1
|
Jia H, Wei J, Zheng W, Li Z. The dual role of autophagy in cancer stem cells: implications for tumor progression and therapy resistance. J Transl Med 2025; 23:583. [PMID: 40414839 DOI: 10.1186/s12967-025-06595-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 05/08/2025] [Indexed: 05/27/2025] Open
Abstract
Cancer stem cells (CSCs) constitute a small yet crucial subgroup in tumors, known for their capacity to self-renew, differentiate, and promote tumor growth, metastasis, and resistance to therapy. These characteristics position CSCs as significant factors in tumor recurrence and unfavorable clinical results, emphasizing their role as targets for therapy. Autophagy, an evolutionarily preserved cellular mechanism for degradation and recycling, has a complex function in cancer by aiding cell survival during stress and preserving balance by eliminating damaged organelles and proteins. Although autophagy can hinder tumor growth by reducing genomic instability, it also aids tumor advancement, particularly in harsh microenvironments, highlighting its dual characteristics. Recent research has highlighted the complex interactions between autophagy and CSCs, showing that autophagy governs CSC maintenance, boosts survival, and aids in resistance to chemotherapy and radiotherapy. On the other hand, in specific situations, autophagy may restrict CSC growth by increasing differentiation or inducing cell death. These intricate interactions offer both obstacles and possibilities for therapeutic intervention. Pharmacological modulation of autophagy, via inhibitors like chloroquine or by enhancing autophagy when advantageous, has demonstrated potential in making CSCs more responsive to standard treatments. Nonetheless, applying these strategies in clinical settings necessitates a better understanding of context-dependent autophagy dynamics and the discovery of dependable biomarkers indicating autophagic activity in CSCs. Progressing in this area might unveil novel, accurate strategies to tackle therapy resistance, lessen tumor recurrence, and ultimately enhance patient outcomes.
Collapse
Affiliation(s)
- Haiqing Jia
- Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No.44 xiaoheyan road, Shenyang, 110042, China
| | - Jing Wei
- Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No.44 xiaoheyan road, Shenyang, 110042, China
| | - Wei Zheng
- Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No.44 xiaoheyan road, Shenyang, 110042, China.
| | - Zhuo Li
- Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No.44 xiaoheyan road, Shenyang, 110042, China.
| |
Collapse
|
2
|
Charras A, Hiraki LT, Lewandowski L, Hedrich CM. Genetic and epigenetic factors shape phenotypes and outcomes in systemic lupus erythematosus - focus on juvenile-onset systemic lupus erythematosus. Curr Opin Rheumatol 2025; 37:149-163. [PMID: 39660463 PMCID: PMC11789615 DOI: 10.1097/bor.0000000000001072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
PURPOSE OF REVIEW Systemic lupus erythematosus (SLE) is a severe autoimmune/inflammatory disease. Patients with juvenile disease-onset and those of non-European ancestry are most severely affected. While the exact pathophysiology remains unknown, common and rare gene variants in the context of environmental exposure and epigenetic alterations are involved. This manuscript summarizes the current understanding of genetic and epigenetic contributors to SLE risk, manifestations and outcomes. RECENT FINDINGS Though SLE is a mechanistically complex disease, we are beginning to understand the impact of rare and common gene variants on disease expression and associated outcomes. Recent trans -ancestral and multigenerational studies suggest that differential genetic and environmental impacts shape phenotypic variability between age-groups and ancestries. High genetic burden associates with young age at disease-onset, organ involvement, and severity. Additional epigenetic impact contributes to disease-onset and severity, including SLE-phenotypes caused by rare single gene variants. Studies aiming to identify predictors of organ involvement and disease outcomes promise future patient stratification towards individualized treatment and care. SUMMARY An improved understanding of genetic variation and epigenetic marks explain phenotypic differences between age-groups and ancestries, promising their future exploitation for diagnostic, prognostic and therapeutic considerations.
Collapse
Affiliation(s)
- Amandine Charras
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Linda T. Hiraki
- Genetics & Genome Biology, Research Institute, and Division of Rheumatology, The Hospital for Sick Children, & Division of Rheumatology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Laura Lewandowski
- National Institute of Arthritis and Musculoskeletal and Skin diseases, NIH, Bethesda, Maryland, USA
| | - Christian M. Hedrich
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Department of Rheumatology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
3
|
Migliore L, Cianfanelli V, Zevolini F, Gesualdo M, Marzuoli L, Patrussi L, Ulivieri C, Marotta G, Cecconi F, Finetti F, Baldari CT. An AMBRA1, ULK1 and PP2A regulatory network regulates cytotoxic T cell differentiation via TFEB activation. Sci Rep 2024; 14:31838. [PMID: 39738384 PMCID: PMC11685475 DOI: 10.1038/s41598-024-82957-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/09/2024] [Indexed: 01/02/2025] Open
Abstract
The scaffold protein AMBRA1, which participates in the autophagy pathway, also promotes CD4+ T cell differentiation to Tregs independent of autophagy through its interactor PP2A. Here we have investigated the role of AMBRA1 in CD8+ T cell differentiation to cytotoxic T cells (CTL). AMBRA1 depletion in CD8+ T cells was associated with impaired expression of the transcription factors RUNX3 and T-BET that drive CTL differentiation and resulted in impaired acquisition of cytotoxic potential. These effects were recapitulated by pharmacological inhibition of the AMBRA1 activator ULK1 or its interactor PP2A. Based on the ability of PP2A to activate TFEB, we hypothesized a role for TFEB in the CTL differentiation program regulated by AMBRA1. We show that TFEB modulates RUNX3 and T-BET expression and the generation of killing-competent CTLs, and that AMBRA1 depletion, or ULK1 or PP2A inhibition, suppresses TFEB activity. These data highlight a role for AMBRA1, ULK1 and PP2A in CTL generation, mediated by TFEB, which we identify as a new pioneering transcription factor in the CTL differentiation program.
Collapse
Affiliation(s)
- Loredana Migliore
- Department of Life Sciences, University of Siena, Siena, Italy
- Department of Science, University "ROMA TRE", Rome, Italy
| | - Valentina Cianfanelli
- Department of Woman and Child Health and Public Health, Gynecologic Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Science, University "ROMA TRE", Rome, Italy
| | | | - Monica Gesualdo
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Laura Patrussi
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | | | - Francesco Cecconi
- Università Cattolica del Sacro Cuore and Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Cell Stress and Survival Group, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Institute, Copenhagen, Denmark
| | | | | |
Collapse
|
4
|
Di Rienzo M, Romagnoli A, Refolo G, Vescovo T, Ciccosanti F, Zuchegna C, Lozzi F, Occhigrossi L, Piacentini M, Fimia GM. Role of AMBRA1 in mitophagy regulation: emerging evidence in aging-related diseases. Autophagy 2024; 20:2602-2615. [PMID: 39113560 PMCID: PMC11587829 DOI: 10.1080/15548627.2024.2389474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Aging is a gradual and irreversible physiological process that significantly increases the risks of developing a variety of pathologies, including neurodegenerative, cardiovascular, metabolic, musculoskeletal, and immune system diseases. Mitochondria are the energy-producing organelles, and their proper functioning is crucial for overall cellular health. Over time, mitochondrial function declines causing an increased release of harmful reactive oxygen species (ROS) and DNA, which leads to oxidative stress, inflammation and cellular damage, common features associated with various age-related pathologies. The impairment of mitophagy, the selective removal of damaged or dysfunctional mitochondria by autophagy, is relevant to the development and progression of age-related diseases. The molecular mechanisms that regulates mitophagy levels in aging remain largely uncharacterized. AMBRA1 is an intrinsically disordered scaffold protein with a unique property of regulating the activity of both proliferation and autophagy core machineries. While the role of AMBRA1 during embryonic development and neoplastic transformation has been extensively investigated, its functions in post-mitotic cells of adult tissues have been limited due to the embryonic lethality caused by AMBRA1 deficiency. Recently, a key role of AMBRA1 in selectively regulating mitophagy in post-mitotic cells has emerged. Here we summarize and discuss these results with the aim of providing a comprehensive view of the mitochondrial roles of AMBRA1, and how defective activity of AMBRA1 has been functionally linked to mitophagy alterations observed in age-related degenerative disorders, including muscular dystrophy/sarcopenia, Parkinson diseases, Alzheimer diseases and age-related macular degeneration.Abbreviations: AD: Alzheimer disease; AMD: age-related macular degeneration; AMBRA1: autophagy and beclin 1 regulator 1; APOE4: apolipoprotein E4; ATAD3A: ATPase family AAA domain containing 3A; ATG: autophagy related; BCL2: BCL2 apoptosis regulator; BH3: BCL2-homology-3; BNIP3L/NIX: BCL2 interacting protein 3 like; CDK: cyclin dependent kinase; CHUK/IKKα: component of inhibitor of nuclear factor kappa B kinase complex; CRL2: CUL2-RING ubiquitin ligase; DDB1: damage specific DNA binding protein 1; ER: endoplasmic reticulum; FOXO: forkhead box O; FUNDC1: FUN14 domain containing 1; GBA/β-glucocerebrosidase: glucosylceramidase beta; HUWE1: HECT, UBA and WWE domain containing E3 ubiquitin protein ligase 1; IDR: intrinsically disordered region; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; MCL1: MCL1 apoptosis regulator, BCL2 family member; MFN2: mitofusin 2; MTOR: mechanistic target of rapamycin kinase; MSA: multiple system atrophy; MYC: MYC proto-oncogene, bHLH transcription factor; NUMA1: nuclear mitotic apparatus protein 1; OMM; mitochondria outer membrane; PD: Parkinson disease; PHB2: prohibitin 2; PINK1: PTEN induced kinase 1; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PTK2/FAK: protein tyrosine kinase 2; ROS: reactive oxygen species; RPE: retinal pigment epithelium; SAD: sporadic AD; SOCS3: suppressor of cytokine signaling 3; SRC, SRC proto-oncogene, non-receptor tyrosine kinase; STAT3: signal transducer and activator of transcription 3; STING1: stimulator of interferon response cGAMP interactor 1; SQSTM1/p62: sequestosome 1; TBK1: TANK binding kinase 1; TGFB/TGFβ: transforming growth factor beta; TOMM: translocase of outer mitochondrial membrane; TRAF6: TNF receptor associated factor 6; TRIM32: tripartite motif containing 32; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Martina Di Rienzo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Alessandra Romagnoli
