1
|
Endo R, Ueda T, Nagaoki T, Sato Y, Maishi N, Hida K, Harashima H, Nakamura T. Selective vascular disrupting therapy by lipid nanoparticle-mediated Fas ligand silencing and stimulation of STING. Biomaterials 2025; 321:123297. [PMID: 40158445 DOI: 10.1016/j.biomaterials.2025.123297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Although recent therapeutic developments have greatly improved the outcomes of patients with cancer, it remains on ongoing problem, particularly in relation to acquired drug resistance. Vascular disrupting agents (VDAs) directly damage tumor blood vessels, thus promoting drug efficacy and reducing the development of drug resistance; however, their low molecular weight and resulting lack of selectivity for tumor endothelial cells (TECs) lead to side effects that can hinder their practical use. Here, we report a novel tumor vascular disrupting therapy using nucleic acid-loaded lipid nanoparticles (LNPs). We prepared two LNPs: a small interfering RNA (siRNA) against Fas ligand (FasL)-loaded cyclic RGD modified LNP (cRGD-LNP) to knock down FasL in TECs and a stimulator of interferon genes (STING) agonist-loaded LNP to induce systemic type I interferon (IFN) production. The combination therapy disrupted the tumor vasculature and induced broad tumor cell apoptosis within 48 h, leading to rapid and strong therapeutic effects in various tumor models. T cells were not involved in these antitumor effects. Furthermore, the combination therapy demonstrated a significantly superior therapeutic efficacy compared with conventional anti-angiogenic agents and VDAs. RNA sequencing analysis suggested that reduced collagen levels may have been responsible for TEC apoptosis. These findings demonstrated a potential therapeutic method for targeting the tumor vasculature, which may contribute to the development of a new class of anti-cancer drugs.
Collapse
Affiliation(s)
- Rikito Endo
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Tomoki Ueda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Takumi Nagaoki
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Nako Maishi
- Vascular Biology and Molecular Pathology, Hokkaido University Faculty of Dental Medicine, Sapporo, 060-8586, Japan
| | - Kyoko Hida
- Vascular Biology and Molecular Pathology, Hokkaido University Faculty of Dental Medicine, Sapporo, 060-8586, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan.
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan; Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| |
Collapse
|
2
|
Rahmawati FN, Takakura N. Development and aging of resident endothelial stem cells in pre-existing blood vessels. Exp Hematol 2025:104795. [PMID: 40311858 DOI: 10.1016/j.exphem.2025.104795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/09/2025] [Accepted: 04/13/2025] [Indexed: 05/03/2025]
Abstract
Organ-specific somatic stem cells play an important role in supporting tissue turnover and facilitating regeneration on injury. Hematopoietic stem cells are one of the most established organ-specific somatic cells that have been frequently used for transplantation therapy. Recently, there has been a growing interest in other organ-specific somatic cells, including vascular endothelial stem cells (VESCs). We have previously reported on the use of CD157 and CD200 as markers to isolate VESCs from adult mouse organs, particularly the liver. In this review, we aimed to summarize, based on our previous research, how CD157⁺CD200⁺ VESCs in the liver develop from the fetal stage to postnatal life, what transcriptional regulatory mechanisms govern them, and how VESCs change with aging.
Collapse
Affiliation(s)
- Fitriana N Rahmawati
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
3
|
Oda H, Annibaldi A, Kastner DL, Aksentijevich I. Genetic Regulation of Cell Death: Insights from Autoinflammatory Diseases. Annu Rev Immunol 2025; 43:313-342. [PMID: 40279314 DOI: 10.1146/annurev-immunol-090222-105848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Metazoans have evolved innate antimicrobial defenses that promote cellular survival and proliferation. Countering the inevitable molecular mechanisms by which microbes sabotage these pathways, multicellular organisms rely on an alternative, perhaps more ancient, strategy that is the immune equivalent of suicide bombing: Infection triggers cell death programs that summon localized or even systemic inflammation. The study of human genetics has now unveiled a level of complexity that refutes the naive view that cell death is merely a blunt instrument or an evolutionary afterthought. To the contrary, findings from patients with rare diseases teach us that cell death-induced inflammation is a sophisticated, tightly choreographed process. We herein review the emerging body of evidence describing a group of illnesses-inborn errors of cell death, which define many of the molecular building blocks and regulatory elements controlling cell death-induced inflammation in humans-and provide a possible road map to countering this process across the spectrum of rare and common illnesses.
Collapse
Affiliation(s)
- Hirotsugu Oda
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany;
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | - Daniel L Kastner
- National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, Maryland, USA;
| | - Ivona Aksentijevich
- National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, Maryland, USA;
| |
Collapse
|
4
|
Huang K, Zhang Q, Wan H, Ban X, Chen X, Wan X, Lu R, He Y, Xiong K. TAK1 at the crossroads of multiple regulated cell death pathways: from molecular mechanisms to human diseases. FEBS J 2025. [DOI: 10.1111/febs.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 02/14/2025] [Indexed: 05/03/2025]
Abstract
Regulated cell death (RCD), the form of cell death that can be genetically controlled by multiple signaling pathways, plays an important role in organogenesis, tissue remodeling, and maintenance of organism homeostasis and is closely associated with various human diseases. Transforming growth factor‐beta‐activated kinase 1 (TAK1) is a member of the serine/threonine protein kinase family, which can respond to different internal and external stimuli and participate in inflammatory and immune responses. Emerging evidence suggests that TAK1 is an important regulator at the crossroad of multiple RCD pathways, including apoptosis, necroptosis, pyroptosis, and PANoptosis. The regulation of TAK1 affects disease progression through multiple signaling pathways, and therapeutic strategies targeting TAK1 have been proposed for inflammatory diseases, central nervous system diseases, and cancers. In this review, we provide an overview of the downstream signaling pathways regulated by TAK1 and its binding proteins. Their critical regulatory roles in different forms of cell death are also summarized. In addition, we discuss the potential of targeting TAK1 in the treatment of human diseases, with a specific focus on neurological disorders and cancer.
Collapse
Affiliation(s)
- Kun Huang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
- Xiangya School of Medicine Central South University Changsha China
| | - Qi Zhang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
- Department of Ophthalmology Stanford University School of Medicine Palo Alto CA USA
- Key Laboratory of Emergency and Trauma of Ministry of Education, College of Emergency and Trauma Hainan Medical University Haikou China
| | - Hao Wan
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
| | - Xiao‐Xia Ban
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
| | - Xin‐Yu Chen
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
| | - Xin‐Xing Wan
- Department of Endocrinology Third Xiangya Hospital, Central South University Changsha China
| | - Rui Lu
- Department of Molecular and Cellular Physiology Stanford University Stanford CA USA
| | - Ye He
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
- Changsha Aier Eye Hospital China
| | - Kun Xiong
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
- Key Laboratory of Emergency and Trauma of Ministry of Education, College of Emergency and Trauma Hainan Medical University Haikou China
- Hunan Key Laboratory of Ophthalmology Changsha China
| |
Collapse
|
5
|
Wang Y, Ma H, Yang Q, Chen K, Ye H, Wang X, Xia J, Chen X, Wang X, Shen Y, Cui H. Senescent retinal pigment epithelial cells promote angiogenesis in choroidal neovascularization via the TAK1/p38 MAPK pathway. Exp Eye Res 2025; 251:110232. [PMID: 39778673 DOI: 10.1016/j.exer.2025.110232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/16/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
Senescent retinal pigment epithelial cells play a key role in neovascular age-related macular degeneration (nAMD); however, the mechanisms underlying the angiogenic ability of these cells remain unclear. Herein, we investigated the effects of the senescent adult retinal pigment epithelial cell line-19 (ARPE-19) on wound healing, cell migration and survival, and tube formation abilities of human umbilical vein endothelial cells (HUVECs). Additionally, we used Brown Norway rats to establish a laser-induced choroidal neovascularization (CNV) model for further nAMD-related studies. We found that the wound healing, cell migration, and tube formation abilities of HUVECs were significantly enhanced following culture in conditioned media from senescent ARPE-19 cells; this was attributed to the activation of the transforming growth factor β-activated kinase 1 (TAK1)/p38 MAPK pathway. Consistently, we found that the TAK1 inhibitors 5Z-7-oxozeaenol and takinib reversed the effects of conditioned media from senescent ARPE-19 cells on the wound healing, migration, survival, and tube formation abilities of HUVECs. We further investigated the therapeutic effects of 5Z-7-oxozeaenol on the laser-induced CNV rat model. We found that TAK1 was activated in IB4+ areas in laser-induced CNV lesions; inhibiting the activity of TAK1 using 5Z-7-oxozeaenol significantly alleviated CNV lesion formation and fluorescein leakage in fundus fluorescein angiography and greatly improved a-waves, b-waves, and OP values, as recorded by electroretinography. Thus, senescent RPE cells may promote angiogenesis via the TAK1/p38 MAPK pathway. Further, inhibiting TAK1 expression alleviates pathological neovascularization and improves retinal function in a laser-induced CNV rat model, highlighting the therapeutic potential of this approach for treating nAMD.
