1
|
Das B, Datta S, Vanlalhmuaka, Reddy PVB. Comprehensive evaluation on progressive development strategies in DENV surveillance and monitoring infection rate among vector population. J Vector Borne Dis 2024; 61:327-339. [PMID: 39374492 DOI: 10.4103/jvbd.jvbd_86_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 02/05/2024] [Indexed: 10/09/2024] Open
Abstract
The elevated rise in dengue infection rate has been a health burden worldwide and it will continue to impact global health for years to come. Accumulated literature holds accountable the geographical expansion of the mosquito species transmitting the dengue virus DENV. The frequency of this viral disease outbreaks has increased rapidly in the recent years, owing to various geo-climatic and anthropological activities. Due to scarcity of any effective control measures, there has been a continuous traceable rise in mortality and morbidity rates. However, it has been reported that the spate of incidences is directly related to density of the virus infected vector (mosquito) population in a given region. In such a scenario, systems capable of detecting virus infected vector population would aid in estimating prediction of outbreak, as well as provide time to deploy suitable management strategies for vector control, and to break the vector-human transmission chain. This would also help in identifying areas, where much improvement is needed for vector management. To this context, we illustrate an exhaustive overview of both gold standards and as well as emerging advents for sensitive and specific mosquito population strategized viral detection technologies. We summarize the cutting-edge technologies and the challenges faced in pioneering to field application. Regardless the proven popularity of the gold standards for detection purpose, they offer certain limitations. Thus with the surge in the infection rate globally, approaches for development of newer advancements and technique upgradation to arrest the infection escalation and for early detection as a part of vector management should be prioritized.
Collapse
Affiliation(s)
- Bidisha Das
- Entomology and Biothreat Management Division, Defence Research Laboratory, Tezpur, Assam, India
- Department of Life Science & Bio-Informatics, Assam University Diphu Campus, Diphu, Assam, India
| | - Sibnarayan Datta
- Entomology and Biothreat Management Division, Defence Research Laboratory, Tezpur, Assam, India
| | - Vanlalhmuaka
- Entomology and Biothreat Management Division, Defence Research Laboratory, Tezpur, Assam, India
| | | |
Collapse
|
2
|
Beddingfield BJ, Hartnett JN, Wilson RB, Kulakosky PC, Andersen KG, Robles-Sikisaka R, Grubaugh ND, Aybar A, Nunez MZ, Fermin CD, Garry RF. Zika Virus Non-Structural Protein 1 Antigen-Capture Immunoassay. Viruses 2021; 13:v13091771. [PMID: 34578352 PMCID: PMC8473068 DOI: 10.3390/v13091771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/24/2021] [Accepted: 09/03/2021] [Indexed: 01/01/2023] Open
Abstract
Infection with Zika virus (ZIKV), a member of the Flavivirus genus of the Flaviviridae family, typically results in mild self-limited illness, but severe neurological disease occurs in a limited subset of patients. In contrast, serious outcomes commonly occur in pregnancy that affect the developing fetus, including microcephaly and other major birth defects. The genetic similarity of ZIKV to other widespread flaviviruses, such as dengue virus (DENV), presents a challenge to the development of specific ZIKV diagnostic assays. Nonstructural protein 1 (NS1) is established for use in immunodiagnostic assays for flaviviruses. To address the cross-reactivity of ZIKV NS1 with proteins from other flaviviruses we used site-directed mutagenesis to modify putative epitopes. Goat polyclonal antibodies to variant ZIKV NS1 were affinity-purified to remove antibodies binding to the closely related NS1 protein of DENV. An antigen-capture ELISA configured with the affinity-purified polyclonal antibody showed a linear dynamic range between approximately 500 and 30 ng/mL, with a limit of detection of between 1.95 and 7.8 ng/mL. NS1 proteins from DENV, yellow fever virus, St. Louis encephalitis virus and West Nile virus showed significantly reduced reactivity in the ZIKV antigen-capture ELISA. Refinement of approaches similar to those employed here could lead to development of ZIKV-specific immunoassays suitable for use in areas where infections with related flaviviruses are common.
