1
|
Namba T, Sugimura K, Ishihara S. In vivo assessment of kinematic relationships for epithelial morphogenesis. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2025; 48:31. [PMID: 40517354 PMCID: PMC12167722 DOI: 10.1140/epje/s10189-025-00495-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 05/22/2025] [Indexed: 06/18/2025]
Abstract
Tissue growth and deformation result from the combined effects of various cellular events, including cell shape change, cell rearrangement, cell division, and cell death. Resolving and integrating these cellular events is essential for understanding the coordination of tissue-scale growth and deformation by individual cellular behaviors that are critical for morphogenesis, wound healing, and other collective cellular phenomena. For epithelial tissues composed of tightly connected cells, the texture tensor method provides a unified framework for quantifying tissue and cell strains by tracking individual cells in live imaging data. The corresponding kinematic relationships have been introduced in a hydrodynamic model that we previously reported. In this study, we quantitatively evaluated the kinematic equations proposed in the hydrodynamic model using experimental data from a growing Drosophila wing. To accomplish this, we introduced modified definitions of the texture tensor and confirmed that one of these modifications more accurately represents approximated cellular shapes without relying on ad hoc scaling factors. By utilizing the modified tensor, we demonstrated the compatibility of the strain rate tensors and the accuracy of both the kinematic and cell number density equations. These results cross-validate the modified texture analysis and the hydrodynamic model. Furthermore, the precision of the kinematic relationships achieved in this study provides a robust foundation for more advanced integration of modeling and experiment.
Collapse
Affiliation(s)
- Toshinori Namba
- Department of Integrated Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
- Universal Biology Institute, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kaoru Sugimura
- Universal Biology Institute, The University of Tokyo, Tokyo, 113-0033, Japan.
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0032, Japan.
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8561, Japan.
| | - Shuji Ishihara
- Department of Integrated Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan.
- Universal Biology Institute, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
2
|
Rätze MAK, Enserink LNFL, Ishiyama N, van Kempen S, Veltman CHJ, Nijman IJ, Haakma WE, Caldas C, Bernards R, van Diest PJ, Christgen M, Koorman T, Derksen PWB. Afadin loss induces breast cancer metastasis through destabilisation of E-cadherin to F-actin linkage. J Pathol 2025; 266:26-39. [PMID: 40026293 PMCID: PMC11985701 DOI: 10.1002/path.6394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/18/2024] [Accepted: 12/16/2024] [Indexed: 03/05/2025]
Abstract
Afadin is a multimodal scaffolding protein with essential functions in cell-cell adhesion. Although its loss of expression has been linked to breast cancer invasion and metastasis, the underlying mechanisms driving tumour progression upon mutational Afadin (AFDN) loss in breast cancers remains unclear. In the current study we identified a somatic frameshift AFDN mutation (p.Lys630fs) in an invasive breast cancer sample that coincides with loss of Afadin protein expression. Functional studies in E-cadherin-expressing breast cancer cells show that Afadin loss leads to immature and aberrant adherens junction (AJ) formation. The lack of AJ maturation results in a noncohesive cellular phenotype accompanied by Actomyosin-dependent anoikis resistance, which are classical progression hallmarks of single-cell breast cancer invasion. Reconstitution experiments using Afadin truncates show that proper F-actin organisation and epithelial cell-cell adhesion critically depend on the Coiled-Coil domain of Afadin but not on the designated C-terminal F-actin binding domain. Mouse xenograft experiments based on cell lines and primary patient-derived breast cancer organoids demonstrate that Afadin loss induces single-cell lobular-type invasion phenotypes and overt dissemination to the lungs and the peritoneum. In short, Afadin is a metastasis suppressor for breast cancer through stabilisation and maturation of a mechanical E-cadherin to F-actin outside-in link. © 2025 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Max AK Rätze
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Lotte NFL Enserink
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Sven van Kempen
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Isaac J Nijman
- Center for Molecular Medicine, Cancer Genomics Netherlands, Department of GeneticsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Wisse E Haakma
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Carlos Caldas
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
- Department of OncologyUniversity of CambridgeCambridgeUK
| | - René Bernards
- Division of Molecular Carcinogenesis, Center for Biomedical Genetics and Cancer Genomics CentreThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Paul J van Diest
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Thijs Koorman
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Patrick WB Derksen
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
3
|
Matsuda M, Sokol SY. Prickle2 regulates apical junction remodeling and tissue fluidity during vertebrate neurulation. J Cell Biol 2025; 224:e202407025. [PMID: 39951022 PMCID: PMC11827586 DOI: 10.1083/jcb.202407025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/29/2024] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
The process of folding the flat neuroectoderm into an elongated neural tube depends on tissue fluidity, a property that allows epithelial deformation while preserving tissue integrity. Neural tube folding also requires the planar cell polarity (PCP) pathway. Here, we report that Prickle2 (Pk2), a core PCP component, increases tissue fluidity by promoting the remodeling of apical junctions (AJs) in Xenopus embryos. This Pk2 activity is mediated by the unique evolutionarily conserved Ser/Thr-rich region (STR) in the carboxyterminal half of the protein. Mechanistically, the effects of Pk2 require Rac1 and are accompanied by increased dynamics of C-cadherin and tricellular junctions, the hotspots of AJ remodeling. Notably, Pk2 depletion leads to the accumulation of mediolaterally oriented cells in the neuroectoderm, whereas the overexpression of Pk2 or Pk1 containing the Pk2-derived STR promotes cell elongation along the anteroposterior axis. We propose that Pk2-dependent regulation of tissue fluidity contributes to anteroposterior tissue elongation in response to extrinsic cues.
Collapse
Affiliation(s)
- Miho Matsuda
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sergei Y. Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
4
|
Tlili S, Shagirov M, Zhang S, Saunders TE. Interfacial energy constraints are sufficient to align cells over large distances. Biophys J 2025; 124:1011-1023. [PMID: 40081366 PMCID: PMC11947472 DOI: 10.1016/j.bpj.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 01/13/2025] [Accepted: 02/12/2025] [Indexed: 03/16/2025] Open
Abstract
During development and wound healing, cells need to form long-range ordered structures to ensure precise formation of organs and repair damage. This requires cells to locate specific partner cells to which to adhere. How such cell matching reliably happens is an open problem, particularly in the presence of biological variability. Here, we use an equilibrium energy model to simulate how cell matching can occur with subcellular precision. A single parameter-encapsulating the competition between selective cell adhesion and cell compressibility-can reproduce experimental observations of cell alignment in the Drosophila embryonic heart. This demonstrates that adhesive differences between cells (in the case of the heart, mediated by filopodia interactions) are sufficient to drive cell matching without requiring cell rearrangements. The biophysical model can explain observed matching defects in mutant conditions and when there is significant biological variability. Using a dynamic vertex model, we demonstrate the existence of an optimal range of effective cell rigidities for efficient matching. Overall, this work shows that equilibrium energy considerations are consistent with observed cell matching in cardioblasts and has potential application to other systems, such as neuron connections and wound repair.
Collapse
Affiliation(s)
- Sham Tlili
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore; Aix-Marseille University, CNRS, UMR 7288, IBDM, Turing Center for Living Systems, Marseille, France
| | - Murat Shagirov
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Shaobo Zhang
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Timothy E Saunders
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Institute of Molecular and Cell Biology, A(∗)Star, Singapore, Singapore; Warwick Medical School, University of Warwick, Coventry, UK.
| |
Collapse
|
5
|
Maupérin M, Sun Y, Glandorf T, Oswald TA, Klatt N, Geil B, Mutero-Maeda A, Méan I, Jond L, Janshoff A, Yan J, Citi S. A feedback circuitry involving γ-actin, β-actin and nonmuscle myosin-2 A controls tight junction and apical cortex mechanics. Nat Commun 2025; 16:2514. [PMID: 40082413 PMCID: PMC11906862 DOI: 10.1038/s41467-025-57428-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 02/21/2025] [Indexed: 03/16/2025] Open
Abstract
Cytoplasmic β- and γ-actin isoforms, along with non-muscle myosin 2 isoforms, are tightly regulated in epithelial cells and compose the actomyosin cytoskeleton at the apical junctional complex. However, their specific role in regulating the mechanics of the membrane cortex and the organization of junctions, and which biomechanical circuitries modulate their expression remain poorly understood. Here, we show that γ-actin depletion in MDCK and other epithelial cells results in increased expression and junctional accumulation of β-actin and increased tight junction membrane tortuosity, both dependent on nonmuscle myosin-2A upregulation. The knock-out of γ-actin also decreases apical membrane stiffness and increases dynamic exchange of the cytoplasmic tight junction proteins like ZO-1 and cingulin, without affecting tight junction organization and barrier function. In summary, our findings uncover a biomechanical circuitry linking γ-actin to β-actin expression through nonmuscle myosin-2A and reveal γ-actin as a key regulator of tight junction and apical membrane cortex mechanics, and the dynamics of cytoskeleton-associated tight junction proteins in epithelial cells.
Collapse
Affiliation(s)
- Marine Maupérin
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Yuze Sun
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Thomas Glandorf
- Georg-August Universität, Institute for Physical Chemistry, Göttingen, Germany
| | - Tabea Anne Oswald
- Georg-August Universität, Institute for Organic and Biomolecular Chemistry, Göttingen, Germany
| | - Niklas Klatt
- Georg-August Universität, Institute for Physical Chemistry, Göttingen, Germany
| | - Burkhard Geil
- Georg-August Universität, Institute for Physical Chemistry, Göttingen, Germany
| | - Annick Mutero-Maeda
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Isabelle Méan
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Lionel Jond
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Andreas Janshoff
- Georg-August Universität, Institute for Physical Chemistry, Göttingen, Germany
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Sandra Citi
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
6
|
Oak ASW, Bagchi A, Brukman MJ, Toth J, Ford J, Zheng Y, Nace A, Yang R, Hsieh JC, Hayden JE, Ruthel G, Ray A, Kim E, Shenoy VB, Cotsarelis G. Wnt signaling modulates mechanotransduction in the epidermis to drive hair follicle regeneration. SCIENCE ADVANCES 2025; 11:eadq0638. [PMID: 39970220 PMCID: PMC11838001 DOI: 10.1126/sciadv.adq0638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 01/15/2025] [Indexed: 02/21/2025]
Abstract
Most wounds form scars without hair follicles. However, in the wound-induced hair neogenesis (WIHN) model of skin regeneration, wounds regenerate hair follicles if tissue rigidity is optimal. Although WIHN depends on Wnt signaling, whether Wnt performs a mechanoregulatory role that contributes to regeneration remains uncharacterized. Here, we demonstrate that Wnt signaling affects mechanosensitivity at both cellular and tissue levels to drive WIHN. Atomic force microscopy revealed an attenuated substrate rigidity response in epidermal but not dermal cells of healing wounds. Super-resolution microscopy and nanoneedle probing of intracellular compartments in live human keratinocytes revealed that Wnt-induced chromatin remodeling triggers a 10-fold drop in nuclear rigidity without jeopardizing the nucleocytoskeletal mechanical coupling. Mechanistically, Wnt signaling orchestrated a massive reorganization of actin architecture and recruited adherens junctions to generate a mechanical syncytium-a cohesive contractile unit with superior capacity for force coordination and collective durotaxis. Collectively, our findings unveil Wnt signaling's mechanoregulatory role that manipulates the machinery of mechanotransduction to drive regeneration.
