1
|
Fan L, Liu J, Li L, Yang X, Zhao Q, Zhao L. Echinacoside alleviates type 2 diabetes mellitus through inhibiting hepatic gluconeogenesis via gut bacterial-fungal trans-kingdom network reconstruction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156802. [PMID: 40300262 DOI: 10.1016/j.phymed.2025.156802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/08/2025] [Accepted: 04/21/2025] [Indexed: 05/01/2025]
Abstract
BACKGROUND Echinacoside (ECH), a natural phenylethanoid glycoside, has demonstrated protective effects against type 2 diabetes mellitus (T2DM). However, the mechanism underlying the low bioavailability yet advantageous anti-diabetic of ECH remains unresolved. PURPOSE To elucidate the mechanism of ECH against T2DM through gut microbiota-mediated host metabolism for the first time. STUDY DESIGN AND METHODS A T2DM mouse model was established using a high-fat diet in combination with streptozotocin injection. The therapeutic effects of ECH against T2DM were evaluated by measuring fasting blood glucose (FBG), insulin resistance, glucose intolerance, blood lipids and organ damage in mice. Fecal 16S rRNA and ITS sequencing techniques were employed to characterize the composition of gut microbiota, followed by analysis of bacterial-fungal trans-kingdom network. Metabolomics was conducted to assess the ECH-induced metabolite profile alterations. Additionally, the predicted mechanism of ECH on T2DM was investigated through measuring the hepatic gluconeogenesis markers and inflammation by western blotting, immunohistochemistry, enzymatic assays and antimicrobial mixture (ABX) experiments. RESULTS ECH exhibited significant protective effects against T2DM, as evidenced by reductions in FBG and fasting insulin levels, improvements in glucose and insulin tolerance, attenuations of hyperlipidemia, and alleviation of liver, kidney, and colon damage in T2DM mice. Furthermore, ECH modulated gut microbiota by decreasing the abundances of conditional pathogenic intestinal bacteria (Klebsiella and Escherichia-Shigella) and fungi (Debarymoyces), while increasing beneficial bacteria (Lactobacillus) and fungi (Wallemia and Penicillium). Moreover, ECH could restore the disrupted trans-kingdom network between gut fungi and bacteria, thereby suppressing the inflammation-mediated hepatic gluconeogenesis via downregulation of FBP1, PCK1 and G6PC expression. Correspondingly, ABX experiments indicated that once the regulatory function of gut microbiota imbalance was blocked, the anti-T2DM effects of ECH were weakened, accompanied by a failure to improve the levels of inflammation and key gluconeogenic markers in T2DM mice. CONCLUSION This study presents novel evidence indicating that ECH alleviates T2DM through inhibiting hepatic gluconeogenesis via gut bacterial-fungal trans-kingdom network reconstruction. These findings suggest that ECH may serve as a promising therapeutic strategy for T2DM management, providing new insights for the prevention and treatment of clinical diabetes and its complications.
Collapse
Affiliation(s)
- Li Fan
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Jian Liu
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lin Li
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xueping Yang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qingwei Zhao
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Lijuan Zhao
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
2
|
He S, Xue T, Geng R, Wang Q, Wang B, Wen L, Li M, Hu J, Yang J. Mapping the evolution of anti-diabetic polysaccharides research: Trends, collaborations, and emerging frontiers. Eur J Pharmacol 2025; 997:177479. [PMID: 40054717 DOI: 10.1016/j.ejphar.2025.177479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/12/2025]
Abstract
Diabetes Mellitus, characterized by insufficient insulin secretion, pancreatic beta cell damage, or insulin resistance, is the third most prevalent chronic metabolic disease worldwide. Polysaccharides, biocompatible natural macromolecules, have garnered significant attention for their potential in modulating diabetes through various mechanisms. Despite extensive studies, a comprehensive and impartial evaluation of anti-diabetic polysaccharides (ATDPs) research is still lacking. This study employs bibliometric and knowledge mapping techniques to analyze research trends and developments concerning ATDPs. A total of 3435 publications from 2001 to 2024 were examined, revealing a marked increase in publication volume and citation frequency, particularly since 2016. Network analysis indicates China as the leading contributor, with the highest number of publications and prominent institutions. The International Journal of Biological Macromolecules is identified as the most prolific journal in this field. Shaoping Nie stands out as a leading researcher with the highest citation frequency and h-index. Current research trends focus on the role of polysaccharides in regulating oxidative stress and inflammation, modulation of gut microbiota, and their structural characterization. Emerging studies investigate how these polysaccharides impact gut microbiota composition, enhance intestinal barrier functions, and modulate immune responses, representing cutting-edge areas in diabetes research. This research pioneers the use of bibliometric analysis to map ATDPs research trajectories, offering valuable insights into prevailing trends, emerging topics, and opportunities for future research and collaboration.
Collapse
Affiliation(s)
- Shengqi He
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, China
| | - Taotao Xue
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, China; Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, 830011, China
| | - Ruoyu Geng
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, China
| | - Qianqian Wang
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, China
| | - Baojuan Wang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China; Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, 830011, China
| | - Limei Wen
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China; Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, 830011, China
| | - Mingjie Li
- People's Hospital of Shaya, Akesu, 842200, China
| | - Junping Hu
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, China; Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi, 830054, China.
| | - Jianhua Yang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China; Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, 830011, China.
| |
Collapse
|
3
|
Hahn S, Han IW, Shin SH, Kim G, Kim JH. Modeling diabetic intestinal organoids: Aspects of rapid gut barrier disruption. Biochem Biophys Res Commun 2025; 760:151730. [PMID: 40168710 DOI: 10.1016/j.bbrc.2025.151730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Accepted: 03/28/2025] [Indexed: 04/03/2025]
Abstract
Increased intestinal permeability can occur in patients with diabetes mellitus. Previous studies demonstrated a correlation between impaired intestinal barrier function, elevated blood glucose levels, and diminished protective capacity of intestinal epithelial cells. However, few studies have explored gut-barrier disruption using three-dimensional (3D) in vitro models. In this study, we developed and optimized a 3D intestinal organoid model that mimics diabetic conditions by exposing the organoids to high glucose (HG) and palmitic acid (PA) levels. Human intestinal organoids derived from samples of both healthy individuals and patients with diabetes mellitus were analyzed. We evaluated the transcript levels of tight junction proteins and inflammation-related genes in ex vivo mouse intestinal organoids cultured under HG and PA conditions for 48 h. Human intestinal organoids from patients with diabetes mellitus exhibited reduced expression of genes associated with intestinal function and barrier integrity compared with those from healthy individuals. In mouse intestinal organoids, PA treatment induced cytotoxicity and significantly reduced the expression of intestinal stem cells and tight junction proteins, including zonula occludens-1 and occludin, compared with the control and HG-treated groups. Furthermore, treatment with HG and PA resulted in increased levels of inflammatory factors compared with those in the control group. Our in vitro model using 3D intestinal organoids can be used to investigate the impact of diabetic conditions and provide insights into gut barrier disruption.
Collapse
Affiliation(s)
- Soojung Hahn
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - In Woong Han
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Sang Hyun Shin
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Gyuri Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Jae Hyeon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea.
| |
Collapse
|
4
|
Qin W, Zheng S, Zhou L, Liu X, Chen T, Wang X, Li Q, Zhao Y, Wang D, Xu G. High-Coverage Metabolomics Reveals Gut Microbiota-Related Metabolic Traits of Type-2 Diabetes in Serum. J Proteome Res 2025; 24:1649-1661. [PMID: 40130449 DOI: 10.1021/acs.jproteome.4c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Metabolic perturbations of the gut microbiome have been implicated in the pathogenesis of multiple human diseases, including type-2 diabetes (T2D). However, our understanding of the global metabolic alterations of the gut microbiota in T2D and their functional roles remains limited. To address this, we conducted a high-coverage metabolomics profiling analysis of serum samples from 1282 Chinese individuals with and without T2D. Among the 220 detected microbiota-associated compounds detected, 111 were significantly altered, forming a highly interactive regulatory network associated with T2D development. Pathway enrichment and correlation analyses revealed aberrant metabolic pathways, primarily including the activation of pyrimidine metabolism, unsaturated fatty acid biosynthesis, and diverse amino acid metabolisms such as Tryptophan metabolism, Lysine metabolism, and Branched-chain amino acid biosynthesis. A microbiota-dependent biomarker panel, comprising pipecolinic acid, methoxysalicylic acid, N-acetylhistamine, and 3-hydroxybutyrylcarnitine, was defined and validated with satisfactory sensitivity (>78%) for large-scale, population-based T2D screening. The functional role of a gut microbial product, N-acetylhistamine, was further elucidated in T2D progression through its inhibition of adenosine monophosphate-activated protein kinase phosphorylation. Overall, this study expands our understanding of gut microbiota-driven metabolic dysregulation in T2D and suggests that monitoring these metabolic changes could facilitate the diagnosis and treatment of T2D.
Collapse
Affiliation(s)
- Wangshu Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Sijia Zheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lina Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Tiantian Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolin Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Qi Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Ying Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Difei Wang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Wang S, Lin H, Jia X, Lin Y, Hu C, Li M, Xu Y, Xu M, Zheng J, Zhao X, Li Y, Chen L, Zeng T, Hu R, Ye Z, Shi L, Su Q, Chen Y, Yu X, Yan L, Wang T, Zhao Z, Qin G, Wan Q, Chen G, Dai M, Zhang D, Qiu B, Zhu X, Liu R, Wang X, Tang X, Gao Z, Shen F, Gu X, Luo Z, Qin Y, Chen L, Hou X, Huo Y, Li Q, Wang G, Zhang Y, Liu C, Wang Y, Wu S, Yang T, Deng H, Zhao J, Mu Y, Xu G, Lai S, Li D, Ning G, Wang W, Bi Y, Lu J. Circulating short-chain and branched short-chain fatty acids and the risk of incident type 2 diabetes: findings from the 4C study. LIFE METABOLISM 2025; 4:loaf001. [PMID: 40078932 PMCID: PMC11897982 DOI: 10.1093/lifemeta/loaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 03/14/2025]
Abstract
Previous studies suggested that fecal short-chain fatty acids (SCFAs) and branched short-chain fatty acids (BCFAs) are associated with glucose regulation. However, the potential relationship between circulating SCFAs and BCFAs with incident diabetes risk in both men and women remains unidentified in prospective cohort studies. In this study, we examined a panel of nine serum SCFAs and BCFAs in 3414 subjects with incident diabetes, and matched normoglycemic controls from the China Cardiometabolic Disease and Cancer Cohort study. In fully adjusted conditional logistic regression models, total SCFAs, total BCFAs, and isovaleric acid were significantly associated with incident type 2 diabetes mellitus (T2DM) (P < 0.05). Interestingly, gender-specific analysis showed that per standard deviation (SD) increment of SCFAs were positively associated with incident T2DM among women, with the odds ratio (95% confidence interval) of 1.16 (1.05-1.29) for total SCFAs and 1.18 (1.07-1.31) for propionate, respectively (P < 0.05, false discovery rate (FDR) < 0.05). No significant associations were observed in men. A significant interaction was detected between men and women for propionate (P interaction < 0.001, FDR < 0.01). After further adjustment of insulin measurements, the associations of serum propionate with diabetes remained significant (P < 0.05, FDR < 0.05). Meanwhile, the associations of total BCFAs and isovaleric acid with diabetes were partially mediated by triglycerides, insulin resistance, and β-cell function in mediation analysis. These findings, for the first time in a large prospective cohort, provide evidence for an association between circulating SCFAs and BCFAs with T2DM risk, and support the potential role of circulating propionate with gender disparities in the early pathogenesis of diabetes.
Collapse
Affiliation(s)
- Shuangyuan Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hong Lin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaojing Jia
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yiting Lin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chunyan Hu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mian Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Min Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinjie Zhao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Yanli Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Lulu Chen
- Department of Endocrine and Metabolic Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Tianshu Zeng
- Department of Endocrine and Metabolic Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Ruying Hu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China
| | - Zhen Ye
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China
| | - Lixin Shi
- Department of Endocrine and Metabolic Diseases, Affiliated Hospital of Guiyang Medical College, Guiyang, Guizhou 550004, China
| | - Qing Su
- Department of Endocrine and Metabolic Diseases, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yuhong Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xuefeng Yu
- Department of Endocrine and Metabolic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Li Yan
- Department of Endocrine and Metabolic Diseases, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
| | - Tiange Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhiyun Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guijun Qin
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Qin Wan
- Department of Endocrine and Metabolic Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Gang Chen
- Department of Endocrine and Metabolic Diseases, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian 350003, China
| | - Meng Dai
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Di Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bihan Qiu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaoyan Zhu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ruixin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiao Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xulei Tang
- Department of Endocrine and Metabolic Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zhengnan Gao
- Department of Endocrine and Metabolic Diseases, Dalian Municipal Central Hospital, Dalian, Liaoning 116033, China
| | - Feixia Shen
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xuejiang Gu
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zuojie Luo
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yingfen Qin
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Li Chen
- Department of Endocrine and Metabolic Diseases, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Xinguo Hou
- Department of Endocrine and Metabolic Diseases, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Yanan Huo
- Department of Endocrine and Metabolic Diseases, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, China
| | - Qiang Li
- Department of Endocrine and Metabolic Diseases, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Guixia Wang
- Department of Endocrine and Metabolic Diseases, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yinfei Zhang
- Department of Endocrine and Metabolic Diseases, Central Hospital of Shanghai Jiading District, Shanghai 201800, China
| | - Chao Liu
- Department of Endocrine and Metabolic Diseases, Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing, Jiangsu 210028, China
| | - Youmin Wang
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Shengli Wu
- Department of Endocrine and Metabolic Diseases, Karamay Municipal People’s Hospital, Karamay, Xinjiang 834000, China
| | - Tao Yang
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Huacong Deng
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jiajun Zhao
- Department of Endocrine and Metabolic Diseases, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Yiming Mu
- Department of Endocrine and Metabolic Diseases, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Guowang Xu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Shenghan Lai
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jieli Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People’s Republic of China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
6
|
Dufresne K. Fatty acid composition in the vaginal tract of cis-gender women: canary in coal mines for reproductive health? Lipids Health Dis 2025; 24:80. [PMID: 40033320 PMCID: PMC11874694 DOI: 10.1186/s12944-025-02489-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/16/2025] [Indexed: 03/05/2025] Open
Abstract
The vaginal tract of cis-gender women of reproductive age is inhabited by communities of bacteria generally dominated by one of four Lactobacillus species. These bacteria are important for the reproductive health of women and favor better outcomes, including fertility, pregnancy leading to term and protection against infections. Past studies have focused on the role of carbohydrates in the balance of vaginal communities, and the role of fatty acids has been underestimated. However, small- to long-chain fatty acids present few properties that, in combination with sugar metabolism, affect the outcomes of the health or disease within the vaginal communities. Herein, we explore the origins of fatty acids in the vaginal tract as well as their roles in the bacterial life cycle in this environment. We also detail the putative impact of vaginal FAs on S. aureus, one of the etiologic agents of aerobic vaginitis. Finally, we discuss their potential for prevention or therapy in women of reproductive age.
