1
|
Kumar V, Zahiruddin QS, Jena D, R R, Kaur M, Srivastava M, Barwal A, Siva Prasad GV, Rajput P, Jaiswal V, Kathuria R, Joshi A, Shabil M, Taneja M, Mishra A, Alabed AAA, Bushi G, Mehta R, Sah S, Gaidhane AM, Satapathy P. Trends and projections of type 2 diabetes mellitus in South Asia: a three-decade analysis and forecast through 2031 using global burden of disease study (1990 - 2021). Expert Rev Endocrinol Metab 2025; 20:99-106. [PMID: 39763434 DOI: 10.1080/17446651.2024.2448790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/20/2024] [Indexed: 02/18/2025]
Abstract
BACKGROUND The rapid rise of non-communicable diseases, particularly type 2 diabetes mellitus (T2DM), poses a significant global public health challenge, with South Asia experiencing an increasingly severe burden. This study aimed to analyse historical trends of T2DM across South Asia from 1990 to 2021 and forecast incidence through 2031. RESEARCH DESIGN AND METHODS We carried out analysis based on the data from the 2021 Global burden of disease study. Joinpoint regression was used to identify significant changes in trends over time, and ARIMA models were applied to forecast incidence rates. RESULTS Between 1990 and 2021, the average annual percentage change (AAPC) of age-standardized prevalence rates and incidence rates increased by 2.15 and 1.72 respectively. The age-standardized mortality rate rose more slowly, at 1.05 AAPC, with females experiencing a slightly higher AAPC than males. ARIMA forecasts suggest that by 2031, T2DM incidence rates will continue to rise significantly across all South Asian countries. CONCLUSIONS This study highlights the need for public health policies focused on preventing obesity, promoting physical activity, and improving healthcare access. It also calls for addressing regional disparities in T2DM prevalence and mortality to better allocate resources and prioritize policies to combat the diabetes epidemic inSouth Asia.
Collapse
Affiliation(s)
- Vijay Kumar
- Evidence for Policy and Learning, Global Center for Evidence Synthesis, Chandigarh, India
| | - Quazi Syed Zahiruddin
- South Asia Infant Feeding Research Network (SAIFRN), Division of Evidence Synthesis, Global Consortium of Public Health and Research, Datta Meghe Institute of Higher Education, Wardha, India
| | - Diptismita Jena
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Roopashree R
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, India
| | - Mandeep Kaur
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, India
| | | | - Amit Barwal
- Chandigarh Pharmacy College, Chandigarh Group of College, Mohali, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, India
| | - Pranchal Rajput
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | | | - Rachna Kathuria
- New Delhi Institute of Management, Tughlakabad Institutional Area, New Delhi, India
| | - Arun Joshi
- Graphic Era Institute of Medical Sciences, Graphic Era (Deemed to be University), Dehradun, India
| | - Muhammed Shabil
- Department of Pharmacy, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
- Medical Laboratories Techniques Department, AL-Mustaqbal University, Hillah, Iraq
| | - Madhur Taneja
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, India
| | - Abhinav Mishra
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, India
| | | | - Ganesh Bushi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Rachana Mehta
- Clinical Microbiology, RDC, Manav Rachna International Institute of Research and Studies, Faridabad, India
| | - Sanjit Sah
- Department of Paediatrics, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune, India
- Department of Public Health Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, India
| | - Abhay M Gaidhane
- Jawaharlal Nehru Medical College, and Global Health Academy, School of Epidemiology and Public Health, Datta Meghe Institute of Higher Education, Wardha, India
| | - Prakasini Satapathy
- Faculty of Medicine, University of Cyberjaya, Cyberjaya, Malaysia
- University Center for Research and Development, Chandigarh University, Mohali, India
| |
Collapse
|
2
|
Zhu M, Huang Q, Li H, Zhao Y, Guo H, Wang T, Liu X, Huang Y, Hu J, Fang C, Huang J. The impact of site-specific DNA methylation in KCNJ11 promoter on type 2 diabetes. Heliyon 2024; 10:e39934. [PMID: 39584094 PMCID: PMC11585805 DOI: 10.1016/j.heliyon.2024.e39934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024] Open
Abstract
Aims This study explores the correlation between site-specific methylation levels of the KCNJ11 promoter and type 2 diabetes mellitus (T2DM), analyzing potential molecular mechanisms. Methods Thirty patients newly diagnosed with T2DM and 30 healthy controls were selected to determine the CpG methylation levels in the promoter region of the KCNJ11 gene using the bisulfite assay. The online software JASPAR was used to predict transcription factors binding to differentially methylated sites. Key transcription factors were further validated through quantitative PCR (q-PCR) and chromatin immunoprecipitation followed by PCR (ChIP-PCR). Results Methylation at multiple CpG sites within the KCNJ11 gene promoter was generally reduced in newly diagnosed T2DM patients compared with healthy individuals. The methylation status of CpG-471, a site crucial for the binding of the transcription factor TCF12, emerged as potentially influential in T2DM pathogenesis. This reduction in methylation at CpG-471 may enhance TCF12 binding, thereby altering KCNJ11 expression. Conclusion Hypomethylation of specific CpG sites in the promoter region of the KCNJ11 gene in patients with incipient T2DM potentially contributes to the disease's pathogenesis. This hypomethylation may influence TCF12 binding, with potential regulatory effects on KCNJ11 expression and pancreatic beta-cell function, though further studies are needed to confirm the exact mechanisms involved.