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Giulia Refolo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Tiziana Vescovo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Fabiola Ciccosanti
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Candida Zuchegna
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Francesca Lozzi
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
| | - Luca Occhigrossi
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
- Department of Molecular Medicine, University of Rome “La Sapienza”, Rome, Italy
| | - Mauro Piacentini
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
- Department of Biology, University of Rome ‘Tor Vergata’, Rome, Italy
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS ‘L. Spallanzani’, Rome, Italy
- Department of Molecular Medicine, University of Rome “La Sapienza”, Rome, Italy
| |
Collapse
|
5
|
Niharika, Garg M. Understanding the autophagic functions in cancer stem cell maintenance and therapy resistance. Expert Rev Mol Med 2024; 26:e23. [PMID: 39375840 PMCID: PMC11488345 DOI: 10.1017/erm.2024.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/25/2023] [Accepted: 06/25/2024] [Indexed: 10/09/2024]
Abstract
Complex tumour ecosystem comprising tumour cells and its associated tumour microenvironment (TME) constantly influence the tumoural behaviour and ultimately impact therapy failure, disease progression, recurrence and poor overall survival of patients. Crosstalk between tumour cells and TME amplifies the complexity by creating metabolic changes such as hypoxic environment and nutrient fluctuations. These changes in TME initiate stem cell-like programmes in cancer cells, contribute to tumoural heterogeneity and increase tumour robustness. Recent studies demonstrate the multifaceted role of autophagy in promoting fibroblast production, stemness, cancer cell survival during longer periods of dormancy, eventual growth of metastatic disease and disease resistance. Recent ongoing studies examine autophagy/mitophagy as a powerful survival strategy in response to environmental stress including nutrient deprivation, hypoxia and environmental stress in TME. It prevents irreversible senescence, promotes dormant stem-like state, induces epithelial-mesenchymal transition and increases migratory and invasive potential of tumour cells. The present review discusses various theories and mechanisms behind the autophagy-dependent induction of cancer stem cell (CSC) phenotype. Given the role of autophagic functions in CSC aggressiveness and therapeutic resistance, various mechanisms and studies based on suppressing cellular plasticity by blocking autophagy as a powerful therapeutic strategy to kill tumour cells are discussed.
Collapse
Affiliation(s)
- Niharika
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| | - Minal Garg
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| |
Collapse
|
6
|
Zhao X, Ma D, Yang B, Wang Y, Zhang L. Research progress of T cell autophagy in autoimmune diseases. Front Immunol 2024; 15:1425443. [PMID: 39104538 PMCID: PMC11298352 DOI: 10.3389/fimmu.2024.1425443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024] Open
Abstract
T cells, as a major lymphocyte population involved in the adaptive immune response, play an important immunomodulatory role in the early stages of autoimmune diseases. Autophagy is a cellular catabolism mediated by lysosomes. Autophagy maintains cell homeostasis by recycling degraded cytoplasmic components and damaged organelles. Autophagy has a protective effect on cells and plays an important role in regulating T cell development, activation, proliferation and differentiation. Autophagy mediates the participation of T cells in the acquired immune response and plays a key role in antigen processing as well as in the maintenance of T cell homeostasis. In autoimmune diseases, dysregulated autophagy of T cells largely influences the pathological changes. Therefore, it is of great significance to study how T cells play a role in the immune mechanism of autoimmune diseases through autophagy pathway to guide the clinical treatment of diseases.
Collapse
Affiliation(s)
| | | | | | | | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
7
|
Wang C, Oishi K, Kobayashi T, Fujii K, Horii M, Fushida N, Kitano T, Maeda S, Ikawa Y, Komuro A, Hamaguchi Y, Matsushita T. The Role of TLR7 and TLR9 in the Pathogenesis of Systemic Sclerosis. Int J Mol Sci 2024; 25:6133. [PMID: 38892317 PMCID: PMC11172923 DOI: 10.3390/ijms25116133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The bleomycin-induced scleroderma model is a well-established and dependable method for creating a mouse model of SSc (systemic sclerosis). In the field of skin connective tissue diseases, increasing evidence from clinical and animal experiments suggests that TLRs (Toll-like receptors) play an important role in several diseases. This study aimed to determine the role of TLR7 (Toll-like receptor 7) and TLR9 (Toll-like receptor 9) in the mechanisms of immune abnormalities and fibrosis in SSc. This study used TLR7-KO mice (TLR7-knockout mice with a balb/c background) and TLR9-KO mice (TLR9-knockout mice with a balb/c background) as well as WT mice (wild-type balb/c mice). All three kinds of mice were induced by BLM (bleomycin) in a scleroderma model as the experimental group; meanwhile, WT mice treated with PBS (phosphate-buffered saline) were used as the control group. We analyzed the fibrotic phenotype and the immunological abnormality phenotype of TLR7-deficient and TLR9-deficient mice in the SSc disease model using flow cytometry, RT-PCR (reverse transcription-polymerase chain reaction), a histological examination, and IHC (immunohistochemical staining). In a mouse model of SSc disease, the deletion of TLR7 attenuated skin and lung fibrosis, while the deletion of TLR9 exacerbated skin and lung fibrosis. The deletion of TLR7 resulted in a relative decrease in the infiltration and expression of various pro-inflammatory and fibrotic cells and cytokines in the skin. On the other hand, the deletion of TLR9 resulted in a relative increase in the infiltration and expression of various pro-inflammatory and cytokine-inhibiting cells and cytokines in the skin. Under the influence of pDCs (plasmacytoid dendritic cells), the balances of Beff/Breg (IL-6 + CD19 + B cell/IL-10 + CD19 + B cell), Th17/Treg (IL-17A + CD4 + T cell/Foxp3 + CD25 + CD4 + T cell), M1/M2 (CD86 + macrophage/CD206 + macrophage), and Th1/Th2 (TNFα + CD3 + CD4 + T cell/IL-4 + CD3 + CD4 + T cell) were biased towards the suppression of inflammation and fibrosis as a result of the TLR7 deletion. Comparatively, the balance was biased towards promoting inflammation and fibrosis due to the TLR9 deletion. In the SSc model, TLR7 promoted inflammation and fibrosis progression, while TLR9 played a protective role. These results suggest that TLR7 and TLR9 play opposite roles in triggering SSc to produce immune system abnormalities and skin fibrosis.
Collapse
Affiliation(s)
- Chenyang Wang
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Kyosuke Oishi
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Tadahiro Kobayashi
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Ko Fujii
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Motoki Horii
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Natsumi Fushida
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Tasuku Kitano
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Shintaro Maeda
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Yuichi Ikawa
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
- Department of Plastic Surgery, Kanazawa University Hospital, Kanazawa 920-8641, Japan
| | - Akito Komuro
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
- Department of Plastic Surgery, Kanazawa University Hospital, Kanazawa 920-8641, Japan
| | - Yasuhito Hamaguchi
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Takashi Matsushita
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| |
Collapse
|
8
|
He L, Zhong Z, Wen S, Li P, Jiang Q, Liu F. Gut microbiota-derived butyrate restores impaired regulatory T cells in patients with AChR myasthenia gravis via mTOR-mediated autophagy. Cell Commun Signal 2024; 22:215. [PMID: 38570836 PMCID: PMC10988943 DOI: 10.1186/s12964-024-01588-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/23/2024] [Indexed: 04/05/2024] Open
Abstract
More than 80% of patients with myasthenia gravis (MG) are positive for anti-acetylcholine receptor (AChR) antibodies. Regulatory T cells (Tregs) suppress overproduction of these antibodies, and patients with AChR antibody-positive MG (AChR MG) exhibit impaired Treg function and reduced Treg numbers. The gut microbiota and their metabolites play a crucial role in maintaining Treg differentiation and function. However, whether impaired Tregs correlate with gut microbiota activity in patients with AChR MG remains unknown. Here, we demonstrate that butyric acid-producing gut bacteria and serum butyric acid level are reduced in patients with AChR MG. Butyrate supplementation effectively enhanced Treg differentiation and their suppressive function of AChR MG. Mechanistically, butyrate activates autophagy of Treg cells by inhibiting the mammalian target of rapamycin. Activation of autophagy increased oxidative phosphorylation and surface expression of cytotoxic T-lymphocyte-associated protein 4 on Treg cells, thereby promoting Treg differentiation and their suppressive function in AChR MG. This observed effect of butyrate was blocked using chloroquine, an autophagy inhibitor, suggesting the vital role of butyrate-activated autophagy in Tregs of patients with AChR MG. We propose that gut bacteria derived butyrate has potential therapeutic efficacy against AChR MG by restoring impaired Tregs.
Collapse
Affiliation(s)
- Long He
- Department of Digestive Endoscopy, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Postdoctoral Research Station of Guangzhou University of Chinese Medicine, No. 16 Airport Road, Baiyun District, Guangzhou, Guangdong Province, 510405, China
| | - Zhuotai Zhong
- Department of Gastroenterology, Wangjing Hospital, China Academy of Chinese Medical Sciences, No. 6, Wangjing Zhonghuan South Road, Futong East Street, Chaoyang District, Beijing City, China
| | - Shuting Wen
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 55, Inner Ring West Road, Panyu District, Guangzhou, Guangzhou, Guangdong Province, 511400, China
| | - Peiwu Li
- Department of Hepatobiliary, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 16 Airport Road, Baiyun District, Guangzhou, Guangdong Province, 510405, China.
| | - Qilong Jiang
- Department of Myopathies, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 16 Airport Road, Baiyun District, Guangzhou, Guangdong Province, 510405, China.
| | - Fengbin Liu
- Department of Hepatobiliary, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 16 Airport Road, Baiyun District, Guangzhou, Guangdong Province, 510405, China.
- Baiyun Hospital of the First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 2 He Longqi Road, Renhe, Baiyun District, Guangzhou, 510000, China.
- Institute of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 12 Airport Road, Baiyun District, Guangzhou, Guangdong Province, 510405, China.
| |
Collapse
|
9
|
Cheng M, Nie Y, Song M, Chen F, Yu Y. Forkhead box O proteins: steering the course of stem cell fate. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:7. [PMID: 38466341 DOI: 10.1186/s13619-024-00190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/26/2024] [Indexed: 03/13/2024]
Abstract
Stem cells are pivotal players in the intricate dance of embryonic development, tissue maintenance, and regeneration. Their behavior is delicately balanced between maintaining their pluripotency and differentiating as needed. Disruptions in this balance can lead to a spectrum of diseases, underscoring the importance of unraveling the complex molecular mechanisms that govern stem cell fate. Forkhead box O (FOXO) proteins, a family of transcription factors, are at the heart of this intricate regulation, influencing a myriad of cellular processes such as survival, metabolism, and DNA repair. Their multifaceted role in steering the destiny of stem cells is evident, as they wield influence over self-renewal, quiescence, and lineage-specific differentiation in both embryonic and adult stem cells. This review delves into the structural and regulatory intricacies of FOXO transcription factors, shedding light on their pivotal roles in shaping the fate of stem cells. By providing insights into the specific functions of FOXO in determining stem cell fate, this review aims to pave the way for targeted interventions that could modulate stem cell behavior and potentially revolutionize the treatment and prevention of diseases.
Collapse
Affiliation(s)
- Mengdi Cheng
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Yujie Nie
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Min Song
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Fulin Chen
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Yuan Yu
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China.
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
10
|
Nakashima A, Furuta A, Yoshida-Kawaguchi M, Yamada K, Nunomura H, Morita K, Yasuda I, Yoneda S, Yamaki-Ushijima A, Shima T, Tsuda S. Immunological regulation and the role of autophagy in preeclampsia. Am J Reprod Immunol 2024; 91:e13835. [PMID: 38467995 DOI: 10.1111/aji.13835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/17/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024] Open
Abstract
Autophagy is a bulk degradation system that maintains cellular homeostasis by producing energy and/or recycling excess proteins. During early placentation, extravillous trophoblasts invade the decidua and uterine myometrium, facing maternal immune cells, which participate in the immune suppression of paternal and fetal antigens. Regulatory T cells will likely increase in response to a specific antigen before and during early pregnancy. Insufficient expansion of antigen-specific Treg cells, which possess the same T cell receptor, is associated with the pathophysiology of preeclampsia, suggesting sterile systemic inflammation. Autophagy is involved in reducing inflammation through the degradation of inflammasomes and in the differentiation and function of regulatory T cells. Autophagy dysregulation induces protein aggregation in trophoblasts, resulting in placental dysfunction. In this review, we discuss the role of regulatory T cells in normal pregnancies. In addition, we discuss the association between autophagy and regulatory T cells in the development of preeclampsia based on reports on the role of autophagy in autoimmune diseases.
Collapse
Affiliation(s)
- Akitoshi Nakashima
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Atsushi Furuta
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Mihoko Yoshida-Kawaguchi
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Kiyotaka Yamada
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Haruka Nunomura
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Keiko Morita
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Ippei Yasuda
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Satoshi Yoneda
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Akemi Yamaki-Ushijima
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Tomoko Shima
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Sayaka Tsuda
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
11
|
Procaccini C, de Candia P, Russo C, De Rosa G, Lepore MT, Colamatteo A, Matarese G. Caloric restriction for the immunometabolic control of human health. Cardiovasc Res 2024; 119:2787-2800. [PMID: 36848376 DOI: 10.1093/cvr/cvad035] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/10/2022] [Accepted: 11/28/2022] [Indexed: 03/01/2023] Open
Abstract
Nutrition affects all physiological processes occurring in our body, including those related to the function of the immune system; indeed, metabolism has been closely associated with the differentiation and activity of both innate and adaptive immune cells. While excessive energy intake and adiposity have been demonstrated to cause systemic inflammation, several clinical and experimental evidence show that calorie restriction (CR), not leading to malnutrition, is able to delay aging and exert potent anti-inflammatory effects in different pathological conditions. This review provides an overview of the ability of different CR-related nutritional strategies to control autoimmune, cardiovascular, and infectious diseases, as tested by preclinical studies and human clinical trials, with a specific focus on the immunological aspects of these interventions. In particular, we recapitulate the state of the art on the cellular and molecular mechanisms pertaining to immune cell metabolic rewiring, regulatory T cell expansion, and gut microbiota composition, which possibly underline the beneficial effects of CR. Although studies are still needed to fully evaluate the feasibility and efficacy of the nutritional intervention in clinical practice, the experimental observations discussed here suggest a relevant role of CR in lowering the inflammatory state in a plethora of different pathologies, thus representing a promising therapeutic strategy for the control of human health.
Collapse
Affiliation(s)
- Claudio Procaccini
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Via Sergio Pansini 5, 80131 Naples, Italy
- Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Paola de Candia
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli 'Federico II', Via Sergio Pansini, 80131 Naples, Italy
| | - Claudia Russo
- Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Giusy De Rosa
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli 'Federico II', Via Sergio Pansini, 80131 Naples, Italy
| | - Maria Teresa Lepore
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Via Sergio Pansini 5, 80131 Naples, Italy
| | - Alessandra Colamatteo
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli 'Federico II', Via Sergio Pansini, 80131 Naples, Italy
| | - Giuseppe Matarese
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Via Sergio Pansini 5, 80131 Naples, Italy
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli 'Federico II', Via Sergio Pansini, 80131 Naples, Italy
| |
Collapse
|
12
|
Du H, Huangfu W, Liu Z, Jia G, Zhao F, Cheng W. 5-Demethylnobiletin Ameliorates Isoproterenol-Induced Cardiac Fibrosis and Apoptosis by Repressing the Sirt1/FOXO3a/NF-κB and Wnt/β-Catenin Pathways. Biol Pharm Bull 2024; 47:1774-1785. [PMID: 39477471 DOI: 10.1248/bpb.b24-00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Apoptosis and fibrosis are two main factors leading to heart failure. 5-Demethylnobiletin (5-OH-Nob) is a natural polymethoxyflavone derived from the peel of citrus fruits that has many biological effects, such as antioxidative stress and anti-inflammatory effects. Here, we aimed to probe the function and mechanism of 5-OH-Nob in myocardial damage. Primary rat cardiac fibroblasts were exposed to isoproterenol (ISO, 10 µM) to establish an in vitro model of cardiac damage, and ISO (30 mg/kg/d) was used to induce myocardial fibrosis in mice. 5-OH-Nob was used for treatment in vivo and ex vivo. Functional assays revealed that 5-OH-Nob alleviated the apoptosis and fibrosis of cardiac fibroblasts treated with ISO and increased cell viability (p < 0.05). In vivo, 5-OH-Nob treatment ameliorated cardiac injury in ISO-treated mice (p < 0.05). Mechanistically, 5-OH-Nob treatment enhanced Sirt1 expression and suppressed ISO-mediated activation of the FOXO3a/nuclear transcription factor-κB (NF-κB) and Wnt/β-catenin pathways. Furthermore, Sirt1 inhibition attenuated the protective effect of 5-OH-Nob on ISO-induced cardiac apoptosis and fibrosis. Overall, 5-demethylnobiletin mediates the Sirt1/FOXO3a/NF-κB and Wnt/β-catenin pathways to mitigate ISO-induced myocardial fibrosis and apoptosis.
