1
|
Standring S, Heckenhauer J, Stewart RJ, Frandsen PB. Unraveling the genetics of underwater caddisfly silk. Trends Genet 2025; 41:537-546. [PMID: 39893090 DOI: 10.1016/j.tig.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 02/04/2025]
Abstract
Hundreds of thousands of arthropod species use silk to capture prey, build protective structures, or anchor eggs. While most silk-producers are terrestrial, caddisflies construct silken capture nets and portable cases in aquatic environments. Given the potential practical applications of this underwater bioadhesive, there is an emerging body of research focused on understanding the evolution of the genetic architecture of aquatic silk. This research has unveiled molecular adaptations specific to caddisfly silk, such as extensive phosphorylation of the primary silk protein and the existence of numerous unique accessory silk proteins. We discuss the molecular evolution of caddisfly silk genes, how they interact with the environment, and suggest future directions for caddisfly silk genetics research.
Collapse
Affiliation(s)
- Samantha Standring
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Jacqueline Heckenhauer
- Senckenberg Research Institute and Natural History Museum Frankfurt, Terrestrial Zoology, 60325 Frankfurt am Main, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt am Main, Germany
| | - Russell J Stewart
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Paul B Frandsen
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
2
|
Knouse KA. Breaking the rules of cell biology: Lessons from the liver's exceptional regenerative capacity. Mol Biol Cell 2025; 36:pe5. [PMID: 40408597 DOI: 10.1091/mbc.e24-06-0281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2025] Open
Abstract
The inability of most human organs to regenerate themselves after injury underlies the lifelong morbidity of numerous diseases. As we continue to seek solutions for these intractable conditions, the liver emerges as an inspiring and informative exception. The liver is the only solid organ that can completely regenerate itself. At the core of this extraordinary feat of organ physiology lie two equally exceptional features of cell biology. First, liver regeneration is driven not by stem cells, but rather by the proliferation of the liver's differentiated cells. Second, many of these liver cells are polyploid, yet still able to execute proper cell division. Understanding how liver cells maintain proliferative capacity as differentiated cells and how they execute mitosis faithfully in a polyploid state could offer powerful insights toward engineering regenerative capacity in other organs. The liver thus offers not only proof that mammalian organ regeneration is possible, but also a blueprint for achieving this long-standing goal of regenerative medicine.
Collapse
Affiliation(s)
- Kristin A Knouse
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
3
|
Lan T, Kaminsky S, Wu CC. Ploidy in cardiovascular development and regeneration. Semin Cell Dev Biol 2025; 172:103618. [PMID: 40398363 DOI: 10.1016/j.semcdb.2025.103618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/01/2025] [Accepted: 05/05/2025] [Indexed: 05/23/2025]
Abstract
Somatic polyploidy, a non-inheritable form of genome multiplication, plays cell-type specific and context-dependent roles in organ development and regeneration. In the mammalian heart, embryonic cardiomyocytes are primarily diploid, which lose their ability to complete cell division and become polyploid as they mature. Unlike lower vertebrates like zebrafish, polyploid cardiomyocytes are commonly found across mammals, including humans. Intriguingly, the degree, timing, and modes of cardiomyocyte polyploidization vary greatly between species. In addition to the association with cardiomyocyte development and maturation, recent studies have established polyploidy as a barrier against cardiomyocyte proliferation and heart regeneration following cardiac injury. Hence, a thorough understanding of how and why cardiomyocyte become polyploid will provide insights into heart development and may help develop therapeutic strategies for heart regeneration. Here, we review the dynamics of cardiomyocyte polyploidization across species and how cardiomyocyte-intrinsic, -extrinsic, and environmental factors regulate this process as well as the impact of cardiomyocyte polyploidization on heart development and regeneration.
Collapse
Affiliation(s)
- Tian Lan
- Heidelberg University, Medical Faculty Mannheim, European Center for Angioscience, Mannheim, Germany; Helmholtz-Institute for Translational AngioCardioScience (HI-TAC) of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) at Heidelberg University
| | - Sabrina Kaminsky
- Heidelberg University, Medical Faculty Mannheim, European Center for Angioscience, Mannheim, Germany; Faculty of Biosciences, Heidelberg University, Germany
| | - Chi-Chung Wu
- Heidelberg University, Medical Faculty Mannheim, European Center for Angioscience, Mannheim, Germany; Helmholtz-Institute for Translational AngioCardioScience (HI-TAC) of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) at Heidelberg University.
| |
Collapse
|
4
|
Zhang Y, Lu Y, Wang N, Hao F, Chen Y, Fei X, Wang J. Ascending E2F7a/b ratio facilitates KLF13 transcription in hepatocellular carcinoma and correlates with the abundance of binuclear hepatocytes (ABH) modulation for short-term recurrence. FASEB J 2025; 39:e70485. [PMID: 40116212 PMCID: PMC11926945 DOI: 10.1096/fj.202402520r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 02/25/2025] [Accepted: 03/14/2025] [Indexed: 03/23/2025]
Abstract
Short-term recurrence after surgery severely threatens patients' lives and leads to dismal outcomes in hepatocellular carcinoma (HCC). Our previous research proposed the abundance of binuclear hepatocytes (ABH) as an independent indicator related to the cytokinesis regulator Anillin and significantly associated with HCC recurrence. The exact mechanism of ABH modulation has not been clearly illustrated. In this study, we intensively investigated the probable regulation mechanism and noticed a contradiction between E2F7 upregulation and ABH attenuation. As we discovered, E2F7 has two isoforms, E2F7a and E2F7b, and we innovatively define a value of the E2F7a/b ratio using a cutoff value of 6.5. E2F7 upregulation in the paracancerous tissues was predominantly presented by the E2F7a isoform, leading to an increase in the E2F7a/b ratio, instead of E2F7b as a main component in non-cancerous tissues, and is associated with short-term recurrence. We further found that KLF13 transcriptionally promotes Anillin expression in HCC and was suppressively impacted by E2F7b, but not by the highly expressed E2F7a. Hence, the ascending E2F7a/b ratio induced significant upregulation of KLF13 and participated in the attenuation of ABH in the paracancerous liver tissues. In conclusion, E2F7 presents a particular expression status in HCC by predominantly upregulating E2F7a rather than E2F7b. The ascending E2F7a/b ratio weakens the suppressive effect on KLF13 transcription and sequentially participates in ABH attenuation, associated with short-term HCC recurrence post-operation.
Collapse
Affiliation(s)
- Yian Zhang
- Department of General Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Yiquan Lu
- Department of General Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Nan Wang
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenAachenGermany
| | - Fengjie Hao
- Department of General Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Yongjun Chen
- Department of General Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Xiaochun Fei
- Department of Pathology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Junqing Wang
- Department of General Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| |
Collapse
|
5
|
Zhang Y, Lu Y, Wang N, Hao F, Chen Y, Fei X, Wang J. Paracancerous binuclear hepatocytes assessed by computer program is a novel biomarker for short term recurrence of hepatocellular carcinoma after surgery. Sci Rep 2025; 15:9583. [PMID: 40113908 PMCID: PMC11926264 DOI: 10.1038/s41598-025-90004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/10/2025] [Indexed: 03/22/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is notorious for its high likelihood of recurrence even after radical surgery, which calls for effective adjuvant therapy based on more precise patient selection. The decline of the abundance of binuclear hepatocytes (ABH) in paracancerous liver tissues has been reported to indicate pathological changes in liver cells, leading to short-term recurrence within 2 years. In this research, we analyzed 34 HCC patients and 22 patients underwent liver surgery for non-HCC diseases. An ImageJ script was used to assess binuclear hepatocytes in the HE-staining specimens of paracancerous liver tissues. ABH significantly decreased in HCC patients and indicated poorer outcomes. Immunohistochemistry (IHC) assays suggested ploidy-related regulation of arginase 1 (ARG1) expression. Our findings suggested computer-assisted assessment of ABH as a possible biomarker for short-term HCC recurrence.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Yiquan Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Nan Wang
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
- Department of Internal Medicine III, University Hospital RWTH Aachen, 52074, Aachen, Germany
| | - Fengjie Hao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Yongjun Chen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Xiaochun Fei
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China.
| | - Junqing Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China.
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
6
|
Bangru S, Chen J, Baker N, Das D, Chembazhi UV, Derham JM, Chorghade S, Arif W, Alencastro F, Duncan AW, Carstens RP, Kalsotra A. ESRP2-microRNA-122 axis promotes the postnatal onset of liver polyploidization and maturation. Genes Dev 2025; 39:325-347. [PMID: 39794125 PMCID: PMC11874994 DOI: 10.1101/gad.352129.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/17/2024] [Indexed: 01/13/2025]
Abstract
Hepatocyte polyploidy and maturity are critical to acquiring specialized liver functions. Multiple intracellular and extracellular factors influence ploidy, but how they cooperate temporally to steer liver polyploidization and maturation or how post-transcriptional mechanisms integrate into these paradigms is unknown. Here, we identified an important regulatory hierarchy in which postnatal activation of epithelial splicing regulatory protein 2 (ESRP2) stimulates processing of liver-specific microRNA (miR-122) to facilitate polyploidization, maturation, and functional competence of hepatocytes. By determining transcriptome-wide protein-RNA interactions in vivo and integrating them with single-cell and bulk hepatocyte RNA-seq data sets, we delineated an ESRP2-driven RNA processing program that drives sequential replacement of fetal-to-adult transcript isoforms. Specifically, ESRP2 binds the primary miR-122 host gene transcript to promote its processing/biogenesis. Combining constitutive and inducible ESRP2 gain- and loss-of-function mouse models with miR-122 rescue experiments, we demonstrated that timed activation of ESRP2 augments the miR-122-driven program of cytokinesis failure, ensuring the proper onset and extent of hepatocyte polyploidization.
Collapse
Affiliation(s)
- Sushant Bangru
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jackie Chen
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Nicholas Baker
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Diptatanu Das
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Chan Zuckerberg Biohub, Chicago, Illinois 60642, USA
| | - Ullas V Chembazhi
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jessica M Derham
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Chan Zuckerberg Biohub, Chicago, Illinois 60642, USA
| | - Sandip Chorghade
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Waqar Arif
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Frances Alencastro
- Department of Pathology, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Andrew W Duncan
- Department of Pathology, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Russ P Carstens
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA;
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Chan Zuckerberg Biohub, Chicago, Illinois 60642, USA
| |
Collapse
|
7
|
Lin C, Kuzmanović A, Wang N, Liao L, Ernst S, Penners C, Jans A, Hammoor T, Stach PB, Peltzer M, Volkert I, Zechendorf E, Hassan R, Myllys M, Liedtke C, Herrmann A, Chakraborty G, Trautwein C, Hengstler J, Müller‐Newen G, Wang J, Ghallab A, Bartneck M. Exceptional Uptake, Limited Protein Expression: Liver Macrophages Lost in Translation of Synthetic mRNA. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409729. [PMID: 39792811 PMCID: PMC11884593 DOI: 10.1002/advs.202409729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/26/2024] [Indexed: 01/12/2025]
Abstract
Most gene therapies exert their actions via manipulation of hepatocytes (parenchymal cells) and the reasons behind the suboptimal performance of synthetic mRNA in non-parenchymal cells (NPC) such as Kupffer cells (KC), and liver macrophages, remain unclear. Here, the spatio-temporal distribution of mRNA encoding enhanced green fluorescent protein (Egfp), siRNA, or both co-encapsulated into lipid nanoparticles (LNP) in the liver in vivo using real-time intravital imaging is investigated. Although both KC and hepatocytes demonstrate comparable high and rapid uptake of mRNA-LNP and siRNA-LNP in vivo, the translation of Egfp mRNA occurs exclusively in hepatocytes during intravital imaging. Despite attempts such as inhibiting intracellular ribonuclease, substituting uridine bases in mRNA with pseudouridine, and using a different ionizable lipid in the LNP mixture, no substantial increase in Egfp translation by NPC is possible. The investigation reveals that hepatocytes, which are distinct from other liver cells due to their polyploidy, exhibit significantly elevated levels of total RNA and protein, along with a higher proportion of ribosomal protein per individual cell. Consequently, fundamental cellular differences account for the low mRNA translation observed in NPC. The findings therefore suggest that cellular biology imposes a natural limitation on synthetic mRNA translation that is strongly influenced by cellular ploidy.
Collapse
Affiliation(s)
- Cheng Lin
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
- Department of Rheumatology and Shanghai Institute of RheumatologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Adrian Kuzmanović
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
| | - Nan Wang
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
- Department of General SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200240China
| | - Liangliang Liao
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
- Japan Union Hospital of Jilin University130033ChangchunChina
| | - Sabrina Ernst
- Confocal Microscopy FacilityInterdisciplinary Center for Clinical Research IZKFUniversity Hospital RWTH Aachen52074AachenGermany
| | - Christian Penners
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
| | - Alexander Jans
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
| | - Thomas Hammoor
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
| | - Petra Bumnuri Stach
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
| | - Mona Peltzer
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
| | - Ines Volkert
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
| | - Elisabeth Zechendorf
- Department of Intensive and Intermediate CareUniversity Hospital RWTH Aachen52074AachenGermany
| | - Reham Hassan
- Leibniz Research Centre for Working Environment and Human Factors44139DortmundGermany
- Department of Forensic and Veterinary ToxicologyFaculty of Veterinary MedicineSouth Valley University83523QenaEgypt
| | - Maiju Myllys
- Leibniz Research Centre for Working Environment and Human Factors44139DortmundGermany
| | - Christian Liedtke
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
| | - Andreas Herrmann
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
| | - Gurudas Chakraborty
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
| | - Christian Trautwein
- Leibniz Research Centre for Working Environment and Human Factors44139DortmundGermany
| | - Jan Hengstler
- Leibniz Research Centre for Working Environment and Human Factors44139DortmundGermany
| | - Gerhard Müller‐Newen
- Institute of Biochemistry and Molecular BiologyRWTH Aachen UniversityPauwelsstraße 3052074AachenGermany
| | - Junqing Wang
- Department of General SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200240China
| | - Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors44139DortmundGermany
- Department of Forensic and Veterinary ToxicologyFaculty of Veterinary MedicineSouth Valley University83523QenaEgypt
| | - Matthias Bartneck
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenPauwelsstraße 3052074AachenGermany
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstraße 5052074AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
| |
Collapse
|
8
|
Nakamura K, Ishii Y, Takasu S, Namiki M, Soma M, Takimoto N, Matsushita K, Shibutani M, Ogawa K. Chromosome aberrations cause tumorigenesis through chromosomal rearrangements in a hepatocarcinogenesis rat model. Cancer Sci 2024; 115:3612-3621. [PMID: 39245467 PMCID: PMC11531951 DOI: 10.1111/cas.16324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024] Open
Abstract
Chromosome aberrations (CAs), a genotoxic potential of carcinogens, are believed to contribute to tumorigenesis by chromosomal rearrangements through micronucleus formation. However, there is no direct evidence that proves the involvement of CAs in tumorigenesis in vivo. In the current study, we sought to clarify the involvement of CAs in chemical carcinogenesis using a rat model with a pure CA-inducer hepatocarcinogen, acetamide. Whole-genome analysis indicated that hepatic tumors induced by acetamide treatment for 26-30 weeks showed a broad range of copy number alterations in various chromosomes. In contrast, hepatic tumors induced by a typical mutagen (diethylnitrosamine) followed by a nonmutagen (phenobarbital) did not show such mutational patterns. Additionally, structural alterations such as translocations were observed more frequently in the acetamide-induced tumors. Moreover, most of the acetamide-induced tumors expressed c-Myc and/or MDM2 protein due to the copy number gain of each oncogene. These results suggest the occurrence of chromosomal rearrangements and subsequent oncogene amplification in the acetamide-induced tumors. Taken together, the results indicate that CAs are directly involved in tumorigenesis through chromosomal rearrangements in an acetamide-induced hepatocarcinogenesis rat model.
Collapse
Affiliation(s)
- Kenji Nakamura
- Division of PathologyNational Institute of Health SciencesKawasakiJapan
- Laboratory of Veterinary PathologyTokyo University of Agriculture and TechnologyTokyoJapan
| | - Yuji Ishii
- Division of PathologyNational Institute of Health SciencesKawasakiJapan
| | - Shinji Takasu
- Division of PathologyNational Institute of Health SciencesKawasakiJapan
| | - Moeka Namiki
- Division of PathologyNational Institute of Health SciencesKawasakiJapan
| | - Meili Soma
- Division of PathologyNational Institute of Health SciencesKawasakiJapan
| | - Norifumi Takimoto
- Division of PathologyNational Institute of Health SciencesKawasakiJapan
- Laboratory of Veterinary PathologyTokyo University of Agriculture and TechnologyTokyoJapan
| | - Kohei Matsushita
- Division of PathologyNational Institute of Health SciencesKawasakiJapan
| | - Makoto Shibutani
- Laboratory of Veterinary PathologyTokyo University of Agriculture and TechnologyTokyoJapan
| | - Kumiko Ogawa
- Division of PathologyNational Institute of Health SciencesKawasakiJapan
| |
Collapse
|
9
|
Morris JP, Baslan T, Soltis DE, Soltis PS, Fox DT. Integrating the Study of Polyploidy Across Organisms, Tissues, and Disease. Annu Rev Genet 2024; 58:297-318. [PMID: 39227132 PMCID: PMC11590481 DOI: 10.1146/annurev-genet-111523-102124] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Polyploidy is a cellular state containing more than two complete chromosome sets. It has largely been studied as a discrete phenomenon in either organismal, tissue, or disease contexts. Increasingly, however, investigation of polyploidy across disciplines is coalescing around common principles. For example, the recent Polyploidy Across the Tree of Life meeting considered the contribution of polyploidy both in organismal evolution over millions of years and in tumorigenesis across much shorter timescales. Here, we build on this newfound integration with a unified discussion of polyploidy in organisms, cells, and disease. We highlight how common polyploidy is at multiple biological scales, thus eliminating the outdated mindset of its specialization. Additionally, we discuss rules that are likely common to all instances of polyploidy. With increasing appreciation that polyploidy is pervasive in nature and displays fascinating commonalities across diverse contexts, inquiry related to this important topic is rapidly becoming unified.
Collapse
Affiliation(s)
- John P Morris
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA;
| | - Timour Baslan
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Systems Pharmacology and Translational Therapeutics and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biomedical Sciences and Penn Vet Cancer Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA;
- Biodiversity Institute, University of Florida, Gainesville, Florida, USA
- Polyploidy Integration and Innovation Institute
- Department of Biology, University of Florida, Gainesville, Florida, USA;
| | - Pamela S Soltis
- Biodiversity Institute, University of Florida, Gainesville, Florida, USA
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA;
- Polyploidy Integration and Innovation Institute
| | - Donald T Fox
- Department of Pharmacology and Cancer Biology, Duke Regeneration Center, and Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina, USA;
- Polyploidy Integration and Innovation Institute
| |
Collapse
|
10
|
Hayashi K, Horisaka K, Harada Y, Ogawa Y, Yamashita T, Kitano T, Wakita M, Fukusumi T, Inohara H, Hara E, Matsumoto T. Polyploidy mitigates the impact of DNA damage while simultaneously bearing its burden. Cell Death Discov 2024; 10:436. [PMID: 39397009 PMCID: PMC11471775 DOI: 10.1038/s41420-024-02206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024] Open
Abstract
Polyploidy is frequently enhanced under pathological conditions, such as tissue injury and cancer in humans. Polyploidization is critically involved in cancer evolution, including cancer initiation and the acquisition of drug resistance. However, the effect of polyploidy on cell fate remains unclear. In this study, we explored the effects of polyploidization on cellular responses to DNA damage and cell cycle progression. Through various comparisons based on ploidy stratifications of cultured cells, we found that polyploidization and the accumulation of genomic DNA damage mutually induce each other, resulting in polyploid cells consistently containing more genomic DNA damage than diploid cells under both physiological and stress conditions. Notably, despite substantial DNA damage, polyploid cells demonstrated a higher tolerance to its impact, exhibiting delayed cell cycle arrest and reduced secretion of inflammatory cytokines associated with DNA damage-induced senescence. Consistently, in mice with ploidy tracing, hepatocytes with high ploidy appeared to potentially persist in the damaged liver, while being susceptible to DNA damage. Polyploidy acts as a reservoir of genomic damage by mitigating the impact of DNA damage, while simultaneously enhancing its accumulation.
Collapse
Affiliation(s)
- Kazuki Hayashi
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
- Laboratory of Ploidy Pathology, Graduate School of Frontier Bioscicences, Osaka University, Osaka, Japan
| | - Kisara Horisaka
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yoshiyuki Harada
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuta Ogawa
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Ploidy Pathology, Graduate School of Frontier Bioscicences, Osaka University, Osaka, Japan
| | - Takako Yamashita
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Ploidy Pathology, Graduate School of Frontier Bioscicences, Osaka University, Osaka, Japan
| | - Taku Kitano
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Ploidy Pathology, Graduate School of Frontier Bioscicences, Osaka University, Osaka, Japan
- Department of Gastrointestinal Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Wakita
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takahito Fukusumi
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Eiji Hara
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
- Laboratory of Aging Biology, Immunology Frontier Research Center, Osaka University, Osaka, Japan.
| | - Tomonori Matsumoto
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
- Laboratory of Ploidy Pathology, Graduate School of Frontier Bioscicences, Osaka University, Osaka, Japan.
| |
Collapse
|
11
|
Kiermaier E, Stötzel I, Schapfl MA, Villunger A. Amplified centrosomes-more than just a threat. EMBO Rep 2024; 25:4153-4167. [PMID: 39285247 PMCID: PMC11467336 DOI: 10.1038/s44319-024-00260-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/05/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Centrosomes are major organizing components of the tubulin-based cytoskeleton. In recent years, we have gained extensive knowledge about their structure, biogenesis, and function from single cells, cell-cell interactions to tissue homeostasis, including their role in human diseases. Centrosome abnormalities are linked to, among others primary microcephaly, birth defects, ciliopathies, and tumorigenesis. Centrosome amplification, a state where two or more centrosomes are present in the G1 phase of the cell cycle, correlates in cancer with karyotype alterations, clinical aggressiveness, and lymph node metastasis. However, amplified centrosomes also appear in healthy tissues and, independent of their established role, in multi-ciliation. One example is the liver where hepatocytes carry amplified centrosomes owing to whole-genome duplication events during organogenesis. More recently, amplified centrosomes have been found in neuronal progenitors and several cell types of hematopoietic origin in which they enhance cellular effector functions. These findings suggest that extra centrosomes do not necessarily pose a risk for genome integrity and are harnessed for physiological processes. Here, we compare established and emerging 'non-canonical functions' of amplified centrosomes in cancerous and somatic cells and discuss their role in cellular physiology.
Collapse
Affiliation(s)
- Eva Kiermaier
- Life and Medical Sciences Institute, Immune and Tumor Biology, University of Bonn, Bonn, Germany.
| | - Isabel Stötzel
- Life and Medical Sciences Institute, Immune and Tumor Biology, University of Bonn, Bonn, Germany
| | - Marina A Schapfl
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
- The Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria.
| |
Collapse
|
12
|
Huang YT, Hesting LL, Calvi BR. An unscheduled switch to endocycles induces a reversible senescent arrest that impairs growth of the Drosophila wing disc. PLoS Genet 2024; 20:e1011387. [PMID: 39226333 PMCID: PMC11398662 DOI: 10.1371/journal.pgen.1011387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/13/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
A programmed developmental switch to G / S endocycles results in tissue growth through an increase in cell size. Unscheduled, induced endocycling cells (iECs) promote wound healing but also contribute to cancer. Much remains unknown, however, about how these iECs affect tissue growth. Using the D. melanogaster wing disc as model, we find that populations of iECs initially increase in size but then subsequently undergo a heterogenous arrest that causes severe tissue undergrowth. iECs acquired DNA damage and activated a Jun N-terminal kinase (JNK) pathway, but, unlike other stressed cells, were apoptosis-resistant and not eliminated from the epithelium. Instead, iECs entered a JNK-dependent and reversible senescent-like arrest. Senescent iECs promoted division of diploid neighbors, but this compensatory proliferation did not rescue tissue growth. Our study has uncovered unique attributes of iECs and their effects on tissue growth that have important implications for understanding their roles in wound healing and cancer.
