1
|
Nakanoh S. Exploring early extraembryonic cells of epiblast origin: Questions on human amniotic ectoderm and extraembryonic mesoderm. Dev Biol 2025; 524:80-86. [PMID: 40228781 DOI: 10.1016/j.ydbio.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 03/29/2025] [Accepted: 04/12/2025] [Indexed: 04/16/2025]
Abstract
Extraembryonic tissues are essential for proper fetal development and exhibit great diversity across species. Despite its importance, human extraembryonic development has been relatively overlooked. Previously, we established an in vitro model to study human amniogenesis and extraembryonic mesoderm formation. In this article, I develop discussions on four topics inspired by this study: (1) Features of amniotic cell populations described to date. A recently reported early amniotic cell type is examined based on its signature genes to consider how this population should be incorporated into models of primate amniogenesis. (2) Molecular mechanisms underlying the effect of cell density in regulating non-neural ectoderm specification. Fate specification by positional cues in mouse is revisited and possible mechanisms are suggested by drawing insights from human epiblast models. (3) Potential applications of the three-dimensional culture we established. Primate amniotic ectoderm is postulated as a gastrulation-inducing signaling center, and our technique could be used to effectively model its interactions with epiblast. (4) Extraembryonic mesoderm development in human embryos. The obscure origin of primate extraembryonic mesoderm and implications from recent in vitro differentiation models using human pluripotent stem cells are explained. The key concepts explored here will stimulate further studies into both amnion and extraembryonic mesoderm during human and non-human primate development.
Collapse
Affiliation(s)
- Shota Nakanoh
- Epigenetics & Signalling Programmes, Babraham Institute, Cambridge, CB22 3AT, UK.
| |
Collapse
|
2
|
Wu B, Neupane J, Zhou Y, Zhang J, Chen Y, Surani MA, Zhang Y, Bao S, Li X. Stem cell-based embryo models: a tool to study early human development. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1626-1645. [PMID: 39969747 DOI: 10.1007/s11427-024-2741-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/23/2024] [Indexed: 02/20/2025]
Abstract
How a mammalian fertilized egg acquires totipotency and develops into a full-term offspring is a fundamental scientific question. Human embryonic development is difficult to study due to limited resources, technical challenges and ethics. Moreover, the precise regulatory mechanism underlying early human embryonic development remains unknown. In recent years, the emergence of stem cell-based embryo models (SCBEM) provides the opportunity to reconstitute pre- to post-implantation development in vitro. These models to some extent mimic the embryo morphologically and transcriptionally, and thus may be used to study key events in mammalian pre- and post-implantation development. Many groups have successfully generated SCBEM of the mouse and human. Here, we provide a comparative review of the mouse and human SCBEM, discuss the capability of these models to mimic natural embryos and give a perspective on their potential future applications.
Collapse
Affiliation(s)
- Baojiang Wu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
| | - Jitesh Neupane
- The Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Yang Zhou
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
| | - Jingcheng Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Yanglin Chen
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
| | - M Azim Surani
- The Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
| | - Siqin Bao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.
| | - Xihe Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animals, Hohhot, 011517, China.
| |
Collapse
|
3
|
Czukiewska SM, Roelse CM, Chuva de Sousa Lopes SM. Human and non-human primate female in vitro gametogenesis toward meiotic entry: a systematic review. Fertil Steril 2025:S0015-0282(25)00254-7. [PMID: 40334729 DOI: 10.1016/j.fertnstert.2025.04.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/20/2025] [Accepted: 04/24/2025] [Indexed: 05/09/2025]
Abstract
In vitro gametogenesis offers a powerful platform to explore the complexities of female germline development while bypassing ethical and technical barriers in human and non-human primate research. This systematic review examined 23 articles that reported meiotic entry from differentiated pluripotent stem cells or ex vivo-cultured fetal germ cells from humans, cynomolgus monkeys or marmosets and were published between 2009 and 2025. By comparing methodologies and outcomes, the review highlighted current progress and ongoing challenges in inducing meiotic progression in primates. Although complete oogenesis using in vitro gametogenesis has been successfully achieved in mice, extending this success to primates remains a major hurdle, with meiotic entry representing a key milestone toward realizing in vitro gametogenesis in humans.
Collapse
Affiliation(s)
- Sylwia M Czukiewska
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands; The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, the Netherlands
| | - Celine M Roelse
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands; The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, the Netherlands
| | - Susana M Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands; The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, the Netherlands; Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
4
|
Doddamani D, Carlson DF, McTeir L, Taylor L, Nandi S, Davey MG, McGrew MJ, Glover JD. PRDM14 is essential for vertebrate gastrulation and safeguards avian germ cell identity. Dev Biol 2025; 521:129-137. [PMID: 39938772 DOI: 10.1016/j.ydbio.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/30/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
The zinc finger transcription factor PRDM14, part of the PR domain containing protein family, is critical for mammalian primordial germ cell (PGC) specification, epigenetic reprogramming and maintaining naïve pluripotency in stem cells. However, PRDM14's role in other species is not well understood. In chicken, PRDM14 is broadly expressed in the early embryo, before becoming restricted to the forming neural plate, migratory PGCs, and later, in the adult testes. To investigate the role of PRDM14 we generated two independent targeted chicken lines and bred homozygous knockout embryos. Strikingly, we found that gastrulation was disrupted in PRDM14-/- embryos, which lacked a definitive primitive streak. Transcriptomic and in situ hybridisation analyses revealed a broad loss of anterior primitive streak marker genes, coupled with downregulation of the multifunctional antagonists CHRD and CER1, and expansion of the NODAL expression domain. Further analysis of PRDM14-/- embryos revealed PGCs were still specified but significantly reduced in number, and PRDM14-/- PGCs could not be propagated in vitro. Knockdown studies in vitro confirmed that PRDM14 is essential for PGC survival and antagonises FGF-induced somatic differentiation, similar to PRDM14's role in mammalian stem cells. Taken together, our results show that in chicken, PRDM14 plays a multifunctional and essential role during embryonic development.
Collapse
Affiliation(s)
- Dadakhalandar Doddamani
- The Roslin Institute, R(D)SVS, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK; ICMR-Regional Medical Research Centre, Port Blair, Andaman and Nicobar Islands, India
| | | | - Lynn McTeir
- The Roslin Institute, R(D)SVS, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Lorna Taylor
- The Roslin Institute, R(D)SVS, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Sunil Nandi
- The Roslin Institute, R(D)SVS, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Megan G Davey
- The Roslin Institute, R(D)SVS, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Mike J McGrew
- The Roslin Institute, R(D)SVS, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - James D Glover
- The Roslin Institute, R(D)SVS, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
| |
Collapse
|
5
|
Yuan G, Wang J, Qiu S, Zhu Y, Cheng Q, Li L, Sha J, Yang X, Yuan Y. Improving in vitro induction efficiency of human primordial germ cell-like cells using N2B27 or NAC-based medium. J Biomed Res 2025; 39:1-14. [PMID: 40204653 DOI: 10.7555/jbr.38.20240433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025] Open
Abstract
Primordial germ cells (PGCs), the precursors of oocytes or spermatozoa, are highly pluripotent. In recent years, the in vitro induction of human primordial germ cell-like cells (hPGCLCs) has advanced significantly. However, the stability and efficacy of obtaining hPGCLCs in vitro still require further improvement. In the current study, we identified a novel induction system by using Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12 (DMEM/F-12) as the basal medium supplemented with B27 and N2 (referred to as N2B27) in combination with four cytokines: bone morphogenetic protein 4 (BMP4), stem cell factor (SCF), epidermal growth factor (EGF), and leukemia inhibitory factor (LIF). The hPGCLCs induced under these conditions closely resemble PGCs from 4 to 5-week-old embryos at the transcriptome level. Compared with traditional GK15 (GMEM supplemented with 15% Knockout™ SR)-based induction conditions, the N2B27 system significantly increased the speed and efficacy of hPGCLC induction. RNA sequencing analysis revealed that this improvement resulted from an increased cell capacity to cope with hypoxic stress and avoid apoptosis. The N2B27 medium promoted an increase in mitochondrial activity, enabling cells to better cope with hypoxic stress while also reducing the production of reactive oxygen species. Moreover, by gradient concentration experiments, we demonstrated that addition of the common antioxidant N-acetyl-L-cysteine at an optimized concentration further enhanced the efficiency of PGCLC induction under GK15 conditions. Thus, our study established an optimized induction system that enhances the efficiency of hPGCLC differentiation by improving cellular resilience to hypoxic stress and apoptosis.
Collapse
Affiliation(s)
- Gege Yuan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jiachen Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Shuangshuang Qiu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yunfei Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Qing Cheng
- Women's Hospital of Nanjing Medical University, Women and Children's Healthcare Hospital, Nanjing, Jiangsu 211100, China
| | - Laihua Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiaoyu Yang
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029 China
| | - Yan Yuan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
6
|
Ren H, Jia X, Yu L. The building blocks of embryo models: embryonic and extraembryonic stem cells. Cell Discov 2025; 11:40. [PMID: 40258839 PMCID: PMC12012135 DOI: 10.1038/s41421-025-00780-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 01/10/2025] [Indexed: 04/23/2025] Open
Abstract
The process of a single-celled zygote developing into a complex multicellular organism is precisely regulated at spatial and temporal levels in vivo. However, understanding the mechanisms underlying development, particularly in humans, has been constrained by technical and ethical limitations associated with studying natural embryos. Harnessing the intrinsic ability of embryonic stem cells (ESCs) to self-organize when induced and assembled, researchers have established several embryo models as alternative approaches to studying early development in vitro. Recent studies have revealed the critical role of extraembryonic cells in early development; and many groups have created more sophisticated and precise ESC-derived embryo models by incorporating extraembryonic stem cell lines, such as trophoblast stem cells (TSCs), extraembryonic mesoderm cells (EXMCs), extraembryonic endoderm cells (XENs, in rodents), and hypoblast stem cells (in primates). Here, we summarize the characteristics of existing mouse and human embryonic and extraembryonic stem cells and review recent advancements in developing mouse and human embryo models.
Collapse
Affiliation(s)
- Hongan Ren
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojie Jia
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Leqian Yu
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Liu L, Wu J. Stem cell-based models of early human development. Development 2025; 152:dev204543. [PMID: 40242957 PMCID: PMC12045636 DOI: 10.1242/dev.204543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Stem cell-based embryo models (SCBEMs) are structures generated from three-dimensional (3D) culture of pluripotent stem cells and their derivatives, utilizing mechanical and/or chemical cues to facilitate lineage differentiation, self-organization and morphogenesis. These models partially mimic early embryos, which would otherwise be difficult to access. SCBEMs have been established in mice, livestock, nonhuman primates and humans. Here, we focus on recently developed human models, with an emphasis on the peri-implantation stage and the aspects of human development these SCBEMs recapitulate.
Collapse
Affiliation(s)
- Lizhong Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| |
Collapse
|
8
|
Sozen B, Tam PPL, Pera MF. Pluripotent cell states and fates in human embryo models. Development 2025; 152:dev204565. [PMID: 40171916 PMCID: PMC11993252 DOI: 10.1242/dev.204565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Pluripotency, the capacity to generate all cells of the body, is a defining property of a transient population of epiblast cells found in pre-, peri- and post-implantation mammalian embryos. As development progresses, the epiblast cells undergo dynamic transitions in pluripotency states, concurrent with the specification of extra-embryonic and embryonic lineages. Recently, stem cell-based models of pre- and post-implantation human embryonic development have been developed using stem cells that capture key properties of the epiblast at different developmental stages. Here, we review early primate development, comparing pluripotency states of the epiblast in vivo with cultured pluripotent cells representative of these states. We consider how the pluripotency status of the starting cells influences the development of human embryo models and, in turn, what we can learn about the human pluripotent epiblast. Finally, we discuss the limitations of these models and questions arising from the pioneering studies in this emerging field.