Collapse
Affiliation(s)
- Allen S. W. Oak
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amrit Bagchi
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew J. Brukman
- Singh Center for Nanotechnology, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua Toth
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jamie Ford
- Singh Center for Nanotechnology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ying Zheng
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arben Nace
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruifeng Yang
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jen-Chih Hsieh
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Gordon Ruthel
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anisa Ray
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elaine Kim
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vivek B. Shenoy
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - George Cotsarelis
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Gong R, Reynolds MJ, Sun X, Alushin GM. Afadin mediates cadherin-catenin complex clustering on F-actin linked to cooperative binding and filament curvature. SCIENCE ADVANCES 2025; 11:eadu0989. [PMID: 39951520 PMCID: PMC11827635 DOI: 10.1126/sciadv.adu0989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025]
Abstract
The E-cadherin-β-catenin-αE-catenin (cadherin-catenin) complex couples the cytoskeletons of neighboring cells at adherens junctions (AJs) to mediate force transmission across epithelia. Mechanical force and auxiliary binding partners converge to stabilize the cadherin-catenin complex's inherently weak binding to actin filaments (F-actin) through unclear mechanisms. Here, we show that afadin's coiled-coil (CC) domain and vinculin synergistically enhance the cadherin-catenin complex's F-actin engagement. The cryo-electron microscopy (cryo-EM) structure of an E-cadherin-β-catenin-αE-catenin-vinculin-afadin-CC supra-complex bound to F-actin reveals that afadin-CC bridges adjacent αE-catenin actin-binding domains along the filament, stabilizing flexible αE-catenin segments implicated in mechanical regulation. These cooperative binding contacts promote the formation of supra-complex clusters along F-actin. Additionally, cryo-EM variability analysis links supra-complex binding along individual F-actin strands to nanoscale filament curvature, a deformation mode associated with cytoskeletal forces. Collectively, this work elucidates a mechanistic framework by which vinculin and afadin tune cadherin-catenin complex-cytoskeleton coupling to support AJ function across varying mechanical regimes.
Collapse
Affiliation(s)
- Rui Gong
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Matthew J. Reynolds
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Xiaoyu Sun
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Gregory M. Alushin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
8
|
Marafioti S, Veronese S, Pecorella C, Tavernese CF, Costantino S, Busoni M, Sbarbati A. Electromagnetic Fields, Electrical Stimulation, and Vacuum Simultaneously Applied for Major Burn Scars. Bioengineering (Basel) 2025; 12:179. [PMID: 40001698 PMCID: PMC11852087 DOI: 10.3390/bioengineering12020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/13/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Regeneration in the case of major burn subjects must involve tissue and structural regeneration, but also functional regeneration, as scars derived from burns often compromise motility. Electromagnetic fields and electrical stimulation may be a possible treatment for these cases, considering they cause a thermal effect and magneto-mechanical transduction first and selective tissue stimulation second. METHODS A case of a majorly burned woman with severe motor deficits, treated with electromagnetic fields and electrical stimulation in vacuum, associated with a personalized nutritional program, was described. The latter was necessary to favor weight loss with the preservation of the weakened structure. Ultrasonography, Doppler ultrasound, and body composition were measured. Moreover, postural evaluation was performed. RESULTS Immediately after the treatment, a restructuring of all tissue was seen. After 6 months, the tissue regeneration was evident, with neo-angiogenesis. From the functional point of view, her motility improved, and she stopped using a walker. CONCLUSIONS The combined therapy allows her to obtain unthinkable results in a short time. For this reason, it could become the elective treatment for major burn scars.
Collapse
Affiliation(s)
| | - Sheila Veronese
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, 37134 Verona, Italy;
| | | | | | | | - Maurizio Busoni
- School of Pharmaceutical and Health Product Sciences, Camerino University, 62032 Macerata, Italy
| | - Andrea Sbarbati
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, 37134 Verona, Italy;
| |
Collapse
|
9
|
Guo D, Yao B, Shao W, Zuo J, Chang Z, Shi J, Hu N, Bao S, Chen M, Fan X, Li X. The Critical Role of YAP/BMP/ID1 Axis on Simulated Microgravity-Induced Neural Tube Defects in Human Brain Organoids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410188. [PMID: 39656892 PMCID: PMC11792043 DOI: 10.1002/advs.202410188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/05/2024] [Indexed: 12/17/2024]
Abstract
Integrated biochemical and biophysical signals regulate embryonic development. Correct neural tube formation is critical for the development of central nervous system. However, the role of microgravity in neurodevelopment and its underlying molecular mechanisms remain unclear. In this study, the effects of stimulated microgravity (SMG) on the development of human brain organoids are investigated. SMG impairs N-cadherin-based adherens junction formation, leading to neural tube defects associated with dysregulated self-renewal capacity and neuroepithelial disorganization in human brain organoids. Bulk gene expression analyses reveal that SMG alters Hippo and BMP signaling in brain organoids. The neuropathological deficits in SMG-treated organoids can be rescued by regulating YAP/BMP/ID1 axis. Furthermore, sing-cell RNA sequencing data show that SMG results in perturbations in the number and function of neural stem and progenitor cell subpopulations. One of these subpopulations senses SMG cues and transmits BMP signals to the subpopulation responsible for tube morphogenesis, ultimately affecting the proliferating cell population. Finally, SMG intervention leads to persistent neurologic damage even after returning to normal gravity conditions. Collectively, this study reveals molecular and cellular abnormalities associated with SMG during human brain development, providing opportunities for countermeasures to maintain normal neurodevelopment in space.
Collapse
Affiliation(s)
- Di Guo
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjin300072China
- State Key Laboratory of Advanced Medical Materials and DevicesTianjin300072China
- Haihe Laboratory of Brain‐Computer Interaction and Human‐Machine IntegrationTianjin300072China
| | - Bin Yao
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjin300072China
- State Key Laboratory of Advanced Medical Materials and DevicesTianjin300072China
- Haihe Laboratory of Brain‐Computer Interaction and Human‐Machine IntegrationTianjin300072China
| | - Wen‐Wei Shao
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjin300072China
- State Key Laboratory of Advanced Medical Materials and DevicesTianjin300072China
- Haihe Laboratory of Brain‐Computer Interaction and Human‐Machine IntegrationTianjin300072China
| | - Jia‐Chen Zuo
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjin300072China
- State Key Laboratory of Advanced Medical Materials and DevicesTianjin300072China
- Haihe Laboratory of Brain‐Computer Interaction and Human‐Machine IntegrationTianjin300072China
| | - Zhe‐Han Chang
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjin300072China
- State Key Laboratory of Advanced Medical Materials and DevicesTianjin300072China
- Haihe Laboratory of Brain‐Computer Interaction and Human‐Machine IntegrationTianjin300072China
| | - Jian‐Xin Shi
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjin300072China
- State Key Laboratory of Advanced Medical Materials and DevicesTianjin300072China
- Haihe Laboratory of Brain‐Computer Interaction and Human‐Machine IntegrationTianjin300072China
| | - Nan Hu
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjin300072China
- State Key Laboratory of Advanced Medical Materials and DevicesTianjin300072China
- Haihe Laboratory of Brain‐Computer Interaction and Human‐Machine IntegrationTianjin300072China
| | - Shuang‐Qing Bao
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjin300072China
- State Key Laboratory of Advanced Medical Materials and DevicesTianjin300072China
- Haihe Laboratory of Brain‐Computer Interaction and Human‐Machine IntegrationTianjin300072China
| | - Meng‐Meng Chen
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjin300072China
- State Key Laboratory of Advanced Medical Materials and DevicesTianjin300072China
- Haihe Laboratory of Brain‐Computer Interaction and Human‐Machine IntegrationTianjin300072China
| | - Xiu Fan
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjin300072China
- State Key Laboratory of Advanced Medical Materials and DevicesTianjin300072China
- Haihe Laboratory of Brain‐Computer Interaction and Human‐Machine IntegrationTianjin300072China
| | - Xiao‐Hong Li
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjin300072China
- State Key Laboratory of Advanced Medical Materials and DevicesTianjin300072China
- Haihe Laboratory of Brain‐Computer Interaction and Human‐Machine IntegrationTianjin300072China
| |
Collapse
|
10
|
Zhang X, Liu H, Wan C, Li Y, Ren C, Lu J, Liu Y, Yang Y. Verteporfin combined with ROCK inhibitor promotes the restoration of corneal endothelial cell dysfunction in rats. Biochem Pharmacol 2025; 231:116641. [PMID: 39571917 DOI: 10.1016/j.bcp.2024.116641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/13/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Corneal endothelial cells (CECs) dysfunction frequently results in a hazy, edematous cornea due to corneal endothelial decompensation and is a major cause of corneal blindness. Drug interventions provide a less invasive alternative to corneal transplantation surgery. However, endothelial-to-mesenchymal transition (EndMT) limits CECs function. Rho-kinase (ROCK) inhibitors, shown in numerous studies to be an adjunctive therapy for CECs dysfunction, cannot completely reverse pathological EndMT caused by inflammatory environmental damage. Verteporfin (VP) is an inhibitor of Yes-associated protein (YAP) and has significant inhibitory effects on cell fibrosis and mesenchymal transition. Here, we explored VP's utility in mitigating EndMT during ROCK inhibitors treatment of corneal endothelial dysfunction. We surgically constructed a rat model of CECs injury and studied VP and ROCK inhibitors' effects on EndMT, cell proliferation, and corneal edema using RNA-Seq sequencing, immunofluorescence, optical coherence tomography, and qPCR. The results indicated that YAP expression in human fetal CECs was higher than in adults and decreased with age in rats. Moreover, YAP expression in human CECs was negatively correlated with functional genes, such as AQP1 and ATP1A1. VP effectively reversed EndMT and accelerated corneal hydration regression. However, it inhibited CECs proliferation. We also confirmed that the optimal ratio of VP combined with Y-27632 (ROCK inhibitor) was 1:1, promoting CECs proliferation and reversing EndMT by down-regulating transcription factors downstream of TGF-β signaling, thereby increasing CECs functional and intercellular adhesion proteins. These combined effects promote corneal endothelial damage repair, providing a new treatment strategy.
Collapse
Affiliation(s)
- Xue Zhang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China; Key Lab of Visual Damage and Regeneration, Chongqing, 401329, PR China
| | - Hongling Liu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China; Key Lab of Visual Damage and Regeneration, Chongqing, 401329, PR China
| | - Chao Wan
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China; Key Lab of Visual Damage and Regeneration, Chongqing, 401329, PR China
| | - Yijian Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China; Key Lab of Visual Damage and Regeneration, Chongqing, 401329, PR China
| | - Chunge Ren
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China; Key Lab of Visual Damage and Regeneration, Chongqing, 401329, PR China
| | - Jia Lu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China; Key Lab of Visual Damage and Regeneration, Chongqing, 401329, PR China
| | - Yong Liu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China; Key Lab of Visual Damage and Regeneration, Chongqing, 401329, PR China; Jinfeng Laboratory, Chongqing, 401329, PR China.
| | - Yuli Yang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China; Key Lab of Visual Damage and Regeneration, Chongqing, 401329, PR China.
| |
Collapse
|
11
|
Borges A, Chara O. Peeking into the future: inferring mechanics in dynamical tissues. Biochem Soc Trans 2024; 52:2579-2592. [PMID: 39656056 PMCID: PMC11668348 DOI: 10.1042/bst20230225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024]
Abstract
Cells exert forces on each other and their environment, shaping the tissue. The resulting mechanical stresses can be determined experimentally or estimated computationally using stress inference methods. Over the years, mechanical stress inference has become a non-invasive, low-cost computational method for estimating the relative intercellular stresses and intracellular pressures of tissues. This mini-review introduces and compares the static and dynamic modalities of stress inference, considering their advantages and limitations. To date, most software has focused on static inference, which requires only a single microscopy image as input. Although applicable in quasi-equilibrium states, this approach neglects the influence that cell rearrangements might have on the inference. In contrast, dynamic stress inference relies on a time series of microscopy images to estimate stresses and pressures. Here, we discuss both static and dynamic mechanical stress inference in terms of their physical, mathematical, and computational foundations and then outline what we believe are promising avenues for in silico inference of the mechanical states of tissues.
