1
|
Emili E, Pérez-Posada A, Vanni V, Salamanca-Díaz D, Ródriguez-Fernández D, Christodoulou MD, Solana J. Allometry of cell types in planarians by single-cell transcriptomics. SCIENCE ADVANCES 2025; 11:eadm7042. [PMID: 40333969 PMCID: PMC12057665 DOI: 10.1126/sciadv.adm7042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/02/2025] [Indexed: 05/09/2025]
Abstract
Allometry explores the relationship between an organism's body size and its various components, offering insights into ecology, physiology, metabolism, and disease. The cell is the basic unit of biological systems, and yet the study of cell-type allometry remains relatively unexplored. Single-cell RNA sequencing (scRNA-seq) provides a promising tool for investigating cell-type allometry. Planarians, capable of growing and degrowing following allometric scaling rules, serve as an excellent model for these studies. We used scRNA-seq to examine cell-type allometry in asexual planarians of different sizes, revealing that they consist of the same basic cell types but in varying proportions. Notably, the gut basal cells are the most responsive to changes in size, suggesting a role in energy storage. We capture the regulated gene modules of distinct cell types in response to body size. This research sheds light on the molecular and cellular aspects of cell-type allometry in planarians and underscores the utility of scRNA-seq in these investigations.
Collapse
Affiliation(s)
- Elena Emili
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Alberto Pérez-Posada
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, University of Exeter, Exeter, UK
| | - Virginia Vanni
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, University of Exeter, Exeter, UK
| | - David Salamanca-Díaz
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, University of Exeter, Exeter, UK
| | | | | | - Jordi Solana
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
2
|
Booth CLT, Stevens BC, Stubbert CA, Kallgren NT, Deihl EW, Davies EL. Developmental onset of planarian whole-body regeneration depends on axis reset. Curr Biol 2025:S0960-9822(25)00381-1. [PMID: 40239657 DOI: 10.1016/j.cub.2025.03.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 02/11/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025]
Abstract
Regenerative abilities vary across species and developmental stages of animal life cycles. Determining mechanisms that promote or limit regeneration in certain life cycle stages may pinpoint the most critical factors for successful regeneration and suggest strategies for reverse-engineering regenerative responses in therapeutic settings. In contrast to many mammalian systems, which typically show a loss of regenerative abilities with age, planarian flatworms remain highly regenerative throughout adulthood. The robust reproductive and regenerative capabilities of the planarian Schmidtea polychroa (S. polychroa) make them an ideal model to determine when and how regeneration competence is established during development. We report that S. polychroa gradually acquires whole-body regenerative abilities during late embryonic and early juvenile stages. Anterior fragments are capable of regenerating missing trunk and tail tissues from stage 6.5 onward. By contrast, the ability of posterior fragments to make new head tissue depends on the developmental stage, tissue composition of the amputated fragment, and axial position of the cut plane. Irradiation-sensitive cells are required, but not sufficient, for the onset of head regeneration ability. We propose that regulation of the main body axis reset, specifically the ability to remake an anterior organizing center, determines when whole-body regeneration competence arises during development. Supporting this hypothesis, knockdown of the canonical Wnt pathway effector Spol-β-catenin-1, a posterior determinant, induces precocious head regeneration under conditions that are normally head regeneration-incompetent. Our results suggest that regeneration competence emerges through interactions between irradiation-sensitive cells, the cellular source of new tissue, and developing adult tissue(s) harboring axial patterning information.
Collapse
Affiliation(s)
- Clare L T Booth
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21704, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Brian C Stevens
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21704, USA; Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Clover A Stubbert
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21704, USA; Molecular Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Neil T Kallgren
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21704, USA
| | - Ennis W Deihl
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21704, USA
| | - Erin L Davies
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21704, USA.
| |
Collapse
|
3
|
Chen X. Stem cells (neoblasts) and positional information jointly dominate regeneration in planarians. Heliyon 2025; 11:e41833. [PMID: 39877626 PMCID: PMC11773080 DOI: 10.1016/j.heliyon.2025.e41833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/18/2024] [Accepted: 01/08/2025] [Indexed: 01/31/2025] Open
Abstract
Regeneration is the ability to accurately regrow missing body parts. The unparalleled regenerative capacity and incredible tissue plasticity of planarians, both resulting from the presence of abundant adult stem cells referred to as neoblasts, offer a unique opportunity to investigate the cellular and molecular principles underlying regeneration. Neoblasts are capable of self-renewal and differentiation into the desired cell types for correct replacement of lost parts after tissue damage. Positional information in muscle cells governs the polarity and patterning of the body plan during homeostasis and regeneration. For planarians, removal of neoblasts disables the regenerative feats and disruption of positional information results in the regeneration of inappropriate missing body regions, only the combination of neoblasts and positional information enables regeneration. Here, I summarize the current state of the field in neoblast lineage potential, subclasses and specification, and in the roles of positional information for proper tissue turnover and regeneration in planarians.
Collapse
Affiliation(s)
- Xuhui Chen
- Affiliated Infectious Diseases Hospital of Zhengzhou University (Henan Infectious Diseases Hospital, The Sixth People's Hospital of Zhengzhou), Center for Translational Medicine, Zhengzhou, 45000, China
| |
Collapse
|
4
|
Saad LO, Cooke TF, Atabay KD, Reddien PW, Brown FD. Reduced adult stem cell fate specification led to eye reduction in cave planarians. Nat Commun 2025; 16:304. [PMID: 39746937 PMCID: PMC11696554 DOI: 10.1038/s41467-024-54478-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 11/12/2024] [Indexed: 01/04/2025] Open
Abstract
Eye loss occurs convergently in numerous animal phyla as an adaptation to dark environments. We investigate the cave planarian Girardia multidiverticulata (Gm), a representative species of the Spiralian clade, to study mechanisms of eye loss. We found that Gm, which was previously described as an eyeless species, retains rudimentary and functional eyes. Eyes are maintained in homeostasis and regenerated in adult planarians by stem cells, called neoblasts, through their fate specification to eye progenitors. The reduced number of eye cells in cave planarians is associated with a decreased rate of stem cell fate specification to eye progenitors during homeostasis and regeneration. Conversely, the homeostatic formation of new cells from stem cell-derived progenitors for other tissues, including for neurons, pharynx, and epidermis, is comparable between cave and surface species. These findings reveal a mode of evolutionary trait loss, with change in rate of fate specification in adult stem cells leading to tissue size reduction.
Collapse
Affiliation(s)
- Luiza O Saad
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Thomas F Cooke
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Kutay D Atabay
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Peter W Reddien
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, MIT, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Federico D Brown
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
5
|
Dooling KE, Kim RT, Kim EM, Chen E, Abouelela A, Tajer BJ, Lopez NJ, Paoli JC, Powell CJ, Luong AG, Wu SC, Thornton KN, Singer HD, Savage AM, Bateman J, DiTommaso T, Payzin-Dogru D, Whited JL. Amputation Triggers Long-Range Epidermal Permeability Changes in Evolutionarily Distant Regenerative Organisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610385. [PMID: 39257748 PMCID: PMC11383696 DOI: 10.1101/2024.08.29.610385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Previous studies have reported that amputation invokes body-wide responses in regenerative organisms, but most have not examined the implications of these changes beyond the region of tissue regrowth. Specifically, long-range epidermal responses to amputation are largely uncharacterized, with research on amputation-induced epidermal responses in regenerative organisms traditionally being restricted to the wound site. Here, we investigate the effect of amputation on long-range epidermal permeability in two evolutionarily distant, regenerative organisms: axolotls and planarians. We find that amputation triggers a long-range increase in epidermal permeability in axolotls, accompanied by a long-range epidermal downregulation in MAPK signaling. Additionally, we provide functional evidence that pharmacologically inhibiting MAPK signaling in regenerating planarians increases long-range epidermal permeability. These findings advance our knowledge of body-wide changes due to amputation in regenerative organisms and warrant further study on whether epidermal permeability dysregulation in the context of amputation may lead to pathology in both regenerative and non-regenerative organisms.
Collapse
Affiliation(s)
- Kelly E. Dooling
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Ryan T. Kim
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Elane M. Kim
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Erica Chen
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Adnan Abouelela
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Benjamin J. Tajer
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Noah J. Lopez
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Julia C. Paoli
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Connor J. Powell
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Anna G. Luong
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - S.Y. Celeste Wu
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Kara N. Thornton
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Hani D. Singer
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Aaron M. Savage
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Joel Bateman
- Brigham Regenerative Medicine Center and Department of Orthopedic Surgery, Brigham & Women’s Hospital, Cambridge, MA, USA 02138
| | - Tia DiTommaso
- Brigham Regenerative Medicine Center and Department of Orthopedic Surgery, Brigham & Women’s Hospital, Cambridge, MA, USA 02138
| | - Duygu Payzin-Dogru
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
| | - Jessica L. Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA, USA 02138
- Brigham Regenerative Medicine Center and Department of Orthopedic Surgery, Brigham & Women’s Hospital, Cambridge, MA, USA 02138
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA 02138
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA 02138
| |
Collapse
|
6
|
Lee JR, Boothe T, Mauksch C, Thommen A, Rink JC. Epidermal turnover in the planarian Schmidtea mediterranea involves basal cell extrusion and intestinal digestion. Cell Rep 2024; 43:114305. [PMID: 38906148 DOI: 10.1016/j.celrep.2024.114305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/21/2024] [Accepted: 05/15/2024] [Indexed: 06/23/2024] Open
Abstract
Planarian flatworms undergo continuous internal turnover, wherein old cells are replaced by the division progeny of adult pluripotent stem cells (neoblasts). How cell turnover is carried out at the organismal level remains an intriguing question in planarians and other systems. While previous studies have predominantly focused on neoblast proliferation, little is known about the processes that mediate cell loss during tissue homeostasis. Here, we use the planarian epidermis as a model to study the mechanisms of cell removal. We established a covalent dye-labeling assay and image analysis pipeline to quantify the cell turnover rate in the planarian epidermis. Our findings indicate that the ventral epidermis is highly dynamic and epidermal cells undergo internalization via basal extrusion, followed by a relocation toward the intestine and ultimately digestion by intestinal phagocytes. Overall, our study reveals a complex homeostatic process of cell clearance that may generally allow planarians to catabolize their own cells.
