1
|
Chen H, LaFlamme CW, Wang YD, Blan AW, Koehler N, Mendonca Moraes R, Olszewski AR, Almanza Fuerte EP, Bonkowski ES, Bajpai R, Lavado A, Pruett-Miller SM, Mefford HC. Patient-derived models of UBA5-associated encephalopathy identify defects in neurodevelopment and highlight potential therapeutic avenues. Sci Transl Med 2025; 17:eadn8417. [PMID: 40333994 DOI: 10.1126/scitranslmed.adn8417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/17/2025] [Accepted: 04/16/2025] [Indexed: 05/09/2025]
Abstract
UBA5 encodes for the E1 enzyme of the UFMylation cascade, which plays an essential role in endoplasmic reticulum (ER) homeostasis. The clinical phenotypes of UBA5-associated encephalopathy include developmental delays, epilepsy, and intellectual disability. To date, there is no humanized neuronal model to study the cellular and molecular consequences of UBA5 pathogenic variants. We developed and characterized patient-derived cortical organoid cultures from two patients with compound heterozygous variants in UBA5. Both shared the same missense variant, which encodes a hypomorphic allele (p.A371T), along with a nonsense variant (p.G267* or p.A123fs*4). Single-cell RNA sequencing of 100-day organoids identified defects in GABAergic interneuron development. We demonstrated aberrant neuronal firing and reduction in size of patient-derived organoids. Mechanistically, we showed that ER homeostasis is perturbed along with an exacerbated unfolded protein response pathway in engineered U87-MG cells and patient-derived organoids expressing UBA5 pathogenic variants. We also assessed two potential therapeutic modalities that augmented UBA5 protein abundance to rescue aberrant molecular and cellular phenotypes. We assessed SINEUP, a long noncoding RNA that augments translation efficiency, and CRISPRa, a modified CRISPR-Cas9 approach to augment transcription efficiency to increase UBA5 protein production. Our study provides a humanized model that allows further investigations of UBA5 variants in the brain and highlights promising approaches to alleviate cellular aberrations for this rare, developmental disorder.
Collapse
Affiliation(s)
- Helen Chen
- Center for Pediatric Neurological Disease Research, Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Christy W LaFlamme
- Center for Pediatric Neurological Disease Research, Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Aidan W Blan
- Center for Pediatric Neurological Disease Research, Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Nikki Koehler
- Center for Pediatric Neurological Disease Research, Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Renata Mendonca Moraes
- Center for Pediatric Neurological Disease Research, Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Athena R Olszewski
- Center for Pediatric Neurological Disease Research, Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Edith P Almanza Fuerte
- Center for Pediatric Neurological Disease Research, Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Emily S Bonkowski
- Center for Pediatric Neurological Disease Research, Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Richa Bajpai
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Alfonso Lavado
- Center for Pediatric Neurological Disease Research, Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Heather C Mefford
- Center for Pediatric Neurological Disease Research, Pediatric Translational Neuroscience Initiative, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
2
|
Hermann J, Borteçen T, Kalis R, Kowar A, Pechincha C, Vogt V, Schneider M, Helm D, Krijgsveld J, Loayza-Puch F, Zuber J, Palm W. mTORC1 cooperates with tRNA wobble modification to sustain the protein synthesis machinery. Nat Commun 2025; 16:4201. [PMID: 40328729 PMCID: PMC12056009 DOI: 10.1038/s41467-025-59185-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/14/2025] [Indexed: 05/08/2025] Open
Abstract
Synthesizing the cellular proteome is a demanding process that is regulated by numerous signaling pathways and RNA modifications. How precisely these mechanisms control the protein synthesis machinery to generate specific proteome subsets remains unclear. Here, through genome-wide CRISPR screens we identify genes that enable mammalian cells to adapt to inactivation of the kinase mechanistic target of rapamycin complex 1 (mTORC1), the central driver of protein synthesis. When mTORC1 is inactive, enzymes that modify tRNAs at wobble uridines (U34-enzymes), Elongator and Ctu1/2, become critically essential for cell growth in vitro and in tumors. By integrating quantitative nascent proteomics, steady-state proteomics and ribosome profiling, we demonstrate that the loss of U34-enzymes particularly impairs the synthesis of ribosomal proteins. However, when mTORC1 is active, this biosynthetic defect only mildly affects steady-state protein abundance. By contrast, simultaneous suppression of mTORC1 and U34-enzymes depletes cells of ribosomal proteins, globally inhibiting translation. Thus, mTORC1 cooperates with tRNA U34-enzymes to sustain the protein synthesis machinery and support the high translational requirements of cell growth.
Collapse
Affiliation(s)
- Julia Hermann
- Division of Cell Signaling and Metabolism, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Toman Borteçen
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Robert Kalis
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
| | - Alexander Kowar
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
- Translational Control and Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Catarina Pechincha
- Division of Cell Signaling and Metabolism, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Vivien Vogt
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
| | - Martin Schneider
- Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominic Helm
- Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fabricio Loayza-Puch
- Translational Control and Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
| | - Wilhelm Palm
- Division of Cell Signaling and Metabolism, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
3
|
Yang C, Du Z, Mei L, Chen X, Liao Y, Ge L, Kang J, Gu Z, Fan X, Xu H. Influences of lead-based perovskite nanoparticles exposure on early development of human retina. J Nanobiotechnology 2025; 23:144. [PMID: 40001141 PMCID: PMC11863764 DOI: 10.1186/s12951-025-03245-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Lead-based perovskite nanoparticles (Pb-PNPs) are widely utilized in the photovoltaic industry. However, due to their poor stability and high water solubility, lead often gets released into the environment, which can negatively impact the development of the central nervous system (CNS). As an extension of the CNS, the effects and mechanisms of Pb-PNPs on human retinal development have remained elusive. OBJECTIVES We aimed to investigate the effects of Pb-PNPs on human retinal development. METHODS Human embryonic stem cell-derived three-dimensional floating retinal organoids (hEROs) were established to simulate early retinal development. Using immunofluorescence staining, biological-transmission electron microscopy analysis, inductively coupled plasma-mass spectrometry, two-dimensional element distribution detection, and RNA sequencing, we evaluated and compared the toxicity of CsPbBr3 nanoparticles (a representative substance of Pb-PNPs) and Pb(AC)2 and investigated the toxicity-reducing effects of SiO2 encapsulation. RESULTS Our findings revealed that CsPbBr3 nanoparticles exposure resulted in a concentration-dependent decrease in the area and thickness of the neural retina in hEROs. Additionally, CsPbBr3 nanoparticles exposure hindered cell proliferation and promoted cell apoptosis while suppressing the retinal ganglion cell differentiation, an alteration that further led to the disruption of retinal structure. By contrast, CsPbBr3 nanoparticles exposure to hEROs was slightly less toxic than Pb(AC)2. Mechanistically, CsPbBr3 nanoparticles exposure activated endoplasmic reticulum stress, which promoted apoptosis by up-regulating Caspase-3 and inhibited retinal ganglion cell development by down-regulating Pax6. Interestingly, after coating CsPbBr3 nanoparticles with silica, it exhibited lower toxicities to hEROs by alleviating endoplasmic reticulum stress. CONCLUSION Overall, our study provides evidence of Pb-PNPs-induced developmental toxicity in the human retina, explores the potential mechanisms of CsPbBr3 nanoparticles' developmental toxicity, and suggests a feasible strategy to reduce toxicity.
Collapse
Affiliation(s)
- Cao Yang
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Zhulin Du
- Key Laboratory of Extreme Environmental Medicine Ministry of Education, Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Linqiang Mei
- Institute of High Energy Physics and National Center for Nanoscience and Technology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xia Chen
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - You Liao
- Institute of High Energy Physics and National Center for Nanoscience and Technology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingling Ge
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Jiahui Kang
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Zhanjun Gu
- Institute of High Energy Physics and National Center for Nanoscience and Technology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Chinese Academy of Sciences, Beijing, 100049, China.
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiaotang Fan
- Key Laboratory of Extreme Environmental Medicine Ministry of Education, Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Haiwei Xu
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China.
| |
Collapse
|
4
|
Uchewa OO, Ibegbu AO, Okafor SO, Nwafor JA, Egwu OA. Regulatory roles of eugenol in paraquat-altered SNCA/LZTS3/MAPT in the cerebellum of Wistar rats. Lab Anim Res 2025; 41:2. [PMID: 39810258 PMCID: PMC11734554 DOI: 10.1186/s42826-025-00236-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/17/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND The Microtubules-associated protein tau (MAPT), alpha-synuclein (SNCA), and leucine zipper tumor suppressor 3 (LZTS3) genes are implicated in neurodegeneration and tumor suppression, respectively. This study investigated the regulatory roles of eugenol on paraquat-altered genes. RESULTS Forty male Wistar rats divided into five groups of eight rats were used. The control group received normal saline; the Paraquat (PQ)-untreated group received only Paraquat. The low dose of eugenol was 200 mg/kg, the medium dose of eugenol was 400 mg/kg, and the high dose of eugenol was 600 mg/kg. All groups except the control group received 10 mg/kg of PQ orally for 14 days at one-day intervals, allowing PQ in the rats for 28 days. Eugenol treatment started on the 29th and lasted 14 days. Motor impairments were determined using wire string and beam-walk; biomarkers were estimated using cerebellar homogenates, while frozen cerebellum was used to study LZTS3, MAPT, and SNCA gene expression. LZTS3 was significantly suppressed in the PQ-untreated group and highly expressed in the eugenol-treated group. The MAPT and SNCA genes were overexpressed in the PQ-untreated group compared to the control group. Eugenol significantly decreased the expression of these genes compared to that in the PQ-untreated group. Antioxidants were reduced considerably, and oxidative stress markers were increased significantly, which could have caused increased protein fibrillation and reduced limb functionality. Histology revealed that eugenol mitigated the alterations caused by Paraquat. CONCLUSIONS PQ can enhance tumor expression in addition to causing neurotoxicity, which decreases limb functionality, while eugenol, an antioxidant, can mitigate the effects of PQ.
Collapse
Affiliation(s)
- Obinna Onwe Uchewa
- Anatomy Department, Faculty of Basic Medical Sciences, Alex Ekwueme, Federal University, Ndufu-Alike, Ebonyi State, Nigeria.
| | - Augustine Oseloka Ibegbu
- Anatomy Department, Faculty of Basic Medical Sciences, Alex Ekwueme, Federal University, Ndufu-Alike, Ebonyi State, Nigeria
| | - Samuel Okoronkwo Okafor
- Anatomy Department, Faculty of Basic Medical Sciences, David Umahi Federal University of Health Sciences, Uburu, Ebonyi State, Nigeria
| | - Joseph Alo Nwafor
- Anatomy Department, Faculty of Basic Medical Sciences, Alex Ekwueme, Federal University, Ndufu-Alike, Ebonyi State, Nigeria
| | - Ogugua Augustine Egwu
- Anatomy Department, Faculty of Basic Medical Sciences, Alex Ekwueme, Federal University, Ndufu-Alike, Ebonyi State, Nigeria
| |
Collapse
|
5
|
Di Michele M, Attina A, Roux PF, Tabet I, Laguesse S, Florido J, Houdeville M, Choquet A, Encislai B, Arena G, De Blasio C, Wendling O, Frenois FX, Papon L, Stuani L, Fuentes M, Jahannault Talignani C, Rousseau M, Guégan J, Buscail Y, Dupré P, Michaud HA, Rodier G, Bellvert F, Kulyk H, Ferraro Peyret C, Mathieu H, Close P, Rapino F, Chaveroux C, Pirot N, Rubio L, Torro A, Sorg T, Ango F, Hirtz C, Compan V, Lebigot E, Legati A, Ghezzi D, Nguyen L, David A, Sardet C, Lacroix M, Le Cam L. E4F1 coordinates pyruvate metabolism and the activity of the elongator complex to ensure translation fidelity during brain development. Nat Commun 2025; 16:67. [PMID: 39747033 PMCID: PMC11696611 DOI: 10.1038/s41467-024-55444-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
Pyruvate metabolism defects lead to severe neuropathies such as the Leigh syndrome (LS) but the molecular mechanisms underlying neuronal cell death remain poorly understood. Here, we unravel a connection between pyruvate metabolism and the regulation of the epitranscriptome that plays an essential role during brain development. Using genetically engineered mouse model and primary neuronal cells, we identify the transcription factor E4F1 as a key coordinator of AcetylCoenzyme A (AcCoA) production by the pyruvate dehydrogenase complex (PDC) and its utilization as an essential co-factor by the Elongator complex to acetylate tRNAs at the wobble position uridine 34 (U34). E4F1-mediated direct transcriptional regulation of Dlat and Elp3, two genes encoding key subunits of the PDC and of the Elongator complex, respectively, ensures proper translation fidelity and cell survival in the central nervous system (CNS) during mouse embryonic development. Furthermore, analysis of PDH-deficient cells highlight a crosstalk linking the PDC to ELP3 expression that is perturbed in LS patients.
Collapse
Affiliation(s)
- Michela Di Michele
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France.
- Equipe labélisée Ligue Contre le Cancer, Paris, France.
- Institut des Biomolécules Max Mousseron (IBMM), UMR-5247, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Aurore Attina
- IRMB-PPC, Univ. Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - Pierre-François Roux
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Imène Tabet
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Sophie Laguesse
- Laboratory of Molecular Regulation of Neurogenesis, GIGA Institute, University of Liège, CHU Sart Tilman, 4000, Liège, Belgium
| | - Javier Florido
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Morane Houdeville
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Armelle Choquet
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Betty Encislai
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Giuseppe Arena
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Carlo De Blasio
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Olivia Wendling
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), Illkirch, France
| | | | - Laura Papon
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Lucille Stuani
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Maryse Fuentes
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Céline Jahannault Talignani
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Mélanie Rousseau
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Justine Guégan
- Data Analysis Core Platform, Institut du Cerveau - Paris Brain Institute - ICM, Sorbonne Université, INSERM, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Yoan Buscail
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- BioCampus, RHEM, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Pierrick Dupré
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Henri-Alexandre Michaud
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- SIMCaT plateform, Institut de Recherche en Cancérologie de Montpellier (IRCM), Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Geneviève Rodier
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Floriant Bellvert
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
- Toulouse Biotechnologie Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Hanna Kulyk
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
- Toulouse Biotechnologie Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Carole Ferraro Peyret
- Univ. Lyon, Claude Bernard University, LBTI UMR CNRS 5305, Faculty of Pharmacy, Lyon, France
- Hospices Civils de Lyon, AURAGEN, Edouard Herriot Hospital, Lyon, France
| | - Hugo Mathieu
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Pierre Close
- Laboratory of Cancer Signaling, GIGA-Institute, University of Liège, 4000, Liège, Belgium
- WELBIO department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Francesca Rapino
- Laboratory of Cancer Signaling, GIGA-Institute, University of Liège, 4000, Liège, Belgium
| | - Cédric Chaveroux
- Univ. Lyon, Claude Bernard University, LBTI UMR CNRS 5305, Faculty of Pharmacy, Lyon, France
| | - Nelly Pirot
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- BioCampus, RHEM, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Lucie Rubio
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Adeline Torro
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Tania Sorg
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), Illkirch, France
| | - Fabrice Ango
- Institut des Neurosciences de Montpellier, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Christophe Hirtz
- IRMB-PPC, Univ. Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - Vincent Compan
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Elise Lebigot
- Biochemistry Department, Bicêtre Hospital, APHP Paris Saclay, Le Kremlin Bicêtre, France
| | - Andrea Legati
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Laurent Nguyen
- Laboratory of Molecular Regulation of Neurogenesis, GIGA Institute, University of Liège, CHU Sart Tilman, 4000, Liège, Belgium
- WELBIO department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Alexandre David
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- IRMB-PPC, Univ. Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - Claude Sardet
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Matthieu Lacroix
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France.