Collapse
Affiliation(s)
- Augusto Borges
- Unit Sensory Biology and Organogenesis, Helmholtz Zentrum München, Munich, Germany
- Graduate School of Quantitative Biosciences, Ludwig Maximilian University, Munich, Germany
| | - Osvaldo Chara
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham LE12, U.K
- Instituto de Tecnología, Universidad Argentina de la Empresa, Buenos Aires, Argentina
| |
Collapse
|
12
|
Brauns F, Claussen NH, Lefebvre MF, Wieschaus EF, Shraiman BI. The geometric basis of epithelial convergent extension. eLife 2024; 13:RP95521. [PMID: 39699945 DOI: 10.7554/elife.95521] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
Shape changes of epithelia during animal development, such as convergent extension, are achieved through the concerted mechanical activity of individual cells. While much is known about the corresponding large-scale tissue flow and its genetic drivers, fundamental questions regarding local control of contractile activity on the cellular scale and its embryo-scale coordination remain open. To address these questions, we develop a quantitative, model-based analysis framework to relate cell geometry to local tension in recently obtained time-lapse imaging data of gastrulating Drosophila embryos. This analysis systematically decomposes cell shape changes and T1 rearrangements into internally driven, active, and externally driven, passive, contributions. Our analysis provides evidence that germ band extension is driven by active T1 processes that self-organize through positive feedback acting on tensions. More generally, our findings suggest that epithelial convergent extension results from the controlled transformation of internal force balance geometry which combines the effects of bottom-up local self-organization with the top-down, embryo-scale regulation by gene expression.
Collapse
Affiliation(s)
- Fridtjof Brauns
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, Santa Barbara, United States
| | - Nikolas H Claussen
- Department of Physics, University of California, Santa Barbara, Santa Barbara, United States
| | - Matthew F Lefebvre
- Department of Physics, University of California, Santa Barbara, Santa Barbara, United States
| | - Eric F Wieschaus
- Department of Molecular Biology, Princeton University, Princeton, United States
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, United States
| | - Boris I Shraiman
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, Santa Barbara, United States
- Department of Physics, University of California, Santa Barbara, Santa Barbara, United States
| |
Collapse
|
13
|
Sugimura K, Otani T. Vertex remodeling during epithelial morphogenesis. Curr Opin Cell Biol 2024; 91:102427. [PMID: 39332144 DOI: 10.1016/j.ceb.2024.102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/29/2024]
Abstract
Epithelial cells adhere to each other via intercellular junctions that can be classified into bicellular junctions and tricellular contacts (vertices). Epithelial morphogenesis involves cell rearrangement and requires remodeling of bicellular junctions and vertices. Although our understanding of how bicellular junction mechanics drive epithelial morphogenesis has advanced, the mechanisms underlying vertex remodeling during this process have only received attention recently. In this review, we outline recent progress in our understanding of how cells reorganize cell adhesion and the cytoskeleton to trigger the displacement and resolution of cell vertices. We will also discuss how cells achieve the optimal balance between the structural flexibility and stability of their vertices. Finally, we introduce new modeling frameworks designed to analyze mechanics at cell vertices. Integration of live imaging and modeling techniques is providing new insights into the active roles of cell vertices during epithelial morphogenesis.
Collapse
Affiliation(s)
- Kaoru Sugimura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan; Universal Biology Institute, The University of Tokyo, Tokyo, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan.
| | - Tetsuhisa Otani
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan; Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology (PRESTO), Saitama, Japan.
| |
Collapse
|
14
|
Levandosky K, Copos C. Model supports asymmetric regulation across the intercellular junction for collective cell polarization. PLoS Comput Biol 2024; 20:e1012216. [PMID: 39689113 DOI: 10.1371/journal.pcbi.1012216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/31/2024] [Accepted: 11/22/2024] [Indexed: 12/19/2024] Open
Abstract
Symmetry breaking, which is ubiquitous in biological cells, functionally enables directed cell movement and organized embryogenesis. Prior to movement, cells break symmetry to form a well-defined cell front and rear in a process called polarization. In developing and regenerating tissues, collective cell movement requires the coordination of the polarity of the migration machineries of neighboring cells. Though several works shed light on the molecular basis of polarity, fewer studies have focused on the regulation across the cell-cell junction required for collective polarization, thus limiting our ability to connect tissue-level dynamics to subcellular interactions. Here, we investigated how polarity signals are communicated from one cell to its neighbor to ensure coordinated front-to-rear symmetry breaking with the same orientation across the group. In a theoretical setting, we systematically searched a variety of intercellular interactions and identified that co-alignment arrangement of the polarity axes in groups of two and four cells can only be achieved with strong asymmetric regulation of Rho GTPases or enhanced assembly of complementary F-actin structures across the junction. Our results held if we further assumed the presence of an external stimulus, intrinsic cell-to-cell variability, or larger groups. The results underline the potential of using quantitative models to probe the molecular interactions required for macroscopic biological phenomena. Lastly, we posit that asymmetric regulation is achieved through junction proteins and predict that in the absence of cytoplasmic tails of such linker proteins, the likeliness of doublet co-polarity is greatly diminished.
Collapse
Affiliation(s)
- Katherine Levandosky
- Department of Mathematics, Northeastern University, Boston, Massachusetts, United States of America
| | - Calina Copos
- Department of Mathematics, Northeastern University, Boston, Massachusetts, United States of America
- Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| |
Collapse
|
15
|
Tao E, Lang D. Unraveling the gut: the pivotal role of intestinal mechanisms in Kawasaki disease pathogenesis. Front Immunol 2024; 15:1496293. [PMID: 39664384 PMCID: PMC11633670 DOI: 10.3389/fimmu.2024.1496293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/08/2024] [Indexed: 12/13/2024] Open
Abstract
Kawasaki disease (KD), an acute systemic vasculitis that primarily affects children under 5 years of age, is the leading cause of acquired heart disease in this age group. Recent studies propose a novel perspective on KD's etiology, emphasizing the gastrointestinal (GI) tract, particularly the role of gut permeability. This review delves into how disruptions in gut barrier function trigger systemic inflammatory responses, exacerbate vascular inflammation, and contribute to coronary artery aneurysms. Evidence suggests that children with KD often exhibit increased gut permeability, leading to an imbalance in gut immunity and subsequent gut barrier damage. These changes impact vascular endothelial cells, promoting platelet aggregation and activation, thereby advancing severe vascular complications, including aneurysms. Additionally, this review highlights the correlation between GI symptoms and increased resistance to standard treatments like intravenous immunoglobulin (IVIG), indicating that GI involvement may predict therapeutic outcomes. Advocating for a new paradigm, this review calls for integrated research across gastroenterology, immunology, and cardiology to examine KD through the lens of GI health. The goal is to develop innovative therapeutic interventions targeting the intestinal barrier, potentially revolutionizing KD management and significantly improving patient outcomes.
Collapse
Affiliation(s)
- Enfu Tao
- Department of Neonatology and Neonatal Intensive Care Unit (NICU), Wenling Maternal and Child Health Care Hospital, Wenling, Zhejiang, China
| | - Dandan Lang
- Department of Pediatrics, Zhuhai People’s Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, Guangdong, China
| |
Collapse
|
16
|
Gong R, Reynolds MJ, Sun X, Alushin GM. Afadin mediates cadherin-catenin complex clustering on F-actin linked to cooperative binding and filament curvature. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617332. [PMID: 39415991 PMCID: PMC11482809 DOI: 10.1101/2024.10.08.617332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The E-cadherin-β-catenin-αE-catenin (cadherin-catenin) complex couples the cytoskeletons of neighboring cells at adherens junctions (AJs) to mediate force transmission across epithelia. Mechanical force and auxiliary binding partners converge to stabilize the cadherin-catenin complex's inherently weak binding to actin filaments (F-actin) through unclear mechanisms. Here we show that afadin's coiled-coil (CC) domain and vinculin synergistically enhance the cadherin-catenin complex's F-actin engagement. The cryo-EM structure of an E-cadherin-β-catenin-αE-catenin-vinculin-afadin-CC supra-complex bound to F-actin reveals that afadin-CC bridges adjacent αE-catenin actin-binding domains along the filament, stabilizing flexible αE-catenin segments implicated in mechanical regulation. These cooperative binding contacts promote the formation of supra-complex clusters along F-actin. Additionally, cryo-EM variability analysis links supra-complex binding along individual F-actin strands to nanoscale filament curvature, a deformation mode associated with cytoskeletal forces. Collectively, this work elucidates a mechanistic framework by which vinculin and afadin tune cadherin-catenin complex-cytoskeleton coupling to support AJ function across varying mechanical regimes.
Collapse
Affiliation(s)
- Rui Gong
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Matthew J. Reynolds
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Xiaoyu Sun
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Gregory M. Alushin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
17
|
Cai J, Deng Y, Min Z, Li C, Zhao Z, Jing D. Deciphering the dynamics: Exploring the impact of mechanical forces on histone acetylation. FASEB J 2024; 38:e23849. [PMID: 39096133 DOI: 10.1096/fj.202400907rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/01/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Living cells navigate a complex landscape of mechanical cues that influence their behavior and fate, originating from both internal and external sources. At the molecular level, the translation of these physical stimuli into cellular responses relies on the intricate coordination of mechanosensors and transducers, ultimately impacting chromatin compaction and gene expression. Notably, epigenetic modifications on histone tails govern the accessibility of gene-regulatory sites, thereby regulating gene expression. Among these modifications, histone acetylation emerges as particularly responsive to the mechanical microenvironment, exerting significant control over cellular activities. However, the precise role of histone acetylation in mechanosensing and transduction remains elusive due to the complexity of the acetylation network. To address this gap, our aim is to systematically explore the key regulators of histone acetylation and their multifaceted roles in response to biomechanical stimuli. In this review, we initially introduce the ubiquitous force experienced by cells and then explore the dynamic alterations in histone acetylation and its associated co-factors, including HDACs, HATs, and acetyl-CoA, in response to these biomechanical cues. Furthermore, we delve into the intricate interactions between histone acetylation and mechanosensors/mechanotransducers, offering a comprehensive analysis. Ultimately, this review aims to provide a holistic understanding of the nuanced interplay between histone acetylation and mechanical forces within an academic framework.
Collapse
Affiliation(s)
- Jingyi Cai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yudi Deng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ziyang Min
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chaoyuan Li
- Department of Implantology, School and Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dian Jing
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
18
|
Zhang J, Li J, Hou Y, Lin Y, Zhao H, Shi Y, Chen K, Nian C, Tang J, Pan L, Xing Y, Gao H, Yang B, Song Z, Cheng Y, Liu Y, Sun M, Linghu Y, Li J, Huang H, Lai Z, Zhou Z, Li Z, Sun X, Chen Q, Su D, Li W, Peng Z, Liu P, Chen W, Huang H, Chen Y, Xiao B, Ye L, Chen L, Zhou D. Osr2 functions as a biomechanical checkpoint to aggravate CD8 + T cell exhaustion in tumor. Cell 2024; 187:3409-3426.e24. [PMID: 38744281 DOI: 10.1016/j.cell.2024.04.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/04/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Alterations in extracellular matrix (ECM) architecture and stiffness represent hallmarks of cancer. Whether the biomechanical property of ECM impacts the functionality of tumor-reactive CD8+ T cells remains largely unknown. Here, we reveal that the transcription factor (TF) Osr2 integrates biomechanical signaling and facilitates the terminal exhaustion of tumor-reactive CD8+ T cells. Osr2 expression is selectively induced in the terminally exhausted tumor-specific CD8+ T cell subset by coupled T cell receptor (TCR) signaling and biomechanical stress mediated by the Piezo1/calcium/CREB axis. Consistently, depletion of Osr2 alleviates the exhaustion of tumor-specific CD8+ T cells or CAR-T cells, whereas forced Osr2 expression aggravates their exhaustion in solid tumor models. Mechanistically, Osr2 recruits HDAC3 to rewire the epigenetic program for suppressing cytotoxic gene expression and promoting CD8+ T cell exhaustion. Thus, our results unravel Osr2 functions as a biomechanical checkpoint to exacerbate CD8+ T cell exhaustion and could be targeted to potentiate cancer immunotherapy.