Collapse
Affiliation(s)
- Brandon J. Beddingfield
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (B.J.B.); (J.N.H.)
| | - Jessica N. Hartnett
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (B.J.B.); (J.N.H.)
| | - Russell B. Wilson
- Autoimmune Technologies, Limited Liability Company, New Orleans, LA 70112, USA; (R.B.W.); (P.C.K.)
| | - Peter C. Kulakosky
- Autoimmune Technologies, Limited Liability Company, New Orleans, LA 70112, USA; (R.B.W.); (P.C.K.)
| | - Kristian G. Andersen
- Department of Immunology and Microbial Science, Scripps Research, La Jolla, CA 92037, USA; (K.G.A.); (R.R.-S.); (N.D.G.)
- Scripps Translational Science Institute, La Jolla, CA 92037, USA
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Refugio Robles-Sikisaka
- Department of Immunology and Microbial Science, Scripps Research, La Jolla, CA 92037, USA; (K.G.A.); (R.R.-S.); (N.D.G.)
- Scripps Translational Science Institute, La Jolla, CA 92037, USA
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Nathan D. Grubaugh
- Department of Immunology and Microbial Science, Scripps Research, La Jolla, CA 92037, USA; (K.G.A.); (R.R.-S.); (N.D.G.)
- Scripps Translational Science Institute, La Jolla, CA 92037, USA
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Argelia Aybar
- MediPath Instituto de Patologia Molecular, Universidad Tecnológica de Santiago (UTESA), Santiago 51000, Dominican Republic;
| | - Maria-Zunilla Nunez
- Centro de Investigaciones Biomédicas y Clínicas (CINBIOCLI), Pontificia Universidad Católica Madre y Maestra (PUCMM), Santiago 51034, Dominican Republic;
| | - Cesar D. Fermin
- Instituto de Innovacion Biotecnologia e Industria (IIBI), Santo Domingo 10135, Dominican Republic;
- Ministerio de Salud Publica (MSP), Santo Domingo 10514, Dominican Republic
| | - Robert F. Garry
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (B.J.B.); (J.N.H.)
- Zalgen Labs, Limited Liability Company, Germantown, MD 20876, USA
- Correspondence: ; Tel.: +1-504-988-2027
| |
Collapse
|
3
|
Pan YH, Liao MY, Chien YW, Ho TS, Ko HY, Yang CR, Chang SF, Yu CY, Lin SY, Shih PW, Shu PY, Chao DY, Pan CY, Chen HM, Perng GC, Ku CC, King CC. Use of seroprevalence to guide dengue vaccination plans for older adults in a dengue non-endemic country. PLoS Negl Trop Dis 2021; 15:e0009312. [PMID: 33793562 PMCID: PMC8075253 DOI: 10.1371/journal.pntd.0009312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 04/26/2021] [Accepted: 03/17/2021] [Indexed: 01/05/2023] Open
Abstract
A shift in dengue cases toward the adult population, accompanied by an increased risk of severe cases of dengue in the elderly, has created an important emerging issue in the past decade. To understand the level of past DENV infection among older adults after a large dengue outbreak occurred in southern Taiwan in 2015, we screened 1498 and 2603 serum samples from healthy residents aged ≥ 40 years in Kaohsiung City and Tainan City, respectively, to assess the seroprevalence of anti-DENV IgG in 2016. Seropositive samples were verified to exclude cross-reaction from Japanese encephalitis virus (JEV), using DENV/JEV-NS1 indirect IgG ELISA. We further identified viral serotypes and secondary DENV infections among positive samples in the two cities. The overall age-standardized seroprevalence of DENV-IgG among participants was 25.77% in Kaohsiung and 11.40% in Tainan, and the seroprevalence was significantly higher in older age groups of both cities. Although the percentages of secondary DENV infection in Kaohsiung and Tainan were very similar (43.09% and 44.76%, respectively), DENV-1 and DENV-2 spanned a wider age range in Kaohsiung, whereas DENV-2 was dominant in Tainan. As very few studies have obtained the serostatus of DENV infection in older adults and the elderly, this study highlights the need for further investigation into antibody status, as well as the safety and efficacy of dengue vaccination in these older populations.