- Equipe labélisée Ligue Contre le Cancer, Paris, France.
| | - Laurent Le Cam
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France.
- Equipe labélisée Ligue Contre le Cancer, Paris, France.
| |
Collapse
|
6
|
Schultz A, Albertos-Arranz H, Sáez XS, Morgan J, Darland DC, Gonzalez-Duarte A, Kaufmann H, Mendoza-Santiesteban CE, Cuenca N, Lefcort F. Neuronal and glial cell alterations involved in the retinal degeneration of the familial dysautonomia optic neuropathy. Glia 2024; 72:2268-2294. [PMID: 39228100 DOI: 10.1002/glia.24612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 07/27/2024] [Accepted: 08/19/2024] [Indexed: 09/05/2024]
Abstract
Familial dysautonomia (FD) is a rare genetic neurodevelopmental and neurodegenerative disorder. In addition to the autonomic and peripheral sensory neuropathies that challenge patient survival, one of the most debilitating symptoms affecting patients' quality of life is progressive blindness resulting from the steady loss of retinal ganglion cells (RGCs). Within the FD community, there is a concerted effort to develop treatments to prevent the loss of RGCs. However, the mechanisms underlying the death of RGCs are not well understood. To study the mechanisms underlying RGC death, Pax6-cre;Elp1loxp/loxp male and female mice and postmortem retinal tissue from an FD patient were used to explore the neuronal and non-neuronal cellular pathology associated with the FD optic neuropathy. Neurons, astrocytes, microglia, Müller glia, and endothelial cells were investigated using a combination of histological analyses. We identified a novel disruption of cellular homeostasis and gliosis in the FD retina. Beginning shortly after birth and progressing with age, the FD retina is marked by astrogliosis and perturbations in microglia, which coincide with vascular remodeling. These changes begin before the onset of RGC death, suggesting alterations in the retinal neurovascular unit may contribute to and exacerbate RGC death. We reveal for the first time that the FD retina pathology includes reactive gliosis, increased microglial recruitment to the ganglion cell layer (GCL), disruptions in the deep and superficial vascular plexuses, and alterations in signaling pathways. These studies implicate the neurovascular unit as a disease-modifying target for therapeutic interventions in FD.
Collapse
Affiliation(s)
- Anastasia Schultz
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Henar Albertos-Arranz
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Xavier Sánchez Sáez
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Jamie Morgan
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Diane C Darland
- Department of Biology, University of North Dakota, Grand Forks, North Dakota, USA
| | | | - Horacio Kaufmann
- Department of Neurology, NYU Langone Health, New York, New York, USA
| | - Carlos E Mendoza-Santiesteban
- Department of Neurology, NYU Langone Health, New York, New York, USA
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Frances Lefcort
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
7
|
Del-Pozo-Rodriguez J, Tilly P, Lecat R, Vaca HR, Mosser L, Brivio E, Balla T, Gomes MV, Ramos-Morales E, Schwaller N, Salinas-Giegé T, VanNoy G, England EM, Lovgren AK, O'Leary M, Chopra M, Ojeda NM, Toosi MB, Eslahi A, Alerasool M, Mojarrad M, Pais LS, Yeh RC, Gable DL, Hashem MO, Abdulwahab F, Alzaidan H, Aldhalaan H, Tous E, Alsagheir A, Alowain M, Tamim A, Alfayez K, Alhashem A, Alnuzha A, Kamel M, Al-Awam BS, Elnaggar W, Almenabawy N, O'Donnell-Luria A, Neil JE, Gleeson JG, Walsh CA, Alkuraya FS, AlAbdi L, Elkhateeb N, Selim L, Srivastava S, Nedialkova DD, Drouard L, Romier C, Bayam E, Godin JD. Neurodevelopmental disorders associated variants in ADAT3 disrupt the activity of the ADAT2/ADAT3 tRNA deaminase complex and impair neuronal migration. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.01.24303485. [PMID: 38496416 PMCID: PMC10942499 DOI: 10.1101/2024.03.01.24303485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The ADAT2/ADAT3 complex catalyzes the adenosine to inosine modification at the wobble position of eukaryotic tRNAs. Mutations in ADAT3 , the catalytically inactive subunit of the ADAT2/ADAT3 complex, have been identified in patients presenting with severe neurodevelopmental disorders (NDDs). Yet, the physiological function of ADAT2/ADAT3 complex during brain development remains totally unknown. Here we showed that maintaining a proper level of ADAT2/ADAT3 catalytic activity is required for correct radial migration of projection neurons in the developing mouse cortex. In addition, we not only reported 20 new NDD patients carrying biallelic variants in ADAT3 but also deeply characterized the impact of those variants on ADAT2/ADAT3 structure, biochemical properties, enzymatic activity and tRNAs editing and abundance. We demonstrated that all the identified variants alter both the abundance and the activity of the complex leading to a significant decrease of I 34 with direct consequence on their steady-state. Using in vivo complementation assays, we correlated the severity of the migration phenotype with the degree of the loss of function caused by the variants. Altogether, our results indicate a critical role of ADAT2/ADAT3 during cortical development and provide cellular and molecular insights into the pathogenicity of ADAT3-related neurodevelopmental disorder.
Collapse
|
8
|
Chen S, You J, Zhou X, Li Y, Liu F, Teng Y, Teng H, Li Y, Liang D, Li Z, Wu L. PIGK defects induce apoptosis in Purkinje cells and acceleration of neuroectodermal differentiation. Cell Death Dis 2024; 15:808. [PMID: 39521780 PMCID: PMC11550446 DOI: 10.1038/s41419-024-07201-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Biallelic mutations in PIGK cause GPI biosynthesis defect 22 (GPIBD22), characterized with developmental delay, hypotonia, and cerebellar atrophy. The understanding of the underlying causes is limited due to the lack of suitable disease models. To address this gap, we generated a mouse model with PIGK deficits, specifically in Purkinje cells (Pcp2-cko) and an induced pluripotent stem cell (iPSC) model using the c.87dupT mutant (KI) found in GPIBD22 patients. Pcp2-cko mice demonstrated cerebellar atrophy, ataxia and progressive Purkinje cells loss which were accompanied by increased apoptosis and neuroinflammation. Similarly, KI iPSCs exhibited increased apoptosis and accelerated neural rosette formation, indicating that PIGK defects could impact early neural differentiation that confirmed by the RNA-Seq results of neural progenitor cells (NPCs). The increased apoptosis and accelerated NPC differentiation in KI iPSCs are associated with excessive unfolded protein response (UPR) pathway activation, and can be rescued by UPR pathway inhibitor. Our study reveals potential pathogenic mechanism of GPIBD22 and providing new insights into the therapeutic strategy for GPIBD.
Collapse
Affiliation(s)
- Siyi Chen
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE KeyLab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Jiali You
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE KeyLab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Xiaowei Zhou
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE KeyLab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Yan Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE KeyLab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Fang Liu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE KeyLab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Yanling Teng
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE KeyLab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
- Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha, China
| | - Hua Teng
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE KeyLab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
- Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha, China
| | - Yunlong Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE KeyLab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Desheng Liang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE KeyLab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China.
- Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha, China.
| | - Zhuo Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE KeyLab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China.
- Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha, China.
| | - Lingqian Wu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE KeyLab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, China.
- Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha, China.
| |
Collapse
|
9
|
Wu S, Lin W. The physiological role of the unfolded protein response in the nervous system. Neural Regen Res 2024; 19:2411-2420. [PMID: 38526277 PMCID: PMC11090440 DOI: 10.4103/1673-5374.393105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/12/2023] [Indexed: 03/26/2024] Open
Abstract
The unfolded protein response (UPR) is a cellular stress response pathway activated when the endoplasmic reticulum, a crucial organelle for protein folding and modification, encounters an accumulation of unfolded or misfolded proteins. The UPR aims to restore endoplasmic reticulum homeostasis by enhancing protein folding capacity, reducing protein biosynthesis, and promoting protein degradation. It also plays a pivotal role in coordinating signaling cascades to determine cell fate and function in response to endoplasmic reticulum stress. Recent research has highlighted the significance of the UPR not only in maintaining endoplasmic reticulum homeostasis but also in influencing various physiological processes in the nervous system. Here, we provide an overview of recent findings that underscore the UPR's involvement in preserving the function and viability of neuronal and myelinating cells under physiological conditions, and highlight the critical role of the UPR in brain development, memory storage, retinal cone development, myelination, and maintenance of myelin thickness.
Collapse
Affiliation(s)
- Shuangchan Wu
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Wensheng Lin
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
10
|
Rajan A, Fame RM. Brain development and bioenergetic changes. Neurobiol Dis 2024; 199:106550. [PMID: 38849103 PMCID: PMC11495523 DOI: 10.1016/j.nbd.2024.106550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024] Open
Abstract
Bioenergetics describe the biochemical processes responsible for energy supply in organisms. When these changes become dysregulated in brain development, multiple neurodevelopmental diseases can occur, implicating bioenergetics as key regulators of neural development. Historically, the discovery of disease processes affecting individual stages of brain development has revealed critical roles that bioenergetics play in generating the nervous system. Bioenergetic-dependent neurodevelopmental disorders include neural tube closure defects, microcephaly, intellectual disability, autism spectrum disorders, epilepsy, mTORopathies, and oncogenic processes. Developmental timing and cell-type specificity of these changes determine the long-term effects of bioenergetic disease mechanisms on brain form and function. Here, we discuss key metabolic regulators of neural progenitor specification, neuronal differentiation (neurogenesis), and gliogenesis. In general, transitions between glycolysis and oxidative phosphorylation are regulated in early brain development and in oncogenesis, and reactive oxygen species (ROS) and mitochondrial maturity play key roles later in differentiation. We also discuss how bioenergetics interface with the developmental regulation of other key neural elements, including the cerebrospinal fluid brain environment. While questions remain about the interplay between bioenergetics and brain development, this review integrates the current state of known key intersections between these processes in health and disease.
Collapse
Affiliation(s)
- Arjun Rajan
- Developmental Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Ryann M Fame
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
11
|
Wathieu C, Lavergne A, Xu X, Rolot M, Nemazanyy I, Shostak K, El Hachem N, Maurizy C, Leemans C, Close P, Nguyen L, Desmet C, Tielens S, Dewals BG, Chariot A. Loss of Elp3 blocks intestinal tuft cell differentiation via an mTORC1-Atf4 axis. EMBO J 2024; 43:3916-3947. [PMID: 39085648 PMCID: PMC11405396 DOI: 10.1038/s44318-024-00184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024] Open
Abstract
Intestinal tuft cells are critical for anti-helminth parasite immunity because they produce IL-25, which triggers IL-13 secretion by activated group 2 innate lymphoid cells (ILC2s) to expand both goblet and tuft cells. We show that epithelial Elp3, a tRNA-modifying enzyme, promotes tuft cell differentiation and is consequently critical for IL-25 production, ILC2 activation, goblet cell expansion and control of Nippostrongylus brasiliensis helminth infection in mice. Elp3 is essential for the generation of intestinal immature tuft cells and for the IL-13-dependent induction of glycolytic enzymes such as Hexokinase 1 and Aldolase A. Importantly, loss of epithelial Elp3 in the intestine blocks the codon-dependent translation of the Gator1 subunit Nprl2, an mTORC1 inhibitor, which consequently enhances mTORC1 activation and stabilizes Atf4 in progenitor cells. Likewise, Atf4 overexpression in mouse intestinal epithelium blocks tuft cell differentiation in response to intestinal helminth infection. Collectively, our data define Atf4 as a negative regulator of tuft cells and provide insights into promotion of intestinal type 2 immune response to parasites through tRNA modifications.
Collapse
Affiliation(s)
- Caroline Wathieu
- Interdisciplinary Cluster for Applied Genoproteomics, Liege, Belgium
- Laboratory of Cancer Biology, GIGA, University of Liege, Liege, Belgium
| | | | - Xinyi Xu
- Interdisciplinary Cluster for Applied Genoproteomics, Liege, Belgium
- Laboratory of Cancer Biology, GIGA, University of Liege, Liege, Belgium
| | - Marion Rolot
- Laboratory of Immunology-Vaccinology, Fundamental and Applied Research in Animals and Health (FARAH), University of Liege, Liege, Belgium
| | - Ivan Nemazanyy
- Platform for Metabolic Analyses, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS 3633, Paris, France
| | - Kateryna Shostak
- Interdisciplinary Cluster for Applied Genoproteomics, Liege, Belgium
- Laboratory of Cancer Biology, GIGA, University of Liege, Liege, Belgium
| | - Najla El Hachem
- Interdisciplinary Cluster for Applied Genoproteomics, Liege, Belgium
- Laboratory of Cancer Signaling, GIGA, University of Liege, Liege, Belgium
| | - Chloé Maurizy
- Interdisciplinary Cluster for Applied Genoproteomics, Liege, Belgium
- Laboratory of Cancer Biology, GIGA, University of Liege, Liege, Belgium
| | - Charlotte Leemans
- Interdisciplinary Cluster for Applied Genoproteomics, Liege, Belgium
- Laboratory of Cancer Signaling, GIGA, University of Liege, Liege, Belgium
| | - Pierre Close
- Interdisciplinary Cluster for Applied Genoproteomics, Liege, Belgium
- Laboratory of Cancer Signaling, GIGA, University of Liege, Liege, Belgium
- WELBIO department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Laurent Nguyen
- Interdisciplinary Cluster for Applied Genoproteomics, Liege, Belgium
- WELBIO department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
- Laboratory of Molecular Regulation of Neurogenesis, University of Liege, Liege, Belgium
| | - Christophe Desmet
- Interdisciplinary Cluster for Applied Genoproteomics, Liege, Belgium
- Laboratory of Cellular and Molecular Immunology, University of Liege, Liege, GIGA-I3, Belgium
| | - Sylvia Tielens
- Interdisciplinary Cluster for Applied Genoproteomics, Liege, Belgium
- Laboratory of Cancer Biology, GIGA, University of Liege, Liege, Belgium
| | - Benjamin G Dewals
- Laboratory of Immunology-Vaccinology, Fundamental and Applied Research in Animals and Health (FARAH), University of Liege, Liege, Belgium
| | - Alain Chariot
- Interdisciplinary Cluster for Applied Genoproteomics, Liege, Belgium.
- Laboratory of Cancer Biology, GIGA, University of Liege, Liege, Belgium.