Collapse
Affiliation(s)
- Yi-Ting Huang
- Department of Biology, Simon Cancer Center, Indiana University, Bloomington, Indiana, United States of America
| | - Lauren L Hesting
- Department of Biology, Simon Cancer Center, Indiana University, Bloomington, Indiana, United States of America
| | - Brian R Calvi
- Department of Biology, Simon Cancer Center, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
13
|
Darmasaputra GS, Geerlings CC, Chuva de Sousa Lopes SM, Clevers H, Galli M. Binucleated human hepatocytes arise through late cytokinetic regression during endomitosis M phase. J Cell Biol 2024; 223:e202403020. [PMID: 38727809 PMCID: PMC11090133 DOI: 10.1083/jcb.202403020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/15/2024] Open
Abstract
Binucleated polyploid cells are common in many animal tissues, where they arise by endomitosis, a non-canonical cell cycle in which cells enter M phase but do not undergo cytokinesis. Different steps of cytokinesis have been shown to be inhibited during endomitosis M phase in rodents, but it is currently unknown how human cells undergo endomitosis. In this study, we use fetal-derived human hepatocyte organoids (Hep-Orgs) to investigate how human hepatocytes initiate and execute endomitosis. We find that cells in endomitosis M phase have normal mitotic timings, but lose membrane anchorage to the midbody during cytokinesis, which is associated with the loss of four cortical anchoring proteins, RacGAP1, Anillin, SEPT9, and citron kinase (CIT-K). Moreover, reduction of WNT activity increases the percentage of binucleated cells in Hep-Orgs, an effect that is dependent on the atypical E2F proteins, E2F7 and E2F8. Together, we have elucidated how hepatocytes undergo endomitosis in human Hep-Orgs, providing new insights into the mechanisms of endomitosis in mammals.
Collapse
Affiliation(s)
- Gabriella S. Darmasaputra
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht, Utrecht, Netherlands
| | - Cindy C. Geerlings
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Matilde Galli
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
14
|
Yin K, Büttner M, Deligiannis IK, Strzelecki M, Zhang L, Talavera-López C, Theis F, Odom DT, Martinez-Jimenez CP. Polyploidisation pleiotropically buffers ageing in hepatocytes. J Hepatol 2024; 81:289-302. [PMID: 38583492 DOI: 10.1016/j.jhep.2024.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND & AIMS Polyploidy in hepatocytes has been proposed as a genetic mechanism to buffer against transcriptional dysregulation. Here, we aim to demonstrate the role of polyploidy in modulating gene regulatory networks in hepatocytes during ageing. METHODS We performed single-nucleus RNA sequencing in hepatocyte nuclei of different ploidy levels isolated from young and old wild-type mice. Changes in the gene expression and regulatory network were compared to three independent strains that were haploinsufficient for HNF4A, CEBPA or CTCF, representing non-deleterious perturbations. Phenotypic characteristics of the liver section were additionally evaluated histologically, whereas the genomic allele composition of hepatocytes was analysed by BaseScope. RESULTS We observed that ageing in wild-type mice results in nuclei polyploidy and a marked increase in steatosis. Haploinsufficiency of liver-specific master regulators (HFN4A or CEBPA) results in the enrichment of hepatocytes with tetraploid nuclei at a young age, affecting the genomic regulatory network, and dramatically suppressing ageing-related steatosis tissue wide. Notably, these phenotypes are not the result of subtle disruption to liver-specific transcriptional networks, since haploinsufficiency in the CTCF insulator protein resulted in the same phenotype. Further quantification of genotypes of tetraploid hepatocytes in young and old HFN4A-haploinsufficient mice revealed that during ageing, tetraploid hepatocytes lead to the selection of wild-type alleles, restoring non-deleterious genetic perturbations. CONCLUSIONS Our results suggest a model whereby polyploidisation leads to fundamentally different cell states. Polyploid conversion enables pleiotropic buffering against age-related decline via non-random allelic segregation to restore a wild-type genome. IMPACT AND IMPLICATIONS The functional role of hepatocyte polyploidisation during ageing is poorly understood. Using single-nucleus RNA sequencing and BaseScope approaches, we have studied ploidy dynamics during ageing in murine livers with non-deleterious genetic perturbations. We have identified that hepatocytes present different cellular states and the ability to buffer ageing-associated dysfunctions. Tetraploid nuclei exhibit robust transcriptional networks and are better adapted to genomically overcome perturbations. Novel therapeutic interventions aimed at attenuating age-related changes in tissue function could be exploited by manipulation of ploidy dynamics during chronic liver conditions.
Collapse
Affiliation(s)
- Kelvin Yin
- Helmholtz Pioneer Campus (HPC), Helmholtz Munich, Neuherberg, Germany
| | - Maren Büttner
- Institute of Computational Biology, Computational Health Department, Helmholtz Munich, Neuherberg, Germany
| | | | | | - Liwei Zhang
- Helmholtz Pioneer Campus (HPC), Helmholtz Munich, Neuherberg, Germany
| | - Carlos Talavera-López
- Division of Infectious Diseases and Tropical Medicine, Ludwig-Maximilian-Universität Klinikum, Germany
| | - Fabian Theis
- Institute of Computational Biology, Computational Health Department, Helmholtz Munich, Neuherberg, Germany; Technical University of Munich, Department of Mathematics, 85748 Garching. Munich, Germany; German Cancer Research Centre, Heidelberg, Germany.
| | - Duncan T Odom
- German Cancer Research Center, Division of Regulatory Genomics and Cancer Evolution (B270), Heidelberg, Germany; Cancer Research UK Cambridge Institute, University of Cambridge, CB20RE, United Kingdom.
| | - Celia P Martinez-Jimenez
- Helmholtz Pioneer Campus (HPC), Helmholtz Munich, Neuherberg, Germany; TUM School of Medicine, Technical University of Munich, Munich, Germany; Institute of Biotechnology and Biomedicine (BIOTECMED), Department of Biochemistry and Molecular Biology, University of Valencia, Burjassot, Spain.
| |
Collapse
|
15
|
Bangru S, Chen J, Baker N, Das D, Chembazhi UV, Derham JM, Chorghade S, Arif W, Alencastro F, Duncan AW, Carstens RP, Kalsotra A. ESRP2-microRNA-122 axis directs the postnatal onset of liver polyploidization and maturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.06.602336. [PMID: 39026848 PMCID: PMC11257421 DOI: 10.1101/2024.07.06.602336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Hepatocyte polyploidy and maturity are critical to acquiring specialized liver functions. Multiple intra- and extracellular factors influence ploidy, but how they cooperate temporally to steer liver polyploidization and maturation or how post-transcriptional mechanisms integrate into these paradigms is unknown. Here, we identified an important regulatory hierarchy in which postnatal activation of Epithelial-Splicing-Regulatory-Protein-2 (ESRP2) stimulates biogenesis of liver-specific microRNA (miR-122), thereby facilitating polyploidization, maturation, and functional competence of hepatocytes. By determining transcriptome-wide protein-RNA interactions in vivo and integrating them with single-cell and bulk hepatocyte RNA-seq datasets, we delineate an ESRP2-driven RNA processing program that drives sequential replacement of fetal-to-adult transcript isoforms. Specifically, ESRP2 binds the primary miR-122 host gene transcript to promote its processing/biogenesis. Combining constitutive and inducible ESRP2 gain- and loss-of-function mice models with miR-122 rescue experiments, we demonstrate that timed activation of ESRP2 augments miR-122-driven program of cytokinesis failure, ensuring proper onset and extent of hepatocyte polyploidization.
Collapse
|
16
|
Hsieh MH, Wei Y, Li L, Nguyen LH, Lin YH, Yong JM, Sun X, Wang X, Luo X, Knutson SK, Bracken C, Daley GQ, Powers JT, Zhu H. Liver cancer initiation requires translational activation by an oncofetal regulon involving LIN28 proteins. J Clin Invest 2024; 134:e165734. [PMID: 38875287 PMCID: PMC11290964 DOI: 10.1172/jci165734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 06/11/2024] [Indexed: 06/16/2024] Open
Abstract
It is unknown which posttranscriptional regulatory mechanisms are required for oncogenic competence. Here, we show that the LIN28 family of RNA-binding proteins (RBPs), which facilitate posttranscriptional RNA metabolism within ribonucleoprotein networks, is essential for the initiation of diverse oncotypes of hepatocellular carcinoma (HCC). In HCC models driven by NRASG12V/Tp53, CTNNB1/YAP/Tp53, or AKT/Tp53, mice without Lin28a and Lin28b were markedly impaired in cancer initiation. We biochemically defined an oncofetal regulon of 15 factors connected to LIN28 through direct mRNA and protein interactions. Interestingly, all were RBPs and only 1 of 15 was a Let-7 target. Polysome profiling and reporter assays showed that LIN28B directly increased the translation of 8 of these 15 RBPs. As expected, overexpression of LIN28B and IGFBP1-3 was able to genetically rescue cancer initiation. Using this platform to probe components downstream of LIN28, we found that 8 target RBPs were able to restore NRASG12V/Tp53 cancer formation in Lin28a/Lin28b-deficient mice. Furthermore, these LIN28B targets promote cancer initiation through an increase in protein synthesis. LIN28B, central to an RNP regulon that increases translation of RBPs, is important for tumor initiation in the liver.
Collapse
Affiliation(s)
- Meng-Hsiung Hsieh
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yonglong Wei
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Lin Li
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Liem H. Nguyen
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yu-Hsuan Lin
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jung M. Yong
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xuxu Sun
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xun Wang
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xin Luo
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | - George Q. Daley
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - John T. Powers
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
| | - Hao Zhu
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
17
|
Patra S, Naik PP, Mahapatra KK, Alotaibi MR, Patil S, Patro BS, Sethi G, Efferth T, Bhutia SK. Recent advancement of autophagy in polyploid giant cancer cells and its interconnection with senescence and stemness for therapeutic opportunities. Cancer Lett 2024; 590:216843. [PMID: 38579893 DOI: 10.1016/j.canlet.2024.216843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/11/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
Recurrent chemotherapy-induced senescence and resistance are attributed to the polyploidization of cancer cells that involve genomic instability and poor prognosis due to their unique form of cellular plasticity. Autophagy, a pre-dominant cell survival mechanism, is crucial during carcinogenesis and chemotherapeutic stress, favouring polyploidization. The selective autophagic degradation of essential proteins associated with cell cycle progression checkpoints deregulate mitosis fidelity and genomic integrity, imparting polyploidization of cancer cells. In connection with cytokinesis failure and endoreduplication, autophagy promotes the formation, maintenance, and generation of the progeny of polyploid giant cancer cells. The polyploid cancer cells embark on autophagy-guarded elevation in the expression of stem cell markers, along with triggered epithelial and mesenchymal transition and senescence. The senescent polyploid escapers represent a high autophagic index than the polyploid progeny, suggesting regaining autophagy induction and subsequent autophagic degradation, which is essential for escaping from senescence/polyploidy, leading to a higher proliferative phenotypic progeny. This review documents the various causes of polyploidy and its consequences in cancer with relevance to autophagy modulation and its targeting for therapeutic intervention as a novel therapeutic strategy for personalized and precision medicine.