Collapse
Affiliation(s)
- Mengmeng Zhu
- School of Basic Medical Sciences, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Qiaoliang Huang
- Suzhou Center for Disease Control and Prevention, Suzhou, Jiangsu, 215000, China
| | - Heng Li
- School of Basic Medical Sciences, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yujie Zhao
- School of Basic Medical Sciences, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Heming Guo
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Tao Wang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Xiaodan Liu
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Yun Huang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Ji Hu
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Chen Fang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Jian Huang
- School of Basic Medical Sciences, Suzhou medical college of Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
3
|
Alhazzaa RA, McKinley RE, Getachew B, Tizabi Y, Heinbockel T, Csoka AB. Epigenetic Changes Induced by High Glucose in Human Pancreatic Beta Cells. J Diabetes Res 2023; 2023:9947294. [PMID: 36815184 PMCID: PMC9940985 DOI: 10.1155/2023/9947294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 12/04/2021] [Accepted: 07/07/2022] [Indexed: 02/15/2023] Open
Abstract
Epigenetic changes in pancreatic beta cells caused by sustained high blood glucose levels, as seen in prediabetic conditions, may contribute to the etiology of diabetes. To delineate a direct cause and effect relationship between high glucose and epigenetic changes, we cultured human pancreatic beta cells derived from induced pluripotent stem cells and treated them with either high or low glucose, for 14 days. We then used the Arraystar 4x180K HG19 RefSeq Promoter Array to perform whole-genome DNA methylation analysis. A total of 478 gene promoters, out of a total of 23,148 present on the array (2.06%), showed substantial differences in methylation (p < 0.01). Out of these, 285 were hypomethylated, and 193 were hypermethylated in experimental vs. control. Ingenuity Pathway Analysis revealed that the main pathways and networks that were differentially methylated include those involved in many systems, including those related to development, cellular growth, and proliferation. Genes implicated in the etiology of diabetes, including networks involving glucose metabolism, insulin secretion and regulation, and cell cycle regulation, were notably altered. Influence of upstream regulators such as MRTFA, AREG, and NOTCH3 was predicted based on the altered methylation of their downstream targets. The study validated that high glucose levels can directly cause many epigenetic changes in pancreatic beta cells, suggesting that this indeed may be a mechanism involved in the etiology of diabetes.
Collapse
Affiliation(s)
- Rasha A. Alhazzaa
- Department of Anatomy, Howard University, 520 W St. NW, Washington DC 20059, USA
- King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia
| | - Raechel E. McKinley
- Department of Anatomy, Howard University, 520 W St. NW, Washington DC 20059, USA
| | - Bruk Getachew
- Department of Pharmacology, Howard University, 520 W St. NW, Washington DC 20059, USA
| | - Yousef Tizabi
- Department of Pharmacology, Howard University, 520 W St. NW, Washington DC 20059, USA
| | - Thomas Heinbockel
- Department of Anatomy, Howard University, 520 W St. NW, Washington DC 20059, USA
| | - Antonei B. Csoka
- Department of Anatomy, Howard University, 520 W St. NW, Washington DC 20059, USA
| |
Collapse
|
4
|
Sonthalia M, Roy BS, Chandrawanshi D, Ganesh GV, Jayasuriya R, Mohandas S, Rajagopal S, Ramkumar KM. Histone deacetylase inhibitors as antidiabetic agents: Advances and opportunities. Eur J Pharmacol 2022; 935:175328. [DOI: 10.1016/j.ejphar.2022.175328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/26/2022]
|
5
|
Yang CH, Fagnocchi L, Apostle S, Wegert V, Casaní-Galdón S, Landgraf K, Panzeri I, Dror E, Heyne S, Wörpel T, Chandler DP, Lu D, Yang T, Gibbons E, Guerreiro R, Bras J, Thomasen M, Grunnet LG, Vaag AA, Gillberg L, Grundberg E, Conesa A, Körner A, Pospisilik JA. Independent phenotypic plasticity axes define distinct obesity sub-types. Nat Metab 2022; 4:1150-1165. [PMID: 36097183 PMCID: PMC9499872 DOI: 10.1038/s42255-022-00629-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/29/2022] [Indexed: 01/04/2023]
Abstract
Studies in genetically 'identical' individuals indicate that as much as 50% of complex trait variation cannot be traced to genetics or to the environment. The mechanisms that generate this 'unexplained' phenotypic variation (UPV) remain largely unknown. Here, we identify neuronatin (NNAT) as a conserved factor that buffers against UPV. We find that Nnat deficiency in isogenic mice triggers the emergence of a bi-stable polyphenism, where littermates emerge into adulthood either 'normal' or 'overgrown'. Mechanistically, this is mediated by an insulin-dependent overgrowth that arises from histone deacetylase (HDAC)-dependent β-cell hyperproliferation. A multi-dimensional analysis of monozygotic twin discordance reveals the existence of two patterns of human UPV, one of which (Type B) phenocopies the NNAT-buffered polyphenism identified in mice. Specifically, Type-B monozygotic co-twins exhibit coordinated increases in fat and lean mass across the body; decreased NNAT expression; increased HDAC-responsive gene signatures; and clinical outcomes linked to insulinemia. Critically, the Type-B UPV signature stratifies both childhood and adult cohorts into four metabolic states, including two phenotypically and molecularly distinct types of obesity.
Collapse
Affiliation(s)
- Chih-Hsiang Yang
- Van Andel Institute, Grand Rapids, MI, USA
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | | | - Vanessa Wegert
- Van Andel Institute, Grand Rapids, MI, USA
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Kathrin Landgraf
- Medical Faculty, University of Leipzig, University Hospital for Children & Adolescents, Center for Pediatric Research Leipzig, Leipzig, Germany
| | - Ilaria Panzeri
- Van Andel Institute, Grand Rapids, MI, USA
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Erez Dror
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Steffen Heyne
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Roche Diagnostics Deutschland, Mannheim, Germany
| | - Till Wörpel
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Di Lu
- Van Andel Institute, Grand Rapids, MI, USA
| | - Tao Yang
- Van Andel Institute, Grand Rapids, MI, USA
| | - Elizabeth Gibbons
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Rita Guerreiro
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Jose Bras
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Martin Thomasen
- Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
| | - Louise G Grunnet
- Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Allan A Vaag
- Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Linn Gillberg
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elin Grundberg
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, MO, USA
| | - Ana Conesa
- Institute for Integrative Systems Biology, Spanish National Research Council (CSIC), Paterna, Valencia, Spain
- Microbiology and Cell Science Department, University of Florida, Gainesville, FL, USA
| | - Antje Körner
- Medical Faculty, University of Leipzig, University Hospital for Children & Adolescents, Center for Pediatric Research Leipzig, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - J Andrew Pospisilik
- Van Andel Institute, Grand Rapids, MI, USA.