- WELBIO department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium.
| |
Collapse
|
12
|
Arnskötter F, da Silva PBG, Schouw ME, Lukasch C, Bianchini L, Sieber L, Garcia-Lopez J, Ahmad ST, Li Y, Lin H, Joshi P, Spänig L, Radoš M, Roiuk M, Sepp M, Zuckermann M, Northcott PA, Patrizi A, Kutscher LM. Loss of Elp1 in cerebellar granule cell progenitors models ataxia phenotype of Familial Dysautonomia. Neurobiol Dis 2024; 199:106600. [PMID: 38996985 DOI: 10.1016/j.nbd.2024.106600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024] Open
Abstract
Familial Dysautonomia (FD) is an autosomal recessive disorder caused by a splice site mutation in the gene ELP1, which disproportionally affects neurons. While classically characterized by deficits in sensory and autonomic neurons, neuronal defects in the central nervous system have also been described. Although ELP1 expression remains high in the normal developing and adult cerebellum, its role in cerebellar development is unknown. To explore the role of Elp1 in the cerebellum, we knocked out Elp1 in cerebellar granule cell progenitors (GCPs) and examined the outcome on animal behavior and cellular composition. We found that GCP-specific conditional knockout of Elp1 (Elp1cKO) resulted in ataxia by 8 weeks of age. Cellular characterization showed that the animals had smaller cerebella with fewer granule cells. This defect was already apparent as early as 7 days after birth, when Elp1cKO animals also had fewer mitotic GCPs and shorter Purkinje dendrites. Through molecular characterization, we found that loss of Elp1 was associated with an increase in apoptotic cell death and cell stress pathways in GCPs. Our study demonstrates the importance of ELP1 in the developing cerebellum, and suggests that loss of Elp1 in the GC lineage may also play a role in the progressive ataxia phenotypes of FD patients.
Collapse
Affiliation(s)
- Frederik Arnskötter
- Developmental Origins of Pediatric Cancer Junior Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany; Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), NCT Heidelberg, A partnership between DKFZ and Heidelberg University Hospital, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Patricia Benites Goncalves da Silva
- Developmental Origins of Pediatric Cancer Junior Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany; Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), NCT Heidelberg, A partnership between DKFZ and Heidelberg University Hospital, Germany
| | - Mackenna E Schouw
- Developmental Origins of Pediatric Cancer Junior Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany; Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), NCT Heidelberg, A partnership between DKFZ and Heidelberg University Hospital, Germany
| | - Chiara Lukasch
- Developmental Origins of Pediatric Cancer Junior Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany; Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), NCT Heidelberg, A partnership between DKFZ and Heidelberg University Hospital, Germany
| | - Luca Bianchini
- Developmental Origins of Pediatric Cancer Junior Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany; Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), NCT Heidelberg, A partnership between DKFZ and Heidelberg University Hospital, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Laura Sieber
- Developmental Origins of Pediatric Cancer Junior Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany; Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), NCT Heidelberg, A partnership between DKFZ and Heidelberg University Hospital, Germany
| | - Jesus Garcia-Lopez
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA; Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN, USA; Department of In vivo Pharmacology-Immunology, Tempest Therapeutics, Brisbane, CA, USA
| | - Shiekh Tanveer Ahmad
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA; Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yiran Li
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA; Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hong Lin
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA; Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Piyush Joshi
- Developmental Origins of Pediatric Cancer Junior Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany; Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), NCT Heidelberg, A partnership between DKFZ and Heidelberg University Hospital, Germany
| | - Lisa Spänig
- Developmental Origins of Pediatric Cancer Junior Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany; Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), NCT Heidelberg, A partnership between DKFZ and Heidelberg University Hospital, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Magdalena Radoš
- Developmental Origins of Pediatric Cancer Junior Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany; Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), NCT Heidelberg, A partnership between DKFZ and Heidelberg University Hospital, Germany
| | - Mykola Roiuk
- Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mari Sepp
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Marc Zuckermann
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), NCT Heidelberg, A partnership between DKFZ and Heidelberg University Hospital, Germany; Division of Pediatric Neuro-Oncology, Preclinical Modeling Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Paul A Northcott
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA; Center of Excellence in Neuro-Oncology Sciences (CENOS), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Annarita Patrizi
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lena M Kutscher
- Developmental Origins of Pediatric Cancer Junior Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany; Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), NCT Heidelberg, A partnership between DKFZ and Heidelberg University Hospital, Germany.
| |
Collapse
|
13
|
Guo W, Russo S, Tuorto F. Lost in translation: How neurons cope with tRNA decoding. Bioessays 2024; 46:e2400107. [PMID: 38990077 DOI: 10.1002/bies.202400107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
Post-transcriptional tRNA modifications contribute to the decoding efficiency of tRNAs by supporting codon recognition and tRNA stability. Recent work shows that the molecular and cellular functions of tRNA modifications and tRNA-modifying-enzymes are linked to brain development and neurological disorders. Lack of these modifications affects codon recognition and decoding rate, promoting protein aggregation and translational stress response pathways with toxic consequences to the cell. In this review, we discuss the peculiarity of local translation in neurons, suggesting a role for fine-tuning of translation performed by tRNA modifications. We provide several examples of tRNA modifications involved in physiology and pathology of the nervous system, highlighting their effects on protein translation and discussing underlying mechanisms, like the unfolded protein response (UPR), ribosome quality control (RQC), and no-go mRNA decay (NGD), which could affect neuronal functions. We aim to deepen the understanding of the roles of tRNA modifications and the coordination of these modifications with the protein translation machinery in the nervous system.
Collapse
Affiliation(s)
- Wei Guo
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Stefano Russo
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Francesca Tuorto
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
14
|
Murao N, Matsuda T, Kadowaki H, Matsushita Y, Tanimoto K, Katagiri T, Nakashima K, Nishitoh H. The Derlin-1-Stat5b axis maintains homeostasis of adult hippocampal neurogenesis. EMBO Rep 2024; 25:3678-3706. [PMID: 39080439 PMCID: PMC11316036 DOI: 10.1038/s44319-024-00205-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 08/11/2024] Open
Abstract
Adult neural stem cells (NSCs) in the hippocampal dentate gyrus continuously proliferate and generate new neurons throughout life. Although various functions of organelles are closely related to the regulation of adult neurogenesis, the role of endoplasmic reticulum (ER)-related molecules in this process remains largely unexplored. Here we show that Derlin-1, an ER-associated degradation component, spatiotemporally maintains adult hippocampal neurogenesis through a mechanism distinct from its established role as an ER quality controller. Derlin-1 deficiency in the mouse central nervous system leads to the ectopic localization of newborn neurons and impairs NSC transition from active to quiescent states, resulting in early depletion of hippocampal NSCs. As a result, Derlin-1-deficient mice exhibit phenotypes of increased seizure susceptibility and cognitive dysfunction. Reduced Stat5b expression is responsible for adult neurogenesis defects in Derlin-1-deficient NSCs. Inhibition of histone deacetylase activity effectively induces Stat5b expression and restores abnormal adult neurogenesis, resulting in improved seizure susceptibility and cognitive dysfunction in Derlin-1-deficient mice. Our findings indicate that the Derlin-1-Stat5b axis is indispensable for the homeostasis of adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Naoya Murao
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan
| | - Taito Matsuda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hisae Kadowaki
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan
| | - Yosuke Matsushita
- Division of Genome Medicine, Tokushima University, Tokushima, Japan
- National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Kousuke Tanimoto
- High-risk Infectious Disease Control, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toyomasa Katagiri
- Division of Genome Medicine, Tokushima University, Tokushima, Japan
- National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Hideki Nishitoh
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan.
- Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
15
|
Urrestizala-Arenaza N, Cerchio S, Cavaliere F, Magliaro C. Limitations of human brain organoids to study neurodegenerative diseases: a manual to survive. Front Cell Neurosci 2024; 18:1419526. [PMID: 39049825 PMCID: PMC11267621 DOI: 10.3389/fncel.2024.1419526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
In 2013, M. Lancaster described the first protocol to obtain human brain organoids. These organoids, usually generated from human-induced pluripotent stem cells, can mimic the three-dimensional structure of the human brain. While they recapitulate the salient developmental stages of the human brain, their use to investigate the onset and mechanisms of neurodegenerative diseases still faces crucial limitations. In this review, we aim to highlight these limitations, which hinder brain organoids from becoming reliable models to study neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). Specifically, we will describe structural and biological impediments, including the lack of an aging footprint, angiogenesis, myelination, and the inclusion of functional and immunocompetent microglia—all important factors in the onset of neurodegeneration in AD, PD, and ALS. Additionally, we will discuss technical limitations for monitoring the microanatomy and electrophysiology of these organoids. In parallel, we will propose solutions to overcome the current limitations, thereby making human brain organoids a more reliable tool to model neurodegeneration.
Collapse
Affiliation(s)
- Nerea Urrestizala-Arenaza
- Achucarro Basque Center for Neuroscience, The Basque Biomodels Platform for Human Research (BBioH), Leioa, Spain
| | - Sonia Cerchio
- Centro di Ricerca “E. Piaggio” – University of Pisa, Pisa, Italy
| | - Fabio Cavaliere
- Achucarro Basque Center for Neuroscience, The Basque Biomodels Platform for Human Research (BBioH), Leioa, Spain
- Fundación Biofisica Bizkaia, Leioa, Spain
| | - Chiara Magliaro
- Centro di Ricerca “E. Piaggio” – University of Pisa, Pisa, Italy
- Department of Information Engineering, University of Pisa, Pisa, Italy
| |
Collapse
|
16
|
Nair KA, Liu B. Navigating the landscape of the unfolded protein response in CD8 + T cells. Front Immunol 2024; 15:1427859. [PMID: 39026685 PMCID: PMC11254671 DOI: 10.3389/fimmu.2024.1427859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024] Open
Abstract
Endoplasmic reticulum stress occurs due to large amounts of misfolded proteins, hypoxia, nutrient deprivation, and more. The unfolded protein is a complex intracellular signaling network designed to operate under this stress. Composed of three individual arms, inositol-requiring enzyme 1, protein kinase RNA-like ER kinase, and activating transcription factor-6, the unfolded protein response looks to resolve stress and return to proteostasis. The CD8+ T cell is a critical cell type for the adaptive immune system. The unfolded protein response has been shown to have a wide-ranging spectrum of effects on CD8+ T cells. CD8+ T cells undergo cellular stress during activation and due to environmental insults. However, the magnitude of the effects this response has on CD8+ T cells is still understudied. Thus, studying these pathways is important to unraveling the inner machinations of these powerful cells. In this review, we will highlight the recent literature in this field, summarize the three pathways of the unfolded protein response, and discuss their roles in CD8+ T cell biology and functionality.
Collapse
Affiliation(s)
- Keith Alan Nair
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Bei Liu
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
17
|
Simbilyabo LZ, Yang L, Wen J, Liu Z. The unfolded protein response machinery in glioblastoma genesis, chemoresistance and as a druggable target. CNS Neurosci Ther 2024; 30:e14839. [PMID: 39021040 PMCID: PMC11255034 DOI: 10.1111/cns.14839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND The role of the unfolded protein response (UPR) has been progressively unveiled over the last decade and several studies have investigated its implication in glioblastoma (GB) development. The UPR restores cellular homeostasis by triggering the folding and clearance of accumulated misfolded proteins in the ER consecutive to endoplasmic reticulum stress. In case it is overwhelmed, it induces apoptotic cell death. Thus, holding a critical role in cell fate decisions. METHODS This article, reviews how the UPR is implicated in cell homeostasis maintenance, then surveils the evidence supporting the UPR involvement in GB genesis, progression, angiogenesis, GB stem cell biology, tumor microenvironment modulation, extracellular matrix remodeling, cell fate decision, invasiveness, and grading. Next, it concurs the evidence showing how the UPR mediates GB chemoresistance-related mechanisms. RESULTS The UPR stress sensors IRE1, PERK, and ATF6 with their regulator GRP78 are upregulated in GB compared to lower grade gliomas and normal brain tissue. They are activated in response to oncogenes and are implicated at different stages of GB progression, from its genesis to chemoresistance and relapse. The UPR arms can be effectors of apoptosis as mediators or targets. CONCLUSION Recent research has established the role of the UPR in GB pathophysiology and chemoresistance. Targeting its different sensors have shown promising in overcoming GB chomo- and radioresistance and inducing apoptosis.
Collapse
Affiliation(s)
- Lucette Z. Simbilyabo
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Hypothalamic Pituitary Research Center, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Liting Yang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Hypothalamic Pituitary Research Center, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Jie Wen
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Hypothalamic Pituitary Research Center, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Hypothalamic Pituitary Research Center, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
18
|
Mattson MP, Leak RK. The hormesis principle of neuroplasticity and neuroprotection. Cell Metab 2024; 36:315-337. [PMID: 38211591 DOI: 10.1016/j.cmet.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/06/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024]
Abstract
Animals live in habitats fraught with a range of environmental challenges to their bodies and brains. Accordingly, cells and organ systems have evolved stress-responsive signaling pathways that enable them to not only withstand environmental challenges but also to prepare for future challenges and function more efficiently. These phylogenetically conserved processes are the foundation of the hormesis principle, in which single or repeated exposures to low levels of environmental challenges improve cellular and organismal fitness and raise the probability of survival. Hormetic principles have been most intensively studied in physical exercise but apply to numerous other challenges known to improve human health (e.g., intermittent fasting, cognitive stimulation, and dietary phytochemicals). Here we review the physiological mechanisms underlying hormesis-based neuroplasticity and neuroprotection. Approaching natural resilience from the lens of hormesis may reveal novel methods for optimizing brain function and lowering the burden of neurological disorders.
Collapse
Affiliation(s)
- Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| |
Collapse
|
19
|
Chen H, Wang YD, Blan AW, Almanza-Fuerte EP, Bonkowski ES, Bajpai R, Pruett-Miller SM, Mefford HC. Patient derived model of UBA5-associated encephalopathy identifies defects in neurodevelopment and highlights potential therapies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577254. [PMID: 38328212 PMCID: PMC10849720 DOI: 10.1101/2024.01.25.577254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
UBA5 encodes for the E1 enzyme of the UFMylation cascade, which plays an essential role in ER homeostasis. The clinical phenotypes of UBA5-associated encephalopathy include developmental delays, epilepsy and intellectual disability. To date, there is no humanized neuronal model to study the cellular and molecular consequences of UBA5 pathogenic variants. We developed and characterized patient-derived cortical organoid cultures and identified defects in GABAergic interneuron development. We demonstrated aberrant neuronal firing and microcephaly phenotypes in patient-derived organoids. Mechanistically, we show that ER homeostasis is perturbed along with exacerbated unfolded protein response pathway in cells and organoids expressing UBA5 pathogenic variants. We also assessed two gene expression modalities that augmented UBA5 expression to rescue aberrant molecular and cellular phenotypes. Our study provides a novel humanized model that allows further investigations of UBA5 variants in the brain and highlights novel systemic approaches to alleviate cellular aberrations for this rare, developmental disorder.
Collapse
Affiliation(s)
- Helen Chen
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis TN, USA
| | - Aidan W. Blan
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Edith P. Almanza-Fuerte
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Emily S. Bonkowski
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Richa Bajpai
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis TN, USA
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis TN, USA
| | - Shondra M. Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis TN, USA
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis TN, USA
| | - Heather C. Mefford
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
20
|
Camacho-Concha N, Santana-Román ME, Sánchez NC, Velasco I, Pando-Robles V, Pedraza-Alva G, Pérez-Martínez L. Insights into Zika Virus Pathogenesis and Potential Therapeutic Strategies. Biomedicines 2023; 11:3316. [PMID: 38137537 PMCID: PMC10741857 DOI: 10.3390/biomedicines11123316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 12/24/2023] Open
Abstract
Zika virus (ZIKV) has emerged as a significant public health threat, reaching pandemic levels in 2016. Human infection with ZIKV can manifest as either asymptomatic or as an acute illness characterized by symptoms such as fever and headache. Moreover, it has been associated with severe neurological complications in adults, including Guillain-Barre syndrome, and devastating fetal abnormalities, like microcephaly. The primary mode of transmission is through Aedes spp. mosquitoes, and with half of the world's population residing in regions where Aedes aegypti, the principal vector, thrives, the reemergence of ZIKV remains a concern. This comprehensive review provides insights into the pathogenesis of ZIKV and highlights the key cellular pathways activated upon ZIKV infection. Additionally, we explore the potential of utilizing microRNAs (miRNAs) and phytocompounds as promising strategies to combat ZIKV infection.