Collapse
Affiliation(s)
- Berna Sozen
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT 06501, USA
- Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT 06501, USA
| | - Patrick P. L. Tam
- Embryology Research Unit, Children's Medical Research Institute and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Martin F. Pera
- The Jackson Laboratory, Mammalian Genetics, Bar Harbor, ME 04609, USA
| |
Collapse
|
9
|
Kim YY, Kwak J, Kang BC, Ku SY. Non-human primate: the new frontier model of female reproductive engineering. Front Bioeng Biotechnol 2025; 13:1536750. [PMID: 40242357 PMCID: PMC12001037 DOI: 10.3389/fbioe.2025.1536750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/13/2025] [Indexed: 04/18/2025] Open
Abstract
Reproductive engineering encompasses a range of advanced tissue engineering techniques aimed at addressing infertility that is non-curable with current assisted reproductive technology (ART). The use of animal models has been crucial for these advancements, with a notable preference for non-human primates (NHPs) given their genetic, anatomical, and physiological similarities to humans. Therefore, NHPs are invaluable for studying reproductive engineering. Thus, in reproductive studies, NHPs bridge the anatomical and physiological gaps between rodent models and humans. Their shared features with humans, such as menstrual cycles, placentation, and hormonal regulation, allow for more accurate modeling of reproductive physiology and pathology. These traits make NHPs indispensable in the exploration of reproductive engineering, including infertility treatments, genetic engineering, and uterine transplantation. Reproductive engineering is a transformative field that addresses infertility and enhances reproductive health. By leveraging the unique traits of NHPs, researchers can deepen their understanding of reproductive processes and refine ART techniques for human use. Advances in genetic engineering have enabled the creation of transgenic NHP models, which have been used to modify genes to investigate roles for various purposes, and the process, as mentioned earlier, is closely related to the ART technique, including fertility, embryogenesis, and pregnancy. Therefore, the relation to reproductive studies and the necessity of the NHP model are prerequisites for reproductive engineering. The engineering of NHPs is critically related to integrating ethical practices and exploring complementary methodologies. This review overviews the types of NHP frequently used and studies using NHP for reproductive engineering. These studies may suggest a broader way to use NHP for reproductive engineering.
Collapse
Affiliation(s)
- Yoon Young Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Jina Kwak
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Byeong-Cheol Kang
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Translational Medicine, Seoul, Republic of Korea
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
10
|
Neupane J, Lubatti G, Gross-Thebing T, Ruiz Tejada Segura ML, Butler R, Gross-Thebing S, Dietmann S, Scialdone A, Surani MA. The emergence of human primordial germ cell-like cells in stem cell-derived gastruloids. SCIENCE ADVANCES 2025; 11:eado1350. [PMID: 40138398 PMCID: PMC11939039 DOI: 10.1126/sciadv.ado1350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 02/24/2025] [Indexed: 03/29/2025]
Abstract
Most advances in early human postimplantation development depend on animal studies and stem cell-based embryo models. Here, we present self-organized three-dimensional human gastruloids (hGs) derived from embryonic stem cells. The transcriptome profile of day 3 hGs aligned with Carnegie stage 7 human gastrula, with cell types and differentiation trajectories consistent with human gastrulation. Notably, we observed the emergence of nascent primordial germ cell-like cells (PGCLCs), but without exogenous bone morphogenetic protein (BMP) signaling, which is essential for the PGCLC fate. A mutation in the ISL1 gene affects amnion-like cells and leads to a loss of PGCLCs; the addition of exogenous BMP2 rescues the PGCLC fate, indicating that the amnion may provide endogenous BMP signaling. Our model of early human embryogenesis will enable further exploration of the germ line and other early human lineages.
Collapse
Affiliation(s)
- Jitesh Neupane
- Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK
| | - Gabriele Lubatti
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, 81377 Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Theresa Gross-Thebing
- Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK
| | - Mayra Luisa Ruiz Tejada Segura
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, 81377 Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Richard Butler
- Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | | | - Sabine Dietmann
- Department of Development Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Antonio Scialdone
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, 81377 Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - M. Azim Surani
- Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
Yu H, Wang Z, Ma J, Wang R, Yao S, Gu Z, Lin K, Li J, Young RS, Yu Y, Yu Y, Jin M, Chen D. The establishment and regulation of human germ cell lineage. Stem Cell Res Ther 2025; 16:139. [PMID: 40102947 PMCID: PMC11921702 DOI: 10.1186/s13287-025-04171-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/23/2025] [Indexed: 03/20/2025] Open
Abstract
The specification of primordial germ cells (PGCs) during early embryogenesis initiates the development of the germ cell lineage that ensures the perpetuation of genetic and epigenetic information from parents to offspring. Defects in germ cell development may lead to infertility or birth defects. Historically, our understanding of human PGCs (hPGCs) regulation has primarily been derived from studies in mice, given the ethical restrictions and practical limitations of human embryos at the stage of PGC specification. However, recent studies have increasingly highlighted significant mechanistic differences for PGC development in humans and mice. The past decade has witnessed the establishment of human pluripotent stem cell (hPSC)-derived hPGC-like cells (hPGCLCs) as new models for studying hPGC fate specification and differentiation. In this review, we systematically summarize the current hPSC-derived models for hPGCLC induction, and how these studies uncover the regulatory machinery for human germ cell fate specification and differentiation, forming the basis for reconstituting gametogenesis in vitro from hPSCs for clinical applications and disease modeling.
Collapse
Affiliation(s)
- Honglin Yu
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Ziqi Wang
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Jiayue Ma
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Ruoming Wang
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Shuo Yao
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Zhaoyu Gu
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Kexin Lin
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Jinlan Li
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Robert S Young
- Center for Global Health Research, Usher Institute, University of Edinburgh, 5-7 Little France Road, Edinburgh, EH16 4UX, UK
- Zhejiang University - University of Edinburgh Institute, Zhejiang University, Haining, 314400, Zhejiang, China
| | - Ya Yu
- Center for Reproductive Medicine of The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - You Yu
- Center for Infection Immunity, Cancer of Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.
| | - Min Jin
- Center for Reproductive Medicine of The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.
| | - Di Chen
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang, University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, Zhejiang, China.
- State Key Laboratory of Biobased Transportation Fuel Technology, Haining, 314400, Zhejiang, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
12
|
Masamsetti VP, Salehin N, Kim HJ, Santucci N, Weatherstone M, McMahon R, Marshall LL, Knowles H, Sun J, Studdert JB, Aryamanesh N, Wang R, Jing N, Yang P, Osteil P, Tam PPL. Lineage contribution of the mesendoderm progenitors in the gastrulating mouse embryo. Dev Cell 2025:S1534-5807(25)00120-0. [PMID: 40132585 DOI: 10.1016/j.devcel.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/08/2024] [Accepted: 02/28/2025] [Indexed: 03/27/2025]
Abstract
A population of putative mesendoderm progenitors that can contribute cellular descendants to both mesoderm and endoderm lineages is identified in the gastrulating mouse embryo. These progenitor cells are localized to the posterior epiblast, primitive streak, and nascent mesoderm of mid-streak- (E7.0) to late-streak-stage (E7.5) embryos. Lineage tracing in vivo identified that putative mesendoderm progenitors contribute descendants to the definitive endoderm and the axial mesendoderm of E7.75 embryos and to the endoderm of the foregut and hindgut of the E8.5-8.75 embryos. Differentiation of mouse epiblast stem cells identified that the choice between endoderm and mesoderm cell fates depends on the timing of Mixl1 activation upon exit from pluripotency. The knowledge gained on the spatiotemporal distribution of mesendoderm progenitors and the molecular drivers underpinning the divergence of cell lineages in these progenitors enriches our mechanistic understanding of the allocation of the tissue progenitors to germ layer derivatives in early development.
Collapse
Affiliation(s)
- V Pragathi Masamsetti
- Embryology Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia; School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
| | - Nazmus Salehin
- Embryology Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia; School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Hani Jieun Kim
- Computational Systems Biology Unit, Children's Medical Research Institute, Westmead, NSW, Australia; School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia
| | - Nicole Santucci
- Embryology Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| | - Megan Weatherstone
- Embryology Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| | - Riley McMahon
- Embryology Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia; School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Lee L Marshall
- Bioinformatics Group, Children's Medical Research Institute, Westmead, NSW, Australia
| | - Hilary Knowles
- Embryology Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| | - Jane Sun
- Embryology Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| | - Josh B Studdert
- Embryology Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| | - Nader Aryamanesh
- Embryology Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia; School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Bioinformatics Group, Children's Medical Research Institute, Westmead, NSW, Australia
| | - Ran Wang
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Naihe Jing
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Pengyi Yang
- Computational Systems Biology Unit, Children's Medical Research Institute, Westmead, NSW, Australia; School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia
| | - Pierre Osteil
- Embryology Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| | - Patrick P L Tam
- Embryology Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia; School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
13
|
Xie H, An C, Bai B, Luo J, Sun N, Ci B, Jin L, Mo P, Lu Y, Zhong K, Yu Y, Tan T, Li R, Fan Y. Modeling early gastrulation in human blastoids with DNA methylation patterns of natural blastocysts. Cell Stem Cell 2025; 32:409-425.e8. [PMID: 39814012 DOI: 10.1016/j.stem.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/27/2024] [Accepted: 12/20/2024] [Indexed: 01/18/2025]
Abstract
Blastoids are a promising model for studying early human embryogenesis, but current models have limitations in post-implantation development and lack comprehensive epigenetic assessments, especially regarding genomic imprinting. These issues can lead to failures in accurately modeling early embryonic development. In this study, we developed a high-fidelity blastoid model using 4 chemicals + leukemia inhibitory factor (LIF) (4CL) naive human pluripotent stem cells (hPSCs) (4CL blastoids). 4CL blastoids closely resemble human blastocysts in morphology and transcriptional profiles, exhibiting similar DNA methylation and gene imprinting patterns. By extending the 3D culture to 14 days, these blastoids mimic early gastrulation, demonstrating the specification and migration of cells. They also show the transcriptional signature of hemogenic angioblast (HAB) cells at Carnegie stage 6 (CS6). This model bridges pre- and post-implantation stages, offering valuable insights into early tissue formation and human development.
Collapse
Affiliation(s)
- Han Xie
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Chenrui An
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Bing Bai
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Jiajia Luo
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Nianqin Sun
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Baiquan Ci
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Long Jin
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Peiting Mo
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Yawen Lu
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Ke Zhong
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Yang Yu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China.
| | - Tao Tan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, Yunnan, China.
| | - Rong Li
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.
| | - Yong Fan
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China.
| |
Collapse
|
14
|
Gu Y, Chen J, Wang Z, Shao Q, Li Z, Ye Y, Xiao X, Xiao Y, Liu W, Xie S, Tong L, Jiang J, Xiao X, Yu Y, Jin M, Wei Y, Young RS, Hou L, Chen D. Integrated analysis and systematic characterization of the regulatory network for human germline development. J Genet Genomics 2025; 52:204-219. [PMID: 39571792 DOI: 10.1016/j.jgg.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 01/06/2025]
Abstract
Primordial germ cells (PGCs) are the precursors of germline that are specified at the embryonic stage. Recent studies reveal that humans employ different mechanisms for PGC specification compared with model organisms such as mice. Moreover, the specific regulatory machinery remains largely unexplored, mainly due to the inaccessible nature of this complex biological process in humans. Here, we curate and integrate multi-omics data, including 581 RNA-seq, 54 ATAC-seq, 45 ChIP-seq, and 69 single-cell RNA-seq samples from different stages of human PGC development to recapitulate the precisely controlled and stepwise process, presenting an atlas in the human PGC database (hPGCdb). With these uniformly processed data and integrated analyses, we characterize the potential key transcription factors and regulatory networks governing human germ cell fate. We validate the important roles of some of the key factors in germ cell development by CRISPRi knockdown. We also identify the soma-germline interaction network and discover the involvement of SDC2 and LAMA4 for PGC development, as well as soma-derived NOTCH2 signaling for germ cell differentiation. Taken together, we have built a database for human PGCs (http://43.131.248.15:6882) and demonstrate that hPGCdb enables the identification of the missing pieces of mechanisms governing germline development, including both intrinsic and extrinsic regulatory programs.