Collapse
Affiliation(s)
- Haiyan Du
- Department of General Practice, Affiliated Hospital of Inner Mongolia Medical University
| | - Weizhong Huangfu
- Department of General Practice, Affiliated Hospital of Inner Mongolia Medical University
| | - Zhonghua Liu
- Department of General Practice, Affiliated Hospital of Inner Mongolia Medical University
| | - Gaopeng Jia
- Department of General Practice, Affiliated Hospital of Inner Mongolia Medical University
| | - Feng Zhao
- Department of General Practice, Affiliated Hospital of Inner Mongolia Medical University
| | - Wenjun Cheng
- Department of General Practice, Affiliated Hospital of Inner Mongolia Medical University
| |
Collapse
|
13
|
Giansanti M, Theinert T, Boeing SK, Haas D, Schlegel PG, Vacca P, Nazio F, Caruana I. Exploiting autophagy balance in T and NK cells as a new strategy to implement adoptive cell therapies. Mol Cancer 2023; 22:201. [PMID: 38071322 PMCID: PMC10709869 DOI: 10.1186/s12943-023-01893-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Autophagy is an essential cellular homeostasis pathway initiated by multiple stimuli ranging from nutrient deprivation to viral infection, playing a key role in human health and disease. At present, a growing number of evidence suggests a role of autophagy as a primitive innate immune form of defense for eukaryotic cells, interacting with components of innate immune signaling pathways and regulating thymic selection, antigen presentation, cytokine production and T/NK cell homeostasis. In cancer, autophagy is intimately involved in the immunological control of tumor progression and response to therapy. However, very little is known about the role and impact of autophagy in T and NK cells, the main players in the active fight against infections and tumors. Important questions are emerging: what role does autophagy play on T/NK cells? Could its modulation lead to any advantages? Could specific targeting of autophagy on tumor cells (blocking) and T/NK cells (activation) be a new intervention strategy? In this review, we debate preclinical studies that have identified autophagy as a key regulator of immune responses by modulating the functions of different immune cells and discuss the redundancy or diversity among the subpopulations of both T and NK cells in physiologic context and in cancer.
Collapse
Affiliation(s)
- Manuela Giansanti
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy
| | - Tobias Theinert
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Sarah Katharina Boeing
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Dorothee Haas
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Paul-Gerhardt Schlegel
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Paola Vacca
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy
| | - Francesca Nazio
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy.
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Ignazio Caruana
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Würzburg, 97080, Würzburg, Germany.
| |
Collapse
|
14
|
Wang X, Jia JH, Zhang M, Meng QS, Yan BW, Ma ZY, Wang DB. Adrenomedullin/FOXO3 enhances sunitinib resistance in clear cell renal cell carcinoma by inhibiting FDX1 expression and cuproptosis. FASEB J 2023; 37:e23143. [PMID: 37698353 DOI: 10.1096/fj.202300474r] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/26/2023] [Accepted: 08/03/2023] [Indexed: 09/13/2023]
Abstract
Cuproptosis, a new type of copper-induced cell death, is involved in the antitumor activity and resistance of multiple chemotherapeutic drugs. Our previous study revealed that adrenomedullin (ADM) was engaged in sunitinib resistance in clear cell renal cell carcinoma (ccRCC). However, it has yet to be investigated whether and how ADM regulates sunitinib resistance by cuproptosis. This study found that the ADM expression was elevated in sunitinib-resistant ccRCC tissues and cells. Furthermore, the upregulation of ADM significantly enhanced the chemoresistance of sunitinib compared with their respective control. Moreover, cuproptosis was involved in ADM-regulated sunitinib resistance by inhibiting mammalian ferredoxin 1 (FDX1) expression. Mechanically, the upregulated ADM activates the p38/MAPK signaling pathway to promote Forkhead box O3 (FOXO3) phosphorylation and its entry into the nucleus. Consequently, the increased FOXO3 in the nucleus inhibited FDX1 transcription and cell cuproptosis, promoting chemoresistance. Collectively, cuproptosis has a critical effector role in ccRCC progress and chemoresistance and thus is a relevant target to eradicate the cell population of sunitinib resistance.
Collapse
Affiliation(s)
- Xin Wang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiang-Hua Jia
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ming Zhang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qing-Song Meng
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bo-Wen Yan
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zi-Yue Ma
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dong-Bin Wang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
15
|
Panahi Meymandi AR, Akbari B, Soltantoyeh T, Hadjati J, Klionsky DJ, Badie B, Mirzaei HR. Crosstalk between autophagy and metabolic regulation of (CAR) T cells: therapeutic implications. Front Immunol 2023; 14:1212695. [PMID: 37675121 PMCID: PMC10477670 DOI: 10.3389/fimmu.2023.1212695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/04/2023] [Indexed: 09/08/2023] Open
Abstract
Despite chimeric antigen receptor (CAR) T cell therapy's extraordinary success in subsets of B-cell lymphoma and leukemia, various barriers restrict its application in solid tumors. This has prompted investigating new approaches for producing CAR T cells with superior therapeutic potential. Emerging insights into the barriers to CAR T cell clinical success indicate that autophagy shapes the immune response via reprogramming cellular metabolism and vice versa. Autophagy, a self-cannibalization process that includes destroying and recycling intracellular components in the lysosome, influences T cell biology, including development, survival, memory formation, and cellular metabolism. In this review, we will emphasize the critical role of autophagy in regulating and rewiring metabolic circuits in CAR T cells, as well as how the metabolic status of CAR T cells and the tumor microenvironment (TME) alter autophagy regulation in CAR T cells to restore functional competence in CAR Ts traversing solid TMEs.
Collapse
Affiliation(s)
- Ahmad Reza Panahi Meymandi
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnia Akbari
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahereh Soltantoyeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jamshid Hadjati
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Behnam Badie
- Division of Neurosurgery, City of Hope Beckman Research Institute, Duarte, California, United States
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
16
|
Petillo S, Sproviero E, Loconte L, Cuollo L, Zingoni A, Molfetta R, Fionda C, Soriani A, Cerboni C, Petrucci MT, Fazio F, Paolini R, Santoni A, Cippitelli M. NEDD8-activating enzyme inhibition potentiates the anti-myeloma activity of natural killer cells. Cell Death Dis 2023; 14:438. [PMID: 37460534 DOI: 10.1038/s41419-023-05949-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/26/2023] [Accepted: 06/09/2023] [Indexed: 07/20/2023]
Abstract
Natural Killer (NK) cells act as important regulators in the development and progression of hematological malignancies and their suppressor activity against Multiple Myeloma (MM) cells has been confirmed in many studies. Significant changes in the distribution of NK cell subsets and dysfunctions of NK cell effector activities were described in MM patients and correlated with disease staging. Thus, restoring or enhancing the functionality of these effectors for the treatment of MM represents a critical need. Neddylation is a post-translational modification that adds a ubiquitin-like molecule, NEDD8, to the substrate protein. One of the outcomes is the activation of the Cullin Ring Ligases (CRLs), a class of ubiquitin-ligases that controls the degradation of about 20% of proteasome-regulated proteins. Overactivation of CRLs has been described in cancer and can lead to tumor growth and progression. Thus, targeting neddylation represents an attractive approach for cancer treatment. Our group has recently described how pharmacologic inhibition of neddylation increases the expression of the NKG2D activating receptor ligands, MICA and MICB, in MM cells, making these cells more susceptible to NK cell degranulation and killing. Here, we extended our investigation to the direct role of neddylation on NK cell effector functions exerted against MM. We observed that inhibition of neddylation enhanced NK cell-mediated degranulation and killing against MM cells and improved Daratumumab/Elotuzumab-mediated response. Mechanistically, inhibition of neddylation increased the expression of Rac1 and RhoA GTPases in NK cells, critical mediators for an efficient degranulation at the immunological synapse of cytotoxic lymphocytes, and augmented the levels of F-actin and perforin polarization in NK cells contacting target cells. Moreover, inhibition of neddylation partially abrogated TGFβ-mediated repression of NK cell effector activity. This study describes the role of neddylation on NK cell effector functions and highlights the positive immunomodulatory effects achieved by the inhibition of this pathway in MM.
Collapse
Affiliation(s)
- Sara Petillo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Elena Sproviero
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Luisa Loconte
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Cuollo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandra Zingoni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Rosa Molfetta
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Cinzia Fionda
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandra Soriani
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Cristina Cerboni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria Teresa Petrucci
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesca Fazio
- Hematology, Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Rossella Paolini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
- IRCCS, Neuromed, Pozzilli, Italy
| | - Marco Cippitelli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
17
|
de Candia P, Procaccini C, Russo C, Lepore MT, Matarese G. Regulatory T cells as metabolic sensors. Immunity 2022; 55:1981-1992. [PMID: 36351373 DOI: 10.1016/j.immuni.2022.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/15/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
Compelling experimental evidence links immunity and metabolism. In this perspective, we propose forkhead-box-P3 (FoxP3)+CD4+CD25+ regulatory T (Treg) cells as key metabolic sensors controlling the immunological state in response to their intrinsic capacity to perceive nutritional changes. Treg cell high anabolic state in vivo, residency in metabolically crucial districts, and recirculation between lymphoid and non-lymphoid sites enable them to recognize the metabolic cues and adapt their intracellular metabolism and anti-inflammatory function at the paracrine and systemic levels. As privileged regulators at the interface between neuroendocrine and immune systems, the role of Treg cells in maintaining metabolic homeostasis makes these cells promising targets of therapeutic strategies aimed at restoring organismal homeostasis not only in autoimmune but also metabolic disorders.