Collapse
Affiliation(s)
- Karine Dufresne
- Département des sciences biologiques, Université du Québec à Montréal, Montréal, Canada.
| |
Collapse
|
7
|
Qin L, Fan B, Zhou Y, Zheng J, Diao R, Wang F, Liu J. Targeted gut microbiome therapy: Applications and prospects of probiotics, fecal microbiota transplantation and natural products in the management of type 2 diabetes. Pharmacol Res 2025; 213:107625. [PMID: 39875017 DOI: 10.1016/j.phrs.2025.107625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/21/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025]
Abstract
Type 2 diabetes mellitus (T2DM) is considered as one of the most pressing public health challenges worldwide. Studies have shown significant differences in the gut microbiota between healthy individuals and T2DM patients, suggesting that gut microorganisms may play a key role in the onset and progression of T2DM. This review systematically summarizes the relationship between gut microbiota and T2DM, and explores the mechanisms through which gut microorganisms may alleviate T2DM. Additionally, it evaluates the potential of probiotics, fecal microbiota transplantation (FMT)/virome transplantation (FVT), and natural products in modulating gut microbiota to treat T2DM. Although existing studies have suggested that these interventions may delay or even halt the progression of T2DM, most research remained limited to animal models and observational clinical studies, with a lack of high-quality clinical data. This has led to an imbalance between theoretical research and clinical application. Although some studies have explored the regulatory role of the gut virome on the gut microbiota, research in this area remains in its early stages. Based on these current studies, future research should be focused on large-scale, long-term clinical studies and further investigation on the potential role of the gut virome in T2DM. In conclusion, this review aims to summarize the current evidence and explore the applications of gut microbiota in T2DM treatment, as well as providing recommendations for further investigation in this field.
Collapse
Affiliation(s)
- Luqi Qin
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Bei Fan
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Yixia Zhou
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Jiahuan Zheng
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Rao Diao
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Fengzhong Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China.
| | - Jiameng Liu
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No.2, Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China.
| |
Collapse
|
8
|
Escalante J, Artaiz O, Diwakarla S, McQuade RM. Leaky gut in systemic inflammation: exploring the link between gastrointestinal disorders and age-related diseases. GeroScience 2025; 47:1-22. [PMID: 39638978 PMCID: PMC11872833 DOI: 10.1007/s11357-024-01451-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/20/2024] [Indexed: 12/07/2024] Open
Abstract
Global average life expectancy has steadily increased over the last several decades and is projected to reach ~ 77 years by 2050. As it stands, the number of people > 60 years currently outnumbers children younger than 5 years, and by 2050, it is anticipated that the global population of people aged > 60 years will double, surpassing 2.1 billion. This demographic shift in our population is expected to have substantial consequences on health services globally due to the disease burden associated with aging. Osteoarthritis, chronic obstructive pulmonary disease, diabetes, cardiovascular disease, and cognitive decline associated with dementia are among the most common age-related diseases and contribute significantly to morbidity and mortality in the aged population. Many of these age-related diseases have been linked to chronic low-grade systemic inflammation which often accompanies aging. Gastrointestinal barrier dysfunction, also known as "leaky gut," has been shown to contribute to systemic inflammation in several diseases including inflammatory bowel disease and irritable bowel syndrome, but its role in the development and/or progression of chronic low-grade systemic inflammation during aging is unclear. This review outlines current literature on the leaky gut in aging, how leaky gut might contribute to systemic inflammation, and the links between gastrointestinal inflammatory diseases and common age-related diseases to provide insight into a potential relationship between the intestinal barrier and inflammation.
Collapse
Affiliation(s)
- Jonathan Escalante
- Gut-Barrier and Disease Laboratory, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, 3021, Australia
| | - Olivia Artaiz
- Gut-Barrier and Disease Laboratory, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, 3021, Australia
| | - Shanti Diwakarla
- Gut-Barrier and Disease Laboratory, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, 3021, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3010, Australia
| | - Rachel M McQuade
- Gut-Barrier and Disease Laboratory, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, 3021, Australia.
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3010, Australia.
- Australian Institute for Musculoskeletal Science (AIMSS), The Melbourne University and Western Health, Melbourne, VIC, 3021, Australia.
| |
Collapse
|
9
|
Liang J, Lin X, Liao X, Chen X, Zhou Y, Zhang L, Qin Y, Meng H, Feng Z. Global bibliometric analysis of traditional Chinese medicine regulating gut microbiota in the treatment of diabetes from 2004 to 2024. Front Pharmacol 2025; 16:1533984. [PMID: 39917613 PMCID: PMC11799270 DOI: 10.3389/fphar.2025.1533984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/07/2025] [Indexed: 02/09/2025] Open
Abstract
Objectives The therapeutic efficacy of Traditional Chinese Medicine (TCM) in modulating gut microbiota for diabetes treatment has garnered increasing scholarly attention. This study aims to meticulously examine current research trajectories and focal areas from 2004 to 2024, providing a foundational framework for future inquiries. Methods A comprehensive search of documents published between 2004 and 2024 was conducted using the Web of Science database. The resulting data were analyzed and visualized using R software, VOSviewer, and CiteSpace. Results The study included a total of 751 documents. From 2004 to 2022, the number of annual publications showed a continuous upward trend (2004: n = 1 to 2022: n = 159), and the number of publications in 2023 (n = 141) decreased slightly from the previous year. China emerged as the leading country in terms of article publications (n = 430). Additionally, the United States played a prominent role in international research collaborations. Frontiers in Pharmacology (n = 31) was the most frequently published journal, while Nature (n = 1,147) achieved the highest citation count. Key identified keywords included obesity, insulin resistance, inflammation, and oxidative stress. Conclusion Three key research focuses in this domain include: the therapeutic effects of active constituents in TCM on diabetes via gut microbiota modulation, the underlying mechanisms through which TCM influences gut microbiota in diabetes management, and the targeted regulation of specific gut bacterial populations by TCM in the treatment of diabetes.
Collapse
Affiliation(s)
- Jieling Liang
- Department of Pharmacy, Guilin Hospital of the Second Xiangya Hospital, Central South University, Guilin, China
| | - Xiaojuan Lin
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xin Liao
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xi Chen
- Department of Pharmacy, Guilin Hospital of the Second Xiangya Hospital, Central South University, Guilin, China
| | - Ying Zhou
- Department of Pharmacy, Guilin Hospital of the Second Xiangya Hospital, Central South University, Guilin, China
| | - Lin Zhang
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yunyun Qin
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Haoru Meng
- Phase 1 Clinical Trial Laboratory, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zhongwen Feng
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
10
|
Szymczak-Pajor I, Drzewoski J, Kozłowska M, Krekora J, Śliwińska A. The Gut Microbiota-Related Antihyperglycemic Effect of Metformin. Pharmaceuticals (Basel) 2025; 18:55. [PMID: 39861118 PMCID: PMC11768994 DOI: 10.3390/ph18010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
It is critical to sustain the diversity of the microbiota to maintain host homeostasis and health. Growing evidence indicates that changes in gut microbial biodiversity may be associated with the development of several pathologies, including type 2 diabetes mellitus (T2DM). Metformin is still the first-line drug for treatment of T2DM unless there are contra-indications. The drug primarily inhibits hepatic gluconeogenesis and increases the sensitivity of target cells (hepatocytes, adipocytes and myocytes) to insulin; however, increasing evidence suggests that it may also influence the gut. As T2DM patients exhibit gut dysbiosis, the intestinal microbiome has gained interest as a key target for metabolic diseases. Interestingly, changes in the gut microbiome were also observed in T2DM patients treated with metformin compared to those who were not. Therefore, the aim of this review is to present the current state of knowledge regarding the association of the gut microbiome with the antihyperglycemic effect of metformin. Numerous studies indicate that the reduction in glucose concentration observed in T2DM patients treated with metformin is due in part to changes in the biodiversity of the gut microbiota. These changes contribute to improved intestinal barrier integrity, increased production of short-chain fatty acids (SCFAs), regulation of bile acid metabolism, and enhanced glucose absorption. Therefore, in addition to the well-recognized reduction of gluconeogenesis, metformin also appears to exert its glucose-lowering effect by influencing gut microbiome biodiversity. However, we are only beginning to understand how metformin acts on specific microorganisms in the intestine, and further research is needed to understand its role in regulating glucose metabolism, including the impact of this remarkable drug on specific microorganisms in the gut.
Collapse
Affiliation(s)
- Izabela Szymczak-Pajor
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland;
| | - Józef Drzewoski
- Central Teaching Hospital of the Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland; (J.D.); (J.K.)
| | - Małgorzata Kozłowska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland;
| | - Jan Krekora
- Central Teaching Hospital of the Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland; (J.D.); (J.K.)
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland;
| |
Collapse
|
11
|
Yang J, Wu Y, Jiang Z, Jiao L, Wang Y. Fecal fatty acid profile reveals the therapeutic effect of red ginseng acidic polysaccharide on type 2 diabetes mellitus in rats. J Food Sci 2025; 90:e70015. [PMID: 39832227 DOI: 10.1111/1750-3841.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/13/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
This study aimed to investigate the potential hypoglycemic mechanism of red ginseng acidic polysaccharides (RGAP) from the perspective of fatty acid (FA) regulation. A high-glucose/high-fat diet in conjunction with streptozotocin administration was employed to establish type 2 diabetes mellitus (T2DM) rat models, and their fecal FAs were detected using the liquid chromatography-mass spectrometry (LC-MS) method. RGAP treatment alleviated the polyphagia, polydipsia, weight loss, and hyperglycemia observed in T2DM rats. FA profile was disturbed by T2DM modeling, and 11 marker FAs were selected from statistical analysis, whose intensities were reversely changed by RGAP administration. Among these marker FAs, short-chain FAs were negatively correlated with the fasting blood glucose (FBG) level, while positive correlations were observed between long-chain FA and the FBG level. Combined with the metabolite-enzyme-gene network analysis, we inferred that the mechanistic mechanism RGAP on T2DM may be associated with the regulation of FA metabolism and inflammation-related signaling pathways. This study confirmed the regulatory effect of RGAP on fecal FA, which can provide a scientific basis and new ideas for developing red ginseng as a functional food for supplementary treatment of T2DM.
Collapse
Affiliation(s)
- Jingxuan Yang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Yi Wu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Ziye Jiang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Lili Jiao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Yang Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
12
|
Geniselli da Silva V, Tonkie JN, Roy NC, Smith NW, Wall C, Kruger MC, Mullaney JA, McNabb WC. The effect of complementary foods on the colonic microbiota of weaning infants: a systematic review. Crit Rev Food Sci Nutr 2024:1-16. [PMID: 39682025 DOI: 10.1080/10408398.2024.2439036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The transition from breastmilk to solid foods (weaning) is a decisive stage for the development of the colonic microbiota. However, little is known about how complementary foods influence the composition and function of the colonic microbiota in infants. This systematic review collected evidence of the effect of individual foods on the fecal microbiota of weaning infants (4-12 months old) using five databases: PubMed, CENTRAL, Scopus, Web of Science, and ScienceDirect. A total of 3625 records were examined, and seven randomized clinical trials met the review's eligibility criteria. Altogether, 983 participants were enrolled, and plant-based foods, meats, and dairy products were used as interventions. Wholegrain cereal increased the fecal abundance of the order Bacteroidales in the two included studies. Pureed beef increased the fecal abundances of the genus Bacteroides and the Clostridium XIVa group, as well as microbial richness in two of the three included studies. However, the conclusions of this review are limited by the small number of studies included. No conclusions could be drawn about the impact of complementary foods on fecal metabolites. Further clinical trials assessing the effect of dietary interventions on both fecal microbial composition and function are needed to fill this knowledge gap in infant nutrition.
Collapse
Affiliation(s)
- Vitor Geniselli da Silva
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New
- Riddet Institute, Massey University, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Jacqueline Nicole Tonkie
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New
- Riddet Institute, Massey University, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Nicole Clémence Roy
- Riddet Institute, Massey University, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | | | - Clare Wall
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Department of Nutrition and Dietetics, The University of Auckland, Auckland, New Zealand
| | - Marlena Cathorina Kruger
- Riddet Institute, Massey University, Palmerston North, New Zealand
- School of Health Sciences, Massey University, Palmerston North, New Zealand
| | - Jane Adair Mullaney
- Riddet Institute, Massey University, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- AgResearch, Palmerston North, New Zealand
| | - Warren Charles McNabb
- Riddet Institute, Massey University, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| |
Collapse
|
13
|
Wang X, Qin Y, Li J, Huang P, Li Y, Huang J, Wang Q, Yang H. Vitamin B5 supplementation enhances intestinal development and alters microbes in weaned piglets. Anim Biotechnol 2024; 35:2335340. [PMID: 38587818 DOI: 10.1080/10495398.2024.2335340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
This study explored the effects of different vitamin B5 (VB5) levels on intestinal growth and function of weaned piglets. Twenty-one piglets (7.20 ± 1.11 kg) were included in a 28-day feeding trial with three treatments, including 0 mg/kg (L-VB5), 10 mg/kg (Control) and 50 mg/kg (H-VB5) of VB5 supplement. The results showed that: Large intestine weight/body weight was the highest in H-VB5 group, Control and H-VB5 groups had significantly higher villus height and villus height/crypt depth than the L-VB5 in the ileum (p < .05). Goblet cells (ileal crypt) and endocrine cells (ileal villus) significantly increased in Control and H-VB5 (p < .05). The H-VB5 group exhibited significantly higher levels of ki67 and crypt depth in the cecum and colon, colonic goblet cells and endocrine cells were both rising considerably (p < .05). Isobutyric acid and isovaleric acid were significantly reduced in the H-VB5 group (p < .05), and there was a decreasing trend in butyric acid (p = .073). At the genus level, the relative abundance of harmful bacteria such as Clostridium_Sensu_Structo_1 Strecto_1, Terrisporbacter and Streptococcus decreased significantly and the relative abundance of beneficial bacteria Turicibacter increased significantly in H-VB5 group (p < .05). Overall, the addition of 50 mg/kg VB5 primarily enhanced the morphological structure, cell proliferation and differentiation of the ileum, cecum and colon. It also had a significant impact on the gut microbiota and short-chain fatty acids.
Collapse
Affiliation(s)
- Xin Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yan Qin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Jianzhong Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Pengfei Huang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yali Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Jing Huang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Qiye Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Huansheng Yang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| |
Collapse
|
14
|
da Silva VG, Smith NW, Mullaney JA, Wall C, Roy NC, McNabb WC. Food-breastmilk combinations alter the colonic microbiome of weaning infants: an in silico study. mSystems 2024; 9:e0057724. [PMID: 39191378 PMCID: PMC11406890 DOI: 10.1128/msystems.00577-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
The introduction of solid foods to infants, also known as weaning, is a critical point for the development of the complex microbial community inhabiting the human colon, impacting host physiology in infancy and later in life. This research investigated in silico the impact of food-breastmilk combinations on growth and metabolite production by colonic microbes of New Zealand weaning infants using the metagenome-scale metabolic model named Microbial Community. Eighty-nine foods were individually combined with breastmilk, and the 12 combinations with the strongest influence on the microbial production of short-chain fatty acids (SCFAs) and branched-chain fatty acids (BCFAs) were identified. Fiber-rich and polyphenol-rich foods, like pumpkin and blackcurrant, resulted in the greatest increase in predicted fluxes of total SCFAs and individual fluxes of propionate and acetate when combined, respectively, with breastmilk. Identified foods were further combined with other foods and breastmilk, resulting in 66 multiple food-breastmilk combinations. These combinations altered in silico the impact of individual foods on the microbial production of SCFAs and BCFAs, suggesting that the interaction between the dietary compounds composing a meal is the key factor influencing colonic microbes. Blackcurrant combined with other foods and breastmilk promoted the greatest increase in the production of acetate and total SCFAs, while pork combined with other foods and breastmilk decreased the production of total BCFAs.IMPORTANCELittle is known about the influence of complementary foods on the colonic microbiome of weaning infants. Traditional in vitro and in vivo microbiome methods are limited by their resource-consuming concerns. Modeling approaches represent a promising complementary tool to provide insights into the behavior of microbial communities. This study evaluated how foods combined with other foods and human milk affect the production of short-chain fatty acids and branched-chain fatty acids by colonic microbes of weaning infants using a rapid and inexpensive in silico approach. Foods and food combinations identified here are candidates for future experimental investigations, helping to fill a crucial knowledge gap in infant nutrition.
Collapse
Affiliation(s)
- Vitor G da Silva
- Riddet Institute, Massey University, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Nick W Smith
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Jane A Mullaney
- Riddet Institute, Massey University, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- AgResearch, Palmerston North, New Zealand
| | - Clare Wall
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Department of Nutrition and Dietetics, The University of Auckland, Auckland, New Zealand
| | - Nicole C Roy
- Riddet Institute, Massey University, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - Warren C McNabb
- Riddet Institute, Massey University, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| |
Collapse
|
15
|
Jiang H, Feng S, Zhang P, Wang J, Jiang Y, Zhang H, Song X, Huang W, Xie Y, Deng C. Petroleum ether extract of Schisandra sphenanthera prevents hyperglycemia and insulin resistance in association with modulation of sweet taste receptors and gut microbiota in T2DM rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118300. [PMID: 38718889 DOI: 10.1016/j.jep.2024.118300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 04/26/2024] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schisandra sphenanthera (Schisandra sphenanthera Rehd. et Wils.) is the dried mature fruit of Schisandra sphenanthera, a plant in the Magnoliaceae family. It was used in the treatment of diabetes mellitus in the Jade Fluid Decoction and the Xiaoke pills, which were recorded in ancient books. However, its mechanism of action in the treatment of type 2 diabetes mellitus (T2DM) was unclear and needs further study. AIM OF THE STUDY This research aimed to investigate the chemical composition and lignan content of Schisandra sphenanthera petroleum ether parts (SPEP) and to evaluate the effects of SPEP on sweet taste receptors (STRs) and intestinal flora in rats on a high-fat diet (HFD). Additionally, the relationships between SPEP and hyperglycemia and insulin resistance were examined. MATERIALS AND METHODS GC-MS was used to determine the chemical composition of SPEP, and HPLC was used to determine the lignin content. A combination of the HFD and the administration of streptozotocin (STZ) was employed to generate a rat model of T2DM. Petroleum ether extracts from Schisandra sphenanthera were used as the focus of the research to evaluate the effects of these extracts on the glucolipid metabolism of T2DM rats, as well as the underlying mechanisms. RESULTS Analysis of the GC-MS spectrum of SESP revealed a total of 58 compounds. HPLC analysis revealed that SPEP had the highest concentration of Schisandrin A and the lowest concentration of Schisandrol A. The drug administration intervention resulted in a significant decrease in body weight and pancreatic weight of diabetic rats compared to the Normal group. When compared to the Model group, the body weight of rats in the drug administration group and the Metformin group had a more moderate decrease, while the pancreatic weight and pancreatic-to-body ratio increased. The Model group shown significant increases in FBG, OGTT, GHb, TC, TG, LDL-C, ALT, AST, MDA, FINS, and NEFA, as well as significant decreases in HDL-C and SOD, when compared to the Normal group (P < 0.05). The administration of each group was found to be significantly effective in decreasing FBG, OGTT, GHb, TC, TG, LDL-C, ALT, AST, MDA, FINS, NEFA, while increasing HDL-C and SOD when compared to the Model group. The application of SPEP had a positive impact on hepatocyte swelling, hepatocyte degeneration, and necrosis, as well as the morphological structure of pancreatic islet cells. Furthermore, the protein expression levels of T1R2, TRPM5 and GLP-1 in the small intestine of the Model group were reduced. After a period of six weeks, the protein expression levels began to align more closely with those of the Normal group of rats. Analysis of 16S rRNA sequencing revealed that the intestinal microbiota of diabetic rats was significantly disrupted, with a decrease in the abundance of the Firmicutes phylum and an increase in the abundance of the Bacteroidetes phylum. Furthermore, the composition of the dominant genus was distinct from that of the control group. After the drug intervention, the microbiota of diabetic rats was significantly altered, exhibiting a higher abundance and diversity, as well as a significant enrichment of the community. The SPEP treatment resulted in a significant increase in acetic acid, propionic acid, and butyric acid. CONCLUSIONS The findings of this research indicated that SPEP could be effective in treating T2DM through the regulation of STRs, the adjustment of disturbed metabolite levels, and the alteration of intestinal flora.
Collapse
Affiliation(s)
- Haihui Jiang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Shibo Feng
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Panpan Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Jiaojiao Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yi Jiang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China; Shaanxi Key Lab. of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, 712046, China; Key Research Laboratory of the Administration of Traditional Chinese Medicine of Shaanxi Province: Research and Application of Tai Bai Seven Medicines, Xianyang, 712046, China
| | - Huawei Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China; Key Research Laboratory of the Administration of Traditional Chinese Medicine of Shaanxi Province: Research and Application of Tai Bai Seven Medicines, Xianyang, 712046, China
| | - Xiaomei Song
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China; Shaanxi Key Lab. of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, 712046, China; Key Research Laboratory of the Administration of Traditional Chinese Medicine of Shaanxi Province: Research and Application of Tai Bai Seven Medicines, Xianyang, 712046, China
| | - Wenli Huang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China; Key Research Laboratory of the Administration of Traditional Chinese Medicine of Shaanxi Province: Research and Application of Tai Bai Seven Medicines, Xianyang, 712046, China
| | - Yundong Xie
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Chong Deng
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China; Shaanxi Key Lab. of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, 712046, China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China; Shaanxi Provincial Administration of Traditional Chinese Medicine Key Laboratory of Mechanical and Material Basis of Chinese Medicine, Xianyang, 712046, China; Key Research Laboratory of the Administration of Traditional Chinese Medicine of Shaanxi Province: Research and Application of Tai Bai Seven Medicines, Xianyang, 712046, China.
| |
Collapse
|
16
|
Wang J, Zhang J, Yu ZL, Chung SK, Xu B. The roles of dietary polyphenols at crosstalk between type 2 diabetes and Alzheimer's disease in ameliorating oxidative stress and mitochondrial dysfunction via PI3K/Akt signaling pathways. Ageing Res Rev 2024; 99:102416. [PMID: 39002644 DOI: 10.1016/j.arr.2024.102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/06/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
Alzheimer's disease (AD) is a fatal neurodegenerative disease in which senile plaques and neurofibrillary tangles are crucially involved in its physiological and pathophysiological processes. Growing animal and clinical studies have suggested that AD is also comorbid with some metabolic diseases, including type 2 diabetes mellitus (T2DM), and therefore, it is often considered brain diabetes. AD and T2DM share multiple molecular and biochemical mechanisms, including impaired insulin signaling, oxidative stress, gut microbiota dysbiosis, and mitochondrial dysfunction. In this review article, we mainly introduce oxidative stress and mitochondrial dysfunction and explain their role and the underlying molecular mechanism in T2DM and AD pathogenesis; then, according to the current literature, we comprehensively evaluate the possibility of regulating oxidative homeostasis and mitochondrial function as therapeutics against AD. Furthermore, considering dietary polyphenols' antioxidative and antidiabetic properties, the strategies for applying them as potential therapeutical interventions in patients with AD symptoms are assessed.
Collapse
Affiliation(s)
- Jingwen Wang
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jingyang Zhang
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Zhi-Ling Yu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Sookja Kim Chung
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
17
|
Yang T, Wu C, Li Y, Wang C, Mao Z, Huo W, Li J, Li Y, Xing W, Li L. Association of short-chain fatty acids and the gut microbiome with type 2 diabetes: Evidence from the Henan Rural Cohort. Nutr Metab Cardiovasc Dis 2024; 34:1619-1630. [PMID: 38653672 DOI: 10.1016/j.numecd.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND AND AIMS Human studies about short-chain fatty acids (SCFAs), the gut microbiome, and Type 2 diabetes (T2DM) are limited. Here we explored the association between SCFAs and T2DM and the effects of gut microbial diversity on glucose status in rural populations. METHODS AND RESULTS We performed a cross-sectional study from the Henan Rural Cohort and collected stool samples. Gut microbiota composition and faecal SCFA concentrations were measured by 16S rRNA and GC-MS. The population was divided based on the tertiles of SCFAs, and logistic regression models assessed the relationship between SCFAs and T2DM. Generalized linear models tested the interactions between SCFAs and gut microbial diversity on glucose indicators (glucose, HbAlc and insulin). Compared to the lowest tertile of total SCFA, acetate and butyrate, the highest tertile exhibited lower T2DM prevalence, with ORs and 95% CIs of 0.291 (0.085-0.991), 0.160 (0.044-0.574) and 0.171 (0.047-0.620), respectively. Restricted cubic spline demonstrated an approximately inverse S-shaped association. We also noted interactions of the ACE index with the highest tertile of valerate on glucose levels (P-interaction = 0.022) and the Shannon index with the middle tertile of butyrate on insulin levels (P-interaction = 0.034). Genus Prevotella_9 and Odoribacter were inversely correlated with T2DM, and the genus Blautia was positively associated with T2DM. These bacteria are common SCFA-producing members. CONCLUSIONS Inverse S-shaped associations between SCFAs (total SCFA, acetate, and butyrate) and T2DM were observed. Valerate and butyrate modify glucose status with increasing gut microbial diversity.
Collapse
Affiliation(s)
- Tianyu Yang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Cuiping Wu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yuqian Li
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Chongjian Wang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zhenxing Mao
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Wenqian Huo
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jia Li
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yan Li
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Wenguo Xing
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Linlin Li
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
18
|
Li L, Chen Y, Tang Z, You Y, Guo Y, Liao Y. Effect of metformin on gut microbiota imbalance in patients with T2DM, and the value of probiotic supplementation. Allergol Immunopathol (Madr) 2024; 52:84-90. [PMID: 38970270 DOI: 10.15586/aei.v52i4.1101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/21/2024] [Indexed: 07/08/2024]
Abstract
PURPOSE To investigate the effect of metformin on gut microbiota imbalance in patients with type 2 diabetes mellitus (T2DM), and the value of probiotic supplementation. METHODS A total of 84 newly diagnosed T2DM patients were randomly divided into probiotics group, metformin group, and control group, with 28 patients in each group. The blood glucose control, islet function, gut microbiota, and inflammatory factors were compared between three groups. RESULTS After 3 months of treatment, fasting plasma glucose (FPG), 2-h postprandial plasma glucose (2-h PG), and glycosylated hemoglobin A1c (HbA1c) were evidently decreased in both probiotics and metformin groups (P < 0.05) and were lower than that in the control group prior to treatment. Besides, FPG, 2-h PG, and HbA1c were lower in the metformin group than that in the control group. FPG, 2-h PG, and HbA1c were further lower in the probiotic group than in the metformin group (P < 0.05). Fasting insulin (FINS) and islet β cell (HOMA-β) -function were dramatically increased in the same group (P < 0.05), while insulin-resistant islet β cells (HOMA-IR) were significantly lower in the same group (P < 0.05); FINS and HOMA-β were significantly higher, while HOMA-IR was significantly lower (P < 0.05) in both groups than in the control group prior to treatment. HOMA-IR was also lower in the probiotic group than in the metformin group after treatment (P < 0.05); the number of lactobacilli and bifidobacteria increased (P < 0.05) in both probiotic and metformin groups than in the control group prior to treatment, and the number of Enterobacteriaceae and Enterococcus was lower in the control group prior to treatment (P < 0.05). In addition, the number of lactobacilli and bifidobacteria was higher and the number of enterobacteria and enterococci was lower in the probiotic group than that in the metformin group after treatment, and the differences were statistically significant (P < 0.05). Lipopolysaccharide (LPS), interleukin 6 (IL-6), and C-reactive protein (CRP) levels were lower in both probiotic and metformin groups (P < 0.05). The serum LPS, IL-6, and CRP levels were lower in both probiotic and metformin groups, compared to the control group prior to the treatment (P < 0.05). CONCLUSION Metformin while treating T2DM assists in improving the imbalance of gut microbiota.