Collapse
Affiliation(s)
- Jinjia Zhang
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Junhong Li
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yongqiang Hou
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yao Lin
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China; Changping Laboratory, 102206 Beijing, China
| | - Hao Zhao
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yiran Shi
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Kaiyun Chen
- Fujian State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Cheng Nian
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jiayu Tang
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Lei Pan
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Yunzhi Xing
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Huan Gao
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Bingying Yang
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Zengfang Song
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yao Cheng
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yue Liu
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Min Sun
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yueyue Linghu
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jiaxin Li
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Haitao Huang
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhangjian Lai
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhien Zhou
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Zifeng Li
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiufeng Sun
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Qinghua Chen
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Dongxue Su
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Wengang Li
- Department of Hepatobiliary and Pancreatic & Organ Transplantation Surgery, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhihai Peng
- Department of Hepatobiliary and Pancreatic & Organ Transplantation Surgery, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Pingguo Liu
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Department of Hepatobiliary Surgery, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361004, China
| | - Wei Chen
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Hongling Huang
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yixin Chen
- Fujian State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Bailong Xiao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Beijing Frontier Research Center for Biological Structure, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China; Changping Laboratory, 102206 Beijing, China.
| | - Lanfen Chen
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Dawang Zhou
- State Key Laboratory of Cellular Stress Biology, Xiang'an Hospital, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
19
|
Baek J, Kumar S, Schaffer DV. Dynamic light-responsive RhoA activity regulates mechanosensitive stem cell fate decision in 3D matrices. BIOMATERIALS ADVANCES 2024; 160:213836. [PMID: 38599042 DOI: 10.1016/j.bioadv.2024.213836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024]
Abstract
The behavior of stem cells is regulated by mechanical cues in their niche that continuously vary due to extracellular matrix (ECM) remodeling, pulsated mechanical stress exerted by blood flow, and/or cell migration. However, it is still unclear how dynamics of mechanical cues influence stem cell lineage commitment, especially in a 3D microenvironment where mechanosensing differs from that in a 2D microenvironment. In the present study, we investigated how temporally varying mechanical signaling regulates expression of the early growth response 1 gene (Egr1), which we recently discovered to be a 3D matrix-specific mediator of mechanosensitive neural stem cell (NSC) lineage commitment. Specifically, we temporally controlled the activity of Ras homolog family member A (RhoA), which is known to have a central role in mechanotransduction, using our previously developed Arabidopsis thaliana cryptochrome-2-based optoactivation system. Interestingly, pulsed RhoA activation induced Egr1 upregulation in stiff 3D gels only, whereas static light stimulation induced an increase in Egr1 expression across a wide range of 3D gel stiffnesses. Actin assembly inhibition limited Egr1 upregulation upon RhoA activation, implying that RhoA signaling requires an actin-involved process to upregulate Egr1. Consistently, static-light RhoA activation rather than pulsed-light activation restricted neurogenesis in soft gels. Our findings indicate that the dynamics of RhoA activation influence Egr1-mediated stem cell fate within 3D matrices in a matrix stiffness-dependent manner.
Collapse
Affiliation(s)
- Jieung Baek
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Bioengineering, University of California, Berkeley, CA 94720, USA; Division of Mechanical and Biomedical Engineering, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sanjay Kumar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Bioengineering, University of California, Berkeley, CA 94720, USA.
| | - David V Schaffer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Bioengineering, University of California, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, Berkeley, CA 94720, USA.
| |
Collapse
|
20
|
Veronese S, Bacci PA, Garcia-Gimenez V, Canel Micheloud CC, Haro García NL, Sbarbati A. V-EMF therapy: A new painless and completely non-invasive treatment for striae gravidarum. J Cosmet Dermatol 2024; 23:2007-2014. [PMID: 38549181 DOI: 10.1111/jocd.16220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/06/2023] [Accepted: 01/29/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND The appearance of striae gravidarum (SG) during pregnancy is a common problem. The most common SG are abdominal striae, which can cause the greatest sequelae after pregnancy, and in the long term. There are several solutions to prevent and treat these striae, but not all are completely effective, and not without side effects. AIMS The aim of this study was to evaluate the effectiveness of a treatment that applies an electromagnetic field under vacuum (V-EMF therapy) on the abdominal SG. METHODS A retrospective analysis was conducted on the medical records of 26 women affected by abdominal SG and treated with V-EMF therapy. The results were evaluated using two different 5-point Likert Scales: one administered to the treated subjects to evaluate their satisfaction, and one to the doctors who performed the treatment, to evaluate the improvement of the striae. The presence of side effects, and the effects of sun exposure after treatment were also considered. RESULTS Only two treated subjects rated their level of satisfaction with a Score III on the Liker Scale. Everyone else expressed higher levels of satisfaction. Only one doctor rated the improvement of the striae with a Liker scale score of III. All the others reported greater improvements. No discomfort or side effects were noted either during the individual treatment sessions, or at the end of the treatment. The striae showed a newfound ability to tan. CONCLUSIONS V-EMF therapy proves to be a valid, safe, and effective treatment modality for SG.
Collapse
Affiliation(s)
- Sheila Veronese
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Pier Antonio Bacci
- Medical Centre for Vascular Diseases and Aesthetic Pathologies, Arezzo, Italy
| | - Victor Garcia-Gimenez
- Knowledge and Management in Physiological Aging Medicine Universidad Autónoma de Barcelona, Barcelona, Spain
| | | | | | - Andrea Sbarbati
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
21
|
Daulagala AC, Cetin M, Nair-Menon J, Jimenez DW, Bridges MC, Bradshaw AD, Sahin O, Kourtidis A. The epithelial adherens junction component PLEKHA7 regulates ECM remodeling and cell behavior through miRNA-mediated regulation of MMP1 and LOX. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596237. [PMID: 38853930 PMCID: PMC11160653 DOI: 10.1101/2024.05.28.596237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Epithelial adherens junctions (AJs) are cell-cell adhesion complexes that are influenced by tissue mechanics, such as those emanating from the extracellular matrix (ECM). Here, we introduce a mechanism whereby epithelial AJs can also regulate the ECM. We show that the AJ component PLEKHA7 regulates levels and activity of the key ECM remodeling components MMP1 and LOX in well-differentiated colon epithelial cells, through the miR-24 and miR-30c miRNAs. PLEKHA7 depletion in epithelial cells results in LOX-dependent ECM remodeling in culture and in the colonic mucosal lamina propria in mice. Furthermore, PLEKHA7-depleted cells exhibit increased migration and invasion rates that are MMP1- and LOX- dependent, and form colonies in 3D cultures that are larger in size and acquire aberrant morphologies in stiffer matrices. These results reveal an AJ-mediated mechanism, through which epithelial cells drive ECM remodeling to modulate their behavior, including acquisition of phenotypes that are hallmarks of conditions such as fibrosis and tumorigenesis.
Collapse
Affiliation(s)
- Amanda C. Daulagala
- Department of Regenerative Medicine and Cell Biology, Medical University South Carolina, Charleston, SC
| | - Metin Cetin
- Department of Biochemistry and Molecular Biology, Medical University South Carolina, Charleston, SC
| | - Joyce Nair-Menon
- Department of Regenerative Medicine and Cell Biology, Medical University South Carolina, Charleston, SC
| | - Douglas W. Jimenez
- Department of Regenerative Medicine and Cell Biology, Medical University South Carolina, Charleston, SC
| | - Mary Catherine Bridges
- Department of Regenerative Medicine and Cell Biology, Medical University South Carolina, Charleston, SC
| | - Amy D. Bradshaw
- Department of Medicine, Medical University South Carolina, Charleston, SC
| | - Ozgur Sahin
- Department of Biochemistry and Molecular Biology, Medical University South Carolina, Charleston, SC
| | - Antonis Kourtidis
- Department of Regenerative Medicine and Cell Biology, Medical University South Carolina, Charleston, SC
| |
Collapse
|
22
|
Brauns F, Claussen NH, Lefebvre MF, Wieschaus EF, Shraiman BI. The Geometric Basis of Epithelial Convergent Extension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.30.542935. [PMID: 37398061 PMCID: PMC10312603 DOI: 10.1101/2023.05.30.542935] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Shape changes of epithelia during animal development, such as convergent extension, are achieved through concerted mechanical activity of individual cells. While much is known about the corresponding large scale tissue flow and its genetic drivers, fundamental questions regarding local control of contractile activity on cellular scale and its embryo-scale coordination remain open. To address these questions, we develop a quantitative, model-based analysis framework to relate cell geometry to local tension in recently obtained timelapse imaging data of gastrulating Drosophila embryos. This analysis provides a systematic decomposition of cell shape changes and T1-rearrangements into internally driven, active, and externally driven, passive, contributions. Our analysis provides evidence that germ band extension is driven by active T1 processes that self-organize through positive feedback acting on tensions. More generally, our findings suggest that epithelial convergent extension results from controlled transformation of internal force balance geometry which combines the effects of bottom-up local self-organization with the top-down, embryo-scale regulation by gene expression.
Collapse
Affiliation(s)
- Fridtjof Brauns
- Kavli Institute for Theoretical Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Nikolas H. Claussen
- Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Matthew F. Lefebvre
- Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Eric F. Wieschaus
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA; The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Boris I. Shraiman
- Kavli Institute for Theoretical Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
- Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
| |
Collapse
|
23
|
Singh A, Thale S, Leibner T, Lamparter L, Ricker A, Nüsse H, Klingauf J, Galic M, Ohlberger M, Matis M. Dynamic interplay of microtubule and actomyosin forces drive tissue extension. Nat Commun 2024; 15:3198. [PMID: 38609383 PMCID: PMC11014958 DOI: 10.1038/s41467-024-47596-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
In order to shape a tissue, individual cell-based mechanical forces have to be integrated into a global force pattern. Over the last decades, the importance of actomyosin contractile arrays, which are the key constituents of various morphogenetic processes, has been established for many tissues. Recent studies have demonstrated that the microtubule cytoskeleton mediates folding and elongation of the epithelial sheet during Drosophila morphogenesis, placing microtubule mechanics on par with actin-based processes. While these studies establish the importance of both cytoskeletal systems during cell and tissue rearrangements, a mechanistic understanding of their functional hierarchy is currently missing. Here, we dissect the individual roles of these two key generators of mechanical forces during epithelium elongation in the developing Drosophila wing. We show that wing extension, which entails columnar-to-cuboidal cell shape remodeling in a cell-autonomous manner, is driven by anisotropic cell expansion caused by the remodeling of the microtubule cytoskeleton from apico-basal to planarly polarized. Importantly, cell and tissue elongation is not associated with Myosin activity. Instead, Myosin II exhibits a homeostatic role, as actomyosin contraction balances polarized microtubule-based forces to determine the final cell shape. Using a reductionist model, we confirm that pairing microtubule and actomyosin-based forces is sufficient to recapitulate cell elongation and the final cell shape. These results support a hierarchical mechanism whereby microtubule-based forces in some epithelial systems prime actomyosin-generated forces.
Collapse
Affiliation(s)
- Amrita Singh
- Institute of Cell Biology, Medical Faculty, University of Münster, Münster, Germany
- Cells in Motion' Interfaculty Centre, University of Münster, Münster, Germany
| | - Sameedha Thale
- Institute of Cell Biology, Medical Faculty, University of Münster, Münster, Germany
- Cells in Motion' Interfaculty Centre, University of Münster, Münster, Germany
| | - Tobias Leibner
- Applied Mathematics, Institute for Analysis and Numerics, Faculty of Mathematics and Computer science, University of Münster, Münster, Germany
| | - Lucas Lamparter
- Cells in Motion' Interfaculty Centre, University of Münster, Münster, Germany
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Münster, Münster, Germany
| | - Andrea Ricker
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Münster, Münster, Germany
| | - Harald Nüsse
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Münster, Münster, Germany
| | - Jürgen Klingauf
- Cells in Motion' Interfaculty Centre, University of Münster, Münster, Germany
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Münster, Münster, Germany
| | - Milos Galic
- Cells in Motion' Interfaculty Centre, University of Münster, Münster, Germany
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Münster, Münster, Germany
| | - Mario Ohlberger
- Applied Mathematics, Institute for Analysis and Numerics, Faculty of Mathematics and Computer science, University of Münster, Münster, Germany
| | - Maja Matis
- Institute of Cell Biology, Medical Faculty, University of Münster, Münster, Germany.