Collapse
Affiliation(s)
- Nohemi Camacho-Concha
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (N.C.-C.); (M.E.S.-R.); (N.C.S.); (G.P.-A.)
| | - María E. Santana-Román
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (N.C.-C.); (M.E.S.-R.); (N.C.S.); (G.P.-A.)
| | - Nilda C. Sánchez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (N.C.-C.); (M.E.S.-R.); (N.C.S.); (G.P.-A.)
| | - Iván Velasco
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Ciudad de México 14269, Mexico
| | - Victoria Pando-Robles
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Morelos, Mexico;
| | - Gustavo Pedraza-Alva
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (N.C.-C.); (M.E.S.-R.); (N.C.S.); (G.P.-A.)
| | - Leonor Pérez-Martínez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (N.C.-C.); (M.E.S.-R.); (N.C.S.); (G.P.-A.)
| |
Collapse
|
21
|
Polenghi M, Taverna E. Intracellular traffic and polarity in brain development. Front Neurosci 2023; 17:1172016. [PMID: 37859764 PMCID: PMC10583573 DOI: 10.3389/fnins.2023.1172016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/31/2023] [Indexed: 10/21/2023] Open
Abstract
Neurons forming the human brain are generated during embryonic development by neural stem and progenitor cells via a process called neurogenesis. A crucial feature contributing to neural stem cell morphological and functional heterogeneity is cell polarity, defined as asymmetric distribution of cellular components. Cell polarity is built and maintained thanks to the interplay between polarity proteins and polarity-generating organelles, such as the endoplasmic reticulum (ER) and the Golgi apparatus (GA). ER and GA affect the distribution of membrane components and work as a hub where glycans are added to nascent proteins and lipids. In the last decades our knowledge on the role of polarity in neural stem and progenitor cells have increased tremendously. However, the role of traffic and associated glycosylation in neural stem and progenitor cells is still relatively underexplored. In this review, we discuss the link between cell polarity, architecture, identity and intracellular traffic, and highlight how studies on neurons have shaped our knowledge and conceptual framework on traffic and polarity. We will then conclude by discussing how a group of rare diseases, called congenital disorders of glycosylation (CDG) offers the unique opportunity to study the contribution of traffic and glycosylation in the context of neurodevelopment.
Collapse
|
22
|
Häfner SJ, Jansson MD, Altinel K, Andersen KL, Abay-Nørgaard Z, Ménard P, Fontenas M, Sørensen DM, Gay DM, Arendrup FS, Tehler D, Krogh N, Nielsen H, Kraushar ML, Kirkeby A, Lund AH. Ribosomal RNA 2'-O-methylation dynamics impact cell fate decisions. Dev Cell 2023; 58:1593-1609.e9. [PMID: 37473757 DOI: 10.1016/j.devcel.2023.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/16/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023]
Abstract
Translational regulation impacts both pluripotency maintenance and cell differentiation. To what degree the ribosome exerts control over this process remains unanswered. Accumulating evidence has demonstrated heterogeneity in ribosome composition in various organisms. 2'-O-methylation (2'-O-me) of rRNA represents an important source of heterogeneity, where site-specific alteration of methylation levels can modulate translation. Here, we examine changes in rRNA 2'-O-me during mouse brain development and tri-lineage differentiation of human embryonic stem cells (hESCs). We find distinct alterations between brain regions, as well as clear dynamics during cortex development and germ layer differentiation. We identify a methylation site impacting neuronal differentiation. Modulation of its methylation levels affects ribosome association of the fragile X mental retardation protein (FMRP) and is accompanied by an altered translation of WNT pathway-related mRNAs. Together, these data identify ribosome heterogeneity through rRNA 2'-O-me during early development and differentiation and suggest a direct role for ribosomes in regulating translation during cell fate acquisition.
Collapse
Affiliation(s)
- Sophia J Häfner
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Martin D Jansson
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kübra Altinel
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kasper L Andersen
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Zehra Abay-Nørgaard
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) and Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Patrice Ménard
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Martin Fontenas
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Daniel M Sørensen
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - David M Gay
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Frederic S Arendrup
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Disa Tehler
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nicolai Krogh
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Henrik Nielsen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Agnete Kirkeby
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) and Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, 2200 Copenhagen, Denmark; Wallenberg Center for Molecular Medicine, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | - Anders H Lund
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
23
|
Alings F, Scharmann K, Eggers C, Böttcher B, Sokołowski M, Shvetsova E, Sharma P, Roth J, Rashiti L, Glatt S, Brunke S, Leidel SA. Ncs2* mediates in vivo virulence of pathogenic yeast through sulphur modification of cytoplasmic transfer RNA. Nucleic Acids Res 2023; 51:8133-8149. [PMID: 37462076 PMCID: PMC10450187 DOI: 10.1093/nar/gkad564] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 05/30/2023] [Accepted: 06/21/2023] [Indexed: 08/26/2023] Open
Abstract
Fungal pathogens threaten ecosystems and human health. Understanding the molecular basis of their virulence is key to develop new treatment strategies. Here, we characterize NCS2*, a point mutation identified in a clinical baker's yeast isolate. Ncs2 is essential for 2-thiolation of tRNA and the NCS2* mutation leads to increased thiolation at body temperature. NCS2* yeast exhibits enhanced fitness when grown at elevated temperatures or when exposed to oxidative stress, inhibition of nutrient signalling, and cell-wall stress. Importantly, Ncs2* alters the interaction and stability of the thiolase complex likely mediated by nucleotide binding. The absence of 2-thiolation abrogates the in vivo virulence of pathogenic baker's yeast in infected mice. Finally, hypomodification triggers changes in colony morphology and hyphae formation in the common commensal pathogen Candida albicans resulting in decreased virulence in a human cell culture model. These findings demonstrate that 2-thiolation of tRNA acts as a key mediator of fungal virulence and reveal new mechanistic insights into the function of the highly conserved tRNA-thiolase complex.
Collapse
Affiliation(s)
- Fiona Alings
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - Karin Scharmann
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - Cristian Eggers
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Bettina Böttcher
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Mikołaj Sokołowski
- Max Planck Research Group at the Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ekaterina Shvetsova
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Puneet Sharma
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Joël Roth
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Leon Rashiti
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Sebastian Glatt
- Max Planck Research Group at the Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Sebastian A Leidel
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
24
|
Iegiani G, Ferraro A, Pallavicini G, Di Cunto F. The impact of TP53 activation and apoptosis in primary hereditary microcephaly. Front Neurosci 2023; 17:1220010. [PMID: 37457016 PMCID: PMC10338886 DOI: 10.3389/fnins.2023.1220010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Autosomal recessive primary microcephaly (MCPH) is a constellation of disorders that share significant brain size reduction and mild to moderate intellectual disability, which may be accompanied by a large variety of more invalidating clinical signs. Extensive neural progenitor cells (NPC) proliferation and differentiation are essential to determine brain final size. Accordingly, the 30 MCPH loci mapped so far (MCPH1-MCPH30) encode for proteins involved in microtubule and spindle organization, centriole biogenesis, nuclear envelope, DNA replication and repair, underscoring that a wide variety of cellular processes is required for sustaining NPC expansion during development. Current models propose that altered balance between symmetric and asymmetric division, as well as premature differentiation, are the main mechanisms leading to MCPH. Although studies of cellular alterations in microcephaly models have constantly shown the co-existence of high DNA damage and apoptosis levels, these mechanisms are less considered as primary factors. In this review we highlight how the molecular and cellular events produced by mutation of the majority of MCPH genes may converge on apoptotic death of NPCs and neurons, via TP53 activation. We propose that these mechanisms should be more carefully considered in the alterations of the sophisticated equilibrium between proliferation, differentiation and death produced by MCPH gene mutations. In consideration of the potential druggability of cell apoptotic pathways, a better understanding of their role in MCPH may significantly facilitate the development of translational approaches.
Collapse
Affiliation(s)
- Giorgia Iegiani
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
| | - Alessia Ferraro
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
| | - Gianmarco Pallavicini
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
| | - Ferdinando Di Cunto
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
| |
Collapse
|
25
|
Yanaizu M, Adachi H, Araki M, Kontani K, Kino Y. Translational regulation and protein-coding capacity of the 5' untranslated region of human TREM2. Commun Biol 2023; 6:616. [PMID: 37291187 PMCID: PMC10250343 DOI: 10.1038/s42003-023-04998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 05/30/2023] [Indexed: 06/10/2023] Open
Abstract
TREM2 is a transmembrane receptor expressed in microglia and macrophages. Elevated TREM2 levels in these cells are associated with age-related pathological conditions, including Alzheimer's disease. However, the regulatory mechanism underlying the protein expression of TREM2 remains unclear. In this study, we uncover the role of the 5' untranslated region (5'-UTR) of human TREM2 in translation. An upstream start codon (uAUG) in the 5'-UTR of TREM2 is specific to some primates, including humans. The expression of the conventional TREM2 protein, starting from the downstream AUG (dTREM2), is repressed by the 5'-UTR in a uAUG-mediated manner. We also detect a TREM2 protein isoform starting from uAUG (uTREM2) that is largely degraded by proteasomes. Finally, the 5'-UTR is essential for the downregulation of dTREM2 expression in response to amino acid starvation. Collectively, our study identifies a species-specific regulatory role of the 5'-UTR in TREM2 translation.
Collapse
Affiliation(s)
- Motoaki Yanaizu
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan
- Department of RNA Pathobiology and Therapeutics, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan
| | - Haruka Adachi
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan
| | - Makoto Araki
- Department of Biochemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan
| | - Kenji Kontani
- Department of Biochemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan
| | - Yoshihiro Kino
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan.
- Department of RNA Pathobiology and Therapeutics, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan.
| |
Collapse
|
26
|
Nguyen TTM, Gadet R, Lanfranchi M, Lahaye RA, Yandiev S, Lohez O, Mikaelian I, Jabbour L, Rimokh R, Courchet J, Saudou F, Popgeorgiev N, Gillet G. Mitochondrial Bcl-xL promotes brain synaptogenesis by controlling non-lethal caspase activation. iScience 2023; 26:106674. [PMID: 37182099 PMCID: PMC10173740 DOI: 10.1016/j.isci.2023.106674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/25/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Non-lethal caspase activation (NLCA) has been linked to neurodevelopmental processes. However, how neurons control NLCA remains elusive. Here, we focused on Bcl-xL, a Bcl-2 homolog regulating caspase activation through the mitochondria. We generated a mouse model, referred to as ER-xL, in which Bcl-xL is absent in the mitochondria, yet present in the endoplasmic reticulum. Unlike bclx knockout mice that died at E13.5, ER-xL mice survived embryonic development but died post-partum because of altered feeding behavior. Enhanced caspase-3 activity was observed in the brain and the spinal cord white matter, but not the gray matter. No increase in cell death was observed in ER-xL cortical neurons, suggesting that the observed caspase-3 activation was apoptosis-independent. ER-xL neurons displayed increased caspase-3 activity in the neurites, resulting in impaired axon arborescence and synaptogenesis. Together, our findings suggest that mitochondrial Bcl-xL finely tunes caspase-3 through Drp-1-dependent mitochondrial fission, which is critical to neural network design.
Collapse
Affiliation(s)
- Trang Thi Minh Nguyen
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France
| | - Rudy Gadet
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France
| | - Marine Lanfranchi
- Université de Lyon, Université Claude Bernard Lyon 1, Physiopathologie et Génétique du Neurone et du Muscle, UMR 5261, INSERM U 1315, Institut NeuroMyoGène, 69008 Lyon, France
| | - Romane A. Lahaye
- Grenoble Institut des Neurosciences, Université Grenoble Alpes, Inserm U1216, 38700 La Tronche, France
| | - Sozerko Yandiev
- Université de Lyon, Université Claude Bernard Lyon 1, Physiopathologie et Génétique du Neurone et du Muscle, UMR 5261, INSERM U 1315, Institut NeuroMyoGène, 69008 Lyon, France
| | - Olivier Lohez
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France
| | - Ivan Mikaelian
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France
| | - Lea Jabbour
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France
| | - Ruth Rimokh
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France
| | - Julien Courchet
- Université de Lyon, Université Claude Bernard Lyon 1, Physiopathologie et Génétique du Neurone et du Muscle, UMR 5261, INSERM U 1315, Institut NeuroMyoGène, 69008 Lyon, France
| | - Frédéric Saudou
- Grenoble Institut des Neurosciences, Université Grenoble Alpes, Inserm U1216, 38700 La Tronche, France
| | - Nikolay Popgeorgiev
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France
- Institut Universitaire de France (IUF), 75231 Paris Cedex 5, France
| | - Germain Gillet
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France
- Hospices civils de Lyon, Laboratoire d’anatomie et cytologie pathologiques, Centre Hospitalier Lyon Sud, chemin du Grand Revoyet, 69495 Pierre Bénite, France
| |
Collapse
|
27
|
Liu X, Yang J, Li Z, Liu R, Wu X, Zhang Z, Lai L, Li Z, Song Y. YIPF5 (p.W218R) mutation induced primary microcephaly in rabbits. Neurobiol Dis 2023; 182:106135. [PMID: 37142085 DOI: 10.1016/j.nbd.2023.106135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023] Open
Abstract
Primary microcephaly (PMCPH) is a rare autosomal recessive neurodevelopmental disorder with a global prevalence of PMCPH ranging from 0.0013% to 0.15%. Recently, a homozygous missense mutation in YIPF5 (p.W218R) was identified as a causative mutation of severe microcephaly. In this study, we constructed a rabbit PMCPH model harboring YIPF5 (p.W218R) mutation using SpRY-ABEmax mediated base substitution, which precisely recapitulated the typical symptoms of human PMCPH. Compared with wild-type controls, the mutant rabbits exhibited stunted growth, reduced head circumference, altered motor ability, and decreased survival rates. Further investigation based on model rabbit elucidated that altered YIPF5 function in cortical neurons could lead to endoplasmic reticulum stress and neurodevelopmental disorders, interference of the generation of apical progenitors (APs), the first generation of progenitors in the developing cortex. Furthermore, these YIPF5-mutant rabbits support a correlation between unfolded protein responses (UPR) induced by endoplasmic reticulum stress (ERS), and the development of PMCPH, thus providing a new perspective on the role of YIPF5 in human brain development and a theoretical basis for the differential diagnosis and clinical treatment of PMCPH. To our knowledge, this is the first gene-edited rabbit model of PMCPH. The model better mimics the clinical features of human microcephaly than the traditional mouse models. Hence, it provides great potential for understanding the pathogenesis and developing novel diagnostic and therapeutic approaches for PMCPH.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Jie Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Zhaoyi Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Ruonan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Xinyu Wu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Zhongtian Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Liangxue Lai
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China.
| | - Zhanjun Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China.
| | - Yuning Song
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China.
| |
Collapse
|
28
|
Sidhaye J, Trepte P, Sepke N, Novatchkova M, Schutzbier M, Dürnberger G, Mechtler K, Knoblich JA. Integrated transcriptome and proteome analysis reveals posttranscriptional regulation of ribosomal genes in human brain organoids. eLife 2023; 12:e85135. [PMID: 36989136 PMCID: PMC10059687 DOI: 10.7554/elife.85135] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
During development of the human cerebral cortex, multipotent neural progenitors generate excitatory neurons and glial cells. Investigations of the transcriptome and epigenome have revealed important gene regulatory networks underlying this crucial developmental event. However, the posttranscriptional control of gene expression and protein abundance during human corticogenesis remains poorly understood. We addressed this issue by using human telencephalic brain organoids grown using a dual reporter cell line to isolate neural progenitors and neurons and performed cell class and developmental stage-specific transcriptome and proteome analysis. Integrating the two datasets revealed modules of gene expression during human corticogenesis. Investigation of one such module uncovered mTOR-mediated regulation of translation of the 5'TOP element-enriched translation machinery in early progenitor cells. We show that in early progenitors partial inhibition of the translation of ribosomal genes prevents precocious translation of differentiation markers. Overall, our multiomics approach proposes novel posttranscriptional regulatory mechanisms crucial for the fidelity of cortical development.