Collapse
Affiliation(s)
- Paola de Candia
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy.
| | - Claudio Procaccini
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Naples, Italy; Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, 00143 Rome, Italy.
| | - Claudia Russo
- Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, 00143 Rome, Italy
| | - Maria Teresa Lepore
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Naples, Italy
| | - Giuseppe Matarese
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy; Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Naples, Italy.
| |
Collapse
|
18
|
Jin Z, Sun X, Wang Y, Zhou C, Yang H, Zhou S. Regulation of autophagy fires up the cold tumor microenvironment to improve cancer immunotherapy. Front Immunol 2022; 13:1018903. [PMID: 36300110 PMCID: PMC9589261 DOI: 10.3389/fimmu.2022.1018903] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapies, such as immune checkpoint inhibitors (ICIs) and chimeric antigen receptor (CAR) T cells, have revolutionized the treatment of patients with advanced and metastatic tumors resistant to traditional therapies. However, the immunosuppressed tumor microenvironment (TME) results in a weak response to immunotherapy. Therefore, to realize the full potential of immunotherapy and obstacle barriers, it is essential to explore how to convert cold TME to hot TME. Autophagy is a crucial cellular process that preserves cellular stability in the cellular components of the TME, contributing to the characterization of the immunosuppressive TME. Targeted autophagy ignites immunosuppressive TME by influencing antigen release, antigen presentation, antigen recognition, and immune cell trafficking, thereby enhancing the effectiveness of cancer immunotherapy and overcoming resistance to immunotherapy. In this review, we summarize the characteristics and components of TME, explore the mechanisms and functions of autophagy in the characterization and regulation of TME, and discuss autophagy-based therapies as adjuvant enhancers of immunotherapy to improve the effectiveness of immunotherapy.
Collapse
Affiliation(s)
- Zhicheng Jin
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang, China
| | - Xuefeng Sun
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang, China
| | - Yaoyao Wang
- Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| | - Chao Zhou
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang, China
| | - Haihua Yang
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang, China
- *Correspondence: Suna Zhou, ; HaihuaYang,
| | - Suna Zhou
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang, China
- Department of Radiation Oncology, Xi’an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi’an, China
- *Correspondence: Suna Zhou, ; HaihuaYang,
| |
Collapse
|
19
|
Li X, Lyu Y, Li J, Wang X. AMBRA1 and its role as a target for anticancer therapy. Front Oncol 2022; 12:946086. [PMID: 36237336 PMCID: PMC9551033 DOI: 10.3389/fonc.2022.946086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
The activating molecule in Beclin1-regulated autophagy protein 1 (AMBRA1) is an intrinsically disordered protein that regulates the survival and death of cancer cells by modulating autophagy. Although the roles of autophagy in cancer are controversial and context-dependent, inhibition of autophagy under some circumstances can be a useful strategy for cancer therapy. As AMBRA1 is a pivotal autophagy-associated protein, targeting AMBRA1 similarly may be an underlying strategy for cancer therapy. Emerging evidence indicates that AMBRA1 can also inhibit cancer formation, maintenance, and progression by regulating c-MYC and cyclins, which are frequently deregulated in human cancer cells. Therefore, AMBRA1 is at the crossroad of autophagy, tumorigenesis, proliferation, and cell cycle. In this review, we focus on discussing the mechanisms of AMBRA1 in autophagy, mitophagy, and apoptosis, and particularly the roles of AMBRA1 in tumorigenesis and targeted therapy.
Collapse
Affiliation(s)
- Xiang Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, China
| | - Yuan Lyu
- Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, China
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Junqi Li
- Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, China
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xinjun Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, China
- Department of Neurosurgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Xinjun Wang,
| |
Collapse
|
20
|
Autophagy in Cancer Immunotherapy. Cells 2022; 11:cells11192996. [PMID: 36230955 PMCID: PMC9564118 DOI: 10.3390/cells11192996] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Autophagy is a stress-induced process that eliminates damaged organelles and dysfunctional cargos in cytoplasm, including unfolded proteins. Autophagy is involved in constructing the immunosuppressive microenvironment during tumor initiation and progression. It appears to be one of the most common processes involved in cancer immunotherapy, playing bidirectional roles in immunotherapy. Accumulating evidence suggests that inducing or inhibiting autophagy contributes to immunotherapy efficacy. Hence, exploring autophagy targets and their modifiers to control autophagy in the tumor microenvironment is an emerging strategy to facilitate cancer immunotherapy. This review summarizes recent studies on the role of autophagy in cancer immunotherapy, as well as the molecular targets of autophagy that could wake up the immune response in the tumor microenvironment, aiming to shed light on its immense potential as a therapeutic target to improve immunotherapy.
Collapse
|
21
|
Autophagy-Associated Immunogenic Modulation and Its Applications in Cancer Therapy. Cells 2022; 11:cells11152324. [PMID: 35954167 PMCID: PMC9367255 DOI: 10.3390/cells11152324] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Autophagy, a lysosome-mediated cellular degradation pathway, recycles intracellular components to maintain metabolic balance and survival. Autophagy plays an important role in tumor immunotherapy as a “double-edged sword” that can both promote and inhibit tumor progression. Autophagy acts on innate and adaptive immunity and interacts with immune cells to modulate tumor immunotherapy. The discovery of autophagy inducers and autophagy inhibitors also provides new insights for clinical anti-tumor therapy. However, there are also difficulties in the application of autophagy-related regulators, such as low bioavailability and the lack of efficient selectivity. This review focuses on autophagy-related immunogenic regulation and its application in cancer therapy.
Collapse
|
22
|
Jeong J, Choi YJ, Lee HK. The Role of Autophagy in the Function of CD4 + T Cells and the Development of Chronic Inflammatory Diseases. Front Pharmacol 2022; 13:860146. [PMID: 35392563 PMCID: PMC8981087 DOI: 10.3389/fphar.2022.860146] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/07/2022] [Indexed: 12/29/2022] Open
Abstract
Uncontrolled acute inflammation progresses to persistent inflammation that leads to various chronic inflammatory diseases, including asthma, Crohn’s disease, rheumatoid arthritis, multiple sclerosis, and systemic lupus erythematosus. CD4+ T cells are key immune cells that determine the development of these chronic inflammatory diseases. CD4+ T cells orchestrate adaptive immune responses by producing cytokines and effector molecules. These functional roles of T cells vary depending on the surrounding inflammatory or anatomical environment. Autophagy is an important process that can regulate the function of CD4+ T cells. By lysosomal degradation of cytoplasmic materials, autophagy mediates CD4+ T cell-mediated immune responses, including cytokine production, proliferation, and differentiation. Furthermore, through canonical processes involving autophagy machinery, autophagy also contributes to the development of chronic inflammatory diseases. Therefore, a targeted intervention of autophagy processes could be used to treat chronic inflammatory diseases. This review focuses on the role of autophagy via CD4+ T cells in the pathogenesis and treatment of such diseases. In particular, we explore the underlying mechanisms of autophagy in the regulation of CD4+ T cell metabolism, survival, development, proliferation, differentiation, and aging. Furthermore, we suggest that autophagy-mediated modulation of CD4+ T cells is a promising therapeutic target for treating chronic inflammatory diseases.
Collapse
Affiliation(s)
- Jiung Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Young Joon Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| |
Collapse
|
23
|
Xu S, Zhang X, Ma Y, Xu S, Pan F. The Expression Level of FOXO3a in Patients With Autoimmune Diseases: A Meta-analysis. J Clin Rheumatol 2022; 28:e228-e233. [PMID: 33938500 DOI: 10.1097/rhu.0000000000001675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
METHODS PubMed, Web of Science, and China National Knowledge Infrastructure were used to retrieve relevant articles. The pooled standard mean difference with 95% confidence interval was calculated. RESULTS Totally, 10 studies from 7 publications were included. The levels of FOXO3a were significantly decreased in patients with autoimmune diseases compared with healthy controls (standard mean difference, -1.045; 95% confidence interval, -1.892 to -0.197). When stratified by disease, FOXO3a levels were significantly decreased in rheumatoid arthritis (RA) and inflammatory bowel disease (IBD), but were significantly increased in systemic lupus erythematosus. FOXO3a levels of specific tissues or cells in patients with autoimmune diseases were significantly decreased, but no significant difference was observed in the subgroup of peripheral blood mononuclear cells. In the subgroup analysis combining disease and sample, significant differences of FOXO3a were observed in non-PMBCs of RA and IBD patients. CONCLUSIONS Our study indicated that FOXO3a were significantly decreased in patients with autoimmune diseases. FOXO3a levels was a potential therapeutic target of autoimmune diseases.
Collapse
Affiliation(s)
| | - Xiaoyi Zhang
- Department of Health Toxicology, School of Public Health, Anhui Medical University
| | | | - Shengqian Xu
- Department of Rheumatism and Immunity, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | | |
Collapse
|
24
|
Signals of pseudo-starvation unveil the amino acid transporter SLC7A11 as key determinant in the control of Treg cell proliferative potential. Immunity 2021; 54:1543-1560.e6. [PMID: 34004141 DOI: 10.1016/j.immuni.2021.04.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/30/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023]
Abstract
Human CD4+CD25hiFOXP3+ regulatory T (Treg) cells are key players in the control of immunological self-tolerance and homeostasis. Here, we report that signals of pseudo-starvation reversed human Treg cell in vitro anergy through an integrated transcriptional response, pertaining to proliferation, metabolism, and transmembrane solute carrier transport. At the molecular level, the Treg cell proliferative response was dependent on the induction of the cystine/glutamate antiporter solute carrier (SLC)7A11, whose expression was controlled by the nuclear factor erythroid 2-related factor 2 (NRF2). SLC7A11 induction in Treg cells was impaired in subjects with relapsing-remitting multiple sclerosis (RRMS), an autoimmune disorder associated with reduced Treg cell proliferative capacity. Treatment of RRMS subjects with dimethyl fumarate (DMF) rescued SLC7A11 induction and fully recovered Treg cell expansion. These results suggest a previously unrecognized mechanism that may account for the progressive loss of Treg cells in autoimmunity and unveil SLC7A11 as major target for the rescue of Treg cell proliferation.