Collapse
Affiliation(s)
- Lu Li
- Department of Pharmacy, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei Province, China
| | - Yanli Chen
- Department of Pharmacy, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei Province, China
| | - Zhipeng Tang
- Department of Pharmacy, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei Province, China
| | - Yan You
- Department of Pharmacy, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei Province, China
| | - Yang Guo
- Department of Pharmacy, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei Province, China
| | - Yong Liao
- Department of Pharmacy, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei Province, China;
| |
Collapse
|
19
|
Shinoda A, Lkhagvajav T, Mishima R, Therdtatha P, Jamiyan D, Purevdorj C, Sonomtseren S, Chimeddorj B, Namdag B, Lee YK, Demberel S, Nakayama J. Gut microbiome signatures associated with type 2 diabetes in obesity in Mongolia. Front Microbiol 2024; 15:1355396. [PMID: 38983625 PMCID: PMC11231203 DOI: 10.3389/fmicb.2024.1355396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/11/2024] [Indexed: 07/11/2024] Open
Abstract
Mongolian people possess a unique dietary habit characterized by high consumption of meat and dairy products and fewer vegetables, resulting in the highest obesity rate in East Asia. Although obesity is a known cause of type 2 diabetes (T2D), the T2D rate is moderate in this population; this is known as the "Mongolian paradox." Since the gut microbiota plays a key role in energy and metabolic homeostasis as an interface between food and body, we investigated gut microbial factors involved in the prevention of the co-occurrence of T2D with obesity in Mongolians. We compared the gut microbiome and metabolome of Mongolian adults with obesity with T2D (DO: n = 31) or without T2D (NDO: n = 35). Dysbiotic signatures were found in the gut microbiome of the DO group; lower levels of Faecalibacterium and Anaerostipes which are known as short-chain fatty acid (SCFA) producers and higher levels of Methanobrevibacter, Desulfovibrio, and Solobacterium which are known to be associated with certain diseases. On the other hand, the NDO group exhibited a higher level of fecal SCFA concentration, particularly acetate. This is consistent with the results of the whole shotgun metagenomic analysis, which revealed a higher relative abundance of SCFA biosynthesis-related genes encoded largely by Anaerostipes hadrus in the NDO group. Multiple logistic regression analysis including host demographic parameters indicated that acetate had the highest negative contribution to the onset of T2D. These findings suggest that SCFAs produced by the gut microbial community participate in preventing the development of T2D in obesity in Mongolians.
Collapse
Affiliation(s)
- Akari Shinoda
- Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Tsogtbaatar Lkhagvajav
- Laboratory of Physiology and Pathology of Young Animals, Institute of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar, Mongolia
| | - Riko Mishima
- Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Phatthanaphong Therdtatha
- Division of Biotechnology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Dugersuren Jamiyan
- Laboratory of Physiology and Pathology of Young Animals, Institute of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar, Mongolia
| | | | - Sainbileg Sonomtseren
- Department of Endocrinology, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Battogtokh Chimeddorj
- Department of Microbiology and Infection Prevention Control, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Bira Namdag
- Department of the Gastroenterology, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Yuan Kun Lee
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Shirchin Demberel
- Laboratory of Physiology and Pathology of Young Animals, Institute of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar, Mongolia
| | - Jiro Nakayama
- Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
20
|
Li J, Li Y, Zhang S, Wang C, Mao Z, Huo W, Yang T, Li Y, Xing W, Li L. Association of the short-chain fatty acid levels and dietary quality with type 2 diabetes: a case-control study based on Henan Rural Cohort. Br J Nutr 2024; 131:1668-1677. [PMID: 38343180 DOI: 10.1017/s0007114524000400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Evidence of the relationship between fecal short-chain fatty acids (SCFA) levels, dietary quality and type 2 diabetes mellitus (T2DM) in rural populations is limited. Here, we aimed to investigate the association between fecal SCFA levels and T2DM and the combined effects of dietar quality on T2DM in rural China. In total, 100 adults were included in the case-control study. Dietary quality was assessed by the Alternate Healthy Eating Index 2010 (AHEI-2010), and SCFA levels were analysed using the GC-MS system. Generalised linear regression was conducted to calculate the OR and 95 % CI to evaluate the effect of SCFA level and dietary quality on the risk of T2DM. Finally, an interaction was used to study the combined effect of SCFA levels and AHEI-2010 scores on T2DM. T2DM participants had lower levels of acetic and butyric acid. Generalised linear regression analysis revealed that the OR (95 % CI) of the highest acetic and butyric acid levels were 0·099 (0·022, 0·441) and 0·210 (0·057, 0·774), respectively, compared with the subjects with the lowest tertile of level. We also observed a significantly lower risk of T2DM with acetic acid levels > 1330·106 μg/g or butyric acid levels > 585·031 μg/g. Moreover, the risks of higher acetic and butyric acid levels of T2DM were 0·007 (95 % CI: 0·001, 0·148), 0·005 (95 % CI: 0·001, 0·120) compared with participants with lower AHEI-2010 scores (all P < 0·05). Acetate and butyrate levels may be important modifiable beneficial factors affecting T2DM in rural China. Improving dietary quality for body metabolism balance should be encouraged to promote good health.
Collapse
Affiliation(s)
- Jia Li
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan450001, People's Republic of China
| | - Yuqian Li
- Department of Clinical Pharmacology, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Shuhua Zhang
- Comprehensive Laboratory, Puyang Quality and Technical Supervision, Inspection and Testing Center, Puyang, Henan, People's Republic of China
| | - Chongjian Wang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan450001, People's Republic of China
| | - Zhenxing Mao
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan450001, People's Republic of China
| | - Wenqian Huo
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan450001, People's Republic of China
| | - Tianyu Yang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan450001, People's Republic of China
| | - Yan Li
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan450001, People's Republic of China
| | - Wenguo Xing
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan450001, People's Republic of China
| | - Linlin Li
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan450001, People's Republic of China
| |
Collapse
|
21
|
Tao Y, Peng F, Wang L, Sun J, Ding Y, Xiong S, Tenzin U, MiMa, Nhamdriel T, Fan G. Ji-Ni-De-Xie ameliorates type 2 diabetes mellitus by modulating the bile acids metabolism and FXR/FGF15 signaling pathway. Front Pharmacol 2024; 15:1383896. [PMID: 38835663 PMCID: PMC11148236 DOI: 10.3389/fphar.2024.1383896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/22/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction: Ji-Ni-De-Xie (JNDX) is a traditional herbal preparation in China. It is widely used to treat type 2 diabetes mellitus (T2DM) in traditional Tibetan medicine system. However, its antidiabetic mechanisms have not been elucidated. The aim of this study is to elucidate the underlying mechanism of JNDX on bile acids (BAs) metabolism and FXR/FGF15 signaling pathway in T2DM rats. Methods: High-performance liquid chromatography-triple quadrupole mass spectrometry (HPLC-QQQ-MS) and UPLC-Q-Exactive Orbitrap MS technology were used to identify the constituents in JNDX. High-fat diet (HFD) combined with streptozotocin (45 mg∙kg-1) (STZ) was used to establish a T2DM rat model, and the levels of fasting blood-glucose (FBG), glycosylated serum protein (GSP), homeostasis model assessment of insulin resistance (HOMA-IR), LPS, TNF-α, IL-1β, IL-6, TG, TC, LDL-C, HDL-C, and insulin sensitivity index (ISI) were measured to evaluate the anti-diabetic activity of JNDX. In addition, metagenomic analysis was performed to detect changes in gut microbiota. The metabolic profile of BAs was analyzed by HPLC-QQQ-MS. Moreover, the protein and mRNA expressions of FXR and FGF15 in the colon and the protein expressions of FGF15 and CYP7A1 in the liver of T2DM rats were measured by western blot and RT-qPCR. Results: A total of 12 constituents were identified by HPLC-QQQ-MS in JNDX. Furthermore, 45 chemical components in serum were identified from JNDX via UPLC-Q-Exactive Orbitrap MS technology, including 22 prototype components and 23 metabolites. Using a T2DM rat model, we found that JNDX (0.083, 0.165 and 0.33 g/kg) reduced the levels of FBG, GSP, HOMA-IR, LPS, TNF-α, IL-1β, IL-6, TG, TC, and LDL-C, and increased ISI and HDL-C levels in T2DM rats. Metagenomic results demonstrated that JNDX treatment effectively improved gut microbiota dysbiosis, including altering some bacteria (e.g., Streptococcus and Bacteroides) associated with BAs metabolism. Additionally, JNDX improved BAs disorder in T2DM rats, especially significantly increasing cholic acid (CA) levels and decreasing ursodeoxycholic acid (UDCA) levels. Moreover, the protein and mRNA expressions of FXR and FGF15 of T2DM rats were significantly increased, while the expression of CYP7A1 protein in the liver was markedly inhibited by JNDX. Discussion: JNDX can effectively improve insulin resistance, hyperglycemia, hyperlipidemia, and inflammation in T2DM rats. The mechanism is related to its regulation of BAs metabolism and activation of FXR/FGF15 signaling pathway.
Collapse
Affiliation(s)
- Yiwen Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lijie Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiayi Sun
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yin Ding
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuangfeng Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ugen Tenzin
- Dege County Tibetan Hospital (Institute of Tibetan Medicine), Dege, China
| | - MiMa
- Department of Tibetan Medicine, University of Tibetan Medicine, Lhasa, China
| | - Tsedien Nhamdriel
- Department of Tibetan Medicine, University of Tibetan Medicine, Lhasa, China
| | - Gang Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, China
| |
Collapse
|
22
|
Zhang J, Wang H, Liu Y, Shi M, Zhang M, Zhang H, Chen J. Advances in fecal microbiota transplantation for the treatment of diabetes mellitus. Front Cell Infect Microbiol 2024; 14:1370999. [PMID: 38660489 PMCID: PMC11039806 DOI: 10.3389/fcimb.2024.1370999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Diabetes mellitus (DM) refers to a group of chronic diseases with global prevalence, characterized by persistent hyperglycemia resulting from various etiologies. DM can harm various organ systems and lead to acute or chronic complications, which severely endanger human well-being. Traditional treatment mainly involves controlling blood sugar levels through replacement therapy with drugs and insulin; however, some patients still find a satisfactory curative effect difficult to achieve. Extensive research has demonstrated a close correlation between enteric dysbacteriosis and the pathogenesis of various types of DM, paving the way for novel therapeutic approaches targeting the gut microbiota to manage DM. Fecal microbiota transplantation (FMT), a method for re-establishing the intestinal microbiome balance, offers new possibilities for treating diabetes. This article provides a comprehensive review of the correlation between DM and the gut microbiota, as well as the current advancements in FMT treatment for DM, using FMT as an illustrative example. This study aims to offer novel perspectives and establish a theoretical foundation for the clinical diagnosis and management of DM.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Endocrinology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Honggang Wang
- Department of Gastroenterology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Ying Liu
- Department of Endocrinology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Min Shi
- Department of Endocrinology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Minna Zhang
- Department of Gastroenterology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Hong Zhang
- Department of Endocrinology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Juan Chen
- Department of Endocrinology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| |
Collapse
|
23
|
Hamamah S, Iatcu OC, Covasa M. Nutrition at the Intersection between Gut Microbiota Eubiosis and Effective Management of Type 2 Diabetes. Nutrients 2024; 16:269. [PMID: 38257161 PMCID: PMC10820857 DOI: 10.3390/nu16020269] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Nutrition is one of the most influential environmental factors in both taxonomical shifts in gut microbiota as well as in the development of type 2 diabetes mellitus (T2DM). Emerging evidence has shown that the effects of nutrition on both these parameters is not mutually exclusive and that changes in gut microbiota and related metabolites such as short-chain fatty acids (SCFAs) and branched-chain amino acids (BCAAs) may influence systemic inflammation and signaling pathways that contribute to pathophysiological processes associated with T2DM. With this background, our review highlights the effects of macronutrients, carbohydrates, proteins, and lipids, as well as micronutrients, vitamins, and minerals, on T2DM, specifically through their alterations in gut microbiota and the metabolites they produce. Additionally, we describe the influences of common food groups, which incorporate varying combinations of these macronutrients and micronutrients, on both microbiota and metabolic parameters in the context of diabetes mellitus. Overall, nutrition is one of the first line modifiable therapies in the management of T2DM and a better understanding of the mechanisms by which gut microbiota influence its pathophysiology provides opportunities for optimizing dietary interventions.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Oana C. Iatcu
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| |
Collapse
|
24
|
Tao Z, Wang Y. The health benefits of dietary short-chain fatty acids in metabolic diseases. Crit Rev Food Sci Nutr 2024; 65:1579-1592. [PMID: 38189336 DOI: 10.1080/10408398.2023.2297811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Short-chain fatty acids (SCFAs) are a subset of fatty acids that play crucial roles in maintaining normal physiology and developing metabolic diseases, such as obesity, diabetes, cardiovascular disease, and liver disease. Even though dairy products and vegetable oils are the direct dietary sources of SCFAs, their quantities are highly restricted. SCFAs are produced indirectly through microbial fermentation of fibers. The biological roles of SCFAs in human health and metabolic diseases are mainly due to their receptors, GPR41 and GPR43, FFAR2 and FFAR3. Additionally, it has been demonstrated that SCFAs modulate DNMTs and HDAC activities, inhibit NF-κB-STAT signaling, and regulate G(i/o)βγ-PLC-PKC-PTEN signaling and PPARγ-UCP2-AMPK autophagic signaling, thus mitigating metabolic diseases. Recent studies have uncovered that SCFAs play crucial roles in epigenetic modifications of DNAs, RNAs, and post-translational modifications of proteins, which are critical regulators of metabolic health and diseases. At the same time, dietary recommendations for the purpose of SCFAs have been proposed. The objective of the review is to summarize the most recent research on the role of dietary SCFAs in metabolic diseases, especially the signal transduction of SCFAs in metabolic diseases and their functional efficacy in different backgrounds and models of metabolic diseases, at the same time, to provide dietary and nutritional recommendations for using SCFAs as food ingredients to prevent metabolic diseases.
Collapse
Affiliation(s)
- Zhipeng Tao
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
- Department of Nutrition Sciences, Texas Woman's University, Denton, Texas, USA
| | - Yao Wang
- Diabetes Center, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
25
|
Li J, Zhu N, Wang Y, Bao Y, Xu F, Liu F, Zhou X. Application of Metabolomics and Traditional Chinese Medicine for Type 2 Diabetes Mellitus Treatment. Diabetes Metab Syndr Obes 2023; 16:4269-4282. [PMID: 38164418 PMCID: PMC10758184 DOI: 10.2147/dmso.s441399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Diabetes is a major global public health problem with high incidence and case fatality rates. Traditional Chinese medicine (TCM) is used to help manage Type 2 Diabetes Mellitus (T2DM) and has steadily gained international acceptance. Despite being generally accepted in daily practice, the TCM methods and hypotheses for understanding diseases lack applicability in the current scientific characterization systems. To date, there is no systematic evaluation system for TCM in preventing and treating T2DM. Metabonomics is a powerful tool to predict the level of metabolites in vivo, reveal the potential mechanism, and diagnose the physiological state of patients in time to guide the follow-up intervention of T2DM. Notably, metabolomics is also effective in promoting TCM modernization and advancement in personalized medicine. This review provides updated knowledge on applying metabolomics to TCM syndrome differentiation, diagnosis, biomarker discovery, and treatment of T2DM by TCM. Its application in diabetic complications is discussed. The combination of multi-omics and microbiome to fully elucidate the use of TCM to treat T2DM is further envisioned.