Collapse
Affiliation(s)
- Yinhao Wang
- Department of Ophthalmology, First Affiliated Hospital, Zhejiang University School of Medicine, 310003, China
| | - Huiling Ma
- Department of Ophthalmology, First Affiliated Hospital, Zhejiang University School of Medicine, 310003, China
| | - Qianjie Yang
- Department of Ophthalmology, First Affiliated Hospital, Zhejiang University School of Medicine, 310003, China
| | - Kuangqi Chen
- Department of Ophthalmology, First Affiliated Hospital, Zhejiang University School of Medicine, 310003, China
| | - Hui Ye
- Department of Ophthalmology, First Affiliated Hospital, Zhejiang University School of Medicine, 310003, China
| | - Xinglin Wang
- Department of Ophthalmology, First Affiliated Hospital, Zhejiang University School of Medicine, 310003, China
| | - Jianhua Xia
- Department of Ophthalmology, First Affiliated Hospital, Zhejiang University School of Medicine, 310003, China
| | - Xiaodan Chen
- Department of Ophthalmology, First Affiliated Hospital, Zhejiang University School of Medicine, 310003, China
| | - Xiawei Wang
- Department of Ophthalmology, First Affiliated Hospital, Zhejiang University School of Medicine, 310003, China
| | - Ye Shen
- Department of Ophthalmology, First Affiliated Hospital, Zhejiang University School of Medicine, 310003, China.
| | - Hongguang Cui
- Department of Ophthalmology, First Affiliated Hospital, Zhejiang University School of Medicine, 310003, China.
| |
Collapse
|
6
|
Craig R, McIntosh K, Ho Ho K, McCulloch A, Riley C, Lawson C, Mackay SP, Paul A, Coats P, Plevin R. IL-1β stimulates a novel axis within the NFκB pathway in endothelial cells regulated by IKKα and TAK-1. Biochem Pharmacol 2025; 232:116736. [PMID: 39710275 DOI: 10.1016/j.bcp.2024.116736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
In this study we examined the activation of the non-canonical NFκB signalling pathway in endothelial cells. In HUVECs, LIGHT stimulated a delayed induction of serine 866/870 p100 phosphorylation linked to p52 NFκB formation. Surprisingly, the canonical ligand, IL-1β, stimulated a rapid phosphorylation or p100 which was not associated with p52 formation. Inhibition of IKKα activity, using DN-IKKα adenovirus, IKKα siRNA or a novel first-in-class selective IKKα inhibitor, SU1261, revealed IL-1β induced p100 phosphorylation to be dependent on IKKα. In contrast, IKKβ inhibition was found to be without effect. The NIK inhibitor, CW15337, did not affect IL-1β induced p100 phosphorylation however, both p100 and pIKKα/β phosphorylation was substantially reduced by inhibition of the upstream kinase TAK-1, suggesting phosphorylation of p100 is mediated by IKKα from within the canonical NEMO/IKKβ /IKKα complex. IL-1β also stimulated a rapid increase in nuclear translocation of p52, which was not affected by NIK inhibition, suggesting a source of p52 independent of p100 processing. Inhibition of TAK-1 abolished p52 and p65 nuclear translocation in response to IL-1β. SiRNA deletion or inhibition with dominant-negative virus of IKKα activity partially reduced p52 translocation, however pharmacological inhibition of IKKα was without effect. Inhibition of IKKβ abolished both p52 and p65 translocation. Taken together these results show that IL-1β stimulates a novel IKKα -dependent axis within the non-canonical NFκB pathway in endothelial cells which is NIK-independent and regulated by TAK-1. However, this pathway is not primarily responsible for the early nuclear translocation of p52, which is dependent on IKKβ. Elucidation of both these new pathways may be significant for NFκB biology within the endothelium.
Collapse
Affiliation(s)
- Rachel Craig
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Kathryn McIntosh
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK.
| | - Ka Ho Ho
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Ashley McCulloch
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Christopher Riley
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Christopher Lawson
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Simon P Mackay
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Andrew Paul
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Paul Coats
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Robin Plevin
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK.
| |
Collapse
|
7
|
Nasehi F, Rylance C, Schnell E, Greene MA, Conway C, Hough Z, Duckett S, Muise-Helmericks RC, Foley AC. Analysis of potential TAK1/Map3k7 phosphorylation targets in hypertrophy and cachexia models of skeletal muscle. Biol Open 2024; 13:bio060487. [PMID: 39211992 PMCID: PMC11449438 DOI: 10.1242/bio.060487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
TGFβ-activated kinase-1 (TAK1) is phosphorylated during both muscle growth and muscle wasting. To understand how this can lead to such opposite effects, we first performed multiplex kinase array of mouse embryonic stem cells with and without stimulation of TAK1 to determine its potential downstream targets. The phosphorylation of these targets was then compared in three different models: hypertrophic longissimus muscle of Texel sheep, tibialis anterior muscle of mice with cancer-induced cachexia and C2C12-derived myofibers, with and without blockade of TAK1 phosphorylation. In both Texel sheep and in cancer-induced cachexia, phosphorylation of both TAK1 and p38 was increased. Whereas p90RSK was increased in Texel sheep but not cachexia and the phosphorylation of HSP27 and total Jnk were increased in cachexia but not Texel. To understand this further, we examined the expression of these proteins in C2C12 cells as they differentiated into myotubes, with and without blockade of TAK1 phosphorylation. In C2C12 cells, decreased phosphorylation of TAK1 leads to reduced phosphorylation of p38, JNK, and HSP27 after 16 h and muscle fiber hypertrophy after 3 days. However, continuous blockade of this pathway leads to muscle fiber failure, suggesting that the timing of TAK1 activation controls the expression of context-dependent targets.
Collapse
Affiliation(s)
- Fatemeh Nasehi
- Department of Bioengineering, Clemson University, 68 President Street, Charleston, SC 29425, USA
| | - Cameron Rylance
- Department of Bioengineering, Clemson University, 68 President Street, Charleston, SC 29425, USA
| | - Erin Schnell
- University of South Carolina School of Medicine, 6311 Garners Ferry Road, Columbia, SC 29209, USA
| | - Maslyn Ann Greene
- Department of Animal and Veterinary Science, Clemson University, Lane #129, Clemson, SC 29634, USA
| | - Caroline Conway
- Dartmouth's Department of Cognitive Science, 5 Maynard St, Hanover, NH 03755, USA
| | - Zachary Hough
- University of Maryland, Baltimore School of Medicine, Baltimore, MD 21201, USA
| | - Susan Duckett
- Department of Animal and Veterinary Science, Clemson University, Lane #129, Clemson, SC 29634, USA
| | - Robin C. Muise-Helmericks
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Ann Catherine Foley
- Department of Bioengineering, Clemson University, 68 President Street, Charleston, SC 29425, USA
| |
Collapse
|
8
|
Augustin HG, Koh GY. A systems view of the vascular endothelium in health and disease. Cell 2024; 187:4833-4858. [PMID: 39241746 DOI: 10.1016/j.cell.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 09/09/2024]
Abstract
The dysfunction of blood-vessel-lining endothelial cells is a major cause of mortality. Although endothelial cells, being present in all organs as a single-cell layer, are often conceived as a rather inert cell population, the vascular endothelium as a whole should be considered a highly dynamic and interactive systemically disseminated organ. We present here a holistic view of the field of vascular research and review the diverse functions of blood-vessel-lining endothelial cells during the life cycle of the vasculature, namely responsive and relaying functions of the vascular endothelium and the responsive roles as instructive gatekeepers of organ function. Emerging translational perspectives in regenerative medicine, preventive medicine, and aging research are developed. Collectively, this review is aimed at promoting disciplinary coherence in the field of angioscience for a broader appreciation of the importance of the vasculature for organ function, systemic health, and healthy aging.
Collapse
Affiliation(s)
- Hellmut G Augustin
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ), 69120 Heidelberg, Germany.
| | - Gou Young Koh
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea; Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
9
|
Wang D, Zheng Y, Zhang J, Cao Y, Cheng J, Geng M, Li K, Yang J, Wei X. The TAK1/JNK axis participates in adaptive immunity by promoting lymphocyte activation in Nile tilapia. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109747. [PMID: 38969154 DOI: 10.1016/j.fsi.2024.109747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
The transforming growth factor beta-activated kinase 1 (TAK1)/c-Jun N-terminal kinase (JNK) axis is an essential MAPK upstream mediator and regulates immune signaling pathways. However, whether the TAK1/JNK axis harnesses the strength in regulation of signal transduction in early vertebrate adaptive immunity is unclear. In this study, by modeling on Nile tilapia (Oreochromis niloticus), we investigated the potential regulatory function of TAK1/JNK axis on lymphocyte-mediated adaptive immune response. Both OnTAK1 and OnJNK exhibited highly conserved sequences and structures relative to their counterparts in other vertebrates. Their mRNA was widely expressed in the immune-associated tissues, while phosphorylation levels in splenic lymphocytes were significantly enhanced on the 4th day post-infection by Edwardsiella piscicida. In addition, OnTAK1 and OnJNK were significantly up-regulated in transcriptional level after activation of lymphocytes in vitro by phorbol 12-myristate 13-acetate plus ionomycin (P + I) or PHA, accompanied by a predominant increase in phosphorylation level. More importantly, inhibition of OnTAK1 activity by specific inhibitor NG25 led to a significant decrease in the phosphorylation level of OnJNK. Furthermore, blocking the activity of OnJNK with specific inhibitor SP600125 resulted in a marked reduction in the expression of T-cell activation markers including IFN-γ, CD122, IL-2, and CD44 during PHA-induced T-cell activation. In summary, these findings indicated that the conserved TAK1/JNK axis in Nile tilapia was involved in adaptive immune responses by regulating the activation of lymphocytes. This study enriched the current knowledge of adaptive immunity in teleost and provided a new perspective for understanding the regulatory mechanism of fish immunity.