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
6
|
Dai Y, Kou H, Gui S, Guo X, Liu H, Gong Z, Sun X, Wang H, Guo Y. Prenatal dexamethasone exposure induced pancreatic β-cell dysfunction and glucose intolerance of male offspring rats: Role of the epigenetic repression of ACE2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154095. [PMID: 35219660 DOI: 10.1016/j.scitotenv.2022.154095] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 02/01/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
The prevalence of diabetes in children and adolescents has been rising gradually, which is relevant to adverse environment during development, especially prepartum. We aimed to explore the effects of prenatal dexamethasone exposure (PDE) on β-cell function and glucose homeostasis in juvenile offspring rats. Pregnant Wistar rats were subcutaneously administered with dexamethasone [0.1, 0.2, 0.4mg/(kg.d)] from gestational day 9 to 20. PDE impaired glucose tolerance in the male offspring rather than the females. In male offspring, PDE impaired the development and function of β-cells, accompanied with lower H3K9ac, H3K14ac and H3K27ac levels in the promoter region of angiotensin-converting enzyme 2 (ACE2) as well as suppressed ACE2 expression. Meanwhile, PDE increased expression of glucocorticoid receptor (GR) and histone deacetylase 3 (HDAC3) in fetal pancreas. Dexamethasone also inhibited ACE2 expression and insulin production in vitro. Recombinant expression of ACE2 restored insulin production inhibited by dexamethasone. In addition, dexamethasone activated GR and HDAC3, increased protein interaction of GR with HDAC3, and promoted the binding of GR-HDAC3 complex to ACE2 promoter region. Both RU486 and TSA abolished dexamethasone-induced decline of histone acetylation and ACE2 expression. In summary, suppression of ACE2 is involved in PDE induced β-cell dysfunction and glucose intolerance in juvenile male offspring rats.
Collapse
Affiliation(s)
- Yongguo Dai
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China.
| | - Hao Kou
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, Hubei Province, People's Republic of China
| | - Shuxia Gui
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China
| | - Xiaoling Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China
| | - Heze Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China
| | - Zheng Gong
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China
| | - Xiaoxiang Sun
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, Hubei Province, People's Republic of China.
| | - Yu Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, Hubei Province, People's Republic of China.
| |
Collapse
|
7
|
Andreadi A, Bellia A, Di Daniele N, Meloni M, Lauro R, Della-Morte D, Lauro D. The molecular link between oxidative stress, insulin resistance, and type 2 diabetes: A target for new therapies against cardiovascular diseases. Curr Opin Pharmacol 2022; 62:85-96. [PMID: 34959126 DOI: 10.1016/j.coph.2021.11.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 02/07/2023]
Abstract
Type 2 Diabetes Mellitus (T2D) is a chronic disease with a pandemic incidence whose pathogenesis has not yet been clarified. Raising evidence highlighted the role of oxidative stress in inducing insulin resistance, pancreatic beta-cell dysfunction, and leading to cardiovascular disease (CVD). Therefore, understanding the link between oxidative stress, T2D and CVD may help to further understand the pathological processes beyond this association, to personalize the algorithm of the cure, and to find new therapeutic targets. Here, we discussed the role of oxidative stress and the decrease of antioxidant defenses in the pathogenesis of T2D. Furthermore, some aspects of hypoglycemic therapies and their potential role as antioxidant agents were examined, which might be pivotal in preventing CVD in T2D patients.
Collapse
Affiliation(s)
- Aikaterini Andreadi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; University Hospital Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Alfonso Bellia
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; University Hospital Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Nicola Di Daniele
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; University Hospital Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Marco Meloni
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; University Hospital Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Renato Lauro
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - David Della-Morte
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; University Hospital Fondazione Policlinico Tor Vergata, Rome, Italy; San Raffaele Rome Open University, Rome, Italy; Department of Neurology, Evelyn F. McKnight Brain Institute, Miller School, Miami, USA
| | - Davide Lauro
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; University Hospital Fondazione Policlinico Tor Vergata, Rome, Italy.
| |
Collapse
|
8
|
De Smidt JJA, Odendaal HJ, Nel DG, Nolan H, Du Plessis C, Brink LT, Oelofse A. The effects of in utero exposure to teratogens on organ size: a prospective paediatric study. J Dev Orig Health Dis 2021; 12:748-757. [PMID: 33198841 PMCID: PMC8536468 DOI: 10.1017/s2040174420001002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In low-income countries, prospective data on combined effects of in utero teratogen exposure are lacking and necessitates new research. The aim of the present study was to explore the effect of in utero teratogen exposure on the size of the kidneys and pancreas 5 years after birth in a low-income paediatric population. Data was collected from 500 mother-child pairs from a low-income setting. Anthropometric measurements included body weight, (BW) body height, mid-upper arm and waist circumference (WC). Clinical measurements included blood pressure (BP), mean arterial pressure and heart rate. Ultrasound measurements included pancreas, and kidney measurements at age 5 years. The main outcome of interest was the effect of maternal smoking and alcohol consumption on ultrasound measurements of organ size at age 5 years. Left and right kidney length measurements were significantly lower in smoking exposed children compared to controls (p = 0.04 and p = 0.03). Pancreas body measurements were significantly lower in smoking exposed children (p = 0.04). Multiple regression analyses were used to examine the associations between the independent variables (IDVs), maternal age, body mass index (BMI), mid-upper arm circumference (MUAC) and BW of the child, on the dependent variables (DVs) kidney lengths and kidney volumes. Also, the association between in utero exposure to alcohol and nicotine and pancreas size. WC was strongest (r = 0.28; p < 0.01) associated with pancreas head [F (4, 454) = 13.44; R2 = 0.11; p < 0.01] and tail (r = 0.30; p < 0.01) measurements at age 5 years, with in utero exposure, sex of the child and BMI as covariates. Kidney length and pancreas body measurements are affected by in utero exposure to nicotine at age 5 years and might contribute to cardiometabolic risk in later life. Also, findings from this study report on ultrasound reference values for kidney and pancreas measurements of children at age 5 years from a low-income setting.