Collapse
Affiliation(s)
- Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India
| | - Prajna Paramita Naik
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India; Department of Zoology Panchayat College, Bargarh, 768028, Odisha, India
| | - Kewal Kumar Mahapatra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India; Department of Agriculture and Allied Sciences (Zoology), C. V. Raman Global University, Bhubaneswar, 752054, Odisha, India
| | - Moureq Rashed Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, 84095, USA
| | - Birija Sankar Patro
- Chemical Biology Section, Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128, Mainz, Germany
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India.
| |
Collapse
|
18
|
Conway PJ, Dao J, Kovalskyy D, Mahadevan D, Dray E. Polyploidy in Cancer: Causal Mechanisms, Cancer-Specific Consequences, and Emerging Treatments. Mol Cancer Ther 2024; 23:638-647. [PMID: 38315992 PMCID: PMC11174144 DOI: 10.1158/1535-7163.mct-23-0578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/19/2023] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Drug resistance is the major determinant for metastatic disease and fatalities, across all cancers. Depending on the tissue of origin and the therapeutic course, a variety of biological mechanisms can support and sustain drug resistance. Although genetic mutations and gene silencing through epigenetic mechanisms are major culprits in targeted therapy, drug efflux and polyploidization are more global mechanisms that prevail in a broad range of pathologies, in response to a variety of treatments. There is an unmet need to identify patients at risk for polyploidy, understand the mechanisms underlying polyploidization, and to develop strategies to predict, limit, and reverse polyploidy thus enhancing efficacy of standard-of-care therapy that improve better outcomes. This literature review provides an overview of polyploidy in cancer and offers perspective on patient monitoring and actionable therapy.
Collapse
Affiliation(s)
- Patrick J Conway
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Department of Molecular Immunology & Microbiology, University of Texas Health San Antonio, San Antonio, Texas
| | - Jonathan Dao
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Dmytro Kovalskyy
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas
| | - Daruka Mahadevan
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Department of Molecular Immunology & Microbiology, University of Texas Health San Antonio, San Antonio, Texas
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
| | - Eloise Dray
- Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
19
|
White-Gilbertson S, Lu P, Saatci O, Sahin O, Delaney JR, Ogretmen B, Voelkel-Johnson C. Transcriptome analysis of polyploid giant cancer cells and their progeny reveals a functional role for p21 in polyploidization and depolyploidization. J Biol Chem 2024; 300:107136. [PMID: 38447798 PMCID: PMC10979113 DOI: 10.1016/j.jbc.2024.107136] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/03/2024] [Accepted: 02/15/2024] [Indexed: 03/08/2024] Open
Abstract
Polyploid giant cancer cells (PGCC) are frequently detected in tumors and are increasingly recognized for their roles in chromosomal instability and associated genome evolution that leads to cancer recurrence. We previously reported that therapy stress promotes polyploidy, and that acid ceramidase plays a role in depolyploidization. In this study, we used an RNA-seq approach to gain a better understanding of the underlying transcriptomic changes that occur as cancer cells progress through polyploidization and depolyploidization. Our results revealed gene signatures that are associated with disease-free and/or overall survival in several cancers and identified the cell cycle inhibitor CDKN1A/p21 as the major hub in PGCC and early progeny. Increased expression of p21 in PGCC was limited to the cytoplasm. We previously demonstrated that the sphingolipid enzyme acid ceramidase is dispensable for polyploidization upon therapy stress but plays a crucial role in depolyploidization. The current study demonstrates that treatment of cells with ceramide is not sufficient for p53-independent induction of p21 and that knockdown of acid ceramidase, which hydrolyzes ceramide, does not interfere with upregulation of p21. In contrast, blocking the expression of p21 with UC2288 prevented the induction of acid ceramidase and inhibited both the formation of PGCC from parental cells as well as the generation of progeny from PGCC. Taken together, our data suggest that p21 functions upstream of acid ceramidase and plays an important role in polyploidization and depolyploidization.
Collapse
Affiliation(s)
- Shai White-Gilbertson
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ping Lu
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ozge Saatci
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ozgur Sahin
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Joe R Delaney
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Christina Voelkel-Johnson
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina, USA; Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA.
| |
Collapse
|
20
|
Huang YT, Hesting LL, Calvi BR. An unscheduled switch to endocycles induces a reversible senescent arrest that impairs growth of the Drosophila wing disc. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.585098. [PMID: 38559130 PMCID: PMC10980049 DOI: 10.1101/2024.03.14.585098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A programmed developmental switch to G / S endocycles results in tissue growth through an increase in cell size. Unscheduled, induced endocycling cells (iECs) promote wound healing but also contribute to cancer. Much remains unknown, however, about how these iECs affect tissue growth. Using the D. melanogasterwing disc as model, we find that populations of iECs initially increase in size but then subsequently undergo a heterogenous arrest that causes severe tissue undergrowth. iECs acquired DNA damage and activated a Jun N-terminal kinase (JNK) pathway, but, unlike other stressed cells, were apoptosis-resistant and not eliminated from the epithelium. Instead, iECs entered a JNK-dependent and reversible senescent-like arrest. Senescent iECs promoted division of diploid neighbors, but this compensatory proliferation did not rescue tissue growth. Our study has uncovered unique attributes of iECs and their effects on tissue growth that have important implications for understanding their roles in wound healing and cancer.
Collapse
Affiliation(s)
- Yi-Ting Huang
- Department of Biology, Simon Cancer Center, Indiana University, Bloomington, IN 47405
| | - Lauren L. Hesting
- Department of Biology, Simon Cancer Center, Indiana University, Bloomington, IN 47405
| | - Brian R. Calvi
- Department of Biology, Simon Cancer Center, Indiana University, Bloomington, IN 47405
| |
Collapse
|
21
|
Darmasaputra GS, van Rijnberk LM, Galli M. Functional consequences of somatic polyploidy in development. Development 2024; 151:dev202392. [PMID: 38415794 PMCID: PMC10946441 DOI: 10.1242/dev.202392] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Polyploid cells contain multiple genome copies and arise in many animal tissues as a regulated part of development. However, polyploid cells can also arise due to cell division failure, DNA damage or tissue damage. Although polyploidization is crucial for the integrity and function of many tissues, the cellular and tissue-wide consequences of polyploidy can be very diverse. Nonetheless, many polyploid cell types and tissues share a remarkable similarity in function, providing important information about the possible contribution of polyploidy to cell and tissue function. Here, we review studies on polyploid cells in development, underlining parallel functions between different polyploid cell types, as well as differences between developmentally-programmed and stress-induced polyploidy.
Collapse
Affiliation(s)
- Gabriella S. Darmasaputra
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - Lotte M. van Rijnberk
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - Matilde Galli
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| |
Collapse
|
22
|
Sharma S, Ghufran SM, Aftab M, Bihari C, Ghose S, Biswas S. Survivin inhibition ameliorates liver fibrosis by inducing hepatic stellate cell senescence and depleting hepatic macrophage population. J Cell Commun Signal 2024; 18:e12015. [PMID: 38545255 PMCID: PMC10964939 DOI: 10.1002/ccs3.12015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/28/2023] [Indexed: 01/29/2025] Open
Abstract
Persistent activation of hepatic stellate cells (HSCs) in the injured liver leads to the progression of liver injury from fibrosis to detrimental cirrhosis. In a previous study, we have shown that survivin protein is upregulated during the early activation of HSCs, which triggers the onset of liver fibrosis. However, the therapeutic potential of targeting survivin in a fully established fibrotic liver needs to be investigated. In this study, we chemically induced hepatic fibrosis in mice using carbon tetrachloride (CCl4) for 6 weeks, which was followed by treatment with a survivin suppressant (YM155). We also evaluated survivin expression in fibrotic human liver tissues, primary HSCs, and HSC cell line by histological analysis. αSMA+ HSCs in human and mice fibrotic liver tissues showed enhanced survivin expression, whereas the hepatocytes and quiescent (qHSCs) displayed minimal expression. Alternatively, activated M2 macrophage subtype induced survivin expression in HSCs through the TGF-β-TGF-β receptor-I/II signaling. Inhibition of survivin in HSCs promoted cell cycle arrest and senescence, which eventually suppressed their activation. In vivo, YM155 treatment increased the expression of cell senescence makers in HSCs around fibrotic septa such as p53, p21, and β-galactosidase. YM155 treatment in vivo also reduced the hepatic macrophage population and inflammatory cytokine expression in the liver. In conclusion, downregulation of survivin in the fibrotic liver decreases HSC activation by inducing cellular senescence and modulating macrophage cytokine expression that collectively ameliorates liver fibrosis.
Collapse
Affiliation(s)
- Sachin Sharma
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR)Amity UniversityNoidaUttar PradeshIndia
- Department of MedicineUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Shaikh Maryam Ghufran
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR)Amity UniversityNoidaUttar PradeshIndia
- Heersink School of MedicineUniversity of AlabamaBirminghamUSA
| | - Mehreen Aftab
- Division of Cellular and Molecular OncologyNational Institute of Cancer Prevention and Research (NICPR)NoidaUttar PradeshIndia
| | - Chhagan Bihari
- Department of PathologyInstitute of Liver and Biliary Sciences (ILBS)New DelhiIndia
| | - Sampa Ghose
- Department of Medical OncologyAll India Institute of Medical Sciences (AIIMS)New DelhiIndia
| | - Subhrajit Biswas
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR)Amity UniversityNoidaUttar PradeshIndia
| |
Collapse
|
23
|
Wang Y, Tamori Y. Polyploid Cancer Cell Models in Drosophila. Genes (Basel) 2024; 15:96. [PMID: 38254985 PMCID: PMC10815460 DOI: 10.3390/genes15010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Cells with an abnormal number of chromosomes have been found in more than 90% of solid tumors, and among these, polyploidy accounts for about 40%. Polyploidized cells most often have duplicate centrosomes as well as genomes, and thus their mitosis tends to promote merotelic spindle attachments and chromosomal instability, which produces a variety of aneuploid daughter cells. Polyploid cells have been found highly resistant to various stress and anticancer therapies, such as radiation and mitogenic inhibitors. In other words, common cancer therapies kill proliferative diploid cells, which make up the majority of cancer tissues, while polyploid cells, which lurk in smaller numbers, may survive. The surviving polyploid cells, prompted by acute environmental changes, begin to mitose with chromosomal instability, leading to an explosion of genetic heterogeneity and a concomitant cell competition and adaptive evolution. The result is a recurrence of the cancer during which the tenacious cells that survived treatment express malignant traits. Although the presence of polyploid cells in cancer tissues has been observed for more than 150 years, the function and exact role of these cells in cancer progression has remained elusive. For this reason, there is currently no effective therapeutic treatment directed against polyploid cells. This is due in part to the lack of suitable experimental models, but recently several models have become available to study polyploid cells in vivo. We propose that the experimental models in Drosophila, for which genetic techniques are highly developed, could be very useful in deciphering mechanisms of polyploidy and its role in cancer progression.
Collapse
Affiliation(s)
| | - Yoichiro Tamori
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| |
Collapse
|
24
|
Vittoria MA, Quinton RJ, Ganem NJ. Whole-genome doubling in tissues and tumors. Trends Genet 2023; 39:954-967. [PMID: 37714734 PMCID: PMC10840902 DOI: 10.1016/j.tig.2023.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/17/2023]
Abstract
The overwhelming majority of proliferating somatic human cells are diploid, and this genomic state is typically maintained across successive cell divisions. However, failures in cell division can induce a whole-genome doubling (WGD) event, in which diploid cells transition to a tetraploid state. While some WGDs are developmentally programmed to produce nonproliferative tetraploid cells with specific cellular functions, unscheduled WGDs can be catastrophic: erroneously arising tetraploid cells are ill-equipped to cope with their doubled cellular and chromosomal content and quickly become genomically unstable and tumorigenic. Deciphering the genetics that underlie the genesis, physiology, and evolution of whole-genome doubled (WGD+) cells may therefore reveal therapeutic avenues to selectively eliminate pathological WGD+ cells.
Collapse
Affiliation(s)
- Marc A Vittoria
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Ryan J Quinton
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Neil J Ganem
- Department of Medicine, Division of Hematology and Oncology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA; Department of Pharmacology, Physiology, and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
25
|
Abstract
The liver's unique chromosomal variations, including polyploidy and aneuploidy, influence hepatocyte identity and function. Among the most well-studied mammalian polyploid cells, hepatocytes exhibit a dynamic interplay between diploid and polyploid states. The ploidy state is dynamic as hepatocytes move through the "ploidy conveyor," undergoing ploidy reversal and re-polyploidization during proliferation. Both diploid and polyploid hepatocytes actively contribute to proliferation, with diploids demonstrating an enhanced proliferative capacity. This enhanced potential positions diploid hepatocytes as primary drivers of liver proliferation in multiple contexts, including homeostasis, regeneration and repopulation, compensatory proliferation following injury, and oncogenic proliferation. This review discusses the influence of ploidy variations on cellular activity. It presents a model for ploidy-associated hepatocyte proliferation, offering a deeper understanding of liver health and disease with the potential to uncover novel treatment approaches.
Collapse
Affiliation(s)
- Sierra R. Wilson
- Department of Pathology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Andrew W. Duncan
- Department of Pathology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
26
|
Zhang Y, Wang N, Hao F, Chen Y, Fei X, Wang J. Attenuation of binuclear hepatocytes in the paracancerous liver tissue is associated with short-term recurrence of hepatocellular carcinoma post-radical surgery. FASEB J 2023; 37:e23271. [PMID: 37882195 DOI: 10.1096/fj.202301219r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/03/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
Short-term recurrence of hepatocellular carcinoma (HCC) after radical resection leads to dismal outcomes. To screen high-recurrence risk patients to provide adjuvant treatment is necessary. Herein, based on our previous research, we further focused on the changes in the abundance of binuclear hepatocytes (ABH) in the paracancerous liver tissue to discuss the relationship between the attenuation of binuclear hepatocytes and postoperative short-term recurrence, by combining with the assessment of the value of a reported independent early recurrence risk factor in HCC, protein induced by vitamin K absence or antagonist-II (PIVKA-II). A cohort of 142 paracancerous liver tissues from HCC patients who received radical resection was collected. Binuclear hepatocytes were reduced in the paracancerous liver tissues, compared with the liver tissues from normal donors. ABH was negatively correlated with clinical features such as tumor size, TNM stages, tumor microsatellite formation, venous invasion, and Alpha-fetoprotein (AFP) level, as well as the expression of E2F7 and Anillin, which are two critical regulators concerning the hepatocyte polyploidization. According to the short-term recurrence information, ABH value was laminated, and univariate and multivariate logistic regression was performed to analyze the relationship between paracancerous ABH and short-term tumor relapse. Simultaneously, the predictive effectiveness of the ABH value was compared with the preoperative PIVKA-II value. As observed, the paracancerous ABH value below 1.5% was found to be an independent risk factor for recurrence. In conclusion, the paracancerous ABH is a credible indicator of short-term recurrence of HCC patients after radical resection, and regular assessment of ABH might help to prevent short-term HCC recurrence.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Nan Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Fengjie Hao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Yongjun Chen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Xiaochun Fei
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Junqing Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| |
Collapse
|
27
|
Clerbaux LA, Cordier P, Desboeufs N, Unger K, Leary P, Semere G, Boege Y, Chan LK, Desdouets C, Lopes M, Weber A. Mcl-1 deficiency in murine livers leads to nuclear polyploidisation and mitotic errors: Implications for hepatocellular carcinoma. JHEP Rep 2023; 5:100838. [PMID: 37663116 PMCID: PMC10472239 DOI: 10.1016/j.jhepr.2023.100838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/15/2023] [Accepted: 06/20/2023] [Indexed: 09/05/2023] Open
Abstract
Background & Aims Mcl-1, an antiapoptotic protein overexpressed in many tumours, including hepatocellular carcinoma (HCC), represents a promising target for cancer treatment. Although Mcl-1 non-apoptotic roles might critically influence the therapeutic potential of Mcl-1 inhibitors, these functions remain poorly understood. We aimed to investigate the effects of hepatic Mcl-1 deficiency (Mcl-1Δhep) on hepatocyte ploidy and cell cycle in murine liver in vivo and the possible implications on HCC. Methods Livers of young Mcl-1Δhep and wild-type (WT) mice were analysed for ploidy profile, mitotic figures, in situ chromosome segregation, gene set enrichment analysis and were subjected to two-thirds partial hepatectomy to assess Mcl-1 deficiency effect on cell cycle progression in vivo. Mcl-1Δhep tumours in older mice were analysed for ploidy profile, chromosomal instability, and mutational signatures via whole exome sequencing. Results In young mice, Mcl-1 deficiency leads to nuclear polyploidy and to high rates of mitotic errors with abnormal spindle figures and chromosome mis-segregation along with a prolonged spindle assembly checkpoint activation signature. Chromosomal instability and altered ploidy profile are observed in Mcl-1Δhep tumours of old mice as well as a characteristic mutational signature of currently unknown aetiology. Conclusions Our study suggests novel non-apoptotic effects of Mcl-1 deficiency on nuclear ploidy, mitotic regulation, and chromosomal segregation in hepatocytes in vivo. In addition, the Mcl-1 deficiency characteristic mutational signature might reflect mitotic issues. These results are of importance to consider when developing anti-Mcl-1 therapies to treat cancer. Impact and implications Although Mcl-1 inhibitors represent promising hepatocellular carcinoma treatment, the still poorly understood non-apoptotic roles of Mcl-1 might compromise their successful clinical application. Our study shows that Mcl-1 deficiency leads to nuclear polyploidy, mitotic errors, and aberrant chromosomal segregation in hepatocytes in vivo, whereas hepatocellular tumours spontaneously induced by Mcl-1 deficiency exhibit chromosomal instability and a mutational signature potentially reflecting mitotic issues. These results have potential implications for the development of anti-Mcl-1 therapies to treat hepatocellular carcinoma, especially as hyperproliferative liver is a clinically relevant situation.
Collapse
Affiliation(s)
- Laure-Alix Clerbaux
- Department of Pathology and Molecular Pathology, University Hospital Zürich (USZ), Zurich, Switzerland
- Institute of Molecular Cancer Research (IMCR), University of Zürich (UZH), Zurich, Switzerland
| | - Pierre Cordier
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France
- Genomic Instability, Metabolism, Immunity and Liver Tumorigenesis Laboratory, Equipe Labellisée LIGUE 2023, Paris, France
| | - Nina Desboeufs
- Department of Pathology and Molecular Pathology, University Hospital Zürich (USZ), Zurich, Switzerland
- Institute of Molecular Cancer Research (IMCR), University of Zürich (UZH), Zurich, Switzerland
| | - Kristian Unger
- Research Unit Radiation Cytogenetics, Helmholtz Munich, Neuherberg, Germany
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Peter Leary
- Institute of Molecular Cancer Research (IMCR), University of Zürich (UZH), Zurich, Switzerland
- Functional Genomics Center Zurich, University of Zürich and ETH Zürich, Zurich, Switzerland
| | - Gabriel Semere
- Department of Pathology and Molecular Pathology, University Hospital Zürich (USZ), Zurich, Switzerland
| | - Yannick Boege
- Department of Pathology and Molecular Pathology, University Hospital Zürich (USZ), Zurich, Switzerland
| | - Lap Kwan Chan
- Department of Pathology and Molecular Pathology, University Hospital Zürich (USZ), Zurich, Switzerland
| | - Chantal Desdouets
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France
- Genomic Instability, Metabolism, Immunity and Liver Tumorigenesis Laboratory, Equipe Labellisée LIGUE 2023, Paris, France
| | - Massimo Lopes
- Institute of Molecular Cancer Research (IMCR), University of Zürich (UZH), Zurich, Switzerland
| | - Achim Weber
- Department of Pathology and Molecular Pathology, University Hospital Zürich (USZ), Zurich, Switzerland
- Institute of Molecular Cancer Research (IMCR), University of Zürich (UZH), Zurich, Switzerland
| |
Collapse
|
28
|
Qian B, Liu Q, Wang C, Lu S, Ke S, Yin B, Li X, Yu H, Wu Y, Ma Y. Identification of MIR600HG/hsa-miR-342-3p/ANLN network as a potential prognosis biomarker associated with lmmune infiltrates in pancreatic cancer. Sci Rep 2023; 13:15919. [PMID: 37741887 PMCID: PMC10517933 DOI: 10.1038/s41598-023-43174-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023] Open
Abstract
Pancreatic cancer is one of the tumors with the worst prognosis, causing serious harm to human health. The RNA network and immune response play an important role in tumor progression. While a systematic RNA network linked to the tumor immune response remains to be further explored in pancreatic cancer. Based on The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, the MIR600HG/hsa-miR-342-3p/ANLN network was determined. WB and IHC were used to confirm the high expression of ANLN in pancreatic cancer. The prognostic model based on the RNA network could effectively predict the survival prognosis of patients. The analysis of immune infiltration showed that the MIR600HG/hsa-miR-342-3p/ANLN network altered the level of infiltration of T helper 2 (Th2) and effector memory T (Tem) cells. Furthermore, we found that the chemokines chemokine ligand (CCL) 5 and CCL14 may play a key role in immune cell infiltration mediated by the RNA network. In conclusion, this study constructed a prognostic model based on the MIR600HG/hsa-miR-342-3p/ANLN network and found that it may function in tumor immunity.
Collapse
Affiliation(s)
- Baolin Qian
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qi Liu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chaoqun Wang
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shounan Lu
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shanjia Ke
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing Yin
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinglong Li
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongjun Yu
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yaohua Wu
- Department of Thyroid Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Yong Ma
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
29
|
Yamada T, Yoshinari Y, Tobo M, Habara O, Nishimura T. Nacα protects the larval fat body from cell death by maintaining cellular proteostasis in Drosophila. Nat Commun 2023; 14:5328. [PMID: 37658058 PMCID: PMC10474126 DOI: 10.1038/s41467-023-41103-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/17/2023] [Indexed: 09/03/2023] Open
Abstract
Protein homeostasis (proteostasis) is crucial for the maintenance of cellular homeostasis. Impairment of proteostasis activates proteotoxic and unfolded protein response pathways to resolve cellular stress or induce apoptosis in damaged cells. However, the responses of individual tissues to proteotoxic stress and evoking cell death program have not been extensively explored in vivo. Here, we show that a reduction in Nascent polypeptide-associated complex protein alpha subunit (Nacα) specifically and progressively induces cell death in Drosophila fat body cells. Nacα mutants disrupt both ER integrity and the proteasomal degradation system, resulting in caspase activation through JNK and p53. Although forced activation of the JNK and p53 pathways was insufficient to induce cell death in the fat body, the reduction of Nacα sensitized fat body cells to intrinsic and environmental stresses. Reducing overall protein synthesis by mTor inhibition or Minute mutants alleviated the cell death phenotype in Nacα mutant fat body cells. Our work revealed that Nacα is crucial for protecting the fat body from cell death by maintaining cellular proteostasis, thus demonstrating the coexistence of a unique vulnerability and cell death resistance in the fat body.
Collapse
Affiliation(s)
- Takayuki Yamada
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, 650-0047, Japan
| | - Yuto Yoshinari
- Laboratory of Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan
| | - Masayuki Tobo
- Laboratory of Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan
| | - Okiko Habara
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, 650-0047, Japan
| | - Takashi Nishimura
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, 650-0047, Japan.
- Laboratory of Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan.
| |
Collapse
|
30
|
Sanz-Gómez N, González-Álvarez M, De Las Rivas J, de Cárcer G. Whole-Genome Doubling as a source of cancer: how, when, where, and why? Front Cell Dev Biol 2023; 11:1209136. [PMID: 37342233 PMCID: PMC10277508 DOI: 10.3389/fcell.2023.1209136] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023] Open
Abstract
Chromosome instability is a well-known hallmark of cancer, leading to increased genetic plasticity of tumoral cells, which favors cancer aggressiveness, and poor prognosis. One of the main sources of chromosomal instability are events that lead to a Whole-Genome Duplication (WGD) and the subsequently generated cell polyploidy. In recent years, several studies showed that WGD occurs at the early stages of cell transformation, which allows cells to later become aneuploid, thus leading to cancer progression. On the other hand, other studies convey that polyploidy plays a tumor suppressor role, by inducing cell cycle arrest, cell senescence, apoptosis, and even prompting cell differentiation, depending on the tissue cell type. There is still a gap in understanding how cells that underwent WGD can overcome the deleterious effect on cell fitness and evolve to become tumoral. Some laboratories in the chromosomal instability field recently explored this paradox, finding biomarkers that modulate polyploid cells to become oncogenic. This review brings a historical view of how WGD and polyploidy impact cell fitness and cancer progression, and bring together the last studies that describe the genes helping cells to adapt to polyploidy.