Collapse
Affiliation(s)
- Jaydeep Sidhaye
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC)ViennaAustria
| | - Philipp Trepte
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC)ViennaAustria
| | - Natalie Sepke
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC)ViennaAustria
| | - Maria Novatchkova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC)ViennaAustria
| | | | | | - Karl Mechtler
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC)ViennaAustria
| | - Jürgen A Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC)ViennaAustria
- Department of Neurology, Medical University of ViennaViennaAustria
| |
Collapse
|
29
|
A novel ELP1 mutation impairs the function of the Elongator complex and causes a severe neurodevelopmental phenotype. J Hum Genet 2023. [PMID: 36864284 DOI: 10.1038/s10038-023-01135-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs) are heterogeneous, debilitating conditions that include motor and cognitive disability and social deficits. The genetic factors underlying the complex phenotype of NDDs remain to be elucidated. Accumulating evidence suggest that the Elongator complex plays a role in NDDs, given that patient-derived mutations in its ELP2, ELP3, ELP4 and ELP6 subunits have been associated with these disorders. Pathogenic variants in its largest subunit ELP1 have been previously found in familial dysautonomia and medulloblastoma, with no link to NDDs affecting primarily the central nervous system. METHODS Clinical investigation included patient history and physical, neurological and magnetic resonance imaging (MRI) examination. A novel homozygous likely pathogenic ELP1 variant was identified by whole-genome sequencing. Functional studies included in silico analysis of the mutated ELP1 in the context of the holo-complex, production and purification of the ELP1 harbouring the identified mutation and in vitro analyses using microscale thermophoresis for tRNA binding assay and acetyl-CoA hydrolysis assay. Patient fibroblasts were harvested for tRNA modification analysis using HPLC coupled to mass spectrometry. RESULTS We report a novel missense mutation in the ELP1 identified in two siblings with intellectual disability and global developmental delay. We show that the mutation perturbs the ability of ELP123 to bind tRNAs and compromises the function of the Elongator in vitro and in human cells. CONCLUSION Our study expands the mutational spectrum of ELP1 and its association with different neurodevelopmental conditions and provides a specific target for genetic counselling.
Collapse
|
30
|
Schang AL, Van Steenwinckel J, Ioannidou ZS, Lipecki J, Rich-Griffin C, Woolley-Allen K, Dyer N, Le Charpentier T, Schäfer P, Fleiss B, Ott S, Sabéran-Djoneidi D, Mezger V, Gressens P. Epigenetic priming of immune/inflammatory pathways activation and abnormal activity of cell cycle pathway in a perinatal model of white matter injury. Cell Death Dis 2022; 13:1038. [PMID: 36513635 PMCID: PMC9748018 DOI: 10.1038/s41419-022-05483-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/10/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
Prenatal inflammatory insults accompany prematurity and provoke diffuse white matter injury (DWMI), which is associated with increased risk of neurodevelopmental pathologies, including autism spectrum disorders. DWMI results from maturation arrest of oligodendrocyte precursor cells (OPCs), a process that is poorly understood. Here, by using a validated mouse model of OPC maturation blockade, we provide the genome-wide ID card of the effects of neuroinflammation on OPCs that reveals the architecture of global cell fate issues underlining their maturation blockade. First, we find that, in OPCs, neuroinflammation takes advantage of a primed epigenomic landscape and induces abnormal overexpression of genes of the immune/inflammatory pathways: these genes strikingly exhibit accessible chromatin conformation in uninflamed OPCs, which correlates with their developmental, stage-dependent expression, along their normal maturation trajectory, as well as their abnormal upregulation upon neuroinflammation. Consistently, we observe the positioning on DNA of key transcription factors of the immune/inflammatory pathways (IRFs, NFkB), in both unstressed and inflamed OPCs. Second, we show that, in addition to the general perturbation of the myelination program, neuroinflammation counteracts the physiological downregulation of the cell cycle pathway in maturing OPCs. Neuroinflammation therefore perturbs cell identity in maturing OPCs, in a global manner. Moreover, based on our unraveling of the activity of genes of the immune/inflammatory pathways in prenatal uninflamed OPCs, the mere suppression of these proinflammatory mediators, as currently proposed in the field, may not be considered as a valid neurotherapeutic strategy.
Collapse
Affiliation(s)
- Anne-Laure Schang
- grid.464155.7Université Paris Cité, Epigenetics and Cell Fate, CNRS, F-75013 Paris, France ,grid.513208.dUniversité Paris Cité, NeuroDiderot, Inserm, F-75019 Paris, France ,grid.7429.80000000121866389Present Address: Inserm, UMR1153, Epidemiology and Biostatistics Sorbonne Paris Cité Center (CRESS) HERA team. Université Paris Cité, Faculté de Santé, Faculté de Pharmacie de Paris, 4 avenue de l’Observatoire, 75006 Paris, France
| | | | - Zoi S. Ioannidou
- grid.7372.10000 0000 8809 1613School of Life Sciences, University of Warwick, Coventry, CV4 7AL UK
| | - Julia Lipecki
- grid.7372.10000 0000 8809 1613School of Life Sciences, University of Warwick, Coventry, CV4 7AL UK
| | - Charlotte Rich-Griffin
- grid.7372.10000 0000 8809 1613School of Life Sciences, University of Warwick, Coventry, CV4 7AL UK
| | - Kate Woolley-Allen
- grid.7372.10000 0000 8809 1613School of Life Sciences, University of Warwick, Coventry, CV4 7AL UK
| | - Nigel Dyer
- grid.7372.10000 0000 8809 1613Bioinformatics Research Technology Platform, Warwick University, Coventry, CV4 7AL UK
| | | | - Patrick Schäfer
- grid.7372.10000 0000 8809 1613School of Life Sciences, University of Warwick, Coventry, CV4 7AL UK
| | - Bobbi Fleiss
- grid.513208.dUniversité Paris Cité, NeuroDiderot, Inserm, F-75019 Paris, France ,grid.1017.70000 0001 2163 3550Present Address: School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC Australia
| | - Sascha Ott
- grid.7372.10000 0000 8809 1613Warwick Medical School, University of Warwick, Coventry, CV4 7AL UK
| | | | - Valérie Mezger
- grid.464155.7Université Paris Cité, Epigenetics and Cell Fate, CNRS, F-75013 Paris, France
| | - Pierre Gressens
- grid.513208.dUniversité Paris Cité, NeuroDiderot, Inserm, F-75019 Paris, France ,grid.7372.10000 0000 8809 1613School of Life Sciences, University of Warwick, Coventry, CV4 7AL UK
| |
Collapse
|
31
|
Endoplasmic Reticulum Stress Signaling and Neuronal Cell Death. Int J Mol Sci 2022; 23:ijms232315186. [PMID: 36499512 PMCID: PMC9740965 DOI: 10.3390/ijms232315186] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Besides protein processing, the endoplasmic reticulum (ER) has several other functions such as lipid synthesis, the transfer of molecules to other cellular compartments, and the regulation of Ca2+ homeostasis. Before leaving the organelle, proteins must be folded and post-translationally modified. Protein folding and revision require molecular chaperones and a favorable ER environment. When in stressful situations, ER luminal conditions or chaperone capacity are altered, and the cell activates signaling cascades to restore a favorable folding environment triggering the so-called unfolded protein response (UPR) that can lead to autophagy to preserve cell integrity. However, when the UPR is disrupted or insufficient, cell death occurs. This review examines the links between UPR signaling, cell-protective responses, and death following ER stress with a particular focus on those mechanisms that operate in neurons.
Collapse
|
32
|
Aspergillus fumigatus Elongator complex subunit 3 affects hyphal growth, adhesion and virulence through wobble uridine tRNA modification. PLoS Pathog 2022; 18:e1010976. [DOI: 10.1371/journal.ppat.1010976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/28/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
The eukaryotic multisubunit Elongator complex has been shown to perform multiple functions in transcriptional elongation, histone acetylation and tRNA modification. However, the Elongator complex plays different roles in different organisms, and the underlying mechanisms remain unexplored. Moreover, the biological functions of the Elongator complex in human fungal pathogens remain unknown. In this study, we verified that the Elongator complex of the opportunistic fungal pathogen Aspergillus fumigatus consists of six subunits (Elp1-6), and the loss of any subunit results in similarly defective colony phenotypes with impaired hyphal growth and reduced conidiation. The catalytic subunit-Elp3 of the Elongator complex includes a S-adenosyl methionine binding (rSAM) domain and a lysine acetyltransferase (KAT) domain, and it plays key roles in the hyphal growth, biofilm-associated exopolysaccharide galactosaminogalactan (GAG) production, adhesion and virulence of A. fumigatus; however, Elp3 does not affect H3K14 acetylation levels in vivo. LC–MS/MS chromatograms revealed that loss of Elp3 abolished the 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) modification of tRNA wobble uridine (U34), and the overexpression of tRNAGlnUUG and tRNAGluUUC, which normally harbor mcm5s2U modifications, mainly rescues the defects of the Δelp3 mutant, suggesting that tRNA modification rather than lysine acetyltransferase is responsible for the primary function of Elp3 in A. fumigatus. Strikingly, global proteomic comparison analyses showed significantly upregulated expression of genes related to amino acid metabolism in the Δelp3 mutant strain compared to the wild-type strain. Western blotting showed that deletion of elp3 resulted in overexpression of the amino acid starvation-responsive transcription factor CpcA, and deletion of CpcA markedly reversed the defective phenotypes of the Δelp3 mutant, including attenuated virulence. Therefore, the findings of this study demonstrate that A. fumigatus Elp3 functions as a tRNA-modifying enzyme in the regulation of growth, GAG production, adhesion and virulence by maintaining intracellular amino acid homeostasis. More broadly, our study highlights the importance of U34 tRNA modification in regulating cellular metabolic states and virulence traits of fungal pathogens.
Collapse
|
33
|
Shilian M, Even A, Gast H, Nguyen L, Weil M. Elongator promotes neuritogenesis via regulation of tau stability through acly activity. Front Cell Dev Biol 2022; 10:1015125. [PMID: 36393857 PMCID: PMC9644021 DOI: 10.3389/fcell.2022.1015125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/05/2022] [Indexed: 11/23/2022] Open
Abstract
The six subunits (Elp1 to Elp6) Elongator complex promotes specific uridine modifications in tRNA’s wobble site. Moreover, this complex has been indirectly involved in the regulation of α-tubulin acetylation in microtubules (MTs) via the stabilization of ATP-Citrate Lyase (Acly), the main cytosolic source of acetyl-CoA production in cells, a key substrate used for global protein acetylation. Here, we report additional evidence that Elongator activity is important for proper cytoskeleton remodeling as cells lacking expression of Elp1 show morphology impairment; including distinct neurite process formation and disorganization and instability of MTs. Here, we show that loss of Elongator results in a reduction of expression of the microtubule associated protein Tau (MAPT). Tau, is a well-known key MT regulator in neurons whose lysines can be competitively acetylated or ubiquitylated. Therefore, we tested whether Tau is an indirect acetylation target of Elongator. We found that a reduction of Elongator activity leads to a decrease of lysine acetylation on Tau that favors its proteasomal degradation. This phenotype was prevented by using selective deacetylase or proteasomal inhibitors. Moreover, our data demonstrate that Acly’s activity regulates the mechanism underlying Tau mediated neurite morphology defects found in Elp1 KD since both Tau levels and neurites morphology are restored due to Acly overexpression. This suggests a possible involvement of both Tau and Acly dysfunction in Familial Dysautonomia (FD), which is an autosomal recessive peripheral neuropathy caused by mutation in the ELP1 gene that severely affects Elp1 expression levels in the nervous system in FD patients in a similar way as found previously in Elp1 KD neuroblastoma cells.
Collapse
Affiliation(s)
- Michal Shilian
- Laboratory for Neurodegenerative Diseases and Personalized Medicine, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Aviel Even
- Laboratory for Neurodegenerative Diseases and Personalized Medicine, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Hila Gast
- Laboratory for Neurodegenerative Diseases and Personalized Medicine, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Laurent Nguyen
- GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGAR), University of Liège, C.H.U. Sart Tilman, Belgium, BIOMED Research Institute, Hasselt, Belgium
| | - Miguel Weil
- Laboratory for Neurodegenerative Diseases and Personalized Medicine, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Miguel Weil,
| |
Collapse
|
34
|
Boutoual R, Jo H, Heckenbach I, Tiwari R, Kasler H, Lerner CA, Shah S, Schilling B, Calvanese V, Rardin MJ, Scheibye-Knudsen M, Verdin E. A novel splice variant of Elp3/Kat9 regulates mitochondrial tRNA modification and function. Sci Rep 2022; 12:14804. [PMID: 36045139 PMCID: PMC9433433 DOI: 10.1038/s41598-022-18114-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/05/2022] [Indexed: 12/03/2022] Open
Abstract
Post-translational modifications, such as lysine acetylation, regulate the activity of diverse proteins across many cellular compartments. Protein deacetylation in mitochondria is catalyzed by the enzymatic activity of the NAD+-dependent deacetylase sirtuin 3 (SIRT3), however it remains unclear whether corresponding mitochondrial acetyltransferases exist. We used a bioinformatics approach to search for mitochondrial proteins with an acetyltransferase catalytic domain, and identified a novel splice variant of ELP3 (mt-ELP3) of the elongator complex, which localizes to the mitochondrial matrix in mammalian cells. Unexpectedly, mt-ELP3 does not mediate mitochondrial protein acetylation but instead induces a post-transcriptional modification of mitochondrial-transfer RNAs (mt-tRNAs). Overexpression of mt-ELP3 leads to the protection of mt-tRNAs against the tRNA-specific RNase angiogenin, increases mitochondrial translation, and furthermore increases expression of OXPHOS complexes. This study thus identifies mt-ELP3 as a non-canonical mt-tRNA modifying enzyme.