- Cells in Motion' Interfaculty Centre, University of Münster, Münster, Germany.
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Münster, Münster, Germany.
| |
Collapse
|
24
|
Campàs O, Noordstra I, Yap AS. Adherens junctions as molecular regulators of emergent tissue mechanics. Nat Rev Mol Cell Biol 2024; 25:252-269. [PMID: 38093099 DOI: 10.1038/s41580-023-00688-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 03/28/2024]
Abstract
Tissue and organ development during embryogenesis relies on the collective and coordinated action of many cells. Recent studies have revealed that tissue material properties, including transitions between fluid and solid tissue states, are controlled in space and time to shape embryonic structures and regulate cell behaviours. Although the collective cellular flows that sculpt tissues are guided by tissue-level physical changes, these ultimately emerge from cellular-level and subcellular-level molecular mechanisms. Adherens junctions are key subcellular structures, built from clusters of classical cadherin receptors. They mediate physical interactions between cells and connect biochemical signalling to the physical characteristics of cell contacts, hence playing a fundamental role in tissue morphogenesis. In this Review, we take advantage of the results of recent, quantitative measurements of tissue mechanics to relate the molecular and cellular characteristics of adherens junctions, including adhesion strength, tension and dynamics, to the emergent physical state of embryonic tissues. We focus on systems in which cell-cell interactions are the primary contributor to morphogenesis, without significant contribution from cell-matrix interactions. We suggest that emergent tissue mechanics is an important direction for future research, bridging cell biology, developmental biology and mechanobiology to provide a holistic understanding of morphogenesis in health and disease.
Collapse
Affiliation(s)
- Otger Campàs
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Center for Systems Biology Dresden, Dresden, Germany.
| | - Ivar Noordstra
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Alpha S Yap
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
25
|
Veronese S, Aggarwal R, Giovanelli T, Sbarbati A. Hyper- and Hypopigmentation in a Subject with Fitzpatrick Skin Phototype VI: A New Treatment Option. J Clin Med 2024; 13:1036. [PMID: 38398349 PMCID: PMC10889290 DOI: 10.3390/jcm13041036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/28/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Background: Laser therapies can cause hyper- and hypopigmentation of the skin. There is little evidence in the literature of effective treatments for these types of problems in Fitzpatrick skin phototypes IV-VI. The main aim of this retrospective study is to evaluate the effects of a new therapy that combines the application of electromagnetic fields and vacuum on a subject with Fitzpatrick skin phototype VI, who presented extensive, laser-induced facial dyschromia. The secondary aim is to test the effectiveness of a free imaging software for assessing skin pigmentation. Methods: The level of improvement after therapy was evaluated, with a 5-point Likert scale, one month after the end of the treatment by the subject and by the doctor who performed the treatment, and by two blinded dermatologists. With the free software, a three-dimensional reconstruction of the treated area and the evaluation of the color distribution were performed. Results: Both the subject and the doctors involved in the study positively evaluated the effects of the treatment. The image analysis highlighted the homogenization of the skin color in the treated area. Conclusions: The combination of electromagnetic fields and vacuum for dyschromia treatments appears promising. The new method of assessing melanin levels resulted particularly efficient.
Collapse
Affiliation(s)
- Sheila Veronese
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy;
| | - Rajeev Aggarwal
- Cardiff Cosmetic Clinic, Cardiff CF24 3WD, UK; (R.A.); (T.G.)
| | | | - Andrea Sbarbati
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy;
| |
Collapse
|
26
|
Esmangart de Bournonville T, Jaglarz MK, Durel E, Le Borgne R. ESCRT-III-dependent adhesive and mechanical changes are triggered by a mechanism detecting alteration of septate junction integrity in Drosophila epithelial cells. eLife 2024; 13:e91246. [PMID: 38305711 PMCID: PMC10959524 DOI: 10.7554/elife.91246] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/01/2024] [Indexed: 02/03/2024] Open
Abstract
Barrier functions of proliferative epithelia are constantly challenged by mechanical and chemical constraints. How epithelia respond to and cope with disturbances of barrier functions to allow tissue integrity maintenance is poorly characterised. Cellular junctions play an important role in this process and intracellular traffic contribute to their homeostasis. Here, we reveal that, in Drosophila pupal notum, alteration of the bi- or tricellular septate junctions (SJs) triggers a mechanism with two prominent outcomes. On one hand, there is an increase in the levels of E-cadherin, F-actin, and non-muscle myosin II in the plane of adherens junctions. On the other hand, β-integrin/Vinculin-positive cell contacts are reinforced along the lateral and basal membranes. We found that the weakening of SJ integrity, caused by the depletion of bi- or tricellular SJ components, alters ESCRT-III/Vps32/Shrub distribution, reduces degradation and instead favours recycling of SJ components, an effect that extends to other recycled transmembrane protein cargoes including Crumbs, its effector β-Heavy Spectrin Karst, and β-integrin. We propose a mechanism by which epithelial cells, upon sensing alterations of the SJ, reroute the function of Shrub to adjust the balance of degradation/recycling of junctional cargoes and thereby compensate for barrier junction defects to maintain epithelial integrity.
Collapse
Affiliation(s)
- Thomas Esmangart de Bournonville
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290RennesFrance
- Global Health Institute, School of Life Science, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Mariusz K Jaglarz
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University in KrakowKrakowPoland
| | - Emeline Durel
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290RennesFrance
| | - Roland Le Borgne
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290RennesFrance
| |
Collapse
|
27
|
Pinheiro D, Mitchel J. Pulling the strings on solid-to-liquid phase transitions in cell collectives. Curr Opin Cell Biol 2024; 86:102310. [PMID: 38176350 DOI: 10.1016/j.ceb.2023.102310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
Cell collectives must dynamically adapt to different biological contexts. For instance, in homeostatic conditions, epithelia must establish a barrier between body compartments and resist external stresses, while during development, wound healing or cancer invasion, these tissues undergo extensive remodeling. Using analogies from inert, passive materials, changes in cellular density, shape, rearrangements and/or migration were shown to result in collective transitions between solid and fluid states. However, what biological mechanisms govern these transitions remains an open question. In particular, the upstream signaling pathways and molecular effectors controlling the key physical axes determining tissue rheology and dynamics remain poorly understood. In this perspective, we focus on emerging evidence identifying the first biological signals determining the collective state of living tissues, with an emphasis on how these mechanisms are exploited for functionality across biological contexts.
Collapse
Affiliation(s)
- Diana Pinheiro
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, 1030, Austria
| | - Jennifer Mitchel
- Department of Biology, Wesleyan University, Middletown, CT, USA.
| |
Collapse
|
28
|
Matthew J, Vishwakarma V, Le TP, Agsunod RA, Chung S. Coordination of cell cycle and morphogenesis during organ formation. eLife 2024; 13:e95830. [PMID: 38275142 PMCID: PMC10869137 DOI: 10.7554/elife.95830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 01/21/2024] [Indexed: 01/27/2024] Open
Abstract
Organ formation requires precise regulation of cell cycle and morphogenetic events. Using the Drosophila embryonic salivary gland (SG) as a model, we uncover the role of the SP1/KLF transcription factor Huckebein (Hkb) in coordinating cell cycle regulation and morphogenesis. The hkb mutant SG exhibits defects in invagination positioning and organ size due to the abnormal death of SG cells. Normal SG development involves distal-to-proximal progression of endoreplication (endocycle), whereas hkb mutant SG cells undergo abnormal cell division, leading to cell death. Hkb represses the expression of key cell cycle and pro-apoptotic genes in the SG. Knockdown of cyclin E or cyclin-dependent kinase 1, or overexpression of fizzy-related rescues most of the morphogenetic defects observed in the hkb mutant SG. These results indicate that Hkb plays a critical role in controlling endoreplication by regulating the transcription of key cell cycle effectors to ensure proper organ formation.
Collapse
Affiliation(s)
- Jeffrey Matthew
- Department of Biological Sciences, Louisiana State UniversityBaton RougeUnited States
| | - Vishakha Vishwakarma
- Department of Biological Sciences, Louisiana State UniversityBaton RougeUnited States
| | - Thao Phuong Le
- Department of Biological Sciences, Louisiana State UniversityBaton RougeUnited States
| | - Ryan A Agsunod
- Department of Biological Sciences, Louisiana State UniversityBaton RougeUnited States
| | - SeYeon Chung
- Department of Biological Sciences, Louisiana State UniversityBaton RougeUnited States
| |
Collapse
|
29
|
Arslan FN, Hannezo É, Merrin J, Loose M, Heisenberg CP. Adhesion-induced cortical flows pattern E-cadherin-mediated cell contacts. Curr Biol 2024; 34:171-182.e8. [PMID: 38134934 DOI: 10.1016/j.cub.2023.11.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/25/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
Metazoan development relies on the formation and remodeling of cell-cell contacts. Dynamic reorganization of adhesion receptors and the actomyosin cell cortex in space and time plays a central role in cell-cell contact formation and maturation. Nevertheless, how this process is mechanistically achieved when new contacts are formed remains unclear. Here, by building a biomimetic assay composed of progenitor cells adhering to supported lipid bilayers functionalized with E-cadherin ectodomains, we show that cortical F-actin flows, driven by the depletion of myosin-2 at the cell contact center, mediate the dynamic reorganization of adhesion receptors and cell cortex at the contact. E-cadherin-dependent downregulation of the small GTPase RhoA at the forming contact leads to both a depletion of myosin-2 and a decrease of F-actin at the contact center. At the contact rim, in contrast, myosin-2 becomes enriched by the retraction of bleb-like protrusions, resulting in a cortical tension gradient from the contact rim to its center. This tension gradient, in turn, triggers centrifugal F-actin flows, leading to further accumulation of F-actin at the contact rim and the progressive redistribution of E-cadherin from the contact center to the rim. Eventually, this combination of actomyosin downregulation and flows at the contact determines the characteristic molecular organization, with E-cadherin and F-actin accumulating at the contact rim, where they are needed to mechanically link the contractile cortices of the adhering cells.
Collapse
Affiliation(s)
- Feyza Nur Arslan
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria; Institute of Bioengineering, École polytechnique fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Édouard Hannezo
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria
| | - Jack Merrin
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria
| | - Martin Loose
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria
| | | |
Collapse
|
30
|
Mira-Osuna M, Borgne RL. Assembly, dynamics and remodeling of epithelial cell junctions throughout development. Development 2024; 151:dev201086. [PMID: 38205947 DOI: 10.1242/dev.201086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Cell junctions play key roles in epithelial integrity. During development, when epithelia undergo extensive morphogenesis, these junctions must be remodeled in order to maintain mechanochemical barriers and ensure the cohesion of the tissue. In this Review, we present a comprehensive and integrated description of junctional remodeling mechanisms in epithelial cells during development, from embryonic to adult epithelia. We largely focus on Drosophila, as quantitative analyses in this organism have provided a detailed characterization of the molecular mechanisms governing cell topologies, and discuss the conservation of these mechanisms across metazoans. We consider how changes at the molecular level translate to tissue-scale irreversible deformations, exploring the composition and assembly of cellular interfaces to unveil how junctions are remodeled to preserve tissue homeostasis during cell division, intercalation, invagination, ingression and extrusion.