Collapse
Affiliation(s)
- Natalia Sanz-Gómez
- Cell Cycle and Cancer Biomarkers Laboratory, Cancer Biology Department, Instituto de Investigaciones Biomédicas “Alberto Sols“. (IIBM) CSIC-UAM, Madrid, Spain
| | - María González-Álvarez
- Cell Cycle and Cancer Biomarkers Laboratory, Cancer Biology Department, Instituto de Investigaciones Biomédicas “Alberto Sols“. (IIBM) CSIC-UAM, Madrid, Spain
| | - Javier De Las Rivas
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IBMCC), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL), Salamanca, Spain
| | - Guillermo de Cárcer
- Cell Cycle and Cancer Biomarkers Laboratory, Cancer Biology Department, Instituto de Investigaciones Biomédicas “Alberto Sols“. (IIBM) CSIC-UAM, Madrid, Spain
| |
Collapse
|
31
|
Lee DY, Chun JN, Cho M, So I, Jeon JH. Emerging role of E2F8 in human cancer. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166745. [PMID: 37164180 DOI: 10.1016/j.bbadis.2023.166745] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
E2F8 is a multifaceted transcription factor that plays a crucial role in mediating the hallmarks of cancer, including sustaining proliferative signaling, resisting cell death, and activating invasion and metastasis. Aberrant E2F8 expression is associated with poor clinical outcomes in most human cancers. However, E2F8 also exhibits tumor-suppressing activity; thus, the role of E2F8 in cell-fate determination is unclear. In this review, we highlight the recent progress in understanding the role of E2F8 in human cancers, which will contribute to building a conceptual framework and broadening our knowledge pertaining to E2F8. This review provides insight into future challenges and perspectives regarding the translation of biological knowledge into therapeutic strategies for the treatment of cancer.
Collapse
Affiliation(s)
- Da Young Lee
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung Nyeo Chun
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Republic of Korea
| | - Minsoo Cho
- Independent researcher, Seoul, Republic of Korea
| | - Insuk So
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Republic of Korea
| | - Ju-Hong Jeon
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
32
|
Wen Z, Lin YH, Wang S, Fujiwara N, Rong R, Jin KW, Yang DM, Yao B, Yang S, Wang T, Xie Y, Hoshida Y, Zhu H, Xiao G. Deep-Learning-Based Hepatic Ploidy Quantification Using H&E Histopathology Images. Genes (Basel) 2023; 14:921. [PMID: 37107679 PMCID: PMC10137944 DOI: 10.3390/genes14040921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Polyploidy, the duplication of the entire genome within a single cell, is a significant characteristic of cells in many tissues, including the liver. The quantification of hepatic ploidy typically relies on flow cytometry and immunofluorescence (IF) imaging, which are not widely available in clinical settings due to high financial and time costs. To improve accessibility for clinical samples, we developed a computational algorithm to quantify hepatic ploidy using hematoxylin-eosin (H&E) histopathology images, which are commonly obtained during routine clinical practice. Our algorithm uses a deep learning model to first segment and classify different types of cell nuclei in H&E images. It then determines cellular ploidy based on the relative distance between identified hepatocyte nuclei and determines nuclear ploidy using a fitted Gaussian mixture model. The algorithm can establish the total number of hepatocytes and their detailed ploidy information in a region of interest (ROI) on H&E images. This is the first successful attempt to automate ploidy analysis on H&E images. Our algorithm is expected to serve as an important tool for studying the role of polyploidy in human liver disease.
Collapse
Affiliation(s)
- Zhuoyu Wen
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yu-Hsuan Lin
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shidan Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Naoto Fujiwara
- Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ruichen Rong
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kevin W. Jin
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Donghan M. Yang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bo Yao
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shengjie Yang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tao Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Center for the Genetics of Host Defense, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yang Xie
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yujin Hoshida
- Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hao Zhu
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Children’s Research Institute Mouse Genome Engineering Core, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
33
|
Mehdipour M, Park S, Huang GN. Unlocking cardiomyocyte renewal potential for myocardial regeneration therapy. J Mol Cell Cardiol 2023; 177:9-20. [PMID: 36801396 PMCID: PMC10699255 DOI: 10.1016/j.yjmcc.2023.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/28/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Cardiovascular disease remains the leading cause of mortality worldwide. Cardiomyocytes are irreversibly lost due to cardiac ischemia secondary to disease. This leads to increased cardiac fibrosis, poor contractility, cardiac hypertrophy, and subsequent life-threatening heart failure. Adult mammalian hearts exhibit notoriously low regenerative potential, further compounding the calamities described above. Neonatal mammalian hearts, on the other hand, display robust regenerative capacities. Lower vertebrates such as zebrafish and salamanders retain the ability to replenish lost cardiomyocytes throughout life. It is critical to understand the varying mechanisms that are responsible for these differences in cardiac regeneration across phylogeny and ontogeny. Adult mammalian cardiomyocyte cell cycle arrest and polyploidization have been proposed as major barriers to heart regeneration. Here we review current models about why adult mammalian cardiac regenerative potential is lost including changes in environmental oxygen levels, acquisition of endothermy, complex immune system development, and possible cancer risk tradeoffs. We also discuss recent progress and highlight conflicting reports pertaining to extrinsic and intrinsic signaling pathways that control cardiomyocyte proliferation and polyploidization in growth and regeneration. Uncovering the physiological brakes of cardiac regeneration could illuminate novel molecular targets and offer promising therapeutic strategies to treat heart failure.
Collapse
Affiliation(s)
- Melod Mehdipour
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA; Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sangsoon Park
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA; Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Guo N Huang
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA; Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
34
|
Faggioli F, Velarde MC, Wiley CD. Cellular Senescence, a Novel Area of Investigation for Metastatic Diseases. Cells 2023; 12:cells12060860. [PMID: 36980201 PMCID: PMC10047218 DOI: 10.3390/cells12060860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Metastasis is a systemic condition and the major challenge among cancer types, as it can lead to multiorgan vulnerability. Recently, attention has been drawn to cellular senescence, a complex stress response condition, as a factor implicated in metastatic dissemination and outgrowth. Here, we examine the current knowledge of the features required for cells to invade and colonize secondary organs and how senescent cells can contribute to this process. First, we describe the role of senescence in placentation, itself an invasive process which has been linked to higher rates of invasive cancers. Second, we describe how senescent cells can contribute to metastatic dissemination and colonization. Third, we discuss several metabolic adaptations by which senescent cells could promote cancer survival along the metastatic journey. In conclusion, we posit that targeting cellular senescence may have a potential therapeutic efficacy to limit metastasis formation.
Collapse
Affiliation(s)
- Francesca Faggioli
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
- Istituto di Ricerca Genetica e Biomedica (IRGB-CNR) uos Milan, Via Fantoli 15/16, 20090 Milan, Italy
- Correspondence: ; Tel.: +39-02-82245211
| | - Michael C. Velarde
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City PH 1101, Philippines
| | - Christopher D. Wiley
- Jean Mayer USDA Human Nutrition Research Center on Aging, Boston, MA 02111, USA
- School of Medicine, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
35
|
Wang J, Huang X, Zheng D, Li Q, Mei M, Bao S. PRMT5 determines the pattern of polyploidization and prevents liver from cirrhosis and carcinogenesis. J Genet Genomics 2023; 50:87-98. [PMID: 35500745 DOI: 10.1016/j.jgg.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 11/25/2022]
Abstract
Human hepatocellular carcinoma (HCC) occurs almost exclusively in cirrhotic livers. Here, we report that hepatic loss of protein arginine methyltransferase 5 (PRMT5) in mice is sufficient to cause cirrhosis and HCC in a clinically relevant way. Furthermore, pathological polyploidization induced by hepatic loss of PRMT5 promotes liver cirrhosis and hepatic tumorigenesis in aged liver. The loss of PRMT5 leads to hyper-accumulation of P21 and endoreplication-dependent formation of pathological mono-nuclear polyploid hepatocytes. PRMT5 and symmetric dimethylation at histone H4 arginine 3 (H4R3me2s) directly associate with chromatin of P21 to suppress its transcription. More importantly, loss of P21 rescues the pathological mono-nuclear polyploidy and prevents PRMT5-deficiency-induced liver cirrhosis and HCC. Thus, our results indicate that PRMT5-mediated symmetric dimethylation at histone H4 arginine 3 (H4R3me2s) is crucial for preventing pathological polyploidization, liver cirrhosis and tumorigenesis in mouse liver.
Collapse
Affiliation(s)
- Jincheng Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiang Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daoshan Zheng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuling Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mei Mei
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shilai Bao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
36
|
Molano-Fernández M, Hickson ID, Herranz H. Cyclin E overexpression in the Drosophila accessory gland induces tissue dysplasia. Front Cell Dev Biol 2023; 10:992253. [PMID: 36704199 PMCID: PMC9871066 DOI: 10.3389/fcell.2022.992253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
The regulation of the cell division cycle is governed by a complex network of factors that together ensure that growing or proliferating cells maintain a stable genome. Defects in this system can lead to genomic instability that can affect tissue homeostasis and thus compromise human health. Variations in ploidy and cell heterogeneity are observed frequently in human cancers. Here, we examine the consequences of upregulating the cell cycle regulator Cyclin E in the Drosophila melanogaster male accessory gland. The accessory gland is the functional analog of the human prostate. This organ is composed of a postmitotic epithelium that is emerging as a powerful in vivo system for modelling different aspects of tumor initiation and progression. We show that Cyclin E upregulation in this model is sufficient to drive tissue dysplasia. Cyclin E overexpression drives endoreplication and affects DNA integrity, which results in heterogeneous nuclear and cellular composition and variable degrees of DNA damage. We present evidence showing that, despite the presence of genotoxic stress, those cells are resistant to apoptosis and thus defective cells are not eliminated from the tissue. We also show that Cyclin E-expressing cells in the accessory gland display mitochondrial DNA aggregates that colocalize with Cyclin E protein. Together, the findings presented here show that Cyclin E upregulation in postmitotic cells of the accessory gland organ causes cellular defects such as genomic instability and mitochondrial defects, eventually leading to tissue dysplasia. This study highlights novel mechanisms by which Cyclin E might contribute to disease initiation and progression.
Collapse
Affiliation(s)
- Maria Molano-Fernández
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ian D. Hickson
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark,Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Héctor Herranz
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark,*Correspondence: Héctor Herranz,
| |
Collapse
|
37
|
Gilgenkrantz H. [The liver remains a young organ even in old age !]. Med Sci (Paris) 2022; 38:864-866. [PMID: 36448888 DOI: 10.1051/medsci/2022137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Affiliation(s)
- Hélène Gilgenkrantz
- Centre de recherche sur l'inflammation, Inserm U1149, Faculté de médecine Bichat, Paris, France
| |
Collapse
|
38
|
Moreno E, Matondo AB, Bongiovanni L, van de Lest CHA, Molenaar MR, Toussaint MJM, van Essen SC, Houweling M, Helms JB, Westendorp B, de Bruin A. Inhibition of polyploidization in Pten-deficient livers reduces steatosis. Liver Int 2022; 42:2442-2452. [PMID: 35924448 PMCID: PMC9826152 DOI: 10.1111/liv.15384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/23/2022] [Accepted: 07/24/2022] [Indexed: 01/11/2023]
Abstract
The tumour suppressor PTEN is a negative regulator of the PI3K/AKT signalling pathway. Liver-specific deletion of Pten in mice results in the hyper-activation PI3K/AKT signalling accompanied by enhanced genome duplication (polyploidization), marked lipid accumulation (steatosis) and formation of hepatocellular carcinomas. However, it is unknown whether polyploidization in this model has an impact on the development of steatosis and the progression towards liver cancer. Here, we used a liver-specific conditional knockout approach to delete Pten in combination with deletion of E2f7/8, known key inducers of polyploidization. As expected, Pten deletion caused severe steatosis and liver tumours accompanied by enhanced polyploidization. Additional deletion of E2f7/8 inhibited polyploidization, alleviated Pten-induced steatosis without affecting lipid species composition and accelerated liver tumour progression. Global transcriptomic analysis showed that inhibition of polyploidization in Pten-deficient livers resulted in reduced expression of genes involved in energy metabolism, including PPAR-gamma signalling. However, we find no evidence that deregulated genes in Pten-deficient livers are direct transcriptional targets of E2F7/8, supporting that reduction in steatosis and progression towards liver cancer are likely consequences of inhibiting polyploidization. Lastly, flow cytometry and image analysis on isolated primary wildtype mouse hepatocytes provided further support that polyploid cells can accumulate more lipid droplets than diploid hepatocytes. Collectively, we show that polyploidization promotes steatosis and function as an important barrier against liver tumour progression in Pten-deficient livers.