Collapse
Affiliation(s)
- Rachid Boutoual
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA.
| | - Hyunsun Jo
- Gladstone Institutes and University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Indra Heckenbach
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA.,Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ritesh Tiwari
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | - Herbert Kasler
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | - Chad A Lerner
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | - Samah Shah
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | | | - Vincenzo Calvanese
- Gladstone Institutes and University of California, San Francisco, San Francisco, CA, 94158, USA
| | | | - Morten Scheibye-Knudsen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Eric Verdin
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA. .,Gladstone Institutes and University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
35
|
Martin S, Allan KC, Pinkard O, Sweet T, Tesar PJ, Coller J. Oligodendrocyte differentiation alters tRNA modifications and codon optimality-mediated mRNA decay. Nat Commun 2022; 13:5003. [PMID: 36008413 PMCID: PMC9411196 DOI: 10.1038/s41467-022-32766-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 08/15/2022] [Indexed: 11/08/2022] Open
Abstract
Oligodendrocytes are specialized cells that confer neuronal myelination in the central nervous system. Leukodystrophies associated with oligodendrocyte deficits and hypomyelination are known to result when a number of tRNA metabolism genes are mutated. Thus, for unknown reasons, oligodendrocytes may be hypersensitive to perturbations in tRNA biology. In this study, we survey the tRNA transcriptome in the murine oligodendrocyte cell lineage and find that specific tRNAs are hypomodified in oligodendrocytes within or near the anticodon compared to oligodendrocyte progenitor cells (OPCs). This hypomodified state may be the result of differential expression of key modification enzymes during oligodendrocyte differentiation. Moreover, we observe a concomitant relationship between tRNA hypomodification and tRNA decoding potential; observing oligodendrocyte specific alterations in codon optimality-mediated mRNA decay and ribosome transit. Our results reveal that oligodendrocytes naturally maintain a delicate, hypersensitized tRNA/mRNA axis. We suggest this axis is a potential mediator of pathology in leukodystrophies and white matter disease when further insult to tRNA metabolism is introduced.
Collapse
Affiliation(s)
- Sophie Martin
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kevin C Allan
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Otis Pinkard
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Thomas Sweet
- Center for Proteomics and Bioinformatics, Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Paul J Tesar
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Jeff Coller
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
36
|
Chen D, Nemazanyy I, Peulen O, Shostak K, Xu X, Tang SC, Wathieu C, Turchetto S, Tielens S, Nguyen L, Close P, Desmet C, Klein S, Florin A, Büttner R, Petrellis G, Dewals B, Chariot A. Elp3-mediated codon-dependent translation promotes mTORC2 activation and regulates macrophage polarization. EMBO J 2022; 41:e109353. [PMID: 35920020 PMCID: PMC9475509 DOI: 10.15252/embj.2021109353] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 12/24/2022] Open
Abstract
Macrophage polarization is a process whereby macrophages acquire distinct effector states (M1 or M2) to carry out multiple and sometimes opposite functions. We show here that translational reprogramming occurs during macrophage polarization and that this relies on the Elongator complex subunit Elp3, an enzyme that modifies the wobble uridine base U34 in cytosolic tRNAs. Elp3 expression is downregulated by classical M1‐activating signals in myeloid cells, where it limits the production of pro‐inflammatory cytokines via FoxO1 phosphorylation, and attenuates experimental colitis in mice. In contrast, alternative M2‐activating signals upregulate Elp3 expression through a PI3K‐ and STAT6‐dependent signaling pathway. The metabolic reprogramming linked to M2 macrophage polarization relies on Elp3 and the translation of multiple candidates, including the mitochondrial ribosome large subunit proteins Mrpl3, Mrpl13, and Mrpl47. By promoting translation of its activator Ric8b in a codon‐dependent manner, Elp3 also regulates mTORC2 activation. Elp3 expression in myeloid cells further promotes Wnt‐driven tumor initiation in the intestine by maintaining a pool of tumor‐associated macrophages exhibiting M2 features. Collectively, our data establish a functional link between tRNA modifications, mTORC2 activation, and macrophage polarization.
Collapse
Affiliation(s)
- Dawei Chen
- Interdisciplinary Cluster for Applied Genoproteomics, University of Liege, Liege, Belgium.,Laboratory of Medical Chemistry, University of Liege, Liege, Belgium.,GIGA Stem Cells, University of Liege, Liege, Belgium
| | - Ivan Nemazanyy
- Platform for Metabolic Analyses, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS 3633, Paris, France
| | - Olivier Peulen
- Interdisciplinary Cluster for Applied Genoproteomics, University of Liege, Liege, Belgium.,Metastasis Research Laboratory (MRL), GIGA Cancer, University of Liege, Liège, Belgium
| | - Kateryna Shostak
- Interdisciplinary Cluster for Applied Genoproteomics, University of Liege, Liege, Belgium.,Laboratory of Medical Chemistry, University of Liege, Liege, Belgium.,GIGA Stem Cells, University of Liege, Liege, Belgium
| | - Xinyi Xu
- Interdisciplinary Cluster for Applied Genoproteomics, University of Liege, Liege, Belgium.,Laboratory of Medical Chemistry, University of Liege, Liege, Belgium.,GIGA Stem Cells, University of Liege, Liege, Belgium
| | - Seng Chuan Tang
- Interdisciplinary Cluster for Applied Genoproteomics, University of Liege, Liege, Belgium.,Laboratory of Medical Chemistry, University of Liege, Liege, Belgium.,GIGA Stem Cells, University of Liege, Liege, Belgium
| | - Caroline Wathieu
- Interdisciplinary Cluster for Applied Genoproteomics, University of Liege, Liege, Belgium.,Laboratory of Medical Chemistry, University of Liege, Liege, Belgium.,GIGA Stem Cells, University of Liege, Liege, Belgium
| | - Silvia Turchetto
- Interdisciplinary Cluster for Applied Genoproteomics, University of Liege, Liege, Belgium.,GIGA Stem Cells, University of Liege, Liege, Belgium.,Laboratory of Molecular Regulation of Neurogenesis, University of Liege, Liege, Belgium
| | - Sylvia Tielens
- Interdisciplinary Cluster for Applied Genoproteomics, University of Liege, Liege, Belgium.,Laboratory of Medical Chemistry, University of Liege, Liege, Belgium.,GIGA Stem Cells, University of Liege, Liege, Belgium
| | - Laurent Nguyen
- Interdisciplinary Cluster for Applied Genoproteomics, University of Liege, Liege, Belgium.,GIGA Stem Cells, University of Liege, Liege, Belgium.,Laboratory of Molecular Regulation of Neurogenesis, University of Liege, Liege, Belgium
| | - Pierre Close
- Interdisciplinary Cluster for Applied Genoproteomics, University of Liege, Liege, Belgium.,GIGA Stem Cells, University of Liege, Liege, Belgium.,Laboratory of Cancer Signaling, University of Liege, Liege, Belgium.,Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wavres, Belgium
| | - Christophe Desmet
- Interdisciplinary Cluster for Applied Genoproteomics, University of Liege, Liege, Belgium.,Laboratory of Cellular and Molecular Immunology, GIGA-I3, University of Liege, Liège, Belgium
| | - Sebastian Klein
- Institute for Pathology-University Hospital Cologne, Köln, Germany
| | - Alexandra Florin
- Institute for Pathology-University Hospital Cologne, Köln, Germany
| | - Reinhard Büttner
- Institute for Pathology-University Hospital Cologne, Köln, Germany
| | - Georgios Petrellis
- Laboratory of Immunology-Vaccinology, Fundamental and Applied Research in Animals and Health (FARAH), University of Liege, Liège, Belgium
| | - Benjamin Dewals
- Laboratory of Immunology-Vaccinology, Fundamental and Applied Research in Animals and Health (FARAH), University of Liege, Liège, Belgium
| | - Alain Chariot
- Interdisciplinary Cluster for Applied Genoproteomics, University of Liege, Liege, Belgium.,Laboratory of Medical Chemistry, University of Liege, Liege, Belgium.,GIGA Stem Cells, University of Liege, Liege, Belgium.,Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wavres, Belgium
| |
Collapse
|
37
|
Gaik M, Kojic M, Stegeman MR, Öncü‐Öner T, Kościelniak A, Jones A, Mohamed A, Chau PYS, Sharmin S, Chramiec‐Głąbik A, Indyka P, Rawski M, Biela A, Dobosz D, Millar A, Chau V, Ünalp A, Piper M, Bellingham MC, Eichler EE, Nickerson DA, Güleryüz H, Abbassi NEH, Jazgar K, Davis MJ, Mercimek‐Andrews S, Cingöz S, Wainwright BJ, Glatt S. Functional divergence of the two Elongator subcomplexes during neurodevelopment. EMBO Mol Med 2022; 14:e15608. [PMID: 35698786 PMCID: PMC9260213 DOI: 10.15252/emmm.202115608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/11/2022] Open
Abstract
The highly conserved Elongator complex is a translational regulator that plays a critical role in neurodevelopment, neurological diseases, and brain tumors. Numerous clinically relevant variants have been reported in the catalytic Elp123 subcomplex, while no missense mutations in the accessory subcomplex Elp456 have been described. Here, we identify ELP4 and ELP6 variants in patients with developmental delay, epilepsy, intellectual disability, and motor dysfunction. We determine the structures of human and murine Elp456 subcomplexes and locate the mutated residues. We show that patient-derived mutations in Elp456 affect the tRNA modification activity of Elongator in vitro as well as in human and murine cells. Modeling the pathogenic variants in mice recapitulates the clinical features of the patients and reveals neuropathology that differs from the one caused by previously characterized Elp123 mutations. Our study demonstrates a direct correlation between Elp4 and Elp6 mutations, reduced Elongator activity, and neurological defects. Foremost, our data indicate previously unrecognized differences of the Elp123 and Elp456 subcomplexes for individual tRNA species, in different cell types and in different key steps during the neurodevelopment of higher organisms.
Collapse
|
38
|
Emerging roles of endoplasmic reticulum proteostasis in brain development. Cells Dev 2022; 170:203781. [DOI: 10.1016/j.cdev.2022.203781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 11/21/2022]
|
39
|
Zapata G, Yan K, Picketts DJ. Generation of a mouse model of the neurodevelopmental disorder with dysmorphic facies and distal limb anomalies (NEDDFL) syndrome. Hum Mol Genet 2022; 31:3405-3421. [PMID: 35604347 DOI: 10.1093/hmg/ddac119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Heterozygous variants in BPTF cause the neurodevelopmental disorder with dysmorphic facies and distal limb anomalies (NEDDFL) syndrome (MIM#617755) characterized by intellectual disability (ID), speech delay, and postnatal microcephaly. BPTF functions within NURF, a complex comprising SNF2L, an ISWI chromatin remodeling protein encoded by the SMARCA1 gene. Surprisingly, ablation of Smarca1 resulted in mice with enlarged brains, a direct contrast to the phenotype of NEDDFL patients. To model the NEDDFL syndrome, we generated forebrain-specific Bptf knockout (Bptf cKO) mice. Bptf cKO mice were born in normal Mendelian ratios, survived to adulthood but were smaller in size with severe cortical hypoplasia. Prolonged progenitor cell cycle length and a high incidence of cell death reduced neuronal output. Cortical lamination was also disrupted with reduced proportions of deep layer neurons, and neuronal maturation defects that impaired the acquisition of distinct cell fates (eg. Ctip2+ neurons). RNAseq and pathway analysis identified altered expression of fate-determining transcription factors, and biological pathways involved in neural development, apoptotic signaling, and amino acid biosynthesis. Dysregulated genes were enriched for Myc binding sites, a known BPTF transcriptional co-factor. We propose Bptf cKO mice as a valuable model for further study of the NEDDFL syndrome.
Collapse
Affiliation(s)
- Gerardo Zapata
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada, K1H 8L6.,Departments of Biochemistry, Microbiology, & Immunology, University of Ottawa, Ottawa, Ontario, Canada, K1H8M5
| | - Keqin Yan
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada, K1H 8L6
| | - David J Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada, K1H 8L6.,Departments of Biochemistry, Microbiology, & Immunology, University of Ottawa, Ottawa, Ontario, Canada, K1H8M5.,Departments of Biochemistry, Microbiology, & Immunology, Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada, K1H8M5.,Medicine, University of Ottawa, Ottawa, Ontario, Canada, K1H8M5
| |
Collapse
|
40
|
Ochi N, Nakamura M, Nagata R, Wakasa N, Nakano R, Igaki T. Cell competition is driven by Xrp1-mediated phosphorylation of eukaryotic initiation factor 2α. PLoS Genet 2021; 17:e1009958. [PMID: 34871307 PMCID: PMC8675920 DOI: 10.1371/journal.pgen.1009958] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 12/16/2021] [Accepted: 11/19/2021] [Indexed: 12/19/2022] Open
Abstract
Cell competition is a context-dependent cell elimination via cell-cell interaction whereby unfit cells ('losers') are eliminated from the tissue when confronted with fitter cells ('winners'). Despite extensive studies, the mechanism that drives loser's death and its physiological triggers remained elusive. Here, through a genetic screen in Drosophila, we find that endoplasmic reticulum (ER) stress causes cell competition. Mechanistically, ER stress upregulates the bZIP transcription factor Xrp1, which promotes phosphorylation of the eukaryotic translation initiation factor eIF2α via the kinase PERK, leading to cell elimination. Surprisingly, our genetic data show that different cell competition triggers such as ribosomal protein mutations or RNA helicase Hel25E mutations converge on upregulation of Xrp1, which leads to phosphorylation of eIF2α and thus causes reduction in global protein synthesis and apoptosis when confronted with wild-type cells. These findings not only uncover a core pathway of cell competition but also open the way to understanding the physiological triggers of cell competition.
Collapse
Affiliation(s)
- Naotaka Ochi
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto, Japan
| | - Mai Nakamura
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto, Japan
| | - Rina Nagata
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto, Japan
| | - Naoki Wakasa
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto, Japan
| | - Ryosuke Nakano
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto, Japan
| | - Tatsushi Igaki
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
41
|
Sarkar A, Nazir A. Carrying Excess Baggage Can Slowdown Life: Protein Clearance Machineries That Go Awry During Aging and the Relevance of Maintaining Them. Mol Neurobiol 2021; 59:821-840. [PMID: 34792731 DOI: 10.1007/s12035-021-02640-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/05/2021] [Indexed: 01/07/2023]
Abstract
Cellular homeostasis is maintained by rapid and systematic cleansing of aberrant and aggregated proteins within cells. Neurodegenerative diseases (NDs) especially Parkinson's and Alzheimer's disease are known to be associated with multiple factors, most important being impaired clearance of aggregates, resulting in the accumulation of specific aggregated protein in the brain. Protein quality control (PQC) of proteostasis network comprises proteolytic machineries and chaperones along with their regulators to ensure precise operation and maintenance of proteostasis. Such regulatory factors coordinate among each other multiple functional aspects related to proteins, including their synthesis, folding, transport, and degradation. During aging due to inevitable endogenous and external stresses, sustaining a proteome balance is a challenging task. Such stresses decline the capacity of the proteostasis network compromising the proteome integrity, affecting the fundamental physiological processes including reproductive fitness of the organism. This review focuses on highlighting proteome-wide changes during aging and the strategies for proteostasis improvements. The possibility of augmenting the proteostasis network either via genetic or pharmacological interventions may be a promising strategy towards delaying age-associated pathological consequences due to proteome disbalance, thus promoting healthy aging and prolonged longevity.