Collapse
Affiliation(s)
- Yashi Gu
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Jiayao Chen
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Ziqi Wang
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Qizhe Shao
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Zhekai Li
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Yaxuan Ye
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Xia Xiao
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Yitian Xiao
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Wenyang Liu
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Sisi Xie
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Lingling Tong
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Jin Jiang
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Xiaoying Xiao
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Ya Yu
- Center for Reproductive Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Min Jin
- Center for Reproductive Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Yanxing Wei
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Key Laboratory of Functional Proteomics of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China; Research Centre for Women's and Infants' Health, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, M5T3H7, Canada.
| | - Robert S Young
- Center for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, 5-7 Little France Road, Edinburgh BioQuarter - Gate 3, Edinburgh, EH16 4UX, UK; Zhejiang University - University of Edinburgh Institute, Zhejiang University, Haining, Zhejiang 314400, China.
| | - Lei Hou
- Section of Biomedical Genetics, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, United States.
| | - Di Chen
- Center for Reproductive Medicine of the Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK; State Key Laboratory of Biobased Transportation Fuel Technology, Haining, Zhejiang 314400, China.
| |
Collapse
|
15
|
Cordazzo Vargas B, Shioda T. Association Between Activated Loci of HML-2 Primate-Specific Endogenous Retrovirus and Newly Formed Chromatin Contacts in Human Primordial Germ Cell-like Cells. Int J Mol Sci 2024; 25:13639. [PMID: 39769401 PMCID: PMC11728338 DOI: 10.3390/ijms252413639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/10/2024] [Accepted: 12/14/2024] [Indexed: 01/16/2025] Open
Abstract
The pluripotent stem cell (PSC)-derived human primordial germ cell-like cells (PGCLCs) are a cell culture-derived surrogate model of embryonic primordial germ cells. Upon differentiation of PSCs to PGCLCs, multiple loci of HML-2, the hominoid-specific human endogenous retrovirus (HERV), are strongly activated, which is necessary for PSC differentiation to PGCLCs. In PSCs, strongly activated loci of HERV-H family HERVs create chromatin contacts, which are required for the pluripotency. Chromatin contacts in the genome of human PSCs and PGCLCs were determined by Hi-C sequencing, and their locations were compared with those of HML-2 loci strongly activated in PGCLCs but silenced in the precursor naïve iPSCs. In both iPSCs and PGCLCs, the size of chromatin contacts were found to be around one megabase, which corresponds to the Topologically Associated Domains in the human genome but is slightly larger in PGCLCs than iPSCs. The number of small-sized chromatin contacts diminished while numbers of larger-sized contacts increased. The distances between chromatin contacts newly formed in PGCLCs and the degrees of activation of the closest HML-2 loci showed significant inverse correlation. Our study provides evidence that strong activation of HML-2 provirus loci may be associated with newly formed chromatin contacts in their vicinity, potentially contributing to PSC differentiation to the germ cell lineage.
Collapse
Affiliation(s)
- Bianca Cordazzo Vargas
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02114, USA
- Computational Biomedicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Toshihiro Shioda
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02114, USA
| |
Collapse
|
16
|
Shahbazi MN, Pasque V. Early human development and stem cell-based human embryo models. Cell Stem Cell 2024; 31:1398-1418. [PMID: 39366361 PMCID: PMC7617107 DOI: 10.1016/j.stem.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/18/2024] [Accepted: 09/02/2024] [Indexed: 10/06/2024]
Abstract
The use of stem cells to model the early human embryo promises to transform our understanding of developmental biology and human reproduction. In this review, we present our current knowledge of the first 2 weeks of human embryo development. We first focus on the distinct cell lineages of the embryo and the derivation of stem cell lines. We then discuss the intercellular crosstalk that guides early embryo development and how this crosstalk is recapitulated in vitro to generate stem cell-based embryo models. We highlight advances in this fast-developing field, discuss current limitations, and provide a vision for the future.
Collapse
Affiliation(s)
| | - Vincent Pasque
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; Leuven Stem Cell Institute & Leuven Institute for Single-Cell Omics (LISCO), Leuven, Belgium.
| |
Collapse
|
17
|
Siriwardena D, Munger C, Penfold C, Kohler TN, Weberling A, Linneberg-Agerholm M, Slatery E, Ellermann AL, Bergmann S, Clark SJ, Rawlings TM, Brickman JM, Reik W, Brosens JJ, Zernicka-Goetz M, Sasaki E, Behr R, Hollfelder F, Boroviak TE. Marmoset and human trophoblast stem cells differ in signaling requirements and recapitulate divergent modes of trophoblast invasion. Cell Stem Cell 2024; 31:1427-1446.e8. [PMID: 39321797 PMCID: PMC7616712 DOI: 10.1016/j.stem.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/01/2024] [Accepted: 09/05/2024] [Indexed: 09/27/2024]
Abstract
Early human trophoblast development has remained elusive due to the inaccessibility of the early conceptus. Non-human primate models recapitulate many features of human development and allow access to early postimplantation stages. Here, we tracked the pre- to postimplantation transition of the trophoblast lineage in superficially implanting marmoset embryos in vivo. We differentiated marmoset naive pluripotent stem cells into trophoblast stem cells (TSCs), which exhibited trophoblast-specific transcriptome, methylome, differentiation potential, and long-term self-renewal. Notably, human TSC culture conditions failed to support marmoset TSC derivation, instead inducing an extraembryonic mesoderm-like fate in marmoset cells. We show that combined MEK, TGF-β/NODAL, and histone deacetylase inhibition stabilizes a periimplantation trophoblast-like identity in marmoset TSCs. By contrast, these conditions differentiated human TSCs toward extravillous trophoblasts. Our work presents a paradigm to harness the evolutionary divergence in implantation strategies to elucidate human trophoblast development and invasion.
Collapse
Affiliation(s)
- Dylan Siriwardena
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Wellcome Trust, Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Clara Munger
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Wellcome Trust, Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK; Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Christopher Penfold
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Wellcome Trust, Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Timo N Kohler
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | - Erin Slatery
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Anna L Ellermann
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Sophie Bergmann
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Wellcome Trust, Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Stephen J Clark
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Altos Labs Cambridge Institute, Cambridge, UK; Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Thomas M Rawlings
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Joshua M Brickman
- Novo Nordisk Foundation Center for Stem Cell Medicine (renew), University of Copenhagen, Copenhagen, Denmark
| | - Wolf Reik
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Altos Labs Cambridge Institute, Cambridge, UK; Epigenetics Programme, Babraham Institute, Cambridge, UK; Wellcome Trust Sanger Institute, Cambridge, UK
| | - Jan J Brosens
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK; Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Magdalena Zernicka-Goetz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Erika Sasaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki 210-0821, Japan
| | - Rüdiger Behr
- German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Göttingen, Germany
| | | | - Thorsten E Boroviak
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Wellcome Trust, Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
18
|
Miyazaki Y, Orisaka M, Fujita Y, Mizutani T, Yazawa T, Yoshida Y. Steroidogenic differentiation of human amniotic membrane-derived mesenchymal stem cells into a progesterone-/androgen-producing cell lineage by SF-1 and an estrogen-producing cell lineage by WT1-KTS. Front Endocrinol (Lausanne) 2024; 15:1410433. [PMID: 39359415 PMCID: PMC11445051 DOI: 10.3389/fendo.2024.1410433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024] Open
Abstract
Background Sex steroid hormones, primarily synthesized by gonadal somatic cells, are pivotal for sexual development and reproduction. Mice studies have shown that two transcription factors, steroidogenic factor 1 (SF-1) and Wilms' tumor 1 (WT1), are involved in gonadal development. However, their role in human gonadal somatic differentiation remains unclear. We therefore aimed to investigate the roles of SF-1 and WT1 in human gonadal steroidogenic cell differentiation. Methods Using a transient lentivirus-mediated gene expression system, we assessed the effects of SF-1 and WT1 expression on the steroidogenic potential of human amniotic membrane-derived mesenchymal stem cells (hAmMSCs). Results SF-1 and WT1-KTS, a splice variant of WT1, played distinct roles in human steroidogenic differentiation of hAmMSCs. SF-1 induced hAmMSC differentiation into progesterone- and androgen-producing cell lineages, whereas WT1-KTS promoted hAmMSC differentiation into estrogen-producing cell lineages. Conclusion Our findings revealed that SF-1 and WT1-KTS play important roles in human gonadal steroidogenic cell differentiation, especially during ovarian development. These findings may pave the way for future studies on human ovarian differentiation and development.
Collapse
Affiliation(s)
- Yumiko Miyazaki
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Makoto Orisaka
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Yuko Fujita
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tetsuya Mizutani
- Department of Nursing, Faculty of Nursing and Welfare Sciences, Fukui Prefectural University, Fukui, Japan
| | - Takashi Yazawa
- Department of Biochemistry, Asahikawa Medical University, Hokkaido, Japan
| | - Yoshio Yoshida
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
19
|
Sekulovski N, Carleton AE, Rengarajan AA, Lin CW, Juga LN, Whorton AE, Schmidt JK, Golos TG, Taniguchi K. Temporally resolved single cell transcriptomics in a human model of amniogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.07.556553. [PMID: 39026707 PMCID: PMC11257495 DOI: 10.1101/2023.09.07.556553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Amniogenesis is triggered in a collection of pluripotent epiblast cells as the human embryo implants. To gain insights into the critical but poorly understood transcriptional machinery governing amnion fate determination, we examined the evolving transcriptome of a developing human pluripotent stem cell-derived amnion model at the single cell level. This analysis revealed several continuous amniotic fate progressing states with state-specific markers, which include a previously unrecognized CLDN10+ amnion progenitor state. Strikingly, we found that expression of CLDN10 is restricted to the amnion-epiblast boundary region in the human post-implantation amniotic sac model as well as in a peri-gastrula cynomolgus macaque embryo, bolstering the growing notion that, at this stage, the amnion-epiblast boundary is a site of active amniogenesis. Bioinformatic analysis of published primate peri-gastrula single cell sequencing data further confirmed that CLDN10 is expressed in cells progressing to amnion. Additionally, our loss of function analysis shows that CLDN10 promotes amniotic but suppresses primordial germ cell-like fate. Overall, this study presents a comprehensive amniogenic single cell transcriptomic resource and identifies a previously unrecognized CLDN10+ amnion progenitor population at the amnion-epiblast boundary of the primate peri-gastrula.
