, China
| | - Peili Yu
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, China
| | - Feng Lin
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Xiaohao Shi
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, China
| | - Jia Guo
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, China
| | - Bo Che
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, China
| | - Yiyuan Duan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jingjing Li
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, China
| | - Yan Pan
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, China
| | - Mingzhi Luo
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, China
| | - Linhong Deng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China.,Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, China
| |
Collapse
|
49
|
Zhu Y, Deng S, Zhao X, Xia G, Zhao R, Chan HF. Deciphering and engineering tissue folding: A mechanical perspective. Acta Biomater 2021; 134:32-42. [PMID: 34325076 DOI: 10.1016/j.actbio.2021.07.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 12/19/2022]
Abstract
The folding of tissues/organs into complex shapes is a common phenomenon that occurs in organisms such as animals and plants, and is both structurally and functionally important. Deciphering the process of tissue folding and applying this knowledge to engineer folded systems would significantly advance the field of tissue engineering. Although early studies focused on investigating the biochemical signaling events that occur during the folding process, the physical or mechanical aspects of the process have received increasing attention in recent years. In this review, we will summarize recent findings on the mechanical aspects of folding and introduce strategies by which folding can be controlled in vitro. Emphasis will be placed on the folding events triggered by mechanical effects at the cellular and tissue levels and on the different cell- and biomaterial-based approaches used to recapitulate folding. Finally, we will provide a perspective on the development of engineering tissue folding toward preclinical and clinical translation. STATEMENT OF SIGNIFICANCE: Tissue folding is a common phenomenon in a variety of organisms including human, and has been shown to serve important structural and functional roles. Understanding how folding forms and applying the concept in tissue engineering would represent an advance of the research field. Recently, the physical or mechanical aspect of tissue folding has gained increasing attention. In this review, we will cover recent findings of the mechanical aspect of folding mechanisms, and introduce strategies to control the folding process in vitro. We will also provide a perspective on the future development of the field towards preclinical and clinical translation of various bio fabrication technologies.
Collapse
Affiliation(s)
- Yanlun Zhu
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Shuai Deng
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xiaoyu Zhao
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Guanggai Xia
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai 200233, China
| | - Ruike Zhao
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China; Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, Hong Kong SAR, China.
| |
Collapse
|
50
|
Abstract
Cell packing - the spatial arrangement of cells - determines the shapes of organs. Recently, investigations of organ development in a variety of model organisms have uncovered cellular mechanisms that are used by epithelial tissues to change cell packing, and thereby their shapes, to generate functional architectures. Here, we review these cellular mechanisms across a wide variety of developmental processes in vertebrates and invertebrates and identify a set of common motifs in the morphogenesis toolbox that, in combination, appear to allow any change in tissue shape. We focus on tissue elongation, folding and invagination, and branching. We also highlight how these morphogenetic processes are achieved by cell-shape changes, cell rearrangements, and oriented cell division. Finally, we describe approaches that have the potential to engineer three-dimensional tissues for both basic science and translational purposes. This review provides a framework for future analyses of how tissues are shaped by the dynamics of epithelial cell packing.
Collapse
Affiliation(s)
- Sandra B Lemke
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Celeste M Nelson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|