Collapse
Affiliation(s)
- Jun-Ru Lee
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany; Graduate Center for Neurosciences, Biophysics, and Molecular Biosciences, University of Göttingen, 37077 Göttingen, Germany
| | - Tobias Boothe
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Clemens Mauksch
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Albert Thommen
- Cancer Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jochen C Rink
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University, Göttingen, Germany.
| |
Collapse
|
7
|
King HO, Owusu-Boaitey KE, Fincher CT, Reddien PW. A transcription factor atlas of stem cell fate in planarians. Cell Rep 2024; 43:113843. [PMID: 38401119 PMCID: PMC11232438 DOI: 10.1016/j.celrep.2024.113843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 12/05/2023] [Accepted: 02/06/2024] [Indexed: 02/26/2024] Open
Abstract
Whole-body regeneration requires the ability to produce the full repertoire of adult cell types. The planarian Schmidtea mediterranea contains over 125 cell types, which can be regenerated from a stem cell population called neoblasts. Neoblast fate choice can be regulated by the expression of fate-specific transcription factors (FSTFs). How fate choices are made and distributed across neoblasts versus their post-mitotic progeny remains unclear. We used single-cell RNA sequencing to systematically map fate choices made in S/G2/M neoblasts and, separately, in their post-mitotic progeny that serve as progenitors for all adult cell types. We defined transcription factor expression signatures associated with all detected fates, identifying numerous new progenitor classes and FSTFs that regulate them. Our work generates an atlas of stem cell fates with associated transcription factor signatures for most cell types in a complete adult organism.
Collapse
Affiliation(s)
- Hunter O King
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kwadwo E Owusu-Boaitey
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA, USA
| | - Christopher T Fincher
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peter W Reddien
- Howard Hughes Medical Institute, Chevy Chase, MD, USA; Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
8
|
Herz M, Zarowiecki M, Wessels L, Pätzel K, Herrmann R, Braun C, Holroyd N, Huckvale T, Bergmann M, Spiliotis M, Koziol U, Berriman M, Brehm K. Genome-wide transcriptome analysis of Echinococcus multilocularis larvae and germinative cell cultures reveals genes involved in parasite stem cell function. Front Cell Infect Microbiol 2024; 14:1335946. [PMID: 38333034 PMCID: PMC10850878 DOI: 10.3389/fcimb.2024.1335946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/12/2024] [Indexed: 02/10/2024] Open
Abstract
The lethal zoonosis alveolar echinococcosis is caused by tumour-like growth of the metacestode stage of the tapeworm Echinococcus multilocularis within host organs. We previously demonstrated that metacestode proliferation is exclusively driven by somatic stem cells (germinative cells), which are the only mitotically active parasite cells that give rise to all differentiated cell types. The Echinococcus gene repertoire required for germinative cell maintenance and differentiation has not been characterised so far. We herein carried out Illumina sequencing on cDNA from Echinococcus metacestode vesicles, from metacestode tissue depleted of germinative cells, and from Echinococcus primary cell cultures. We identified a set of ~1,180 genes associated with germinative cells, which contained numerous known stem cell markers alongside genes involved in replication, cell cycle regulation, mitosis, meiosis, epigenetic modification, and nucleotide metabolism. Interestingly, we also identified 44 stem cell associated transcription factors that are likely involved in regulating germinative cell differentiation and/or pluripotency. By in situ hybridization and pulse-chase experiments, we also found a new general Echinococcus stem cell marker, EmCIP2Ah, and we provide evidence implying the presence of a slow cycling stem cell sub-population expressing the extracellular matrix factor Emkal1. RNA-Seq analyses on primary cell cultures revealed that metacestode-derived Echinococcus stem cells display an expanded differentiation capability and do not only form differentiated cell types of the metacestode, but also cells expressing genes specific for protoscoleces, adult worms, and oncospheres, including an ortholog of the schistosome praziquantel target, EmTRPMPZQ. Finally, we show that primary cell cultures contain a cell population expressing an ortholog of the tumour necrosis factor α receptor family and that mammalian TNFα accelerates the development of metacestode vesicles from germinative cells. Taken together, our analyses provide a robust and comprehensive characterization of the Echinococcus germinative cell transcriptome, demonstrate expanded differentiation capability of metacestode derived stem cells, and underscore the potential of primary germinative cell cultures to investigate developmental processes of the parasite. These data are relevant for studies into the role of Echinococcus stem cells in parasite development and will facilitate the design of anti-parasitic drugs that specifically act on the parasite germinative cell compartment.
Collapse
Affiliation(s)
- Michaela Herz
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | | | - Leonie Wessels
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Katharina Pätzel
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Ruth Herrmann
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Christiane Braun
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Nancy Holroyd
- Parasite Genomics, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Thomas Huckvale
- Parasite Genomics, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Monika Bergmann
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Markus Spiliotis
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Uriel Koziol
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Matthew Berriman
- Parasite Genomics, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Klaus Brehm
- Consultant Laboratory for Echinococcosis, Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
9
|
Sun Y, Huang Y, Hao Z, Zhang S, Tian Q. MRLC controls apoptotic cell death and functions to regulate epidermal development during planarian regeneration and homeostasis. Cell Prolif 2024; 57:e13524. [PMID: 37357415 PMCID: PMC10771114 DOI: 10.1111/cpr.13524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/27/2023] Open
Abstract
Adult stem cells (ASCs) are pluripotent cells with the capacity to self-renew and constantly replace lost cells due to physiological turnover or injury. Understanding the molecular mechanisms of the precise coordination of stem cell proliferation and proper cell fate decision is important to regeneration and organismal homeostasis. The planarian epidermis provides a highly tractable model to study ASC complex dynamic due to the distinct spatiotemporal differentiation stages during lineage development. Here, we identified the myosin regulatory light chain (MRLC) homologue in the Dugesia japonica transcriptome. We found high expression levels of MRLC in wound region during regeneration and also expressed in late epidermal progenitors as an essential regulator of the lineage from neoblasts to mature epidermal cells. We investigated the function of MRLC using in situ hybridization, real-time polymerase chain reaction and double fluorescent and uncovered the potential mechanism. Knockdown of MRLC leads to a remarkable increase in cell death, causes severe abnormalities during regeneration and homeostasis and eventually leads to animal death. The global decrease in epidermal cell in MRLC RNAi animals induces accelerated epidermal proliferation and differentiation. Additionally, we find that MRLC is co-expressed with cdc42 and acts cooperatively to control the epidermal lineage development by affecting cell death. Our results uncover an important role of MRLC, as an inhibitor of apoptosis, involves in epidermal development.
Collapse
Affiliation(s)
- Yujia Sun
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Yongding Huang
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Zhitai Hao
- Department of Biochemistry and Molecular PharmacologyNew York University, School of MedicineNew YorkUSA
| | - Shoutao Zhang
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
- Longhu Laboratory of Advanced ImmunologyZhengzhouHenanChina
| | - Qingnan Tian
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
10
|
Wang KT, Tapper J, Adler CE. Purification of Planarian Stem Cells Using a Draq5-Based FACS Approach. Methods Mol Biol 2024; 2805:203-212. [PMID: 39008184 DOI: 10.1007/978-1-0716-3854-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Planarians are flatworms that have the remarkable ability to regenerate entirely new animals. This regenerative ability requires abundant adult stem cells called neoblasts, which are relatively small in size, sensitive to irradiation and the only proliferative cells in the animal. Despite the lack of cell surface markers, fluorescence-activated cell sorting (FACS) protocols have been developed to discriminate and isolate neoblasts, based on DNA content. Here, we describe a protocol that combines staining of far-red DNA dye Draq5, Calcein-AM and DAPI, along with a shortened processing time. This profiling strategy can be used to functionally characterize the neoblast population in pharmacologically-treated or gene knockdown animals. Highly purified neoblasts can be analyzed with downstream assays, such as in situ hybridization and RNA sequencing.
Collapse
Affiliation(s)
- Kuang-Tse Wang
- Department of Molecular Medicine, Cornell University, College of Veterinary Medicine, Ithaca, NY, USA
| | - Justin Tapper
- Department of Molecular Medicine, Cornell University, College of Veterinary Medicine, Ithaca, NY, USA
| | - Carolyn E Adler
- Department of Molecular Medicine, Cornell University, College of Veterinary Medicine, Ithaca, NY, USA.
| |
Collapse
|
11
|
Park C, Owusu-Boaitey KE, Valdes GM, Reddien PW. Fate specification is spatially intermingled across planarian stem cells. Nat Commun 2023; 14:7422. [PMID: 37973979 PMCID: PMC10654723 DOI: 10.1038/s41467-023-43267-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
Regeneration requires mechanisms for producing a wide array of cell types. Neoblasts are stem cells in the planarian Schmidtea mediterranea that undergo fate specification to produce over 125 adult cell types. Fate specification in neoblasts can be regulated through expression of fate-specific transcription factors. We utilize multiplexed error-robust fluorescence in situ hybridization (MERFISH) and whole-mount FISH to characterize fate choice distribution of stem cells within planarians. Fate choices are often made distant from target tissues and in a highly intermingled manner, with neighboring neoblasts frequently making divergent fate choices for tissues of different location and function. We propose that pattern formation is driven primarily by the migratory assortment of progenitors from mixed and spatially distributed fate-specified stem cells and that fate choice involves stem-cell intrinsic processes.
Collapse
Affiliation(s)
- Chanyoung Park
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kwadwo E Owusu-Boaitey
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA, USA
| | - Giselle M Valdes
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peter W Reddien
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
12
|
Poulet A, Kratkiewicz AJ, Li D, van Wolfswinkel JC. Chromatin analysis of adult pluripotent stem cells reveals a unique stemness maintenance strategy. SCIENCE ADVANCES 2023; 9:eadh4887. [PMID: 37801496 PMCID: PMC10558129 DOI: 10.1126/sciadv.adh4887] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/05/2023] [Indexed: 10/08/2023]
Abstract
Many highly regenerative organisms maintain adult pluripotent stem cells throughout their life, but how the long-term maintenance of pluripotency is accomplished is unclear. To decipher the regulatory logic of adult pluripotent stem cells, we analyzed the chromatin organization of stem cell genes in the planarian Schmidtea mediterranea. We identify a special chromatin state of stem cell genes, which is distinct from that of tissue-specific genes and resembles constitutive genes. Where tissue-specific promoters have detectable transcription factor binding sites, the promoters of stem cell-specific genes instead have sequence features that broadly decrease nucleosome binding affinity. This genic organization makes pluripotency-related gene expression the default state in these cells, which is maintained by the activity of chromatin remodelers ISWI and SNF2 in the stem cells.