Collapse
Affiliation(s)
- Nikola Sekulovski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Amber E. Carleton
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Anusha A. Rengarajan
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Chien-Wei Lin
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Lauren N. Juga
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Allison E. Whorton
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jenna K. Schmidt
- Wisconsin National Primate Research Center (WNPRC), Madison, WI, USA
| | - Thaddeus G. Golos
- Wisconsin National Primate Research Center (WNPRC), Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin - Madison School of Medicine, Madison, WI USA
- Department of Comparative Biosciences, University of Wisconsin - Madison School of Veterinary Medicine, Madison, WI, USA
| | - Kenichiro Taniguchi
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
20
|
Sekulovski N, Wettstein JC, Carleton AE, Juga LN, Taniguchi LE, Ma X, Rao S, Schmidt JK, Golos TG, Lin CW, Taniguchi K. Temporally resolved early bone morphogenetic protein-driven transcriptional cascade during human amnion specification. eLife 2024; 12:RP89367. [PMID: 39051990 PMCID: PMC11272160 DOI: 10.7554/elife.89367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Amniogenesis, a process critical for continuation of healthy pregnancy, is triggered in a collection of pluripotent epiblast cells as the human embryo implants. Previous studies have established that bone morphogenetic protein (BMP) signaling is a major driver of this lineage specifying process, but the downstream BMP-dependent transcriptional networks that lead to successful amniogenesis remain to be identified. This is, in part, due to the current lack of a robust and reproducible model system that enables mechanistic investigations exclusively into amniogenesis. Here, we developed an improved model of early amnion specification, using a human pluripotent stem cell-based platform in which the activation of BMP signaling is controlled and synchronous. Uniform amniogenesis is seen within 48 hr after BMP activation, and the resulting cells share transcriptomic characteristics with amnion cells of a gastrulating human embryo. Using detailed time-course transcriptomic analyses, we established a previously uncharacterized BMP-dependent amniotic transcriptional cascade, and identified markers that represent five distinct stages of amnion fate specification; the expression of selected markers was validated in early post-implantation macaque embryos. Moreover, a cohort of factors that could potentially control specific stages of amniogenesis was identified, including the transcription factor TFAP2A. Functionally, we determined that, once amniogenesis is triggered by the BMP pathway, TFAP2A controls the progression of amniogenesis. This work presents a temporally resolved transcriptomic resource for several previously uncharacterized amniogenesis states and demonstrates a critical intermediate role for TFAP2A during amnion fate specification.
Collapse
Affiliation(s)
- Nikola Sekulovski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| | - Jenna C Wettstein
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| | - Amber E Carleton
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| | - Lauren N Juga
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| | - Linnea E Taniguchi
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| | - Xiaolong Ma
- Division of Biostatistics, Institute for Health and Equity, Medical College of WisconsinMilwaukeeUnited States
| | - Sridhar Rao
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
- Department of Pediatrics, Medical College of WisconsinMilwaukeeUnited States
- Versiti Blood Research InstituteMilwaukeeUnited States
| | - Jenna K Schmidt
- Wisconsin National Primate Research CenterMilwaukeeUnited States
| | - Thaddeus G Golos
- Wisconsin National Primate Research CenterMilwaukeeUnited States
- Department of Obstetrics and Gynecology, University of Wisconsin - Madison School of Medicine and Public HealthMadisonUnited States
- Department of Comparative Biosciences, University of Wisconsin - Madison School of Veterinary MedicineMadisonUnited States
| | - Chien-Wei Lin
- Division of Biostatistics, Institute for Health and Equity, Medical College of WisconsinMilwaukeeUnited States
| | - Kenichiro Taniguchi
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
- Department of Pediatrics, Medical College of WisconsinMilwaukeeUnited States
| |
Collapse
|
21
|
Murase Y, Yokogawa R, Yabuta Y, Nagano M, Katou Y, Mizuyama M, Kitamura A, Puangsricharoen P, Yamashiro C, Hu B, Mizuta K, Tsujimura T, Yamamoto T, Ogata K, Ishihama Y, Saitou M. In vitro reconstitution of epigenetic reprogramming in the human germ line. Nature 2024; 631:170-178. [PMID: 38768632 PMCID: PMC11222161 DOI: 10.1038/s41586-024-07526-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Epigenetic reprogramming resets parental epigenetic memories and differentiates primordial germ cells (PGCs) into mitotic pro-spermatogonia or oogonia. This process ensures sexually dimorphic germ cell development for totipotency1. In vitro reconstitution of epigenetic reprogramming in humans remains a fundamental challenge. Here we establish a strategy for inducing epigenetic reprogramming and differentiation of pluripotent stem-cell-derived human PGC-like cells (hPGCLCs) into mitotic pro-spermatogonia or oogonia, coupled with their extensive amplification (about >1010-fold). Bone morphogenetic protein (BMP) signalling is a key driver of these processes. BMP-driven hPGCLC differentiation involves attenuation of the MAPK (ERK) pathway and both de novo and maintenance DNA methyltransferase activities, which probably promote replication-coupled, passive DNA demethylation. hPGCLCs deficient in TET1, an active DNA demethylase abundant in human germ cells2,3, differentiate into extraembryonic cells, including amnion, with de-repression of key genes that bear bivalent promoters. These cells fail to fully activate genes vital for spermatogenesis and oogenesis, and their promoters remain methylated. Our study provides a framework for epigenetic reprogramming in humans and an important advance in human biology. Through the generation of abundant mitotic pro-spermatogonia and oogonia-like cells, our results also represent a milestone for human in vitro gametogenesis research and its potential translation into reproductive medicine.
Collapse
Affiliation(s)
- Yusuke Murase
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryuta Yokogawa
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yukihiro Yabuta
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Nagano
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshitaka Katou
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Manami Mizuyama
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ayaka Kitamura
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Pimpitcha Puangsricharoen
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Chika Yamashiro
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Bo Hu
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ken Mizuta
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Taro Tsujimura
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Takuya Yamamoto
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Medical-Risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Kosuke Ogata
- Department of Molecular Systems BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yasushi Ishihama
- Department of Molecular Systems BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.
| |
Collapse
|
22
|
Cheng K, Seita Y, Whelan EC, Yokomizo R, Hwang YS, Rotolo A, Krantz ID, Ginsberg JP, Kolon TF, Lal P, Luo X, Pierorazio PM, Linn RL, Ryeom S, Sasaki K. Defining the cellular origin of seminoma by transcriptional and epigenetic mapping to the normal human germline. Cell Rep 2024; 43:114323. [PMID: 38861385 DOI: 10.1016/j.celrep.2024.114323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/26/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024] Open
Abstract
Aberrant male germline development can lead to the formation of seminoma, a testicular germ cell tumor. Seminomas are biologically similar to primordial germ cells (PGCs) and many bear an isochromosome 12p [i(12p)] with two additional copies of the short arm of chromosome 12. By mapping seminoma transcriptomes and open chromatin landscape onto a normal human male germline trajectory, we find that seminoma resembles premigratory/migratory PGCs; however, it exhibits enhanced germline and pluripotency programs and upregulation of genes involved in apoptosis, angiogenesis, and MAPK/ERK pathways. Using pluripotent stem cell-derived PGCs from Pallister-Killian syndrome patients mosaic for i(12p), we model seminoma and identify gene dosage effects that may contribute to transformation. As murine seminoma models do not exist, our analyses provide critical insights into genetic, cellular, and signaling programs driving seminoma transformation, and the in vitro platform developed herein permits evaluation of additional signals required for seminoma tumorigenesis.
Collapse
Affiliation(s)
- Keren Cheng
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Yasunari Seita
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Eoin C Whelan
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Ryo Yokomizo
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Young Sun Hwang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Antonia Rotolo
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Ian D Krantz
- Division of Human Genetics, The Roberts Individualized Medical Genetics Center, The Children's Hospital of Philadelphia, 3500 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Jill P Ginsberg
- Department of Pediatrics, The Children's Hospital of Philadelphia, 3500 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Thomas F Kolon
- Division of Urology, The Children's Hospital of Philadelphia, 3500 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Priti Lal
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Xunda Luo
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Presbyterian Medical Center, 51 North 39th Street, Philadelphia, PA 19104, USA
| | - Phillip M Pierorazio
- Division of Urology, University of Pennsylvania Presbyterian Medical Center, 3737 Market St. 4th Floor, Philadelphia, PA 19104, USA
| | - Rebecca L Linn
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, Philadelphia, PA 19104, USA; Department of Pathology, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Sandra Ryeom
- Department of Surgery, Columbia University Irving Medical Center, 630 W. 168th Street, P&S 17-409, New York, NY 10032, USA
| | - Kotaro Sasaki
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
23
|
Wu J, Fu J. Toward developing human organs via embryo models and chimeras. Cell 2024; 187:3194-3219. [PMID: 38906095 PMCID: PMC11239105 DOI: 10.1016/j.cell.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 02/02/2024] [Accepted: 05/14/2024] [Indexed: 06/23/2024]
Abstract
Developing functional organs from stem cells remains a challenging goal in regenerative medicine. Existing methodologies, such as tissue engineering, bioprinting, and organoids, only offer partial solutions. This perspective focuses on two promising approaches emerging for engineering human organs from stem cells: stem cell-based embryo models and interspecies organogenesis. Both approaches exploit the premise of guiding stem cells to mimic natural development. We begin by summarizing what is known about early human development as a blueprint for recapitulating organogenesis in both embryo models and interspecies chimeras. The latest advances in both fields are discussed before highlighting the technological and knowledge gaps to be addressed before the goal of developing human organs could be achieved using the two approaches. We conclude by discussing challenges facing embryo modeling and interspecies organogenesis and outlining future prospects for advancing both fields toward the generation of human tissues and organs for basic research and translational applications.
Collapse
Affiliation(s)
- Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
24
|
Kurlovich J, Rodriguez Polo I, Dovgusha O, Tereshchenko Y, Cruz CRV, Behr R, Günesdogan U. Generation of marmoset primordial germ cell-like cells under chemically defined conditions. Life Sci Alliance 2024; 7:e202302371. [PMID: 38499329 PMCID: PMC10948935 DOI: 10.26508/lsa.202302371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
Primordial germ cells (PGCs) are the embryonic precursors of sperm and oocytes, which transmit genetic/epigenetic information across generations. Mouse PGC and subsequent gamete development can be fully reconstituted in vitro, opening up new avenues for germ cell studies in biomedical research. However, PGCs show molecular differences between rodents and humans. Therefore, to establish an in vitro system that is closely related to humans, we studied PGC development in vivo and in vitro in the common marmoset monkey Callithrix jacchus (cj). Gonadal cjPGCs at embryonic day 74 express SOX17, AP2Ɣ, BLIMP1, NANOG, and OCT4A, which is reminiscent of human PGCs. We established transgene-free induced pluripotent stem cell (cjiPSC) lines from foetal and postnatal fibroblasts. These cjiPSCs, cultured in defined and feeder-free conditions, can be differentiated into precursors of mesendoderm and subsequently into cjPGC-like cells (cjPGCLCs) with a transcriptome similar to human PGCs/PGCLCs. Our results not only pave the way for studying PGC development in a non-human primate in vitro under experimentally controlled conditions, but also provide the opportunity to derive functional marmoset gametes in future studies.