Collapse
Affiliation(s)
- Yi-Hua Pan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University (NTU), Taipei, Taiwan, Republic of China
| | - Mei-Ying Liao
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University (NTU), Taipei, Taiwan, Republic of China
| | - Yu-Wen Chien
- Department of Public Health, College of Medicine, National Cheng Kung University (NCKU), Tainan, Taiwan, Republic of China
| | - Tzong-Shiann Ho
- Department of Pediatrics, National Cheng-Kung University Hospital (NCKUH), College of Medicine, NCKU, Tainan, Taiwan, Republic of China
| | - Hui-Ying Ko
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University (NTU), Taipei, Taiwan, Republic of China
| | - Chin-Rur Yang
- Institute of Immunology, College of Medicine, NTU, Taipei, Taiwan, Republic of China
| | - Shu-Fen Chang
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan, Republic of China
| | - Chia-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), Tainan, Taiwan, Republic of China
| | - Shu-Yu Lin
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University (NTU), Taipei, Taiwan, Republic of China
| | - Pin-Wei Shih
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University (NTU), Taipei, Taiwan, Republic of China
| | - Pei-Yun Shu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan, Republic of China
| | - Day-Yu Chao
- Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Chao-Ying Pan
- Department of Health, Kaohsiung City Government, Kaohsiung, Taiwan, Republic of China
| | - Hong-Ming Chen
- Public Health Bureau, Tainan City Government, Tainan, Taiwan, Republic of China
| | - Guey-Chuen Perng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University (NCKU), Tainan, Taiwan, Republic of China
| | - Chia-Chi Ku
- Institute of Immunology, College of Medicine, NTU, Taipei, Taiwan, Republic of China
| | - Chwan-Chuen King
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University (NTU), Taipei, Taiwan, Republic of China
| |
Collapse
|
4
|
Rut W, Groborz K, Zhang L, Modrzycka S, Poreba M, Hilgenfeld R, Drag M. Profiling of flaviviral NS2B-NS3 protease specificity provides a structural basis for the development of selective chemical tools that differentiate Dengue from Zika and West Nile viruses. Antiviral Res 2020; 175:104731. [PMID: 32014497 DOI: 10.1016/j.antiviral.2020.104731] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/14/2020] [Accepted: 01/30/2020] [Indexed: 12/11/2022]
Abstract
West Nile virus (WNV) and Dengue virus (DENV) are mosquito-borne pathogenic flaviviruses. The NS2B-NS3 proteases found in these viruses are responsible for polyprotein processing and are therefore considered promising medical targets. Another ortholog of these proteases is found in Zika virus (ZIKV). In this work, we applied a combinatorial chemistry approach - Hybrid Combinatorial Substrate Library (HyCoSuL), to compare the substrate specificity profile at the P4-P1 positions of the NS2B-NS3 proteases found in all three viruses. The obtained data demonstrate that Zika and West Nile virus NS2B-NS3 proteases display highly overlapping substrate specificity in all binding pockets, while the Dengue ortholog has slightly different preferences toward natural and unnatural amino acids at the P2 and P4 positions. We used this information to extract specific peptide sequences recognized by the Dengue NS2B-NS3 protease. Next, we applied this knowledge to design a selective substrate and activity-based probe for the Dengue NS2B-NS3 protease. Our work provides a structural framework for the design of inhibitors, which could be used as a lead structure for drug development efforts.
Collapse
Affiliation(s)
- Wioletta Rut
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland.
| | - Katarzyna Groborz
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Linlin Zhang
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, University of Lübeck, 23562, Lübeck, Germany
| | - Sylwia Modrzycka
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Marcin Poreba
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Rolf Hilgenfeld
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, University of Lübeck, 23562, Lübeck, Germany
| | - Marcin Drag
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland.