Collapse
Affiliation(s)
- Jing Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Na Zhu
- Clinical Trial Research Center, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Central Hospital, Qingdao, People’s Republic of China
| | - Yaqiong Wang
- Clinical Trial Research Center, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Central Hospital, Qingdao, People’s Republic of China
| | - Yanlei Bao
- Department of Pharmacy, Liaoyuan People’s Hospital, Liaoyuan, People’s Republic of China
| | - Feng Xu
- Clinical Trial Research Center, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Central Hospital, Qingdao, People’s Republic of China
| | - Fengjuan Liu
- Clinical Trial Research Center, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Central Hospital, Qingdao, People’s Republic of China
| | - Xuefeng Zhou
- Clinical Trial Research Center, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Central Hospital, Qingdao, People’s Republic of China
| |
Collapse
|
26
|
Slouha E, Rezazadah A, Farahbod K, Gerts A, Clunes LA, Kollias TF. Type-2 Diabetes Mellitus and the Gut Microbiota: Systematic Review. Cureus 2023; 15:e49740. [PMID: 38161953 PMCID: PMC10757596 DOI: 10.7759/cureus.49740] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
The gut microbiota is a community situated in the gastrointestinal tract that consists of bacteria thriving and contributing to the functions of our body. It is heavily influenced by what individuals eat, as the quality, amount, and frequency of food consumed can favor and inhibit specific bacteria. Type-2 diabetes mellitus (T2DM) is a common but detrimental condition that arises from excessive hyperglycemia, leading to either insulin resistance or damage to the B-cells that produce insulin in the pancreas. A poor diet high in sugar and fats leads to hyperglycemia, and as this persists, it can lead to the development of T2DM. Both insulin resistance and damage to B-cells are greatly affected by the diet an individual consumes, but is there a more involved relationship between the gut microbiota and T2DM? This paper aimed to evaluate the changes in the gut microbiota in patients with T2DM and the impacts of the changes in gut microbiota. Bacteroides, Proteobacteria, Firmicutes, and Actinobacteria prevailed in patients with T2DM and healthy control, but their abundance varied greatly. There was also a significant decrease in bacteria like Lactobacilli spp.and F. prausnitizii associated with insulin resistance. High levels of BMI in patients with T2DM have also been associated with increased levels of A. muciniphilia, which has been associated with decreased fat metabolism and increased BMI. Metabolites such as butyrates and melatonin have also been identified as influencing the development and progression of T2DM. Testosterone levels have also been greatly influenced by the gut microbiota changes in T2DM, such that males with lower testosterone have a greater abundance of bacteria like Gemella, Lachnospiraceae, and Massiia. Identifying these changes and how they impact the body may lead to a treatment addressing insulin dysfunction and the changes that the altered gut microbiota leads to. Future research should address how treatment methods such as healthy diets, exercise, and anti-diabetics affect the gut microbiota and see if they influence sustained changes and reduced hyperglycemia.
Collapse
Affiliation(s)
- Ethan Slouha
- Pharmacology, St. George's University School of Medicine, St. George's, GRD
| | - Atbeen Rezazadah
- Pharmacology, St. George's University School of Medicine, St. George's, GRD
| | - Kiana Farahbod
- Pharmacology, St. George's University School of Medicine, St. George's, GRD
| | - Andrew Gerts
- Pharmacology, St. George's University School of Medicine, St. George, GRD
| | - Lucy A Clunes
- Pharmacology, St. George's University, St. George's, GRD
| | - Theofanis F Kollias
- Microbiology, Immunology and Pharmacology, St. George's University School of Medicine, St. George's, GRD
| |
Collapse
|
27
|
Lan Y, Pan S, Chen B, Zhou F, Yang F, Chao S, Hua Y, Liu H. The relationship between gut microbiota, short-chain fatty acids, and glucolipid metabolism in pregnant women with large for gestational age infants. J Appl Microbiol 2023; 134:lxad240. [PMID: 37883533 DOI: 10.1093/jambio/lxad240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 10/02/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023]
Abstract
AIM To elucidate the association between gut microbiota, short-chain fatty acids (SCFAs), and glucolipid metabolism in women with large for gestational age (LGA) infants. METHODS AND RESULTS A single-center, observational prospective cohort study was performed at a tertiary hospital in Wenzhou, China. Normal pregnant women were divided into LGA group and appropriate for gestational age (AGA) group according to the neonatal birth weight. Fecal samples were collected from each subject before delivery for the analysis of gut microbiota composition (GMC) and SCFAs. Blood samples were obtained at 24-28 weeks of gestation age to measure fasting blood glucose and fasting insulin levels, as well as just before delivery to assess serum triglycerides, total cholesterol, high-density lipoprotein (HDL), and low-density lipoprotein. The GMC exhibited differences at various taxonomic levels. Within the Firmicutes phylum, genus Lactobacillus, genus Clostridium, species Lactobacillus agil, and species Lactobacillus salivarius were enriched in the LGA group. Microbispora at genus level, Microbispora rosea at species level belonging to the Actinobacteria phylum, Neisseriales at order level, Bartonellaceae at family level, Paracoccus aminovorans, and Methylobacterium at genus level from the Proteobacteria phylum were more abundant in the LGA group. In contrast, within the Bacteroidetes phylum, Prevotella at genus level and Parabacteroides distasonis at species level were enriched in the AGA group. Although there were few differences observed in SCFA levels and most glucolipid metabolism indicators between the two groups, the serum HDL level was significantly lower in the LGA group compared to the AGA group. No significant relevance among GMC, SCFAs, and glucolipid metabolism indicators was found in the LGA group or in the AGA group. CONCLUSIONS Multiple different taxa, especially phylum Firmicutes, genus Prevotella, and genus Clostridium, might play an important role in excessive fetal growth, and LGA might be associated with the lower serum HDL level.
Collapse
Affiliation(s)
- Yehui Lan
- Department of Obstetrics and Gynecology and General Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Shuangjia Pan
- Department of Obstetrics and Gynecology and General Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Baoyi Chen
- Department of Obstetrics and Gynecology and General Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Feifei Zhou
- Department of Obstetrics and Gynecology, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325027, China
| | - Fan Yang
- Key Laboratory of Cell Engineering in Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi 563000,China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
- Research Center for Lin He Academician New Medicine, Institutes for Shanghai Pudong Decoding Life, Shanghai 2000240, China
| | - Shan Chao
- Research Center for Lin He Academician New Medicine, Institutes for Shanghai Pudong Decoding Life, Shanghai 2000240, China
| | - Ying Hua
- Department of Obstetrics and Gynecology and General Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Haibin Liu
- Department of Obstetrics and Gynecology and General Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
28
|
Wang C, Ma Q, Yu X. Bile Acid Network and Vascular Calcification-Associated Diseases: Unraveling the Intricate Connections and Therapeutic Potential. Clin Interv Aging 2023; 18:1749-1767. [PMID: 37885621 PMCID: PMC10599251 DOI: 10.2147/cia.s431220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Bile acids play a crucial role in promoting intestinal nutrient absorption and biliary cholesterol excretion, thereby protecting the liver from cholesterol accumulation and bile acid toxicity. Additionally, bile acids can bind to specific nuclear and membrane receptors to regulate energy expenditure and specific functions of particular tissues. Vascular calcification refers to the pathological process of calcium-phosphate deposition in blood vessel walls, which serves as an independent predictor for cardiovascular adverse events. In addition to aging, this pathological change is associated with aging-related diseases such as atherosclerosis, hypertension, chronic kidney disease, diabetes mellitus, and osteoporosis. Emerging evidence suggests a close association between the bile acid network and these aforementioned vascular calcification-associated conditions. Several bile acids have been proven to participate in calcium-phosphate metabolism, affecting the transdifferentiation of vascular smooth muscle cells and thus influencing vascular calcification. Targeting the bile acid network shows potential for ameliorating these diseases and their concomitant vascular calcification by regulating pathways such as energy metabolism, inflammatory response, oxidative stress, and cell differentiation. Here, we present a summary of the metabolism and functions of the bile acid network and aim to provide insights into the current research on the profound connections between the bile acid network and these vascular calcification-associated diseases, as well as the therapeutic potential.
Collapse
Affiliation(s)
- Cui Wang
- Laboratory of Endocrinology & Metabolism/Department of Endocrinology & Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| | - Qing Ma
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| | - Xijie Yu
- Laboratory of Endocrinology & Metabolism/Department of Endocrinology & Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, People’s Republic of China
| |
Collapse
|
29
|
Wang K, Zhang Z, Hang J, Liu J, Guo F, Ding Y, Li M, Nie Q, Lin J, Zhuo Y, Sun L, Luo X, Zhong Q, Ye C, Yun C, Zhang Y, Wang J, Bao R, Pang Y, Wang G, Gonzalez FJ, Lei X, Qiao J, Jiang C. Microbial-host-isozyme analyses reveal microbial DPP4 as a potential antidiabetic target. Science 2023; 381:eadd5787. [PMID: 37535747 DOI: 10.1126/science.add5787] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 06/14/2023] [Indexed: 08/05/2023]
Abstract
A mechanistic understanding of how microbial proteins affect the host could yield deeper insights into gut microbiota-host cross-talk. We developed an enzyme activity-screening platform to investigate how gut microbiota-derived enzymes might influence host physiology. We discovered that dipeptidyl peptidase 4 (DPP4) is expressed by specific bacterial taxa of the microbiota. Microbial DPP4 was able to decrease the active glucagon like peptide-1 (GLP-1) and disrupt glucose metabolism in mice with a leaky gut. Furthermore, the current drugs targeting human DPP4, including sitagliptin, had little effect on microbial DPP4. Using high-throughput screening, we identified daurisoline-d4 (Dau-d4) as a selective microbial DPP4 inhibitor that improves glucose tolerance in diabetic mice.
Collapse
Affiliation(s)
- Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Zhiwei Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Jing Hang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
| | - Jia Liu
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Fusheng Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yong Ding
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Meng Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Qixing Nie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Jun Lin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Yingying Zhuo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Lulu Sun
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xi Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Qihang Zhong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
| | - Chuan Ye
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Chuyu Yun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Yi Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Jue Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking University, Beijing, China
| | - Rui Bao
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yanli Pang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
| | - Guang Wang
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jie Qiao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Beijing Advanced Innovation Center for Genomics, Beijing, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
| |
Collapse
|
30
|
Wang R, Yang X, Jiang Q, Chen L, Gu S, Shen G, Liu S, Xiang X. Effect of mussel polysaccharide on glucolipid metabolism and intestinal flora in type 2 diabetic mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3353-3366. [PMID: 36750436 DOI: 10.1002/jsfa.12488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/08/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Type 2 diabetes (T2D) mellitus is a major metabolic disease, and its incidence and lethality have increased significantly in recent years, making it a serious threat to human health. Among numerous previous studies, polysaccharides have been shown to alleviate the adverse effects of T2D, but there are still problems such as insufficient analysis and poor understanding of the mechanisms by which polysaccharides, especially those of marine origin, regulate T2D. METHODS In this study, we used multiple allosteric approaches to further investigate the regulatory effects of mussel polysaccharides (MPs) on T2D and gut microbiota disorders in mice by identifying changes in genes, proteins, metabolites and target organs associated with glucolipid metabolism using an animal model of T2D fed with high-fat diets, and to explore the underlying molecular mechanisms. RESULTS After MP intervention, serum levels of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and high-density lipoprotein cholesterol (HDL-C) were up-regulated, and blood glucose and lipid levels were effectively reduced in T2D mice. Activation of signaling molecules related to the upstream and downstream of the insulin PI3K/Akt signaling pathway reduced hepatic insulin resistance. The relative abundance of short-chain fatty acid (SCFA)-producing bacteria (including Akkermansia, Siraeum Eubacterium and Allobaculum) increased and harmful desulfurizing Vibrio decreased. In addition, the levels of SCFAs were increased. CONCLUSION These results suggest that MP can increase SCFA levels by altering the abundance of intestinal flora, thereby activating the PI3K/Akt signaling pathway and exerting hypoglycemic effects. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rui Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Xingwen Yang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Qihong Jiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Lin Chen
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Saiqi Gu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Guoxin Shen
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shulai Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Xingwei Xiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
31
|
Zhou X, Zhang X, Niu D, Zhang S, Wang H, Zhang X, Nan F, Jiang S, Wang B. Gut microbiota induces hepatic steatosis by modulating the T cells balance in high fructose diet mice. Sci Rep 2023; 13:6701. [PMID: 37095192 PMCID: PMC10126116 DOI: 10.1038/s41598-023-33806-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/19/2023] [Indexed: 04/26/2023] Open
Abstract
Metabolic diseases are often associated with high fructose (HF) consumption. HF has also been found to alter the gut microbiota, which then favors the development of nonalcoholic fatty liver disease. However, the mechanisms underlying of the gut microbiota on this metabolic disturbance are yet to be determined. Thus, in this study, we further explored the effect the gut microbiota concerning the T cells balance in an HF diet mouse model. We fed mice 60% fructose-enriched diet for 12 weeks. At 4 weeks, HF diet did not affect the liver, but it caused injury to the intestine and adipose tissues. After 12 weeks, the lipid droplet aggregation was markedly increased in the liver of HF-fed mice. Further analysis of the gut microbial composition showed that HF decreased the Bacteroidetes/Firmicutes ratio and increased the levels of Blautia, Lachnoclostridium, and Oscillibacter. In addition, HF can increase the expression of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) in the serum. T helper type 1 cells were significantly increased, and regulatory T(Treg) cells were markedly decreased in the mesenteric lymph nodes of the HF-fed mice. Furthermore, fecal microbiota transplantation alleviates systemic metabolic disorder by maintaining liver and intestinal immune homeostasis. Overall, our data indicated that intestinal structure injury and intestinal inflammation might be early, and liver inflammation and hepatic steatosis may be a subsequent effect following HF diets. Gut microbiota disorders impairing the intestinal barrier function and triggering immune homeostasis imbalance may be an importantly responsible for long-term HF diets induced hepatic steatosis.
Collapse
Affiliation(s)
- Xiaoqiong Zhou
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, China
| | - Xianjuan Zhang
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, China
| | - Delei Niu
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, China
| | - Shuyun Zhang
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, China
| | - Hui Wang
- Department of Special Medicine, College of Basic Medicine, Qingdao University, Qingdao, China
| | - Xueming Zhang
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, China
| | - Fulong Nan
- Department of Special Medicine, College of Basic Medicine, Qingdao University, Qingdao, China
| | - Shasha Jiang
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, China
| | - Bin Wang
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, China.