Collapse
Affiliation(s)
- Julia Kurlovich
- Göttingen Center for Molecular Biosciences, Department of Developmental Biology, University of Göttingen, Göttingen, Germany
| | - Ignacio Rodriguez Polo
- Göttingen Center for Molecular Biosciences, Department of Developmental Biology, University of Göttingen, Göttingen, Germany
- German Primate Center-Leibniz Institute for Primate Research, Research Platform Degenerative Diseases, Göttingen, Germany
- Stem Cell and Human Development Laboratory, The Francis Crick Institute, London, UK
| | - Oleksandr Dovgusha
- Göttingen Center for Molecular Biosciences, Department of Developmental Biology, University of Göttingen, Göttingen, Germany
| | - Yuliia Tereshchenko
- German Primate Center-Leibniz Institute for Primate Research, Research Platform Degenerative Diseases, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Carmela Rieline V Cruz
- Göttingen Center for Molecular Biosciences, Department of Developmental Biology, University of Göttingen, Göttingen, Germany
| | - Rüdiger Behr
- German Primate Center-Leibniz Institute for Primate Research, Research Platform Degenerative Diseases, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Ufuk Günesdogan
- Göttingen Center for Molecular Biosciences, Department of Developmental Biology, University of Göttingen, Göttingen, Germany
- Department for Molecular Developmental Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
25
|
Xiao Z, Cui L, Yuan Y, He N, Xie X, Lin S, Yang X, Zhang X, Shi P, Wei Z, Li Y, Wang H, Wang X, Wei Y, Guo J, Yu L. 3D reconstruction of a gastrulating human embryo. Cell 2024; 187:2855-2874.e19. [PMID: 38657603 DOI: 10.1016/j.cell.2024.03.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/17/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
Progress in understanding early human development has been impeded by the scarcity of reference datasets from natural embryos, particularly those with spatial information during crucial stages like gastrulation. We conducted high-resolution spatial transcriptomics profiling on 38,562 spots from 62 transverse sections of an intact Carnegie stage (CS) 8 human embryo. From this spatial transcriptomic dataset, we constructed a 3D model of the CS8 embryo, in which a range of cell subtypes are identified, based on gene expression patterns and positional register, along the anterior-posterior, medial-lateral, and dorsal-ventral axis in the embryo. We further characterized the lineage trajectories of embryonic and extra-embryonic tissues and associated regulons and the regionalization of signaling centers and signaling activities that underpin lineage progression and tissue patterning during gastrulation. Collectively, the findings of this study provide insights into gastrulation and post-gastrulation development of the human embryo.
Collapse
Affiliation(s)
- Zhenyu Xiao
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Lina Cui
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yang Yuan
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Nannan He
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xinwei Xie
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Sirui Lin
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaolong Yang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Xin Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Peifu Shi
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhifeng Wei
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yang Li
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hongmei Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Science, Beijing Institute of Technology, Beijing 100081, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Xiaoyan Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Yulei Wei
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Jingtao Guo
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Leqian Yu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| |
Collapse
|
26
|
de Castro RCF, Buranello TW, Recchia K, de Souza AF, Pieri NCG, Bressan FF. Emerging Contributions of Pluripotent Stem Cells to Reproductive Technologies in Veterinary Medicine. J Dev Biol 2024; 12:14. [PMID: 38804434 PMCID: PMC11130827 DOI: 10.3390/jdb12020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
The generation of mature gametes and competent embryos in vitro from pluripotent stem cells has been successfully achieved in a few species, mainly in mice, with recent advances in humans and scarce preliminary reports in other domestic species. These biotechnologies are very attractive as they facilitate the understanding of developmental mechanisms and stages that are generally inaccessible during early embryogenesis, thus enabling advanced reproductive technologies and contributing to the generation of animals of high genetic merit in a short period. Studies on the production of in vitro embryos in pigs and cattle are currently used as study models for humans since they present more similar characteristics when compared to rodents in both the initial embryo development and adult life. This review discusses the most relevant biotechnologies used in veterinary medicine, focusing on the generation of germ-cell-like cells in vitro through the acquisition of totipotent status and the production of embryos in vitro from pluripotent stem cells, thus highlighting the main uses of pluripotent stem cells in livestock species and reproductive medicine.
Collapse
Affiliation(s)
- Raiane Cristina Fratini de Castro
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo 01001-010, SP, Brazil; (R.C.F.d.C.); (T.W.B.); (K.R.)
| | - Tiago William Buranello
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo 01001-010, SP, Brazil; (R.C.F.d.C.); (T.W.B.); (K.R.)
| | - Kaiana Recchia
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo 01001-010, SP, Brazil; (R.C.F.d.C.); (T.W.B.); (K.R.)
| | - Aline Fernanda de Souza
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil;
| | - Naira Caroline Godoy Pieri
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil;
| | - Fabiana Fernandes Bressan
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo 01001-010, SP, Brazil; (R.C.F.d.C.); (T.W.B.); (K.R.)
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil;
| |
Collapse
|
27
|
Rossant J. Why study human embryo development? Dev Biol 2024; 509:43-50. [PMID: 38325560 DOI: 10.1016/j.ydbio.2024.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/31/2023] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Understanding the processes and mechanisms underlying early human embryo development has become an increasingly active and important area of research. It has potential for insights into important clinical issues such as early pregnancy loss, origins of congenital anomalies and developmental origins of adult disease, as well as fundamental insights into human biology. Improved culture systems for preimplantation embryos, combined with the new tools of single cell genomics and live imaging, are providing new insights into the similarities and differences between human and mouse development. However, access to human embryo material is still restricted and extended culture of early embryos has regulatory and ethical concerns. Stem cell-derived models of different phases of human development can potentially overcome these limitations and provide a scalable source of material to explore the early postimplantation stages of human development. To date, such models are clearly incomplete replicas of normal development but future technological improvements can be envisaged. The ethical and regulatory environment for such studies remains to be fully resolved.
Collapse
Affiliation(s)
- Janet Rossant
- The Gairdner Foundation and the Hospital for Sick Children, University of Toronto, MaRS Centre, Heritage Building, 101 College Street, Suite 335, Toronto, Ontario, M5G 1L7, Canada.
| |
Collapse
|
28
|
Dupont C. A comprehensive review: synergizing stem cell and embryonic development knowledge in mouse and human integrated stem cell-based embryo models. Front Cell Dev Biol 2024; 12:1386739. [PMID: 38715920 PMCID: PMC11074781 DOI: 10.3389/fcell.2024.1386739] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/05/2024] [Indexed: 01/06/2025] Open
Abstract
Mammalian stem cell-based embryo models have emerged as innovative tools for investigating early embryogenesis in both mice and primates. They not only reduce the need for sacrificing mice but also overcome ethical limitations associated with human embryo research. Furthermore, they provide a platform to address scientific questions that are otherwise challenging to explore in vivo. The usefulness of a stem cell-based embryo model depends on its fidelity in replicating development, efficiency and reproducibility; all essential for addressing biological queries in a quantitative manner, enabling statistical analysis. Achieving such fidelity and efficiency requires robust systems that demand extensive optimization efforts. A profound understanding of pre- and post-implantation development, cellular plasticity, lineage specification, and existing models is imperative for making informed decisions in constructing these models. This review aims to highlight essential differences in embryo development and stem cell biology between mice and humans, assess how these variances influence the formation of partially and fully integrated stem cell models, and identify critical challenges in the field.
Collapse
Affiliation(s)
- Cathérine Dupont
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
29
|
Han C. Gene expression programs in mammalian spermatogenesis. Development 2024; 151:dev202033. [PMID: 38691389 DOI: 10.1242/dev.202033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Mammalian spermatogenesis, probably the most complex of all cellular developmental processes, is an ideal model both for studying the specific mechanism of gametogenesis and for understanding the basic rules governing all developmental processes, as it entails both cell type-specific and housekeeping molecular processes. Spermatogenesis can be viewed as a mission with many tasks to accomplish, and its success is genetically programmed and ensured by the collaboration of a large number of genes. Here, I present an overview of mammalian spermatogenesis and the mechanisms underlying each step in the process, covering the cellular and molecular activities that occur at each developmental stage and emphasizing their gene regulation in light of recent studies.
Collapse
Affiliation(s)
- Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101 Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, 100101 Beijing, China
| |
Collapse
|
30
|
Shirasawa A, Hayashi M, Shono M, Ideta A, Yoshino T, Hayashi K. Efficient derivation of embryonic stem cells and primordial germ cell-like cells in cattle. J Reprod Dev 2024; 70:82-95. [PMID: 38355134 PMCID: PMC11017101 DOI: 10.1262/jrd.2023-087] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/06/2024] [Indexed: 02/16/2024] Open
Abstract
The induction of the germ cell lineage from pluripotent stem cells (in vitro gametogenesis) will help understand the mechanisms underlying germ cell differentiation and provide an alternative source of gametes for reproduction. This technology is especially important for cattle, which are among the most important livestock species for milk and meat production. Here, we developed a new method for robust induction of primordial germ cell-like cells (PGCLCs) from newly established bovine embryonic stem (bES) cells. First, we refined the pluripotent culture conditions for pre-implantation embryos and ES cells. Inhibition of RHO increased the number of epiblast cells in the pre-implantation embryos and dramatically improved the efficiency of ES cell establishment. We then determined suitable culture conditions for PGCLC differentiation using bES cells harboring BLIMP1-tdTomato and TFAP2C-mNeonGreen (BTTN) reporter constructs. After a 24-h culture with bone morphogenetic protein 4 (BMP4), followed by three-dimensional culture with BMP4 and a chemical agonist and WNT signaling chemical antagonist, bES cells became positive for the reporters. A set of primordial germ cells (PGC) marker genes, including PRDM1/BLIMP1, TFAP2C, SOX17, and NANOS3, were expressed in BTTN-positive cells. These bovine PGCLCs (bPGCLCs) were isolated as KIT/CD117-positive and CD44-negative cell populations. We anticipate that this method for the efficient establishment of bES cells and induction of PGCLCs will be useful for stem cell-based reproductive technologies in cattle.
Collapse
Affiliation(s)
- Atsushi Shirasawa
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Zen-noh Embryo Transfer Center, Fukuoka 810-0001, Japan
| | - Masafumi Hayashi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Mayumi Shono
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Atsushi Ideta
- Zen-noh Embryo Transfer Center, Fukuoka 810-0001, Japan
| | - Takashi Yoshino
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Katsuhiko Hayashi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
31
|
Barton LJ, Roa-de la Cruz L, Lehmann R, Lin B. The journey of a generation: advances and promises in the study of primordial germ cell migration. Development 2024; 151:dev201102. [PMID: 38607588 PMCID: PMC11165723 DOI: 10.1242/dev.201102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The germline provides the genetic and non-genetic information that passes from one generation to the next. Given this important role in species propagation, egg and sperm precursors, called primordial germ cells (PGCs), are one of the first cell types specified during embryogenesis. In fact, PGCs form well before the bipotential somatic gonad is specified. This common feature of germline development necessitates that PGCs migrate through many tissues to reach the somatic gonad. During their journey, PGCs must respond to select environmental cues while ignoring others in a dynamically developing embryo. The complex multi-tissue, combinatorial nature of PGC migration is an excellent model for understanding how cells navigate complex environments in vivo. Here, we discuss recent findings on the migratory path, the somatic cells that shepherd PGCs, the guidance cues somatic cells provide, and the PGC response to these cues to reach the gonad and establish the germline pool for future generations. We end by discussing the fate of wayward PGCs that fail to reach the gonad in diverse species. Collectively, this field is poised to yield important insights into emerging reproductive technologies.