Collapse
Affiliation(s)
- Axel Poulet
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Arcadia J. Kratkiewicz
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Danyan Li
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Josien C. van Wolfswinkel
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06511, USA
- Yale Center for RNA Science and Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
13
|
Chen JJ, Lei K. The known, unknown, and unknown unknowns of cell-cell communication in planarian regeneration. Zool Res 2023; 44:981-992. [PMID: 37721107 PMCID: PMC10559094 DOI: 10.24272/j.issn.2095-8137.2023.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023] Open
Abstract
Planarians represent the most primitive bilateral triploblastic animals. Most planarian species exhibit mechanisms for whole-body regeneration, exemplified by the regeneration of their cephalic ganglion after complete excision. Given their robust whole-body regeneration capacity, planarians have been model organisms in regenerative research for more than 240 years. Advancements in research tools and techniques have progressively elucidated the mechanisms underlying planarian regeneration. Accurate cell-cell communication is recognized as a fundamental requirement for regeneration. In recent decades, mechanisms associated with such communication have been revealed at the cellular level. Notably, stem cells (neoblasts) have been identified as the source of all new cells during planarian homeostasis and regeneration. The interplay between neoblasts and somatic cells affects the identities and proportions of various tissues during homeostasis and regeneration. Here, this review outlines key discoveries regarding communication between stem cell compartments and other cell types in planarians, as well as the impact of communication on planarian regeneration. Additionally, this review discusses the challenges and potential directions of future planarian research, emphasizing the sustained impact of this field on our understanding of animal regeneration.
Collapse
Affiliation(s)
- Jia-Jia Chen
- School of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Kai Lei
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China. E-mail:
| |
Collapse
|
14
|
Clark EG, Petersen CP. BMP suppresses WNT to integrate patterning of orthogonal body axes in adult planarians. PLoS Genet 2023; 19:e1010608. [PMID: 37729232 PMCID: PMC10545109 DOI: 10.1371/journal.pgen.1010608] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 10/02/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023] Open
Abstract
Adult regeneration restores patterning of orthogonal body axes after damage in a post-embryonic context. Planarians regenerate using distinct body-wide signals primarily regulating each axis dimension: anteroposterior Wnts, dorsoventral BMP, and mediolateral Wnt5 and Slit determinants. How regeneration can coordinate perpendicular tissue axes without symmetry-breaking embryonic events is not fully understood. Here, we report that the planarian dorsoventral regulator bmp4 suppresses the posterior determinant wnt1 to provide patterning input to the anteroposterior axis. Double-FISH identified distinct anteroposterior domains within dorsal midline muscle that express either bmp4 or wnt1. Homeostatic inhibition bmp4 and smad1 expanded the wnt1 expression anteriorly, while elevation of BMP signaling through nog1;nog2 RNAi reduced the wnt1 expression domain and elevated bmp4 expression. Homeostatic BMP signal perturbation broadly affected anteroposterior identity as measured by expression of posterior Wnt pathway factors, and caused mislocalization of AP-regionalized pharynx progenitors, without strongly affecting expression domains of anterior regulators. Additionally, wnt1 inhibition elevated bmp4 expression in the tip of the tail. Therefore, dorsal BMP signals and posterior wnt1 mutually antagonize for patterning the tail. Furthermore, homeostatic bmp4 RNAi caused medial expansion of the lateral determinant wnt5 and reduced expression of the medial regulator slit. By contrast, nog1;nog2 RNAi restricted wnt5 expression. Double RNAi of bmp4 and wnt5 resulted in lateral ectopic eye phenotypes, suggesting bmp4 acts upstream of wnt5 to pattern the mediolateral axis. These results indicate bmp4 controls dorsoventral information and also, through suppression of Wnt signals, influences anteroposterior and mediolateral identity. Based on related functions across vertebrates and Cnidarians, Wnt and BMP cross-regulation could form an ancient mechanism for coordinating orthogonal axis patterning.
Collapse
Affiliation(s)
- Eleanor G. Clark
- Department of Molecular Biosciences, Northwestern University; Evanston Illinois, United States of America
| | - Christian P. Petersen
- Department of Molecular Biosciences, Northwestern University; Evanston Illinois, United States of America
- Robert Lurie Comprehensive Cancer Center, Northwestern University; Evanston, Illinois, United States of America
| |
Collapse
|
15
|
Rabiasz A, Ziętkiewicz E. Schmidtea mediterranea as a Model Organism to Study the Molecular Background of Human Motile Ciliopathies. Int J Mol Sci 2023; 24:ijms24054472. [PMID: 36901899 PMCID: PMC10002865 DOI: 10.3390/ijms24054472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Cilia and flagella are evolutionarily conserved organelles that form protrusions on the surface of many growth-arrested or differentiated eukaryotic cells. Due to the structural and functional differences, cilia can be roughly classified as motile and non-motile (primary). Genetically determined dysfunction of motile cilia is the basis of primary ciliary dyskinesia (PCD), a heterogeneous ciliopathy affecting respiratory airways, fertility, and laterality. In the face of the still incomplete knowledge of PCD genetics and phenotype-genotype relations in PCD and the spectrum of PCD-like diseases, a continuous search for new causative genes is required. The use of model organisms has been a great part of the advances in understanding molecular mechanisms and the genetic basis of human diseases; the PCD spectrum is not different in this respect. The planarian model (Schmidtea mediterranea) has been intensely used to study regeneration processes, and-in the context of cilia-their evolution, assembly, and role in cell signaling. However, relatively little attention has been paid to the use of this simple and accessible model for studying the genetics of PCD and related diseases. The recent rapid development of the available planarian databases with detailed genomic and functional annotations prompted us to review the potential of the S. mediterranea model for studying human motile ciliopathies.
Collapse
|
16
|
Guo Y, Sun Y, Ma M, Huang Y, Zhang S, Tian Q. Djsnon, a downstream gene of Djfoxk1, is required for the regeneration of the planarian central nervous system. Biochem Biophys Res Commun 2023; 643:8-15. [PMID: 36584589 DOI: 10.1016/j.bbrc.2022.12.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
Regulators of adult neurogenesis are crucial targets for neuronal repair. Freshwater planarians are ideal model systems for studying neuronal regeneration as they can regenerate their entire central nervous system (CNS) using pluripotent adult stem cells. Here, we identified Djfoxk1 in planarian Dugesia japonica to be required for planarian CNS regeneration. Knockdown of Djfoxk1 inhibits the regeneration of the cephalic ganglia, resulting in the failure of eye regeneration. By RNAi screening of Djfoxk1 downstream genes, we identified Djsnon as another regulator of planarian neuronal regeneration. Inhibition of Djsnon with RNA interference (RNAi) results in similar phenotypes caused by Djfoxk1 RNAi without affecting cell proliferation and wound healing. Our findings show that Djsnon as a downstream gene of Djfoxk1 regulates the regeneration of the planarian CNS.
Collapse
Affiliation(s)
- Yajun Guo
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yujia Sun
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengwen Ma
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yongding Huang
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shoutao Zhang
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China; Longhu Laboratory of Advanced Immunology, Zhengzhou, Henan, China.
| | - Qingnan Tian
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
17
|
Djck1α Is Required for Proper Regeneration and Maintenance of the Medial Tissues in Planarians. Cells 2023; 12:cells12030473. [PMID: 36766815 PMCID: PMC9913719 DOI: 10.3390/cells12030473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/15/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
CK1α (Casein kinase 1α) is a member of the casein kinase 1(CK1) family that is involved in diverse cellular processes, but its functions remain unclear in stem cell development. Freshwater planarians are capable of whole-body regeneration, making it a classic model for the study of regeneration, tissue homeostasis, and polarity in vivo. To investigate the roles of CK1α in regeneration and homeostasis progress, we characterize a homolog of CK1α from planarian Dugesia japonica. We find that Djck1α, which shows an enriched expression pattern in the nascent tissues, is widely expressed especially in the medial regions of planarians. Knockdown of CK1α by RNAi presents a thicker body due to dorsal hyperplasia, along with defects in the medial tissues including nerve proliferation, missing epidermis, intestine disturbance, and hyper-proliferation during the progression of regeneration and homeostasis. Moreover, we find that the ck1α RNAi animals exhibit expansion of the midline marker slit. The eye deficiency induced by slit RNAi can be rescued by ck1α and slit double RNAi. These results suggest that ck1α is required for the medial tissue regeneration and maintenance in planarian Dugesia japonica by regulating the expression of slit, which helps to further investigate the regulation of planarian mediolateral axis.
Collapse
|
18
|
Planarians to schistosomes: an overview of flatworm cell-types and regulators. J Helminthol 2023; 97:e7. [PMID: 36644809 DOI: 10.1017/s0022149x22000621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Schistosomiasis remains a major neglected tropical disease that afflicts over 200 million people globally. Schistosomes, the aetiological agent of schistosomiasis, are parasitic flatworms that propagate between molluscan and mammalian hosts. Inside the mammalian host, schistosomes rapidly grow over 100-fold in size and develop into a sexually mature male or female that thrives in the bloodstream for several decades. Recent work has identified schistosome stem cells as the source that drives parasite transmission, reproduction and longevity. Moreover, studies have begun to uncover molecular programmes deployed by stem cells that are essential for tissue development and maintenance, parasite survival and immune evasion. Such programmes are reminiscent of neoblast-driven development and regeneration of planarians, the free-living flatworm relative of schistosomes. Over the last few decades, research in planarians has employed modern functional genomic tools that significantly enhanced our understanding of stem cell-driven animal development and regeneration. In this review, we take a broad stroke overview of major flatworm organ systems at the cellular and molecular levels. We summarize recent advances on genetic regulators that play critical roles in differentiation and maintenance of flatworm cell types. Finally, we provide perspectives on how investigation of basic parasite biology is critical to discovering new approaches to battle schistosomiasis.