Collapse
Affiliation(s)
- Marta Mira-Osuna
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, CNRS UMR 6290, F-35000 Rennes, France
| | - Roland Le Borgne
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, CNRS UMR 6290, F-35000 Rennes, France
| |
Collapse
|
31
|
Wibbe N, Ebnet K. Cell Adhesion at the Tight Junctions: New Aspects and New Functions. Cells 2023; 12:2701. [PMID: 38067129 PMCID: PMC10706136 DOI: 10.3390/cells12232701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Tight junctions (TJ) are cell-cell adhesive structures that define the permeability of barrier-forming epithelia and endothelia. In contrast to this seemingly static function, TJs display a surprisingly high molecular complexity and unexpected dynamic regulation, which allows the TJs to maintain a barrier in the presence of physiological forces and in response to perturbations. Cell-cell adhesion receptors play key roles during the dynamic regulation of TJs. They connect individual cells within cellular sheets and link sites of cell-cell contacts to the underlying actin cytoskeleton. Recent findings support the roles of adhesion receptors in transmitting mechanical forces and promoting phase separation. In this review, we discuss the newly discovered functions of cell adhesion receptors localized at the TJs and their role in the regulation of the barrier function.
Collapse
Affiliation(s)
- Nicolina Wibbe
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, D-48149 Münster, Germany
| | - Klaus Ebnet
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, D-48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, D-48419 Münster, Germany
| |
Collapse
|
32
|
Donath S, Seidler AE, Mundin K, Wenzel J, Scholz J, Gentemann L, Kalies J, Faix J, Ngezahayo A, Bleich A, Heisterkamp A, Buettner M, Kalies S. Epithelial restitution in 3D - Revealing biomechanical and physiochemical dynamics in intestinal organoids via fs laser nanosurgery. iScience 2023; 26:108139. [PMID: 37867948 PMCID: PMC10585398 DOI: 10.1016/j.isci.2023.108139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023] Open
Abstract
Intestinal organoids represent a three-dimensional cell culture system mimicking the mammalian intestine. The application of single-cell ablation for defined wounding via a femtosecond laser system within the crypt base allowed us to study cell dynamics during epithelial restitution. Neighboring cells formed a contractile actin ring encircling the damaged cell, changed the cellular aspect ratio, and immediately closed the barrier. Using traction force microscopy, we observed major forces at the ablation site and additional forces on the crypt sides. Inhibitors of the actomyosin-based mobility of the cells led to the failure of restoring the barrier. Close to the ablation site, high-frequency calcium flickering and propagation of calcium waves occured that synchronized with the contraction of the epithelial layer. We observed an increased signal and nuclear translocation of YAP-1. In conclusion, our approach enabled, for the first time, to unveil the intricacies of epithelial restitution beyond in vivo models by employing precise laser-induced damage in colonoids.
Collapse
Affiliation(s)
- Sören Donath
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Anna Elisabeth Seidler
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Karlina Mundin
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Johannes Wenzel
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Jonas Scholz
- Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Lara Gentemann
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, 30625 Hannover, Germany
| | - Julia Kalies
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Anaclet Ngezahayo
- Institute of Biophysics, Leibniz University Hannover, 30167 Hannover, Germany
| | - André Bleich
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, 30625 Hannover, Germany
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Alexander Heisterkamp
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Manuela Buettner
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, 30625 Hannover, Germany
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Stefan Kalies
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, 30625 Hannover, Germany
| |
Collapse
|
33
|
Cencer CS, Silverman JB, Meenderink LM, Krystofiak ES, Millis BA, Tyska MJ. Adhesion-based capture stabilizes nascent microvilli at epithelial cell junctions. Dev Cell 2023; 58:2048-2062.e7. [PMID: 37832537 PMCID: PMC10615885 DOI: 10.1016/j.devcel.2023.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/21/2023] [Accepted: 09/14/2023] [Indexed: 10/15/2023]
Abstract
To maximize solute transport, epithelial cells build an apical "brush border," where thousands of microvilli are linked to their neighbors by protocadherin-containing intermicrovillar adhesion complexes (IMACs). Previous studies established that the IMAC is needed to build a mature brush border, but how this complex contributes to the accumulation of new microvilli during differentiation remains unclear. We found that early in differentiation, mouse, human, and porcine epithelial cells exhibit a marginal accumulation of microvilli, which span junctions and interact with protrusions on neighboring cells using IMAC protocadherins. These transjunctional IMACs are highly stable and reinforced by tension across junctions. Finally, long-term live imaging showed that the accumulation of microvilli at cell margins consistently leads to accumulation in medial regions. Thus, nascent microvilli are stabilized by a marginal capture mechanism that depends on the formation of transjunctional IMACs. These results may offer insights into how apical specializations are assembled in diverse epithelial systems.
Collapse
Affiliation(s)
- Caroline S Cencer
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jennifer B Silverman
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Leslie M Meenderink
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA; United States Department of Veterans Affairs, Tennessee Valley Health Care System, Nashville, TN 37212, USA
| | - Evan S Krystofiak
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Bryan A Millis
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, TN 37235, USA
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
34
|
Gou J, Zhang T, Othmer HG. The Interaction of Mechanics and the Hippo Pathway in Drosophila melanogaster. Cancers (Basel) 2023; 15:4840. [PMID: 37835534 PMCID: PMC10571775 DOI: 10.3390/cancers15194840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Drosophila melanogaster has emerged as an ideal system for studying the networks that control tissue development and homeostasis and, given the similarity of the pathways involved, controlled and uncontrolled growth in mammalian systems. The signaling pathways used in patterning the Drosophila wing disc are well known and result in the emergence of interaction of these pathways with the Hippo signaling pathway, which plays a central role in controlling cell proliferation and apoptosis. Mechanical effects are another major factor in the control of growth, but far less is known about how they exert their control. Herein, we develop a mathematical model that integrates the mechanical interactions between cells, which occur via adherens and tight junctions, with the intracellular actin network and the Hippo pathway so as to better understand cell-autonomous and non-autonomous control of growth in response to mechanical forces.
Collapse
Affiliation(s)
- Jia Gou
- Department of Mathematics, University of California, Riverside, CA 92507, USA;
| | - Tianhao Zhang
- School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Hans G. Othmer
- School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
35
|
Labarrade F, Perrin A, Ferreira Y, Botto JM, Imbert I. Modulation of Piezo1 influences human skin architecture and oxytocin expression. Int J Cosmet Sci 2023; 45:604-611. [PMID: 37170671 DOI: 10.1111/ics.12864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 05/13/2023]
Abstract
OBJECTIVE Throughout our existence, the skin senses and analyses the mechanical forces imposed by the environment. In response to these environmental forces, skin can deform itself and achieve a biological response. The subsequent cutaneous plasticity emerges from mechanical properties arising from the collective action of the skin cells, particularly keratinocytes, that govern the tensile strength via cell-to-cell adhesions and via cell-matrix adhesion structures. In addition to serving as force-bearing entities, keratinocytes respond to forces by activating signalling pathways to control their own fate and function. To detect and adapt to mechanical signals, keratinocytes possess a panel of sensory receptors and junctional intercellular structures. Mechanically activated ion channel Piezo1 has been described as a force sensor and as being involved in pleasant touch perception. In this study, relationships between Piezo1 modulation and oxytocin synthesis were investigated. METHODS The expression of Piezo1 in the skin was studied and compared with the expression of TRPV1. Dooku1 antagonist and Jedi1 agonist were used to modulate Piezo1. The level of E-cadherin and oxytocin was monitored in ex vivo skin biopsies by immunodetection. RESULTS Taken together, our results illustrate the major role of mechanosensitive ion channel Piezo1 in skin barrier integrity, and in peripheral oxytocin synthesis in the skin. CONCLUSION In conclusion, this study highlights the relationships between pleasant touch, soft touch and local oxytocin synthesis.
Collapse
Affiliation(s)
| | - Armelle Perrin
- Ashland Global Skin Research Centre, Sophia Antipolis, France
| | - Yolène Ferreira
- Ashland Global Skin Research Centre, Sophia Antipolis, France
| | | | - Isabelle Imbert
- Ashland Global Skin Research Centre, Sophia Antipolis, France
| |
Collapse
|
36
|
Dawson LW, Cronin NM, DeMali KA. Mechanotransduction: Forcing a change in metabolism. Curr Opin Cell Biol 2023; 84:102219. [PMID: 37651955 PMCID: PMC10523412 DOI: 10.1016/j.ceb.2023.102219] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 09/02/2023]
Abstract
Epithelial and endothelial cells experience numerous mechanical cues throughout their lifetimes. Cells resist these forces by fortifying their cytoskeletal networks and adhesions. This reinforcement is energetically costly. Here we describe how these energetic demands are met. We focus on the response of epithelial and endothelial cells to mechanical cues, describe the energetic needs of epithelia and endothelia, and identify the mechanisms these cells employ to increase glycolysis, oxidative phosphorylation, and fatty acid metabolism. We discuss the similarities and differences in the responses of the two cell types.
Collapse
Affiliation(s)
- Logan W Dawson
- Department of Biochemistry and Molecular Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Nicholas M Cronin
- Department of Biochemistry and Molecular Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Kris A DeMali
- Department of Biochemistry and Molecular Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
37
|
Chen Z, Zhao J, Wang C, Liu X, Chen Z, Zhou J, Zhang L, Zhang C, Li H. Epithelial polarity-driven membrane separation but not cavitation regulates lumen formation of rat eccrine sweat glands. Acta Histochem 2023; 125:152093. [PMID: 37757514 DOI: 10.1016/j.acthis.2023.152093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/31/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Each eccrine sweat gland (ESG) is a single-tubular structure with a central lumen, and the formation of hollow lumen in the initial solid cell mass is a key developmental process. To date, there are no reports on the mechanism of native ESG lumen formation. METHODS To investigate the lumen morphogenesis and the lumen formation mechanisms of Sprague-Dawley (SD) rat ESGs, SD rat hind-footpads at E20.5, P1-P5, P7, P9, P12, P21, P28 and P56 were obtained. The lumen morphogenesis of ESGs was examined by HE staining and immunofluorescence staining for polarity markers. The possible mechanisms of lumen formation were detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) apoptosis assay and autophagy marker LC3B immunofluorescence staining, and further explored by ouabain intervention experiment. RESULTS In SD rat ESGs, the microlumen was formed at P1, and the small intact lumen with apical-basal polarity appeared at P3. The expression of apical marker F-actin, basal marker Laminin, basolateral marker E-cadherin was consistent with the timing of lumen formation of SD rat ESGs. During rat ESG development, apoptosis and autophagy were not detected. However, inhibition of Na+-K+-ATPase (NKA) with ouabain resulted in decreased lumen size, although neither the timing of lumen formation nor the expression of polarity proteins was altered. CONCLUSIONS Epithelial polarity-driven membrane separation but not cavitation regulates lumen formation of SD rat ESGs. NKA-regulated fluid accumulation drives lumen expansion.
Collapse
Affiliation(s)
- Zixiu Chen
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Jinzhou Medical University Graduate Training Base, Shiyan, Hubei Province, China
| | - Junhong Zhao
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Jinzhou Medical University Graduate Training Base, Shiyan, Hubei Province, China
| | - Cangyu Wang
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Jinzhou Medical University Graduate Training Base, Shiyan, Hubei Province, China
| | - Xiang Liu
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Jinzhou Medical University Graduate Training Base, Shiyan, Hubei Province, China
| | - Zihua Chen
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Jinzhou Medical University Graduate Training Base, Shiyan, Hubei Province, China
| | - Jianda Zhou
- Department of Burns and Plastic Surgery, The Third Hospital of Central South University, Changsha, Hunan, China
| | - Lei Zhang
- Mental Health Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong Province, China.