Collapse
Affiliation(s)
- Lacy J. Barton
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Lorena Roa-de la Cruz
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Ruth Lehmann
- Whitehead Institute and Department of Biology, MIT, 455 Main Street, Cambridge, MA 02142, USA
| | - Benjamin Lin
- Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|
32
|
Rodriguez-Polo I, Moris N. Using Embryo Models to Understand the Development and Progression of Embryonic Lineages: A Focus on Primordial Germ Cell Development. Cells Tissues Organs 2024; 213:503-522. [PMID: 38479364 PMCID: PMC7616515 DOI: 10.1159/000538275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/05/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Recapitulating mammalian cell type differentiation in vitro promises to improve our understanding of how these processes happen in vivo, while bringing additional prospects for biomedical applications. The establishment of stem cell-derived embryo models and embryonic organoids, which have experienced explosive growth over the last few years, opens new avenues for research due to their scale, reproducibility, and accessibility. Embryo models mimic various developmental stages, exhibit different degrees of complexity, and can be established across species. Since embryo models exhibit multiple lineages organized spatially and temporally, they are likely to provide cellular niches that, to some degree, recapitulate the embryonic setting and enable "co-development" between cell types and neighbouring populations. One example where this is already apparent is in the case of primordial germ cell-like cells (PGCLCs). SUMMARY While directed differentiation protocols enable the efficient generation of high PGCLC numbers, embryo models provide an attractive alternative as they enable the study of interactions of PGCLCs with neighbouring cells, alongside the regulatory molecular and biophysical mechanisms of PGC competency. Additionally, some embryo models can recapitulate post-specification stages of PGC development (including migration or gametogenesis), mimicking the inductive signals pushing PGCLCs to mature and differentiate and enabling the study of PGCLC development across stages. Therefore, in vitro models may allow us to address questions of cell type differentiation, and PGC development specifically, that have hitherto been out of reach with existing systems. KEY MESSAGE This review evaluates the current advances in stem cell-based embryo models, with a focus on their potential to model cell type-specific differentiation in general and in particular to address open questions in PGC development and gametogenesis.
Collapse
Affiliation(s)
| | - Naomi Moris
- The Francis Crick Institute, 1 Midland Road, Somers Town, London, NW1 1AT, UK
| |
Collapse
|
33
|
Du P, Wu J. Hallmarks of totipotent and pluripotent stem cell states. Cell Stem Cell 2024; 31:312-333. [PMID: 38382531 PMCID: PMC10939785 DOI: 10.1016/j.stem.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/23/2024]
Abstract
Though totipotency and pluripotency are transient during early embryogenesis, they establish the foundation for the development of all mammals. Studying these in vivo has been challenging due to limited access and ethical constraints, particularly in humans. Recent progress has led to diverse culture adaptations of epiblast cells in vitro in the form of totipotent and pluripotent stem cells, which not only deepen our understanding of embryonic development but also serve as invaluable resources for animal reproduction and regenerative medicine. This review delves into the hallmarks of totipotent and pluripotent stem cells, shedding light on their key molecular and functional features.
Collapse
Affiliation(s)
- Peng Du
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
34
|
Sekulovski N, Wettstein JC, Carleton AE, Juga LN, Taniguchi LE, Ma X, Rao S, Schmidt JK, Golos TG, Lin CW, Taniguchi K. Temporally resolved early BMP-driven transcriptional cascade during human amnion specification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.19.545574. [PMID: 38496419 PMCID: PMC10942271 DOI: 10.1101/2023.06.19.545574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Amniogenesis, a process critical for continuation of healthy pregnancy, is triggered in a collection of pluripotent epiblast cells as the human embryo implants. Previous studies have established that BMP signaling is a major driver of this lineage specifying process, but the downstream BMP-dependent transcriptional networks that lead to successful amniogenesis remain to be identified. This is, in part, due to the current lack of a robust and reproducible model system that enables mechanistic investigations exclusively into amniogenesis. Here, we developed an improved model of early amnion specification, using a human pluripotent stem cell-based platform in which the activation of BMP signaling is controlled and synchronous. Uniform amniogenesis is seen within 48 hours after BMP activation, and the resulting cells share transcriptomic characteristics with amnion cells of a gastrulating human embryo. Using detailed time-course transcriptomic analyses, we established a previously uncharacterized BMP-dependent amniotic transcriptional cascade, and identified markers that represent five distinct stages of amnion fate specification; the expression of selected markers was validated in early post-implantation macaque embryos. Moreover, a cohort of factors that could potentially control specific stages of amniogenesis was identified, including the transcription factor TFAP2A. Functionally, we determined that, once amniogenesis is triggered by the BMP pathway, TFAP2A controls the progression of amniogenesis. This work presents a temporally resolved transcriptomic resource for several previously uncharacterized amniogenesis states and demonstrates a critical intermediate role for TFAP2A during amnion fate specification.
Collapse
Affiliation(s)
- Nikola Sekulovski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jenna C. Wettstein
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Amber E. Carleton
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Lauren N. Juga
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Linnea E. Taniguchi
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Xiaolong Ma
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sridhar Rao
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Versiti Blood Research Institute, Milwaukee, WI 53226 USA
| | - Jenna K. Schmidt
- Wisconsin National Primate Research Center (WNPRC), Madison, WI, USA
| | - Thaddeus G. Golos
- Wisconsin National Primate Research Center (WNPRC), Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin - Madison School of Medicine and Public Health, Madison, WI USA
- Department of Comparative Biosciences, University of Wisconsin - Madison School of Veterinary Medicine, Madison, WI, USA
| | - Chien-Wei Lin
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kenichiro Taniguchi
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
35
|
Bulger EA, McDevitt TC, Bruneau BG. CDX2 dose-dependently influences the gene regulatory network underlying human extraembryonic mesoderm development. Biol Open 2024; 13:bio060323. [PMID: 38451093 PMCID: PMC10979512 DOI: 10.1242/bio.060323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
Loss of Cdx2 in vivo leads to stunted development of the allantois, an extraembryonic mesoderm-derived structure critical for nutrient delivery and waste removal in the early embryo. Here, we investigate how CDX2 dose-dependently influences the gene regulatory network underlying extraembryonic mesoderm development. By engineering human induced pluripotent stem cells (hiPSCs) consisting of wild-type (WT), heterozygous (CDX2-Het), and homozygous null CDX2 (CDX2-KO) genotypes, differentiating these cells in a 2D gastruloid model, and subjecting these cells to single-nucleus RNA and ATAC sequencing, we identify several pathways that are dose-dependently regulated by CDX2 including VEGF and non-canonical WNT. snATAC-seq reveals that CDX2-Het cells retain a WT-like chromatin accessibility profile, suggesting accessibility alone is not sufficient to drive this variability in gene expression. Because the loss of CDX2 or TBXT phenocopy one another in vivo, we compared differentially expressed genes in our CDX2-KO to those from TBXT-KO hiPSCs differentiated in an analogous experiment. This comparison identifies several communally misregulated genes that are critical for cytoskeletal integrity and tissue permeability. Together, these results clarify how CDX2 dose-dependently regulates gene expression in the extraembryonic mesoderm and reveal pathways that may underlie the defects in vascular development and allantoic elongation seen in vivo.
Collapse
Affiliation(s)
- Emily A. Bulger
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA, 94158, USA
| | - Todd C. McDevitt
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94158, USA
| | - Benoit G. Bruneau
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, 94158, USA
- Department of Pediatrics, University of California, San Francisco, CA, 94158, USA
- Institute for Human Genetics, University of California, San Francisco, CA, 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94158, USA
| |
Collapse
|
36
|
Weatherbee BAT, Weberling A, Gantner CW, Iwamoto-Stohl LK, Barnikel Z, Barrie A, Campbell A, Cunningham P, Drezet C, Efstathiou P, Fishel S, Vindel SG, Lockwood M, Oakley R, Pretty C, Chowdhury N, Richardson L, Mania A, Weavers L, Christie L, Elder K, Snell P, Zernicka-Goetz M. Distinct pathways drive anterior hypoblast specification in the implanting human embryo. Nat Cell Biol 2024; 26:353-365. [PMID: 38443567 PMCID: PMC10940163 DOI: 10.1038/s41556-024-01367-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/24/2024] [Indexed: 03/07/2024]
Abstract
Development requires coordinated interactions between the epiblast, which generates the embryo proper; the trophectoderm, which generates the placenta; and the hypoblast, which forms both the anterior signalling centre and the yolk sac. These interactions remain poorly understood in human embryogenesis because mechanistic studies have only recently become possible. Here we examine signalling interactions post-implantation using human embryos and stem cell models of the epiblast and hypoblast. We find anterior hypoblast specification is NODAL dependent, as in the mouse. However, while BMP inhibits anterior signalling centre specification in the mouse, it is essential for its maintenance in human. We also find contrasting requirements for BMP in the naive pre-implantation epiblast of mouse and human embryos. Finally, we show that NOTCH signalling is important for human epiblast survival. Our findings of conserved and species-specific factors that drive these early stages of embryonic development highlight the strengths of comparative species studies.
Collapse
Affiliation(s)
- Bailey A T Weatherbee
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK
- Center for Stem Cell and Organoid Medicine, Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Antonia Weberling
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK
- All Souls College, Oxford, UK
- Nuffield Department of Women's and Reproductive Health, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Carlos W Gantner
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK
| | - Lisa K Iwamoto-Stohl
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | - Lucy Richardson
- Herts & Essex Fertility Centre, Bishops College, Cheshunt, UK
| | | | | | | | - Kay Elder
- Bourn Hall Fertility Clinic, Bourn, UK
| | | | - Magdalena Zernicka-Goetz
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK.
- Stem Cells Self-Organization Group, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
37
|
Nakanoh S, Sham K, Ghimire S, Mohorianu I, Rayon T, Vallier L. Human surface ectoderm and amniotic ectoderm are sequentially specified according to cellular density. SCIENCE ADVANCES 2024; 10:eadh7748. [PMID: 38427729 PMCID: PMC10906920 DOI: 10.1126/sciadv.adh7748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 01/29/2024] [Indexed: 03/03/2024]
Abstract
Mechanisms specifying amniotic ectoderm and surface ectoderm are unresolved in humans due to their close similarities in expression patterns and signal requirements. This lack of knowledge hinders the development of protocols to accurately model human embryogenesis. Here, we developed a human pluripotent stem cell model to investigate the divergence between amniotic and surface ectoderms. In the established culture system, cells differentiated into functional amnioblast-like cells. Single-cell RNA sequencing analyses of amnioblast differentiation revealed an intermediate cell state with enhanced surface ectoderm gene expression. Furthermore, when the differentiation started at the confluent condition, cells retained the expression profile of surface ectoderm. Collectively, we propose that human amniotic ectoderm and surface ectoderm are specified along a common nonneural ectoderm trajectory based on cell density. Our culture system also generated extraembryonic mesoderm-like cells from the primed pluripotent state. Together, this study provides an integrative understanding of the human nonneural ectoderm development and a model for embryonic and extraembryonic human development around gastrulation.
Collapse
Affiliation(s)
- Shota Nakanoh
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
- Epigenetics & Signalling Programmes, Babraham Institute, Cambridge CB22 3AT, UK
| | - Kendig Sham
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Sabitri Ghimire
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Irina Mohorianu
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Teresa Rayon
- Epigenetics & Signalling Programmes, Babraham Institute, Cambridge CB22 3AT, UK
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
- Berlin Institute of Health Centre for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany
- Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| |
Collapse
|
38
|
Bulger EA, McDevitt TC, Bruneau BG. CDX2 dose-dependently influences the gene regulatory network underlying human extraembryonic mesoderm development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577277. [PMID: 38328098 PMCID: PMC10849648 DOI: 10.1101/2024.01.25.577277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Proper regulation of gene dosage is critical for the development of the early embryo and the extraembryonic tissues that support it. Specifically, loss of Cdx2 in vivo leads to stunted development of the allantois, an extraembryonic mesoderm-derived structure critical for nutrient delivery and waste removal in the early embryo. In this study, we investigate how CDX2 dose-dependently influences the gene regulatory network underlying extraembryonic mesoderm development. We generate an allelic series for CDX2 in human induced pluripotent stem cells (hiPSCs) consisting of WT, heterozygous, and homozygous null CDX2 genotypes, differentiate these cells in a 2D gastruloid model, and subject these cells to multiomic single nucleus RNA and ATAC sequencing. We identify several genes that CDX2 dose-dependently regulate cytoskeletal integrity and adhesiveness in the extraembryonic mesoderm population, including regulators of the VEGF, canonical WNT, and non-canonical WNT signaling pathways. Despite these dose-dependent gene expression patterns, snATAC-seq reveals that heterozygous CDX2 expression is capable of inducing a WT-like chromatin accessibility profile, suggesting accessibility is not sufficient to drive gene expression when the CDX2 dosage is reduced. Finally, because the loss of CDX2 or TBXT phenocopy one another in vivo, we compare differentially expressed genes in our CDX2 knock-out model to those from TBXT knock-out hiPSCs differentiated in an analogous experiment. This comparison identifies several communally misregulated genes that are critical for cytoskeletal integrity and tissue permeability, including ANK3 and ANGPT1. Together, these results clarify how CDX2 dose-dependently regulates gene expression in the extraembryonic mesoderm and suggest these genes may underlie the defects in vascular development and allantoic elongation seen in the absence or reduction of CDX2 in vivo.