Collapse
Affiliation(s)
- Arunabh Sarkar
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, 226031, India
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, 226031, India.
| |
Collapse
|
42
|
Krane M, Dreßen M, Santamaria G, My I, Schneider CM, Dorn T, Laue S, Mastantuono E, Berutti R, Rawat H, Gilsbach R, Schneider P, Lahm H, Schwarz S, Doppler SA, Paige S, Puluca N, Doll S, Neb I, Brade T, Zhang Z, Abou-Ajram C, Northoff B, Holdt LM, Sudhop S, Sahara M, Goedel A, Dendorfer A, Tjong FVY, Rijlaarsdam ME, Cleuziou J, Lang N, Kupatt C, Bezzina C, Lange R, Bowles NE, Mann M, Gelb BD, Crotti L, Hein L, Meitinger T, Wu S, Sinnecker D, Gruber PJ, Laugwitz KL, Moretti A. Sequential Defects in Cardiac Lineage Commitment and Maturation Cause Hypoplastic Left Heart Syndrome. Circulation 2021; 144:1409-1428. [PMID: 34694888 PMCID: PMC8542085 DOI: 10.1161/circulationaha.121.056198] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Complex molecular programs in specific cell lineages govern human heart development. Hypoplastic left heart syndrome (HLHS) is the most common and severe manifestation within the spectrum of left ventricular outflow tract obstruction defects occurring in association with ventricular hypoplasia. The pathogenesis of HLHS is unknown, but hemodynamic disturbances are assumed to play a prominent role. METHODS To identify perturbations in gene programs controlling ventricular muscle lineage development in HLHS, we performed whole-exome sequencing of 87 HLHS parent-offspring trios, nuclear transcriptomics of cardiomyocytes from ventricles of 4 patients with HLHS and 15 controls at different stages of heart development, single cell RNA sequencing, and 3D modeling in induced pluripotent stem cells from 3 patients with HLHS and 3 controls. RESULTS Gene set enrichment and protein network analyses of damaging de novo mutations and dysregulated genes from ventricles of patients with HLHS suggested alterations in specific gene programs and cellular processes critical during fetal ventricular cardiogenesis, including cell cycle and cardiomyocyte maturation. Single-cell and 3D modeling with induced pluripotent stem cells demonstrated intrinsic defects in the cell cycle/unfolded protein response/autophagy hub resulting in disrupted differentiation of early cardiac progenitor lineages leading to defective cardiomyocyte subtype differentiation/maturation in HLHS. Premature cell cycle exit of ventricular cardiomyocytes from patients with HLHS prevented normal tissue responses to developmental signals for growth, leading to multinucleation/polyploidy, accumulation of DNA damage, and exacerbated apoptosis, all potential drivers of left ventricular hypoplasia in absence of hemodynamic cues. CONCLUSIONS Our results highlight that despite genetic heterogeneity in HLHS, many mutations converge on sequential cellular processes primarily driving cardiac myogenesis, suggesting novel therapeutic approaches.
Collapse
Affiliation(s)
- Markus Krane
- Department of Cardiovascular Surgery, Institute Insure (M.K., M.D., H.L., S.A.D., N.P., I.N., Z.Z., C.A.-A., R.L.),Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany.,DZHK (German Centre for Cardiovascular Research)-partner site Munich Heart Alliance, Germany (M.K., A.D., C.K., R.L., T.M., D.S., K.-L.L., A.M.)
| | - Martina Dreßen
- Department of Cardiovascular Surgery, Institute Insure (M.K., M.D., H.L., S.A.D., N.P., I.N., Z.Z., C.A.-A., R.L.),Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany
| | - Gianluca Santamaria
- Department of Internal Medicine I, Cardiology (G.S., I.M., C.M.S., T.D., S.L., E.M., H.R., T.B., A.G., C.K., D.S., K.-L.L., A.M.), Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany
| | - Ilaria My
- Department of Internal Medicine I, Cardiology (G.S., I.M., C.M.S., T.D., S.L., E.M., H.R., T.B., A.G., C.K., D.S., K.-L.L., A.M.), Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany
| | - Christine M Schneider
- Department of Internal Medicine I, Cardiology (G.S., I.M., C.M.S., T.D., S.L., E.M., H.R., T.B., A.G., C.K., D.S., K.-L.L., A.M.), Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany
| | - Tatjana Dorn
- Department of Internal Medicine I, Cardiology (G.S., I.M., C.M.S., T.D., S.L., E.M., H.R., T.B., A.G., C.K., D.S., K.-L.L., A.M.), Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany
| | - Svenja Laue
- Department of Internal Medicine I, Cardiology (G.S., I.M., C.M.S., T.D., S.L., E.M., H.R., T.B., A.G., C.K., D.S., K.-L.L., A.M.), Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany
| | - Elisa Mastantuono
- German Heart Center Munich, and Institute of Human Genetics (E.M., R.B., T.M.), Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany.,Department of Internal Medicine I, Cardiology (G.S., I.M., C.M.S., T.D., S.L., E.M., H.R., T.B., A.G., C.K., D.S., K.-L.L., A.M.), Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany.,Helmholtz Zentrum München, Neuherberg, Germany (E.M., R.B., T.M.)
| | - Riccardo Berutti
- German Heart Center Munich, and Institute of Human Genetics (E.M., R.B., T.M.), Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany.,Helmholtz Zentrum München, Neuherberg, Germany (E.M., R.B., T.M.)
| | - Hilansi Rawat
- Department of Internal Medicine I, Cardiology (G.S., I.M., C.M.S., T.D., S.L., E.M., H.R., T.B., A.G., C.K., D.S., K.-L.L., A.M.), Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany
| | - Ralf Gilsbach
- Institute of Experimental and Clinical Pharmacology and Toxicology (R.G., P.S., L.H.), University of Freiburg, Germany.,Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany (R.G.).,DZHK (German Centre for Cardiovascular Research)-partner site RheinMain, Frankfurt am Main, Germany (R.G.)
| | - Pedro Schneider
- Institute of Experimental and Clinical Pharmacology and Toxicology (R.G., P.S., L.H.), University of Freiburg, Germany
| | - Harald Lahm
- Department of Cardiovascular Surgery, Institute Insure (M.K., M.D., H.L., S.A.D., N.P., I.N., Z.Z., C.A.-A., R.L.),Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany
| | - Sascha Schwarz
- Center for Applied Tissue Engineering and Regenerative Medicine (CANTER), Munich University of Applied Sciences, Germany (S. Schwarz, S. Sudhop)
| | - Stefanie A Doppler
- Department of Cardiovascular Surgery, Institute Insure (M.K., M.D., H.L., S.A.D., N.P., I.N., Z.Z., C.A.-A., R.L.),Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany
| | - Sharon Paige
- Cardiovascular Institute, Stanford University School of Medicine, CA (S.P., S.W.)
| | - Nazan Puluca
- Department of Cardiovascular Surgery, Institute Insure (M.K., M.D., H.L., S.A.D., N.P., I.N., Z.Z., C.A.-A., R.L.),Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany
| | - Sophia Doll
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany (S.D., M.M.)
| | - Irina Neb
- Department of Cardiovascular Surgery, Institute Insure (M.K., M.D., H.L., S.A.D., N.P., I.N., Z.Z., C.A.-A., R.L.),Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany
| | - Thomas Brade
- Department of Internal Medicine I, Cardiology (G.S., I.M., C.M.S., T.D., S.L., E.M., H.R., T.B., A.G., C.K., D.S., K.-L.L., A.M.), Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany
| | - Zhong Zhang
- Department of Cardiovascular Surgery, Institute Insure (M.K., M.D., H.L., S.A.D., N.P., I.N., Z.Z., C.A.-A., R.L.),Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany
| | - Claudia Abou-Ajram
- Department of Cardiovascular Surgery, Institute Insure (M.K., M.D., H.L., S.A.D., N.P., I.N., Z.Z., C.A.-A., R.L.),Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany
| | - Bernd Northoff
- Institute of Laboratory Medicine (B.N., L.M.H.), University Hospital, LMU Munich, Germany
| | - Lesca M Holdt
- Institute of Laboratory Medicine (B.N., L.M.H.), University Hospital, LMU Munich, Germany
| | - Stefanie Sudhop
- Center for Applied Tissue Engineering and Regenerative Medicine (CANTER), Munich University of Applied Sciences, Germany (S. Schwarz, S. Sudhop)
| | - Makoto Sahara
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden (M.S.)
| | - Alexander Goedel
- Department of Internal Medicine I, Cardiology (G.S., I.M., C.M.S., T.D., S.L., E.M., H.R., T.B., A.G., C.K., D.S., K.-L.L., A.M.), Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany
| | - Andreas Dendorfer
- DZHK (German Centre for Cardiovascular Research)-partner site Munich Heart Alliance, Germany (M.K., A.D., C.K., R.L., T.M., D.S., K.-L.L., A.M.).,Walter-Brendel-Centre of Experimental Medicine (A.D.), University Hospital, LMU Munich, Germany
| | - Fleur V Y Tjong
- Heart Centre, Department of Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, The Netherlands (F.V.Y.T., C.B.)
| | - Maria E Rijlaarsdam
- Department of Pediatric Cardiology, Leiden University Medical Center, The Netherlands (M.E.R.)
| | - Julie Cleuziou
- Department of Congenital and Paediatric Heart Surgery, Institute Insure (J.C.), Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany
| | - Nora Lang
- Department of Paediatric Cardiology and Congenital Heart Defects (N.L.), Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany
| | - Christian Kupatt
- Department of Internal Medicine I, Cardiology (G.S., I.M., C.M.S., T.D., S.L., E.M., H.R., T.B., A.G., C.K., D.S., K.-L.L., A.M.), Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany.,DZHK (German Centre for Cardiovascular Research)-partner site Munich Heart Alliance, Germany (M.K., A.D., C.K., R.L., T.M., D.S., K.-L.L., A.M.)
| | - Connie Bezzina
- Heart Centre, Department of Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, The Netherlands (F.V.Y.T., C.B.)
| | - Rüdiger Lange
- Department of Cardiovascular Surgery, Institute Insure (M.K., M.D., H.L., S.A.D., N.P., I.N., Z.Z., C.A.-A., R.L.),Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany.,DZHK (German Centre for Cardiovascular Research)-partner site Munich Heart Alliance, Germany (M.K., A.D., C.K., R.L., T.M., D.S., K.-L.L., A.M.)
| | - Neil E Bowles
- Department of Pediatrics (Division of Cardiology), University of Utah School of Medicine, Salt Lake City (N.E.B.)
| | - Matthias Mann
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany (S.D., M.M.)
| | - Bruce D Gelb
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York (B.D.G.)
| | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano, IRCCS, Milan, Italy (L.C.).,Cardiomyopathies Unit, Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano, IRCCS, San Luca Hospital, Milan, Italy (L.C.).,Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy (L.C.)
| | - Lutz Hein
- Institute of Experimental and Clinical Pharmacology and Toxicology (R.G., P.S., L.H.), University of Freiburg, Germany.,BIOSS, Center for Biological Signaling Studies (L.H.), University of Freiburg, Germany
| | - Thomas Meitinger
- German Heart Center Munich, and Institute of Human Genetics (E.M., R.B., T.M.), Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany.,DZHK (German Centre for Cardiovascular Research)-partner site Munich Heart Alliance, Germany (M.K., A.D., C.K., R.L., T.M., D.S., K.-L.L., A.M.).,Helmholtz Zentrum München, Neuherberg, Germany (E.M., R.B., T.M.)
| | - Sean Wu
- Cardiovascular Institute, Stanford University School of Medicine, CA (S.P., S.W.)
| | - Daniel Sinnecker
- Department of Internal Medicine I, Cardiology (G.S., I.M., C.M.S., T.D., S.L., E.M., H.R., T.B., A.G., C.K., D.S., K.-L.L., A.M.), Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany.,DZHK (German Centre for Cardiovascular Research)-partner site Munich Heart Alliance, Germany (M.K., A.D., C.K., R.L., T.M., D.S., K.-L.L., A.M.)
| | - Peter J Gruber
- Department of Surgery, Yale University, New Haven, CT (P.J.G.)
| | - Karl-Ludwig Laugwitz
- Department of Internal Medicine I, Cardiology (G.S., I.M., C.M.S., T.D., S.L., E.M., H.R., T.B., A.G., C.K., D.S., K.-L.L., A.M.), Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany.,DZHK (German Centre for Cardiovascular Research)-partner site Munich Heart Alliance, Germany (M.K., A.D., C.K., R.L., T.M., D.S., K.-L.L., A.M.)
| | - Alessandra Moretti
- Department of Internal Medicine I, Cardiology (G.S., I.M., C.M.S., T.D., S.L., E.M., H.R., T.B., A.G., C.K., D.S., K.-L.L., A.M.), Klinikum rechts der Isar, School of Medicine & Health, Technical University of Munich, Germany.,DZHK (German Centre for Cardiovascular Research)-partner site Munich Heart Alliance, Germany (M.K., A.D., C.K., R.L., T.M., D.S., K.-L.L., A.M.)
| |
Collapse
|
43
|
Fradejas-Villar N, Bohleber S, Zhao W, Reuter U, Kotter A, Helm M, Knoll R, McFarland R, Taylor RW, Mo Y, Miyauchi K, Sakaguchi Y, Suzuki T, Schweizer U. The Effect of tRNA [Ser]Sec Isopentenylation on Selenoprotein Expression. Int J Mol Sci 2021; 22:ijms222111454. [PMID: 34768885 PMCID: PMC8583801 DOI: 10.3390/ijms222111454] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/22/2022] Open
Abstract
Transfer RNA[Ser]Sec carries multiple post-transcriptional modifications. The A37G mutation in tRNA[Ser]Sec abrogates isopentenylation of base 37 and has a profound effect on selenoprotein expression in mice. Patients with a homozygous pathogenic p.R323Q variant in tRNA-isopentenyl-transferase (TRIT1) show a severe neurological disorder, and hence we wondered whether selenoprotein expression was impaired. Patient fibroblasts with the homozygous p.R323Q variant did not show a general decrease in selenoprotein expression. However, recombinant human TRIT1R323Q had significantly diminished activities towards several tRNA substrates in vitro. We thus engineered mice conditionally deficient in Trit1 in hepatocytes and neurons. Mass-spectrometry revealed that hypermodification of U34 to mcm5Um occurs independently of isopentenylation of A37 in tRNA[Ser]Sec. Western blotting and 75Se metabolic labeling showed only moderate effects on selenoprotein levels and 75Se incorporation. A detailed analysis of Trit1-deficient liver using ribosomal profiling demonstrated that UGA/Sec re-coding was moderately affected in Selenop, Txnrd1, and Sephs2, but not in Gpx1. 2′O-methylation of U34 in tRNA[Ser]Sec depends on FTSJ1, but does not affect UGA/Sec re-coding in selenoprotein translation. Taken together, our results show that a lack of isopentenylation of tRNA[Ser]Sec affects UGA/Sec read-through but differs from a A37G mutation.
Collapse
Affiliation(s)
- Noelia Fradejas-Villar
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53115 Bonn, Germany; (N.F.-V.); (S.B.); (W.Z.); (U.R.); (R.K.)
| | - Simon Bohleber
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53115 Bonn, Germany; (N.F.-V.); (S.B.); (W.Z.); (U.R.); (R.K.)
| | - Wenchao Zhao
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53115 Bonn, Germany; (N.F.-V.); (S.B.); (W.Z.); (U.R.); (R.K.)
| | - Uschi Reuter
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53115 Bonn, Germany; (N.F.-V.); (S.B.); (W.Z.); (U.R.); (R.K.)
| | - Annika Kotter
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, Staudingerweg 5, D-55128 Mainz, Germany; (A.K.); (M.H.)
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, Staudingerweg 5, D-55128 Mainz, Germany; (A.K.); (M.H.)
| | - Rainer Knoll
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53115 Bonn, Germany; (N.F.-V.); (S.B.); (W.Z.); (U.R.); (R.K.)
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (R.M.); (R.W.T.)
| | - Robert W. Taylor
- Wellcome Centre for Mitochondrial Research, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (R.M.); (R.W.T.)
| | - Yufeng Mo
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan; (Y.M.); (K.M.); (Y.S.); (T.S.)
| | - Kenjyo Miyauchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan; (Y.M.); (K.M.); (Y.S.); (T.S.)
| | - Yuriko Sakaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan; (Y.M.); (K.M.); (Y.S.); (T.S.)
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan; (Y.M.); (K.M.); (Y.S.); (T.S.)