Collapse
Affiliation(s)
- J. J. A. De Smidt
- Department of Medical Biosciences, University of the Western Cape, Cape Town, South Africa
| | - H. J. Odendaal
- Department of Obstetrics and Gynaecology, Stellenbosch University, Stellenbosch, South Africa
| | - D. G. Nel
- Department of Statistics and Actuarial Science, Stellenbosch University, Stellenbosch, South Africa
| | - H. Nolan
- Department of Obstetrics and Gynaecology, Stellenbosch University, Stellenbosch, South Africa
| | - C. Du Plessis
- Department of Obstetrics and Gynaecology, Stellenbosch University, Stellenbosch, South Africa
| | - L. T. Brink
- Department of Obstetrics and Gynaecology, Stellenbosch University, Stellenbosch, South Africa
| | - A. Oelofse
- Department of Medical Biosciences, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
9
|
Davison GW, Irwin RE, Walsh CP. The metabolic-epigenetic nexus in type 2 diabetes mellitus. Free Radic Biol Med 2021; 170:194-206. [PMID: 33429021 DOI: 10.1016/j.freeradbiomed.2020.12.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
The prevalence of type 2 diabetes mellitus (T2DM) continues to rise globally. Yet the aetiology and pathophysiology of this noncommunicable, polygenic disease, is poorly understood. Lifestyle factors, such as poor dietary intake, lack of exercise, and abnormal glycaemia, are purported to play a role in disease onset and progression, and these environmental factors may disrupt specific epigenetic mechanisms, leading to a reprogramming of gene transcription. The hyperglycaemic cell per se, alters epigenetics through chemical modifications to DNA and histones via metabolic intermediates such as succinate, α-ketoglutarate and O-GlcNAc. To illustrate, α-ketoglutarate is considered a salient co-factor in the activation of the ten-eleven translocation (TET) dioxygenases, which drives DNA demethylation. On the contrary, succinate and other mitochondrial tricarboxylic acid cycle intermediates, inhibit TET activity predisposing to a state of hypermethylation. Hyperglycaemia depletes intracellular ascorbic acid, and damages DNA by enhancing the production of reactive oxygen species (ROS); this compromised cell milieu exacerbates the oxidation of 5-methylcytosine alongside a destabilisation of TET. These metabolic connections may regulate DNA methylation, affecting gene transcription and pancreatic islet β-cell function in T2DM. This complex interrelationship between metabolism and epigenetic alterations may provide a conceptual foundation for understanding how pathologic stimuli modify and control the intricacies of T2DM. As such, this narrative review will comprehensively evaluate and detail the interplay between metabolism and epigenetic modifications in T2DM.
Collapse
Affiliation(s)
- Gareth W Davison
- Ulster University, Sport and Exercise Sciences Research Institute, Newtownabbey, Northern Ireland, UK.
| | - Rachelle E Irwin
- Ulster University, Genomic Medicine Research Group, Biomedical Sciences Research Institute, Coleraine, Northern Ireland, UK
| | - Colum P Walsh
- Ulster University, Genomic Medicine Research Group, Biomedical Sciences Research Institute, Coleraine, Northern Ireland, UK
| |
Collapse
|
10
|
Kerry RG, Mahapatra GP, Maurya GK, Patra S, Mahari S, Das G, Patra JK, Sahoo S. Molecular prospect of type-2 diabetes: Nanotechnology based diagnostics and therapeutic intervention. Rev Endocr Metab Disord 2021; 22:421-451. [PMID: 33052523 DOI: 10.1007/s11154-020-09606-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
Abstract
About ninety percent of all diabetic conditions account for T2D caused due to abnormal insulin secretion/ action or increased hepatic glucose production. Factors that contribute towards the aetiology of T2D could be well explained through biochemical, molecular, and cellular aspects. In this review, we attempt to explain the recent evolving molecular and cellular advancement associated with T2D pathophysiology. Current progress fabricated in T2D research concerning intracellular signaling cascade, inflammasome, autophagy, genetic and epigenetics changes is discretely explained in simple terms. Present available anti-diabetic therapeutic strategies commercialized and their limitations which are needed to be acknowledged are addressed in the current review. In particular, the pre-eminence of nanotechnology-based approaches to nullify the inadequacy of conventional anti-diabetic therapeutics and heterogeneous nanoparticulated systems exploited in diabetic researches are also discretely mentioned and are also listed in a tabular format in the review. Additionally, as a future prospect of nanotechnology, the review presents several strategic hypotheses to ameliorate the austerity of T2D by an engineered smart targeted nano-delivery system. In detail, an effort has been made to hypothesize novel nanotechnological based therapeutic strategies, which exploits previously described inflammasome, autophagic target points. Utilizing graphical description it is explained how a smart targeted nano-delivery system could promote β-cell growth and development by inducing the Wnt signaling pathway (inhibiting Gsk3β), inhibiting inflammasome (inhibiting NLRP3), and activating autophagic target points (protecting Atg3/Atg7 complex from oxidative stress) thereby might ameliorate the severity of T2D. Additionally, several targeting molecules associated with autophagic and epigenetic factors are also highlighted, which can be exploited in future diabetic research.
Collapse
Affiliation(s)
- Rout George Kerry
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, 751004, India
| | | | - Ganesh Kumar Maurya
- Zoology Section, Mahila MahaVidyalya, Banaras Hindu University, Varanasi, 221005, India
| | - Sushmita Patra
- Department of Biotechnology, North Odissa University, Takatpur, Baripada, Odisha, 757003, India
| | - Subhasis Mahari
- DBT- National Institute of Animal Biotechnology, Hyderabad, 500032, India
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea.
| | - Sabuj Sahoo
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, 751004, India.
| |
Collapse
|
11
|
Abdelalim EM. Modeling different types of diabetes using human pluripotent stem cells. Cell Mol Life Sci 2021; 78:2459-2483. [PMID: 33242105 PMCID: PMC11072720 DOI: 10.1007/s00018-020-03710-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/19/2020] [Accepted: 11/11/2020] [Indexed: 12/22/2022]
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by chronic hyperglycemia as a result of progressive loss of pancreatic β cells, which could lead to several debilitating complications. Different paths, triggered by several genetic and environmental factors, lead to the loss of pancreatic β cells and/or function. Understanding these many paths to β cell damage or dysfunction could help in identifying therapeutic approaches specific for each path. Most of our knowledge about diabetes pathophysiology has been obtained from studies on animal models, which do not fully recapitulate human diabetes phenotypes. Currently, human pluripotent stem cell (hPSC) technology is a powerful tool for generating in vitro human models, which could provide key information about the disease pathogenesis and provide cells for personalized therapies. The recent progress in generating functional hPSC-derived β cells in combination with the rapid development in genomic and genome-editing technologies offer multiple options to understand the cellular and molecular mechanisms underlying the development of different types of diabetes. Recently, several in vitro hPSC-based strategies have been used for studying monogenic and polygenic forms of diabetes. This review summarizes the current knowledge about different hPSC-based diabetes models and how these models improved our current understanding of the pathophysiology of distinct forms of diabetes. Also, it highlights the progress in generating functional β cells in vitro, and discusses the current challenges and future perspectives related to the use of the in vitro hPSC-based strategies.
Collapse
Affiliation(s)
- Essam M Abdelalim
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha, Qatar.
| |
Collapse
|
12
|
Singh R, Chandel S, Dey D, Ghosh A, Roy S, Ravichandiran V, Ghosh D. Epigenetic modification and therapeutic targets of diabetes mellitus. Biosci Rep 2020; 40:BSR20202160. [PMID: 32815547 PMCID: PMC7494983 DOI: 10.1042/bsr20202160] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
The prevalence of diabetes and its related complications are increasing significantly globally. Collected evidence suggested that several genetic and environmental factors contribute to diabetes mellitus. Associated complications such as retinopathy, neuropathy, nephropathy and other cardiovascular complications are a direct result of diabetes. Epigenetic factors include deoxyribonucleic acid (DNA) methylation and histone post-translational modifications. These factors are directly related with pathological factors such as oxidative stress, generation of inflammatory mediators and hyperglycemia. These result in altered gene expression and targets cells in the pathology of diabetes mellitus without specific changes in a DNA sequence. Environmental factors and malnutrition are equally responsible for epigenetic states. Accumulated evidence suggested that environmental stimuli alter the gene expression that result in epigenetic changes in chromatin. Recent studies proposed that epigenetics may include the occurrence of 'metabolic memory' found in animal studies. Further study into epigenetic mechanism might give us new vision into the pathogenesis of diabetes mellitus and related complication thus leading to the discovery of new therapeutic targets. In this review, we discuss the possible epigenetic changes and mechanism that happen in diabetes mellitus type 1 and type 2 separately. We highlight the important epigenetic and non-epigenetic therapeutic targets involved in the management of diabetes and associated complications.
Collapse
Affiliation(s)
- Rajveer Singh
- National Institute of Pharmaceutical Education and Research, Kolkata 164, Manicktala Main Road, Kolkata 700054, India
| | - Shivani Chandel
- National Institute of Pharmaceutical Education and Research, Kolkata 164, Manicktala Main Road, Kolkata 700054, India
| | - Dhritiman Dey
- National Institute of Pharmaceutical Education and Research, Kolkata 164, Manicktala Main Road, Kolkata 700054, India
| | - Arijit Ghosh
- Department of Chemistry, University of Calcutta, Kolkata 700009, India
| | - Syamal Roy
- National Institute of Pharmaceutical Education and Research, Kolkata 164, Manicktala Main Road, Kolkata 700054, India
| | - Velayutham Ravichandiran
- National Institute of Pharmaceutical Education and Research, Kolkata 164, Manicktala Main Road, Kolkata 700054, India
| | - Dipanjan Ghosh
- National Institute of Pharmaceutical Education and Research, Kolkata 164, Manicktala Main Road, Kolkata 700054, India
| |
Collapse
|
13
|
Combined neurodevelopmental exposure to deltamethrin and corticosterone is associated with Nr3c1 hypermethylation in the midbrain of male mice. Neurotoxicol Teratol 2020; 80:106887. [PMID: 32348866 DOI: 10.1016/j.ntt.2020.106887] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/10/2020] [Accepted: 04/21/2020] [Indexed: 12/21/2022]
Abstract
Attention-Deficit Hyperactivity Disorder (ADHD) is one of the most common neurodevelopmental disorders and manifests inattention, hyperactivity, and impulsivity symptoms in childhood that can last throughout life. Genetic and environmental studies implicate the dopamine system in ADHD pathogenesis. Work from our group and that of others indicates that deltamethrin insecticide and stress exposure during neurodevelopment leads to alterations in dopamine function, and we hypothesized that exposure to both of these factors together would lead to synergistic effects on DNA methylation of key genes within the midbrain, a highly dopaminergic region, that could contribute to these findings. Through targeted next-generation sequencing of a panel of cortisol and dopamine pathway genes, we observed hypermethylation of the glucocorticoid receptor gene, Nr3c1, in the midbrain of C57/BL6N males in response to dual deltamethrin and corticosterone exposures during development. This is the first description of DNA methylation studies of Nr3c1 and key dopaminergic genes within the midbrain in response to a pyrethroid insecticide, corticosterone, and these two exposures together. Our results provide possible connections between environmental exposures that impact the dopamine system and the hypothalamic-pituitary-adrenal axis via changes in DNA methylation and provides new information about the presence of epigenetic effects in adulthood after exposure during neurodevelopment.
Collapse
|
14
|
Ma J, He X, Cao Y, O’Dwyer K, Szigety KM, Wu Y, Gurung B, Feng Z, Katona BW, Hua X. Islet-specific Prmt5 excision leads to reduced insulin expression and glucose intolerance in mice. J Endocrinol 2020; 244:41-52. [PMID: 31539871 PMCID: PMC6864278 DOI: 10.1530/joe-19-0268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 09/19/2019] [Indexed: 12/14/2022]
Abstract
Protein arginine methyltransferase 5 (PRMT5), a symmetric arginine methyltransferase, regulates cell functions by influencing gene transcription through posttranslational modification of histones and non-histone proteins. PRMT5 interacts with multiple partners including menin, which controls beta cell homeostasis. However, the role of Prmt5 in pancreatic islets, particularly in beta cells, remains unclear. A mouse model with an islet-specific knockout (KO) of the Prmt5 gene was generated, and the influence of the Prmt5 excision on beta cells was investigated via morphologic and functional studies. Beta cell function was evaluated by glucose tolerance test (GTT) and glucose-stimulated insulin secretion (GSIS) test. Beta cell proliferation was evaluated by immunostaining. Gene expression change was determined by real-time qPCR. Molecular mechanisms were investigated in beta cells in vitro and in vivo in Prmt5 KO mice. The results show that islet-specific KO of Prmt5 reduced expression of the insulin gene and impaired glucose tolerance and GSIS in vivo. The mechanistic study indicated that PRMT5 is involved in the regulation of insulin gene transcription, likely via histone methylation-related chromatin remodeling. The reduced expression of insulin in beta cells in the Prmt5 KO mice may contribute to impaired glucose tolerance (IGT) and deficient GSIS in the mouse model. These results will provide new insights into exploring novel strategies to treat diabetes caused by insulin insufficiency.