Collapse
Affiliation(s)
- Emily A. Bulger
- Gladstone Institutes, San Francisco, CA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA
| | - Todd C. McDevitt
- Gladstone Institutes, San Francisco, CA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA
| | - Benoit G. Bruneau
- Gladstone Institutes, San Francisco, CA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA
- Department of Pediatrics, University of California, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, CA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco
| |
Collapse
|
39
|
De Santis R, Rice E, Croft G, Yang M, Rosado-Olivieri EA, Brivanlou AH. The emergence of human gastrulation upon in vitro attachment. Stem Cell Reports 2024; 19:41-53. [PMID: 38101401 PMCID: PMC10828709 DOI: 10.1016/j.stemcr.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
While studied extensively in model systems, human gastrulation remains obscure. The scarcity of fetal biological material as well as ethical considerations limit our understanding of this process. In vitro attachment of natural blastocysts shed light on aspects of the second week of human development in the absence of the morphological manifestation of gastrulation. Stem cell-derived blastocyst models, blastoids, provide the opportunity to reconstitute pre- to post-implantation development in vitro. Here we show that upon in vitro attachment, human blastoids self-organize a BRA+ population and undergo gastrulation. Single-cell RNA sequencing of these models replicates the transcriptomic signature of the human gastrula. Analysis of developmental timing reveals that in both blastoid models and natural human embryos, the onset of gastrulation as defined by molecular markers, can be traced to timescales equivalent to 12 days post fertilization. In all, natural human embryos and blastoid models self-organize primitive streak and mesoderm derivatives upon in vitro attachment.
Collapse
Affiliation(s)
- Riccardo De Santis
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY, USA
| | - Eleni Rice
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY, USA
| | - Gist Croft
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
| | - Min Yang
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY, USA
| | - Edwin A Rosado-Olivieri
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY, USA
| | - Ali H Brivanlou
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
40
|
Li CJ, Chang CC, Tsai LK, Peng M, Lyu WN, Yu JF, Tsai MH, Sung LY. Generation of induced pluripotent stem cells from Bornean orangutans. Front Cell Dev Biol 2024; 11:1331584. [PMID: 38250322 PMCID: PMC10797036 DOI: 10.3389/fcell.2023.1331584] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction: Orangutans, classified under the Pongo genus, are an endangered non-human primate (NHP) species. Derivation of induced pluripotent stem cells (iPSCs) represents a promising avenue for conserving the genetic resources of these animals. Earlier studies focused on deriving orangutan iPSCs (o-iPSCs) from Sumatran orangutans (Pongo abelii). To date, no reports specifically target the other Critically Endangered species in the Pongo genus, the Bornean orangutans (Pongo pygmaeus). Methods: Using Sendai virus-mediated Yamanaka factor-based reprogramming of peripheral blood mononuclear cells to generate iPSCs (bo-iPSCs) from a female captive Bornean orangutan. In this study, we evaluate the colony morphology, pluripotent markers, X chromosome activation status, and transcriptomic profile of the bo-iPSCs to demonstrate the pluripotency of iPSCs from Bornean orangutans. Results: The bo-iPSCs were successfully derived from Bornean orangutans, using Sendai virus-mediated Yamanaka factor-based reprogramming of peripheral blood mononuclear cells. When a modified 4i/L/A (m4i/L/A) culture system was applied to activate the WNT signaling pathway in these bo-iPSCs, the derived cells (m-bo-iPSCs) manifested characteristics akin to human naive pluripotent stem cells, including high expression levels of KLF17, DNMT3L, and DPPA3/5, as well as the X chromosome reactivation. Comparative RNA-seq analysis positioned the m-bo-iPSCs between human naive and formative pluripotent states. Furthermore, the m-bo-iPSCs express differentiation capacity into all three germlines, evidenced by controlled in vitro embryoid body formation assay. Discussion: Our work establishes a novel approach to preserve the genetic diversity of endangered Bornean orangutans while offering insights into primate stem cell pluripotency. In the future, derivation of the primordial germ cell-like cells (PGCLCs) from m-bo-iPSCs is needed to demonstrate the further specific application in species preservation and broaden the knowledge of primordial germ cell specification across species.
Collapse
Affiliation(s)
- Chia-Jung Li
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Branch, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Chun Chang
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Li-Kuang Tsai
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Min Peng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Wei-Ni Lyu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Jane-Fang Yu
- Conservation and Research Center, Taipei Zoo, Taipei, Taiwan
| | - Mong-Hsun Tsai
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Li-Ying Sung
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Center for Developmental Biology and Regenerative Medicine, Taipei, Taiwan
- Center for Biotechnology, National Taiwan University, Taipei, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
41
|
Esfahani SN, Zheng Y, Arabpour A, Irizarry AMR, Kobayashi N, Xue X, Shao Y, Zhao C, Agranonik NL, Sparrow M, Hunt TJ, Faith J, Lara MJ, Wu QY, Silber S, Petropoulos S, Yang R, Chien KR, Clark AT, Fu J. Derivation of human primordial germ cell-like cells in an embryonic-like culture. Nat Commun 2024; 15:167. [PMID: 38167821 PMCID: PMC10762101 DOI: 10.1038/s41467-023-43871-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
Primordial germ cells (PGCs) are the embryonic precursors of sperm and eggs. They transmit genetic and epigenetic information across generations. Given the prominent role of germline defects in diseases such as infertility, detailed understanding of human PGC (hPGC) development has important implications in reproductive medicine and studying human evolution. Yet, hPGC specification remains an elusive process. Here, we report the induction of hPGC-like cells (hPGCLCs) in a bioengineered human pluripotent stem cell (hPSC) culture that mimics peri-implantation human development. In this culture, amniotic ectoderm-like cells (AMLCs), derived from hPSCs, induce hPGCLC specification from hPSCs through paracrine signaling downstream of ISL1. Our data further show functional roles of NODAL, WNT, and BMP signaling in hPGCLC induction. hPGCLCs are successfully derived from eight non-obstructive azoospermia (NOA) participant-derived hPSC lines using this biomimetic platform, demonstrating its promise for screening applications.
Collapse
Affiliation(s)
- Sajedeh Nasr Esfahani
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yi Zheng
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, USA
| | - Auriana Arabpour
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | | | - Norio Kobayashi
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xufeng Xue
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yue Shao
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, 100084, Beijing, China
| | - Cheng Zhao
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Instituet, 14186, Stockholm, Sweden
| | - Nicole L Agranonik
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Megan Sparrow
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Timothy J Hunt
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jared Faith
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Mary Jasmine Lara
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Qiu Ya Wu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Sherman Silber
- Infertility Center of St. Louis, St. Luke's Hospital, St. Louis, MO, 63017, USA
| | - Sophie Petropoulos
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Instituet, 14186, Stockholm, Sweden
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, Montreal, QC, H2X 19A, Canada
- Département de Médecine, Molecular Biology Programme, Université de Montréal, Montréal, QC, Canada
| | - Ran Yang
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Amander T Clark
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
42
|
Irie N, Kobayashi T, Azim Surani M. Human Primordial Germ Cell-Like Cell Induction from Pluripotent Stem Cells by SOX17 and PRDM1 Expression. Methods Mol Biol 2024; 2770:87-97. [PMID: 38351448 DOI: 10.1007/978-1-0716-3698-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Human primordial germ cell (PGC) development initiates about 2 weeks after fertilization during embryogenesis. Unique molecular events follow, including epigenetic resetting, to establish functional gametes (egg and sperm). Due to the inaccessibility of human embryos, it is essential to have an amenable experimental platform to investigate the mechanisms and potential dysfunctions of the events. We previously established a PGC-like cell (PGCLC) differentiation method using human pluripotent stem cells (PSCs) via induction of precursor cells followed by stimulation with a cytokine cocktail including BMP. We also revealed that the expression of PGC specifiers, SOX17 and PRDM1, can robustly induce PGCLCs from PSCs without the cytokines. The balance of SOX17 and PRDM1 is critical for germ cell fate since the two factors also regulate endoderm differentiation. Here we describe a detailed procedure for PGCLC differentiation with the balanced induction of SOX17 and PRDM1. The protocol can be used for PGC induction in other mammalian species exhibiting PGCs with SOX17 expression. Together, these studies will advance the understanding of germ cell biology and its applications in reproductive technology and medicine.
Collapse
Affiliation(s)
- Naoko Irie
- Wellcome Trust/Cancer Research U.K. Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK.
- Metabolic Systems Laboratory, Live Imaging Center, Central Institute for Experimental Animals, Kawasaki-ku, Kanagawa, Japan.
| | - Toshihiro Kobayashi
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - M Azim Surani
- Wellcome Trust/Cancer Research U.K. Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK.
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK.
| |
Collapse
|
43
|
Simpson L, Alberio R. Interspecies control of development during mammalian gastrulation. Emerg Top Life Sci 2023; 7:397-408. [PMID: 37933589 PMCID: PMC10754326 DOI: 10.1042/etls20230083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023]
Abstract
Gastrulation represents a pivotal phase of development and aberrations during this period can have major consequences, from minor anatomical deviations to severe congenital defects. Animal models are used to study gastrulation, however, there is considerable morphological and molecular diversity of gastrula across mammalian species. Here, we provide an overview of the latest research on interspecies developmental control across mammals. This includes single-cell atlases of several mammalian gastrula which have enabled comparisons of the temporal and molecular dynamics of differentiation. These studies highlight conserved cell differentiation regulators and both absolute and relative differences in differentiation dynamics between species. Recent advances in in vitro culture techniques have facilitated the derivation, maintenance and differentiation of cell lines from a range of species and the creation of multi-species models of gastrulation. Gastruloids are three-dimensional aggregates capable of self-organising and recapitulating aspects of gastrulation. Such models enable species comparisons outside the confines of the embryo. We highlight recent in vitro evidence that differentiation processes such as somitogenesis and neuronal maturation scale with known in vivo differences in developmental tempo across species. This scaling is likely due to intrinsic differences in cell biochemistry. We also highlight several studies which provide examples of cell differentiation dynamics being influenced by extrinsic factors, including culture conditions, chimeric co-culture, and xenotransplantation. These collective studies underscore the complexity of gastrulation across species, highlighting the necessity of additional datasets and studies to decipher the intricate balance between intrinsic cellular programs and extrinsic signals in shaping embryogenesis.