| |
Collapse
|
5
|
Rojas A, Cardozo F, Cantero C, Stittleburg V, López S, Bernal C, Gimenez Acosta FE, Mendoza L, Pinsky BA, Arévalo de Guillén I, Páez M, Waggoner J. Characterization of dengue cases among patients with an acute illness, Central Department, Paraguay. PeerJ 2019; 7:e7852. [PMID: 31616598 PMCID: PMC6790102 DOI: 10.7717/peerj.7852] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/08/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND In 2018, Paraguay experienced a large dengue virus (DENV) outbreak. The primary objective of this study was to characterize dengue cases in the Central Department, where the majority of cases occur, and identify factors associated with DENV infection. METHODS Patients were enrolled from January-May 2018 if they presented with a suspected arboviral illness. Acute-phase specimens (≤8 days after symptom onset) were tested using rRT-PCR, a rapid diagnostic test for DENV nonstructural protein 1 (NS1) and anti-DENV IgM and IgG, and ELISA for IgG against NS1 from Zika virus (ZIKV). RESULTS A total of 231 patients were enrolled (95.2% adults) at two sites: emergency care and an outpatient clinical site. Patients included 119 (51.5%) dengue cases confirmed by rRT-PCR (n = 115, 96.6%) and/or the detection of NS1 and anti-DENV IgM (n = 4, 3.4%). DENV-1 was the predominant serotype (109/115, 94.8%). Epidemiologically, dengue cases and non-dengue cases were similar, though dengue cases were less likely to reside in a house/apartment or report a previous dengue case. Clinical and laboratory findings associated with dengue included red eyes, absence of sore throat, leucopenia and thrombocytopenia. At an emergency care site, 26% of dengue cases (26/100) required hospitalization. In univariate analysis, hospitalization was associated with increased viral load, anti-DENV IgG, and thrombocytopenia. Among dengue cases that tested positive for IgG against ZIKV NS1, the odds of DENV NS1 detection in the acute phase were decreased 10-fold (OR 0.1, 0.0-0.3). CONCLUSIONS Findings from a predominantly adult population demonstrate clinical and laboratory factors associated with DENV infections and the potential severity of dengue in this group. The combination of viral load and specific IgG antibodies warrant further study as a prognostic to identify patients at risk for severe disease.
Collapse
Affiliation(s)
- Alejandra Rojas
- Departamento de Producción, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Fátima Cardozo
- Departamento de Salud Pública, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - César Cantero
- Departamento de Producción, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Victoria Stittleburg
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, GA, United States of America
| | - Sanny López
- Departamento de Producción, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Cynthia Bernal
- Departamento de Producción, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | | | - Laura Mendoza
- Departamento de Salud Pública, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Benjamin A. Pinsky
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States of America
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Ivalena Arévalo de Guillén
- Departamento de Producción, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Malvina Páez
- Departamento de Salud Pública, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Jesse Waggoner
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, GA, United States of America
- Rollins School of Public Health, Department of Global Health, Emory University, Atlanta, GA, United States of America
| |
Collapse
|
6
|
Kim YH, Kim TY, Park JS, Park JS, Lee J, Moon J, Chong CK, Junior IN, Ferry FR, Ahn HJ, Bhatt L, Nam HW. Development and Clinical Evaluation of a Rapid Diagnostic Test for Yellow Fever Non-Structural Protein 1. THE KOREAN JOURNAL OF PARASITOLOGY 2019; 57:283-290. [PMID: 31284351 PMCID: PMC6616167 DOI: 10.3347/kjp.2019.57.3.283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/16/2019] [Indexed: 11/23/2022]
Abstract
A rapid diagnostic test (RDT) kit was developed to detect non-structural protein 1 (NS1) of yellow fever virus (YFV) using monoclonal antibody. NS1 protein was purified from the cultured YFV and used to immunize mice. Monoclonal antibody to NS1 was selected and conjugated with colloidal gold to produce the YFV NS1 RDT kit. The YFV RDTs were evaluated for sensitivity and specificity using positive and negative samples of monkeys from Brazil and negative human blood samples from Korea. Among monoclonal antibodies, clones 3A11 and 3B7 proved most sensitive, and used for YFV RDT kit. Diagnostic accuracy of YFV RDT was fairly high; Sensitivity was 0.0% and specificity was 100% against Dengue viruses type 2 and 3, Zika, Chikungunya and Mayaro viruses. This YFV RDT kit could be employed as a test of choice for point-of-care diagnosis and large scale surveys of YFV infection under clinical or field conditions in endemic areas and on the globe.