Collapse
|
19
|
Clark EG, Petersen CP. BMP suppresses WNT to integrate patterning of orthogonal body axes in adult planarians. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523528. [PMID: 36711474 PMCID: PMC9882038 DOI: 10.1101/2023.01.10.523528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Adult regeneration restores patterning of orthogonal body axes after damage in a post-embryonic context. Planarians regenerate using distinct body-wide signals primarily regulating each axis dimension: anteroposterior Wnts, dorsoventral BMP, and mediolateral Wnt5 and Slit determinants. How regeneration can consistently form perpendicular tissue axes without symmetry-breaking embryonic events is unknown, and could either occur using fully independent, or alternatively, integrated signals defining each dimension. Here, we report that the planarian dorsoventral regulator bmp4 suppresses the posterior determinant wnt1 to pattern the anteroposterior axis. Double-FISH identified distinct anteroposterior domains within dorsal midline muscle that express either bmp4 or wnt1 . Homeostatic inhibition bmp4 and smad1 expanded the wnt1 expression anteriorly, while elevation of BMP signaling through nog1;nog2 RNAi reduced the wnt1 expression domain. BMP signal perturbation broadly affected anteroposterior identity as measured by expression of posterior Wnt pathway factors, without affecting head regionalization. Therefore, dorsal BMP signals broadly limit posterior identity. Furthermore, bmp4 RNAi caused medial expansion of the lateral determinant wnt5 and reduced expression of the medial regulator slit . Double RNAi of bmp4 and wnt5 resulted in lateral ectopic eye phenotypes, suggesting bmp4 acts upstream of wnt5 to pattern the mediolateral axis. Therefore, bmp4 acts at the top of a patterning hierarchy both to control dorsoventral information and also, through suppression of Wnt signals, to regulate anteroposterior and mediolateral identity. These results reveal that adult pattern formation involves integration of signals controlling individual orthogonal axes. Author Summary Systems that coordinate long-range communication across axes are likely critical for enabling tissue restoration in regenerative animals. While individual axis pathways have been identified, there is not yet an understanding of how signal integration allows repatterning across 3-dimensions. Here, we report an unanticipated linkage between anteroposterior, dorsoventral, and mediolateral systems in planarians through BMP signaling. We find that dorsally expressed BMP restricts posterior and lateral identity by suppressing distinct Wnt signals in adult planarians. These results demonstrate that orthogonal axis information is not fully independent and suggest a potentially ancient role of integrated axis patterning in generating stable 3-dimensional adult forms.
Collapse
Affiliation(s)
- Eleanor G. Clark
- Department of Molecular Biosciences, Northwestern University; Evanston IL 60208
| | - Christian P. Petersen
- Department of Molecular Biosciences, Northwestern University; Evanston IL 60208
- Robert Lurie Comprehensive Cancer Center, Northwestern University; Evanston IL 60208
| |
Collapse
|
20
|
Drees L, Rink JC. The planarian flatworm Schmidtea mediterranea. Nat Methods 2023; 20:3-5. [PMID: 36635538 DOI: 10.1038/s41592-022-01727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Leonard Drees
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Jochen C Rink
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
21
|
Hoffman M, Wurtzel O. PLANAtools-An interactive gene expression repository for the planarian Schmidtea mediterranea. Front Cell Dev Biol 2023; 11:1149537. [PMID: 37035247 PMCID: PMC10076545 DOI: 10.3389/fcell.2023.1149537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/16/2023] [Indexed: 04/11/2023] Open
Affiliation(s)
- Michael Hoffman
- The George S. Wise Faculty of Life Sciences, School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Omri Wurtzel
- The George S. Wise Faculty of Life Sciences, School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Omri Wurtzel,
| |
Collapse
|
22
|
Dagan Y, Yesharim Y, Bonneau AR, Frankovits T, Schwartz S, Reddien PW, Wurtzel O. m6A is required for resolving progenitor identity during planarian stem cell differentiation. EMBO J 2022; 41:e109895. [PMID: 35971838 PMCID: PMC9627665 DOI: 10.15252/embj.2021109895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 12/13/2022] Open
Abstract
Regeneration and tissue homeostasis require accurate production of missing cell lineages. Cell production is driven by changes to gene expression, which is shaped by multiple layers of regulation. Here, we find that the ubiquitous mRNA base-modification, m6A, is required for proper cell fate choice and cellular maturation in planarian stem cells (neoblasts). We mapped m6A-enriched regions in 7,600 planarian genes and found that perturbation of the m6A pathway resulted in progressive deterioration of tissues and death. Using single-cell RNA sequencing of >20,000 cells following perturbation of the m6A pathway, we identified an increase in expression of noncanonical histone variants, and that inhibition of the pathway resulted in accumulation of undifferentiated cells throughout the animal in an abnormal transcriptional state. Analysis of >1,000 planarian gene expression datasets revealed that the inhibition of the chromatin modifying complex NuRD had almost indistinguishable consequences, unraveling an unappreciated link between m6A and chromatin modifications. Our findings reveal that m6A is critical for planarian stem cell homeostasis and gene regulation in tissue maintenance and regeneration.
Collapse
Affiliation(s)
- Yael Dagan
- The George S. Wise Faculty of Life Sciences, School of Neurobiology, Biochemistry, and BiophysicsTel Aviv UniversityTel AvivIsrael
| | - Yarden Yesharim
- The George S. Wise Faculty of Life Sciences, School of Neurobiology, Biochemistry, and BiophysicsTel Aviv UniversityTel AvivIsrael
| | - Ashley R Bonneau
- Whitehead Institute for Biomedical ResearchCambridgeMAUSA
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMAUSA
- Howard Hughes Medical InstituteChevy ChaseMDUSA
| | - Tamar Frankovits
- The George S. Wise Faculty of Life Sciences, School of Neurobiology, Biochemistry, and BiophysicsTel Aviv UniversityTel AvivIsrael
| | - Schraga Schwartz
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | - Peter W Reddien
- Whitehead Institute for Biomedical ResearchCambridgeMAUSA
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMAUSA
- Howard Hughes Medical InstituteChevy ChaseMDUSA
| | - Omri Wurtzel
- The George S. Wise Faculty of Life Sciences, School of Neurobiology, Biochemistry, and BiophysicsTel Aviv UniversityTel AvivIsrael
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
23
|
Single-cell transcriptomics in planaria: new tools allow new insights into cellular and evolutionary features. Biochem Soc Trans 2022; 50:1237-1246. [DOI: 10.1042/bst20210825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022]
Abstract
Single-cell transcriptomics has revolutionised biology allowing the quantification of gene expression in individual cells. Since each single cell contains cell type specific mRNAs, these techniques enable the classification of cell identities. Therefore, single cell methods have been used to explore the repertoire of cell types (the single cell atlas) of different organisms, including freshwater planarians. Nowadays, planarians are one of the most prominent animal models in single cell biology. They have been studied at the single cell level for over a decade using most of the available single cell methodological approaches. These include plate-based methods, such as qPCR, nanodroplet methods and in situ barcoding methods. Because of these studies, we now have a very good picture of planarian cell types and their differentiation trajectories. Planarian regenerative properties and other characteristics, such as their developmental plasticity and their capacity to reproduce asexually, ensure that another decade of single cell biology in planarians is yet to come. Here, we review these characteristics, the new biological insights that have been obtained by single-cell transcriptomics and outline the perspectives for the future.
Collapse
|
24
|
Scimone ML, Cloutier JK, Maybrun CL, Reddien PW. The planarian wound epidermis gene equinox is required for blastema formation in regeneration. Nat Commun 2022; 13:2726. [PMID: 35585061 PMCID: PMC9117669 DOI: 10.1038/s41467-022-30412-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 04/09/2022] [Indexed: 11/25/2022] Open
Abstract
Regeneration often involves the formation of a blastema, an outgrowth or regenerative bud formed at the plane of injury where missing tissues are produced. The mechanisms that trigger blastema formation are therefore fundamental for regeneration. Here, we identify a gene, which we named equinox, that is expressed within hours of injury in the planarian wound epidermis. equinox encodes a predicted secreted protein that is conserved in many animal phyla. Following equinox inhibition, amputated planarians fail to maintain wound-induced gene expression and to subsequently undergo blastema outgrowth. Associated with these defects is an inability to reestablish lost positional information needed for missing tissue specification. Our findings link the planarian wound epidermis, through equinox, to regeneration of positional information and blastema formation, indicating a broad regulatory role of the wound epidermis in diverse regenerative contexts.
Collapse
Affiliation(s)
- M Lucila Scimone
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - Jennifer K Cloutier
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Harvard/MIT MD-PhD, Harvard Medical School, Boston, MA, 02115, USA
| | - Chloe L Maybrun
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Peter W Reddien
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
25
|
Sarkar SR, Dubey VK, Jahagirdar A, Lakshmanan V, Haroon MM, Sowndarya S, Sowdhamini R, Palakodeti D. DDX24 is required for muscle fiber organization and the suppression of wound-induced Wnt activity necessary for pole re-establishment during planarian regeneration. Dev Biol 2022; 488:11-29. [PMID: 35523320 DOI: 10.1016/j.ydbio.2022.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/06/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022]
Abstract
Planarians have a remarkable ability to undergo whole-body regeneration. Successful regeneration outcome is determined by processes like polarity establishment at the wound site, which is followed by pole (organizer) specification. Interestingly, these determinants are almost exclusively expressed by muscles in these animals. However, the molecular toolkit that enables the functional versatility of planarian muscles remains poorly understood. Here we report that SMED_DDX24, a D-E-A-D Box RNA helicase, is necessary for planarian survival and regeneration. We found that DDX24 is enriched in muscles and its knockdown disrupts muscle fiber organization. This leads to defective pole specification, which in turn results in misregulation of many positional control genes specifically during regeneration. ddx24 RNAi also upregulates wound-induced Wnt signalling. Suppressing this ectopic Wnt activity rescues the knockdown phenotype by enabling better anterior pole regeneration. To summarize, our work highlights the role of an RNA helicase in muscle fiber organization, and modulating amputation-induced wnt levels, both of which seem critical for pole re-organization, thereby regulating whole-body regeneration.
Collapse
Affiliation(s)
- Souradeep R Sarkar
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bengaluru, 560065, India; Integrative Chemical Biology (ICB), Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru, 560065, India
| | - Vinay Kumar Dubey
- Integrative Chemical Biology (ICB), Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru, 560065, India; Manipal Academy of Higher Education, Manipal, 576104, India
| | - Anusha Jahagirdar
- Integrative Chemical Biology (ICB), Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru, 560065, India
| | - Vairavan Lakshmanan
- Integrative Chemical Biology (ICB), Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru, 560065, India
| | - Mohamed Mohamed Haroon
- Integrative Chemical Biology (ICB), Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru, 560065, India; SASTRA University, Thanjavur, 613401, India
| | - Sai Sowndarya
- Integrative Chemical Biology (ICB), Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru, 560065, India
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bengaluru, 560065, India
| | - Dasaradhi Palakodeti
- Integrative Chemical Biology (ICB), Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru, 560065, India.
| |
Collapse
|
26
|
Transcription Factors Active in the Anterior Blastema of Schmidtea mediterranea. Biomolecules 2021; 11:biom11121782. [PMID: 34944426 PMCID: PMC8698962 DOI: 10.3390/biom11121782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/28/2022] Open
Abstract
Regeneration, the restoration of body parts after injury, is quite widespread in the animal kingdom. Species from virtually all Phyla possess regenerative abilities. Human beings, however, are poor regenerators. Yet, the progress of knowledge and technology in the fields of bioengineering, stem cells, and regenerative biology have fostered major advancements in regenerative medical treatments, which aim to regenerate tissues and organs and restore function. Human induced pluripotent stem cells can differentiate into any cell type of the body; however, the structural and cellular complexity of the human tissues, together with the inability of our adult body to control pluripotency, require a better mechanistic understanding. Planarians, with their capacity to regenerate lost body parts thanks to the presence of adult pluripotent stem cells could help providing such an understanding. In this paper, we used a top-down approach to shortlist blastema transcription factors (TFs) active during anterior regeneration. We found 44 TFs—31 of which are novel in planarian—that are expressed in the regenerating blastema. We analyzed the function of half of them and found that they play a role in the regeneration of anterior structures, like the anterior organizer, the positional instruction muscle cells, the brain, the photoreceptor, the intestine. Our findings revealed a glimpse of the complexity of the transcriptional network governing anterior regeneration in planarians, confirming that this animal model is the perfect playground to study in vivo how pluripotency copes with adulthood.