Collapse
Affiliation(s)
- Ding Wang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuying Zheng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiansong Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yi Cao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jie Cheng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ming Geng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
10
|
Fan G, Lu J, Zha J, Guo W, Zhang Y, Liu Y, Zhang L. TAK1 in Vascular Signaling: "Friend or Foe"? J Inflamm Res 2024; 17:3031-3041. [PMID: 38770174 PMCID: PMC11104388 DOI: 10.2147/jir.s458948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/16/2024] [Indexed: 05/22/2024] Open
Abstract
The maintenance of normal vascular function and homeostasis is largely dependent on the signaling mechanisms that occur within and between cells of the vasculature. TGF-β-activated kinase 1 (TAK1), a multifaceted signaling molecule, has been shown to play critical roles in various tissue types. Although the precise function of TAK1 in the vasculature remains largely unknown, emerging evidence suggests its potential involvement in both physiological and pathological processes. A comprehensive search strategy was employed to identify relevant studies, PubMed, Web of Science, and other relevant databases were systematically searched using keywords related to TAK1, TABs and MAP3K7.In this review, we discussed the role of TAK1 in vascular signaling, with a focus on its function, activation, and related signaling pathways. Specifically, we highlight the TA1-TABs complex is a key factor, regulating vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) involved in the processes of inflammation, vascular proliferation and angiogenesis. This mini review aims to elucidate the evidence supporting TAK1 signaling in the vasculature, in order to better comprehend its beneficial and potential harmful effects upon TAK1 activation in vascular tissue.
Collapse
Affiliation(s)
- Gang Fan
- Department of Urology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, People’s Republic of China
| | - Jingfen Lu
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, People’s Republic of China
| | - Jinhui Zha
- Shenzhen University, Shenzhen, 518000, People’s Republic of China
| | - Weiming Guo
- Department of Urology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, People’s Republic of China
| | - Yifei Zhang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People’s Republic of China
| | - Yuxin Liu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Liyuan Zhang
- Department of Urology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, People’s Republic of China
| |
Collapse
|
11
|
Wei C, Jiang W, Wang R, Zhong H, He H, Gao X, Zhong S, Yu F, Guo Q, Zhang L, Schiffelers LDJ, Zhou B, Trepel M, Schmidt FI, Luo M, Shao F. Brain endothelial GSDMD activation mediates inflammatory BBB breakdown. Nature 2024; 629:893-900. [PMID: 38632402 DOI: 10.1038/s41586-024-07314-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/14/2024] [Indexed: 04/19/2024]
Abstract
The blood-brain barrier (BBB) protects the central nervous system from infections or harmful substances1; its impairment can lead to or exacerbate various diseases of the central nervous system2-4. However, the mechanisms of BBB disruption during infection and inflammatory conditions5,6 remain poorly defined. Here we find that activation of the pore-forming protein GSDMD by the cytosolic lipopolysaccharide (LPS) sensor caspase-11 (refs. 7-9), but not by TLR4-induced cytokines, mediates BBB breakdown in response to circulating LPS or during LPS-induced sepsis. Mice deficient in the LBP-CD14 LPS transfer and internalization pathway10-12 resist BBB disruption. Single-cell RNA-sequencing analysis reveals that brain endothelial cells (bECs), which express high levels of GSDMD, have a prominent response to circulating LPS. LPS acting on bECs primes Casp11 and Cd14 expression and induces GSDMD-mediated plasma membrane permeabilization and pyroptosis in vitro and in mice. Electron microscopy shows that this features ultrastructural changes in the disrupted BBB, including pyroptotic endothelia, abnormal appearance of tight junctions and vasculature detachment from the basement membrane. Comprehensive mouse genetic analyses, combined with a bEC-targeting adeno-associated virus system, establish that GSDMD activation in bECs underlies BBB disruption by LPS. Delivery of active GSDMD into bECs bypasses LPS stimulation and opens the BBB. In CASP4-humanized mice, Gram-negative Klebsiella pneumoniae infection disrupts the BBB; this is blocked by expression of a GSDMD-neutralizing nanobody in bECs. Our findings outline a mechanism for inflammatory BBB breakdown, and suggest potential therapies for diseases of the central nervous system associated with BBB impairment.
Collapse
Affiliation(s)
- Chao Wei
- Chinese Institute for Brain Research, Beijing, P. R. China
| | - Wei Jiang
- National Institute of Biological Sciences, Beijing, P. R. China
- Research Unit of Pyroptosis and Immunity, Chinese Academy of Medical Sciences and National Institute of Biological Sciences, Beijing, P. R. China
| | - Ruiyu Wang
- National Institute of Biological Sciences, Beijing, P. R. China
| | - Haoyu Zhong
- National Institute of Biological Sciences, Beijing, P. R. China
| | - Huabin He
- National Institute of Biological Sciences, Beijing, P. R. China
- Research Unit of Pyroptosis and Immunity, Chinese Academy of Medical Sciences and National Institute of Biological Sciences, Beijing, P. R. China
| | - Xinwei Gao
- Chinese Institute for Brain Research, Beijing, P. R. China
| | - Shilin Zhong
- National Institute of Biological Sciences, Beijing, P. R. China
| | - Fengting Yu
- Chinese Institute for Brain Research, Beijing, P. R. China
| | - Qingchun Guo
- Chinese Institute for Brain Research, Beijing, P. R. China
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, P. R. China
| | - Lisa D J Schiffelers
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Bin Zhou
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Martin Trepel
- Department of Hematology and Medical Oncology, University Medical Center Augsburg, Augsburg, Germany
| | - Florian I Schmidt
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Minmin Luo
- Chinese Institute for Brain Research, Beijing, P. R. China.
- National Institute of Biological Sciences, Beijing, P. R. China.
- Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing, P. R. China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, P. R. China.
- New Cornerstone Science Laboratory, Shenzhen, P. R. China.
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, P. R. China.
- Research Unit of Pyroptosis and Immunity, Chinese Academy of Medical Sciences and National Institute of Biological Sciences, Beijing, P. R. China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, P. R. China.
- New Cornerstone Science Laboratory, Shenzhen, P. R. China.
- Changping Laboratory, Beijing, P. R. China.
| |
Collapse
|
12
|
Kang J, Jiang J, Xiang X, Zhang Y, Tang J, Li L. Identification of a new gene signature for prognostic evaluation in cervical cancer: based on cuproptosis-associated angiogenesis and multi-omics analysis. Cancer Cell Int 2024; 24:23. [PMID: 38200479 PMCID: PMC10782580 DOI: 10.1186/s12935-023-03189-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Patients with recurrent or metastatic cervical cancer are in urgent need of novel prognosis assessment or treatment approaches. In this study, a novel prognostic gene signature was discovered by utilizing cuproptosis-related angiogenesis (CuRA) gene scores obtained through weighted gene co-expression network analysis (WGCNA) of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. To enhance its reliability, the gene signature was refined by integrating supplementary clinical variables and subjected to cross-validation. Meanwhile, the activation of the VEGF pathway was inferred from an analysis of cell-to-cell communication, based on the expression of ligands and receptors in cell transcriptomic datasets. High-CuRA patients had less infiltration of CD8 + T cells and reduced expression of most of immune checkpoint genes, which indicated greater difficulty in immunotherapy. Lower IC50 values of imatinib, pazopanib, and sorafenib in the high-CuRA group revealed the potential value of these drugs. Finally, we verified an independent prognostic gene SFT2D1 was highly expressed in cervical cancer and positively correlated with the microvascular density. Knockdown of SFT2D1 significantly inhibited ability of the proliferation, migration, and invasive in cervical cancer cells. CuRA gene signature provided valuable insights into the prediction of prognosis and immune microenvironment of cervical cancer, which could help develop new strategies for individualized precision therapy for cervical cancer patients.
Collapse
Affiliation(s)
- Jiawen Kang
- Department of Gynecologic Oncology, School of Medicine, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya, Central South University, Changsha, Hunan, China
- Department of Clinical Medicine, Medical College of Hunan Normal University, Changsha, Hunan, China
| | - Jingwen Jiang
- Department of Clinical Medicine, Medical College of Hunan Normal University, Changsha, Hunan, China
| | - Xiaoqing Xiang
- Department of Clinical Medicine, Medical College of Hunan Normal University, Changsha, Hunan, China
| | - Yong Zhang
- Department of Clinical Medicine, Medical College of Hunan Normal University, Changsha, Hunan, China.
| | - Jie Tang
- Department of Gynecologic Oncology, School of Medicine, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya, Central South University, Changsha, Hunan, China.
| | - Lesai Li
- Department of Gynecologic Oncology, School of Medicine, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya, Central South University, Changsha, Hunan, China.
| |
Collapse
|
13
|
Bernier-Latmani J, González-Loyola A, Petrova TV. Mechanisms and functions of intestinal vascular specialization. J Exp Med 2024; 221:e20222008. [PMID: 38051275 PMCID: PMC10697212 DOI: 10.1084/jem.20222008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
The intestinal vasculature has been studied for the last 100 years, and its essential role in absorbing and distributing ingested nutrients is well known. Recently, fascinating new insights into the organization, molecular mechanisms, and functions of intestinal vessels have emerged. These include maintenance of intestinal epithelial cell function, coping with microbiota-induced inflammatory pressure, recruiting gut-specific immune cells, and crosstalk with other organs. Intestinal function is also regulated at the systemic and cellular levels, such that the postprandial hyperemic response can direct up to 30% of systemic blood to gut vessels, while micron-sized endothelial cell fenestrations are necessary for nutrient uptake. In this review, we will highlight past discoveries made about intestinal vasculature in the context of new findings of molecular mechanisms underpinning gut function. Such comprehensive understanding of the system will pave the way to breakthroughs in nutrient uptake optimization, drug delivery efficiency, and treatment of human diseases.