Collapse
|
25
|
Di Leo L, Bodemeyer V, Bosisio FM, Claps G, Carretta M, Rizza S, Faienza F, Frias A, Khan S, Bordi M, Pacheco MP, Di Martino J, Bravo-Cordero JJ, Daniel CJ, Sears RC, Donia M, Madsen DH, Guldberg P, Filomeni G, Sauter T, Robert C, De Zio D, Cecconi F. Loss of Ambra1 promotes melanoma growth and invasion. Nat Commun 2021; 12:2550. [PMID: 33953176 PMCID: PMC8100102 DOI: 10.1038/s41467-021-22772-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/26/2021] [Indexed: 12/20/2022] Open
Abstract
Melanoma is the deadliest skin cancer. Despite improvements in the understanding of the molecular mechanisms underlying melanoma biology and in defining new curative strategies, the therapeutic needs for this disease have not yet been fulfilled. Herein, we provide evidence that the Activating Molecule in Beclin-1-Regulated Autophagy (Ambra1) contributes to melanoma development. Indeed, we show that Ambra1 deficiency confers accelerated tumor growth and decreased overall survival in Braf/Pten-mutated mouse models of melanoma. Also, we demonstrate that Ambra1 deletion promotes melanoma aggressiveness and metastasis by increasing cell motility/invasion and activating an EMT-like process. Moreover, we show that Ambra1 deficiency in melanoma impacts extracellular matrix remodeling and induces hyperactivation of the focal adhesion kinase 1 (FAK1) signaling, whose inhibition is able to reduce cell invasion and melanoma growth. Overall, our findings identify a function for AMBRA1 as tumor suppressor in melanoma, proposing FAK1 inhibition as a therapeutic strategy for AMBRA1 low-expressing melanoma.
Collapse
Affiliation(s)
- Luca Di Leo
- Melanoma Research Team, Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Valérie Bodemeyer
- Melanoma Research Team, Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Francesca M Bosisio
- Lab of Translational Cell and Tissue Research, University of Leuven, Leuven, Belgium
| | | | - Marco Carretta
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Salvatore Rizza
- Redox Biology Group, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Fiorella Faienza
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Alex Frias
- Melanoma Research Team, Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Shawez Khan
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Matteo Bordi
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, Rome, Italy
| | - Maria P Pacheco
- Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg
| | - Julie Di Martino
- School of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jose J Bravo-Cordero
- School of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Colin J Daniel
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Rosalie C Sears
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Marco Donia
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Daniel H Madsen
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Per Guldberg
- Molecular Diagnostics Group, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Giuseppe Filomeni
- Redox Biology Group, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Sauter
- Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg
| | - Caroline Robert
- INSERM U981, Gustave Roussy Institute, Villejuif, France
- Université Paris-Sud, Université Paris-Saclay, Kremlin-Bicêtre, France
- Dermato-Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Daniela De Zio
- Melanoma Research Team, Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark.
| | - Francesco Cecconi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, Rome, Italy.
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark.
| |
Collapse
|
26
|
Abstract
Autophagy is a regulated mechanism that removes unnecessary or dysfunctional cellular components and recycles metabolic substrates. In response to stress signals in the tumour microenvironment, the autophagy pathway is altered in tumour cells and immune cells - thereby differentially affecting tumour progression, immunity and therapy. In this Review, we summarize our current understanding of the immunologically associated roles and modes of action of the autophagy pathway in cancer progression and therapy, and discuss potential approaches targeting autophagy to enhance antitumour immunity and improve the efficacy of current cancer therapy.
Collapse
Affiliation(s)
- Houjun Xia
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA.
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA.
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
- Graduate Program in Immunology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
- Graduate Program in Cancer Biology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
27
|
Wang L, Das JK, Kumar A, Peng HY, Ren Y, Xiong X, Yang JM, Song J. Autophagy in T-cell differentiation, survival and memory. Immunol Cell Biol 2021; 99:351-360. [PMID: 33141986 DOI: 10.1111/imcb.12422] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/23/2020] [Accepted: 10/30/2020] [Indexed: 01/22/2023]
Abstract
Over the past decade, autophagy has emerged as a critical regulatory mechanism of the immune system through critically controlling various aspects of T cell biology and determining the fate of different T cell subsets. Autophagy maintains T cell development and survival by regulating the degradation of organelles and apoptotic proteins. The autophagic process also impacts the formation of memory T cells. Alteration of autophagy in T cells may lead to a variety of pathological conditions such as inflammation, autoimmune diseases and cancer. In this review, we discuss how autophagy impacts T cell differentiation, survival and memory, and its implication in immunotherapy for various diseases.
Collapse
Affiliation(s)
- Liqing Wang
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Jugal Kishore Das
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Anil Kumar
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Hao-Yun Peng
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Yijie Ren
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Xiaofang Xiong
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Jin-Ming Yang
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, USA
| |
Collapse
|
28
|
Critical Roles of Balanced T Helper 9 Cells and Regulatory T Cells in Allergic Airway Inflammation and Tumor Immunity. J Immunol Res 2021; 2021:8816055. [PMID: 33748292 PMCID: PMC7943311 DOI: 10.1155/2021/8816055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/12/2021] [Accepted: 02/17/2021] [Indexed: 01/02/2023] Open
Abstract
CD4+T helper (Th) cells are important mediators of immune responses in asthma and cancer. When counteracted by different classes of pathogens, naïve CD4+T cells undergo programmed differentiation into distinct types of Th cells. Th cells orchestrate antigen-specific immune responses upon their clonal T-cell receptor (TCR) interaction with the appropriate peptide antigen presented on MHC class II molecules expressed by antigen-presenting cells (APCs). T helper 9 (Th9) cells and regulatory T (Treg) cells and their corresponding cytokines have critical roles in tumor and allergic immunity. In the context of asthma and cancer, the dynamic internal microenvironment, along with chronic inflammatory stimuli, influences development, differentiation, and function of Th9 cells and Treg cells. Furthermore, the dysregulation of the balance between Th9 cells and Treg cells might trigger aberrant immune responses, resulting in development and exacerbation of asthma and cancer. In this review, the development, differentiation, and function of Th9 cells and Treg cells, which are synergistically regulated by various factors including cytokine signals, transcriptional factors (TFs), costimulatory signals, microenvironment cues, metabolic pathways, and different signal pathways, will be discussed. In addition, we focus on the recent progress that has helped to achieve a better understanding of the roles of Th9 cells and Treg cells in allergic airway inflammation and tumor immunity. We also discuss how various factors moderate their responses in asthma and cancer. Finally, we summarize the recent findings regarding potential mechanisms for regulating the balance between Th9 and Treg cells in asthma and cancer. These advances provide opportunities for novel therapeutic strategies that are aimed at reestablishing the balance of these cells in the diseases.
Collapse
|
29
|
Relevance of Autophagy and Mitophagy Dynamics and Markers in Neurodegenerative Diseases. Biomedicines 2021; 9:biomedicines9020149. [PMID: 33557057 PMCID: PMC7913851 DOI: 10.3390/biomedicines9020149] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
During the past few decades, considerable efforts have been made to discover and validate new molecular mechanisms and biomarkers of neurodegenerative diseases. Recent discoveries have demonstrated how autophagy and its specialized form mitophagy are extensively associated with the development, maintenance, and progression of several neurodegenerative diseases. These mechanisms play a pivotal role in the homeostasis of neural cells and are responsible for the clearance of intracellular aggregates and misfolded proteins and the turnover of organelles, in particular, mitochondria. In this review, we summarize recent advances describing the importance of autophagy and mitophagy in neurodegenerative diseases, with particular attention given to multiple sclerosis, Parkinson’s disease, and Alzheimer’s disease. We also review how elements involved in autophagy and mitophagy may represent potential biomarkers for these common neurodegenerative diseases. Finally, we examine the possibility that the modulation of autophagic and mitophagic mechanisms may be an innovative strategy for overcoming neurodegenerative conditions. A deeper knowledge of autophagic and mitophagic mechanisms could facilitate diagnosis and prognostication as well as accelerate the development of therapeutic strategies for neurodegenerative diseases.
Collapse
|
30
|
Xu S, Ma Y, Chen Y, Pan F. Role of Forkhead box O3a transcription factor in autoimmune diseases. Int Immunopharmacol 2021; 92:107338. [PMID: 33412391 DOI: 10.1016/j.intimp.2020.107338] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/05/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
Forkhead box O3a (FOXO3a) transcription factor, the most important member of Forkhead box O family, is closely related to cell proliferation, apoptosis, autophagy, oxidative stress and aging. The downregulation of FOXO3a has been verified to be associated with the poor prognosis, severer malignancy and chemoresistance in several human cancers. The activity of FOXO3a mainly regulated by phosphorylation of protein kinase B. FOXO3a plays a vital role in promoting the apoptosis of immune cells. FOXO3a could also modulate the activation, differentiation and function of T cells, regulate the proliferation and function of B cells, and mediate dendritic cells tolerance and immunity. FOXO3a accommodates the immune response through targeting nuclear factor kappa-B and FOXP3, as well as regulating the expression of cytokines. Besides, FOXO3a participates in intercellular interactions. FOXO3a inhibits dendritic cells from producing interleukin-6, which inhibits B-cell lymphoma-2 (BCL-2) and BCL-XL expression, thereby sparing resting T cells from apoptosis and increasing the survival of antigen-stimulated T cells. Recently, plentiful evidences further illustrated the significance of FOXO3a in the pathogenesis of autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, inflammatory bowel disease, ankylosing spondylitis, myositis, multiple sclerosis, and systemic sclerosis. In this review, we focused on the biological function of FOXO3a and related signaling pathways regarding immune system, and summarized the potential role of FOXO3a in the pathogenesis, progress and therapeutic potential of autoimmune diseases.