Collapse
|
27
|
Arnold CP, Lozano AM, Mann FG, Nowotarski SH, Haug JO, Lange JJ, Seidel CW, Alvarado AS. Hox genes regulate asexual reproductive behavior and tissue segmentation in adult animals. Nat Commun 2021; 12:6706. [PMID: 34795249 PMCID: PMC8602322 DOI: 10.1038/s41467-021-26986-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 09/21/2021] [Indexed: 12/13/2022] Open
Abstract
Hox genes are highly conserved transcription factors renowned for their roles in the segmental patterning of the embryonic anterior-posterior (A/P) axis. We report functions for Hox genes in A/P tissue segmentation and transverse fission behavior underlying asexual reproduction in adult planarian flatworms, Schmidtea mediterranea. Silencing of each of the Hox family members identifies 5 Hox genes required for asexual reproduction. Among these, silencing of hox3 genes results in supernumerary fission segments, while silencing of post2b eliminates segmentation altogether. The opposing roles of hox3 and post2b in segmentation are paralleled in their respective regulation of fission behavior. Silencing of hox3 increases the frequency of fission behavior initiation while silencing of post2b eliminates fission behavior entirely. Furthermore, we identify a network of downstream effector genes mediating Hox gene functions, providing insight into their respective mechanisms of action. In particular, we resolve roles for post2b and effector genes in the functions of the marginal adhesive organ in fission behavior regulation. Collectively, our study establishes adult stage roles for Hox genes in the regulation of tissue segmentation and behavior associated with asexual reproduction.
Collapse
|
28
|
Tian Q, Sun Y, Gao T, Li J, Fang H, Zhang S. Djnedd4L Is Required for Head Regeneration by Regulating Stem Cell Maintenance in Planarians. Int J Mol Sci 2021; 22:ijms222111707. [PMID: 34769140 PMCID: PMC8583885 DOI: 10.3390/ijms222111707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/02/2022] Open
Abstract
SUMOylation and ubiquitylation are homologous processes catalyzed by homologous enzymes, and they are involved in nearly all aspects of eukaryotic biology. Planarians, which have the remarkable ability to regenerate their central nervous system (CNS), provide an excellent opportunity to investigate the molecular processes of CNS regeneration in vivo. In this study, we analyzed gene expression profiles during head regeneration with an RNA-seq-based screening approach and found that Djnedd4L and Djubc9 were required for head regeneration in planarians. RNA interference targeting of Djubc9 caused the phospho-H3 mitotic cells to decrease in quantity, or even become absent as a part of the Djubc9 RNAi phenotype, which also showed the collapse of the stem cell lineage along with the reduced expression of epidermal differentiation markers. Furthermore, we found that Djnedd4L RNAi induced increased cell division and promoted the premature differentiation during regeneration. Taken together, our findings show that Djubc9 and Djnedd4L are required for stem cell maintenance in the planarian Dugesia japonica, which helps to elucidate the role of SUMOylation and ubiquitylation in regulating the regeneration process.
Collapse
Affiliation(s)
- Qingnan Tian
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.T.); (Y.S.); (T.G.); (J.L.)
| | - Yujia Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.T.); (Y.S.); (T.G.); (J.L.)
| | - Tingting Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.T.); (Y.S.); (T.G.); (J.L.)
| | - Jiaxin Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.T.); (Y.S.); (T.G.); (J.L.)
| | - Huimin Fang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.T.); (Y.S.); (T.G.); (J.L.)
- Correspondence: (H.F.); (S.Z.)
| | - Shoutao Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.T.); (Y.S.); (T.G.); (J.L.)
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou 450001, China
- Correspondence: (H.F.); (S.Z.)
| |
Collapse
|
29
|
Molina MD, Cebrià F. Decoding Stem Cells: An Overview on Planarian Stem Cell Heterogeneity and Lineage Progression. Biomolecules 2021; 11:1532. [PMID: 34680165 PMCID: PMC8533874 DOI: 10.3390/biom11101532] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 01/26/2023] Open
Abstract
Planarians are flatworms capable of whole-body regeneration, able to regrow any missing body part after injury or amputation. The extraordinary regenerative capacity of planarians is based upon the presence in the adult of a large population of somatic pluripotent stem cells. These cells, called neoblasts, offer a unique system to study the process of stem cell specification and differentiation in vivo. In recent years, FACS-based isolation of neoblasts, RNAi functional analyses as well as high-throughput approaches such as single-cell sequencing have allowed a rapid progress in our understanding of many different aspects of neoblast biology. Here, we summarize our current knowledge on the molecular signatures that define planarian neoblasts heterogeneity, which includes a percentage of truly pluripotent stem cells, and guide the commitment of pluripotent neoblasts into lineage-specific progenitor cells, as well as their differentiation into specific planarian cell types.
Collapse
Affiliation(s)
- M. Dolores Molina
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), 08028 Barcelona, Spain
| | - Francesc Cebrià
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), 08028 Barcelona, Spain
| |
Collapse
|
30
|
Li D, Taylor DH, van Wolfswinkel JC. PIWI-mediated control of tissue-specific transposons is essential for somatic cell differentiation. Cell Rep 2021; 37:109776. [PMID: 34610311 PMCID: PMC8532177 DOI: 10.1016/j.celrep.2021.109776] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/27/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022] Open
Abstract
PIWI proteins are known as mediators of transposon silencing in animal germlines but are also found in adult pluripotent stem cells of highly regenerative animals, where they are essential for regeneration. Study of the nuclear PIWI protein SMEDWI-2 in the planarian somatic stem cell system reveals an intricate interplay between transposons and cell differentiation in which a subset of transposons is inevitably activated during cell differentiation, and the PIWI protein is required to regain control. Absence of SMEDWI-2 leads to tissue-specific transposon derepression related to cell-type-specific chromatin remodeling events and in addition causes reduced accessibility of lineage-specific genes and defective cell differentiation, resulting in fatal tissue dysfunction. Finally, we show that additional PIWI proteins provide a stem-cell-specific second layer of protection in planarian neoblasts. These findings reveal a far-reaching role of PIWI proteins and PIWI-interacting RNAs (piRNAs) in stem cell biology and cell differentiation.
Collapse
Affiliation(s)
- Danyan Li
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - David H Taylor
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Josien C van Wolfswinkel
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
31
|
Benham-Pyle BW, Brewster CE, Kent AM, Mann FG, Chen S, Scott AR, Box AC, Sánchez Alvarado A. Identification of rare, transient post-mitotic cell states that are induced by injury and required for whole-body regeneration in Schmidtea mediterranea. Nat Cell Biol 2021; 23:939-952. [PMID: 34475533 PMCID: PMC8855990 DOI: 10.1038/s41556-021-00734-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/14/2021] [Indexed: 01/02/2023]
Abstract
Regeneration requires the coordination of stem cells, their progeny and distant differentiated tissues. Here, we present a comprehensive atlas of whole-body regeneration in Schmidtea mediterranea and identify wound-induced cell states. An analysis of 299,998 single-cell transcriptomes captured from regeneration-competent and regeneration-incompetent fragments identified transient regeneration-activated cell states (TRACS) in the muscle, epidermis and intestine. TRACS were independent of stem cell division with distinct spatiotemporal distributions, and RNAi depletion of TRACS-enriched genes produced regeneration defects. Muscle expression of notum, follistatin, evi/wls, glypican-1 and junctophilin-1 was required for tissue polarity. Epidermal expression of agat-1/2/3, cyp3142a1, zfhx3 and atp1a1 was important for stem cell proliferation. Finally, expression of spectrinβ and atp12a in intestinal basal cells, and lrrk2, cathepsinB, myosin1e, polybromo-1 and talin-1 in intestinal enterocytes regulated stem cell proliferation and tissue remodelling, respectively. Our results identify cell types and molecules that are important for regeneration, indicating that regenerative ability can emerge from coordinated transcriptional plasticity across all three germ layers.
Collapse
Affiliation(s)
- Blair W Benham-Pyle
- Stowers Institute for Medical Research, Kansas City, MO, USA.
- Howard Hughes Institute for Medical Research, Kansas City, MO, USA.
| | | | - Aubrey M Kent
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Frederick G Mann
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Howard Hughes Institute for Medical Research, Kansas City, MO, USA
| | - Shiyuan Chen
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Allison R Scott
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Andrew C Box
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Alejandro Sánchez Alvarado
- Stowers Institute for Medical Research, Kansas City, MO, USA.
- Howard Hughes Institute for Medical Research, Kansas City, MO, USA.
| |
Collapse
|
32
|
Krishnan M, Kumar S, Kangale LJ, Ghigo E, Abnave P. The Act of Controlling Adult Stem Cell Dynamics: Insights from Animal Models. Biomolecules 2021; 11:biom11050667. [PMID: 33946143 PMCID: PMC8144950 DOI: 10.3390/biom11050667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Adult stem cells (ASCs) are the undifferentiated cells that possess self-renewal and differentiation abilities. They are present in all major organ systems of the body and are uniquely reserved there during development for tissue maintenance during homeostasis, injury, and infection. They do so by promptly modulating the dynamics of proliferation, differentiation, survival, and migration. Any imbalance in these processes may result in regeneration failure or developing cancer. Hence, the dynamics of these various behaviors of ASCs need to always be precisely controlled. Several genetic and epigenetic factors have been demonstrated to be involved in tightly regulating the proliferation, differentiation, and self-renewal of ASCs. Understanding these mechanisms is of great importance, given the role of stem cells in regenerative medicine. Investigations on various animal models have played a significant part in enriching our knowledge and giving In Vivo in-sight into such ASCs regulatory mechanisms. In this review, we have discussed the recent In Vivo studies demonstrating the role of various genetic factors in regulating dynamics of different ASCs viz. intestinal stem cells (ISCs), neural stem cells (NSCs), hematopoietic stem cells (HSCs), and epidermal stem cells (Ep-SCs).