- Department of Special Medicine, College of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
32
|
Tang C, Bao T, Zhang Q, Qi H, Huang Y, Zhang B, Zhao L, Tong X. Clinical potential and mechanistic insights of mulberry (Morus alba L.) leaves in managing type 2 diabetes mellitus: Focusing on gut microbiota, inflammation, and metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116143. [PMID: 36632855 DOI: 10.1016/j.jep.2023.116143] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/24/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Natural herbs are gradually gaining recognition for their efficacy and safety in preventing diabetes and improving quality of life. Morus alba L. is a plant widely grown in Asia and is a traditional Chinese herb with a long history of use. Furthermore, several parts of Morus alba L. have been found to have significant health benefits. In particular, mulberry (Morus alba L.) leaves (ML) have been shown in human and animal studies to be promising hypoglycemic agents that can reduce or prevent glucolipid metabolism disorders caused by imbalances in the gut microbiota, inflammation, and oxidative stress and have demonstrated significant improvements in glucose metabolism-related markers, effectively lowering blood glucose, and reducing hyperglycemia-induced target organ damage. AIM OF THE STUDY This review briefly summarizes the methods for obtaining ML's bioactive components, elaborates on the clinical potential of the relevant components in managing type 2 diabetes mellitus (T2DM), and focuses on the therapeutic mechanisms of gut microbiota, inflammation, oxidative stress, and metabolism, to provide more inspiration and directions for future research in the field of traditional natural plants for the management of T2DM and its complications. MATERIALS AND METHODS Research on ML and its bioactive components was mainly performed using electronic databases, including PubMed, Google Scholar, and ScienceNet, to ensure the review's quality. In addition, master's and doctoral theses and ancient documents were consulted. RESULTS In clinical studies, we found that ML could effectively reduce blood glucose, glycated hemoglobin, and homeostasis model assessment of insulin resistance in T2DM patients. Furthermore, many in vitro and in vivo experiments have found that ML is involved in various pathways that regulate glucolipid metabolism and resist diabetes while alleviating liver and kidney damage. CONCLUSIONS As a potential natural anti-diabetic phytomedicine, an in-depth study of ML can provide new ideas and valuable references for applying traditional Chinese medicine to treat T2DM. While continuously exploring its clinical efficacy and therapeutic mechanism, the extraction method should be optimized to improve the efficacy of the bioactive components. in addition, further research on the dose-response relationship of drugs to determine the effective dose range is required.
Collapse
Affiliation(s)
- Cheng Tang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Tingting Bao
- Graduate College, Beijing University of Chinese Medicine, Beijing, 100029, China; Institute of Metabolic Diseases, Guang' Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiqi Zhang
- Guang'anmen Hospital, Chinese Academy of Traditional Chinese Medicine, China
| | - Hongyu Qi
- Changchun University of Chinese Medicine, Changchun, 130117, China; Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Changchun, China; Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun, China
| | - Yishan Huang
- Institute of Metabolic Diseases, Guang' Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Boxun Zhang
- Institute of Metabolic Diseases, Guang' Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang' Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xiaolin Tong
- Changchun University of Chinese Medicine, Changchun, 130117, China; Institute of Metabolic Diseases, Guang' Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
33
|
Chen L, Jiang Q, Jiang C, Lu H, Hu W, Yu S, Li M, Tan CP, Feng Y, Xiang X, Shen G. Sciadonic acid attenuates high-fat diet-induced obesity in mice with alterations in the gut microbiota. Food Funct 2023; 14:2870-2880. [PMID: 36883533 DOI: 10.1039/d2fo02524h] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Obesity has been reported to be associated with dysbiosis of gut microbiota. Sciadonic acid (SC) is one of the main functional components of Torreya grandis "Merrillii" seed oil. However, the effect of SC on high-fat diet (HFD)-induced obesity has not been elucidated. In this study, we evaluated the effects of SC on lipid metabolism and the gut flora in mice fed with a high-fat diet. The results revealed that SC activates the PPARα/SREBP-1C/FAS signaling pathway and reduces the levels of total cholesterol (TC), triacylglycerols (TG), and low-density lipoprotein cholesterol (LDL-C), but increases the level of high-density lipoprotein cholesterol (HDL-C) and inhibits weight gain. Among them, high-dose SC was the most effective; the TC, TG and LDL-C levels were reduced by 20.03%, 28.40% and 22.07%, respectively; the HDL-C level was increased by 8.55%. In addition, SC significantly increased glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) levels by 98.21% and 35.17%, respectively, decreased oxidative stress, and ameliorated the pathological damage to the liver caused by a high-fat diet. Furthermore, SC treatment altered the composition of the intestinal flora, promoting the relative abundance of beneficial bacteria such as Lactobacillus and Bifidobacterium, while simultaneously decreasing the relative abundance of potentially harmful bacteria such as Faecalibaculum, norank_f_Desulfovibrionaceae, and Romboutsia. Spearman's correlation analysis indicated that the gut microbiota was associated with SCFAs and biochemical indicators. In summary, our results suggested that SC can improve lipid metabolism disorders and regulate the gut microbial structure.
Collapse
Affiliation(s)
- Lin Chen
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| | - Qihong Jiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Chenkai Jiang
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| | - Hongling Lu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| | - Wenjun Hu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| | - Shaofang Yu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| | - Mingqian Li
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, 310012, China
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, 43400 Serdang, Malaysia
- Xujing (Hangzhou) Biotechnology Research Institute Co., Ltd, Hangzhou, Zhejiang 310021, China
| | - Yongcai Feng
- Xujing (Hangzhou) Biotechnology Research Institute Co., Ltd, Hangzhou, Zhejiang 310021, China
| | - Xingwei Xiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Guoxin Shen
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| |
Collapse
|
34
|
Mirzaei R, Kavyani B, Nabizadeh E, Kadkhoda H, Asghari Ozma M, Abdi M. Microbiota metabolites in the female reproductive system: Focused on the short-chain fatty acids. Heliyon 2023; 9:e14562. [PMID: 36967966 PMCID: PMC10031489 DOI: 10.1016/j.heliyon.2023.e14562] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
Several disorders have been linked to modifications in the gut microbial imbalance, intestinal epithelium, and host immune system. In this regard, microbiota derived short-chain fatty acids (SCFAs) play a key function in the regulation of histone deacetylases (HDACs), which affect modulation of immunity and regulation of inflammatory responses in the intestine and other organs. Studies examining the metabolites produced by polymicrobial bacterial vaginosis (BV) states and Lactobacillus-dominated microbiota have noted a dramatic reduction of lactic acid and a shift toward SCFA synthesis. Along with higher levels of SCFAs, acetate is typically the main metabolite in the cervicovaginal fluid of women with symptomatic bacterial vaginosis. The fact that SCFAs made by the vaginal microbiota have been shown to exhibit antibacterial and immune-modulating properties suggests that they may have promise as indicators of disease and/or disease susceptibility. In this review, we overview and summarize the current findings on the detrimental or protective roles of microbiota metabolites especially SCFAs in the health and disease of the female reproductive system.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Batoul Kavyani
- Department of Medical Microbiology (Bacteriology & Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Edris Nabizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hiva Kadkhoda
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Asghari Ozma
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Abdi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
35
|
Camilleri M. Is intestinal permeability increased in obesity? A review including the effects of dietary, pharmacological and surgical interventions on permeability and the microbiome. Diabetes Obes Metab 2023; 25:325-330. [PMID: 36263962 PMCID: PMC10112051 DOI: 10.1111/dom.14899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/29/2022] [Accepted: 10/17/2022] [Indexed: 02/01/2023]
Affiliation(s)
- Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
36
|
Bui TI, Britt EA, Muthukrishnan G, Gill SR. Probiotic induced synthesis of microbiota polyamine as a nutraceutical for metabolic syndrome and obesity-related type 2 diabetes. Front Endocrinol (Lausanne) 2023; 13:1094258. [PMID: 36714575 PMCID: PMC9880209 DOI: 10.3389/fendo.2022.1094258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023] Open
Abstract
The gut microbiota regulates multiple facets of host metabolism and immunity through the production of signaling metabolites, such as polyamines which are small organic compounds that are essential to host cell growth and lymphocyte activation. Polyamines are most abundant in the intestinal lumen, where their synthesis by the gut microbiota is influenced by microbiome composition and host diet. Disruption of the host gut microbiome in metabolic syndrome and obesity-related type 2 diabetes (obesity/T2D) results in potential dysregulation of polyamine synthesis. A growing body of evidence suggests that restoration of the dysbiotic gut microbiota and polyamine synthesis is effective in ameliorating metabolic syndrome and strengthening the impaired immune responses of obesity/T2D. In this review, we discuss existing studies on gut microbiome determinants of polyamine synthesis, polyamine production in obesity/T2D, and evidence that demonstrates the potential of polyamines as a nutraceutical in obesity/T2D hosts.
Collapse
Affiliation(s)
- Tina I. Bui
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Emily A. Britt
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Gowrishankar Muthukrishnan
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, United States
| | - Steven R. Gill
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
37
|
Zhou YD, Liang FX, Tian HR, Luo D, Wang YY, Yang SR. Mechanisms of gut microbiota-immune-host interaction on glucose regulation in type 2 diabetes. Front Microbiol 2023; 14:1121695. [PMID: 36891383 PMCID: PMC9986296 DOI: 10.3389/fmicb.2023.1121695] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
Intestinal absorption of food is one of the sources of glucose. Insulin resistance and impaired glucose tolerance caused by lifestyle and diet are the precursors of type 2 diabetes. Patients with type 2 diabetes have trouble controlling their blood sugar levels. For long-term health, strict glycemic management is necessary. Although it is thought to be well correlated with metabolic diseases like obesity, insulin resistance, and diabetes, its molecular mechanism is still not completely understood. Disturbed microbiota triggers the gut immune response to reshape the gut homeostasis. This interaction not only maintains the dynamic changes of intestinal flora, but also preserves the integrity of the intestinal barrier. Meanwhile, the microbiota establishes a systemic multiorgan dialog on the gut-brain and gut-liver axes, intestinal absorption of a high-fat diet affects the host's feeding preference and systemic metabolism. Intervention in the gut microbiota can combat the decreased glucose tolerance and insulin sensitivity linked to metabolic diseases both centrally and peripherally. Moreover, the pharmacokinetics of oral hypoglycemic medications are also influenced by gut microbiota. The accumulation of drugs in the gut microbiota not only affects the drug efficacy, but also changes the composition and function of them, thus may help to explain individual therapeutic variances in pharmacological efficacy. Regulating gut microbiota through healthy dietary patterns or supplementing pro/prebiotics can provide guidance for lifestyle interventions in people with poor glycemic control. Traditional Chinese medicine can also be used as complementary medicine to effectively regulate intestinal homeostasis. Intestinal microbiota is becoming a new target against metabolic diseases, so more evidence is needed to elucidate the intricate microbiota-immune-host relationship, and explore the therapeutic potential of targeting intestinal microbiota.
Collapse
Affiliation(s)
- Yu-Dian Zhou
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hebei, China
| | - Feng-Xia Liang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hebei, China
| | - Hao-Ran Tian
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hebei, China
| | - Dan Luo
- Department of Respiratory Wuhan No.1 Hospital, Wuhan, Hebei, China
| | - Ya-Yuan Wang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hebei, China
| | - Shu-Rui Yang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hebei, China
| |
Collapse
|
38
|
Tea Plant ( Camellia sinensis): A Current Update on Use in Diabetes, Obesity, and Cardiovascular Disease. Nutrients 2022; 15:nu15010037. [PMID: 36615695 PMCID: PMC9823498 DOI: 10.3390/nu15010037] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The tea plant (C. sinensis) has traditionally been consumed worldwide as "tea" for its many health benefits, with the potential for the prevention and therapy of various conditions. Regardless of its long history, the use of tea plants in modern times seems not to have changed much, as the beverage remains the most popular form. This review aimed to compile scientific information about the role and action of tea plants, as well as their status concerning clinical applications, based on the currently available evidence, with a focus on metabolic syndrome, mainly covering obesity, diabetes, and cardiovascular disease. It has been recognized that these diseases pose a significant threat to public health, and the development of effective treatment and prevention strategies is necessary but still challenging. In this article, the potential benefits of tea plants and their derived bioactive components (such as epigallocatechin-3-gallate) as anti-obesity, anti-diabetic, and anti-cardiovascular agents are clearly shown and emphasized, along with their mechanisms of action. However, according to the status of the clinical translation of tea plants, particularly in drug development, more substantial efforts in well-designed, randomized, controlled trials are required to expand their applications in treating the three major metabolic disorders and avoiding the toxicity caused by overconsumption.
Collapse
|
39
|
Salamone D, Costabile G, Corrado A, Della Pepa G, Vitale M, Giacco R, Luongo D, Testa R, Rivellese AA, Annuzzi G, Bozzetto L. Circulating short-chain fatty acids in type 2 diabetic patients and overweight/obese individuals. Acta Diabetol 2022; 59:1653-1656. [PMID: 35920899 DOI: 10.1007/s00592-022-01934-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/30/2022] [Indexed: 11/01/2022]
Abstract
AIM aim of the study was to evaluate serum short chain fatty acids (SCFA) concentrations in patients with Type 2 diabetes (T2D) and overweight/obese individuals. METHODS In forty-three patients with T2D and twenty-eight overweight/obese patients SCFA were determined by Gas-Chromatography/Flame Ionization Detector (GC/FID). RESULTS Acetic acid, propionic acid, butyric acid, and total SCFA were significantly reduced in T2D patients compared to overweight/obese in the unadjusted model. Adjusting for all variables only propionic acid remained significantly lower in T2D. CONCLUSION Only reduction of propionic acid was closely related to diabetes itself, regardless of all other factors.
Collapse
Affiliation(s)
- Dominic Salamone
- Department of Clinical Medicine and Surgery, "Federico II" University, Sergio Pansini, 5, 80131, Naples, Italy
| | - Giuseppina Costabile
- Department of Clinical Medicine and Surgery, "Federico II" University, Sergio Pansini, 5, 80131, Naples, Italy
- Task Force on Microbiome Studies, University of Naples "Federico II", Naples, Italy
| | - Alessandra Corrado
- Department of Clinical Medicine and Surgery, "Federico II" University, Sergio Pansini, 5, 80131, Naples, Italy
| | - Giuseppe Della Pepa
- Department of Clinical Medicine and Surgery, "Federico II" University, Sergio Pansini, 5, 80131, Naples, Italy
| | - Marilena Vitale
- Department of Clinical Medicine and Surgery, "Federico II" University, Sergio Pansini, 5, 80131, Naples, Italy
| | - Rosalba Giacco
- Institute of Food Science, National Research Council, 83100, Avellino, Italy
| | - Delia Luongo
- CNR- Institute of Biostructures and Bioimaging, 80100, Naples, Italy
| | - Roberta Testa
- Department of Clinical Medicine and Surgery, "Federico II" University, Sergio Pansini, 5, 80131, Naples, Italy
| | - Angela Albarosa Rivellese
- Department of Clinical Medicine and Surgery, "Federico II" University, Sergio Pansini, 5, 80131, Naples, Italy.