Collapse
Affiliation(s)
- Shanshan Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yuting Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
31
|
Zhou Y, Lizaso A, Mao X, Yang N, Zhang Y. Novel AMBRA1-ALK fusion identified by next-generation sequencing in advanced gallbladder cancer responds to crizotinib: a case report. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1099. [PMID: 33145318 PMCID: PMC7575933 DOI: 10.21037/atm-20-1007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Gallbladder cancer (GBC) is the most aggressive malignancy of the biliary tract with poor prognosis. Several targetable genetic alterations have been identified in GBC; however, responses to targeted therapy are disappointing. We report a case of a 58-year-old Chinese woman with GBC who was detected with a novel ALK genomic rearrangement and received crizotinib after progression from first-line chemotherapy. The patient was diagnosed with stage IV adenocarcinoma of the neck of the gallbladder and received oxaliplatin combined with capecitabine as first-line therapy. After four cycles of this chemotherapy regimen, the patient started to show obstructive jaundice, and progressive disease was evaluated. Biliary drainage surgery was performed to alleviate the symptoms of obstructive jaundice. Upon referral to our department, her archived tissue samples were submitted for next-generation sequencing (Burning Rock Biotech) and immunohistochemistry, which identified the presence of a novel AMBRA1-ALK rearrangement and ALK overexpression, respectively. Oral crizotinib was administered achieving partial response within two cycles of treatment, which lasted for 7 months. AMBRA1-ALK has not been previously reported in any solid tumors and its sensitivity to crizotinib is not well characterized. Moreover, ALK alterations have been rarely reported for GBC. This case suggests that a subset of GBC might be driven by aberrant ALK signaling, which could potentially be explored as a biomarker of therapeutic response to ALK inhibitors in GBC. Moreover, our case report contributes an incremental step in understanding the genetic heterogeneity in GBC and provides clinical evidence of the utility of next-generation sequencing in exploring actionable mutations to expand treatment choices in rare solid tumors including GBC.
Collapse
Affiliation(s)
- Yuling Zhou
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Graduate Schools, University of South China, Hengyang, China
| | | | - Xinru Mao
- Burning Rock Biotech, Guangzhou, China
| | - Nong Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
32
|
Masuhara K, Akatsuka H, Tokusanai M, Li C, Iida Y, Okada Y, Suzuki T, Ohtsuka M, Inoue I, Kimura M, Hosokawa H, Hozumi K, Sato T. AMBRA1 controls antigen-driven activation and proliferation of naïve T cells. Int Immunol 2020; 33:107-118. [PMID: 32909612 DOI: 10.1093/intimm/dxaa063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/07/2020] [Indexed: 11/12/2022] Open
Abstract
AMBRA1 is a member of the BECN1 (BECLIN1) complex protein, and it plays a role in autophagy, cell death, tumorigenesis, and proliferation. We recently reported that on TCR stimulation, AMBRA1 controlled both autophagy and the cell cycle with metabolic regulation. Accumulating evidence has shown that autophagy and metabolic control are pivotal for T cell activation, clonal expansion, and effector/memory cell fate decision. However, it is unknown whether AMBRA1 is involved in T cell function under physiological conditions. We found that T cells in Ambra1-conditional knockout (cKO) mice induced exacerbated graft versus host response when they were transplanted into allogeneic BALB/c mice. Furthermore, Ambra1-deficient T cells showed increased proliferation and cytotoxic capability towards specific antigens in response to in vivo stimulation using allogeneic spleen cells. This enhanced immune response mainly contributed to naïve T cell hyperactivity. The T cell hyperactivity observed in this study were similar to those in some metabolic factor-deficient mice, but not those in other pro-autophagic factor-deficient mice. Under the static condition, however, naïve T cells were reduced in Ambra1-cKO mice, as same as in pro-autophagic factor-deficient mice. Collectively, these results suggested that AMBRA1 was involved in regulating T cell-mediated immune responses through autophagy-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Kaori Masuhara
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Hisako Akatsuka
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Mizuki Tokusanai
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Chenyang Li
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yumi Iida
- Support Center for Medical Research and Education, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yoshinori Okada
- Support Center for Medical Research and Education, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Takahiro Suzuki
- Department of Ophthalmology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Masato Ohtsuka
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Ituro Inoue
- Division of Human Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Minoru Kimura
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Hiroyuki Hosokawa
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Katsuto Hozumi
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Takehito Sato
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
33
|
Schoenherr C, Byron A, Griffith B, Loftus A, Wills JC, Munro AF, von Kriegsheim A, Frame MC. The autophagy protein Ambra1 regulates gene expression by supporting novel transcriptional complexes. J Biol Chem 2020; 295:12045-12057. [PMID: 32616651 PMCID: PMC7443501 DOI: 10.1074/jbc.ra120.012565] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/24/2020] [Indexed: 12/13/2022] Open
Abstract
Ambra1 is considered an autophagy and trafficking protein with roles in neurogenesis and cancer cell invasion. Here, we report that Ambra1 also localizes to the nucleus of cancer cells, where it has a novel nuclear scaffolding function that controls gene expression. Using biochemical fractionation and proteomics, we found that Ambra1 binds to multiple classes of proteins in the nucleus, including nuclear pore proteins, adaptor proteins such as FAK and Akap8, chromatin-modifying proteins, and transcriptional regulators like Brg1 and Atf2. We identified biologically important genes, such as Angpt1, Tgfb2, Tgfb3, Itga8, and Itgb7, whose transcription is regulated by Ambra1-scaffolded complexes, likely by altering histone modifications and Atf2 activity. Therefore, in addition to its recognized roles in autophagy and trafficking, Ambra1 scaffolds protein complexes at chromatin, regulating transcriptional signaling in the nucleus. This novel function for Ambra1, and the specific genes impacted, may help to explain the wider role of Ambra1 in cancer cell biology.
Collapse
Affiliation(s)
- Christina Schoenherr
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Adam Byron
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Billie Griffith
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Alexander Loftus
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Jimi C Wills
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Alison F Munro
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Alex von Kriegsheim
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Margaret C Frame
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
34
|
Darlan DM, Munir D, Putra A, Jusuf NK. MSCs-released TGFβ1 generate CD4 +CD25 +Foxp3 + in T-reg cells of human SLE PBMC. J Formos Med Assoc 2020; 120:602-608. [PMID: 32718891 DOI: 10.1016/j.jfma.2020.06.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/08/2020] [Accepted: 06/28/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND/PURPOSE Regulatory T-cell (Treg) defects may cause autoreactivity of both T and B cells, leading to autoimmune disease including systemic lupus erythematosus (SLE). The immune response defects in SLE are characterized by the decreased expression of CD4, CD25, and Foxp3, known as inducible Treg (iTreg). Therefore, restoring iTreg expression can reverse autoimmunity states into immune tolerances leading to normal immune responses. Mesenchymal stem cells (MSCs) have immunomodulatory properties to control inflammatory milieu, including in SLE inflammation by releasing TGFβ1, IL10, and PGE2, thus MSCs can potentially generate iTreg cells. However, the mechanisms of MSC-released TGFβ1 to promote iTreg generation in human SLE remains unclear. This study aims to analyze the role of MSC-released TGFβ1 in generating CD4+, CD25+, and Foxp3+ expression in iTreg cells from human SLE peripheral blood mononuclear cells (PBMCs). METHODS This study used a post-test control group design. MSCs were obtained from human umbilical cord blood and characterized according to their surface antigen expression and multilineage differentiation capacities. PBMCs isolated from SLE patients were divided into five groups, including sham, control, and three treatment groups. The treatment groups were treated by co-culturing MSCs to PBMCs with ratio of 1:1 (T1), 1:25 (T2), and 1:50 (T3) for 72 h incubation. The expression of CD4, CD25, and Foxp3 in Treg was analyzed by flow cytometry assay while TGFβ1 level was determined by Cytometric Bead Array (CBA). RESULTS This study showed that the percentage of CD4+CD25+Foxp3+ iTreg cells was significantly increased in T1 and T2. This finding was aligned with the significant increase of TGFβ1 level. CONCLUSION MSCs promote iTreg cells generation from human SLE PBMCs by releasing TGFβ1 to control SLE disease.