Collapse
Affiliation(s)
- Jian Ma
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104
| | - Xin He
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104
| | - Yan Cao
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104
| | - Kienan O’Dwyer
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104
| | - Katherine M. Szigety
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104
| | - Yuan Wu
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104
| | - Buddha Gurung
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104
| | - Zijie Feng
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104
| | - Bryson W. Katona
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104
| | - Xianxin Hua
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104
- Corresponding author: Dr. Xianxin Hua, Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA. 412 BRB II/III 421 Curie Boulevard, Philadelphia, PA 19104-6160, Phone: (215) 746-5565; Fax: (215) 746-5525;
| |
Collapse
|
15
|
Zhu Z, Cao F, Li X. Epigenetic Programming and Fetal Metabolic Programming. Front Endocrinol (Lausanne) 2019; 10:764. [PMID: 31849831 PMCID: PMC6901800 DOI: 10.3389/fendo.2019.00764] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/21/2019] [Indexed: 12/30/2022] Open
Abstract
Fetal metabolic programming caused by the adverse intrauterine environment can induce metabolic syndrome in adult offspring. Adverse intrauterine environment introduces fetal long-term relatively irreversible changes in organs and metabolism, and thus causes fetal metabolic programming leading metabolic syndrome in adult offspring. Fetal metabolic programming of obesity and insulin resistance plays a key role in this process. The mechanism of fetal metabolic programming is still not very clear. It is suggested that epigenetic programming, also induced by the adverse intrauterine environment, is a critical underlying mechanism of fetal metabolic programming. Fetal epigenetic programming affects gene expression changes and cellular function through epigenetic modifications without DNA nucleotide sequence changes. Epigenetic modifications can be relatively stably retained and transmitted through mitosis and generations, and thereby induce the development of metabolic syndrome in adult offspring. This manuscript provides an overview of the critical role of epigenetic programming in fetal metabolic programming.
Collapse
Affiliation(s)
- Ziqiang Zhu
- Children's Hospital of Soochow University, Suzhou, China
- Changzhou Maternity and Child Health Care Hospital affiliated to Nanjing Medical University, Changzhou, China
| | - Fang Cao
- Changzhou Maternity and Child Health Care Hospital affiliated to Nanjing Medical University, Changzhou, China
| | - Xiaozhong Li
- Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
16
|
Obesity and cardiovascular risk: a call for action from the European Society of Hypertension Working Group of Obesity, Diabetes and the High-risk Patient and European Association for the Study of Obesity: part A: mechanisms of obesity induced hypertension, diabetes and dyslipidemia and practice guidelines for treatment. J Hypertens 2019; 36:1427-1440. [PMID: 29634663 DOI: 10.1097/hjh.0000000000001730] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
: Obesity is a key factor for cardiovascular diseases and complications. Obesity is associated with hypertension, dyslipidemia and type II diabetes, which are the major predictors of cardiovascular disease in the future. It predisposes for atrial fibrillation, heart failure, sudden cardiac death, renal disease and ischemic stroke that are the main causes of cardiovascular hospitalization and mortality. As obesity and the cardiovascular effects on the vessels and the heart start early in life, even from childhood, it is important for health policies to prevent obesity very early before the disease manifestation emerge. Key roles in the prevention are strategies to increase physical exercise, reduce body weight and to prevent or treat hypertension, lipids disorders and diabetes earlier and efficiently to prevent cardiovascular complications.Epidemiology and mechanisms of obesity-induced hypertension, diabetes and dyslipidemia will be reviewed and the role of lifestyle modification and treatment strategies in obesity will be updated and analyzed. The best treatment options for people with obesity, hypertension, diabetes and dyslipidemia will discussed.
Collapse
|
17
|
Hills AP, Arena R, Khunti K, Yajnik CS, Jayawardena R, Henry CJ, Street SJ, Soares MJ, Misra A. Epidemiology and determinants of type 2 diabetes in south Asia. Lancet Diabetes Endocrinol 2018; 6:966-978. [PMID: 30287102 DOI: 10.1016/s2213-8587(18)30204-3] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 12/13/2022]
Abstract
Type 2 diabetes has rapidly developed into a major public health problem in south Asia (defined here as Bangladesh, Bhutan, India, Nepal, Pakistan, and Sri Lanka) in recent decades. During this period, major lifestyle changes associated with economic transition, industrialisation, urbanisation, and globalisation have been key determinants in the increasing burden of non-communicable diseases. A decline in nutrition quality, reduced physical activity, and increased sedentary behaviours are reflected in the increasing prevalence of type 2 diabetes and related risk factors in the region. The International Diabetes Federation 2017 estimates of the prevalence of diabetes in adults in the region range from 4·0% in Nepal to 8·8% in India. The prevalence of overweight ranges from 16·7% in Nepal to 26·1% in Sri Lanka, and the prevalence of obesity ranges from 2·9% in Nepal to 6·8% in Sri Lanka. An increasing proportion of children, adolescents, and women are overweight or obese, leading to a heightened risk of type 2 diabetes. Ethnic south Asians present with greater metabolic risk at lower levels of BMI compared with other ethnic groups (referred to as the south Asian phenotype), with type 2 diabetes often developing at a younger age, and with rapid progression of diabetic complications. Because of the presence of multiple risk factors and a body composition conducive to the development of type 2 diabetes, south Asians should be aggressively targeted for prevention. In this Series paper, we detail trends in the prevalence of diabetes in the region and address major determinants of the disease in the context of nutrition and physical activity transitions and the south Asian phenotype.
Collapse
Affiliation(s)
- Andrew P Hills
- College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia.
| | - Ross Arena
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois At Chicago, Chicago, IL, USA
| | - Kamlesh Khunti
- Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester, UK
| | | | - Ranil Jayawardena
- Department of Physiology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Christiani Jeyakumar Henry
- Singapore Institute for Clinical Sciences, Clinical Nutrition Research Centre, Brenner Centre for Molecular Medicine, Singapore
| | - Steven J Street
- College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Mario J Soares
- School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Anoop Misra
- Fortis C-DOC Centre of Excellence for Diabetes, Metabolic Diseases, and Endocrinology, New Delhi, India; National Diabetes, Obesity, and Cholesterol Foundation, New Delhi, India; Diabetes Foundation (India), New Delhi, India
| |
Collapse
|
18
|
Russo GT, Giorda CB, Cercone S, De Cosmo S, Nicolucci A, Cucinotta D. Beta cell stress in a 4-year follow-up of patients with type 2 diabetes: A longitudinal analysis of the BetaDecline Study. Diabetes Metab Res Rev 2018; 34:e3016. [PMID: 29669179 DOI: 10.1002/dmrr.3016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is associated with a progressive deterioration in beta cell function and loss of glycaemic control. Clinical predictors of beta cell failure are needed to guide appropriate therapy. METHODS A prospective evaluation of a large set of potential predictors of beta cell stress, measured as change in the proinsulin/insulin (PI/I) ratio, was conducted in a cohort of 235 outpatients with T2DM on stable treatment with oral hypoglycaemic agents or diet followed up for ~4 years (median value 3.9 years; interquartile range 3.8-4.1 years). RESULTS Overall, metabolic control deteriorated over time, with a significant increase in glycated haemoglobin (HbA1c; P < .0001), proinsulin (P < .0001), and PI/I ratio (P = .001), without significant changes in the homeostatic model assessment of insulin resistance. Multivariate regression analysis showed that for each 1% (10.9 mmol/mol) increase from baseline in HbA1c, the risk of beta cell stress increased by 3.8 times; for each 1% (10.9 mmol/mol) incremental increase in HbA1c during the study, risk of beta cell stress increased by 2.25 times that at baseline. By contrast, baseline anthropometric and clinical variables, lipid profile, inflammatory markers (PCR, IL-6), non-esterified fatty acids, and current therapies did not independently influence PI/I ratio variation during follow-up. CONCLUSIONS In this cohort of patients with T2DM, beta cell function progressively deteriorated despite current therapies. Among a large set of clinical and biochemical predictors, only baseline HbA1c levels and their deterioration overtime were associated with higher beta cell stress over time.
Collapse
Affiliation(s)
- Giuseppina T Russo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | | | - Salvatore De Cosmo
- Unit of Internal Medicine, Department of Medical Sciences, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Antonio Nicolucci
- Center for Outcomes Research and clinical Epidemiology (CORE), Pescara, Italy
| | - Domenico Cucinotta
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
19
|
Narayanan S, Loganathan G, Mokshagundam S, Hughes MG, Williams SK, Balamurugan AN. Endothelial cell regulation through epigenetic mechanisms: Depicting parallels and its clinical application within an intra-islet microenvironment. Diabetes Res Clin Pract 2018; 143:120-133. [PMID: 29953914 DOI: 10.1016/j.diabres.2018.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/31/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022]
Abstract
The intra-islet endothelial cells (ECs), the building blocks of islet microvasculature, govern a number of cellular and pathophysiological processes associated with the pancreatic tissue. These cells are key to the angiogenic process and essential for islet revascularization after transplantation. Understanding fundamental mechanisms by which ECs regulate the angiogenic process is important as these cells maintain and regulate the intra-islet environment facilitated by a complex signaling crosstalk with the surrounding endocrine cells. In recent years, many studies have demonstrated the impact of epigenetic regulation on islet cell development and function. This review will present an overview of the reports involving endothelial epigenetic mechanisms particularly focusing on histone modifications which have been identified to play a critical role in governing EC functions by modifying the chromatin structure. A better understanding of epigenetic mechanisms by which these cells regulate gene expression and function to orchestrate cellular physiology and pathology is likely to offer improved insights on the functioning and regulation of an intra-islet endothelial microvascular environment.
Collapse
Affiliation(s)
- Siddharth Narayanan
- Clinical Islet Cell Laboratory, Center for Cellular Transplantation, Cardiovascular Innovation Institute, Department of Surgery, University of Louisville, Louisville, KY 40202, United States
| | - Gopalakrishnan Loganathan
- Clinical Islet Cell Laboratory, Center for Cellular Transplantation, Cardiovascular Innovation Institute, Department of Surgery, University of Louisville, Louisville, KY 40202, United States
| | | | - Michael G Hughes
- Clinical Islet Cell Laboratory, Center for Cellular Transplantation, Cardiovascular Innovation Institute, Department of Surgery, University of Louisville, Louisville, KY 40202, United States
| | - Stuart K Williams
- Department of Physiology, University of Louisville, Louisville, KY 40202, United States
| | - Appakalai N Balamurugan
- Clinical Islet Cell Laboratory, Center for Cellular Transplantation, Cardiovascular Innovation Institute, Department of Surgery, University of Louisville, Louisville, KY 40202, United States.
| |
Collapse
|
20
|
Changes in Liver Gene Expression and Plasma Concentration of Rbp4, Fetuin-A, and Fgf21 in Sprague-Dawley Rats Subjected to Different Dietary Interventions and Bariatric Surgery. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3472190. [PMID: 30211220 PMCID: PMC6126060 DOI: 10.1155/2018/3472190] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/16/2018] [Accepted: 07/03/2018] [Indexed: 12/11/2022]
Abstract
Purpose To study the effect of duodenal-jejunal omega switch (DJOS) in combination with different dietary patterns on the retinol-binding protein (RBP4), fetuin-A, and fibroblast growth factor 21 (FGF21) plasma levels and their hepatic gene expressions in rats. Methods A high-fat diet (HF) was given to 28 rats and 28 more were fed with a control diet (CD) for 2 months. After that, half of each group underwent either DJOS or SHAM surgery. For the next 2 months, half of the animals in each operation group were kept on the same diet as before and half of them had the diet changed. After 16 weeks of the experiment RBP4, fetuin-A, and FGF21 plasma levels as well as liver Rbp4, Ahsg, and Fgf21 gene expressions were measured. Results DJOS had a reductive impact on plasma levels of RBP4, fetuin-A, and FGF21 and Rbp4, Ahsg, and Fgf21 relative gene expression in the liver when compared to SHAM. The HF/HF group expressed significantly higher RBP4 and fetuin-A plasma levels in comparison to the control. The HF diet used before and/or after surgery led to upregulation of Rbp4, Ahsg, and Fgf21 relative gene expression. The lowest levels of analyzed parameters were observed in the CD/CD group. Conclusions The efficiency of DJOS surgery, measured by hepatokines' plasma levels and their gene expressions in the liver, depends on the type of diet applied before and after surgery. Manipulation of dietary patterns can lead to marked improvements in metabolic profile after DJOS surgery.