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53115 Bonn, Germany; (N.F.-V.); (S.B.); (W.Z.); (U.R.); (R.K.)
- Correspondence:
| |
Collapse
|
44
|
ATP-citrate lyase promotes axonal transport across species. Nat Commun 2021; 12:5878. [PMID: 34620845 PMCID: PMC8497606 DOI: 10.1038/s41467-021-25786-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/24/2021] [Indexed: 01/22/2023] Open
Abstract
Microtubule (MT)-based transport is an evolutionary conserved process finely tuned by posttranslational modifications. Among them, α-tubulin acetylation, primarily catalyzed by a vesicular pool of α-tubulin N-acetyltransferase 1 (Atat1), promotes the recruitment and processivity of molecular motors along MT tracks. However, the mechanism that controls Atat1 activity remains poorly understood. Here, we show that ATP-citrate lyase (Acly) is enriched in vesicles and provide Acetyl-Coenzyme-A (Acetyl-CoA) to Atat1. In addition, we showed that Acly expression is reduced upon loss of Elongator activity, further connecting Elongator to Atat1 in a pathway regulating α-tubulin acetylation and MT-dependent transport in projection neurons, across species. Remarkably, comparable defects occur in fibroblasts from Familial Dysautonomia (FD) patients bearing an autosomal recessive mutation in the gene coding for the Elongator subunit ELP1. Our data may thus shine light on the pathophysiological mechanisms underlying FD. Microtubule tracks are important for the transport of molecules within axons. Here, the authors show that ATAT1, the enzyme responsible for acetylating a-tubulin, receives acetyl groups from ATP citrate lyase whose stability is regulated by Elongator, a protein mutated in the neuronal disease Familial dysautonomia.
Collapse
|
45
|
Liu X, Dai SK, Liu PP, Liu CM. Arid1a regulates neural stem/progenitor cell proliferation and differentiation during cortical development. Cell Prolif 2021; 54:e13124. [PMID: 34562292 PMCID: PMC8560606 DOI: 10.1111/cpr.13124] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/03/2021] [Accepted: 09/03/2021] [Indexed: 12/26/2022] Open
Abstract
Objective Neurodevelopmental diseases are common disorders caused by the disruption of essential neurodevelopmental processes. Recent human exome sequencing and genome‐wide association studies have shown that mutations in the subunits of the SWI/SNF (BAF) complex are risk factors for neurodevelopmental diseases. Clinical studies have found that ARID1A (BAF250a) is the most frequently mutated SWI/SNF gene and its mutations lead to mental retardation and microcephaly. However, the function of ARID1A in brain development and its underlying mechanisms still remain elusive. Methods The present study used Cre/loxP system to generate an Arid1a conditional knockout mouse line. Cell proliferation, cell apoptosis and cell differentiation of NSPCs were studied by immunofluorescence staining. In addition, RNA‐seq and RT‐PCR were performed to dissect the molecular mechanisms of Arid1a underlying cortical neurogenesis. Finally, rescue experiments were conducted to evaluate the effects of Neurod1 or Fezf2 overexpression on the differentiation of NSPCs in vitro. Results Conditional knockout of Arid1a reduces cortical thickness in the developing cortex. Arid1a loss of function inhibits the proliferation of radial glial cells, and increases cell death during late cortical development, and leads to dysregulated expression of genes associated with proliferation and differentiation. Overexpression of Neurod1 or Fezf2 in Arid1a cKO NSPCs rescues their neural differentiation defect in vitro. Conclusions This study demonstrates for the first time that Arid1a plays an important role in regulating the proliferation and differentiation of NSPCs during cortical development, and proposes several gene candidates that are worth to understand the pathological mechanisms and to develop novel interventions of neurodevelopment disorders caused by Arid1a mutations.
Collapse
Affiliation(s)
- Xiao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Shang-Kun Dai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Pei-Pei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
46
|
Peeters MKR, Baggerman G, Gabriels R, Pepermans E, Menschaert G, Boonen K. Ion Mobility Coupled to a Time-of-Flight Mass Analyzer Combined With Fragment Intensity Predictions Improves Identification of Classical Bioactive Peptides and Small Open Reading Frame-Encoded Peptides. Front Cell Dev Biol 2021; 9:720570. [PMID: 34604223 PMCID: PMC8484717 DOI: 10.3389/fcell.2021.720570] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/25/2021] [Indexed: 12/29/2022] Open
Abstract
Bioactive peptides exhibit key roles in a wide variety of complex processes, such as regulation of body weight, learning, aging, and innate immune response. Next to the classical bioactive peptides, emerging from larger precursor proteins by specific proteolytic processing, a new class of peptides originating from small open reading frames (sORFs) have been recognized as important biological regulators. But their intrinsic properties, specific expression pattern and location on presumed non-coding regions have hindered the full characterization of the repertoire of bioactive peptides, despite their predominant role in various pathways. Although the development of peptidomics has offered the opportunity to study these peptides in vivo, it remains challenging to identify the full peptidome as the lack of cleavage enzyme specification and large search space complicates conventional database search approaches. In this study, we introduce a proteogenomics methodology using a new type of mass spectrometry instrument and the implementation of machine learning tools toward improved identification of potential bioactive peptides in the mouse brain. The application of trapped ion mobility spectrometry (tims) coupled to a time-of-flight mass analyzer (TOF) offers improved sensitivity, an enhanced peptide coverage, reduction in chemical noise and the reduced occurrence of chimeric spectra. Subsequent machine learning tools MS2PIP, predicting fragment ion intensities and DeepLC, predicting retention times, improve the database searching based on a large and comprehensive custom database containing both sORFs and alternative ORFs. Finally, the identification of peptides is further enhanced by applying the post-processing semi-supervised learning tool Percolator. Applying this workflow, the first peptidomics workflow combined with spectral intensity and retention time predictions, we identified a total of 167 predicted sORF-encoded peptides, of which 48 originating from presumed non-coding locations, next to 401 peptides from known neuropeptide precursors, linked to 66 annotated bioactive neuropeptides from within 22 different families. Additional PEAKS analysis expanded the pool of SEPs on presumed non-coding locations to 84, while an additional 204 peptides completed the list of peptides from neuropeptide precursors. Altogether, this study provides insights into a new robust pipeline that fuses technological advancements from different fields ensuring an improved coverage of the neuropeptidome in the mouse brain.
Collapse
Affiliation(s)
- Marlies K. R. Peeters
- BioBix, Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Geert Baggerman
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- Unit Environmental Risk and Health, Flemish Institute for Technological Research, Mol, Belgium
| | - Ralf Gabriels
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Flanders Institute for Biotechnology, Ghent, Belgium
| | - Elise Pepermans
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- Unit Environmental Risk and Health, Flemish Institute for Technological Research, Mol, Belgium
| | - Gerben Menschaert
- BioBix, Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
- OHMX.bio, Ghent, Belgium
| | - Kurt Boonen
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- Unit Environmental Risk and Health, Flemish Institute for Technological Research, Mol, Belgium
| |
Collapse
|
47
|
Cameron B, Lehrmann E, Chih T, Walters J, Buksch R, Snyder S, Goffena J, Lefcort F, Becker KG, George L. Loss of Elp1 perturbs histone H2A.Z and the Notch signaling pathway. Biol Open 2021; 10:272332. [PMID: 34590699 PMCID: PMC8496692 DOI: 10.1242/bio.058979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Elongator dysfunction is increasingly recognized as a contributor to multiple neurodevelopmental and neurodegenerative disorders including familial dysautonomia, intellectual disability, amyotrophic lateral sclerosis, and autism spectrum disorder. Although numerous cellular processes are perturbed in the context of Elongator loss, converging evidence from multiple studies has resolved Elongator's primary function in the cell to the modification of tRNA wobble uridines and the translational regulation of codon-biased genes. Here we characterize H2a.z, encoding the variant H2a histone H2A.Z, as an indirect Elongator target. We further show that canonical Notch signaling, a pathway directed by H2A.Z, is perturbed as a consequence of Elp1 loss. Finally, we demonstrate that hyperacetylation of H2A.Z and other histones via exposure to the histone deacetylase inhibitor Trichostatin A during neurogenesis corrects the expression of Notch3 and rescues the development of sensory neurons in embryos lacking the Elp1 Elongator subunit. Summary: The maldevelopment of sensory neurons in Elongator knockout embryos is associated with elevated H2A.Z and perturbed Notch signaling that can be rescued by Trichostatin A.
Collapse
Affiliation(s)
- BreAnna Cameron
- Department of Biological and Physical Sciences, Montana State University Billings, Billings, MT 59101, USA
| | - Elin Lehrmann
- Computational Biology & Genomics Core (CBGC), Laboratory of Genetics and Genomics (LGG), Department of Health and Human Services (DHHS), National Institute on Aging, Intramural Research Program (NIA IRP), National Institutes of Health (NIH), Biomedical Research Center, Baltimore, MD 21224, USA
| | - Tien Chih
- Department of Biological and Physical Sciences, Montana State University Billings, Billings, MT 59101, USA
| | - Joseph Walters
- Department of Biological and Physical Sciences, Montana State University Billings, Billings, MT 59101, USA
| | - Richard Buksch
- Department of Biological and Physical Sciences, Montana State University Billings, Billings, MT 59101, USA
| | - Sara Snyder
- Department of Biological and Physical Sciences, Montana State University Billings, Billings, MT 59101, USA
| | - Joy Goffena
- Department of Biological and Physical Sciences, Montana State University Billings, Billings, MT 59101, USA
| | - Frances Lefcort
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Kevin G Becker
- Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Lynn George
- Department of Biological and Physical Sciences, Montana State University Billings, Billings, MT 59101, USA
| |
Collapse
|
48
|
Developmental HCN channelopathy results in decreased neural progenitor proliferation and microcephaly in mice. Proc Natl Acad Sci U S A 2021; 118:2009393118. [PMID: 34429357 DOI: 10.1073/pnas.2009393118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The development of the cerebral cortex relies on the controlled division of neural stem and progenitor cells. The requirement for precise spatiotemporal control of proliferation and cell fate places a high demand on the cell division machinery, and defective cell division can cause microcephaly and other brain malformations. Cell-extrinsic and -intrinsic factors govern the capacity of cortical progenitors to produce large numbers of neurons and glia within a short developmental time window. In particular, ion channels shape the intrinsic biophysical properties of precursor cells and neurons and control their membrane potential throughout the cell cycle. We found that hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel subunits are expressed in mouse, rat, and human neural progenitors. Loss of HCN channel function in rat neural stem cells impaired their proliferation by affecting the cell-cycle progression, causing G1 accumulation and dysregulation of genes associated with human microcephaly. Transgene-mediated, dominant-negative loss of HCN channel function in the embryonic mouse telencephalon resulted in pronounced microcephaly. Together, our findings suggest a role for HCN channel subunits as a part of a general mechanism influencing cortical development in mammals.
Collapse
|
49
|
Humans and other commonly used model organisms are resistant to cycloheximide-mediated biases in ribosome profiling experiments. Nat Commun 2021; 12:5094. [PMID: 34429433 PMCID: PMC8384890 DOI: 10.1038/s41467-021-25411-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 08/10/2021] [Indexed: 12/26/2022] Open
Abstract
Ribosome profiling measures genome-wide translation dynamics at sub-codon resolution. Cycloheximide (CHX), a widely used translation inhibitor to arrest ribosomes in these experiments, has been shown to induce biases in yeast, questioning its use. However, whether such biases are present in datasets of other organisms including humans is unknown. Here we compare different CHX-treatment conditions in human cells and yeast in parallel experiments using an optimized protocol. We find that human ribosomes are not susceptible to conformational restrictions by CHX, nor does it distort gene-level measurements of ribosome occupancy, measured decoding speed or the translational ramp. Furthermore, CHX-induced codon-specific biases on ribosome occupancy are not detectable in human cells or other model organisms. This shows that reported biases of CHX are species-specific and that CHX does not affect the outcome of ribosome profiling experiments in most settings. Our findings provide a solid framework to conduct and analyze ribosome profiling experiments. Ribosome profiling has become the gold standard to analyze mRNA translation dynamics, and the translation inhibitor cycloheximide (CHX) is often used in its application. Here the authors systematically demonstrate that CHX does not bias the outcome of ribosome profiling experiments in most organisms.
Collapse
|
50
|
Tsukada T, Sakata-Haga H, Shimada H, Shoji H, Hatta T. Mid-pregnancy maternal immune activation increases Pax6-positive and Tbr2-positive neural progenitor cells and causes integrated stress response in the fetal brain in a mouse model of maternal viral infection. IBRO Neurosci Rep 2021; 11:73-80. [PMID: 34409402 PMCID: PMC8363822 DOI: 10.1016/j.ibneur.2021.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/31/2021] [Indexed: 12/26/2022] Open
Abstract
Maternal immune activation (MIA) in midpregnancy is a risk factor for neurodevelopmental disorders. Improper brain development may cause malformations of the brain; maldevelopment induced by MIA may lead to a pathology-related phenotype. In this study, a single intraperitoneal injection of 20 mg/kg polyriboinosinic–polyribocytidylic acid [poly(I:C)] was administered to C57BL/6J mice on embryonic day (E) 12.5 to mimic maternal viral infection. Histopathological analysis of neurogenesis was performed using markers for Pax6, Tbr2, and Tbr1. In these fetuses, significant increases were observed in the proportion of Pax6-positive neural progenitor cells and Pax6/Tbr2 double-positive cells 24 h after poly(I:C) injection. There were no differences in the proportion of Tbr1-positive postmitotic neurons 48 h after poly(I:C) injection. At E18.5, there were more Pax6-positive and Tbr2-positive neural progenitor cells in the poly(I:C)-injected group than in the saline-injected group. Gene ontology enrichment analysis of poly(I:C)-induced differentially expressed genes in the fetal brain at E12.5 demonstrated that these genes were enriched in terms including response to cytokine, response to decreased oxygen levels in the category of biological process. At E13.5, activating transcription factor 4 (Atf4), which is an effector of integrated stress response, was significantly upregulated in the fetal brain. Our results show that poly(I:C)-induced MIA at E12.5 leads to dysregulated neurogenesis and upregulates Atf4 in the fetal brain. These findings provide a new insight in the mechanism of MIA causing improper brain development and subsequent neurodevelopmental disorders. MIA increases Pax6-positive and Tbr2-positive neural progenitor cells. MIA impaired the process of neurogenesis from as early as the acute stage. MIA upregulated Atf4, an effector of integrated stress response, in the fetal brain.
Collapse
Key Words
- ASD, autism spectrum disorders
- Activating transcription factor 4
- Atf4, activating transcription factor 4
- CP, cortical plate
- DEG, differentially expressed gene
- ISR, integrated stress response
- Integrated stress response
- MIA, Maternal immune activation
- Maternal immune activation
- NPCs, neural progenitor cells
- Neurogenesis
- Polyriboinosinic–polyribocytidylic acid
- SVZ, subventricular zone
- UPR, unfolded protein response
- Unfolded protein response
- VZ, ventricular zone
- [polyI:C], polyriboinosinic–polyribocytidylic acid
Collapse
Affiliation(s)
- Tsuyoshi Tsukada
- Department of Anatomy, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
- Department of Neurosurgery, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
- Corresponding author at: Department of Anatomy, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.
| | - Hiromi Sakata-Haga
- Department of Anatomy, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Hiroki Shimada
- Department of Medical Science, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Hiroki Shoji
- Department of Biology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Toshihisa Hatta
- Department of Anatomy, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
- Corresponding author.
| |
Collapse
|