- Task Force on Microbiome Studies, University of Naples "Federico II", Naples, Italy.
| | - Giovanni Annuzzi
- Department of Clinical Medicine and Surgery, "Federico II" University, Sergio Pansini, 5, 80131, Naples, Italy
- Task Force on Microbiome Studies, University of Naples "Federico II", Naples, Italy
| | - Lutgarda Bozzetto
- Department of Clinical Medicine and Surgery, "Federico II" University, Sergio Pansini, 5, 80131, Naples, Italy
- Task Force on Microbiome Studies, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
40
|
Wang L, Wang S, Zhang Q, He C, Fu C, Wei Q. The role of the gut microbiota in health and cardiovascular diseases. MOLECULAR BIOMEDICINE 2022; 3:30. [PMID: 36219347 PMCID: PMC9554112 DOI: 10.1186/s43556-022-00091-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
The gut microbiota is critical to human health, such as digesting nutrients, forming the intestinal epithelial barrier, regulating immune function, producing vitamins and hormones, and producing metabolites to interact with the host. Meanwhile, increasing evidence indicates that the gut microbiota has a strong correlation with the occurrence, progression and treatment of cardiovascular diseases (CVDs). In patients with CVDs and corresponding risk factors, the composition and ratio of gut microbiota have significant differences compared with their healthy counterparts. Therefore, gut microbiota dysbiosis, gut microbiota-generated metabolites, and the related signaling pathway may serve as explanations for some of the mechanisms about the occurrence and development of CVDs. Several studies have also demonstrated that many traditional and latest therapeutic treatments of CVDs are associated with the gut microbiota and its generated metabolites and related signaling pathways. Given that information, we summarized the latest advances in the current research regarding the effect of gut microbiota on health, the main cardiovascular risk factors, and CVDs, highlighted the roles and mechanisms of several metabolites, and introduced corresponding promising treatments for CVDs regarding the gut microbiota. Therefore, this review mainly focuses on exploring the role of gut microbiota related metabolites and their therapeutic potential in CVDs, which may eventually provide better solutions in the development of therapeutic treatment as well as the prevention of CVDs.
Collapse
Affiliation(s)
- Lu Wang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Shiqi Wang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Qing Zhang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Chengqi He
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Chenying Fu
- grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,grid.412901.f0000 0004 1770 1022Aging and Geriatric Mechanism Laboratory, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Quan Wei
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| |
Collapse
|
41
|
Possible Toxic Mechanisms of Deoxynivalenol (DON) Exposure to Intestinal Barrier Damage and Dysbiosis of the Gut Microbiota in Laying Hens. Toxins (Basel) 2022; 14:toxins14100682. [PMID: 36287951 PMCID: PMC9609298 DOI: 10.3390/toxins14100682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
Deoxynivalenol is one the of most common mycotoxins in cereals and grains and causes a serious health threat to poultry and farm animals. Our previous study found that DON decreased the production performance of laying hens. It has been reported that DON could exert significant toxic effects on the intestinal barrier and microbiota. However, whether the decline of laying performance is related to intestinal barrier damage, and the underlying mechanisms of DON induced intestine function injury remain largely unclear in laying hens. In this study, 80 Hy-line brown laying hens at 26 weeks were randomly divided into 0, 1, 5 and 10 mg/kg.bw (body weight) DON daily for 6 weeks. The morphology of the duodenum, the expression of inflammation factors and tight junction proteins, and the diversity and abundance of microbiota were analyzed in different levels of DON treated to laying hens. The results demonstrated that the mucosal detachment and reduction of the villi number were presented in different DON treated groups with a dose-effect manner. Additionally, the genes expression of pro-inflammatory factors IL-1β, IL-8, TNF-α and anti-inflammatory factors IL-10 were increased or decreased at 5 and 10 mg/kg.bw DON groups, respectively. The levels of ZO-1 and claudin-1 expression were significantly decreased in 5 and 10 mg/kg.bw DON groups. Moreover, the alpha diversity including Chao, ACE and Shannon indices were all reduced in DON treated groups. At the phylum level, Firmicutes and Actinobacteria and Bacteroidetes, Proteobacteria, and Spirochaetes were decreased and increased in 10 mg/kg.bw DON group, respectively. At the genus levels, the relative abundance of Clostridium and Lactobacillus in 5 and 10 mg/kg.bw DON groups, and Alkanindiges and Spirochaeta in the 10 mg/kg.bw DON were significantly decreased and increased, respectively. Moreover, there were significant correlation between the expression of tight junction proteins and the relative abundance of Lactobacillus and Succinispira. These results indicated that DON exposure to the laying hens can induce the inflammation and disrupt intestinal tight junctions, suggesting that DON can directly damage barrier function, which may be closely related to the dysbiosis of intestinal microbiota.
Collapse
|
42
|
Rekha K, Venkidasamy B, Samynathan R, Nagella P, Rebezov M, Khayrullin M, Ponomarev E, Bouyahya A, Sarkar T, Shariati MA, Thiruvengadam M, Simal-Gandara J. Short-chain fatty acid: An updated review on signaling, metabolism, and therapeutic effects. Crit Rev Food Sci Nutr 2022; 64:2461-2489. [PMID: 36154353 DOI: 10.1080/10408398.2022.2124231] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fatty acids are good energy sources (9 kcal per gram) that aerobic tissues can use except for the brain (glucose is an alternative source). Apart from the energy source, fatty acids are necessary for cell signaling, learning-related memory, modulating gene expression, and functioning as cytokine precursors. Short-chain fatty acids (SCFAs) are saturated fatty acids arranged as a straight chain consisting minimum of 6 carbon atoms. SCFAs possess various beneficial effects like improving metabolic function, inhibiting insulin resistance, and ameliorating immune dysfunction. In this review, we discussed the biogenesis, absorption, and transport of SCFA. SCFAs can act as signaling molecules by stimulating G protein-coupled receptors (GPCRs) and suppressing histone deacetylases (HDACs). The role of SCFA on glucose metabolism, fatty acid metabolism, and its effect on the immune system is also reviewed with updated details. SCFA possess anticancer, anti-diabetic, and hepatoprotective effects. Additionally, the association of protective effects of SCFA against brain-related diseases, kidney diseases, cardiovascular damage, and inflammatory bowel diseases were also reviewed. Nanotherapy is a branch of nanotechnology that employs nanoparticles at the nanoscale level to treat various ailments with enhanced drug stability, solubility, and minimal side effects. The SCFA functions as drug carriers, and nanoparticles were also discussed. Still, much research was not focused on this area. SCFA functions in host gene expression through inhibition of HDAC inhibition. However, the study has to be focused on the molecular mechanism of SCFA against various diseases that still need to be investigated.
Collapse
Affiliation(s)
- Kaliaperumal Rekha
- Department of Environmental and Herbal Science, Tamil University, Thanjavur, Tamil Nadu, India
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | | | - Praveen Nagella
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka, India
| | - Maksim Rebezov
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
- Department of Scientific Research, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow, Russia
- Department of Scientific Research, K. G. Razumovsky Moscow State University of technologies and management (The First Cossack University), Moscow, Russia
| | - Mars Khayrullin
- Department of Scientific Research, K. G. Razumovsky Moscow State University of technologies and management (The First Cossack University), Moscow, Russia
| | - Evgeny Ponomarev
- Department of Scientific Research, K. G. Razumovsky Moscow State University of technologies and management (The First Cossack University), Moscow, Russia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, West Bengal, India
| | - Mohammad Ali Shariati
- Department of Scientific Research, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Moscow, Russia
- Department of Scientific Research, K. G. Razumovsky Moscow State University of technologies and management (The First Cossack University), Moscow, Russia
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Sciences, Konkuk University, Seoul, South Korea
| | - Jesus Simal-Gandara
- Analytical Chemistry and Food Science Department, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| |
Collapse
|
43
|
Huber-Ruano I, Calvo E, Mayneris-Perxachs J, Rodríguez-Peña MM, Ceperuelo-Mallafré V, Cedó L, Núñez-Roa C, Miro-Blanch J, Arnoriaga-Rodríguez M, Balvay A, Maudet C, García-Roves P, Yanes O, Rabot S, Grimaud GM, De Prisco A, Amoruso A, Fernández-Real JM, Vendrell J, Fernández-Veledo S. Orally administered Odoribacter laneus improves glucose control and inflammatory profile in obese mice by depleting circulating succinate. MICROBIOME 2022; 10:135. [PMID: 36002880 PMCID: PMC9404562 DOI: 10.1186/s40168-022-01306-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/17/2022] [Indexed: 05/11/2023]
Abstract
BACKGROUND Succinate is produced by both human cells and by gut bacteria and couples metabolism to inflammation as an extracellular signaling transducer. Circulating succinate is elevated in patients with obesity and type 2 diabetes and is linked to numerous complications, yet no studies have specifically addressed the contribution of gut microbiota to systemic succinate or explored the consequences of reducing intestinal succinate levels in this setting. RESULTS Using germ-free and microbiota-depleted mouse models, we show that the gut microbiota is a significant source of circulating succinate, which is elevated in obesity. We also show in vivo that therapeutic treatments with selected bacteria diminish the levels of circulating succinate in obese mice. Specifically, we demonstrate that Odoribacter laneus is a promising probiotic based on its ability to deplete succinate and improve glucose tolerance and the inflammatory profile in two independent models of obesity (db/db mice and diet-induced obese mice). Mechanistically, this is partly mediated by the succinate receptor 1. Supporting these preclinical findings, we demonstrate an inverse correlation between plasma and fecal levels of succinate in a cohort of patients with severe obesity. We also show that plasma succinate, which is associated with several components of metabolic syndrome including waist circumference, triglycerides, and uric acid, among others, is a primary determinant of insulin sensitivity evaluated by the euglycemic-hyperinsulinemic clamp. CONCLUSIONS Overall, our work uncovers O. laneus as a promising next-generation probiotic to deplete succinate and improve glucose tolerance and obesity-related inflammation. Video Abstract.
Collapse
Affiliation(s)
- Isabel Huber-Ruano
- Hospital Universitari de Tarragona Joan XXIII, Institut d’Investigació Sanitària Pere Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Enrique Calvo
- Hospital Universitari de Tarragona Joan XXIII, Institut d’Investigació Sanitària Pere Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain
| | - M-Mar Rodríguez-Peña
- Hospital Universitari de Tarragona Joan XXIII, Institut d’Investigació Sanitària Pere Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | | | - Lídia Cedó
- Hospital Universitari de Tarragona Joan XXIII, Institut d’Investigació Sanitària Pere Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Catalina Núñez-Roa
- Hospital Universitari de Tarragona Joan XXIII, Institut d’Investigació Sanitària Pere Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Joan Miro-Blanch
- Hospital Universitari de Tarragona Joan XXIII, Institut d’Investigació Sanitària Pere Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Rovira i Virgili University, 43003 Tarragona, Spain
| | - María Arnoriaga-Rodríguez
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain
| | - Aurélie Balvay
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Claire Maudet
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Pablo García-Roves
- Department of Physiological Sciences, School of Medicine and Health Sciences, Nutrition, Metabolism and Gene therapy Group Diabetes and Metabolism Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Oscar Yanes
- Hospital Universitari de Tarragona Joan XXIII, Institut d’Investigació Sanitària Pere Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Rovira i Virgili University, 43003 Tarragona, Spain
| | - Sylvie Rabot
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | | | | | - Angela Amoruso
- Probiotical Research S.r.l., Enrico Mattei, 3, -28100 Novara, Italy
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition (CIBEROBN), Madrid, Spain
| | - Joan Vendrell
- Hospital Universitari de Tarragona Joan XXIII, Institut d’Investigació Sanitària Pere Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Rovira i Virgili University, 43003 Tarragona, Spain
| | - Sonia Fernández-Veledo
- Hospital Universitari de Tarragona Joan XXIII, Institut d’Investigació Sanitària Pere Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
44
|
He L, Yang FQ, Tang P, Gao TH, Yang CX, Tan L, Yue P, Hua YN, Liu SJ, Guo JL. Regulation of the intestinal flora: A potential mechanism of natural medicines in the treatment of type 2 diabetes mellitus. Biomed Pharmacother 2022; 151:113091. [PMID: 35576662 DOI: 10.1016/j.biopha.2022.113091] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/24/2022] [Accepted: 05/04/2022] [Indexed: 11/02/2022] Open
Abstract
Diabetes mellitus comprises a group of heterogeneous disorders, which are usually subdivided into type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). Both genetic and environmental factors have been implicated in the onset of diabetes. Type 1 diabetes primarily involves autoimmune insulin deficiency. In comparison, type 2 diabetes is contributed by the pathological state of insulin deficiency and insulin resistance. In recent years, significant differences were found in the abundance of microflora, intestinal barrier, and intestinal metabolites in diabetic subjects when compared to normal subjects. To further understand the relationship between diabetes mellitus and intestinal flora, this paper summarizes the interaction mechanism between diabetes mellitus and intestinal flora. Furthermore, the natural compounds found to treat diabetes through intestinal flora were classified and summarized. This review is expected to provide a valuable resource for the development of new diabetic drugs and the applications of natural compounds.