Collapse
|
21
|
Qin K, Zhang N, Zhang Z, Nipper M, Zhu Z, Leighton J, Xu K, Musi N, Wang P. SIRT6-mediated transcriptional suppression of Txnip is critical for pancreatic beta cell function and survival in mice. Diabetologia 2018; 61:906-918. [PMID: 29322219 PMCID: PMC6203439 DOI: 10.1007/s00125-017-4542-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 12/04/2017] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS Better understanding of how genetic and epigenetic components control beta cell differentiation and function is key to the discovery of novel therapeutic approaches to prevent beta cell dysfunction and failure in the progression of type 2 diabetes. Our goal was to elucidate the role of histone deacetylase sirtuin 6 (SIRT6) in beta cell development and homeostasis. METHODS Sirt6 endocrine progenitor cell conditional knockout and beta cell-specific knockout mice were generated using the Cre-loxP system. Mice were assayed for islet morphology, glucose tolerance, glucose-stimulated insulin secretion and susceptibility to streptozotocin. Transcriptional regulatory functions of SIRT6 in primary islets were evaluated by RNA-Seq analysis. Reverse transcription-quantitative (RT-q)PCR and immunoblot were used to verify and investigate the gene expression changes. Chromatin occupancies of SIRT6, H3K9Ac, H3K56Ac and active RNA polymerase II were evaluated by chromatin immunoprecipitation. RESULTS Deletion of Sirt6 in pancreatic endocrine progenitor cells did not affect endocrine morphology, beta cell mass or insulin production but did result in glucose intolerance and defective glucose-stimulated insulin secretion in mice. Conditional deletion of Sirt6 in adult beta cells reproduced the insulin secretion defect. Loss of Sirt6 resulted in aberrant upregulation of thioredoxin-interacting protein (TXNIP) in beta cells. SIRT6 deficiency led to increased acetylation of histone H3 lysine residue at 9 (H3K9Ac), acetylation of histone H3 lysine residue at 56 (H3K56Ac) and active RNA polymerase II at the promoter region of Txnip. SIRT6-deficient beta cells exhibited a time-dependent increase in H3K9Ac, H3K56Ac and TXNIP levels. Finally, beta cell-specific SIRT6-deficient mice showed increased sensitivity to streptozotocin. CONCLUSIONS/INTERPRETATION Our results reveal that SIRT6 suppresses Txnip expression in beta cells via deacetylation of histone H3 and plays a critical role in maintaining beta cell function and viability. DATA AVAILABILITY Sequence data have been deposited in the National Institutes of Health (NIH) Gene Expression Omnibus (GEO) with the accession code GSE104161.
Collapse
Affiliation(s)
- Kunhua Qin
- Department of Molecular Medicine, University of Texas Health Science Centre at San Antonio, San Antonio, TX, USA
- Department of Cell Systems & Anatomy, University of Texas Health Science Centre at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Ning Zhang
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Centre at San Antonio, San Antonio, TX, USA
| | - Zhao Zhang
- Department of Molecular Medicine, University of Texas Health Science Centre at San Antonio, San Antonio, TX, USA
| | - Michael Nipper
- Department of Cell Systems & Anatomy, University of Texas Health Science Centre at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Zhenxin Zhu
- Department of Cell Systems & Anatomy, University of Texas Health Science Centre at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Jake Leighton
- Department of Cell Systems & Anatomy, University of Texas Health Science Centre at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Kexin Xu
- Department of Molecular Medicine, University of Texas Health Science Centre at San Antonio, San Antonio, TX, USA
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Centre at San Antonio, San Antonio, TX, USA
| | - Pei Wang
- Department of Cell Systems & Anatomy, University of Texas Health Science Centre at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
| |
Collapse
|
22
|
Sheu C, Paramithiotis E. Towards a personalized assessment of pancreatic function in diabetes. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2017. [DOI: 10.1080/23808993.2017.1385391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Carey Sheu
- Caprion Biosciences Inc - Translational Research, Montreal, Canada
| | | |
Collapse
|
23
|
Gene-Diet Interactions in Type 2 Diabetes: The Chicken and Egg Debate. Int J Mol Sci 2017; 18:ijms18061188. [PMID: 28574454 PMCID: PMC5486011 DOI: 10.3390/ijms18061188] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/23/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023] Open
Abstract
Consistent evidence from both experimental and human studies indicates that Type 2 diabetes mellitus (T2DM) is a complex disease resulting from the interaction of genetic, epigenetic, environmental, and lifestyle factors. Nutrients and dietary patterns are important environmental factors to consider in the prevention, development and treatment of this disease. Nutritional genomics focuses on the interaction between bioactive food components and the genome and includes studies of nutrigenetics, nutrigenomics and epigenetic modifications caused by nutrients. There is evidence supporting the existence of nutrient-gene and T2DM interactions coming from animal studies and family-based intervention studies. Moreover, many case-control, cohort, cross-sectional cohort studies and clinical trials have identified relationships between individual genetic load, diet and T2DM. Some of these studies were on a large scale. In addition, studies with animal models and human observational studies, in different countries over periods of time, support a causative relationship between adverse nutritional conditions during in utero development, persistent epigenetic changes and T2DM. This review provides comprehensive information on the current state of nutrient-gene interactions and their role in T2DM pathogenesis, the relationship between individual genetic load and diet, and the importance of epigenetic factors in influencing gene expression and defining the individual risk of T2DM.
Collapse
|
24
|
Sharma A. Transgenerational epigenetics: Integrating soma to germline communication with gametic inheritance. Mech Ageing Dev 2017; 163:15-22. [PMID: 28093237 DOI: 10.1016/j.mad.2016.12.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/07/2016] [Accepted: 12/13/2016] [Indexed: 12/28/2022]
Abstract
Evidence supporting germline mediated epigenetic inheritance of environmentally induced traits has increasingly emerged over the past several years. Although the mechanisms underlying this inheritance remain unclear, recent findings suggest that parental gamete-borne epigenetic factors, particularly RNAs, affect post-fertilization and developmental gene regulation, ultimately leading to phenotypic appearance in the offspring. Complex processes involving gene expression and epigenetic regulation are considered to perpetuate across generations. In addition to transfer of germline factors, epigenetic inheritance via gametes also requires a mechanism whereby the information pertaining to the induced traits is communicated from soma to germline. Despite violating a century-old view in biology, this communication seems to play a role in transmission of environmental effects across generations. Circulating RNAs, especially those associated with extracellular vesicles like exosomes, are emerging as promising candidates that can transmit gene regulatory information in this direction. Cumulatively, these new observations provide a basis to integrate epigenetic inheritance. With significant implications in health, disease and ageing, the latter appears poised to revolutionize biology.
Collapse
Affiliation(s)
- Abhay Sharma
- CSIR-Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Sukhdev Vihar, Mathura Road, New Delhi, 110025, India.
| |
Collapse
|