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and Fourth Medical Center of PLA General Hospital, Beijing, China.
| | - Haihong Li
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Jinzhou Medical University Graduate Training Base, Shiyan, Hubei Province, China; Department of Burns and Plastic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong Province, China.
| |
Collapse
|
38
|
Messer CL, McDonald JA. Expect the unexpected: conventional and unconventional roles for cadherins in collective cell migration. Biochem Soc Trans 2023; 51:1495-1504. [PMID: 37387360 DOI: 10.1042/bst20221202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Migrating cell collectives navigate complex tissue environments both during normal development and in pathological contexts such as tumor invasion and metastasis. To do this, cells in collectives must stay together but also communicate information across the group. The cadherin superfamily of proteins mediates junctional adhesions between cells, but also serve many essential functions in collective cell migration. Besides keeping migrating cell collectives cohesive, cadherins help follower cells maintain their attachment to leader cells, transfer information about front-rear polarity among the cohort, sense and respond to changes in the tissue environment, and promote intracellular signaling, in addition to other cellular behaviors. In this review, we highlight recent studies that reveal diverse but critical roles for both classical and atypical cadherins in collective cell migration, specifically focusing on four in vivo model systems in development: the Drosophila border cells, zebrafish mesendodermal cells, Drosophila follicle rotation, and Xenopus neural crest cells.
Collapse
Affiliation(s)
- C Luke Messer
- Division of Biology, Kansas State University, Manhattan, KS 66502, U.S.A
| | - Jocelyn A McDonald
- Division of Biology, Kansas State University, Manhattan, KS 66502, U.S.A
| |
Collapse
|
39
|
Li Z, Bao X, Liu X, Wang W, Yang J, Zhu X, Wang S. Transcriptome Profiling Based at Different Time Points after Hatching Deepened Our Understanding on Larval Growth and Development of Amphioctopus fangsiao. Metabolites 2023; 13:927. [PMID: 37623871 PMCID: PMC10456336 DOI: 10.3390/metabo13080927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/22/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
As the quality of life improves, there is an increasing demand for nutrition-rich marine organisms like fish, shellfish, and cephalopods. To address this, artificial cultivation of these organisms is being explored along with ongoing research on their growth and development. A case in point is Amphioctopus fangsiao, a highly valued cephalopod known for its tasty meat, nutrient richness, and rapid growth rate. Despite its significance, there is a dearth of studies on the A. fangsiao growth mechanism, particularly of its larvae. In this study, we collected A. fangsiao larvae at 0, 4, 12, and 24 h post-hatching and conducted transcriptome profiling. Our analysis identified 4467, 5099, and 4181 differentially expressed genes (DEGs) at respective intervals, compared to the 0 h sample. We further analyzed the expression trends of these DEGs, noting a predominant trend of continuous upregulation. Functional exploration of this trend entailed GO and KEGG functional enrichment along with protein-protein interaction network analyses. We identified GLDC, DUSP14, DPF2, GNAI1, and ZNF271 as core genes, based on their high upregulation rate, implicated in larval growth and development. Similarly, CLTC, MEF2A, PPP1CB, PPP1R12A, and TJP1, marked by high protein interaction numbers, were identified as hub genes and the gene expression levels identified via RNA-seq analysis were validated through qRT-PCR. By analyzing the functions of key and core genes, we found that the ability of A. fangsiao larvae to metabolize carbohydrates, lipids, and other energy substances during early growth may significantly improve with the growth of the larvae. At the same time, muscle related cells in A. fangsiao larvae may develop rapidly, promoting the growth and development of larvae. Our findings provide preliminary insights into the growth and developmental mechanism of A. fangsiao, setting the stage for more comprehensive understanding and broader research into cephalopod growth and development mechanisms.
Collapse
Affiliation(s)
- Zan Li
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xiaokai Bao
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xibo Zhu
- Fishery Technology Service Center of Lanshan District, Rizhao 276800, China
| | - Shuhai Wang
- Ocean and Aquatic Research Center of Hekou District, Dongying 257200, China
| |
Collapse
|
40
|
Shou Y, Teo XY, Wu KZ, Bai B, Kumar ARK, Low J, Le Z, Tay A. Dynamic Stimulations with Bioengineered Extracellular Matrix-Mimicking Hydrogels for Mechano Cell Reprogramming and Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300670. [PMID: 37119518 PMCID: PMC10375194 DOI: 10.1002/advs.202300670] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/10/2023] [Indexed: 06/19/2023]
Abstract
Cells interact with their surrounding environment through a combination of static and dynamic mechanical signals that vary over stimulus types, intensity, space, and time. Compared to static mechanical signals such as stiffness, porosity, and topography, the current understanding on the effects of dynamic mechanical stimulations on cells remains limited, attributing to a lack of access to devices, the complexity of experimental set-up, and data interpretation. Yet, in the pursuit of emerging translational applications (e.g., cell manufacturing for clinical treatment), it is crucial to understand how cells respond to a variety of dynamic forces that are omnipresent in vivo so that they can be exploited to enhance manufacturing and therapeutic outcomes. With a rising appreciation of the extracellular matrix (ECM) as a key regulator of biofunctions, researchers have bioengineered a suite of ECM-mimicking hydrogels, which can be fine-tuned with spatiotemporal mechanical cues to model complex static and dynamic mechanical profiles. This review first discusses how mechanical stimuli may impact different cellular components and the various mechanobiology pathways involved. Then, how hydrogels can be designed to incorporate static and dynamic mechanical parameters to influence cell behaviors are described. The Scopus database is also used to analyze the relative strength in evidence, ranging from strong to weak, based on number of published literatures, associated citations, and treatment significance. Additionally, the impacts of static and dynamic mechanical stimulations on clinically relevant cell types including mesenchymal stem cells, fibroblasts, and immune cells, are evaluated. The aim is to draw attention to the paucity of studies on the effects of dynamic mechanical stimuli on cells, as well as to highlight the potential of using a cocktail of various types and intensities of mechanical stimulations to influence cell fates (similar to the concept of biochemical cocktail to direct cell fate). It is envisioned that this progress report will inspire more exciting translational development of mechanoresponsive hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Yufeng Shou
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
| | - Xin Yong Teo
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Kenny Zhuoran Wu
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Bingyu Bai
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Arun R. K. Kumar
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
| | - Jessalyn Low
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Zhicheng Le
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
| | - Andy Tay
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- NUS Tissue Engineering ProgramNational University of SingaporeSingapore117510Singapore
| |
Collapse
|
41
|
Shi B, Matsui T, Qian S, Weiss TM, Nicholl ID, Callaway DJE, Bu Z. An ensemble of cadherin-catenin-vinculin complex employs vinculin as the major F-actin binding mode. Biophys J 2023; 122:2456-2474. [PMID: 37147801 PMCID: PMC10323030 DOI: 10.1016/j.bpj.2023.04.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/14/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023] Open
Abstract
The cell-cell adhesion cadherin-catenin complexes recruit vinculin to the adherens junction (AJ) to modulate the mechanical couplings between neighboring cells. However, it is unclear how vinculin influences the AJ structure and function. Here, we identified two patches of salt bridges that lock vinculin in the head-tail autoinhibited conformation and reconstituted the full-length vinculin activation mimetics bound to the cadherin-catenin complex. The cadherin-catenin-vinculin complex contains multiple disordered linkers and is highly dynamic, which poses a challenge for structural studies. We determined the ensemble conformation of this complex using small-angle x-ray and selective deuteration/contrast variation small-angle neutron scattering. In the complex, both α-catenin and vinculin adopt an ensemble of flexible conformations, but vinculin has fully open conformations with the vinculin head and actin-binding tail domains well separated from each other. F-actin binding experiments show that the cadherin-catenin-vinculin complex binds and bundles F-actin. However, when the vinculin actin-binding domain is removed from the complex, only a minor fraction of the complex binds to F-actin. The results show that the dynamic cadherin-catenin-vinculin complex employs vinculin as the primary F-actin binding mode to strengthen AJ-cytoskeleton interactions.
Collapse
Affiliation(s)
- Bright Shi
- Department of Chemistry and Biochemistry, City College of New York, City University of New York (CUNY), New York; PhD Programs in Chemistry and Biochemistry, CUNY Graduate Center, New York
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Light Source, Menlo Park, California
| | - Shuo Qian
- Second Target Station Project, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Thomas M Weiss
- Stanford Synchrotron Radiation Light Source, Menlo Park, California
| | - Iain D Nicholl
- Department of Biomedical Science and Physiology, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom
| | - David J E Callaway
- Department of Chemistry and Biochemistry, City College of New York, City University of New York (CUNY), New York.
| | - Zimei Bu
- Department of Chemistry and Biochemistry, City College of New York, City University of New York (CUNY), New York; PhD Programs in Chemistry and Biochemistry, CUNY Graduate Center, New York.
| |
Collapse
|
42
|
Dow LP, Parmar T, Marchetti MC, Pruitt BL. Engineering tools for quantifying and manipulating forces in epithelia. BIOPHYSICS REVIEWS 2023; 4:021303. [PMID: 38510344 PMCID: PMC10903508 DOI: 10.1063/5.0142537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/20/2023] [Indexed: 03/22/2024]
Abstract
The integrity of epithelia is maintained within dynamic mechanical environments during tissue development and homeostasis. Understanding how epithelial cells mechanosignal and respond collectively or individually is critical to providing insight into developmental and (patho)physiological processes. Yet, inferring or mimicking mechanical forces and downstream mechanical signaling as they occur in epithelia presents unique challenges. A variety of in vitro approaches have been used to dissect the role of mechanics in regulating epithelia organization. Here, we review approaches and results from research into how epithelial cells communicate through mechanical cues to maintain tissue organization and integrity. We summarize the unique advantages and disadvantages of various reduced-order model systems to guide researchers in choosing appropriate experimental systems. These model systems include 3D, 2D, and 1D micromanipulation methods, single cell studies, and noninvasive force inference and measurement techniques. We also highlight a number of in silico biophysical models that are informed by in vitro and in vivo observations. Together, a combination of theoretical and experimental models will aid future experiment designs and provide predictive insight into mechanically driven behaviors of epithelial dynamics.
Collapse
Affiliation(s)
| | - Toshi Parmar
- Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | | | | |
Collapse
|
43
|
Huang Y, Gui J, Myllymäki SM, Mikkola ML, Shimmi O. Coordination of tissue homeostasis and growth by the Scribble-α-Catenin-Septate junction complex. iScience 2023; 26:106490. [PMID: 37096043 PMCID: PMC10122046 DOI: 10.1016/j.isci.2023.106490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/27/2023] [Accepted: 03/18/2023] [Indexed: 04/26/2023] Open
Abstract
Maintaining apicobasal polarity (ABP) is crucial for epithelial integrity and homeostasis during tissue development. Although intracellular mechanisms underlying ABP establishment have been well studied, it remains to be addressed how the ABP coordinates tissue growth and homeostasis. By studying Scribble, a key ABP determinant, we address molecular mechanisms underlying ABP-mediated growth control in the Drosophila wing imaginal disc. Our data reveal that genetic and physical interactions between Scribble, Septate junction complex and α-Catenin appear to be key for sustaining ABP-mediated growth control. Cells with conditional scribble knockdown instigate the loss of α-Catenin, ultimately leading to the formation of neoplasia accompanying with activation of Yorkie. In contrast, cells expressing wild type scribble progressively restore ABP in scribble hypomorphic mutant cells in a non-autonomous manner. Our findings provide unique insights into cellular communication among optimal and sub-optimal cells to regulate epithelial homeostasis and growth.
Collapse
Affiliation(s)
- Yunxian Huang
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Jinghua Gui
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | | | - Marja L. Mikkola
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Osamu Shimmi
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
- Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia
- Corresponding author
| |
Collapse
|
44
|
Fang C, Shao X, Tian Y, Chu Z, Lin Y. Size-dependent response of cells in epithelial tissue modulated by contractile stress fibers. Biophys J 2023; 122:1315-1324. [PMID: 36809876 PMCID: PMC10111366 DOI: 10.1016/j.bpj.2023.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/07/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
Although cells with distinct apical areas have been widely observed in epithelial tissues, how the size of cells affects their behavior during tissue deformation and morphogenesis as well as key physical factors modulating such influence remains elusive. Here, we showed that the elongation of cells within the monolayer under anisotropic biaxial stretching increases with their size because the strain released by local cell rearrangement (i.e., T1 transition) is more significant for small cells that possess higher contractility. On the other hand, by incorporating the nucleation, peeling, merging, and breakage dynamics of subcellular stress fibers into classical vertex formulation, we found that stress fibers with orientations predominantly aligned with the main stretching direction will be formed at tricellular junctions, in good agreement with recent experiments. The contractile forces generated by stress fibers help cells to resist imposed stretching, reduce the occurrence of T1 transitions, and, consequently, modulate their size-dependent elongation. Our findings demonstrate that epithelial cells could utilize their size and internal structure to regulate their physical and related biological behaviors. The theoretical framework proposed here can also be extended to investigate the roles of cell geometry and intracellular contraction in processes such as collective cell migration and embryo development.