Collapse
Affiliation(s)
- Liying He
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Fang-Qing Yang
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Pan Tang
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Ting-Hui Gao
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cai-Xia Yang
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li Tan
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Pan Yue
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Ya-Nan Hua
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Si-Jing Liu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jin-Lin Guo
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
45
|
Zhao L, Lu W, Mao Z, Mou D, Huang L, Yang M, Ding D, Yan H, Fang Z, Che L, Zhuo Y, Jiang X, Xu S, Lin Y, Li J, Huang C, Zou Y, Li L, Wu D, Feng B. Maternal VD 3 supplementation during gestation improves intestinal health and microbial composition of weaning piglets. Food Funct 2022; 13:6830-6842. [PMID: 35687102 DOI: 10.1039/d1fo04303j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vitamin D3 (VD3) has been reported to improve the reproductive performance of sows. This study was conducted to investigate the long-term effect of maternal VD3 supplementation during gestation on the intestinal health of piglets. Twenty-three Landrace × Yorkshire gilts were randomly allocated into two groups to receive one of the following two diets during gestation: basal diet (CON group, 800 IU VD3 per kg diet, n = 12) and VD3 supplemented diet (VD3 group, 2000 IU VD3 per kg diet, n = 11). All sows were then fed with the same diet during lactation. Results showed that maternal VD3 supplementation during lactation tended to decrease (p = 0.08) the body weight loss of sows during lactation compared to the CON group. Besides, the relative length and weight of the small intestine (SI) and the villus height of the duodenum and ileum in weaning piglets were much higher (p < 0.05) in the VD3 group than those in the CON group, though their body weight was not changed. Meanwhile, maternal VD3 supplementation significantly upregulated the expression levels of IGF-1, IGF-2R, VDR, GLUT-2 and CAT1 in the duodenum (p < 0.05), and increased the expression levels of IGF-1, IGF-1R, IGF-2R, VDR, Occludin, ZO-1, MUC2, PEPT1 and CAT1 (p < 0.05) in the jejunum of suckling piglets compared with the CON group. Besides, the concentration of SigA in the jejunum of suckling piglets was higher (p < 0.05) in the VD3 group than that in the CON group. In addition, maternal VD3 supplementation significantly increased the contents of short chain fatty acids and the relative abundance of Lactobacillus and Faecalibacterium (p < 0.05) in the feces of weaning piglets compared to the CON group. Moreover, the relative abundance of unidentified_Lachnospiraceae in the feces of weaning piglets tended to be higher (p = 0.05), while that of unidentified_Spirochaetaceae was lower (p < 0.05) in the VD3 group than those in the CON group. Taken together, maternal VD3 supplementation during gestation could improve the intestinal function and microbiota in suckling piglets.
Collapse
Affiliation(s)
- Lianpeng Zhao
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Wei Lu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Zhengyu Mao
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Daolin Mou
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Long Huang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Min Yang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Dajiang Ding
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Hui Yan
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Lianqiang Che
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Yong Zhuo
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Xuemei Jiang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Shengyu Xu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Yan Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Jian Li
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Chao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yuanfeng Zou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lixia Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - De Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Bin Feng
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| |
Collapse
|
46
|
Cheng T, Li C, Shen L, Wang S, Li X, Fu C, Li T, Liu B, Gu Y, Wang W, Feng B. The Intestinal Effect of Atorvastatin: Akkermansia muciniphila and Barrier Function. Front Microbiol 2022; 12:797062. [PMID: 35185821 PMCID: PMC8847773 DOI: 10.3389/fmicb.2021.797062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Studies have shown that the cholesterol-lowering medicine statins alter the gut microbiome, induce chronic metabolic inflammation, and disrupt glycemic homeostasis. In this study, we aimed to investigate whether effects of atorvastatin (Ator) on gut microbiome and metabolic inflammation could be causally correlated. Mice at 8-week age were fed with high-fat diet (HFD) or HFD with Ator (HFD+Ator) for 16 weeks. 16S rRNA sequencing of stool and RNA sequencing of colon tissue were employed to analyze the intestinal alterations that could be induced by Ator. A human colon carcinoma cell line (Caco2) was used for in vitro experiments on barrier function. Compared to HFD, HFD+Ator induced more weight gain, impaired glucose tolerance, and led to gut microbiota dysbiosis, such as suppressing Akkermansia muciniphila in mice. The expressions of tight junction (TJ) proteins were attenuated in the colon, and the serum LPS-binding-protein (LBP) level was elevated in HFD+Ator mice, so as to transcriptionally activate the intestinal nuclear factor-k-gene binding (NF-κB) signaling pathway. Consistently, Ator impaired the barrier function of Caco2, and treatment of supernatant of A. Muciniphila culture could decrease the intestinal permeability and recover the attenuated expression of TJ proteins induced by Ator. In conclusion, long-term use of Ator with HFD may alter gut microbiota, induce intestinal barrier dysfunction, and hence promote chronic inflammation that contributes to disrupted glycemic homeostasis.
Collapse
Affiliation(s)
- Tingting Cheng
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Changkun Li
- National Research Centre for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Institute for Endocrine and Metabolic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linyan Shen
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shujie Wang
- National Research Centre for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Institute for Endocrine and Metabolic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuelin Li
- National Research Centre for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Institute for Endocrine and Metabolic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenyang Fu
- National Research Centre for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Institute for Endocrine and Metabolic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Li
- National Research Centre for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Institute for Endocrine and Metabolic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bei Liu
- National Research Centre for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Institute for Endocrine and Metabolic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanyun Gu
- National Research Centre for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Institute for Endocrine and Metabolic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- National Research Centre for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Institute for Endocrine and Metabolic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Feng
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
47
|
Du Y, Li DX, Lu DY, Zhang R, Zheng XX, Xu BJ, Zhao YL, Ji S, Guo MZ, Wang L, Tang DQ. Morus alba L. water extract changes gut microbiota and fecal metabolome in mice induced by high-fat and high-sucrose diet plus low-dose streptozotocin. Phytother Res 2022; 36:1241-1257. [PMID: 35129235 DOI: 10.1002/ptr.7343] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/22/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022]
Abstract
Gut microbiota plays a key role in the pathophysiology of type 2 diabetes mellitus (T2D). Mulberry leaf has a hypoglycemic effect, but the potential mechanism is not fully understood. This study aimed to explore the influences and potential mechanisms of mulberry leaf water extract (MLWE) intervention on mice with T2D induced through a high-fat and high-sucrose diet combined with streptozotocin by the combination of fecal metabolomics and gut microbiota analysis. Results showed that MLWE could decrease fasting blood glucose and body weight while ameliorating lipid profiles, insulin resistance, liver inflammation, and the accumulation of lipid droplets in T2D mice. MLWE could reverse the abundances of the phyla Actinobacteria and Bacteroidetes and the ratio of Firmicutes/Bacteroidetes, and increase the abundances of the phyla Cyanobacteria and Epsilonbacteraeota in the feces of T2D mice. The abundances of genera Alloprevotella, Parabacteroides, Muribaculaceae, and Romboutsia in the feces of T2D mice could be reversed, while Oscillatoriales_cyanobacterium and Gastranaerophilales could be reinforced by MLWE supplementation. The levels of nine metabolites in the feces of T2D mice were improved, among which glycine, Phe-Pro, urocanic acid, phylloquinone, and lactate were correlated with Romboutsia and Gastranaerophilales. Taken together, we conclude that MLWE can effectively alleviate T2D by mediating the host-microbial metabolic axis.
Collapse
Affiliation(s)
- Yan Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Ding-Xiang Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Dong-Yu Lu
- Department of Pharmacy, Suining People's Hospital Affiliated to Xuzhou Medical University, Suining, China
| | - Ran Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xiao-Xiao Zheng
- Department of Pharmacy, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Bing-Ju Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yan-Lin Zhao
- Department of Pharmacy, Suining People's Hospital Affiliated to Xuzhou Medical University, Suining, China
| | - Shuai Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.,Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou, China
| | - Meng-Zhe Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.,Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou, China
| | - Liang Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.,Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China
| | - Dao-Quan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.,Department of Pharmacy, Suining People's Hospital Affiliated to Xuzhou Medical University, Suining, China.,Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
48
|
Jia Z, Chen X, Chen J, Zhang L, Oprescu SN, Luo N, Xiong Y, Yue F, Kuang S. ACSS3 in brown fat drives propionate catabolism and its deficiency leads to autophagy and systemic metabolic dysfunction. Clin Transl Med 2022; 12:e665. [PMID: 35184387 PMCID: PMC8858619 DOI: 10.1002/ctm2.665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 11/22/2022] Open
Abstract
Propionate is a gut microbial metabolite that has been reported to have controversial effects on metabolic health. Here we show that propionate is activated by acyl-CoA synthetase short-chain family member 3 (ACSS3), located on the mitochondrial inner membrane in brown adipocytes. Knockout of Acss3 gene (Acss3-/- ) in mice reduces brown adipose tissue (BAT) mass but increases white adipose tissue (WAT) mass, leading to glucose intolerance and insulin resistance that are exacerbated by high-fat diet (HFD). Intriguingly, Acss3-/- or HFD feeding significantly elevates propionate levels in BAT and serum, and propionate supplementation induces autophagy in cultured brown and white adipocytes. The elevated levels of propionate in Acss3-/- mice similarly drive adipocyte autophagy, and pharmacological inhibition of autophagy using hydroxychloroquine ameliorates obesity, hepatic steatosis and insulin resistance of the Acss3-/- mice. These results establish ACSS3 as the key enzyme for propionate metabolism and demonstrate that accumulation of propionate promotes obesity and Type 2 diabetes through triggering adipocyte autophagy.
Collapse
Affiliation(s)
- Zhihao Jia
- Department of Animal SciencesPurdue UniversityWest LafayetteIndiana
| | - Xiyue Chen
- Department of Animal SciencesPurdue UniversityWest LafayetteIndiana
| | - Jingjuan Chen
- Department of Animal SciencesPurdue UniversityWest LafayetteIndiana
| | - Lijia Zhang
- Department of Animal SciencesPurdue UniversityWest LafayetteIndiana
| | - Stephanie N. Oprescu
- Department of Animal SciencesPurdue UniversityWest LafayetteIndiana
- Department of Biological SciencesPurdue UniversityWest LafayetteIndiana
| | - Nanjian Luo
- Department of Animal SciencesPurdue UniversityWest LafayetteIndiana
| | - Yan Xiong
- Department of Animal SciencesPurdue UniversityWest LafayetteIndiana
| | - Feng Yue
- Department of Animal SciencesPurdue UniversityWest LafayetteIndiana
| | - Shihuan Kuang
- Department of Animal SciencesPurdue UniversityWest LafayetteIndiana
- Center for Cancer ResearchPurdue UniversityWest LafayetteIndiana
| |
Collapse
|
49
|
Yu N, Gu N, Wang Y, Zhou B, Lu D, Li J, Ma X, Zhang J, Guo X. The Association of Plasma Trimethylamine N-Oxide with Coronary Atherosclerotic Burden in Patients with Type 2 Diabetes Among a Chinese North Population. Diabetes Metab Syndr Obes 2022; 15:69-78. [PMID: 35035225 PMCID: PMC8754460 DOI: 10.2147/dmso.s339698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE We aimed to examine the association between plasma trimethylamine N-oxide (TMAO), a gut microbial metabolite from dietary phosphatidylcholine, and coronary atherosclerotic burden in patients with type 2 diabetes (T2D). METHODS In total, 349 patients with T2D were studied, including 70 controls and 279 patients with coronary artery disease (CAD) by coronary angiography. Coronary atherosclerotic burden is quantified by the number of diseased coronary branches and SYNTAX (Synergy between PCI with Taxus and Cardiac Surgery) score. Plasma TMAO levels were determined by UHPLC-MS/MS technique. RESULTS The TMAO concentration was significantly higher in the patients with triple vessel disease (TVD) (3.33 [IQR: 1.81-6.65] μM) than those without TVD (2.62 [IQR: 1.50-4.73] μM) (P = 0.015). A similar difference was found between patients with SYNTAX score >22 (3.93 [IQR: 1.81-6.82] μM) and those with SYNTAX score ≤22 (2.54 [IQR: 1.44-4.54] μM) (P = 0.014). TMAO was not significantly correlated with the presence of CAD. Among patients with eGFR <60 mL/min/1.73 m2, the highest tertile of TMAO was significantly associated with TVD (OR = 25.28, 95% CI [2.55-250.33], P = 0.006) and SYNTAX score >22 (OR = 7.23, 95% CI [1.51-34.64], P = 0.013) independent of known risk factors of CAD, compared with lower TMAO tertiles. CONCLUSION TMAO was not independently correlated with the presence of CAD and severity of coronary atherosclerosis in the included population. Nevertheless, the significant association between circulating TMAO and higher coronary atherosclerotic burden was observed in patients with eGFR of lower than 60 mL/min/1.73 m2.
Collapse
Affiliation(s)
- Na Yu
- Department of Endocrinology, Peking University First Hospital, Beijing, 100034, People’s Republic of China
| | - Nan Gu
- Department of Endocrinology, Peking University First Hospital, Beijing, 100034, People’s Republic of China
| | - Yuxin Wang
- Department of Endocrinology, Peking University First Hospital, Beijing, 100034, People’s Republic of China
| | - Bin Zhou
- Department of Cardiology, Fuwai Hospital, National Centre for Cardiovascular Diseases, National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, People’s Republic of China
| | - Difei Lu
- Department of Endocrinology, Peking University First Hospital, Beijing, 100034, People’s Republic of China
| | - Jianping Li
- Department of Cardiology, Peking University First Hospital, Beijing, 100034, People’s Republic of China
| | - Xiaowei Ma
- Department of Endocrinology, Peking University First Hospital, Beijing, 100034, People’s Republic of China
- Correspondence: Xiaowei Ma Department of Endocrinology, Peking University First Hospital, Beijing, People’s Republic of ChinaTel/Fax +86-010-83572574 Email
| | - Junqing Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, 100034, People’s Republic of China
| | - Xiaohui Guo
- Department of Endocrinology, Peking University First Hospital, Beijing, 100034, People’s Republic of China
| |
Collapse
|
50
|
Liu L, Zhang J, Cheng Y, Zhu M, Xiao Z, Ruan G, Wei Y. Gut microbiota: A new target for T2DM prevention and treatment. Front Endocrinol (Lausanne) 2022; 13:958218. [PMID: 36034447 PMCID: PMC9402911 DOI: 10.3389/fendo.2022.958218] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/22/2022] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM), one of the fastest growing metabolic diseases, has been characterized by metabolic disorders including hyperglycemia, hyperlipidemia and insulin resistance (IR). In recent years, T2DM has become the fastest growing metabolic disease in the world. Studies have indicated that patients with T2DM are often associated with intestinal flora disorders and dysfunction involving multiple organs. Metabolites of the intestinal flora, such as bile acids (BAs), short-chain fatty acids (SCFAs) and amino acids (AAs)may influence to some extent the decreased insulin sensitivity associated with T2DM dysfunction and regulate metabolic as well as immune homeostasis. In this paper, we review the changes in the gut flora in T2DM and the mechanisms by which the gut microbiota modulates metabolites affecting T2DM, which may provide a basis for the early identification of T2DM-susceptible individuals and guide targeted interventions. Finally, we also highlight gut microecological therapeutic strategies focused on shaping the gut flora to inform the improvement of T2DM progression.
Collapse
Affiliation(s)
- Lulu Liu
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiheng Zhang
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yi Cheng
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Meng Zhu
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhifeng Xiao
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Guangcong Ruan
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Yanling Wei, ; Guangcong Ruan,
| | - Yanling Wei
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Yanling Wei, ; Guangcong Ruan,
| |
Collapse
|