Collapse
Affiliation(s)
- Meera Krishnan
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Gurgaon-Faridabad Ex-pressway, Faridabad 121001, India; (M.K.); (S.K.)
| | - Sahil Kumar
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Gurgaon-Faridabad Ex-pressway, Faridabad 121001, India; (M.K.); (S.K.)
| | - Luis Johnson Kangale
- IRD, AP-HM, SSA, VITROME, Aix-Marseille University, 13385 Marseille, France;
- Institut Hospitalo Universitaire Méditerranée Infection, 13385 Marseille, France;
| | - Eric Ghigo
- Institut Hospitalo Universitaire Méditerranée Infection, 13385 Marseille, France;
- TechnoJouvence, 13385 Marseille, France
| | - Prasad Abnave
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Gurgaon-Faridabad Ex-pressway, Faridabad 121001, India; (M.K.); (S.K.)
- Correspondence:
| |
Collapse
|
33
|
Raz AA, Wurtzel O, Reddien PW. Planarian stem cells specify fate yet retain potency during the cell cycle. Cell Stem Cell 2021; 28:1307-1322.e5. [PMID: 33882291 DOI: 10.1016/j.stem.2021.03.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 01/08/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Planarian whole-body regeneration is enabled by stem cells called neoblasts. At least some neoblasts are individually pluripotent. Neoblasts are also heterogeneous, with subpopulations of specialized neoblasts having different specified fates. Fate specification in neoblasts is regulated by fate-specific transcription factor (FSTF) expression. Here, we find that FSTF expression is common in neoblast S/G2/M cell-cycle phases but less common in G1. We find that specialized neoblasts can divide to produce progeny with asymmetric cell fates, suggesting that they could retain pluripotency. Furthermore, no known neoblast class was present in all neoblast colonies, suggesting that pluripotency is not the exclusive property of any known class. We tested this possibility with single-cell transplantations, which indicate that at least some specialized neoblasts are likely clonogenic. On the basis of these findings, we propose a model for neoblast pluripotency in which neoblasts can undergo specialization during the cell cycle without loss of potency.
Collapse
Affiliation(s)
- Amelie A Raz
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Omri Wurtzel
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Peter W Reddien
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
34
|
García-Castro H, Kenny NJ, Iglesias M, Álvarez-Campos P, Mason V, Elek A, Schönauer A, Sleight VA, Neiro J, Aboobaker A, Permanyer J, Irimia M, Sebé-Pedrós A, Solana J. ACME dissociation: a versatile cell fixation-dissociation method for single-cell transcriptomics. Genome Biol 2021; 22:89. [PMID: 33827654 PMCID: PMC8028764 DOI: 10.1186/s13059-021-02302-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 02/19/2021] [Indexed: 12/21/2022] Open
Abstract
Single-cell sequencing technologies are revolutionizing biology, but they are limited by the need to dissociate live samples. Here, we present ACME (ACetic-MEthanol), a dissociation approach for single-cell transcriptomics that simultaneously fixes cells. ACME-dissociated cells have high RNA integrity, can be cryopreserved multiple times, and are sortable and permeable. As a proof of principle, we provide single-cell transcriptomic data of different species, using both droplet-based and combinatorial barcoding single-cell methods. ACME uses affordable reagents, can be done in most laboratories and even in the field, and thus will accelerate our knowledge of cell types across the tree of life.
Collapse
Affiliation(s)
- Helena García-Castro
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Nathan J. Kenny
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Marta Iglesias
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Patricia Álvarez-Campos
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM) & Departamento de Biología (Zoología), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Vincent Mason
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Anamaria Elek
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Anna Schönauer
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | | | - Jakke Neiro
- Department of Zoology, University of Oxford, Oxford, UK
| | | | - Jon Permanyer
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Arnau Sebé-Pedrós
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jordi Solana
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| |
Collapse
|
35
|
Bideau L, Kerner P, Hui J, Vervoort M, Gazave E. Animal regeneration in the era of transcriptomics. Cell Mol Life Sci 2021; 78:3941-3956. [PMID: 33515282 PMCID: PMC11072743 DOI: 10.1007/s00018-021-03760-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 12/27/2022]
Abstract
Animal regeneration, the ability to restore a lost body part, is a process that has fascinated scientists for centuries. In this review, we first present what regeneration is and how it relates to development, as well as the widespread and diverse nature of regeneration in animals. Despite this diversity, animal regeneration includes three common mechanistic steps: initiation, induction and activation of progenitors, and morphogenesis. In this review article, we summarize and discuss, from an evolutionary perspective, the recent data obtained for a variety of regeneration models which have allowed to identify key shared mechanisms that control these main steps of animal regeneration. This review also synthesizes the wealth of high-throughput mRNA sequencing data (bulk mRNA-seq) concerning regeneration which have been obtained in recent years, highlighting the major advances in the regeneration field that these studies have revealed. We stress out that, through a comparative approach, these data provide opportunities to further shed light on the evolution of regeneration in animals. Finally, we point out how the use of single-cell mRNA-seq technology and integration with epigenomic approaches may further help researchers to decipher mechanisms controlling regeneration and their evolution in animals.
Collapse
Affiliation(s)
- Loïc Bideau
- Université de Paris, CNRS, Institut Jacques Monod, 75006, Paris, France
| | - Pierre Kerner
- Université de Paris, CNRS, Institut Jacques Monod, 75006, Paris, France
| | - Jerome Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Michel Vervoort
- Université de Paris, CNRS, Institut Jacques Monod, 75006, Paris, France.
| | - Eve Gazave
- Université de Paris, CNRS, Institut Jacques Monod, 75006, Paris, France.
| |
Collapse
|
36
|
Fraguas S, Cárcel S, Vivancos C, Molina MD, Ginés J, Mazariegos J, Sekaran T, Bartscherer K, Romero R, Cebrià F. CREB-binding protein (CBP) gene family regulates planarian survival and stem cell differentiation. Dev Biol 2021; 476:53-67. [PMID: 33774010 DOI: 10.1016/j.ydbio.2021.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/21/2022]
Abstract
In developmental biology, the regulation of stem cell plasticity and differentiation remains an open question. CBP(CREB-binding protein)/p300 is a conserved gene family that functions as a transcriptional co-activator and plays important roles in a wide range of cellular processes, including cell death, the DNA damage response, and tumorigenesis. The acetyl transferase activity of CBPs is particularly important, as histone and non-histone acetylation results in changes in chromatin architecture and protein activity that affect gene expression. Many studies have described the conserved functions of CBP/p300 in stem cell proliferation and differentiation. The planarian Schmidtea mediterranea is an excellent model for the in vivo study of the molecular mechanisms underlying stem cell differentiation during regeneration. However, how this process is regulated genetically and epigenetically is not well-understood yet. We identified 5 distinct Smed-cbp genes in S. mediterranea that show different expression patterns. Functional analyses revealed that Smed-cbp-2 appears to be essential for stem cell maintenance. On the other hand, the silencing of Smed-cbp-3 resulted in the growth of blastemas that were apparently normal, but remained largely unpigmented and undifferentiated. Smed-cbp-3 silencing also affected the differentiation of several cell lineages including neural, epidermal, digestive, and excretory cell types. Finally, we analysed the predicted interactomes of CBP-2 and CBP-3 as an initial step to better understand their functions in planarian stem cell biology. Our results indicate that planarian cbp genes play key roles in stem cell maintenance and differentiation.
Collapse
Affiliation(s)
- Susanna Fraguas
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Spain
| | - Sheila Cárcel
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain
| | - Coral Vivancos
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain
| | - Ma Dolores Molina
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Spain
| | - Jordi Ginés
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain
| | - Judith Mazariegos
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain
| | | | | | - Rafael Romero
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain
| | - Francesc Cebrià
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Spain.
| |
Collapse
|
37
|
Cloutier JK, McMann CL, Oderberg IM, Reddien PW. activin-2 is required for regeneration of polarity on the planarian anterior-posterior axis. PLoS Genet 2021; 17:e1009466. [PMID: 33780442 PMCID: PMC8057570 DOI: 10.1371/journal.pgen.1009466] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/20/2021] [Accepted: 03/03/2021] [Indexed: 01/16/2023] Open
Abstract
Planarians are flatworms and can perform whole-body regeneration. This ability involves a mechanism to distinguish between anterior-facing wounds that require head regeneration and posterior-facing wounds that require tail regeneration. How this head-tail regeneration polarity decision is made is studied to identify principles underlying tissue-identity specification in regeneration. We report that inhibition of activin-2, which encodes an Activin-like signaling ligand, resulted in the regeneration of ectopic posterior-facing heads following amputation. During tissue turnover in uninjured planarians, positional information is constitutively expressed in muscle to maintain proper patterning. Positional information includes Wnts expressed in the posterior and Wnt antagonists expressed in the anterior. Upon amputation, several wound-induced genes promote re-establishment of positional information. The head-versus-tail regeneration decision involves preferential wound induction of the Wnt antagonist notum at anterior-facing over posterior-facing wounds. Asymmetric activation of notum represents the earliest known molecular distinction between head and tail regeneration, yet how it occurs is unknown. activin-2 RNAi animals displayed symmetric wound-induced activation of notum at anterior- and posterior-facing wounds, providing a molecular explanation for their ectopic posterior-head phenotype. activin-2 RNAi animals also displayed anterior-posterior (AP) axis splitting, with two heads appearing in anterior blastemas, and various combinations of heads and tails appearing in posterior blastemas. This was associated with ectopic nucleation of anterior poles, which are head-tip muscle cells that facilitate AP and medial-lateral (ML) pattern at posterior-facing wounds. These findings reveal a role for Activin signaling in determining the outcome of AP-axis-patterning events that are specific to regeneration. A central problem in animal regeneration is how animals determine what body part to regenerate. Planarians are flatworms that can regenerate any missing body region, and are studied to identify mechanisms underlying regeneration. At transverse amputation planes, a poorly understood mechanism specifies regeneration of either a head or a tail. This head-versus-tail regeneration decision-making process is referred to as regeneration polarity and has been studied for over a century to identify mechanisms that specify what to regenerate. The gene notum, which encodes a Wnt antagonist, is induced within hours after injury preferentially at anterior-facing wounds, where it specifies head regeneration. We report that Activin signaling is required for regeneration polarity, and the underlying asymmetric activation of notum at anterior- over posterior-facing wounds. We propose that Activin signaling is involved in regeneration-specific responses broadly in the animal kingdom.