Collapse
Affiliation(s)
- Chao Fang
- School of Science, Harbin Institute of Technology, Shenzhen, Guangdong, China; Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong; HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong, China
| | - Xueying Shao
- Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong; HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong, China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| | - Ye Tian
- Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong; HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong, China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong; School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yuan Lin
- Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong; HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, Guangdong, China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong.
| |
Collapse
|
45
|
Kingsley C, Kourtidis A. Critical roles of adherens junctions in diseases of the oral mucosa. Tissue Barriers 2023; 11:2084320. [PMID: 35659464 PMCID: PMC10161952 DOI: 10.1080/21688370.2022.2084320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 10/18/2022] Open
Abstract
The oral cavity is directly exposed to a variety of environmental stimuli and contains a diverse microbiome that continuously interacts with the oral epithelium. Therefore, establishment and maintenance of the barrier function of the oral mucosa is of paramount importance for its function and for the body's overall health. The adherens junction is a cell-cell adhesion complex that is essential for epithelial barrier function. Although a considerable body of work has associated barrier disruption with oral diseases, the molecular underpinnings of these associations have not been equally investigated. This is critical, since adherens junction components also possess significant signaling roles in the cell, in addition to their architectural ones. Here, we summarize current knowledge involving adherens junction components in oral pathologies, such as cancer and oral pathogen-related diseases, while we also discuss gaps in the knowledge and opportunities for future investigation of the relationship between adherens junctions and oral diseases.
Collapse
Affiliation(s)
- Christina Kingsley
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Antonis Kourtidis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
46
|
Liao X, Li X, Liu R. Extracellular-matrix mechanics regulate cellular metabolism: A ninja warrior behind mechano-chemo signaling crosstalk. Rev Endocr Metab Disord 2023; 24:207-220. [PMID: 36385696 DOI: 10.1007/s11154-022-09768-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/18/2022]
Abstract
Mechanical forces are the indispensable constituent of environmental cues, such as gravity, barometric pressure, vibration, and contact with bodies, which are involved in pattern and organogenesis, providing mechanical input to tissues and determining the ultimate fate of cells. Extracellular matrix (ECM) stiffness, the slow elastic force, carries the external physical force load onto the cell or outputs the internal force exerted by the cell and its neighbors into the environment. Accumulating evidence illustrates the pivotal role of ECM stiffness in the regulation of organogenesis, maintenance of tissue homeostasis, and the development of multiple diseases, which is largely fulfilled through its systematical impact on cellular metabolism. This review summarizes the establishment and regulation of ECM stiffness, the mechanisms underlying how ECM stiffness is sensed by cells and signals to modulate diverse cell metabolic pathways, and the physiological and pathological significance of the ECM stiffness-cell metabolism axis.
Collapse
Affiliation(s)
- Xiaoyu Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, 14, Section 3, Renminnan Road, Chengdu, 610041, Sichuan, China
| | - Xin Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, 14, Section 3, Renminnan Road, Chengdu, 610041, Sichuan, China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, 14, Section 3, Renminnan Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
47
|
Nishizawa K, Lin SZ, Chardès C, Rupprecht JF, Lenne PF. Two-point optical manipulation reveals mechanosensitive remodeling of cell-cell contacts in vivo. Proc Natl Acad Sci U S A 2023; 120:e2212389120. [PMID: 36947511 PMCID: PMC10068846 DOI: 10.1073/pnas.2212389120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/17/2023] [Indexed: 03/23/2023] Open
Abstract
Biological tissues acquire reproducible shapes during development through dynamic cell behaviors. Most of these behaviors involve the remodeling of cell-cell contacts. During epithelial morphogenesis, contractile actomyosin networks remodel cell-cell contacts by shrinking and extending junctions between lateral cell surfaces. However, actomyosin networks not only generate mechanical stresses but also respond to them, confounding our understanding of how mechanical stresses remodel cell-cell contacts. Here, we develop a two-point optical manipulation method to impose different stress patterns on cell-cell contacts in the early epithelium of the Drosophila embryo. The technique allows us to produce junction extension and shrinkage through different push and pull manipulations at the edges of junctions. We use these observations to expand classical vertex-based models of tissue mechanics, incorporating negative and positive mechanosensitive feedback depending on the type of remodeling. In particular, we show that Myosin-II activity responds to junction strain rate and facilitates full junction shrinkage. Altogether our work provides insight into how stress produces efficient deformation of cell-cell contacts in vivo and identifies unanticipated mechanosensitive features of their remodeling.
Collapse
Affiliation(s)
- Kenji Nishizawa
- Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living systems, Marseille UMR 7288, France
| | - Shao-Zhen Lin
- Aix Marseille Univ, Université de Toulon, CNRS, CPT, Turing Centre for Living systems, Marseille UMR 7332, France
| | - Claire Chardès
- Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living systems, Marseille UMR 7288, France
| | - Jean-François Rupprecht
- Aix Marseille Univ, Université de Toulon, CNRS, CPT, Turing Centre for Living systems, Marseille UMR 7332, France
| | - Pierre-François Lenne
- Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living systems, Marseille UMR 7288, France
| |
Collapse
|
48
|
di Pietro F, Osswald M, De Las Heras JM, Cristo I, López-Gay J, Wang Z, Pelletier S, Gaugué I, Leroy A, Martin C, Morais-de-Sá E, Bellaïche Y. Systematic analysis of RhoGEF/GAP localizations uncovers regulators of mechanosensing and junction formation during epithelial cell division. Curr Biol 2023; 33:858-874.e7. [PMID: 36917931 PMCID: PMC10017266 DOI: 10.1016/j.cub.2023.01.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/30/2022] [Accepted: 01/16/2023] [Indexed: 02/17/2023]
Abstract
Cell proliferation is central to epithelial tissue development, repair, and homeostasis. During cell division, small RhoGTPases control both actomyosin dynamics and cell-cell junction remodeling to faithfully segregate the genome while maintaining tissue polarity and integrity. To decipher the mechanisms of RhoGTPase spatiotemporal regulation during epithelial cell division, we generated a transgenic fluorescently tagged library for the 48 Drosophila Rho guanine exchange factors (RhoGEFs) and GTPase-activating proteins (GAPs), and we systematically characterized their endogenous distributions by time-lapse microscopy. Therefore, we unveiled candidate regulators of the interplay between actomyosin and junctional dynamics during epithelial cell division. Building on these findings, we established that the conserved RhoGEF Cysts and RhoGEF4 play sequential and distinct roles to couple cytokinesis with de novo junction formation. During ring contraction, Cysts via Rho1 participates in the neighbor mechanosensing response, promoting daughter-daughter cell membrane juxtaposition in preparation to de novo junction formation. Subsequently and upon midbody formation, RhoGEF4 via Rac acts in the dividing cell to ensure the withdrawal of the neighboring cell membranes, thus controlling de novo junction length and cell-cell arrangements upon cytokinesis. Altogether, our findings delineate how the RhoGTPases Rho and Rac are locally and temporally activated during epithelial cytokinesis, highlighting the RhoGEF/GAP library as a key resource to understand the broad range of biological processes regulated by RhoGTPases.
Collapse
Affiliation(s)
- Florencia di Pietro
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Mariana Osswald
- IBMC - Instituto de Biologia Molecular e Celular; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - José M De Las Heras
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Inês Cristo
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Jesús López-Gay
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Zhimin Wang
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Stéphane Pelletier
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Isabelle Gaugué
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Adrien Leroy
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Charlotte Martin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Eurico Morais-de-Sá
- IBMC - Instituto de Biologia Molecular e Celular; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Yohanns Bellaïche
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France.
| |
Collapse
|
49
|
Badouel C, Audouard C, Davy A. Heterogeneity in the size of the apical surface of cortical progenitors. Dev Dyn 2023; 252:363-376. [PMID: 36153792 DOI: 10.1002/dvdy.539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The apical surface (AS) of epithelial cells is highly specialized; it is important for morphogenetic processes that are essential to shape organs and tissues and it plays a role in morphogen and growth factor signaling. Apical progenitors in the mammalian neocortex are pseudoepithelial cells whose apical surface lines the ventricle. Whether changes in their apical surface sizes are important for cortical morphogenesis and/or other aspects of neocortex development has not been thoroughly addressed. RESULTS Here we show that apical progenitors are heterogeneous with respect to their apical surface area. In Efnb1 mutants, the size of the apical surface is modified and this correlates with discrete alterations of tissue organization without impacting apical progenitors proliferation. CONCLUSIONS Altogether, our data reveal heterogeneity in apical progenitors AS area in the developing neocortex and shows a role for Ephrin B1 in controlling AS size. Our study also indicates that changes in AS size do not have strong repercussion on apical progenitor behavior.
Collapse
Affiliation(s)
- Caroline Badouel
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Christophe Audouard
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Alice Davy
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France
| |
Collapse
|
50
|
Bax NA, Wang A, Huang DL, Pokutta S, Weis WI, Dunn AR. Multi-level Force-dependent Allosteric Enhancement of αE-catenin Binding to F-actin by Vinculin. J Mol Biol 2023; 435:167969. [PMID: 36682678 PMCID: PMC9957948 DOI: 10.1016/j.jmb.2023.167969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/22/2023]
Abstract
Classical cadherins are transmembrane proteins whose extracellular domains link neighboring cells, and whose intracellular domains connect to the actin cytoskeleton via β-catenin and α-catenin. The cadherin-catenin complex transmits forces that drive tissue morphogenesis and wound healing. In addition, tension-dependent changes in αE-catenin conformation enables it to recruit the actin-binding protein vinculin to cell-cell junctions, which contributes to junctional strengthening. How and whether multiple cadherin-complexes cooperate to reinforce cell-cell junctions in response to load remains poorly understood. Here, we used single-molecule optical trap measurements to examine how multiple cadherin-catenin complexes interact with F-actin under load, and how this interaction is influenced by the presence of vinculin. We show that force oriented toward the (-) end of the actin filament results in mean lifetimes 3-fold longer than when force was applied towards the barbed (+) end. We also measured force-dependent actin binding by a quaternary complex comprising the cadherin-catenin complex and the vinculin head region, which cannot itself bind actin. Binding lifetimes of this quaternary complex increased as additional complexes bound F-actin, but only when load was oriented toward the (-) end. In contrast, the cadherin-catenin complex alone did not show this form of cooperativity. These findings reveal multi-level, force-dependent regulation that enhances the strength of the association of multiple cadherin/catenin complexes with F-actin, conferring positive feedback that may strengthen the junction and polarize F-actin to facilitate the emergence of higher-order cytoskeletal organization.
Collapse
Affiliation(s)
- Nicolas A Bax
- Departments of Structural Biology and Molecular & Cellular Physiology, Stanford University School of Medicine, United States. https://twitter.com/@bax1337
| | - Amy Wang
- Departments of Structural Biology and Molecular & Cellular Physiology, Stanford University School of Medicine, United States; Department of Chemical Engineering, Stanford University School of Engineering, United States. https://twitter.com/@amywang01
| | - Derek L Huang
- Graduate Program in Biophysics, Stanford University, United States
| | - Sabine Pokutta
- Departments of Structural Biology and Molecular & Cellular Physiology, Stanford University School of Medicine, United States
| | - William I Weis
- Departments of Structural Biology and Molecular & Cellular Physiology, Stanford University School of Medicine, United States.
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University School of Engineering, United States; Stanford Cardiovascular Institute, Stanford School of Medicine.
| |
Collapse
|