Collapse
Affiliation(s)
- Luke Simpson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, U.K
| | - Ramiro Alberio
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, U.K
| |
Collapse
|
44
|
Teague S, Yao L, Heemskerk I. The many dimensions of germline competence. Curr Opin Cell Biol 2023; 85:102259. [PMID: 37852152 PMCID: PMC11123554 DOI: 10.1016/j.ceb.2023.102259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 10/20/2023]
Abstract
Primordial germ cell (PGC) specification is the first step in the development of the germline. Recent work has elucidated human-mouse differences in PGC differentiation and identified cell states with enhanced competency for PGC-like cell (PGCLC) differentiation in vitro in both species. However, it remains a subject of debate how different PGC competent states in vitro relate to each other, to embryonic development, and to the origin of PGCs in vivo. Here we review recent literature on human PGCLC differentiation in the context of mouse and non-human primate models. In contrast to what was previously thought, recent work suggests human pluripotent stem cells (hPSCs) are highly germline competent. We argue that paradoxical observations regarding the origin and signaling requirements of hPGCLCs may be due to local cell interactions. These confound assays of competence by generating endogenous signaling gradients and spatially modulating the ability to receive exogenous inductive signals. Furthermore, combinatorial signaling suggests that there is no unique germline competent state: rather than a one-dimensional spectrum of developmental progression, competence should be considered in a higher dimensional landscape of cell states.
Collapse
Affiliation(s)
- Seth Teague
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - LiAng Yao
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Idse Heemskerk
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA; Center for Cell Plasticity and Organ Design, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Physics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
45
|
Hwang YS, Seita Y, Blanco MA, Sasaki K. CRISPR loss of function screening to identify genes involved in human primordial germ cell-like cell development. PLoS Genet 2023; 19:e1011080. [PMID: 38091369 PMCID: PMC10752514 DOI: 10.1371/journal.pgen.1011080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/27/2023] [Accepted: 11/22/2023] [Indexed: 12/28/2023] Open
Abstract
Despite our increasing knowledge of molecular mechanisms guiding various aspects of human reproduction, those underlying human primordial germ cell (PGC) development remain largely unknown. Here, we conducted custom CRISPR screening in an in vitro system of human PGC-like cells (hPGCLCs) to identify genes required for acquisition and maintenance of PGC fate. Amongst our candidates, we identified TCL1A, an AKT coactivator. Functional assessment in our in vitro hPGCLCs system revealed that TCL1A played a critical role in later stages of hPGCLC development. Moreover, we found that TCL1A loss reduced AKT-mTOR signaling, downregulated expression of genes related to translational control, and subsequently led to a reduction in global protein synthesis and proliferation. Together, our study highlights the utility of CRISPR screening for human in vitro-derived germ cells and identifies novel translational regulators critical for hPGCLC development.
Collapse
Affiliation(s)
- Young Sun Hwang
- Department of Biomedical Sciences, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Yasunari Seita
- Department of Biomedical Sciences, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - M. Andrés Blanco
- Department of Biomedical Sciences, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kotaro Sasaki
- Department of Biomedical Sciences, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
46
|
Zhang G, Xie XX, Zhang SE, Zhang FL, Li CX, Qiao T, Dyce PW, Feng XL, Lin WB, Sun QC, Shen W, Cheng SF. Induced differentiation of primordial germ cell like cells from SOX9 + porcine skin derived stem cells. Theriogenology 2023; 212:129-139. [PMID: 37717516 DOI: 10.1016/j.theriogenology.2023.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023]
Abstract
Understanding the mechanisms behind porcine primordial germ cell like cells (pPGCLCs) development, differentiation, and gametogenesis is crucial in the treatment of infertility. In this study, SOX9+ skin derived stem cells (SOX9+ SDSCs) were isolated from fetal porcine skin and a high-purity SOX9+ SDSCs population was obtained. The SOX9+ SDSCs were induced to transdifferentiate into PGCLCs during 8 days of cultured. The results of RNA-seq, western blot and immunofluorescence staining verified SDSCs have the potential to transdifferentiate into PGCLCs from aspects of transcription factor activation, germ layer differentiation, energy metabolism, and epigenetic changes. Both adherent and suspended cells were collected. The adherent cells were found to be very similar to early porcine primordial germ cells (pPGCs). The suspended cells resembled late stage pPGCs and had a potential to enter meiotic process. This SDSCs culture-induced in vitro model is expected to provide suitable donor cells for stem cell transplantation in the future.
Collapse
Affiliation(s)
- Geng Zhang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xin-Xiang Xie
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shu-Er Zhang
- Animal Husbandry General Station of Shandong Province, Jinan, 250010, China
| | - Fa-Li Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Chun-Xiao Li
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Tian Qiao
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Paul W Dyce
- Department of Animal Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Xin-Lei Feng
- Shandong Animal Products Quality and Safety Center, Jinan, 250010, China
| | - Wei-Bo Lin
- Animal Husbandry Development Center of Changyi City, Weifang, 261300, China
| | - Qi-Cheng Sun
- School of Finance, Southwestern University of Finance and Economics, Chengdu, 611130, China
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Shun-Feng Cheng
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
47
|
Irie N, Lee SM, Lorenzi V, Xu H, Chen J, Inoue M, Kobayashi T, Sancho-Serra C, Drousioti E, Dietmann S, Vento-Tormo R, Song CX, Surani MA. DMRT1 regulates human germline commitment. Nat Cell Biol 2023; 25:1439-1452. [PMID: 37709822 PMCID: PMC10567552 DOI: 10.1038/s41556-023-01224-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/07/2023] [Indexed: 09/16/2023]
Abstract
Germline commitment following primordial germ cell (PGC) specification during early human development establishes an epigenetic programme and competence for gametogenesis. Here we follow the progression of nascent PGC-like cells derived from human embryonic stem cells in vitro. We show that switching from BMP signalling for PGC specification to Activin A and retinoic acid resulted in DMRT1 and CDH5 expression, the indicators of migratory PGCs in vivo. Moreover, the induction of DMRT1 and SOX17 in PGC-like cells promoted epigenetic resetting with striking global enrichment of 5-hydroxymethylcytosine and locus-specific loss of 5-methylcytosine at DMRT1 binding sites and the expression of DAZL representing DNA methylation-sensitive genes, a hallmark of the germline commitment programme. We provide insight into the unique role of DMRT1 in germline development for advances in human germ cell biology and in vitro gametogenesis.
Collapse
Affiliation(s)
- Naoko Irie
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK.
- Metabolic Systems Laboratory, Live Imaging Center, Central Institute for Experimental Animals, Kanagawa, Japan.
| | - Sun-Min Lee
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK
- Department of Physics, Konkuk University, Seoul, Republic of Korea
| | - Valentina Lorenzi
- Wellcome Sanger Institute, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Haiqi Xu
- Ludwig Institute for Cancer Research and Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jinfeng Chen
- Ludwig Institute for Cancer Research and Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Masato Inoue
- Ludwig Institute for Cancer Research and Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Toshihiro Kobayashi
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi, Japan
| | | | - Elena Drousioti
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK
| | - Sabine Dietmann
- Department of Developmental Biology and Institute for Informatics, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Chun-Xiao Song
- Ludwig Institute for Cancer Research and Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK.
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK.
| |
Collapse
|
48
|
Pedroza M, Gassaloglu SI, Dias N, Zhong L, Hou TCJ, Kretzmer H, Smith ZD, Sozen B. Self-patterning of human stem cells into post-implantation lineages. Nature 2023; 622:574-583. [PMID: 37369348 PMCID: PMC10584676 DOI: 10.1038/s41586-023-06354-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 06/21/2023] [Indexed: 06/29/2023]
Abstract
Investigating human development is a substantial scientific challenge due to the technical and ethical limitations of working with embryonic samples. In the face of these difficulties, stem cells have provided an alternative to experimentally model inaccessible stages of human development in vitro1-13. Here we show that human pluripotent stem cells can be triggered to self-organize into three-dimensional structures that recapitulate some key spatiotemporal events of early human post-implantation embryonic development. Our system reproducibly captures spontaneous differentiation and co-development of embryonic epiblast-like and extra-embryonic hypoblast-like lineages, establishes key signalling hubs with secreted modulators and undergoes symmetry breaking-like events. Single-cell transcriptomics confirms differentiation into diverse cell states of the perigastrulating human embryo14,15 without establishing placental cell types, including signatures of post-implantation epiblast, amniotic ectoderm, primitive streak, mesoderm, early extra-embryonic endoderm, as well as initial yolk sac induction. Collectively, our system captures key features of human embryonic development spanning from Carnegie stage16 4-7, offering a reproducible, tractable and scalable experimental platform to understand the basic cellular and molecular mechanisms that underlie human development, including new opportunities to dissect congenital pathologies with high throughput.
Collapse
Affiliation(s)
- Monique Pedroza
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Seher Ipek Gassaloglu
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Nicolas Dias
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
- Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - Liangwen Zhong
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Tien-Chi Jason Hou
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
- Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Zachary D Smith
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
- Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - Berna Sozen
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University, New Haven, CT, USA.
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
49
|
Salvatore G, Dolci S, Camaioni A, Klinger FG, De Felici M. Reprogramming Human Female Adipose Mesenchymal Stem Cells into Primordial Germ Cell-Like Cells. Stem Cell Rev Rep 2023; 19:2274-2283. [PMID: 37338786 PMCID: PMC10579115 DOI: 10.1007/s12015-023-10561-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2023] [Indexed: 06/21/2023]
Abstract
In the last two decades, considerable progress has been made in the derivation of mammalian germ cells from pluripotent stem cells such as Embryonic Stem Cells (ESCs) and induced Pluripotent Stem Cells (iPSCs). The pluripotent stem cells are generally first induced into pre-gastrulating endoderm/mesoderm-like status and then specified into putative primordial germ cells (PGCs) termed PGC-like cells (PGCLCs) which possess the potential to generate oocytes and sperms. Adipose-derived mesenchymal stromal cells (ASCs) are multipotent cells, having the capacity to differentiate into cell types such as adipocytes, osteocytes and chondrocytes. Since no information is available about the capability of female human ASCs (hASCs) to generate PGCLCs, we compared protocols to produce such cells from hASCs themselves or from hASC-derived iPSCs. The results showed that, providing pre-induction into a peri-gastrulating endoderm/mesoderm-like status, hASCs can generate PGCLCs. This process, however, shows a lower efficiency than when hASC-derived iPSCs are used as starting cells. Although hASCs possess multipotency and express mesodermal genes, direct induction into PGCLCs resulted less efficient.
Collapse
Affiliation(s)
- Giulia Salvatore
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, Rome, 00133, Italy
| | - Susanna Dolci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, Rome, 00133, Italy
| | - Antonella Camaioni
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, Rome, 00133, Italy
| | - Francesca Gioia Klinger
- Saint Camillus International University Of Health Sciences, Via di Sant'Alessandro 8, Rome, 00131, Italy.
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, Rome, 00133, Italy.
| |
Collapse
|
50
|
Sullivan AE, Santos SD. The ever-growing world of gastruloids: autogenous models of mammalian embryogenesis. Curr Opin Genet Dev 2023; 82:102102. [PMID: 37604096 DOI: 10.1016/j.gde.2023.102102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 08/23/2023]
Abstract
During early development, extrinsic cues prompt a collection of pluripotent cells to begin the extensive process of cellular differentiation that gives rise to all tissues in the mammalian embryo, a process known as gastrulation. Advances in stem cell biology have resulted in the generation of stem cell-based in vitro models of mammalian gastrulation called gastruloids. Gastruloids and subsequent gastruloid-based models are tractable, scalable and more accessible than mammalian embryos. As such, they have opened an unprecedented avenue for modelling in vitro self-organisation, patterning and fate specification. This review focuses on discussing the recent advances of this rapidly moving research area, clarifying what structures they model and the underlying signal hierarchy. We highlight the exciting potential of these models and where the field might be heading.
Collapse
Affiliation(s)
- Adrienne E Sullivan
- Quantitative Cell Biology Laboratory, The Francis Crick Institute, 1-Midland Road, NW1 1AT London, UK.
| | - Silvia Dm Santos
- Quantitative Cell Biology Laboratory, The Francis Crick Institute, 1-Midland Road, NW1 1AT London, UK.
| |
Collapse
|