Collapse
Affiliation(s)
- Jennifer K. Cloutier
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Howard Hughes Medical Institute, Chevy Chase, MD, United States of America
- Harvard/MIT MD-PhD, Harvard Medical School, Boston, MA, United States of America
| | - Conor L. McMann
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Howard Hughes Medical Institute, Chevy Chase, MD, United States of America
| | - Isaac M. Oderberg
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Howard Hughes Medical Institute, Chevy Chase, MD, United States of America
| | - Peter W. Reddien
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Howard Hughes Medical Institute, Chevy Chase, MD, United States of America
- * E-mail:
| |
Collapse
|
38
|
Tian Q, Sun Y, Gao T, Li J, Hao Z, Fang H, Zhang S. TBX2/3 is required for regeneration of dorsal-ventral and medial-lateral polarity in planarians. J Cell Biochem 2021; 122:731-738. [PMID: 33586232 DOI: 10.1002/jcb.29905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 11/24/2020] [Accepted: 01/21/2021] [Indexed: 12/24/2022]
Abstract
The molecular mechanisms responsible for axis establishment during non-embryonic processes remain elusive. The planarian flatworm is an ideal model organism to study body axis polarization and patterning in vivo. Here, we identified a homolog of the TBX2/3 in the planarian Dugesia japonica. RNA interference (RNAi) knockdown of TBX2/3 results in the ectopic formation of protrusions in the midline of the dorsal surface which shows an abnormal expression of midline and ventral cell markers. Additionally, the TBX2/3 RNAi animals also show the duplication of expression of the boundary marker at the lateral edge. Furthermore, TBX2/3 is expressed in muscle cells and co-expressed with bmp4. Inhibition of bone morphogenetic protein (BMP) signaling reduces the expression of TBX2/3 at the midline. These results suggest that TBX2/3 RNAi results in phenotypic characters caused by inhibition of the BMP signal, indicating that TBX2/3 is required for DV and ML patterning, and might be a downstream gene of BMP signaling.
Collapse
Affiliation(s)
- Qingnan Tian
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yujia Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Tingting Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiaxin Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhitai Hao
- Department of Biochemistry and Molecular Pharmacology, School of Medicine, New York University, New York, USA
| | - Huimin Fang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shoutao Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou, Henan, China
| |
Collapse
|
39
|
Tubgcp3 is a mitotic regulator of planarian epidermal differentiation. Gene 2021; 775:145440. [PMID: 33482282 DOI: 10.1016/j.gene.2021.145440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 09/29/2020] [Accepted: 01/13/2021] [Indexed: 11/20/2022]
Abstract
Tubgcp3/GCP3 (The centrosomal protein γ-tubulin complex protein 3) is a component of the γ-tubulin small complexes (γ-TuSCs) and γ-tubulin ring complexes (γ-TuRCs), which play critical roles in mitotic spindle formation during mitosis. However, its function in stem cell development has not been thoroughly elucidated. The planarian flatworm, which contains a large number of adult somatic stem cells (neoblasts), is a unique model to study stem cell lineage development in vivo. Here, we identified a homolog of Tubgcp3 in planarian Dugesia japonica, and found that Tubgcp3 is required for the maintenance of epidermal lineage. RNAi targeting Tubgcp3 resulted in tissue homeostasis and regeneration defect. Knockdown of Tubgcp3 reduced cell divisions and led to a loss of the mature epidermal cells. Our findings indicate that Tubgcp3 is a mitotic regulator and plays a crucial role in planarian epidermal differentiation.
Collapse
|
40
|
Forsthoefel DJ, Cejda NI, Khan UW, Newmark PA. Cell-type diversity and regionalized gene expression in the planarian intestine. eLife 2020; 9:e52613. [PMID: 32240093 PMCID: PMC7117911 DOI: 10.7554/elife.52613] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/06/2020] [Indexed: 12/17/2022] Open
Abstract
Proper function and repair of the digestive system are vital to most animals. Deciphering the mechanisms involved in these processes requires an atlas of gene expression and cell types. Here, we applied laser-capture microdissection (LCM) and RNA-seq to characterize the intestinal transcriptome of Schmidtea mediterranea, a planarian flatworm that can regenerate all organs, including the gut. We identified hundreds of genes with intestinal expression undetected by previous approaches. Systematic analyses revealed extensive conservation of digestive physiology and cell types with other animals, including humans. Furthermore, spatial LCM enabled us to uncover previously unappreciated regionalization of gene expression in the planarian intestine along the medio-lateral axis, especially among intestinal goblet cells. Finally, we identified two intestine-enriched transcription factors that specifically regulate regeneration (hedgehog signaling effector gli-1) or maintenance (RREB2) of goblet cells. Altogether, this work provides resources for further investigation of mechanisms involved in gastrointestinal function, repair and regeneration.
Collapse
Affiliation(s)
- David J Forsthoefel
- Genes and Human Disease Research Program, Oklahoma Medical Research FoundationOklahoma CityUnited States
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Nicholas I Cejda
- Genes and Human Disease Research Program, Oklahoma Medical Research FoundationOklahoma CityUnited States
| | - Umair W Khan
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Phillip A Newmark
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| |
Collapse
|
41
|
Roy J, Cheung E, Bhatti J, Muneem A, Lobo D. Curation and annotation of planarian gene expression patterns with segmented reference morphologies. Bioinformatics 2020; 36:2881-2887. [DOI: 10.1093/bioinformatics/btaa023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/07/2019] [Accepted: 01/14/2020] [Indexed: 12/30/2022] Open
Abstract
Abstract
Motivation
Morphological and genetic spatial data from functional experiments based on genetic, surgical and pharmacological perturbations are being produced at an extraordinary pace in developmental and regenerative biology. However, our ability to extract knowledge from these large datasets are hindered due to the lack of formalization methods and tools able to unambiguously describe, centralize and interpret them. Formalizing spatial phenotypes and gene expression patterns is especially challenging in organisms with highly variable morphologies such as planarian worms, which due to their extraordinary regenerative capability can experimentally result in phenotypes with almost any combination of body regions or parts.
Results
Here, we present a computational methodology and mathematical formalism to encode and curate the morphological outcomes and gene expression patterns in planaria. Worm morphologies are encoded with mathematical graphs based on anatomical ontology terms to automatically generate reference morphologies. Gene expression patterns are registered to these standard reference morphologies, which can then be annotated automatically with anatomical ontology terms by analyzing the spatial expression patterns and their textual descriptions. This methodology enables the curation and annotation of complex experimental morphologies together with their gene expression patterns in a centralized standardized dataset, paving the way for the extraction of knowledge and reverse-engineering of the much sought-after mechanistic models in planaria and other regenerative organisms.
Availability and implementation
We implemented this methodology in a user-friendly graphical software tool, PlanGexQ, freely available together with the data in the manuscript at https://lobolab.umbc.edu/plangexq.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Joy Roy
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Eric Cheung
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Junaid Bhatti
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Abraar Muneem
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Daniel Lobo
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
42
|
Smed-myb-1 Specifies Early Temporal Identity during Planarian Epidermal Differentiation. Cell Rep 2020; 25:38-46.e3. [PMID: 30282036 DOI: 10.1016/j.celrep.2018.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/28/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022] Open
Abstract
The planarian epidermis provides an excellent model to explore adult stem cell (ASC) lineage development due to well-characterized and distinct spatiotemporal phases during lineage progression. Using flow cytometry-isolated cells enriched in epidermal progenitors, we performed transcriptional profiling and RNAi screening to uncover regulators of epidermal differentiation. We identified a MYB-type transcription factor (Smed-myb-1) required for the specification of the first temporal phase of post-mitotic maturation. Knockdown of myb-1 abolished the early progenitor phase of differentiation without ceasing production of subsequent epidermal progenitor states or homeostatic turnover and regeneration of the epidermis. Further examination revealed accelerated maturation of ASC descendants, with premature entry into subsequent progeny phases and, ultimately, the epidermis. These results demonstrate that a spatiotemporal shift in lineage progression occurs in the absence of the early progenitor state after myb-1 RNAi, and identify myb-1 as a critical regulator of the early temporal window in stepwise specification during planarian epidermal differentiation.
Collapse
|
43
|
Kimball C, Powers K, Dustin J, Poirier V, Pellettieri J. The exon junction complex is required for stem and progenitor cell maintenance in planarians. Dev Biol 2020; 457:119-127. [PMID: 31557470 PMCID: PMC8544814 DOI: 10.1016/j.ydbio.2019.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/31/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022]
Abstract
Named for its assembly near exon-exon junctions during pre-mRNA splicing, the exon junction complex (EJC) regulates multiple aspects of RNA biochemistry, including export of spliced mRNAs from the nucleus and translation. Transcriptome analyses have revealed broad EJC occupancy of spliced metazoan transcripts, yet inhibition of core subunits has been linked to surprisingly specific phenotypes and a growing number of studies support gene-specific regulatory roles. Here we report results from a classroom-based RNAi screen revealing the EJC is necessary for regeneration in the planarian flatworm Schmidtea mediterranea. RNAi animals rapidly lost the stem and progenitor cells that drive formation of new tissue during both regeneration and cell turnover, but exhibited normal amputation-induced changes in gene expression in differentiated tissues. Together with previous reports that partial loss of EJC function causes stem cell defects in Drosophila and mice, our observations implicate the EJC as a conserved, posttranscriptional regulator of gene expression in stem cell lineages. This work also highlights the combined educational and scientific impacts of discovery-based research in the undergraduate biology curriculum.
Collapse
Affiliation(s)
- Casey Kimball
- Department of Biology, Keene State College, Keene, NH, USA
| | - Kaleigh Powers
- Department of Biology, Keene State College, Keene, NH, USA
| | - John Dustin
- Department of Biology, Keene State College, Keene, NH, USA
| | | | | |
Collapse
|
44
|
Ivankovic M, Haneckova R, Thommen A, Grohme MA, Vila-Farré M, Werner S, Rink JC. Model systems for regeneration: planarians. Development 2019; 146:146/17/dev167684. [PMID: 31511248 DOI: 10.1242/dev.167684] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Planarians are a group of flatworms. Some planarian species have remarkable regenerative abilities, which involve abundant pluripotent adult stem cells. This makes these worms a powerful model system for understanding the molecular and evolutionary underpinnings of regeneration. By providing a succinct overview of planarian taxonomy, anatomy, available tools and the molecular orchestration of regeneration, this Primer aims to showcase both the unique assets and the questions that can be addressed with this model system.
Collapse
Affiliation(s)
- Mario Ivankovic
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Radmila Haneckova
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.,Department of Tissue Dynamics and Regeneration, Max Planck Institute for Biophysical Chemistry, am Fassberg 11, 37077 Göttingen, Germany
| | - Albert Thommen
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.,The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Markus A Grohme
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Miquel Vila-Farré
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.,Department of Tissue Dynamics and Regeneration, Max Planck Institute for Biophysical Chemistry, am Fassberg 11, 37077 Göttingen, Germany
| | - Steffen Werner
- FOM Institute AMOLF, Department of Systems Biology, Science Park 104, 1098 XG, Amsterdam, The Netherlands
| | - Jochen C Rink
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany .,Department of Tissue Dynamics and Regeneration, Max Planck Institute for Biophysical Chemistry, am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
45
|
Guo Q, Ni J, Zhang F, Guo Y, Zhang Y, Fang H, Tian Q, Zhang S. DjERas plays an important role in planarian regeneration and homeostasis. Biochem Biophys Res Commun 2019; 514:205-209. [PMID: 31029418 DOI: 10.1016/j.bbrc.2019.04.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 04/16/2019] [Indexed: 10/26/2022]
Abstract
The mechanisms of cell turnover including cell proliferation and cell differentiation were complex. Planarians possess amazing regeneration ability and undergo cell turnover throughout life. We identified a homologous gene of ERas by RNAi in Dugesia japonica. Knocking-down DjERas resulted in regeneration and homeostasis defects. Furthermore, we found that the expression of neoblasts and late progeny marker gene decreased in DjERas RNAi planarians. Our studies indicated that down-regulation of DjERas inhibited the proliferation and differentiation of stem cells through the conserved signaling pathway, resulted in the inability of the planarian to regenerate and maintain homeostasis. Our results suggest that DjERas plays a crucial role in the process of cell turnover.
Collapse
Affiliation(s)
- Qi Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiajia Ni
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Fangfang Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yanan Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yizhe Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Huimin Fang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Qingnan Tian
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Shoutao Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
46
|
The Cellular and Molecular Basis for Planarian Regeneration. Cell 2019; 175:327-345. [PMID: 30290140 DOI: 10.1016/j.cell.2018.09.021] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 01/03/2023]
Abstract
Regeneration is one of the great mysteries of biology. Planarians are flatworms capable of dramatic feats of regeneration, which have been studied for over 2 centuries. Recent findings identify key cellular and molecular principles underlying these feats. A stem cell population (neoblasts) generates new cells and is comprised of pluripotent stem cells (cNeoblasts) and fate-specified cells (specialized neoblasts). Positional information is constitutively active and harbored primarily in muscle, where it acts to guide stem cell-mediated tissue turnover and regeneration. I describe here a model in which positional information and stem cells combine to enable regeneration.
Collapse
|
47
|
Yujia S, Tingting G, Jiaxin L, Saisai Z, Zhitai H, Qingnan T, Shoutao Z. Cdc42 regulate the apoptotic cell death required for planarian epidermal regeneration and homeostasis. Int J Biochem Cell Biol 2019; 112:107-113. [PMID: 31102665 DOI: 10.1016/j.biocel.2019.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023]
Abstract
Rho GTPases have been shown previously to play important roles in several cellular processes by regulating the organization of the actin and microtubule cytoskeletons. However, the mechanisms of Rho GTPases that integrate the cellular responses during regeneration have not been thoroughly elucidated. The planarian flatworm, which contains a large number of adult somatic stem cells (neoblasts), is a unique model to study stem cell lineage development in vivo. Here, we focus on cdc42, which is an extensively characterized member among Rho GTPases. We found that cdc42 is required for the maintenance of epidermal lineage. Cdc42 RNAi induced a sustained increased of cell death and led to a loss of the mature epidermal cells but without affected cell division. Our results indicate that cdc42 function as an inhibitor to block the excessive apoptotic cell death in planarian epidermal regeneration and homeostasis.
Collapse
Affiliation(s)
- Sun Yujia
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Gao Tingting
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Li Jiaxin
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhang Saisai
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hao Zhitai
- Department of Biochemistry and Molecular Pharmacology, New York University, School of Medicine, NY, USA
| | - Tian Qingnan
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Zhang Shoutao
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China; Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou, Henan, China.
| |
Collapse
|
48
|
Li DJ, McMann CL, Reddien PW. Nuclear receptor NR4A is required for patterning at the ends of the planarian anterior-posterior axis. eLife 2019; 8:42015. [PMID: 31025936 PMCID: PMC6534381 DOI: 10.7554/elife.42015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 04/25/2019] [Indexed: 02/07/2023] Open
Abstract
Positional information is fundamental to animal regeneration and tissue turnover. In planarians, muscle cells express signaling molecules to promote positional identity. At the ends of the anterior-posterior (AP) axis, positional identity is determined by anterior and posterior poles, which are putative organizers. We identified a gene, nr4A, that is required for anterior- and posterior-pole localization to axis extremes. nr4A encodes a nuclear receptor expressed predominantly in planarian muscle, including strongly at AP-axis ends and the poles. nr4A RNAi causes patterning gene expression domains to retract from head and tail tips, and ectopic anterior and posterior anatomy (e.g., eyes) to iteratively appear more internally. Our study reveals a novel patterning phenotype, in which pattern-organizing cells (poles) shift from their normal locations (axis extremes), triggering abnormal tissue pattern that fails to reach equilibrium. We propose that nr4A promotes pattern at planarian AP axis ends through restriction of patterning gene expression domains. Many animals are able to regenerate tissue that has been lost through illness or injury. Flatworms called planarians have long been used to study tissue regeneration because of their remarkable ability to completely regenerate their whole body from small pieces of tissue. Furthermore, the stem cells of adult planarians continually produce new cells to replace dying cells in a process called tissue turnover. For regeneration and tissue turnover to be successful, it is important for the new cells to form in the right location in the body; for example, new eye cells need to form in the head. Genes known as position control genes are active in muscle at specific locations along the body of a flatworm to regulate both regeneration and tissue turnover. However, it was not clear how these genes coordinate with stem cells to produce new cells in the correct positions in the body. Li et al. examined the effects of a gene known as nr4A that is particularly active in muscle at the head and tail ends of planarians. Using a technique called RNA interference to decrease the activity of nr4A in planarians disrupted the patterns of tissues at each end of the flatworms. Over time, the activity of the position control genes also became restricted to locations progressively farther away from the head and tail. As a result, cells that were intended to replace tissues in the head or tail were deposited increasingly far away from these locations. For example, new eyes formed repeatedly in the planarians, with each set farther away from the head tip than the last. Li et al. propose that these disruptions of normal tissue patterning ensue because the cells that organize such patterns at the ends of the planarian (the poles) are themselves misplaced within the existing body pattern. The nr4A gene can be found in a wide range of animal species. Understanding how this gene affects tissue patterns in planarians could therefore also help researchers to discover how adult tissue patterns form and are maintained in animals more generally.
Collapse
Affiliation(s)
- Dayan J Li
- Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Howard Hughes Medical Institute, Chevy Chase, United States.,Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, United States
| | - Conor L McMann
- Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - Peter W Reddien
- Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| |
Collapse
|
49
|
Cote LE, Simental E, Reddien PW. Muscle functions as a connective tissue and source of extracellular matrix in planarians. Nat Commun 2019; 10:1592. [PMID: 30962434 PMCID: PMC6453901 DOI: 10.1038/s41467-019-09539-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/15/2019] [Indexed: 12/24/2022] Open
Abstract
Regeneration and tissue turnover require new cell production and positional information. Planarians are flatworms capable of regenerating all body parts using a population of stem cells called neoblasts. The positional information required for tissue patterning is primarily harbored by muscle cells, which also control body contraction. Here we produce an in silico planarian matrisome and use recent whole-animal single-cell-transcriptome data to determine that muscle is a major source of extracellular matrix (ECM). No other ECM-secreting, fibroblast-like cell type was detected. Instead, muscle cells express core ECM components, including all 19 collagen-encoding genes. Inhibition of muscle-expressed hemicentin-1 (hmcn-1), which encodes a highly conserved ECM glycoprotein, results in ectopic peripheral localization of cells, including neoblasts, outside of the muscle layer. ECM secretion and hmcn-1-dependent maintenance of tissue separation indicate that muscle functions as a planarian connective tissue, raising the possibility of broad roles for connective tissue in adult positional information. How the cellular source of positional information compares across regenerative animals is unclear. Here, the authors find that planarian muscle, which harbours positional information, acts as a connective tissue by being a major site of matrisome gene expression and by maintaining tissue architecture.
Collapse
Affiliation(s)
- Lauren E Cote
- Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, 455 Main St, Cambridge, MA, 02142, USA
| | - Eric Simental
- Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, 455 Main St, Cambridge, MA, 02142, USA.,University of California San Francisco, 600 16th Street, San Francisco, CA, 94143, USA
| | - Peter W Reddien
- Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, 455 Main St, Cambridge, MA, 02142, USA.
| |
Collapse
|
50
|
Pietak A, Bischof J, LaPalme J, Morokuma J, Levin M. Neural control of body-plan axis in regenerating planaria. PLoS Comput Biol 2019; 15:e1006904. [PMID: 30990801 PMCID: PMC6485777 DOI: 10.1371/journal.pcbi.1006904] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 04/26/2019] [Accepted: 02/26/2019] [Indexed: 01/01/2023] Open
Abstract
Control of axial polarity during regeneration is a crucial open question. We developed a quantitative model of regenerating planaria, which elucidates self-assembly mechanisms of morphogen gradients required for robust body-plan control. The computational model has been developed to predict the fraction of heteromorphoses expected in a population of regenerating planaria fragments subjected to different treatments, and for fragments originating from different regions along the anterior-posterior and medio-lateral axis. This allows for a direct comparison between computational and experimental regeneration outcomes. Vector transport of morphogens was identified as a fundamental requirement to account for virtually scale-free self-assembly of the morphogen gradients observed in planarian homeostasis and regeneration. The model correctly describes altered body-plans following many known experimental manipulations, and accurately predicts outcomes of novel cutting scenarios, which we tested. We show that the vector transport field coincides with the alignment of nerve axons distributed throughout the planarian tissue, and demonstrate that the head-tail axis is controlled by the net polarity of neurons in a regenerating fragment. This model provides a comprehensive framework for mechanistically understanding fundamental aspects of body-plan regulation, and sheds new light on the role of the nervous system in directing growth and form.
Collapse
Affiliation(s)
- Alexis Pietak
- Allen Discovery Center, Tufts University, Medford, Massachusetts, United States of America
| | - Johanna Bischof
- Allen Discovery Center, Tufts University, Medford, Massachusetts, United States of America
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Joshua LaPalme
- Allen Discovery Center, Tufts University, Medford, Massachusetts, United States of America
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Junji Morokuma
- Allen Discovery Center, Tufts University, Medford, Massachusetts, United States of America
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, Massachusetts, United States of America
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| |
Collapse
|