Collapse
Affiliation(s)
- Eva Moreno
- Departments of Biomolecular Health Sciences, Division Cell Biology, Metabolism & Cancer, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Augustine B. Matondo
- Departments of Biomolecular Health Sciences, Division Cell Biology, Metabolism & Cancer, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Laura Bongiovanni
- Departments of Biomolecular Health Sciences, Division Cell Biology, Metabolism & Cancer, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Chris H. A. van de Lest
- Departments of Biomolecular Health Sciences, Division Cell Biology, Metabolism & Cancer, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Martijn R. Molenaar
- Departments of Biomolecular Health Sciences, Division Cell Biology, Metabolism & Cancer, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Mathilda J. M. Toussaint
- Departments of Biomolecular Health Sciences, Division Cell Biology, Metabolism & Cancer, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Saskia C. van Essen
- Departments of Biomolecular Health Sciences, Division Cell Biology, Metabolism & Cancer, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Martin Houweling
- Departments of Biomolecular Health Sciences, Division Cell Biology, Metabolism & Cancer, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - J. Bernd Helms
- Departments of Biomolecular Health Sciences, Division Cell Biology, Metabolism & Cancer, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Bart Westendorp
- Departments of Biomolecular Health Sciences, Division Cell Biology, Metabolism & Cancer, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Alain de Bruin
- Departments of Biomolecular Health Sciences, Division Cell Biology, Metabolism & Cancer, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands,Pediatrics, Division Molecular GeneticsUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| |
Collapse
|
39
|
The Effect of Circumscribed Exposure to the Pan-Aurora Kinase Inhibitor VX-680 on Proliferating Euploid Cells. Int J Mol Sci 2022; 23:ijms232012104. [PMID: 36292957 PMCID: PMC9603438 DOI: 10.3390/ijms232012104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 12/05/2022] Open
Abstract
Small molecule inhibitors of aurora kinases are currently being investigated in oncology clinical trials. The long-term effects of these inhibitors on proliferating euploid cells have not been adequately studied. We examined the effect of the reversible pan-aurora kinase inhibitor VX-680 on p53-competent human euploid cells. Circumscribed treatment with VX-680 blocked cytokinesis and arrested cells in G1 or a G1-like status. Approximately 70% of proliferatively arrested cells had 4N DNA content and abnormal nuclei. The remaining 30% of cells possessed 2N DNA content and normal nuclei. The proliferative arrest was not due to the activation of the tumor suppressor Rb and was instead associated with rapid induction of the p53–p21 pathway and p16. The induction was particularly evident in cells with nuclear abnormalities but was independent of activation of the DNA damage response. All of these effects were correlated with the potent inhibition of aurora kinase B. After release from VX-680, the cells with normal nuclei robustly resumed proliferation whereas the cells with abnormal nuclei underwent senescence. Irrespective of their nuclear morphology or DNA content, cells pre-treated with VX-680 failed to grow in soft agar or form tumors in mice. Our findings indicate that an intermittent treatment strategy might minimize the on-target side effects of Aurora Kinase B (AURKB) inhibitory therapies. The strategy allows a significant fraction of dividing normal cells to resume proliferation.
Collapse
|
40
|
Matsumoto T. Implications of Polyploidy and Ploidy Alterations in Hepatocytes in Liver Injuries and Cancers. Int J Mol Sci 2022; 23:ijms23169409. [PMID: 36012671 PMCID: PMC9409051 DOI: 10.3390/ijms23169409] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Polyploidy, a condition in which more than two sets of chromosomes are present in a cell, is a characteristic feature of hepatocytes. A significant number of hepatocytes physiologically undergo polyploidization at a young age. Polyploidization of hepatocytes is enhanced with age and in a diseased liver. It is worth noting that polyploid hepatocytes can proliferate, in marked contrast to other types of polyploid cells, such as megakaryocytes and cardiac myocytes. Polyploid hepatocytes divide to maintain normal liver homeostasis and play a role in the regeneration of the damaged liver. Furthermore, polyploid hepatocytes have been shown to dynamically reduce ploidy during liver regeneration. Although it is still unclear why hepatocytes undergo polyploidization, accumulating evidence has revealed that alterations in the ploidy in hepatocytes are involved in the pathophysiology of liver cirrhosis and carcinogenesis. This review discusses the significance of hepatocyte ploidy in physiological liver function, liver injury, and liver cancer.
Collapse
Affiliation(s)
- Tomonori Matsumoto
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
41
|
Sladky VC, Akbari H, Tapias-Gomez D, Evans LT, Drown CG, Strong MA, LoMastro GM, Larman T, Holland AJ. Centriole signaling restricts hepatocyte ploidy to maintain liver integrity. Genes Dev 2022; 36:gad.349727.122. [PMID: 35981754 PMCID: PMC9480857 DOI: 10.1101/gad.349727.122] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/27/2022] [Indexed: 01/03/2023]
Abstract
Hepatocyte polyploidization is a tightly controlled process that is initiated at weaning and increases with age. The proliferation of polyploid hepatocytes in vivo is restricted by the PIDDosome-P53 axis, but how this pathway is triggered remains unclear. Given that increased hepatocyte ploidy protects against malignant transformation, the evolutionary driver that sets the upper limit for hepatocyte ploidy remains unknown. Here we show that hepatocytes accumulate centrioles during cycles of polyploidization in vivo. The presence of excess mature centrioles containing ANKRD26 was required to activate the PIDDosome in polyploid cells. As a result, mice lacking centrioles in the liver or ANKRD26 exhibited increased hepatocyte ploidy. Under normal homeostatic conditions, this increase in liver ploidy did not impact organ function. However, in response to chronic liver injury, blocking centriole-mediated ploidy control leads to a massive increase in hepatocyte polyploidization, severe liver damage, and impaired liver function. These results show that hyperpolyploidization sensitizes the liver to injury, posing a trade-off for the cancer-protective effect of increased hepatocyte ploidy. Our results may have important implications for unscheduled polyploidization that frequently occurs in human patients with chronic liver disease.
Collapse
Affiliation(s)
- Valentina C Sladky
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Hanan Akbari
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Daniel Tapias-Gomez
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Lauren T Evans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Chelsea G Drown
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Margaret A Strong
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Gina M LoMastro
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Tatianna Larman
- Divison of Gastrointestinal and Liver Pathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
42
|
de Medeiros G, Ortiz R, Strnad P, Boni A, Moos F, Repina N, Challet Meylan L, Maurer F, Liberali P. Multiscale light-sheet organoid imaging framework. Nat Commun 2022; 13:4864. [PMID: 35982061 PMCID: PMC9388485 DOI: 10.1038/s41467-022-32465-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/02/2022] [Indexed: 12/03/2022] Open
Abstract
Organoids provide an accessible in vitro system to mimic the dynamics of tissue regeneration and development. However, long-term live-imaging of organoids remains challenging. Here we present an experimental and image-processing framework capable of turning long-term light-sheet imaging of intestinal organoids into digital organoids. The framework combines specific imaging optimization combined with data processing via deep learning techniques to segment single organoids, their lumen, cells and nuclei in 3D over long periods of time. By linking lineage trees with corresponding 3D segmentation meshes for each organoid, the extracted information is visualized using a web-based "Digital Organoid Viewer" tool allowing combined understanding of the multivariate and multiscale data. We also show backtracking of cells of interest, providing detailed information about their history within entire organoid contexts. Furthermore, we show cytokinesis failure of regenerative cells and that these cells never reside in the intestinal crypt, hinting at a tissue scale control on cellular fidelity.
Collapse
Affiliation(s)
- Gustavo de Medeiros
- Friedrich Miescher Institute for Biomedical Research (FMI) Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Raphael Ortiz
- Friedrich Miescher Institute for Biomedical Research (FMI) Maulbeerstrasse 66, 4058, Basel, Switzerland
- Disney Research Studios, Stampfenbachstrasse 48, 8006, Zürich, Switzerland
| | - Petr Strnad
- Friedrich Miescher Institute for Biomedical Research (FMI) Maulbeerstrasse 66, 4058, Basel, Switzerland.
- Viventis Microscopy Sàrl, EPFL Innovation Park, Building C, 1015, Lausanne, Switzerland.
| | - Andrea Boni
- Friedrich Miescher Institute for Biomedical Research (FMI) Maulbeerstrasse 66, 4058, Basel, Switzerland
- Viventis Microscopy Sàrl, EPFL Innovation Park, Building C, 1015, Lausanne, Switzerland
| | - Franziska Moos
- Friedrich Miescher Institute for Biomedical Research (FMI) Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Nicole Repina
- Friedrich Miescher Institute for Biomedical Research (FMI) Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Ludivine Challet Meylan
- Friedrich Miescher Institute for Biomedical Research (FMI) Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Francisca Maurer
- Friedrich Miescher Institute for Biomedical Research (FMI) Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research (FMI) Maulbeerstrasse 66, 4058, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
43
|
Pan Y, Wei M, Gong T. Ultrasound microbubble-mediated delivery of ANLN silencing-repressed EZH2 expression alleviates cervical cancer progression. Tissue Cell 2022; 77:101843. [PMID: 35679682 DOI: 10.1016/j.tice.2022.101843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
Ultrasound-targeted microbubble destruction (UTMD) is a new gene therapy method that uses ultrasound and microbubbles carrying target genes to achieve gene transfection. However, whether UTMD-mediated ANLN silencing transfection helps to restrain the growth of cervical cancer (CC) is obscure. ANLN level in tumor tissues, adjacent tissues, and cells was tested using the database, qRT-PCR, and western blot. The optimal concentration of SF6 was determined by MTT assay. Mechanical index (MI) was selected by flow cytometry. After transfection with liposome or UTMD-mediated liposome, cell function experiments, qRT-PCR, and western blot were employed to assess CC cell biological behaviors and EZH2 level. Epithelial-mesenchymal transition (EMT)-related marker and apoptosis-related marker expressions were examined utilizing qRT-PCR and western blot. 10% SF6 and MI of 0.28 were selected for subsequent tests. ANLN was highly expressed in CC and cells. The transfection efficiency of the UTMD-siANLN group was higher than that of the L-siANLN group. Moreover, the repression of UTMD-siANLN on CC cell malignant phenotypes was stronger than L-siANLN. UTMD-siANLN attenuated EZH2 expression in CC cells. The modulatory role of UTMD-siANLN on EMT- and apoptosis-related markers was reversed by EZH2 overexpression. UTMD can improve the efficiency of siANLN transfection into CC cells to induce suppression of CC cell malignant phenotypes, which may become a new target of gene therapy for CC.
Collapse
Affiliation(s)
- Yanyan Pan
- Ultrasonic Diagnosis Center, Northwest Women's and Children's Hospital, Xi'an 710061, China
| | - Min Wei
- Department of Ultrasonic, Shanghai Rici Women's and Children's Hospital, Shanghai 200040, China
| | - Ting Gong
- Ultrasonic Diagnosis Center, Northwest Women's and Children's Hospital, Xi'an 710061, China.
| |
Collapse
|
44
|
Wnt signaling regulates hepatocyte cell division by a transcriptional repressor cascade. Proc Natl Acad Sci U S A 2022; 119:e2203849119. [PMID: 35867815 PMCID: PMC9335208 DOI: 10.1073/pnas.2203849119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
As a general model for cell cycle control, repressors keep cells quiescent until growth signals remove the inhibition. For S phase, this is exemplified by the Retinoblastoma (RB) protein and its inactivation. It was unknown whether similar mechanisms operate in the M phase. The Wnt signaling pathway is an important regulator of cell proliferation. Here, we find that Wnt induces expression of the transcription factor Tbx3, which in turn represses mitotic inhibitors E2f7 and E2f8 to permit mitotic progression. Such a cascade of transcriptional repressors may be a general mechanism for cell division control. These findings have implications for tissue homeostasis and disease, as the function for Wnt signaling in mitosis is relevant to its widespread role in stem cells and cancer. Cell proliferation is tightly controlled by inhibitors that block cell cycle progression until growth signals relieve this inhibition, allowing cells to divide. In several tissues, including the liver, cell proliferation is inhibited at mitosis by the transcriptional repressors E2F7 and E2F8, leading to formation of polyploid cells. Whether growth factors promote mitosis and cell cycle progression by relieving the E2F7/E2F8-mediated inhibition is unknown. We report here on a mechanism of cell division control in the postnatal liver, in which Wnt/β-catenin signaling maintains active hepatocyte cell division through Tbx3, a Wnt target gene. The TBX3 protein directly represses transcription of E2f7 and E2f8, thereby promoting mitosis. This cascade of sequential transcriptional repressors, initiated by Wnt signals, provides a paradigm for exploring how commonly active developmental signals impact cell cycle completion.