Collapse
Affiliation(s)
- Dewi Masyithah Darlan
- Department of Parasitology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Delfitri Munir
- Pusat Unggulan IPTEK Tissue Engineering, Universitas Sumatera Utara, Medan, Indonesia
| | - Agung Putra
- Stem Cell and Cancer Research (SCCR), Medical Faculty, Sultan Agung Islamic University (UNISSULA), Semarang, Indonesia; Department of Postgraduate Biomedical Science, Medical Faculty, Sultan Agung Islamic University (UNISSULA), Semarang, Indonesia; Department of Pathological Anatomy, Medical Faculty, Sultan Agung Islamic University (UNISSULA), Semarang, Indonesia.
| | - Nelva Karmila Jusuf
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
35
|
Li C, Jiang P, Wei S, Xu X, Wang J. Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects. Mol Cancer 2020; 19:116. [PMID: 32680511 PMCID: PMC7367382 DOI: 10.1186/s12943-020-01234-1] [Citation(s) in RCA: 536] [Impact Index Per Article: 107.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells (Tregs) characterized by the expression of the master transcription factor forkhead box protein p3 (Foxp3) suppress anticancer immunity, thereby hindering protective immunosurveillance of tumours and hampering effective antitumour immune responses in tumour-bearing hosts, constitute a current research hotspot in the field. However, Tregs are also essential for the maintenance of the immune tolerance of the body and share many molecular signalling pathways with conventional T cells, including cytotoxic T cells, the primary mediators of tumour immunity. Hence, the inability to specifically target and neutralize Tregs in the tumour microenvironment without globally compromising self-tolerance poses a significant challenge. Here, we review recent advances in characterizing tumour-infiltrating Tregs with a focus on the functional roles of costimulatory and inhibitory receptors in Tregs, evaluate their potential as clinical targets, and systematically summarize their roles in potential treatment strategies. Also, we propose modalities to integrate our increasing knowledge on Tregs phenotype and function for the rational design of checkpoint inhibitor-based combination therapies. Finally, we propose possible treatment strategies that can be used to develop Treg-targeted therapies.
Collapse
Affiliation(s)
- Chunxiao Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
| | - Ping Jiang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Shuhua Wei
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Xiaofei Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing, 100191, China
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
36
|
Mandhair HK, Arambasic M, Novak U, Radpour R. Molecular modulation of autophagy: New venture to target resistant cancer stem cells. World J Stem Cells 2020; 12:303-322. [PMID: 32547680 PMCID: PMC7280868 DOI: 10.4252/wjsc.v12.i5.303] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/19/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a highly regulated catabolic process in which superfluous, damaged organelles and other cytoplasmic constituents are delivered to the lysosome for clearance and the generation of macromolecule substrates during basal or stressed conditions. Autophagy is a bimodal process with a context dependent role in the initiation and the development of cancers. For instance, autophagy provides an adaptive response to cancer stem cells to survive metabolic stresses, by influencing disease propagation via modulation of essential signaling pathways or by promoting resistance to chemotherapeutics. Autophagy has been implicated in a cross talk with apoptosis. Understanding the complex interactions provides an opportunity to improve cancer therapy and the clinical outcome for the cancer patients. In this review, we provide a comprehensive view on the current knowledge on autophagy and its role in cancer cells with a particular focus on cancer stem cell homeostasis.
Collapse
Affiliation(s)
- Harpreet K Mandhair
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland
| | - Miroslav Arambasic
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland
| | - Urban Novak
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland
| | - Ramin Radpour
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland.
| |
Collapse
|
37
|
Rahman MA, Saha SK, Rahman MS, Uddin MJ, Uddin MS, Pang MG, Rhim H, Cho SG. Molecular Insights Into Therapeutic Potential of Autophagy Modulation by Natural Products for Cancer Stem Cells. Front Cell Dev Biol 2020; 8:283. [PMID: 32391363 PMCID: PMC7193248 DOI: 10.3389/fcell.2020.00283] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/02/2020] [Indexed: 12/24/2022] Open
Abstract
Autophagy, a cellular self-digestion process that is activated in response to stress, has a functional role in tumor formation and progression. Cancer stem cells (CSCs) accounting for a minor proportion of total cancer cells-have distinct self-renewal and differentiation abilities and promote metastasis. Researchers have shown that a numeral number of natural products using traditional experimental methods have been revealed to target CSCs. However, the specific role of autophagy with respect to CSCs and tumorigenesis using natural products are still unknown. Currently, CSCs are considered to be one of the causative reasons underlying the failure of anticancer treatment as a result of tumor recurrence, metastasis, and chemo- or radio-resistance. Autophagy may play a dual role in CSC-related resistance to anticancer treatment; it is responsible for cell fate determination and the targeted degradation of transcription factors via growth arrest. It has been established that autophagy promotes drug resistance, dormancy, and stemness and maintenance of CSCs. Surprisingly, numerous studies have also suggested that autophagy can facilitate the loss of stemness in CSCs. Here, we review current progress in research related to the multifaceted connections between autophagy modulation and CSCs control using natural products. Overall, we emphasize the importance of understanding the role of autophagy in the maintenance of different CSCs and implications of this connection for the development of new strategies for cancer treatment targeting natural products.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, South Korea.,Department of Biotechnology and Genetic Engineering, Global Biotechnology & Biomedical Research Network, Islamic University, Kushtia, Bangladesh
| | - Subbroto Kumar Saha
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea.,Department of Gynecology and Obstetrics, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Md Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, South Korea
| | - Md Jamal Uddin
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea.,ABEx Bio-Research Center, Dhaka, Bangladesh
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, South Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, South Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea
| |
Collapse
|
38
|
Mazdeh M, Noroozi R, Komaki A, Taheri M, Ghafouri-Fard S. Single nucleotide polymorphisms of lncRNA H19 are not associated with risk of multiple sclerosis in Iranian population. Meta Gene 2019. [DOI: 10.1016/j.mgene.2019.100592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
39
|
Gao J, Gu J, Pan X, Gan X, Ju Z, Zhang S, Xia Y, Lu L, Wang X. Blockade of miR-142-3p promotes anti-apoptotic and suppressive function by inducing KDM6A-mediated H3K27me3 demethylation in induced regulatory T cells. Cell Death Dis 2019; 10:332. [PMID: 30988391 PMCID: PMC6465300 DOI: 10.1038/s41419-019-1565-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023]
Abstract
In vitro induced human regulatory T cells (iTregs) have in vivo therapeutic utility. MicroRNAs (miRNAs) are a family of approximately 22-nucleotide non-coding RNAs that are processed from longer precursors by the RNases Drosha and Dicer. miRNAs regulate post-transcriptional protein expression through messenger RNA destabilization or translational silencing; miR-142-3p regulates natural Treg function through autophagy. We hypothesized that this miRNA may also have an iTreg regulation function. Antagomir-mediated knockdown of miR-142-3p improved Foxp3 (forkhead box P3) expression, regulatory function, cytokine expression, and apoptosis of iTregs in vitro, with or without inflammatory cytokine stimulation. miR-142-3p knockdown increased autophagy-related protein 16-1-mediated autophagy. Target prediction and luciferase assay results indicated that miR-142-3p binds directly to lysine demethylase 6A (KDM6A), which resulted in demethylation of H3K27me3 and in turn upregulated expression of the anti-apoptotic protein Bcl-2. Based on these results, we propose a novel strategy that uses knockdown of miR-142-3p to enhance anti-apoptotic ability and function of iTregs by increasing KDM6A and Bcl-2 expression. This approach might be used as a treatment to control established chronic immune-mediated autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Ji Gao
- Hepatobiliary Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Jian Gu
- Hepatobiliary Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Xiongxiong Pan
- Department of Anesthesiology, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Xiaojie Gan
- Hepatobiliary Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Zheng Ju
- Hepatobiliary Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Shaopeng Zhang
- Hepatobiliary Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Yongxiang Xia
- Hepatobiliary Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Ling Lu
- Hepatobiliary Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China.
| | - Xuehao Wang
- Hepatobiliary Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China.
| |
Collapse
|
40
|
Nazio F, Bordi M, Cianfanelli V, Locatelli F, Cecconi F. Autophagy and cancer stem cells: molecular mechanisms and therapeutic applications. Cell Death Differ 2019; 26:690-702. [PMID: 30728463 PMCID: PMC6460398 DOI: 10.1038/s41418-019-0292-y] [Citation(s) in RCA: 287] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 02/07/2023] Open
Abstract
Autophagy and mitophagy act in cancer as bimodal processes, whose differential functions strictly depend on cancer ontogenesis, progression, and type. For instance, they can act to promote cancer progression by helping cancer cells survive stress or, instead, when mutated or abnormal, to induce carcinogenesis by influencing cell signaling or promoting intracellular toxicity. For this reason, the study of autophagy in cancer is the main focus of many researchers and several clinical trials are already ongoing to manipulate autophagy and by this way determine the outcome of disease therapy. Since the establishment of the cancer stem cell (CSC) theory and the discovery of CSCs in individual cancer types, autophagy and mitophagy have been proposed as key mechanisms in their homeostasis, dismissal or spread, even though we still miss a comprehensive view of how and by which regulatory molecules these two processes drive cell fate. In this review, we will dive into the deep water of autophagy, mitophagy, and CSCs and offer novel viewpoints on possible therapeutic strategies, based on the modulation of these degradative systems.
Collapse
Affiliation(s)
- Francesca Nazio
- Department of Oncohaematology and Cellular and Gene Therapy, IRCSS Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | - Matteo Bordi
- Department of Oncohaematology and Cellular and Gene Therapy, IRCSS Bambino Gesù Children's Hospital, 00165, Rome, Italy
- Department of Biology, University of Tor Vergata, 00133, Rome, Italy
| | - Valentina Cianfanelli
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Franco Locatelli
- Department of Oncohaematology and Cellular and Gene Therapy, IRCSS Bambino Gesù Children's Hospital, 00165, Rome, Italy
- Department of Gynecology/Obstetrics and Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Francesco Cecconi
- Department of Oncohaematology and Cellular and Gene Therapy, IRCSS Bambino Gesù Children's Hospital, 00165, Rome, Italy.
- Department of Biology, University of Tor Vergata, 00133, Rome, Italy.
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, 2100, Copenhagen, Denmark.
| |
Collapse
|