Collapse
Affiliation(s)
- Jeremiah Bernier-Latmani
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | | | - Tatiana V. Petrova
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
14
|
Shimizu S, Iba T, Naito H, Rahmawati FN, Konishi H, Jia W, Muramatsu F, Takakura N. Aging impairs the ability of vascular endothelial stem cells to generate endothelial cells in mice. Angiogenesis 2023; 26:567-580. [PMID: 37563497 PMCID: PMC10542733 DOI: 10.1007/s10456-023-09891-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023]
Abstract
Tissue-resident vascular endothelial stem cells (VESCs), marked by expression of CD157, possess long-term repopulating potential and contribute to vascular regeneration and homeostasis in mice. Stem cell exhaustion is regarded as one of the hallmarks of aging and is being extensively studied in several types of tissue-resident stem cells; however, how aging affects VESCs has not been clarified yet. In the present study, we isolated VESCs from young and aged mice to compare their potential to differentiate into endothelial cells in vitro and in vivo. Here, we report that the number of liver endothelial cells (ECs) including VESCs was lower in aged (27-28 month-old) than young (2-3 month-old) mice. In vitro culture of primary VESCs revealed that the potential to generate ECs is impaired in aged VESCs isolated from liver and lung relative to young VESCs. Orthotopic transplantation of VESCs showed that aged VESCs and their progeny expand less efficiently than their young counterparts when transplanted into aged mice, but they are equally functional in young recipients. Gene expression analysis indicated that inflammatory signaling was more activated in aged ECs including VESCs. Using single-cell RNA sequencing data from the Tabula Muris Consortium, we show that T cells and monocyte/macrophage lineage cells including Kupffer cells are enriched in the aged liver. These immune cells produce IL-1β and several chemokines, suggesting the possible involvement of age-associated inflammation in the functional decline of VESCs with age.
Collapse
Affiliation(s)
- Shota Shimizu
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Tomohiro Iba
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
- Department of Physiology, Kanazawa University School of Medicine, Ishikawa, Japan
| | - Hisamichi Naito
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
- Department of Physiology, Kanazawa University School of Medicine, Ishikawa, Japan
| | - Fitriana Nur Rahmawati
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Hirotaka Konishi
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Weizhen Jia
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Fumitaka Muramatsu
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka, 565-0871, Japan.
- World Premier Institute Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan.
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.
| |
Collapse
|
15
|
Yang J, Sun P, Xu X, Liu X, Lan L, Yi M, Xiao C, Ni R, Fan Y. TAK1 Improves Cognitive Function via Suppressing RIPK1-Driven Neuronal Apoptosis and Necroptosis in Rats with Chronic Hypertension. Aging Dis 2023; 14:1799-1817. [PMID: 37196118 PMCID: PMC10529759 DOI: 10.14336/ad.2023.0219] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/19/2023] [Indexed: 05/19/2023] Open
Abstract
Chronic hypertension is a major risk factor for cognitive impairment, which can promote neuroinflammation and neuronal loss in the central nervous system. Transforming growth factor β-activated kinase 1 (TAK1) is a key molecular component in determining cell fate and can be activated by inflammatory cytokines. This study aimed to investigate the role of TAK1 in mediating neuronal survival in the cerebral cortex and hippocampus under chronic hypertensive conditions. To that end, we used stroke-prone renovascular hypertension rats (RHRSP) as chronic hypertension models. Adeno-associated virus (AAV) designed to overexpress or knock down TAK1 expression were injected into the lateral ventricles of rats and the subsequent effects on cognitive function and neuronal survival under chronic hypertensive conditions were assessed. We found that, TAK1 knockdown in RHRSP markedly increased neuronal apoptosis and necroptosis and induced cognitive impairment, which could be reversed by Nec-1s, an inhibitor of receptor interacting protein kinase 1 (RIPK1). In contrast, overexpression of TAK1 in RHRSP significantly suppressed neuronal apoptosis and necroptosis and improved cognitive function. Further knockdown of TAK1 in sham-operated rats received similar phenotype with RHRSP. The results have been verified in vitro. In this study, we provide in vivo and in vitro evidence that TAK1 improves cognitive function by suppressing RIPK1-driven neuronal apoptosis and necroptosis in rats with chronic hypertension.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yuhua Fan
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| |
Collapse
|
16
|
Kiouptsi K, Pontarollo G, Reinhardt C. Gut Microbiota and the Microvasculature. Cold Spring Harb Perspect Med 2023; 13:a041179. [PMID: 37460157 PMCID: PMC10411863 DOI: 10.1101/cshperspect.a041179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The gut microbiota is increasingly recognized as an actuating variable shaping vascular development and endothelial cell function in the intestinal mucosa but also affecting the microvasculature of remote organs. In the small intestine, colonization with gut microbiota and subsequent activation of innate immune pathways promotes the development of intricate capillary networks and lacteals, influencing the integrity of the gut-vascular barrier as well as nutrient uptake. Since the liver yields most of its blood supply via the portal circulation, the hepatic microcirculation steadily encounters microbiota-derived patterns and active signaling metabolites that induce changes in the organization of the liver sinusoidal endothelium, influencing immune zonation of sinusoids and impacting on metabolic processes. In addition, microbiota-derived signals may affect the vasculature of distant organ systems such as the brain and the eye microvasculature. In recent years, this gut-resident microbial ecosystem was revealed to contribute to the development of several vascular disease phenotypes.
Collapse
Affiliation(s)
- Klytaimnistra Kiouptsi
- Center for Thrombosis and Hemostasis (CTH), Partner Site Rhine Main, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Giulia Pontarollo
- Center for Thrombosis and Hemostasis (CTH), Partner Site Rhine Main, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis (CTH), Partner Site Rhine Main, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
17
|
Wang JH, Lin FL, Chen J, Zhu L, Chuang YF, Tu L, Ma C, Ling D, Hewitt AW, Tseng CL, Shah MH, Bui BV, van Wijngaarden P, Dusting GJ, Wang PY, Liu GS. TAK1 blockade as a therapy for retinal neovascularization. Pharmacol Res 2023; 187:106617. [PMID: 36535572 DOI: 10.1016/j.phrs.2022.106617] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Retinal neovascularization, or pathological angiogenesis in the retina, is a leading cause of blindness in developed countries. Transforming growth factor-β-activated kinase 1 (TAK1) is a mitogen-activated protein kinase kinase kinase (MAPKKK) activated by TGF-β1 and other proinflammatory cytokines. TAK1 is also a key mediator of proinflammatory signals and plays an important role in maintaining vascular integrity upon proinflammatory cytokine stimulation such as TNFα. However, its role in pathological angiogenesis, particularly in retinal neovascularization, remains unclear. Here, we investigate the regulatory role of TAK1 in human endothelial cells responding to inflammatory stimuli and in a rat model of oxygen-induced retinopathy (OIR) featured retinal neovascularization. Using TAK1 knockout human endothelial cells that subjected to inflammatory stimuli, transcriptome analysis revealed that TAK1 is required for activation of NFκB signaling and mediates its downstream gene expression related to endothelial activation and angiogenesis. Moreover, pharmacological inhibition of TAK1 by 5Z-7-oxozeaenol attenuated angiogenic activities of endothelial cells. Transcriptome analysis also revealed enrichment of TAK1-mediated NFκB signaling pathway in the retina of OIR rats and retinal neovascular membrane from patients with proliferative diabetic retinopathy. Intravitreal injection of 5Z-7-oxozeaenol significantly reduced hypoxia-induced inflammation and microglial activation, thus attenuating aberrant retinal angiogenesis in OIR rats. Our data suggest that inhibition of TAK1 may have therapeutic potential for the treatment of retinal neovascular pathologies.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Fan-Li Lin
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia; Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jinying Chen
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510603, China
| | - Linxin Zhu
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Yu-Fan Chuang
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia; Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Leilei Tu
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510603, China
| | - Chenkai Ma
- Molecular Diagnostics Solutions, CSIRO Health and Biosecurity, North Ryde, NSW 1670, Australia
| | - Damien Ling
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Alex W Hewitt
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia; Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Manisha H Shah
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Peter van Wijngaarden
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC 3002, Australia
| | - Gregory J Dusting
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC 3002, Australia
| | - Peng-Yuan Wang
- Oujiang Laboratory, Wenzhou, Zhejiang 325000, China; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Guei-Sheung Liu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia; Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia; Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC 3002, Australia; Aier Eye Institute, Changsha, Hunan 410015, China.
| |
Collapse
|
18
|
Krolewski JJ, Singh S, Sha K, Jaiswal N, Turowski SG, Pan C, Rich LJ, Seshadri M, Nastiuk KL. TNF Signaling Is Required for Castration-Induced Vascular Damage Preceding Prostate Cancer Regression. Cancers (Basel) 2022; 14:cancers14246020. [PMID: 36551505 PMCID: PMC9775958 DOI: 10.3390/cancers14246020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/26/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The mainstay treatment for locally advanced, recurrent, or metastatic prostate cancer (PrCa) is androgen deprivation therapy (ADT). ADT causes prostate cancers to shrink in volume, or regress, by inducing epithelial tumor cell apoptosis. In normal, non-neoplastic murine prostate, androgen deprivation via castration induces prostate gland regression that is dependent on TNF signaling. In addition to this direct mechanism of action, castration has also been implicated in an indirect mechanism of prostate epithelial cell death, which has been described as vascular regression. The initiating event is endothelial cell apoptosis and/or increased vascular permeability. This subsequently leads to reduced blood flow and perfusion, and then hypoxia, which may enhance epithelial cell apoptosis. Castration-induced vascular regression has been observed in both normal and neoplastic prostates. We used photoacoustic, power Doppler, and contrast-enhanced ultrasound imaging, and CD31 immunohistochemical staining of the microvasculature to assess vascular integrity in the period immediately following castration, enabling us to test the role of TNF signaling in vascular regression. In two mouse models of androgen-responsive prostate cancer, TNF signaling blockade using a soluble TNFR2 ligand trap reversed the functional aspects of vascular regression as well as structural changes in the microvasculature, including reduced vessel wall thickness, cross-sectional area, and vessel perimeter length. These results demonstrate that TNF signaling is required for vascular regression, most likely by inducing endothelial cell apoptosis and increasing vessel permeability. Since TNF is also the critical death receptor ligand for prostate epithelial cells, we propose that TNF is a multi-purpose, comprehensive signal within the prostate cancer microenvironment that mediates prostate cancer regression following androgen deprivation.
Collapse
Affiliation(s)
- John J. Krolewski
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Shalini Singh
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Kai Sha
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Neha Jaiswal
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Steven G. Turowski
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Chunliu Pan
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Laurie J. Rich
- Laboratory of Translational Imaging, Center for Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Mukund Seshadri
- Laboratory of Translational Imaging, Center for Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Kent L. Nastiuk
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Correspondence: ; Tel.: +1-716-845-5771
| |
Collapse
|
19
|
Bernier-Latmani J, Mauri C, Marcone R, Renevey F, Durot S, He L, Vanlandewijck M, Maclachlan C, Davanture S, Zamboni N, Knott GW, Luther SA, Betsholtz C, Delorenzi M, Brisken C, Petrova TV. ADAMTS18 + villus tip telocytes maintain a polarized VEGFA signaling domain and fenestrations in nutrient-absorbing intestinal blood vessels. Nat Commun 2022; 13:3983. [PMID: 35810168 PMCID: PMC9271081 DOI: 10.1038/s41467-022-31571-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 06/21/2022] [Indexed: 12/17/2022] Open
Abstract
The small intestinal villus tip is the first point of contact for lumen-derived substances including nutrients and microbial products. Electron microscopy studies from the early 1970s uncovered unusual spatial organization of small intestinal villus tip blood vessels: their exterior, epithelial-facing side is fenestrated, while the side facing the villus stroma is non-fenestrated, covered by pericytes and harbors endothelial nuclei. Such organization optimizes the absorption process, however the molecular mechanisms maintaining this highly specialized structure remain unclear. Here we report that perivascular LGR5+ villus tip telocytes (VTTs) are necessary for maintenance of villus tip endothelial cell polarization and fenestration by sequestering VEGFA signaling. Mechanistically, unique VTT expression of the protease ADAMTS18 is necessary for VEGFA signaling sequestration through limiting fibronectin accumulation. Therefore, we propose a model in which LGR5+ ADAMTS18+ telocytes are necessary to maintain a “just-right” level and location of VEGFA signaling in intestinal villus blood vasculature to ensure on one hand the presence of sufficient endothelial fenestrae, while avoiding excessive leakiness of the vessels and destabilization of villus tip epithelial structures. The molecular mechanisms ensuring the specialized structure of small intestinal villus tip blood vessels are incompletely understood. Here the authors show that ADAMTS18+ telocytes maintain a “just-right” level and location of VEGFA signaling on intestinal villus blood vessels, thereby ensuring the presence of endothelial fenestrae for nutrient absorption, while avoiding excessive leakiness and destabilization of villus tip epithelial structures.
Collapse
Affiliation(s)
- Jeremiah Bernier-Latmani
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne and University of Lausanne, Lausanne, Switzerland.
| | - Cristina Mauri
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Rachel Marcone
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - François Renevey
- Department of Immunobiology, University of Lausanne, Lausanne, Switzerland
| | - Stephan Durot
- Institute of Molecular Systems Biology ETH, Zurich, Switzerland
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Michael Vanlandewijck
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.,Department of Medicine-Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Catherine Maclachlan
- Bio Electron Microscopy Laboratory, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Suzel Davanture
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Nicola Zamboni
- Institute of Molecular Systems Biology ETH, Zurich, Switzerland
| | - Graham W Knott
- Bio Electron Microscopy Laboratory, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Sanjiv A Luther
- Department of Immunobiology, University of Lausanne, Lausanne, Switzerland
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.,Department of Medicine-Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Mauro Delorenzi
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne and University of Lausanne, Lausanne, Switzerland.,Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Cathrin Brisken
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Tatiana V Petrova
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne and University of Lausanne, Lausanne, Switzerland. .,Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne, Switzerland.
| |
Collapse
|
20
|
Tisch N, Mogler C, Stojanovic A, Luck R, Korhonen EA, Ellerkmann A, Adler H, Singhal M, Schermann G, Erkert L, Patankar JV, Karakatsani A, Scherr AL, Fuchs Y, Cerwenka A, Wirtz S, Köhler BC, Augustin HG, Becker C, Schmidt T, Ruiz de Almodóvar C. Caspase-8 in endothelial cells maintains gut homeostasis and prevents small bowel inflammation in mice. EMBO Mol Med 2022; 14:e14121. [PMID: 35491615 PMCID: PMC9174885 DOI: 10.15252/emmm.202114121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 12/18/2022] Open
Abstract
The gut has a specific vascular barrier that controls trafficking of antigens and microbiota into the bloodstream. However, the molecular mechanisms regulating the maintenance of this vascular barrier remain elusive. Here, we identified Caspase-8 as a pro-survival factor in mature intestinal endothelial cells that is required to actively maintain vascular homeostasis in the small intestine in an organ-specific manner. In particular, we find that deletion of Caspase-8 in endothelial cells results in small intestinal hemorrhages and bowel inflammation, while all other organs remained unaffected. We also show that Caspase-8 seems to be particularly needed in lymphatic endothelial cells to maintain gut homeostasis. Our work demonstrates that endothelial cell dysfunction, leading to the breakdown of the gut-vascular barrier, is an active driver of chronic small intestinal inflammation, highlighting the role of the intestinal vasculature as a safeguard of organ function.
Collapse
Affiliation(s)
- Nathalie Tisch
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carolin Mogler
- Institute of Pathology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Ana Stojanovic
- Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Robert Luck
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Emilia A Korhonen
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alexander Ellerkmann
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of General, Visceral and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| | - Heike Adler
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mahak Singhal
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Géza Schermann
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lena Erkert
- Department of Medicine 1, Friedrich-Alexander-University, Erlangen, Germany
| | - Jay V Patankar
- Department of Medicine 1, Friedrich-Alexander-University, Erlangen, Germany
| | - Andromachi Karakatsani
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anna-Lena Scherr
- National Center for Tumor Diseases, Department of Medical Oncology, Internal Medicine VI, Heidelberg University Hospital, Heidelberg, Germany
| | - Yaron Fuchs
- Laboratory of Stem Cell Biology & Regenerative Medicine, Department of Biology, Technion -Israel Institute of Technology, Haifa, Israel
| | - Adelheid Cerwenka
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan Wirtz
- Department of Medicine 1, Friedrich-Alexander-University, Erlangen, Germany
| | - Bruno Christian Köhler
- National Center for Tumor Diseases, Department of Medical Oncology, Internal Medicine VI, Heidelberg University Hospital, Heidelberg, Germany
| | - Hellmut G Augustin
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Christoph Becker
- Department of Medicine 1, Friedrich-Alexander-University, Erlangen, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, Heidelberg University, Heidelberg, Germany.,Department of General, Visceral, Cancer and Transplantation Surgery, Faculty of Medicine with University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Carmen Ruiz de Almodóvar
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
21
|
Wang DM, Soni D, Regmi SC, Vogel SM, Tiruppathi C. TAK1 is essential for endothelial barrier maintenance and repair after lung vascular injury. Mol Biol Cell 2022; 33:ar65. [PMID: 35324316 PMCID: PMC9561857 DOI: 10.1091/mbc.e21-11-0563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
TGF–β-activated kinase 1 (TAK1) plays crucial roles in innate and adaptive immune responses and is required for embryonic vascular development. However, TAK1’s role in regulating vascular barrier integrity is not well defined. Here we show that endothelial TAK1 kinase function is required to maintain and repair the injured lung endothelial barrier. We observed that inhibition of TAK1 with 5Z-7-oxozeaenol markedly reduced expression of β-catenin (β-cat) and VE-cadherin at endothelial adherens junctions and augmented protease-activated receptor-1 (PAR-1)- or toll-like receptor-4 (TLR-4)-induced increases in lung vascular permeability. In inducible endothelial cell (EC)-restricted TAK1 knockout (TAK1i∆EC) mice, we observed that the lung endothelial barrier was compromised and in addition, TAK1i∆EC mice exhibited heightened sensitivity to septic shock. Consistent with these findings, we observed dramatically reduced β-cat expression in lung ECs of TAK1i∆EC mice. Further, either inhibition or knockdown of TAK1 blocked PAR-1- or TLR-4-induced inactivation of glycogen synthase kinase 3β (GSK3β), which in turn increased phosphorylation, ubiquitylation, and degradation of β-cat in ECs to destabilize the endothelial barrier. Importantly, we showed that TAK1 inactivates GSK3β through AKT activation in ECs. Thus our findings in this study point to the potential of targeting the TAK1-AKT-GSK3β axis as a therapeutic approach to treat uncontrolled lung vascular leak during sepsis.
Collapse
Affiliation(s)
- Dong-Mei Wang
- Department of Pharmacology and Regenerative Medicine, College of Medicine, University of Illinois, Chicago, IL, USA
| | - Dheeraj Soni
- Department of Pharmacology and Regenerative Medicine, College of Medicine, University of Illinois, Chicago, IL, USA
| | - Sushil C Regmi
- Department of Pharmacology and Regenerative Medicine, College of Medicine, University of Illinois, Chicago, IL, USA
| | - Stephen M Vogel
- Department of Pharmacology and Regenerative Medicine, College of Medicine, University of Illinois, Chicago, IL, USA
| | - Chinnaswamy Tiruppathi
- Department of Pharmacology and Regenerative Medicine, College of Medicine, University of Illinois, Chicago, IL, USA
| |
Collapse
|
22
|
Wang JH, Tseng CL, Lin FL, Chen J, Hsieh EH, Lama S, Chuang YF, Kumar S, Zhu L, McGuinness MB, Hernandez J, Tu L, Wang PY, Liu GS. Topical application of TAK1 inhibitor encapsulated by gelatin particle alleviates corneal neovascularization. Theranostics 2022; 12:657-674. [PMID: 34976206 PMCID: PMC8692906 DOI: 10.7150/thno.65098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/07/2021] [Indexed: 11/22/2022] Open
Abstract
Rationale: Corneal neovascularization (CoNV) is a severe complication of various types of corneal diseases, that leads to permanent visual impairment. Current treatments for CoNV, such as steroids or anti-vascular endothelial growth factor agents, are argued over their therapeutic efficacy and adverse effects. Here, we demonstrate that transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) plays an important role in the pathogenesis of CoNV. Methods: Angiogenic activities were assessed in ex vivo and in vitro models subjected to TAK1 inhibition by 5Z-7-oxozeaenol, a selective inhibitor of TAK1. RNA-Seq was used to examine pathways that could be potentially affected by TAK1 inhibition. A gelatin-nanoparticles-encapsulated 5Z-7-oxozeaenol was developed as the eyedrop to treat CoNV in a rodent model. Results: We showed that 5Z-7-oxozeaenol reduced angiogenic processes through impeding cell proliferation. Transcriptome analysis suggested 5Z-7-oxozeaenol principally suppresses cell cycle and DNA replication, thereby restraining cell proliferation. In addition, inhibition of TAK1 by 5Z-7-oxozeaenol blocked TNFα-mediated NFκB signalling, and its downstream genes related to angiogenesis and inflammation. 5Z-7-oxozeaenol also ameliorated pro-angiogenic activity, including endothelial migration and tube formation. Furthermore, topical administration of the gelatin-nanoparticles-encapsulated 5Z-7-oxozeaenol led to significantly greater suppression of CoNV in a mouse model compared to the free form of 5Z-7-oxozeaenol, likely due to extended retention of 5Z-7-oxozeaenol in the cornea. Conclusion: Our study shows the potential of TAK1 as a therapeutic target for pathological angiogenesis, and the gelatin nanoparticle coupled with 5Z-7-oxozeaenol as a promising new eyedrop administration model in treatment of CoNV.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Fan-Li Lin
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jinying Chen
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Erh-Hsuan Hsieh
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Suraj Lama
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Yu-Fan Chuang
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Satheesh Kumar
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Linxin Zhu
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Myra B. McGuinness
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Jessika Hernandez
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Leilei Tu
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Guei-Sheung Liu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Australia
- Aier Eye Institute, Changsha, Hunan, China
| |
Collapse
|
23
|
Miller MR, Koch SR, Choi H, Lamb FS, Stark RJ. Apoptosis signal-regulating kinase 1 (ASK1) inhibition reduces endothelial cytokine production without improving permeability after toll-like receptor 4 (TLR4) challenge. Transl Res 2021; 235:115-128. [PMID: 33857660 PMCID: PMC8328918 DOI: 10.1016/j.trsl.2021.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
Sepsis represents a life-threatening event often mediated by the host's response to pathogens such as gram-negative organisms, which release the proinflammatory lipopolysaccharide (LPS). Within the endothelium, the mitogen-activated protein kinase (MAPK) pathway is an important driver of endothelial injury during sepsis, of which oxidant-sensitive apoptosis signal-regulating kinase 1 (ASK1) is postulated to be a critical upstream regulator. We hypothesized that ASK1 would play a key role in endothelial inflammation during bacterial challenge. Utilizing RNA sequencing data from patients and cultured human microvascular endothelial cells (HMVECs), ASK1 expression was increased in sepsis and after LPS challenge. Two ASK1 inhibitors, GS444217 and MSC2023964A, reduced cytokine production in HMVECs following LPS stimulation, but had no effect on permeability as measured by transendothelial electrical resistance and intercellular space. MAPKs are known to interact with endothelial nitric oxide synthase (eNOS) and ASK1 expression levels correlated with eNOS expression in patients with septic shock. In addition, eNOS physically interacted with ASK1, though this interaction was not altered by ASK1 inhibition, nor did inhibition alter MAPK p38 activity. Instead, among MAPKs, ASK1 inhibition only impaired LPS-induced JNK phosphorylation. The reduction in JNK activation caused by ASK1 inhibition impaired JNK-mediated cytokine production without affecting permeability. Thus, LPS triggers JNK-dependent cytokine production that requires ASK1 activation, but both its effects on permeability and activation of p38 are ASK1-independent. These data demonstrate how distinct MAPK signaling pathways regulate endothelial inflammatory outputs during acute infectious challenge.
Collapse
Affiliation(s)
- Michael R Miller
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Stephen R Koch
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hyehun Choi
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Fred S Lamb
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ryan J Stark
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
24
|
Xu S, Ilyas I, Little PJ, Li H, Kamato D, Zheng X, Luo S, Li Z, Liu P, Han J, Harding IC, Ebong EE, Cameron SJ, Stewart AG, Weng J. Endothelial Dysfunction in Atherosclerotic Cardiovascular Diseases and Beyond: From Mechanism to Pharmacotherapies. Pharmacol Rev 2021; 73:924-967. [PMID: 34088867 DOI: 10.1124/pharmrev.120.000096] [Citation(s) in RCA: 563] [Impact Index Per Article: 140.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The endothelium, a cellular monolayer lining the blood vessel wall, plays a critical role in maintaining multiorgan health and homeostasis. Endothelial functions in health include dynamic maintenance of vascular tone, angiogenesis, hemostasis, and the provision of an antioxidant, anti-inflammatory, and antithrombotic interface. Dysfunction of the vascular endothelium presents with impaired endothelium-dependent vasodilation, heightened oxidative stress, chronic inflammation, leukocyte adhesion and hyperpermeability, and endothelial cell senescence. Recent studies have implicated altered endothelial cell metabolism and endothelial-to-mesenchymal transition as new features of endothelial dysfunction. Endothelial dysfunction is regarded as a hallmark of many diverse human panvascular diseases, including atherosclerosis, hypertension, and diabetes. Endothelial dysfunction has also been implicated in severe coronavirus disease 2019. Many clinically used pharmacotherapies, ranging from traditional lipid-lowering drugs, antihypertensive drugs, and antidiabetic drugs to proprotein convertase subtilisin/kexin type 9 inhibitors and interleukin 1β monoclonal antibodies, counter endothelial dysfunction as part of their clinical benefits. The regulation of endothelial dysfunction by noncoding RNAs has provided novel insights into these newly described regulators of endothelial dysfunction, thus yielding potential new therapeutic approaches. Altogether, a better understanding of the versatile (dys)functions of endothelial cells will not only deepen our comprehension of human diseases but also accelerate effective therapeutic drug discovery. In this review, we provide a timely overview of the multiple layers of endothelial function, describe the consequences and mechanisms of endothelial dysfunction, and identify pathways to effective targeted therapies. SIGNIFICANCE STATEMENT: The endothelium was initially considered to be a semipermeable biomechanical barrier and gatekeeper of vascular health. In recent decades, a deepened understanding of the biological functions of the endothelium has led to its recognition as a ubiquitous tissue regulating vascular tone, cell behavior, innate immunity, cell-cell interactions, and cell metabolism in the vessel wall. Endothelial dysfunction is the hallmark of cardiovascular, metabolic, and emerging infectious diseases. Pharmacotherapies targeting endothelial dysfunction have potential for treatment of cardiovascular and many other diseases.
Collapse
Affiliation(s)
- Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Iqra Ilyas
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Peter J Little
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Hong Li
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Danielle Kamato
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Xueying Zheng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Sihui Luo
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Zhuoming Li
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Peiqing Liu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Jihong Han
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Ian C Harding
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Eno E Ebong
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Scott J Cameron
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Alastair G Stewart
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Jianping Weng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| |
Collapse
|
25
|
Pietrobono S, Melisi D. A Novel atTAK Against Hepatocellular Carcinoma: Overcoming Resistance to Sorafenib. Cell Mol Gastroenterol Hepatol 2021; 12:1151-1152. [PMID: 34181901 PMCID: PMC8413139 DOI: 10.1016/j.jcmgh.2021.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 12/10/2022]
Affiliation(s)
| | - Davide Melisi
- Digestive Molecular Clinical Oncology Research Unit, Università degli Studi di Verona, Experimental Cancer Medicine Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy.
| |
Collapse
|
26
|
TAK1 signaling is a potential therapeutic target for pathological angiogenesis. Angiogenesis 2021; 24:453-470. [PMID: 33973075 DOI: 10.1007/s10456-021-09787-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023]
Abstract
Angiogenesis plays a critical role in both physiological responses and disease pathogenesis. Excessive angiogenesis can promote neoplastic diseases and retinopathies, while inadequate angiogenesis can lead to aberrant perfusion and impaired wound healing. Transforming growth factor β activated kinase 1 (TAK1), a member of the mitogen-activated protein kinase kinase kinase family, is a key modulator involved in a range of cellular functions including the immune responses, cell survival and death. TAK1 is activated in response to various stimuli such as proinflammatory cytokines, hypoxia, and oxidative stress. Emerging evidence has recently suggested that TAK1 is intimately involved in angiogenesis and mediates pathogenic processes related to angiogenesis. Several detailed mechanisms by which TAK1 regulates pathological angiogenesis have been clarified, and potential therapeutics targeting TAK1 have emerged. In this review, we summarize recent studies of TAK1 in angiogenesis and discuss the crosstalk between TAK1 and signaling pathways involved in pathological angiogenesis. We also discuss the approaches for selectively targeting TAK1 and highlight the rationales of therapeutic strategies based on TAK1 inhibition for the treatment of pathological angiogenesis.
Collapse
|
27
|
Tisch N, Ruiz de Almodóvar C. Contribution of cell death signaling to blood vessel formation. Cell Mol Life Sci 2021; 78:3247-3264. [PMID: 33783563 PMCID: PMC8038986 DOI: 10.1007/s00018-020-03738-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023]
Abstract
The formation of new blood vessels is driven by proliferation of endothelial cells (ECs), elongation of maturing vessel sprouts and ultimately vessel remodeling to create a hierarchically structured vascular system. Vessel regression is an essential process to remove redundant vessel branches in order to adapt the final vessel density to the demands of the surrounding tissue. How exactly vessel regression occurs and whether and to which extent cell death contributes to this process has been in the focus of several studies within the last decade. On top, recent findings challenge our simplistic view of the cell death signaling machinery as a sole executer of cellular demise, as emerging evidences suggest that some of the classic cell death regulators even promote blood vessel formation. This review summarizes our current knowledge on the role of the cell death signaling machinery with a focus on the apoptosis and necroptosis signaling pathways during blood vessel formation in development and pathology.
Collapse
Affiliation(s)
- Nathalie Tisch
- Department of Vascular Dysfunction, European Center for Angioscience (ECAS), Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Carmen Ruiz de Almodóvar
- Department of Vascular Dysfunction, European Center for Angioscience (ECAS), Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
28
|
Kong J, Yao C, Dong S, Wu S, Xu Y, Li K, Ji L, Shen Q, Zhang Q, Zhan R, Cui H, Zhou C, Niu H, Li G, Sun W, Zheng L. ICAM-1 Activates Platelets and Promotes Endothelial Permeability through VE-Cadherin after Insufficient Radiofrequency Ablation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002228. [PMID: 33643788 PMCID: PMC7887603 DOI: 10.1002/advs.202002228] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 11/06/2020] [Indexed: 06/02/2023]
Abstract
Radiofrequency ablation (RFA) for hepatocellular carcinoma (HCC) often leads to aggressive local recurrence and increased metastasis, and vascular integrity and platelets are implicated in tumor metastasis. However, whether interactions between endothelial cells and platelets induce endothelial permeability in HCC after insufficient RFA remains unclear. Here, significantly increased CD62P-positive platelets and sP-selectin in plasma are observed in HCC patients after RFA, and tumor-associated endothelial cells (TAECs) activate platelets and are susceptible to permeability after heat treatment in the presence of platelets in vitro. In addition, tumors exhibit enhanced vascular permeability after insufficient RFA in mice; heat treatment promotes platelets-induced endothelial permeability through vascular endothelial (VE)-cadherin, and ICAM-1 upregulation in TAECs after heat treatment results in platelet activation and increased endothelial permeability in vitro. Moreover, the binding interaction between upregulated ICAM-1 and Ezrin downregulates VE-cadherin expression. Furthermore, platelet depletion or ICAM-1 inhibition suppresses tumor growth and metastasis after insufficient RFA in an orthotopic tumor mouse model, and vascular permeability decreases in ICAM-1-/- mouse tumor after insufficient RFA. The findings suggest that ICAM-1 activates platelets and promotes endothelial permeability in TAECs through VE-cadherin after insufficient RFA, and anti-platelet and anti-ICAM-1 therapy can be used to prevent progression of HCC after insufficient RFA.
Collapse
Affiliation(s)
- Jian Kong
- Department of Hepatobiliary SurgeryBeijing Chaoyang HospitalCapital Medical UniversityBeijing100043P. R. China
| | - Changyu Yao
- Department of Hepatobiliary SurgeryBeijing Chaoyang HospitalCapital Medical UniversityBeijing100043P. R. China
| | - Shuying Dong
- Department of Hepatobiliary SurgeryBeijing Chaoyang HospitalCapital Medical UniversityBeijing100043P. R. China
| | - Shilun Wu
- Department of Hepatobiliary SurgeryBeijing Chaoyang HospitalCapital Medical UniversityBeijing100043P. R. China
| | - Yangkai Xu
- The Institute of Cardiovascular Sciences and Institute of Systems BiomedicineSchool of Basic Medical SciencesPeking University Health Science CenterKey Laboratory of Molecular Cardiovascular Sciences of Ministry of EducationKey Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of HealthBeijing Key Laboratory of Cardiovascular Receptors ResearchBeijing100191P. R. China
| | - Ke Li
- Beijing Tiantan HospitalChina National Clinical Research Center for Neurological DiseasesAdvanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijing100050P. R. China
| | - Liang Ji
- The Institute of Cardiovascular Sciences and Institute of Systems BiomedicineSchool of Basic Medical SciencesPeking University Health Science CenterKey Laboratory of Molecular Cardiovascular Sciences of Ministry of EducationKey Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of HealthBeijing Key Laboratory of Cardiovascular Receptors ResearchBeijing100191P. R. China
| | - Qiang Shen
- The Institute of Cardiovascular Sciences and Institute of Systems BiomedicineSchool of Basic Medical SciencesPeking University Health Science CenterKey Laboratory of Molecular Cardiovascular Sciences of Ministry of EducationKey Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of HealthBeijing Key Laboratory of Cardiovascular Receptors ResearchBeijing100191P. R. China
| | - Qi Zhang
- The Institute of Cardiovascular Sciences and Institute of Systems BiomedicineSchool of Basic Medical SciencesPeking University Health Science CenterKey Laboratory of Molecular Cardiovascular Sciences of Ministry of EducationKey Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of HealthBeijing Key Laboratory of Cardiovascular Receptors ResearchBeijing100191P. R. China
| | - Rui Zhan
- The Institute of Cardiovascular Sciences and Institute of Systems BiomedicineSchool of Basic Medical SciencesPeking University Health Science CenterKey Laboratory of Molecular Cardiovascular Sciences of Ministry of EducationKey Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of HealthBeijing Key Laboratory of Cardiovascular Receptors ResearchBeijing100191P. R. China
| | - Hongtu Cui
- The Institute of Cardiovascular Sciences and Institute of Systems BiomedicineSchool of Basic Medical SciencesPeking University Health Science CenterKey Laboratory of Molecular Cardiovascular Sciences of Ministry of EducationKey Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of HealthBeijing Key Laboratory of Cardiovascular Receptors ResearchBeijing100191P. R. China
| | - Changping Zhou
- The Institute of Cardiovascular Sciences and Institute of Systems BiomedicineSchool of Basic Medical SciencesPeking University Health Science CenterKey Laboratory of Molecular Cardiovascular Sciences of Ministry of EducationKey Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of HealthBeijing Key Laboratory of Cardiovascular Receptors ResearchBeijing100191P. R. China
| | - Haigang Niu
- Department of Hepatobiliary SurgeryBeijing Chaoyang HospitalCapital Medical UniversityBeijing100043P. R. China
| | - Guoming Li
- Department of Hepatobiliary SurgeryBeijing Chaoyang HospitalCapital Medical UniversityBeijing100043P. R. China
| | - Wenbing Sun
- Department of Hepatobiliary SurgeryBeijing Chaoyang HospitalCapital Medical UniversityBeijing100043P. R. China
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems BiomedicineSchool of Basic Medical SciencesPeking University Health Science CenterKey Laboratory of Molecular Cardiovascular Sciences of Ministry of EducationKey Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of HealthBeijing Key Laboratory of Cardiovascular Receptors ResearchBeijing100191P. R. China
- Beijing Tiantan HospitalChina National Clinical Research Center for Neurological DiseasesAdvanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijing100050P. R. China
| |
Collapse
|
29
|
Hu H, Lee SR, Bai H, Guo J, Hashimoto T, Isaji T, Guo X, Wang T, Wolf K, Liu S, Ono S, Yatsula B, Dardik A. TGFβ (Transforming Growth Factor-Beta)-Activated Kinase 1 Regulates Arteriovenous Fistula Maturation. Arterioscler Thromb Vasc Biol 2020; 40:e203-e213. [PMID: 32460580 DOI: 10.1161/atvbaha.119.313848] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Arteriovenous fistulae (AVF) are the optimal conduit for hemodialysis access but have high rates of primary maturation failure. Successful AVF maturation requires wall thickening with deposition of ECM (extracellular matrix) including collagen and fibronectin, as well as lumen dilation. TAK1 (TGFβ [transforming growth factor-beta]-activated kinase 1) is a mediator of noncanonical TGFβ signaling and plays crucial roles in regulation of ECM production and deposition; therefore, we hypothesized that TAK1 regulates wall thickening and lumen dilation during AVF maturation. Approach and Results: In both human and mouse AVF, immunoreactivity of TAK1, JNK (c-Jun N-terminal kinase), p38, collagen 1, and fibronectin was significantly increased compared with control veins. Manipulation of TAK1 in vivo altered AVF wall thickening and luminal diameter; reduced TAK1 function was associated with reduced thickness and smaller diameter, whereas activation of TAK1 function was associated with increased thickness and larger diameter. Arterial magnitudes of laminar shear stress (20 dyne/cm2) activated noncanonical TGFβ signaling including TAK1 phosphorylation in mouse endothelial cells. CONCLUSIONS TAK1 is increased in AVF, and TAK1 manipulation in a mouse AVF model regulates AVF thickness and diameter. Targeting noncanonical TGFβ signaling such as TAK1 might be a novel therapeutic approach to improve AVF maturation.
Collapse
Affiliation(s)
- Haidi Hu
- From the Department of Vascular and Thyroid Surgery, The First Hospital of China Medical University, Shenyang (H.H.).,Department of Surgery (H.H., S.-R.L., H.B., J.G., T.H., T.I., X.G., T.W., K.W., S.L., S.O., B.Y., A.D.), Yale University School of Medicine, New Haven, CT.,Vascular Biology and Therapeutics Program (H.H., S.-R.L., H.B., J.G., T.H., T.I., X.G., T.W., K.W., S.L., S.O., B.Y., A.D.), Yale University School of Medicine, New Haven, CT
| | - Shin-Rong Lee
- Department of Surgery (H.H., S.-R.L., H.B., J.G., T.H., T.I., X.G., T.W., K.W., S.L., S.O., B.Y., A.D.), Yale University School of Medicine, New Haven, CT.,Vascular Biology and Therapeutics Program (H.H., S.-R.L., H.B., J.G., T.H., T.I., X.G., T.W., K.W., S.L., S.O., B.Y., A.D.), Yale University School of Medicine, New Haven, CT
| | - Hualong Bai
- Department of Surgery (H.H., S.-R.L., H.B., J.G., T.H., T.I., X.G., T.W., K.W., S.L., S.O., B.Y., A.D.), Yale University School of Medicine, New Haven, CT.,Vascular Biology and Therapeutics Program (H.H., S.-R.L., H.B., J.G., T.H., T.I., X.G., T.W., K.W., S.L., S.O., B.Y., A.D.), Yale University School of Medicine, New Haven, CT
| | - Jianming Guo
- Department of Surgery (H.H., S.-R.L., H.B., J.G., T.H., T.I., X.G., T.W., K.W., S.L., S.O., B.Y., A.D.), Yale University School of Medicine, New Haven, CT.,Vascular Biology and Therapeutics Program (H.H., S.-R.L., H.B., J.G., T.H., T.I., X.G., T.W., K.W., S.L., S.O., B.Y., A.D.), Yale University School of Medicine, New Haven, CT
| | - Takuya Hashimoto
- Department of Surgery (H.H., S.-R.L., H.B., J.G., T.H., T.I., X.G., T.W., K.W., S.L., S.O., B.Y., A.D.), Yale University School of Medicine, New Haven, CT.,Vascular Biology and Therapeutics Program (H.H., S.-R.L., H.B., J.G., T.H., T.I., X.G., T.W., K.W., S.L., S.O., B.Y., A.D.), Yale University School of Medicine, New Haven, CT
| | - Toshihiko Isaji
- Department of Surgery (H.H., S.-R.L., H.B., J.G., T.H., T.I., X.G., T.W., K.W., S.L., S.O., B.Y., A.D.), Yale University School of Medicine, New Haven, CT.,Vascular Biology and Therapeutics Program (H.H., S.-R.L., H.B., J.G., T.H., T.I., X.G., T.W., K.W., S.L., S.O., B.Y., A.D.), Yale University School of Medicine, New Haven, CT
| | - Xiangjiang Guo
- Department of Surgery (H.H., S.-R.L., H.B., J.G., T.H., T.I., X.G., T.W., K.W., S.L., S.O., B.Y., A.D.), Yale University School of Medicine, New Haven, CT.,Vascular Biology and Therapeutics Program (H.H., S.-R.L., H.B., J.G., T.H., T.I., X.G., T.W., K.W., S.L., S.O., B.Y., A.D.), Yale University School of Medicine, New Haven, CT
| | - Tun Wang
- Department of Surgery (H.H., S.-R.L., H.B., J.G., T.H., T.I., X.G., T.W., K.W., S.L., S.O., B.Y., A.D.), Yale University School of Medicine, New Haven, CT.,Vascular Biology and Therapeutics Program (H.H., S.-R.L., H.B., J.G., T.H., T.I., X.G., T.W., K.W., S.L., S.O., B.Y., A.D.), Yale University School of Medicine, New Haven, CT
| | - Katharine Wolf
- Department of Surgery (H.H., S.-R.L., H.B., J.G., T.H., T.I., X.G., T.W., K.W., S.L., S.O., B.Y., A.D.), Yale University School of Medicine, New Haven, CT.,Vascular Biology and Therapeutics Program (H.H., S.-R.L., H.B., J.G., T.H., T.I., X.G., T.W., K.W., S.L., S.O., B.Y., A.D.), Yale University School of Medicine, New Haven, CT
| | - Shirley Liu
- Department of Surgery (H.H., S.-R.L., H.B., J.G., T.H., T.I., X.G., T.W., K.W., S.L., S.O., B.Y., A.D.), Yale University School of Medicine, New Haven, CT.,Vascular Biology and Therapeutics Program (H.H., S.-R.L., H.B., J.G., T.H., T.I., X.G., T.W., K.W., S.L., S.O., B.Y., A.D.), Yale University School of Medicine, New Haven, CT
| | - Shun Ono
- Department of Surgery (H.H., S.-R.L., H.B., J.G., T.H., T.I., X.G., T.W., K.W., S.L., S.O., B.Y., A.D.), Yale University School of Medicine, New Haven, CT.,Vascular Biology and Therapeutics Program (H.H., S.-R.L., H.B., J.G., T.H., T.I., X.G., T.W., K.W., S.L., S.O., B.Y., A.D.), Yale University School of Medicine, New Haven, CT
| | - Bogdan Yatsula
- Department of Surgery (H.H., S.-R.L., H.B., J.G., T.H., T.I., X.G., T.W., K.W., S.L., S.O., B.Y., A.D.), Yale University School of Medicine, New Haven, CT.,Vascular Biology and Therapeutics Program (H.H., S.-R.L., H.B., J.G., T.H., T.I., X.G., T.W., K.W., S.L., S.O., B.Y., A.D.), Yale University School of Medicine, New Haven, CT
| | - Alan Dardik
- Department of Surgery (H.H., S.-R.L., H.B., J.G., T.H., T.I., X.G., T.W., K.W., S.L., S.O., B.Y., A.D.), Yale University School of Medicine, New Haven, CT.,Vascular Biology and Therapeutics Program (H.H., S.-R.L., H.B., J.G., T.H., T.I., X.G., T.W., K.W., S.L., S.O., B.Y., A.D.), Yale University School of Medicine, New Haven, CT.,Department of Surgery, VA Connecticut Healthcare Systems, West Haven, CT (A.D.)
| |
Collapse
|
30
|
Isolation of tissue-resident vascular endothelial stem cells from mouse liver. Nat Protoc 2020; 15:1066-1081. [PMID: 32005982 DOI: 10.1038/s41596-019-0276-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 12/03/2019] [Indexed: 11/09/2022]
Abstract
Endothelial cells (ECs) are fundamental components of the blood vessels that comprise the vascular system; facilitate blood flow; and regulate permeability, angiogenesis, inflammatory responses and homeostatic tissue maintenance. Accumulating evidence suggests there is EC heterogeneity in vivo. However, isolation of fresh ECs from adult mice to investigate this further is challenging. Here, we describe an easy and reproducible protocol for isolation of different types of ECs and CD157+ vascular-resident endothelial stem cells (VESCs) by mechano-enzymatic tissue digestion followed by fluorescence-activated cell sorting. The procedure was established on liver tissue but can be used to isolate ECs from other organs with minimal modification. Preparation of single-cell suspensions can be completed in 2.5 h. We also describe assays for EC clonal and network formation, as well as transcriptomic analysis of isolated ECs. The protocol enables isolation of primary ECs and VESCs that can be used for a wide range of downstream analyses in vascular research.
Collapse
|
31
|
Multifaceted roles of TAK1 signaling in cancer. Oncogene 2019; 39:1402-1413. [PMID: 31695153 PMCID: PMC7023988 DOI: 10.1038/s41388-019-1088-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 12/23/2022]
Abstract
Context-specific signaling is a prevalent theme in cancer biology wherein individual molecules and pathways can have multiple or even opposite effects depending on the tumor type. TAK1 represents a particularly notable example of such signaling diversity in cancer progression. Originally discovered as a TGF-β-activated kinase, over the years it has been shown to respond to numerous other stimuli to phosphorylate a wide range of downstream targets and elicit distinct cellular responses across cell and tissue types. Here we present a comprehensive review of TAK1 signaling and provide important therapeutic perspectives related to its function in different cancers.
Collapse
|
32
|
Peltzer N, Walczak H. Endothelial Cell Killing by TAK1 Inhibition: A Novel Anti-angiogenic Strategy in Cancer Therapy. Dev Cell 2019; 48:127-128. [PMID: 30695692 DOI: 10.1016/j.devcel.2019.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
TAK1 is a key mediator of proinflammatory signals. In this issue of Developmental Cell, Naito et al. (2019) report that TAK1 loss from endothelial cells in adult mice results in intestinal and hepatic vascular destruction due to TNF-induced death of endothelial cells. Additionally, endothelial TAK1 deletion reduces tumor burden.
Collapse
Affiliation(s)
- Nieves Peltzer
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, WC1E 6DD London, UK
| | - Henning Walczak
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, WC1E 6DD London, UK.
| |
Collapse
|
33
|
Naito H, Takakura N. TAK1 safeguards endothelial cells from gut microbes and inflammation. Mol Cell Oncol 2019; 6:1588657. [PMID: 31131307 PMCID: PMC6512928 DOI: 10.1080/23723556.2019.1588657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 01/12/2023]
Abstract
How endothelial cells (ECs) survive in inflammatory environments remains unclear. We recently showed that TAK1 protects ECs against apoptosis induced by TNFα under physiological conditions in the intestine and liver, and under inflammatory conditions in other organs. Our results document that a single gene can affect cell fate decisions in mature ECs.
Collapse
Affiliation(s)
- Hisamichi Naito
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Laboratory of Signal Transduction, World Premier Institute Immunology Frontier Research Center, Osaka University, Osaka, Japan
| |
Collapse
|