Collapse
|
45
|
Heinke P, Rost F, Rode J, Trus P, Simonova I, Lázár E, Feddema J, Welsch T, Alkass K, Salehpour M, Zimmermann A, Seehofer D, Possnert G, Damm G, Druid H, Brusch L, Bergmann O. Diploid hepatocytes drive physiological liver renewal in adult humans. Cell Syst 2022; 13:499-507.e12. [PMID: 35649419 DOI: 10.1016/j.cels.2022.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/19/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
Physiological liver cell replacement is central to maintaining the organ's high metabolic activity, although its characteristics are difficult to study in humans. Using retrospective radiocarbon (14C) birth dating of cells, we report that human hepatocytes show continuous and lifelong turnover, allowing the liver to remain a young organ (average age <3 years). Hepatocyte renewal is highly dependent on the ploidy level. Diploid hepatocytes show more than 7-fold higher annual birth rates than polyploid hepatocytes. These observations support the view that physiological liver cell renewal in humans is mainly dependent on diploid hepatocytes, whereas polyploid cells are compromised in their ability to divide. Moreover, cellular transitions between diploid and polyploid hepatocytes are limited under homeostatic conditions. With these findings, we present an integrated model of homeostatic liver cell generation in humans that provides fundamental insights into liver cell turnover dynamics.
Collapse
Affiliation(s)
- Paula Heinke
- Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
| | - Fabian Rost
- Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany; Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany; Centre for Information Services and High Performance Computing, Technische Universität Dresden, 01187 Dresden, Germany
| | - Julian Rode
- Centre for Information Services and High Performance Computing, Technische Universität Dresden, 01187 Dresden, Germany
| | - Palina Trus
- Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
| | - Irina Simonova
- Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
| | - Enikő Lázár
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Joshua Feddema
- Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
| | - Thilo Welsch
- Visceral-, Thoracic- and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Kanar Alkass
- Department of Oncology-Pathology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Mehran Salehpour
- Department of Physics and Astronomy, Applied Nuclear Physics, Ion Physics, Uppsala University, 75120 Uppsala, Sweden
| | - Andrea Zimmermann
- Department of Hepatobiliary Surgery and Visceral Transplantation, University of Leipzig, 04103 Leipzig, Germany; Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany
| | - Daniel Seehofer
- Department of Hepatobiliary Surgery and Visceral Transplantation, University of Leipzig, 04103 Leipzig, Germany; Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany
| | - Göran Possnert
- Department of Physics and Astronomy, Applied Nuclear Physics, Ion Physics, Uppsala University, 75120 Uppsala, Sweden
| | - Georg Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University of Leipzig, 04103 Leipzig, Germany; Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany
| | - Henrik Druid
- Department of Oncology-Pathology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Lutz Brusch
- Centre for Information Services and High Performance Computing, Technische Universität Dresden, 01187 Dresden, Germany
| | - Olaf Bergmann
- Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany; Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
46
|
Chen J, Li Z, Jia X, Song W, Wu H, Zhu H, Xuan Z, Du Y, Zhu X, Song G, Dong H, Bian S, Wang S, Zhao Y, Xie H, Zheng S, Song P. Targeting anillin inhibits tumorigenesis and tumor growth in hepatocellular carcinoma via impairing cytokinesis fidelity. Oncogene 2022; 41:3118-3130. [PMID: 35477750 DOI: 10.1038/s41388-022-02274-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/21/2022] [Accepted: 03/08/2022] [Indexed: 11/09/2022]
Abstract
Targeting cytokinesis can suppress tumor growth by blocking cell division and promoting apoptosis. We aimed to characterize key cytokinesis regulator in hepatocellular carcinoma (HCC) progression, providing insights into identifying promising HCC therapeutic targets. The unbiased bioinformatic screening identified Anillin actin binding protein (ANLN) as a critical cytokinesis regulator involved in HCC development. Functional assay demonstrated that knockdown of ANLN inhibited HCC growth by inducing cytokinesis failure and DNA damage, leading to multinucleation and mitotic catastrophe. Mechanistically, ANLN acts as a scaffold to strengthen interaction between RACGAP1 and PLK1. ANLN promotes PLK1-mediated RACGAP1 phosphorylation and RhoA activation to ensure cytokinesis fidelity. To explore the function of ANLN in HCC tumorigenesis, we hydrodynamically transfected c-Myc and NRAS plasmids into Anln+/+, Anln+/-, and Anln-/- mice through tail vein injection. Hepatic Anln ablation significantly impaired c-Myc/NRAS-driven hepatocarcinogenesis. Moreover, enhanced hepatic polyploidization was observed in Anln ablation mice, manifesting as increasing proportion of cellular and nuclear polyploidy. Clinically, ANLN is upregulated in human HCC tissues and high level of ANLN is correlated with poor patients' prognosis. Additionally, the proportion of cellular polyploidy decreases during HCC progression and ANLN level is significantly correlated with cellular polyploidy proportion in human HCC samples. In conclusion, ANLN is identified as a key cytokinesis regulator contributing to HCC initiation and progression. Our findings revealed a novel mechanism of ANLN in the regulation of cytokinesis to promote HCC tumorigenesis and growth, suggesting targeting ANLN to inhibit cytokinesis may be a promising therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Jian Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, China
| | - Zequn Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, China
| | - Xing Jia
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, China
| | - Wenfeng Song
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, China
| | - Hao Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, China
| | - Hai Zhu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, China
| | - Zefeng Xuan
- Division of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yehui Du
- Division of Thyroid Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xingxin Zhu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, China
| | - Guangyuan Song
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, China
| | - Haijiang Dong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, China
| | - Suchen Bian
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, China
| | - Shuo Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongchao Zhao
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyang Xie
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China. .,Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China. .,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, China.
| | - Penghong Song
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China. .,Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China. .,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
47
|
Zhang CZ, Pellman D. Cancer Genomic Rearrangements and Copy Number Alterations from Errors in Cell Division. ANNUAL REVIEW OF CANCER BIOLOGY 2022. [DOI: 10.1146/annurev-cancerbio-070620-094029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Analysis of cancer genomes has shown that a large fraction of chromosomal changes originate from catastrophic events including whole-genome duplication, chromothripsis, breakage-fusion-bridge cycles, and chromoplexy. Through sophisticated computational analysis of cancer genomes and experimental recapitulation of these catastrophic alterations, we have gained significant insights into the origin, mechanism, and evolutionary dynamics of cancer genome complexity. In this review, we summarize this progress and survey the major unresolved questions, with particular emphasis on the relative contributions of chromosome fragmentation and DNA replication errors to complex chromosomal alterations.
Collapse
Affiliation(s)
- Cheng-Zhong Zhang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biomedical Informatics, Blavatnik Institute of Harvard Medical School, Boston, Massachusetts, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - David Pellman
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Cell Biology, Blavatnik Institute of Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
48
|
Holczbauer Á, Wangensteen KJ, Shin S. Cellular origins of regenerating liver and hepatocellular carcinoma. JHEP Rep 2022; 4:100416. [PMID: 35243280 PMCID: PMC8873941 DOI: 10.1016/j.jhepr.2021.100416] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant primary cancer arising from the liver and is one of the major causes of cancer-related mortality worldwide. The cellular origin of HCC has been a topic of great interest due to conflicting findings regarding whether it originates in hepatocytes, biliary cells, or facultative stem cells. These cell types all undergo changes during liver injury, and there is controversy about their contribution to regenerative responses in the liver. Most HCCs emerge in the setting of chronic liver injury from viral hepatitis, fatty liver disease, alcohol, and environmental exposures. The injuries are marked by liver parenchymal changes such as hepatocyte regenerative nodules, biliary duct cellular changes, expansion of myofibroblasts that cause fibrosis and cirrhosis, and inflammatory cell infiltration, all of which may contribute to carcinogenesis. Addressing the cellular origin of HCC is the key to identifying the earliest events that trigger it. Herein, we review data on the cells of origin in regenerating liver and HCC and the implications of these findings for prevention and treatment. We also review the origins of childhood liver cancer and other rare cancers of the liver.
Collapse
|
49
|
Polyploidy as a Fundamental Phenomenon in Evolution, Development, Adaptation and Diseases. Int J Mol Sci 2022; 23:ijms23073542. [PMID: 35408902 PMCID: PMC8998937 DOI: 10.3390/ijms23073542] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/02/2023] Open
Abstract
DNA replication during cell proliferation is 'vertical' copying, which reproduces an initial amount of genetic information. Polyploidy, which results from whole-genome duplication, is a fundamental complement to vertical copying. Both organismal and cell polyploidy can emerge via premature cell cycle exit or via cell-cell fusion, the latter giving rise to polyploid hybrid organisms and epigenetic hybrids of somatic cells. Polyploidy-related increase in biological plasticity, adaptation, and stress resistance manifests in evolution, development, regeneration, aging, oncogenesis, and cardiovascular diseases. Despite the prevalence in nature and importance for medicine, agri- and aquaculture, biological processes and epigenetic mechanisms underlying these fundamental features largely remain unknown. The evolutionarily conserved features of polyploidy include activation of transcription, response to stress, DNA damage and hypoxia, and induction of programs of morphogenesis, unicellularity, and longevity, suggesting that these common features confer adaptive plasticity, viability, and stress resistance to polyploid cells and organisms. By increasing cell viability, polyploidization can provide survival under stressful conditions where diploid cells cannot survive. However, in somatic cells it occurs at the expense of specific function, thus promoting developmental programming of adult cardiovascular diseases and increasing the risk of cancer. Notably, genes arising via evolutionary polyploidization are heavily involved in cancer and other diseases. Ploidy-related changes of gene expression presumably originate from chromatin modifications and the derepression of bivalent genes. The provided evidence elucidates the role of polyploidy in evolution, development, aging, and carcinogenesis, and may contribute to the development of new strategies for promoting regeneration and preventing cardiovascular diseases and cancer.
Collapse
|
50
|
In vivo CRISPR screening identifies BAZ2 chromatin remodelers as druggable regulators of mammalian liver regeneration. Cell Stem Cell 2022; 29:372-385.e8. [PMID: 35090595 PMCID: PMC8897233 DOI: 10.1016/j.stem.2022.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 09/17/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022]
Abstract
Identifying new pathways that regulate mammalian regeneration is challenging due to the paucity of in vivo screening approaches. We employed pooled CRISPR knockout and activation screening in the regenerating liver to evaluate 165 chromatin regulatory proteins. Both screens identified the imitation-SWI chromatin remodeling components Baz2a and Baz2b, not previously implicated in regeneration. In vivo sgRNA, siRNA, and knockout strategies against either paralog confirmed increased regeneration. Distinct BAZ2-specific bromodomain inhibitors, GSK2801 and BAZ2-ICR, resulted in accelerated liver healing after diverse injuries. Inhibitor-treated mice also exhibited improved healing in an inflammatory bowel disease model, suggesting multi-tissue applicability. Transcriptomics on regenerating livers showed increases in ribosomal and cell cycle mRNAs. Surprisingly, CRISPRa screening to define mechanisms showed that overproducing Rpl10a or Rpl24 was sufficient to drive regeneration, whereas Rpl24 haploinsufficiency was rate limiting for BAZ2 inhibition-mediated regeneration. The discovery of regenerative roles for imitation-SWI components provides immediate strategies to enhance tissue repair.
Collapse
|