Collapse
Affiliation(s)
- Yeong Hoon Kim
- Department of Ophthalmology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | | | | | | | | | | | | | - Ivan Neves Junior
- Gafreé and Guinle University Hospital of the Federal University of Rio de Janeiro, Del Castilho, Rio de Janeiro, Brazil
| | - Fernando Raphael Ferry
- Gafreé and Guinle University Hospital of the Federal University of Rio de Janeiro, Del Castilho, Rio de Janeiro, Brazil
| | - Hye-Jin Ahn
- Department of Parasitology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Lokraj Bhatt
- Department of Parasitology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Ho-Woo Nam
- Department of Parasitology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
7
|
Bosch I, de Puig H, Hiley M, Carré-Camps M, Perdomo-Celis F, Narváez CF, Salgado DM, Senthoor D, O'Grady M, Phillips E, Durbin A, Fandos D, Miyazaki H, Yen CW, Gélvez-Ramírez M, Warke RV, Ribeiro LS, Teixeira MM, Almeida RP, Muñóz-Medina JE, Ludert JE, Nogueira ML, Colombo TE, Terzian ACB, Bozza PT, Calheiros AS, Vieira YR, Barbosa-Lima G, Vizzoni A, Cerbino-Neto J, Bozza FA, Souza TML, Trugilho MRO, de Filippis AMB, de Sequeira PC, Marques ETA, Magalhaes T, Díaz FJ, Restrepo BN, Marín K, Mattar S, Olson D, Asturias EJ, Lucera M, Singla M, Medigeshi GR, de Bosch N, Tam J, Gómez-Márquez J, Clavet C, Villar L, Hamad-Schifferli K, Gehrke L. Rapid antigen tests for dengue virus serotypes and Zika virus in patient serum. Sci Transl Med 2018; 9:9/409/eaan1589. [PMID: 28954927 DOI: 10.1126/scitranslmed.aan1589] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/02/2017] [Accepted: 09/08/2017] [Indexed: 12/16/2022]
Abstract
The recent Zika virus (ZIKV) outbreak demonstrates that cost-effective clinical diagnostics are urgently needed to detect and distinguish viral infections to improve patient care. Unlike dengue virus (DENV), ZIKV infections during pregnancy correlate with severe birth defects, including microcephaly and neurological disorders. Because ZIKV and DENV are related flaviviruses, their homologous proteins and nucleic acids can cause cross-reactions and false-positive results in molecular, antigenic, and serologic diagnostics. We report the characterization of monoclonal antibody pairs that have been translated into rapid immunochromatography tests to specifically detect the viral nonstructural 1 (NS1) protein antigen and distinguish the four DENV serotypes (DENV1-4) and ZIKV without cross-reaction. To complement visual test analysis and remove user subjectivity in reading test results, we used image processing and data analysis for data capture and test result quantification. Using a 30-μl serum sample, the sensitivity and specificity values of the DENV1-4 tests and the pan-DENV test, which detects all four dengue serotypes, ranged from 0.76 to 1.00. Sensitivity/specificity for the ZIKV rapid test was 0.81/0.86, respectively, using a 150-μl serum input. Serum ZIKV NS1 protein concentrations were about 10-fold lower than corresponding DENV NS1 concentrations in infected patients; moreover, ZIKV NS1 protein was not detected in polymerase chain reaction-positive patient urine samples. Our rapid immunochromatography approach and reagents have immediate application in differential clinical diagnosis of acute ZIKV and DENV cases, and the platform can be applied toward developing rapid antigen diagnostics for emerging viruses.
Collapse
Affiliation(s)
- Irene Bosch
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Helena de Puig
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Megan Hiley
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Marc Carré-Camps
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, Spain
| | | | - Carlos F Narváez
- Programa de Medicina, Facultad de Salud, Universidad Surcolombiana, Neiva, Colombia
| | - Doris M Salgado
- Programa de Medicina, Facultad de Salud, Universidad Surcolombiana, Neiva, Colombia
| | - Dewahar Senthoor
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Madeline O'Grady
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elizabeth Phillips
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ann Durbin
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Diana Fandos
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, Spain
| | - Hikaru Miyazaki
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chun-Wan Yen
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Margarita Gélvez-Ramírez
- Universidad Industrial de Santander and AEDES Program (Alianza para el desarrollo de estrategias que disminuyan el impacto de enfermedades transmitidas por Aedes como resultado del estudio de sus endemias y epidemias), Bucaramanga, Santander, Colombia
| | | | - Lucas S Ribeiro
- Immunopharmacology Group, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, Brazil
| | - Mauro M Teixeira
- Immunopharmacology Group, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, Brazil
| | - Roque P Almeida
- Departamento de Medicina Interna e Patologia, Hospital Universitário/Empresa Brasileira de Serviços Hospitalares (EBSERH), Universidade Federal de Sergipe, Aracaju, Brazil
| | - José E Muñóz-Medina
- Laboratorio Central de Epidemiología, Instituto Mexicano del Seguro Social, Avenida Jacarandas S/N, Esquina Circuito Interior, Colonia La Raza Del Azcapotzalco, Código Postal 02990 México D.F., México
| | - Juan E Ludert
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, México
| | - Mauricio L Nogueira
- Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil
| | - Tatiana E Colombo
- Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil
| | - Ana C B Terzian
- Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil
| | - Patricia T Bozza
- Immunopharmacology Laboratory, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Andrea S Calheiros
- Immunopharmacology Laboratory, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Yasmine R Vieira
- National Institute of Infectious Disease Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| | - Giselle Barbosa-Lima
- National Institute of Infectious Disease Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| | - Alexandre Vizzoni
- National Institute of Infectious Disease Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| | - José Cerbino-Neto
- National Institute of Infectious Disease Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| | - Fernando A Bozza
- National Institute of Infectious Disease Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil.,D'Or Institute of Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Thiago M L Souza
- Immunopharmacology Laboratory, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil.,National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), FIOCRUZ, Rio de Janeiro, Brazil
| | - Monique R O Trugilho
- Toxinology Laboratory and Center for Technological Development in Health (CDTS), FIOCRUZ, Rio de Janeiro, Brazil
| | | | | | - Ernesto T A Marques
- Aggeu Magalhães Research Center, FIOCRUZ, Pernambuco, Recife, Brazil.,Department of Infectious Disease and Microbiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tereza Magalhaes
- Aggeu Magalhães Research Center, FIOCRUZ, Pernambuco, Recife, Brazil.,Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Francisco J Díaz
- Immunovirology Group, School of Medicine, University of Antioquia, Medellín, Colombia
| | - Berta N Restrepo
- Instituto Colombiano de Medicina Tropical (ICMT), Universidad CES, Sabaneta, Antioquia, Colombia
| | - Katerine Marín
- Instituto Colombiano de Medicina Tropical (ICMT), Universidad CES, Sabaneta, Antioquia, Colombia
| | - Salim Mattar
- Universidad de Córdoba, Montería, Córdoba, Colombia
| | - Daniel Olson
- Division of Infectious Diseases, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Edwin J Asturias
- Division of Infectious Diseases, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Mark Lucera
- Division of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Mohit Singla
- Department of Paediatrics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | | | | | - Justina Tam
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Winchester Engineering Analytical Center (WEAC), Winchester, MA 01890, USA
| | - Jose Gómez-Márquez
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Charles Clavet
- Winchester Engineering Analytical Center (WEAC), Winchester, MA 01890, USA
| | - Luis Villar
- Universidad Industrial de Santander and AEDES Program (Alianza para el desarrollo de estrategias que disminuyan el impacto de enfermedades transmitidas por Aedes como resultado del estudio de sus endemias y epidemias), Bucaramanga, Santander, Colombia
| | - Kimberly Hamad-Schifferli
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. .,Department of Engineering, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Lee Gehrke
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. .,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Kathiresan E, Paramasivan R, Thenmozhi V, Das A, Dhananjeyan KJ, Sankar SG, Jerald Leo SV, Rathnapraba S, Vennison SJ. Development and multi-use applications of dengue NS1 monoclonal antibody for early diagnosis. RSC Adv 2017. [DOI: 10.1039/c6ra24763f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Swift and early diagnosis of dengue is important for case management and epidemiological purpose.
Collapse
Affiliation(s)
- E. Kathiresan
- Department of Biotechnology
- Anna University
- Tiruchirappalli 620 024
- India
| | - R. Paramasivan
- Centre for Research in Medical Entomology (CRME)
- Indian Council of Medical Research
- Madurai 625 002
- India
| | - V. Thenmozhi
- Centre for Research in Medical Entomology (CRME)
- Indian Council of Medical Research
- