1
|
Xu DG, Tan J. Interplay of genetic and clinical factors in cancer-associated thrombosis: Deciphering the prothrombotic landscape of colorectal cancer. World J Gastroenterol 2025; 31:103901. [PMID: 40248375 PMCID: PMC12001197 DOI: 10.3748/wjg.v31.i14.103901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/03/2025] [Accepted: 03/25/2025] [Indexed: 04/11/2025] Open
Abstract
Colorectal cancer (CRC), the third most prevalent cancer globally, exhibits a notable association with venous thromboembolism (VTE), significantly impacting patient morbidity and mortality. We delve into the complex pathogenesis of cancer-associated thrombosis (CAT) in CRC, highlighting the interplay of clinical risk factors and tumor-specific mechanisms. Our comprehensive review synthesizes the current understanding of CRC's pro-thrombotic tendencies, examining both general clinical factors (e.g., age, gender, obesity, prior VTE history) and tumor-specific aspects (e.g., tumor location, stage, targeted therapies). Key findings illustrate how CRC cells themselves actively contribute to coagulation cascade activation through various procoagulant elements such as tissue factor, cancer procoagulant, and extracellular vesicles. We also explore how CRC influences host cells to adopt a procoagulant phenotype, thereby exacerbating thrombotic risks. This review underscores the role of genetic mutations in CRC (e.g., KRAS, p53) in modulating coagulation-related protein expression and thrombosis risks. An in-depth understanding of the genetic landscape specific to CRC subtypes is essential for developing targeted anticoagulation strategies and could significantly advance thrombosis prevention while improving the overall management of patients with CRC. This highlights the urgent need for precision in addressing CAT within clinical settings.
Collapse
Affiliation(s)
- Duo-Gang Xu
- Department of General Surgery, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, Yunnan Province, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, Yunnan Province, China
| | - Jing Tan
- Department of General Surgery, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, Yunnan Province, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, Yunnan Province, China
| |
Collapse
|
2
|
Yeat NY, Liu LH, Chang YH, Lai CPK, Chen RH. Bro1 proteins determine tumor immune evasion and metastasis by controlling secretion or degradation of multivesicular bodies. Dev Cell 2025:S1534-5807(25)00155-8. [PMID: 40185104 DOI: 10.1016/j.devcel.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/25/2024] [Accepted: 03/12/2025] [Indexed: 04/07/2025]
Abstract
Exosomes play pleiotropic tumor-promoting functions and are secreted by fusion of multivesicular bodies (MVBs) with the plasma membrane. However, MVBs are also directed to lysosomes for degradation, and the mechanism controlling different fates of MVBs remains elusive. Here, we show that the pro-tumor protein WDR4 enhances exosome secretion from mouse and human cancer cells through degrading the endosomal sorting complex required for transport (ESCRT)-associated Bro1-family protein PTPN23. Mechanistically, PTPN23 and ALIX compete for binding to syntenin, thereby directing MVBs toward degradation and secretion, respectively. ALIX, but not PTPN23, recruits actin-capping proteins CAPZA1/CAPZB to prevent branched filamentous actin (F-actin) accumulation around MVBs, thus enabling MVBs trafficking to the cell periphery for secretion. Functionally, WDR4/ALIX-dependent exosomes load a set of pro-tumor proteins through LAMP2A, thereby potentiating metastasis and immune evasion in mice. Our study highlights a previously unappreciated coupling between the biogenesis mechanism and the fate decision of MVBs and its importance in determining exosomal cargos, which have a profound impact on tumor progression.
Collapse
Affiliation(s)
- Nai Yang Yeat
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Li-Heng Liu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yu-Hsuan Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | | | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
3
|
Yamamoto T, Urabe F, Yoshioka Y, Yamamoto Y, Ochiya T. Protocol for extracellular vesicle secretion-related gene screening via ExoScreen technique. STAR Protoc 2025; 6:103569. [PMID: 39817912 PMCID: PMC11783109 DOI: 10.1016/j.xpro.2024.103569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/20/2024] [Accepted: 12/17/2024] [Indexed: 01/18/2025] Open
Abstract
Extracellular vesicles (EVs) play a key role in cancer development and cellular homeostasis by transferring the biological cargo to recipient cells. Here, we describe steps for screening EV secretion-related genes by combining a microRNA (miRNA) library and ExoScreen, a highly sensitive EV detection technique. We also detail procedures for screening the direct target genes regulated by miRNAs. This protocol provides a useful tool for understanding complex intracellular communications involved in EV secretion. For complete details on the use and execution of this protocol, please refer to Yamamoto et al.1.
Collapse
Affiliation(s)
- Tomofumi Yamamoto
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan; Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan; Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Fumihiko Urabe
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan; Department of Urology, The Jikei University School of Medicine, Tokyo, Japan.
| | - Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Yusuke Yamamoto
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan.
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan.
| |
Collapse
|
4
|
Tirelli V, Grasso F, Barreca V, Polignano D, Gallinaro A, Cara A, Sargiacomo M, Fiani ML, Sanchez M. Flow cytometric procedures for deep characterization of nanoparticles. Biol Methods Protoc 2025; 10:bpaf019. [PMID: 40160935 PMCID: PMC11954549 DOI: 10.1093/biomethods/bpaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 04/02/2025] Open
Abstract
In recent years, there has been a notable increasing interest surrounding the identification and quantification of nano-sized particles, including extracellular vesicles (EVs) and viruses. The challenge posed by the nano-sized dimension of these particles makes precise examination a significant undertaking. Among the different techniques for the accurate study of EVs, flow cytometry stands out as the ideal method. It is characterized by high sensitivity, low time consumption, non-destructive sampling, and high throughput. In this article, we propose the optimization of flow cytometry procedures to identify, quantify, and purify EVs and virus-like particles. The protocol aims to reduce artefacts and errors in nano-sized particles counting, overall caused by the swarming effect. Different threshold strategies were compared to ensure result specificity. Additionally, the critical parameters to consider when using conventional flow cytometry outside of the common experimental context of use have also been identified. Finally, fluorescent-EVs sorting protocol was also developed with highly reliable results using a conventional cell sorter.
Collapse
Affiliation(s)
- Valentina Tirelli
- Core Facilities, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Roma, Italy
| | - Felicia Grasso
- Department of Infectious Diseases, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Roma, Italy
| | - Valeria Barreca
- National Centre of Global Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| | - Deborah Polignano
- National Centre of Global Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| | - Alessandra Gallinaro
- National Centre of Global Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| | - Andrea Cara
- National Centre of Global Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| | - Massimo Sargiacomo
- National Centre of Global Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| | - Maria Luisa Fiani
- National Centre of Global Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| | - Massimo Sanchez
- Core Facilities, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Roma, Italy
| |
Collapse
|
5
|
Li J, Zhao Y, Wu X, Zou Y, Liu Y, Ma H. Choline kinase alpha regulates autophagy-associated exosome release to promote glioma cell progression. Biochem Biophys Res Commun 2025; 746:151269. [PMID: 39778250 DOI: 10.1016/j.bbrc.2024.151269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/30/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
Glioma is the most common primary intracranial malignant tumor in adults, with a poor prognosis. Exosomes released by tumor cells play a crucial role in tumor development, metastasis, angiogenesis, and other biological processes. Despite this significance, the precise molecular mechanisms governing exosome secretion and their impact on tumor progression remain incompletely understood. While Choline Kinase Alpha (CHKA) has been implicated in promoting various types of tumors, its specific role in glioma pathogenesis remains unclear. Our study initially demonstrates that CHKA enhances the proliferation, migration, and invasion abilities of glioma cells. Interestingly, CHKA also stimulates the release of exosomes from glioma cells. Mechanistically, reduced CHKA expression hampers exosome secretion by elevating autophagy levels in gliomas, whereas counteracting the autophagy elevation resulting from CHKA downregulation restores the release of exosomes. Notably, exosomes derived from glioma cells with normal CHKA expression exhibit a greater capacity to promote glioma progression compared to those derived from cells with low CHKA expression. Overall, our findings suggest that CHKA modulates exosome secretion via an autophagy-dependent pathway, thereby facilitating the proliferation, migration, and invasion of glioma cells.
Collapse
Affiliation(s)
- Jialin Li
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Yang Zhao
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Xiao Wu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Yourui Zou
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yang Liu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Hui Ma
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
6
|
Ye Z, Yi J, Jiang X, Shi W, Xu H, Cao H, Qin L, Liu L, Wang T, Ma Z, Jiao Z. Gastric cancer-derived exosomal let-7 g-5p mediated by SERPINE1 promotes macrophage M2 polarization and gastric cancer progression. J Exp Clin Cancer Res 2025; 44:2. [PMID: 39748408 PMCID: PMC11694445 DOI: 10.1186/s13046-024-03269-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs), particularly M2-polarized TAMs, are significant contributors to tumor progression, immune evasion, and therapy resistance in gastric cancer (GC). Despite efforts to target TAM recruitment or depletion, clinical efficacy remains limited. Consequently, the identification of targets that specifically inhibit or reprogram M2-polarized TAMs presents a promising therapeutic strategy. OBJECTIVE This study aims to identify a dual-function target in GC cells that drives both malignant phenotypes and M2 macrophage polarization, revealing its molecular mechanisms to provide novel therapeutic targets for selectivly targeting M2-polarized TAMs in GC. METHODS Transcriptomic and clinical data from GC and adjacent tissues were utilized to identify mRNAs associated with high M2 macrophage infiltration and poor prognosis. Single-cell sequencing elucidated cell types expressing the target gene. Transwell co-culture and exosome intervention experiments demonstrated its role in M2 polarization. Small RNA sequencing of exosomes, western blotting, and CoIP assays revealed the molecular mechanisms underlying exosome-mediated M2 polarization. Protein array, ChIP and dual-luciferase reporter assays clarified the molecular mechanisms by which the target gene regulated exosomal miRNA. In vivo validation was performed using xenograft tumor models. RESULTS SERPINE1 was identified as a highly expressed mRNA in GC tissues and cells, significantly associated with advanced clinical stages, worse prognosis, and higher M2 macrophage infiltration in patients with GC. SERPINE1 overexpression in GC cells promoted tumor growth and M2 macrophage polarization. SERPINE1 facilitated the transfer of let-7 g-5p to macrophages via cancer-derived exosomes, inducing M2 polarization. Exosomal let-7 g-5p internalized by macrophages downregulated SOCS7 protein levels, disrupting its interaction with STAT3 and relieving the inhibition of STAT3 phosphorylation, thereby leading to STAT3 hyperactivation, which consequently drove M2 polarization. Additionally, in GC cells, elevated SERPINE1 expression activated JAK2, enhancing STAT3 binding to the let-7 g-5p promoter and promoting its transcription, thereby increasing let-7 g-5p levels in exosomes. CONCLUSION GC cell-derived SERPINE1, functioning as a primary driver of GC growth and TAM M2 polarization, promotes M2 polarization through the regulation of exosomal let-7 g-5p transfer via autocrine activation of the JAK2/STAT3 signaling pathway. These findings elucidate a novel mechanism of SERPINE1-induced M2 polarization and highlight SERPINE1 as a promising target for advancing immunotherapy and targeted treatments in GC.
Collapse
Affiliation(s)
- Zhenzhen Ye
- Department of General Surgery, The Second Clinical Medical School, The Second Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu, 730000, China
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
- Research Center of Traditional Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Jianfeng Yi
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
- Research Center of Traditional Chinese Medicine, Lanzhou, Gansu, 730000, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xiangyan Jiang
- Department of General Surgery, The Second Clinical Medical School, The Second Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Wengui Shi
- Department of General Surgery, The Second Clinical Medical School, The Second Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu, 730000, China
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Hao Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, Zhejiang, 310006, China
| | - Hongtai Cao
- Department of General Surgery, The Second Clinical Medical School, The Second Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Long Qin
- Department of General Surgery, The Second Clinical Medical School, The Second Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu, 730000, China
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Lixin Liu
- Department of General Surgery, The Second Clinical Medical School, The Second Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu, 730000, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Tianming Wang
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Zhijian Ma
- Department of General Surgery, The Second Clinical Medical School, The Second Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zuoyi Jiao
- Department of General Surgery, The Second Clinical Medical School, The Second Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu, 730000, China.
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
7
|
Patel SA, Park S, Zhu D, Torr EE, Dureke AG, McIntyre A, Muzyka N, Severson J, Skop AR. Extracellular vesicles, including large translating vesicles called midbody remnants, are released during the cell cycle. Mol Biol Cell 2024; 35:ar155. [PMID: 39535882 PMCID: PMC11656471 DOI: 10.1091/mbc.e23-10-0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Extracellular vesicles (EVs) play crucial roles in cell-cell communication, but the biogenesis of large EVs has remained elusive. Here, we show that the biogenesis of large EVs (>800 nm-2 µm) occurs predominantly through the completion of successful cytokinesis, and the majority of large EVs are midbody remnants (MBRs) with translation activity, and the unique marker MKLP1. Blocking the cell cycle or cytokinesis, genetically or chemically, significantly decreases MBRs and large (800 nm-2 µm), medium (500-800 nm), and small (<300 nm) EVs, suggesting that proliferative cells can also generate all sizes of EVs. The canonical EV markers including CD9, CD63, CD81 localize to the spindle midzone, midbody, and MBRs, suggesting that these markers are not specific for detecting EVs exclusively. Importantly, all commonly used EV isolation methods isolate MBRs, confounding previous EV research. Last, isolated MBRs maintain translation activity regardless of the isolation method. We propose a model for the biogenesis of EVs throughout the cell cycle and suggest that some large EVs are primarily generated from mitotic cells. The discovery of MBRs as a unique class of large, translating EVs has implications for using them as cancer diagnostic markers and for engineering them for therapeutic cargo delivery during mitosis.
Collapse
Affiliation(s)
- Smit A. Patel
- Laboratory of Genetics, UW-Madison, Madison, WI 53706
| | - Sungjin Park
- Laboratory of Genetics, UW-Madison, Madison, WI 53706
| | - Dantong Zhu
- Laboratory of Genetics, UW-Madison, Madison, WI 53706
| | | | | | | | - Nadiya Muzyka
- Laboratory of Genetics, UW-Madison, Madison, WI 53706
| | | | - Ahna R. Skop
- Laboratory of Genetics, UW-Madison, Madison, WI 53706
| |
Collapse
|
8
|
Han T, Hao Q, Chao T, Sun Q, Chen Y, Gao B, Guan L, Ren W, Zhou X. Extracellular vesicles in cancer: golden goose or Trojan horse. J Mol Cell Biol 2024; 16:mjae025. [PMID: 38796692 PMCID: PMC11540518 DOI: 10.1093/jmcb/mjae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/16/2024] [Accepted: 05/24/2024] [Indexed: 05/28/2024] Open
Abstract
Intercellular communication can be mediated by direct cell-to-cell contact and indirect interactions through secretion of soluble chemokines, cytokines, and growth factors. Extracellular vesicles (EVs) have emerged as important mediators of cell-to-cell and cell-to-environment communications. EVs from tumor cells, immune cells, and stromal cells can remodel the tumor microenvironment and promote cancer cell survival, proliferation, metastasis, immune evasion, and therapeutic resistance. Most importantly, EVs as natural nanoparticles can be manipulated to serve as a potent delivery system for targeted cancer therapy. EVs can be engineered or modified to improve their ability to target tumors and deliver therapeutic substances, such as chemotherapeutic drugs, nucleic acids, and proteins, for the treatment of cancer. This review provides an overview of the biogenesis and recycling of EVs, discusses their roles in cancer development, and highlights their potential as a delivery system for targeted cancer therapy.
Collapse
Affiliation(s)
- Tao Han
- Institutes of Health Central Plains, Xinxiang Key Laboratory for Molecular Oncology, Xinxiang Medical University, Xinxiang 453003, China
| | - Qian Hao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Tengfei Chao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qinggang Sun
- Institutes of Health Central Plains, Xinxiang Key Laboratory for Molecular Oncology, Xinxiang Medical University, Xinxiang 453003, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Yitian Chen
- Institutes of Health Central Plains, Xinxiang Key Laboratory for Molecular Oncology, Xinxiang Medical University, Xinxiang 453003, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Bo Gao
- Umibio Co. Ltd, Shanghai 201210, China
| | - Liping Guan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Wenjie Ren
- Institutes of Health Central Plains, Xinxiang Key Laboratory for Molecular Oncology, Xinxiang Medical University, Xinxiang 453003, China
| | - Xiang Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
9
|
Yamamoto T, Nakayama J, Urabe F, Ito K, Nishida-Aoki N, Kitagawa M, Yokoi A, Kuroda M, Hattori Y, Yamamoto Y, Ochiya T. Aberrant regulation of serine metabolism drives extracellular vesicle release and cancer progression. Cell Rep 2024; 43:114517. [PMID: 39024098 DOI: 10.1016/j.celrep.2024.114517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 04/23/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024] Open
Abstract
Cancer cells secrete extracellular vesicles (EVs) to regulate cells in the tumor microenvironment to benefit their own growth and survive in the patient's body. Although emerging evidence has demonstrated the molecular mechanisms of EV release, regulating cancer-specific EV secretion remains challenging. In this study, we applied a microRNA library to reveal the universal mechanisms of EV secretion from cancer cells. Here, we identified miR-891b and its direct target gene, phosphoserine aminotransferase 1 (PSAT1), which promotes EV secretion through the serine-ceramide synthesis pathway. Inhibition of PSAT1 affected EV secretion in multiple types of cancer, suggesting that the miR-891b/PSAT1 axis shares a common mechanism of EV secretion from cancer cells. Interestingly, aberrant PSAT1 expression also regulated cancer metastasis via EV secretion. Our data link the PSAT1-controlled EV secretion mechanism and cancer metastasis and show the potential of this mechanism as a therapeutic target in multiple types of cancer.
Collapse
Affiliation(s)
- Tomofumi Yamamoto
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan; Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan; Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kanagawa, Japan
| | - Jun Nakayama
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan; Department of Oncogenesis and Growth Regulation, Research Institute, Osaka International Cancer Institute, Osaka, Japan
| | - Fumihiko Urabe
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Kagenori Ito
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Nao Nishida-Aoki
- Waseda Institute for Advanced Study, Waseda University, Tokyo, Japan
| | - Masami Kitagawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Nagoya University Institute for Advanced Research, Nagoya, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Yutaka Hattori
- Clinical Physiology and Therapeutics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Yusuke Yamamoto
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan.
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan.
| |
Collapse
|
10
|
Restaino AC, Walz A, Barclay SM, Fettig RR, Vermeer PD. Tumor-associated genetic amplifications impact extracellular vesicle miRNA cargo and their recruitment of nerves in head and neck cancer. FASEB J 2024; 38:e23803. [PMID: 38963404 PMCID: PMC11262563 DOI: 10.1096/fj.202400625rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Cancer neuroscience is an emerging field of cancer biology focused on defining the interactions and relationships between the nervous system, developing malignancies, and their environments. Our previous work demonstrates that small extracellular vesicles (sEVs) released by head and neck squamous cell carcinomas (HNSCCs) recruit loco-regional nerves to the tumor. sEVs contain a diverse collection of biological cargo, including microRNAs (miRNAs). Here, we asked whether two genes commonly amplified in HNSCC, CCND1, and PIK3CA, impact the sEV miRNA cargo and, subsequently, sEV-mediated tumor innervation. To test this, we individually overexpressed these genes in a syngeneic murine HNSCC cell line, purified their sEVs, and tested their neurite outgrowth activity on dorsal root ganglia (DRG) neurons in vitro. sEVs purified from Ccnd1-overexpressing cells significantly increased neurite outgrowth of DRG compared to sEVs from parental or Pik3ca over-expressing cells. When implanted into C57BL/6 mice, Ccnd1 over-expressing tumor cells promoted significantly more tumor innervation in vivo. qPCR analysis of sEVs shows that increased expression of Ccnd1 altered the packaging of miRNAs (miR-15-5p, miR-17-5p, and miR-21-5p), many of which target transcripts important in regulating axonogenesis. These data indicate that genetic amplifications harbored by malignancies impose changes in sEV miRNA cargo, which can influence tumorc innervation.
Collapse
Affiliation(s)
- Anthony C. Restaino
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60 Street north, Sioux Falls, SD, USA 57104
| | - Austin Walz
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60 Street north, Sioux Falls, SD, USA 57104
| | - Sarah M. Barclay
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60 Street north, Sioux Falls, SD, USA 57104
| | - Robin R. Fettig
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60 Street north, Sioux Falls, SD, USA 57104
| | - Paola D. Vermeer
- Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60 Street north, Sioux Falls, SD, USA 57104
| |
Collapse
|
11
|
Khoushab S, Aghmiuni MH, Esfandiari N, Sarvandani MRR, Rashidi M, Taheriazam A, Entezari M, Hashemi M. Unlocking the potential of exosomes in cancer research: A paradigm shift in diagnosis, treatment, and prevention. Pathol Res Pract 2024; 255:155214. [PMID: 38430814 DOI: 10.1016/j.prp.2024.155214] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
Exosomes, which are tiny particles released by cells, have the ability to transport various molecules, including proteins, lipids, and genetic material containing non-coding RNAs (ncRNAs). They are associated with processes like cancer metastasis, immunity, and tissue repair. Clinical trials have shown exosomes to be effective in treating cancer, inflammation, and chronic diseases. Mesenchymal stem cells (MSCs) and dendritic cells (DCs) are common sources of exosome production. Exosomes have therapeutic potential due to their ability to deliver cargo, modulate the immune system, and promote tissue regeneration. Bioengineered exosomes could revolutionize disease treatment. However, more research is needed to understand exosomes in tumor growth and develop new therapies. This paper provides an overview of exosome research, focusing on cancer and exosome-based therapies including chemotherapy, radiotherapy, and vaccines. It explores exosomes as a drug delivery system for cancer therapy, highlighting their advantages. The article discusses using exosomes for various therapeutic agents, including drugs, antigens, and RNAs. It also examines challenges with engineered exosomes. Analyzing exosomes for clinical purposes faces limitations in sensitivity, specificity, and purification. On the other hand, Nanotechnology offers solutions to overcome these challenges and unlock exosome potential in healthcare. Overall, the article emphasizes the potential of exosomes for personalized and targeted cancer therapy, while acknowledging the need for further research.
Collapse
Affiliation(s)
- Saloomeh Khoushab
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mina Hobabi Aghmiuni
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negin Esfandiari
- Department of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
12
|
Kawano T, Okamura K, Shinchi H, Ueda K, Nomura T, Shiba K. Differentiation of large extracellular vesicles in oral fluid: Combined protocol of small force centrifugation and sedimentation pattern analysis. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e143. [PMID: 38939901 PMCID: PMC11080912 DOI: 10.1002/jex2.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/06/2023] [Accepted: 01/09/2024] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) in biofluids are highly heterogeneous entities in terms of their origins and physicochemical properties. Considering the application of EVs in diagnostic and therapeutic fields, it is of extreme importance to establish differentiating methods by which focused EV subclasses are operationally defined. Several differentiation protocols have been proposed; however, they have mainly focused on smaller types of EVs, and the heterogeneous nature of large EVs has not yet been fully explored. In this report, to classify large EVs into subgroups based on their physicochemical properties, we have developed a protocol, named EV differentiation by sedimentation patterns (ESP), in which entities in the crude large EV fraction are first moved through a density gradient of iodixanol with small centrifugation forces, and then the migration patterns of molecules through the gradients are analysed using a non-hierarchical data clustering algorithm. Based on this method, proteins in the large EV fractions of oral fluids clustered into three groups: proteins shared with small EV cargos and enriched in immuno-related proteins (Group 1), proteins involved in energy metabolism and protein synthesis (Group 2), and proteins required for vesicle trafficking (Group 3). These observations indicate that the physiochemical properties of EVs, which are defined through low-speed gradient centrifugation, are well associated with their functions within cells. This protocol enables the detailed subclassification of EV populations that are difficult to differentiate using conventional separation methods.
Collapse
Affiliation(s)
- Takamasa Kawano
- Division of Protein Engineering, Cancer InstituteJapanese Foundation for Cancer ResearchKoto‐kuTokyoJapan
- Department of Oral OncologyOral and Maxillofacial Surgery, Tokyo Dental CollegeIchikawaChibaJapan
| | - Kohji Okamura
- Department of Systems BioMedicineNational Center for Child Health and DevelopmentSetagaya‐kuTokyoJapan
| | - Hiroki Shinchi
- Cancer Precision Medicine CenterJapanese Foundation for Cancer ResearchKoto‐kuTokyoJapan
| | - Koji Ueda
- Cancer Precision Medicine CenterJapanese Foundation for Cancer ResearchKoto‐kuTokyoJapan
| | - Takeshi Nomura
- Department of Oral OncologyOral and Maxillofacial Surgery, Tokyo Dental CollegeIchikawaChibaJapan
| | - Kiyotaka Shiba
- Division of Protein Engineering, Cancer InstituteJapanese Foundation for Cancer ResearchKoto‐kuTokyoJapan
| |
Collapse
|
13
|
Schneider N, Hermann PC, Eiseler T, Seufferlein T. Emerging Roles of Small Extracellular Vesicles in Gastrointestinal Cancer Research and Therapy. Cancers (Basel) 2024; 16:567. [PMID: 38339318 PMCID: PMC10854789 DOI: 10.3390/cancers16030567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Discovered in the late eighties, sEVs are small extracellular nanovesicles (30-150 nm diameter) that gained increasing attention due to their profound roles in cancer, immunology, and therapeutic approaches. They were initially described as cellular waste bins; however, in recent years, sEVs have become known as important mediators of intercellular communication. They are secreted from cells in substantial amounts and exert their influence on recipient cells by signaling through cell surface receptors or transferring cargos, such as proteins, RNAs, miRNAs, or lipids. A key role of sEVs in cancer is immune modulation, as well as pro-invasive signaling and formation of pre-metastatic niches. sEVs are ideal biomarker platforms, and can be engineered as drug carriers or anti-cancer vaccines. Thus, sEVs further provide novel avenues for cancer diagnosis and treatment. This review will focus on the role of sEVs in GI-oncology and delineate their functions in cancer progression, diagnosis, and therapeutic use.
Collapse
Affiliation(s)
- Nora Schneider
- Department for Internal Medicine 1, University Clinic Ulm, 89081 Ulm, Germany; (P.C.H.); (T.S.)
| | | | - Tim Eiseler
- Correspondence: (N.S.); (T.E.); Tel.: +49-731-500-44678 (N.S.); +49-731-500-44523 (T.E.)
| | | |
Collapse
|
14
|
Adnani L, Rak J. Intercellular Molecular Transfer Mediated by Extracellular Vesicles in Cancer. Results Probl Cell Differ 2024; 73:327-352. [PMID: 39242385 DOI: 10.1007/978-3-031-62036-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Among multiple pathways of intercellular communication operative in multicellular organisms, the trafficking of extracellular vesicles (EVs) and particles (EP) represents a unique mode of cellular information exchange with emerging roles in health and disease, including cancer. A distinctive feature of EV/EP-mediated cell-cell communication is that it involves simultaneous short- or long-range transfer of numerous molecular constituents (cargo) from donor to recipient cells. EV/EP uptake by donor cells elicits signalling or metabolic responses, or else leads to EV-re-emission or degradation. EVs are heterogeneous membranous structures released from cells via increasingly defined mechanisms involving either formation of multivesicular endosomes (exosomes) or budding from the plasma membrane (ectosomes). EPs (exomeres, supermeres) are membraneless complex particles, smaller than EVs and of less defined biogenesis and function. EVs/EPs carry complex assemblies of proteins, lipids and nucleic acids (RNA, DNA), which they shuttle into intercellular milieu, body fluids and recipient cells, via surface contact, fusion and different forms of internalization (endocytosis, micropinocytosis). While the physiological functions of EVs/EPs communication pathways continue to be investigated, their roles in cancer are increasingly well-defined. For example, EVs are involved in the transmission of cancer-specific molecular cargo, including mutant, oncogenic, transforming, or regulatory macromolecules to indolent, or normal cells, sometimes triggering their quasi-transformation-like states, or phenotypic alterations. Conversely, a reciprocal and avid uptake of stromal EVs by cancer cells may be responsible for modulating their oncogenic repertoire, as exemplified by the angiocrine effects of endothelial EVs influencing cancer cell stemness. EV exchanges during cancer progression have also been implicated in the formation of tumour stroma, angiogenesis and non-angiogenic neovascularization processes, immunosuppression, colonization of metastatic organ sites (premetastatic niche), paraneoplastic and systemic pathologies (thrombosis, diabetes, hepatotoxicity). Thus, an EV/EP-mediated horizontal transfer of cellular content emerges as a new dimension in cancer pathogenesis with functional, diagnostic, and therapeutic implications.
Collapse
Affiliation(s)
- Lata Adnani
- The Research Institute of the McGill University Health Centre, McGill University, QC, Canada
| | - Janusz Rak
- The Research Institute of the McGill University Health Centre, McGill University, QC, Canada.
| |
Collapse
|
15
|
Paramanantham A, Asfiya R, Das S, McCully G, Srivastava A. No-stain protein labeling as a potential normalization marker for small extracellular vesicle proteins. Prep Biochem Biotechnol 2023; 53:1243-1253. [PMID: 36927304 DOI: 10.1080/10826068.2023.2185897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Western blot analysis of relative protein expression relies on appropriate reference proteins for data normalization. Small extracellular vesicles (sEVs), or exosomes, are increasingly recognized as potential indicators of the physiological state of cells due to their protein composition. Therefore, accurate relative sEVs protein quantification is crucial for disease detection and prognosis applications. Currently, no documented ubiquitous reference proteins are identified for precise normalization of a protein of interest in sEVs. Here we showed the use of total protein staining method for sEVs protein normalization in western blots of samples where conventional housekeeping proteins like β-actin and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) are not always detected in the sEVs western blots. The No-Stain™ Protein Labeling (NSPL) method showed high sensitivity in sEVs-protein labeling and facilitated quantitative evaluation of changes in the expression pattern of the protein of interest. Further, to show the robustness of NSPL for expression analysis, the results were compared with quantitative mass spectroscopy analysis results. Here, we outline a comprehensive method for protein normalization in sEVs that will increase the value of protein expression study of therapeutically significant sEVs.
Collapse
Affiliation(s)
- Anjugam Paramanantham
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, USA
| | - Rahmat Asfiya
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, USA
| | - Siddharth Das
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, USA
| | - Grace McCully
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, USA
| | - Akhil Srivastava
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, USA
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO, USA
| |
Collapse
|
16
|
Hu S, Hu Y, Yan W. Extracellular vesicle-mediated interorgan communication in metabolic diseases. Trends Endocrinol Metab 2023; 34:571-582. [PMID: 37394346 DOI: 10.1016/j.tem.2023.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 07/04/2023]
Abstract
The body partially maintains metabolic homeostasis through interorgan communication between metabolic organs under physiological conditions. This crosstalk is known to be mediated by hormones or metabolites, and has recently been expanding to include extracellular vesicles (EVs). EVs participate in interorgan communication under physiological and pathological conditions by encapsulating various bioactive cargoes, including proteins, metabolites, and nucleic acids. In this review we summarize the latest findings about the metabolic regulation of EV biogenesis, secretion, and components, and highlight the biological role of EV cargoes in interorgan communication in cancer, obesity, diabetes, and cardiovascular disease. We also discuss the potential application of EVs as diagnostic markers, and corresponding therapeutic strategies by EV engineering for both early detection and treatment of metabolic disorders.
Collapse
Affiliation(s)
- Sheng Hu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yong Hu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Yan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
17
|
Kim HJ, Rames MJ, Goncalves F, Kirschbaum CW, Roskams-Hieter B, Spiliotopoulos E, Briand J, Doe A, Estabrook J, Wagner JT, Demir E, Mills G, Ngo TTM. Selective enrichment of plasma cell-free messenger RNA in cancer-associated extracellular vesicles. Commun Biol 2023; 6:885. [PMID: 37644220 PMCID: PMC10465482 DOI: 10.1038/s42003-023-05232-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
Extracellular vesicles (EVs) have been shown as key mediators of extracellular small RNA transport. However, carriers of cell-free messenger RNA (cf-mRNA) in human biofluids and their association with cancer remain poorly understood. Here, we performed a transcriptomic analysis of size-fractionated plasma from lung cancer, liver cancer, multiple myeloma, and healthy donors. Morphology and size distribution analysis showed the successful separation of large and medium particles from other soluble plasma protein fractions. We developed a strategy to purify and sequence ultra-low amounts of cf-mRNA from particle and protein enriched subpopulations with the implementation of RNA spike-ins to control for technical variability and to normalize for intrinsic drastic differences in cf-mRNA amount carried in each plasma fraction. We found that the majority of cf-mRNA was enriched and protected in EVs with remarkable stability in RNase-rich environments. We observed specific enrichment patterns of cancer-associated cf-mRNA in each particle and protein enriched subpopulation. The EV-enriched differentiating genes were associated with specific biological pathways, such as immune systems, liver function, and toxic substance regulation in lung cancer, liver cancer, and multiple myeloma, respectively. Our results suggest that dissecting the complexity of EV subpopulations illuminates their biological significance and offers a promising liquid biopsy approach.
Collapse
Affiliation(s)
- Hyun Ji Kim
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Matthew J Rames
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Florian Goncalves
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - C Ward Kirschbaum
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Breeshey Roskams-Hieter
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Elias Spiliotopoulos
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Josephine Briand
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Aaron Doe
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Joseph Estabrook
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- Computational Biology Program, Oregon Health and Science University, Portland, OR, USA
| | - Josiah T Wagner
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- Molecular Genomics Laboratory, Providence Health and Services, Portland, OR, USA
| | - Emek Demir
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- Computational Biology Program, Oregon Health and Science University, Portland, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Gordon Mills
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Thuy T M Ngo
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA.
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA.
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
18
|
Peche VS, Pietka TA, Jacome-Sosa M, Samovski D, Palacios H, Chatterjee-Basu G, Dudley AC, Beatty W, Meyer GA, Goldberg IJ, Abumrad NA. Endothelial cell CD36 regulates membrane ceramide formation, exosome fatty acid transfer and circulating fatty acid levels. Nat Commun 2023; 14:4029. [PMID: 37419919 PMCID: PMC10329018 DOI: 10.1038/s41467-023-39752-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/28/2023] [Indexed: 07/09/2023] Open
Abstract
Endothelial cell (EC) CD36 controls tissue fatty acid (FA) uptake. Here we examine how ECs transfer FAs. FA interaction with apical membrane CD36 induces Src phosphorylation of caveolin-1 tyrosine-14 (Cav-1Y14) and ceramide generation in caveolae. Ensuing fission of caveolae yields vesicles containing FAs, CD36 and ceramide that are secreted basolaterally as small (80-100 nm) exosome-like extracellular vesicles (sEVs). We visualize in transwells EC transfer of FAs in sEVs to underlying myotubes. In mice with EC-expression of the exosome marker emeraldGFP-CD63, muscle fibers accumulate circulating FAs in emGFP-labeled puncta. The FA-sEV pathway is mapped through its suppression by CD36 depletion, blocking actin-remodeling, Src inhibition, Cav-1Y14 mutation, and neutral sphingomyelinase 2 inhibition. Suppression of sEV formation in mice reduces muscle FA uptake, raises circulating FAs, which remain in blood vessels, and lowers glucose, mimicking prominent Cd36-/- mice phenotypes. The findings show that FA uptake influences membrane ceramide, endocytosis, and EC communication with parenchymal cells.
Collapse
Affiliation(s)
- V S Peche
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - T A Pietka
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - M Jacome-Sosa
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - D Samovski
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - H Palacios
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - G Chatterjee-Basu
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - A C Dudley
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, 22908, USA
| | - W Beatty
- Department of Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - G A Meyer
- Departments of Physical Therapy, Neurology and Orthopedic Surgery, Washington University School of Medicine, St. Louis, 63110, USA
| | - I J Goldberg
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - N A Abumrad
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
19
|
Celikkaya B, Durak T, Farooqi AA, Inci K, Tokgun PE, Tokgun O. The effects of MYC on exosomes derived from cancer cells in the context of breast cancer. Chem Biol Drug Des 2023; 102:65-75. [PMID: 37118982 DOI: 10.1111/cbdd.14245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/06/2023] [Accepted: 04/04/2023] [Indexed: 04/30/2023]
Abstract
MYC amplification and overexpression in breast cancer occur 16% and 22%, respectively, and MYC has a linchpin role in breast carcinogenesis. Emerging evidence has started to shed light on central role of MYC in breast cancer progression. On the contrary, tumor-derived exosomes and their cargo molecules are required for the modulation of the tumor environment and to promote carcinogenesis. Still, how MYC regulates tumor-derived exosomes is still a matter of investigation in the context of breast cancer. Here, we investigated for the first time how MYC affects the biological functions of normal breast cells cocultured with exosomes derived from MYC-expression manipulated breast cancer cells. Accordingly, exosomes were isolated from MCF-7 and MDA-MB-231 cells that MYC expression was manipulated through siRNAs or lentiviral vectors by using exosome isolation reagent. Then, normal breast epithelial MCF-10A cells were treated with breast cancer cell-derived exosomes. The cellular activity of MCF-10A was investigated by cell growth assay, wound healing assay, and transwell assay. Our results suggested that MCF-10A cells treated with exosomes derived from MYC-overexpressing breast cancer cells demonstrated higher proliferation and migration capability compared with nontreated cells. Likewise, MCF-10A cells treated with exosomes derived from MYC-silenced cancer cells did not show high proliferation and invasive capacity. Overall, MYC can drive the functions of exosomes secreted from breast cancer cells. This may allow exploring a new mechanism how tumor cells regulate cancer progression and modulate tumor environment. The present study clears the way for further researches as in vivo studies and multi-omics that clarify exosomal content in an MYC-dependent manner.
Collapse
Affiliation(s)
- Busra Celikkaya
- Department of Cancer Molecular Biology, Institution of Health Sciences, Pamukkale University, Denizli, Turkey
| | - Taner Durak
- Department of Medical Genetics, Faculty of MedicinePamukkale University, Denizli, Turkey
| | | | - Kubilay Inci
- Department of Cancer Molecular Biology, Institution of Health Sciences, Pamukkale University, Denizli, Turkey
| | - Pervin Elvan Tokgun
- Department of Medical Genetics, Faculty of MedicinePamukkale University, Denizli, Turkey
| | - Onur Tokgun
- Department of Medical Genetics, Faculty of MedicinePamukkale University, Denizli, Turkey
| |
Collapse
|
20
|
Greening DW, Xu R, Ale A, Hagemeyer CE, Chen W. Extracellular vesicles as next generation immunotherapeutics. Semin Cancer Biol 2023; 90:73-100. [PMID: 36773820 DOI: 10.1016/j.semcancer.2023.02.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Extracellular vesicles (EVs) function as a mode of intercellular communication and molecular transfer to elicit diverse biological/functional response. Accumulating evidence has highlighted that EVs from immune, tumour, stromal cells and even bacteria and parasites mediate the communication of various immune cell types to dynamically regulate host immune response. EVs have an innate capacity to evade recognition, transport and transfer functional components to target cells, with subsequent removal by the immune system, where the immunological activities of EVs impact immunoregulation including modulation of antigen presentation and cross-dressing, immune activation, immune suppression, and immune surveillance, impacting the tumour immune microenvironment. In this review, we outline the recent progress of EVs in immunorecognition and therapeutic intervention in cancer, including vaccine and targeted drug delivery and summarise their utility towards clinical translation. We highlight the strategies where EVs (natural and engineered) are being employed as a therapeutic approach for immunogenicity, tumoricidal function, and vaccine development, termed immuno-EVs. With seminal studies providing significant progress in the sequential development of engineered EVs as therapeutic anti-tumour platforms, we now require direct assessment to tune and improve the efficacy of resulting immune responses - essential in their translation into the clinic. We believe such a review could strengthen our understanding of the progress in EV immunobiology and facilitate advances in engineering EVs for the development of novel EV-based immunotherapeutics as a platform for cancer treatment.
Collapse
Affiliation(s)
- David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiovascular Research, Translation and Implementation, Australia; Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Victoria, Australia; Central Clinical School, Monash University, Victoria, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia.
| | - Rong Xu
- Central Clinical School, Monash University, Victoria, Australia; Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Anukreity Ale
- Central Clinical School, Monash University, Victoria, Australia; Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Christoph E Hagemeyer
- Central Clinical School, Monash University, Victoria, Australia; Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Weisan Chen
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Victoria, Australia
| |
Collapse
|
21
|
Rubio K, Romero-Olmedo AJ, Sarvari P, Swaminathan G, Ranvir VP, Rogel-Ayala DG, Cordero J, Günther S, Mehta A, Bassaly B, Braubach P, Wygrecka M, Gattenlöhner S, Tresch A, Braun T, Dobreva G, Rivera MN, Singh I, Graumann J, Barreto G. Non-canonical integrin signaling activates EGFR and RAS-MAPK-ERK signaling in small cell lung cancer. Theranostics 2023; 13:2384-2407. [PMID: 37215577 PMCID: PMC10196829 DOI: 10.7150/thno.79493] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/25/2023] [Indexed: 05/24/2023] Open
Abstract
Background: Small cell lung cancer (SCLC) is an extremely aggressive cancer type with a patient median survival of 6-12 months. Epidermal growth factor (EGF) signaling plays an important role in triggering SCLC. In addition, growth factor-dependent signals and alpha-, beta-integrin (ITGA, ITGB) heterodimer receptors functionally cooperate and integrate their signaling pathways. However, the precise role of integrins in EGF receptor (EGFR) activation in SCLC remains elusive. Methods: We analyzed human precision-cut lung slices (hPCLS), retrospectively collected human lung tissue samples and cell lines by classical methods of molecular biology and biochemistry. In addition, we performed RNA-sequencing-based transcriptomic analysis in human lung cancer cells and human lung tissue samples, as well as high-resolution mass spectrometric analysis of the protein cargo from extracellular vesicles (EVs) that were isolated from human lung cancer cells. Results: Our results demonstrate that non-canonical ITGB2 signaling activates EGFR and RAS/MAPK/ERK signaling in SCLC. Further, we identified a novel SCLC gene expression signature consisting of 93 transcripts that were induced by ITGB2, which may be used for stratification of SCLC patients and prognosis prediction of LC patients. We also found a cell-cell communication mechanism based on EVs containing ITGB2, which were secreted by SCLC cells and induced in control human lung tissue RAS/MAPK/ERK signaling and SCLC markers. Conclusions: We uncovered a mechanism of ITGB2-mediated EGFR activation in SCLC that explains EGFR-inhibitor resistance independently of EGFR mutations, suggesting the development of therapies targeting ITGB2 for patients with this extremely aggressive lung cancer type.
Collapse
Affiliation(s)
- Karla Rubio
- Université de Lorraine, CNRS, Laboratoire IMoPA, UMR 7365; F-54000 Nancy, France
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research; 61231 Bad Nauheim, Germany
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School; Charlestown, MA, 02129, USA
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, EcoCampus, Benemérita Universidad Autónoma de Puebla; Puebla 72570, Mexico
| | - Addi J. Romero-Olmedo
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research; 61231 Bad Nauheim, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Department of Medicine, Philipps-University Marburg; Marburg, Germany
| | - Pouya Sarvari
- Independent Researcher, collaborator of International Laboratory EPIGEN-CONCYTEP
| | | | - Vikas P. Ranvir
- Emmy Noether Research Group Epigenetic Machineries and Cancer, Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Diana G. Rogel-Ayala
- Université de Lorraine, CNRS, Laboratoire IMoPA, UMR 7365; F-54000 Nancy, France
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research; 61231 Bad Nauheim, Germany
| | - Julio Cordero
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK)
| | - Stefan Günther
- ECCPS Bioinformatics and Deep Sequencing Platform, Max-Planck-Institute for Heart and Lung Research; 61231 Bad Nauheim, Germany
- Department of Cardiac Development, Max-Planck-Institute for Heart and Lung Research; 61231 Bad Nauheim, Germany
| | - Aditi Mehta
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research; 61231 Bad Nauheim, Germany
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-University of Munich; Munich, Germany
| | - Birgit Bassaly
- Institute for Pathology, Justus Liebig University; 35392 Gießen, Germany
| | - Peter Braubach
- Institute for Pathology, Hannover Medical School; Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) Research Network; Hanover, Germany
| | - Malgorzata Wygrecka
- Center for Infection and Genomics of the Lung (CIGL), Universities of Giessen and Marburg Lung Center; Giessen, Germany
- Institute of Lung Health, German Center for Lung Research (DZL); Giessen, Germany
| | | | - Achim Tresch
- CECAD, University of Cologne; Cologne, Germany
- Faculty of Medicine and University Hospital, University of Cologne; Cologne, Germany
- Center for Data and Simulation Science, University of Cologne; Cologne, Germany
| | - Thomas Braun
- Department of Cardiac Development, Max-Planck-Institute for Heart and Lung Research; 61231 Bad Nauheim, Germany
| | - Gergana Dobreva
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK)
| | - Miguel N. Rivera
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School; Charlestown, MA, 02129, USA
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School; Charlestown, MA, 02129, USA
| | - Indrabahadur Singh
- Emmy Noether Research Group Epigenetic Machineries and Cancer, Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Johannes Graumann
- Biomolecular Mass Spectrometry, Max-Planck-Institute for Heart and Lung Research; 61231 Bad Nauheim, Germany
- Institute of Translational Proteomics, Department of Medicine, Philipps-University Marburg; 35043 Marburg, Germany
| | - Guillermo Barreto
- Université de Lorraine, CNRS, Laboratoire IMoPA, UMR 7365; F-54000 Nancy, France
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research; 61231 Bad Nauheim, Germany
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, EcoCampus, Benemérita Universidad Autónoma de Puebla; Puebla 72570, Mexico
| |
Collapse
|
22
|
Kalluri R, McAndrews KM. The role of extracellular vesicles in cancer. Cell 2023; 186:1610-1626. [PMID: 37059067 PMCID: PMC10484374 DOI: 10.1016/j.cell.2023.03.010] [Citation(s) in RCA: 257] [Impact Index Per Article: 128.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 04/16/2023]
Abstract
Intercellular communication is a key feature of cancer progression and metastasis. Extracellular vesicles (EVs) are generated by all cells, including cancer cells, and recent studies have identified EVs as key mediators of cell-cell communication via packaging and transfer of bioactive constituents to impact the biology and function of cancer cells and cells of the tumor microenvironment. Here, we review recent advances in understanding the functional contribution of EVs to cancer progression and metastasis, as cancer biomarkers, and the development of cancer therapeutics.
Collapse
Affiliation(s)
- Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| | - Kathleen M McAndrews
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
23
|
Loric S, Denis JA, Desbene C, Sabbah M, Conti M. Extracellular Vesicles in Breast Cancer: From Biology and Function to Clinical Diagnosis and Therapeutic Management. Int J Mol Sci 2023; 24:7208. [PMID: 37108371 PMCID: PMC10139222 DOI: 10.3390/ijms24087208] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Breast cancer (BC) is the first worldwide most frequent cancer in both sexes and the most commonly diagnosed in females. Although BC mortality has been thoroughly declining over the past decades, there are still considerable differences between women diagnosed with early BC and when metastatic BC is diagnosed. BC treatment choice is widely dependent on precise histological and molecular characterization. However, recurrence or distant metastasis still occurs even with the most recent efficient therapies. Thus, a better understanding of the different factors underlying tumor escape is mainly mandatory. Among the leading candidates is the continuous interplay between tumor cells and their microenvironment, where extracellular vesicles play a significant role. Among extracellular vesicles, smaller ones, also called exosomes, can carry biomolecules, such as lipids, proteins, and nucleic acids, and generate signal transmission through an intercellular transfer of their content. This mechanism allows tumor cells to recruit and modify the adjacent and systemic microenvironment to support further invasion and dissemination. By reciprocity, stromal cells can also use exosomes to profoundly modify tumor cell behavior. This review intends to cover the most recent literature on the role of extracellular vesicle production in normal and cancerous breast tissues. Specific attention is paid to the use of extracellular vesicles for early BC diagnosis, follow-up, and prognosis because exosomes are actually under the spotlight of researchers as a high-potential source of liquid biopsies. Extracellular vesicles in BC treatment as new targets for therapy or efficient nanovectors to drive drug delivery are also summarized.
Collapse
Affiliation(s)
- Sylvain Loric
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | | | - Cédric Desbene
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | - Michèle Sabbah
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | - Marc Conti
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
- INTEGRACELL SAS, 91160 Longjumeau, France
| |
Collapse
|
24
|
Sariano PA, Mizenko RR, Shirure VS, Brandt AK, Nguyen BB, Nesiri C, Shergill BS, Brostoff T, Rocke DM, Borowsky AD, Carney RP, George SC. Convection and extracellular matrix binding control interstitial transport of extracellular vesicles. J Extracell Vesicles 2023; 12:e12323. [PMID: 37073802 PMCID: PMC10114097 DOI: 10.1002/jev2.12323] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/06/2023] [Accepted: 03/29/2023] [Indexed: 04/20/2023] Open
Abstract
Extracellular vesicles (EVs) influence a host of normal and pathophysiological processes in vivo. Compared to soluble mediators, EVs can traffic a wide range of proteins on their surface including extracellular matrix (ECM) binding proteins, and their large size (∼30-150 nm) limits diffusion. We isolated EVs from the MCF10 series-a model human cell line of breast cancer progression-and demonstrated increasing presence of laminin-binding integrins α3β1 and α6β1 on the EVs as the malignant potential of the MCF10 cells increased. Transport of the EVs within a microfluidic device under controlled physiological interstitial flow (0.15-0.75 μm/s) demonstrated that convection was the dominant mechanism of transport. Binding of the EVs to the ECM enhanced the spatial concentration and gradient, which was mitigated by blocking integrins α3β1 and α6β1. Our studies demonstrate that convection and ECM binding are the dominant mechanisms controlling EV interstitial transport and should be leveraged in nanotherapeutic design.
Collapse
Affiliation(s)
- Peter A. Sariano
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Rachel R. Mizenko
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Venktesh S. Shirure
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Abigail K. Brandt
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Bryan B. Nguyen
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Cem Nesiri
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | | | - Terza Brostoff
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
- Department of PathologyUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - David M. Rocke
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
- Department of Public Health Sciences, Division of BiostatisticsUniversity of CaliforniaDavisCaliforniaUSA
| | - Alexander D. Borowsky
- Department of Pathology and Laboratory MedicineUniversity of CaliforniaDavis, SacramentoCaliforniaUSA
| | - Randy P. Carney
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Steven C. George
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
25
|
Lee YJ, Shin KJ, Jang HJ, Ryu JS, Lee CY, Yoon JH, Seo JK, Park S, Lee S, Je AR, Huh YH, Kong SY, Kwon T, Suh PG, Chae YC. GPR143 controls ESCRT-dependent exosome biogenesis and promotes cancer metastasis. Dev Cell 2023; 58:320-334.e8. [PMID: 36800996 DOI: 10.1016/j.devcel.2023.01.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 10/17/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023]
Abstract
Exosomes transport a variety of macromolecules and modulate intercellular communication in physiology and disease. However, the regulation mechanisms that determine exosome contents during exosome biogenesis remain poorly understood. Here, we find that GPR143, an atypical GPCR, controls the endosomal sorting complex required for the transport (ESCRT)-dependent exosome biogenesis pathway. GPR143 interacts with HRS (an ESCRT-0 Subunit) and promotes its association to cargo proteins, such as EGFR, which subsequently enables selective protein sorting into intraluminal vesicles (ILVs) in multivesicular bodies (MVBs). GPR143 is elevated in multiple cancers, and quantitative proteomic and RNA profiling of exosomes in human cancer cell lines showed that the GPR143-ESCRT pathway promotes secretion of exosomes that carry unique cargo, including integrins signaling proteins. Through gain- and loss-of-function studies in mice, we show that GPR143 promotes metastasis by secreting exosomes and increasing cancer cell motility/invasion through the integrin/FAK/Src pathway. These findings provide a mechanism for regulating the exosomal proteome and demonstrate its ability to promote cancer cell motility.
Collapse
Affiliation(s)
- Yu Jin Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kyeong Jin Shin
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyun-Jun Jang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jin-Sun Ryu
- Division of Translational Science, Research Institute and Hospital, National Cancer Center, Goyang 10408, Republic of Korea
| | - Chae Young Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jong Hyuk Yoon
- Korea Brain Research Institute (KBRI), Daegu 41062, Republic of Korea
| | - Jeong Kon Seo
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sabin Park
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Semin Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - A Reum Je
- Electron Microscopy Research Center, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Yang Hoon Huh
- Electron Microscopy Research Center, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Sun-Young Kong
- Division of Translational Science, Research Institute and Hospital, National Cancer Center, Goyang 10408, Republic of Korea; Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
| | - Taejoon Kwon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Pann-Ghill Suh
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Korea Brain Research Institute (KBRI), Daegu 41062, Republic of Korea.
| | - Young Chan Chae
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
26
|
Heterogeneity of Extracellular Vesicles and Particles: Molecular Voxels in the Blood Borne "Hologram" of Organ Function, Disfunction and Cancer. Arch Immunol Ther Exp (Warsz) 2023; 71:5. [PMID: 36729313 DOI: 10.1007/s00005-023-00671-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/17/2022] [Indexed: 02/03/2023]
Abstract
Extracellular vesicles (EVs) and particles (EPs) serve as unique carriers of complex molecular information with increasingly recognized roles in health and disease. Individual EVs/EPs collectively contribute to the molecular fingerprint of their producing cell, reflecting its identity, state, function and phenotype. This property is of particular interest in cancer where enormous heterogeneity of cancer cells is compounded by the presence of altered stromal, vascular and immune cell populations, which is further complicated by systemic responses elicited by the disease in individual patients. These diverse and interacting cellular compartments are dynamically represented by myriads of EVs/EPs released into the circulating biofluids (blood) during cancer progression and treatment. Current approaches of liquid biopsy seek to follow specific elements of the EV/EP cargo that may have diagnostic utility (as biomarkers), such as cancer cell-derived mutant oncoproteins or nucleic acids. However, with emerging technologies enabling high-throughput EV/EP analysis at a single particle level, a more holistic approach may be on the horizon. Indeed, each EV/EP carries multidimensional information (molecular "voxel") that could be integrated across thousands of particles into a larger and unbiased landscape (EV/EP "hologram") reflecting the true cellular complexity of the disease, along with cellular interactions, systemic responses and effects of treatment. Thus, the longitudinal molecular mapping of EV/EP populations may add a new dimension to crucial aspects of cancer biology, personalized diagnostics, and therapy.
Collapse
|
27
|
Qiu L, Liu X, Zhu L, Luo L, Sun N, Pei R. Current Advances in Technologies for Single Extracellular Vesicle Analysis and Its Clinical Applications in Cancer Diagnosis. BIOSENSORS 2023; 13:129. [PMID: 36671964 PMCID: PMC9856491 DOI: 10.3390/bios13010129] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/31/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Extracellular vesicles (EVs) have been regarded as one of the most potential diagnostic biomarkers for different cancers, due to their unique physiological and pathological functions. However, it is still challenging to precisely analyze the contents and sources of EVs, due to their heterogeneity. Herein, we summarize the advances in technologies for a single EV analysis, which may provide new strategies to study the heterogeneity of EVs, as well as their cargo, more specifically. Furthermore, the applications of a single EV analysis on cancer early diagnosis are also discussed.
Collapse
Affiliation(s)
- Lei Qiu
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xingzhu Liu
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Libo Zhu
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Liqiang Luo
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Na Sun
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Renjun Pei
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
28
|
Imamura M. Hypothesis: can transfer of primary neoplasm-derived extracellular vesicles and mitochondria contribute to the development of donor cell-derived hematologic neoplasms after allogeneic hematopoietic cell transplantation? Cytotherapy 2022; 24:1169-1180. [PMID: 36058790 DOI: 10.1016/j.jcyt.2022.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/06/2022] [Accepted: 07/13/2022] [Indexed: 01/31/2023]
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is an essential treatment option for various neoplastic and non-neoplastic hematologic diseases. Although its efficacy is modest, a significant proportion of patients experience relapse, graft-versus-host disease, infection or impaired hematopoiesis. Among these, the most frequent cause of post-transplant mortality is relapse, whereas the development of de novo hematologic neoplasms from donor cells after allo-HCT occurs on some occasion as a rare complication. The mechanisms involved in the pathogenesis of the de novo hematologic neoplasms from donor cells are complex, and a multifactorial process contributes to the development of this complication. Recently, extracellular vesicles, particularly exosomes, and mitochondria have been shown to play crucial roles in intercellular communication through the transfer of specific constituents, such as deoxyribonucleic acids, ribonucleic acids, lipids, metabolites and cytosolic and cell-surface proteins. Here, I discuss the potential causative roles of these subcellular components in the development of de novo hematologic neoplasms from donor cells after allo-HCT, in addition to other etiologies.
Collapse
Affiliation(s)
- Masahiro Imamura
- Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Japan.
| |
Collapse
|
29
|
Adnani L, Spinelli C, Tawil N, Rak J. Role of extracellular vesicles in cancer-specific interactions between tumour cells and the vasculature. Semin Cancer Biol 2022; 87:196-213. [PMID: 36371024 DOI: 10.1016/j.semcancer.2022.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/25/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022]
Abstract
Cancer progression impacts and exploits the vascular system in several highly consequential ways. Among different types of vascular cells, blood cells and mediators that are engaged in these processes, endothelial cells are at the centre of the underlying circuitry, as crucial constituents of angiogenesis, angiocrine stimulation, non-angiogenic vascular growth, interactions with the coagulation system and other responses. Tumour-vascular interactions involve soluble factors, extracellular matrix molecules, cell-cell contacts, as well as extracellular vesicles (EVs) carrying assemblies of molecular effectors. Oncogenic mutations and transforming changes in the cancer cell genome, epigenome and signalling circuitry exert important and often cancer-specific influences upon pathways of tumour-vascular interactions, including the biogenesis, content, and biological activity of EVs and responses of cancer cells to them. Notably, EVs may carry and transfer bioactive, oncogenic macromolecules (oncoproteins, RNA, DNA) between tumour and vascular cells and thereby elicit unique functional changes and forms of vascular growth and remodeling. Cancer EVs influence the state of the vasculature both locally and systemically, as exemplified by cancer-associated thrombosis. EV-mediated communication pathways represent attractive targets for therapies aiming at modulation of the tumour-vascular interface (beyond angiogenesis) and could also be exploited for diagnostic purposes in cancer.
Collapse
Affiliation(s)
- Lata Adnani
- McGill University and Research Institute of the McGill University Health Centre, Canada
| | - Cristiana Spinelli
- McGill University and Research Institute of the McGill University Health Centre, Canada
| | - Nadim Tawil
- McGill University and Research Institute of the McGill University Health Centre, Canada
| | - Janusz Rak
- McGill University and Research Institute of the McGill University Health Centre, Canada; Department of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
30
|
MicroRNA-874 targets phosphomevalonate kinase and inhibits cancer cell growth via the mevalonate pathway. Sci Rep 2022; 12:18443. [PMID: 36323841 PMCID: PMC9630378 DOI: 10.1038/s41598-022-23205-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
The microRNA (miR) miR-874, a potential tumour suppressor, causes cell death via target gene suppression in various cancer types. Mevalonate pathway inhibition also causes cell death in breast cancer. However, the relationship between the mevalonate pathway and miR-874-induced apoptosis or its association with the tumour suppressor p53 has not been elucidated. We identified phosphomevalonate kinase (PMVK), a key mevalonate pathway enzyme, and sterol regulatory element-binding factor 2 (SREBF2), the master cholesterol biosynthesis regulator, as direct miR‑874 targets. Next-generation sequencing analysis revealed a significant miR-874-mediated downregulation of PMVK and SREBF2 gene expression and p53 pathway enrichment. Luciferase reporter assays showed that miR-874 directly regulated PMVK and SREBF2. miR-874-induced apoptosis was p53 dependent, and single-cell RNA sequencing analysis demonstrated that miR-874 transfection resulted in apoptosis and p53 pathway activation. Downregulation of PMVK expression also caused cell cycle arrest and p53 pathway activation, which was rescued by geranylgeranyl pyrophosphate (GGPP) supplementation. Analysis of The Cancer Genome Atlas (TCGA) database indicated a negative correlation between miR-874 and PMVK expression and between miR-874 and SREBF2 expression. These findings suggest that miR-874 suppresses the mevalonate pathway by targeting SREBF2 and PMVK, resulting in GGPP depletion, which activates the p53 pathway and promotes cycle arrest or apoptosis.
Collapse
|
31
|
Extracellular Vesicles: A Novel Tool in Nanomedicine and Cancer Treatment. Cancers (Basel) 2022; 14:cancers14184450. [PMID: 36139610 PMCID: PMC9497055 DOI: 10.3390/cancers14184450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/10/2022] [Accepted: 09/10/2022] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Extracellular vesicles (EVs) are plasma-membrane-encased particles with various biomolecules. Recent studies have demonstrated that EVs play a role in homeostasis and disease progression, and therefore may be important disease biomarkers. In cancer, EVs mediate inflammatory responses, oxidative stress, and contribute to altering the microenvironment. Additionally, EVs function as mediators in neurodegenerative diseases. Interestingly, EVs also promote stem cell differentiation, intercellular communication, and wound healing. These functions suggest that EVs can be utilized in medicine as therapeutic tools. Moreover, their endogenous nature and ability to carry intact biomolecules of different sizes to their target site due to their lipid bilayer makes them perfect drug transport systems that can be utilized in the treatment of many diseases, with higher efficacy and fewer side effects than other treatments as they can only target diseased cells and not healthy nearby cells, which occurs in conventional chemotherapy, for example. As such, their role in drug delivery has great potential. Abstract Extracellular vesicles are membrane-bound vesicles released by cells to mediate intercellular communication and homeostasis. Various external stimuli as well as inherent abnormalities result in alterations in the extracellular vesicle milieu. Changes to cells result in alterations in the content of the extracellular vesicle biogenesis, which may affect proximal and distal cells encountering these altered extracellular vesicles. Therefore, the examination of changes in the extracellular vesicle signature can be used to follow disease progression, reveal possible targets to improve therapy, as well as to serve as mediators of therapy. Furthermore, recent studies have developed methods to alter the cargo of extracellular vesicles to restore normal function or deliver therapeutic agents. This review will examine how extracellular vesicles from cancer cells differ from normal cells, how these altered extracellular vesicles can contribute to cancer progression, and how extracellular vesicles can be used as a therapeutic agent to target cancer cells and cancer-associated stroma. Here we present extracellular vesicles as a novel tool in nanomedicine.
Collapse
|
32
|
Combinatorial immunotherapies overcome MYC-driven immune evasion in triple negative breast cancer. Nat Commun 2022; 13:3671. [PMID: 35760778 PMCID: PMC9237085 DOI: 10.1038/s41467-022-31238-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/09/2022] [Indexed: 12/14/2022] Open
Abstract
Few patients with triple negative breast cancer (TNBC) benefit from immune checkpoint inhibitors with complete and durable remissions being quite rare. Oncogenes can regulate tumor immune infiltration, however whether oncogenes dictate diminished response to immunotherapy and whether these effects are reversible remains poorly understood. Here, we report that TNBCs with elevated MYC expression are resistant to immune checkpoint inhibitor therapy. Using mouse models and patient data, we show that MYC signaling is associated with low tumor cell PD-L1, low overall immune cell infiltration, and low tumor cell MHC-I expression. Restoring interferon signaling in the tumor increases MHC-I expression. By combining a TLR9 agonist and an agonistic antibody against OX40 with anti-PD-L1, mice experience tumor regression and are protected from new TNBC tumor outgrowth. Our findings demonstrate that MYC-dependent immune evasion is reversible and druggable, and when strategically targeted, may improve outcomes for patients treated with immune checkpoint inhibitors.
Collapse
|
33
|
Campello E, Bosh F, Simion C, Spiezia L, Simioni P. Mechanisms of thrombosis in pancreatic ductal adenocarcinoma. Best Pract Res Clin Haematol 2022; 35:101346. [DOI: 10.1016/j.beha.2022.101346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022]
|
34
|
Zhang Y, Wu Y, Luo S, Yang C, Zhong G, Huang G, Zhang X, Li B, Liu C, Li L, Yan X, Zheng L, Situ B. DNA Nanowire Guided-Catalyzed Hairpin Assembly Nanoprobe for In Situ Profiling of Circulating Extracellular Vesicle-Associated MicroRNAs. ACS Sens 2022; 7:1075-1085. [PMID: 35312297 DOI: 10.1021/acssensors.1c02717] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Extracellular vesicle-associated miRNAs (EV-miRNAs) are emerging as a new type of noninvasive biomarker for disease diagnosis. Their relatively low abundance, however, makes accurate detection challenging. Here, we designed a DNA nanowire guided-catalyzed hairpin assembly (NgCHA) nanoprobe for profiling EV-miRNAs. NgCHA showed high penetrability to EVs, which allowed rapid delivery of the probes into EVs. In the presence of targeted miRNAs within EVs, a fluorescent signal could be generated and amplified by confining the catalytic hairpin assembly system within the nanowires, thus greatly enhancing the analytical sensitivity. We showed that EV-miRNAs from various cell lines could be accurately quantified by NgCHA in situ. By using a four-EV-miRNA panel, this platform can identify patients with breast cancer at an early stage with 95.2% sensitivity and 86.7% specificity. Its applications for risk assessment as well as cancer type prediction were also successfully demonstrated. This platform is sensitive, low-cost, and simple compared with current methods. It may thus serve as a promising tool for the noninvasive diagnosis and monitoring of cancers and other diseases through EV-miRNA profiling.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuan Wu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- School of Basic Medicine, Guangdong Medical University, Dongguan 523808, China
| | - Shihua Luo
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chao Yang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Guangzhi Zhong
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Laboratory Medicine, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou 510515, China
| | - Guoni Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Laboratory Medicine, People’s Hospital of Shenzhen Baoan District, Shenzhen 518100, China
| | - Xiaohe Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bo Li
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chunchen Liu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ling Li
- School of Basic Medicine, Guangdong Medical University, Dongguan 523808, China
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaohui Yan
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bo Situ
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
35
|
Beck S, Hochreiter B, Schmid JA. Extracellular Vesicles Linking Inflammation, Cancer and Thrombotic Risks. Front Cell Dev Biol 2022; 10:859863. [PMID: 35372327 PMCID: PMC8970602 DOI: 10.3389/fcell.2022.859863] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) being defined as lipid-bilayer encircled particles are released by almost all known mammalian cell types and represent a heterogenous set of cell fragments that are found in the blood circulation and all other known body fluids. The current nomenclature distinguishes mainly three forms: microvesicles, which are formed by budding from the plasma membrane; exosomes, which are released, when endosomes with intraluminal vesicles fuse with the plasma membrane; and apoptotic bodies representing fragments of apoptotic cells. Their importance for a great variety of biological processes became increasingly evident in the last decade when it was discovered that they contribute to intercellular communication by transferring nucleotides and proteins to recipient cells. In this review, we delineate several aspects of their isolation, purification, and analysis; and discuss some pitfalls that have to be considered therein. Further on, we describe various cellular sources of EVs and explain with different examples, how they link cancer and inflammatory conditions with thrombotic processes. In particular, we elaborate on the roles of EVs in cancer-associated thrombosis and COVID-19, representing two important paradigms, where local pathological processes have systemic effects in the whole organism at least in part via EVs. Finally, we also discuss possible developments of the field in the future and how EVs might be used as biomarkers for diagnosis, and as vehicles for therapeutics.
Collapse
Affiliation(s)
- Sarah Beck
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Institute of Experimental Biomedicine, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
- *Correspondence: Sarah Beck, ; Johannes A. Schmid,
| | - Bernhard Hochreiter
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Johannes A. Schmid
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- *Correspondence: Sarah Beck, ; Johannes A. Schmid,
| |
Collapse
|
36
|
Yang K, Zhou Q, Qiao B, Shao B, Hu S, Wang G, Yuan W, Sun Z. Exosome-derived noncoding RNAs: Function, mechanism, and application in tumor angiogenesis. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:983-997. [PMID: 35317280 PMCID: PMC8905256 DOI: 10.1016/j.omtn.2022.01.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Exosomes are extracellular vesicles released by various cell types that perform various biological functions, mainly mediating communication between different cells, especially those active in cancer. Noncoding RNAs (ncRNAs), of which there are many types, were recently identified as enriched and stable in the exocrine region and play various roles in the occurrence and progression of cancer. Abnormal angiogenesis has been confirmed to be related to human cancer. An increasing number of studies have shown that exosome-derived ncRNAs play an important role in tumor angiogenesis. In this review, we briefly outline the characteristics of exosomes, ncRNAs, and tumor angiogenesis. Then, the mechanism of the impact of exosome-derived ncRNAs on tumor angiogenesis is analyzed from various angles. In addition, we focus on the regulatory role of exosome-derived ncRNAs in angiogenesis in different types of cancer. Furthermore, we emphasize the potential role of exosome-derived ncRNAs as biomarkers in cancer diagnosis and prognosis and therapeutic targets in the treatment of tumors.
Collapse
Affiliation(s)
- Kangkang Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Bingbing Qiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Bo Shao
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Guixian Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| |
Collapse
|
37
|
Kirkemo LL, Elledge SK, Yang J, Byrnes JR, Glasgow JE, Blelloch R, Wells JA. Cell-surface tethered promiscuous biotinylators enable comparative small-scale surface proteomic analysis of human extracellular vesicles and cells. eLife 2022; 11:73982. [PMID: 35257663 PMCID: PMC8983049 DOI: 10.7554/elife.73982] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/07/2022] [Indexed: 11/24/2022] Open
Abstract
Characterization of cell surface proteome differences between cancer and healthy cells is a valuable approach for the identification of novel diagnostic and therapeutic targets. However, selective sampling of surface proteins for proteomics requires large samples (>10e6 cells) and long labeling times. These limitations preclude analysis of material-limited biological samples or the capture of rapid surface proteomic changes. Here, we present two labeling approaches to tether exogenous peroxidases (APEX2 and HRP) directly to cells, enabling rapid, small-scale cell surface biotinylation without the need to engineer cells. We used a novel lipidated DNA-tethered APEX2 (DNA-APEX2), which upon addition to cells promoted cell agnostic membrane-proximal labeling. Alternatively, we employed horseradish peroxidase (HRP) fused to the glycan-binding domain of wheat germ agglutinin (WGA-HRP). This approach yielded a rapid and commercially inexpensive means to directly label cells containing common N-Acetylglucosamine (GlcNAc) and sialic acid glycans on their surface. The facile WGA-HRP method permitted high surface coverage of cellular samples and enabled the first comparative surface proteome characterization of cells and cell-derived small extracellular vesicles (EVs), leading to the robust quantification of 953 cell and EV surface annotated proteins. We identified a newly recognized subset of EV-enriched markers, as well as proteins that are uniquely upregulated on Myc oncogene-transformed prostate cancer EVs. These two cell-tethered enzyme surface biotinylation approaches are highly advantageous for rapidly and directly labeling surface proteins across a range of material-limited sample types.
Collapse
Affiliation(s)
- Lisa L Kirkemo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Susanna K Elledge
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Jiuling Yang
- Department of Urology, University of California, San Francisco, San Francisco, United States
| | - James R Byrnes
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Jeff E Glasgow
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Robert Blelloch
- Department of Urology, University of California, San Francisco, San Francisco, United States
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
38
|
Hikita T, Uehara R, Itoh RE, Mitani F, Miyata M, Yoshida T, Yamaguchi R, Oneyama C. MEK/ERK-mediated oncogenic signals promote secretion of extracellular vesicles by controlling lysosome function. Cancer Sci 2022; 113:1264-1276. [PMID: 35108425 PMCID: PMC8990735 DOI: 10.1111/cas.15288] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/29/2021] [Accepted: 01/19/2022] [Indexed: 11/28/2022] Open
Abstract
Cancer cells secrete large amounts of extracellular vesicles (EVs) originating from multivesicular bodies (MVBs). Mature MVBs fuse either with the plasma membrane for release as EVs often referred as to exosomes or with lysosomes for degradation. However, the mechanisms regulating MVB fate remain unknown. Here, we investigated the regulators of MVB fate by analyzing the effects of signaling inhibitors on EV secretion from cancer cells engineered to secrete luciferase-labeled EVs. Inhibition of the oncogenic MEK/ERK pathway suppressed EV release and activated lysosome formation. MEK/ERK-mediated lysosomal inactivation impaired MVB degradation, resulting in increased EV secretion from cancer cells. Moreover, MEK/ERK inhibition prevented c-MYC expression and induced the nuclear translocation of MiT/TFE transcription factors, thereby promoting the activation of lysosome-related genes, including the gene encoding a subunit of vacuolar-type H+ -ATPase, which is responsible for lysosomal acidification and function. Furthermore, c-MYC upregulation was associated with lysosomal genes downregulation in MEK/ERK-activated renal cancer cells/tissues. These findings suggest that the MEK/ERK/c-MYC pathway controls MVB fate and promotes EV production in human cancers by inactivating lysosomal function.
Collapse
Affiliation(s)
- Tomoya Hikita
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Ryo Uehara
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Reina E Itoh
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Fumie Mitani
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Oncology, Nagoya City University, Graduate School of Pharmaceutical Sciences, Nagoya, Japan
| | - Mamiko Miyata
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Takuya Yoshida
- Laboratory of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Rui Yamaguchi
- Division of Cancer Systems Biology, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Cancer Informatics, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| | - Chitose Oneyama
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Oncology, Nagoya City University, Graduate School of Pharmaceutical Sciences, Nagoya, Japan.,Department of Target and Drug Discovery, Nagoya University, Graduate School of Medicine, Nagoya, Japan.,Japan Science and Technology Agency, PRESTO, Nagoya, Japan
| |
Collapse
|
39
|
Gibson MS, Noronha-Estima C, Gama-Carvalho M. Therapeutic Metabolic Reprograming Using microRNAs: From Cancer to HIV Infection. Genes (Basel) 2022; 13:273. [PMID: 35205318 PMCID: PMC8872267 DOI: 10.3390/genes13020273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
MicroRNAs (miRNAs) are crucial regulators of cellular processes, including metabolism. Attempts to use miRNAs as therapeutic agents are being explored in several areas, including the control of cancer progression. Recent evidence suggests fine tuning miRNA activity to reprogram tumor cell metabolism has enormous potential as an alternative treatment option. Indeed, cancer growth is known to be linked to profound metabolic changes. Likewise, the emerging field of immunometabolism is leading to a refined understanding of how immune cell proliferation and function is governed by glucose homeostasis. Different immune cell types are now known to have unique metabolic signatures that switch in response to a changing environment. T-cell subsets exhibit distinct metabolic profiles which underlie their alternative differentiation and phenotypic functions. Recent evidence shows that the susceptibility of CD4+ T-cells to HIV infection is intimately linked to their metabolic activity, with many of the metabolic features of HIV-1-infected cells resembling those found in tumor cells. In this review, we discuss the use of miRNA modulation to achieve metabolic reprogramming for cancer therapy and explore the idea that the same approach may serve as an effective mechanism to restrict HIV replication and eliminate infected cells.
Collapse
Affiliation(s)
| | | | - Margarida Gama-Carvalho
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal; (M.S.G.); (C.N.-E.)
| |
Collapse
|
40
|
Perera RM. Zooming in on the cell biology of disease. Mol Biol Cell 2021; 32:ae4. [PMID: 34747628 PMCID: PMC8694084 DOI: 10.1091/mbc.e21-09-0459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Today’s cell biology could be considered a fusion of disciplines that blends advanced genetics, molecular biology, biochemistry, and engineering to answer fundamental as well as medically relevant scientific questions. Accordingly, our understanding of diseases is greatly aided by an existing vast knowledge base of fundamental cell biology. Gunter Blobel captured this concept when he said, “the tremendous acquisition of basic knowledge will allow a much more rational treatment of cancer, viral infection, degenerative disease and mental disease.” In other words, without cell biology can we truly understand, prevent, or effectively treat a disease?
Collapse
Affiliation(s)
- Rushika M Perera
- Departments of Anatomy and Pathology and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
41
|
Exosomes in nasopharyngeal carcinoma. Clin Chim Acta 2021; 523:355-364. [PMID: 34666030 DOI: 10.1016/j.cca.2021.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/18/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant epithelial tumor with a unique geographical distribution, primarily prevalent in East Africa and Asia. Although there is an increased understanding of the pathogenesis and risk factors of NPC, prevention and treatment efforts remain limited. Various studies have indicated that exosomes are actively involved in NPC by delivering biomolecules such as non-coding RNAs and proteins to target cells. In this review, we summarize the biological functions of exosomes in NPC and highlight their prospects as diagnostic biomarkers. In NPC, exosomes can manipulate the tumor microenvironment, participate in chemotherapy and radiation resistance, induce immune suppression, promote pathological angiogenesis, and support metastasis, and thus they could also be promising biomarkers. Because exosomes have essential effects and unusual biological properties, they have a promising future in diagnostic monitoring and prognostic evaluation. Although there are technical issues associated with using exosomes in large-scale applications, they have unparalleled advantages in assisting the clinical management of NPC.
Collapse
|
42
|
Pancreatic Cancer Small Extracellular Vesicles (Exosomes): A Tale of Short- and Long-Distance Communication. Cancers (Basel) 2021; 13:cancers13194844. [PMID: 34638330 PMCID: PMC8508300 DOI: 10.3390/cancers13194844] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Even today, pancreatic cancer still has a dismal prognosis. It is characterized by a lack of early symptoms and thus late diagnosis as well as early metastasis. The majority of patients suffer from pancreatic ductal adenocarcinoma (PDAC). PDACs communicate extensively with cellular components of their microenvironment, but also with distant metastatic niches to facilitate tumor progression and dissemination. This crosstalk is substantially enabled by small extracellular vesicles (sEVs, exosomes) with a size of 30–150 nm that are released from the tumor cells. sEVs carry bioactive cargos that reprogram target cells to promote tumor growth, migration, metastasis, immune evasion, or chemotherapy resistance. Interestingly, sEVs also carry novel diagnostic, prognostic and potentially also predictive biomarkers. Moreover, engineered sEVs may be utilized as therapeutic agents, improving treatment options. The role of sEVs for PDAC development, progression, diagnosis, prognosis, and treatment is the focus of this review. Abstract Even with all recent advances in cancer therapy, pancreatic cancer still has a dismal 5-year survival rate of less than 7%. The most prevalent tumor subtype is pancreatic ductal adenocarcinoma (PDAC). PDACs display an extensive crosstalk with their tumor microenvironment (TME), e.g., pancreatic stellate cells, but also immune cells to regulate tumor growth, immune evasion, and metastasis. In addition to crosstalk in the local TME, PDACs were shown to induce the formation of pre-metastatic niches in different organs. Recent advances have attributed many of these interactions to intercellular communication by small extracellular vesicles (sEVs, exosomes). These nanovesicles are derived of endo-lysosomal structures (multivesicular bodies) with a size range of 30–150 nm. sEVs carry various bioactive cargos, such as proteins, lipids, DNA, mRNA, or miRNAs and act in an autocrine or paracrine fashion to educate recipient cells. In addition to tumor formation, progression, and metastasis, sEVs were described as potent biomarker platforms for diagnosis and prognosis of PDAC. Advances in sEV engineering have further indicated that sEVs might once be used as effective drug carriers. Thus, extensive sEV-based communication and applications as platform for biomarker analysis or vehicles for treatment suggest a major impact of sEVs in future PDAC research.
Collapse
|
43
|
Santos NL, Bustos SO, Bhatt D, Chammas R, Andrade LNDS. Tumor-Derived Extracellular Vesicles: Modulation of Cellular Functional Dynamics in Tumor Microenvironment and Its Clinical Implications. Front Cell Dev Biol 2021; 9:737449. [PMID: 34532325 PMCID: PMC8438177 DOI: 10.3389/fcell.2021.737449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/09/2021] [Indexed: 12/29/2022] Open
Abstract
Cancer can be described as a dynamic disease formed by malignant and stromal cells. The cellular interaction between these components in the tumor microenvironment (TME) dictates the development of the disease and can be mediated by extracellular vesicles secreted by tumor cells (TEVs). In this review, we summarize emerging findings about how TEVs modify important aspects of the disease like continuous tumor growth, induction of angiogenesis and metastasis establishment. We also discuss how these nanostructures can educate the immune infiltrating cells to generate an immunosuppressive environment that favors tumor progression. Furthermore, we offer our perspective on the path TEVs interfere in cancer treatment response and promote tumor recurrence, highlighting the need to understand the underlying mechanisms controlling TEVs secretion and cargo sorting. In addition, we discuss the clinical potential of TEVs as markers of cell state transitions including the acquisition of a treatment-resistant phenotype, and their potential as therapeutic targets for interventions such as the use of extracellular vesicle (EV) inhibitors to block their pro-tumoral activities. Some of the technical challenges for TEVs research and clinical use are also presented.
Collapse
Affiliation(s)
- Nathalia Leal Santos
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Silvina Odete Bustos
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Darshak Bhatt
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Roger Chammas
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Luciana Nogueira de Sousa Andrade
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
44
|
Seibold T, Waldenmaier M, Seufferlein T, Eiseler T. Small Extracellular Vesicles and Metastasis-Blame the Messenger. Cancers (Basel) 2021; 13:cancers13174380. [PMID: 34503190 PMCID: PMC8431296 DOI: 10.3390/cancers13174380] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Due to their systemic nature, metastatic lesions are a major problem for curative cancer treatment. According to a common model for metastasis, tumor cells disseminate by local invasion, survival in the blood stream and extravasation into suitable tissue environments. At secondary sites, metastatic cells adapt, proliferate and foster vascularization to satisfy nutrient and oxygen demand. In recent years, tumors were shown to extensively communicate with cells in the local microenvironment and future metastatic sites by secreting small extracellular vesicles (sEVs, exosomes). sEVs deliver bioactive cargos, e.g., proteins, and in particular, several nucleic acid classes to reprogram target cells, which in turn facilitate tumor growth, cell motility, angiogenesis, immune evasion and establishment of pre-metastatic niches. sEV-cargos also act as biomarkers for diagnosis and prognosis. This review discusses how tumor cells utilize sEVs with nucleic acid cargos to progress through metastasis, and how sEVs may be employed for prognosis and treatment. Abstract Cancer is a complex disease, driven by genetic defects and environmental cues. Systemic dissemination of cancer cells by metastasis is generally associated with poor prognosis and is responsible for more than 90% of cancer deaths. Metastasis is thought to follow a sequence of events, starting with loss of epithelial features, detachment of tumor cells, basement membrane breakdown, migration, intravasation and survival in the circulation. At suitable distant niches, tumor cells reattach, extravasate and establish themselves by proliferating and attracting vascularization to fuel metastatic growth. These processes are facilitated by extensive cross-communication of tumor cells with cells in the primary tumor microenvironment (TME) as well as at distant pre-metastatic niches. A vital part of this communication network are small extracellular vesicles (sEVs, exosomes) with a size of 30–150 nm. Tumor-derived sEVs educate recipient cells with bioactive cargos, such as proteins, and in particular, major nucleic acid classes, to drive tumor growth, cell motility, angiogenesis, immune evasion and formation of pre-metastatic niches. Circulating sEVs are also utilized as biomarker platforms for diagnosis and prognosis. This review discusses how tumor cells facilitate progression through the metastatic cascade by employing sEV-based communication and evaluates their role as biomarkers and vehicles for drug delivery.
Collapse
|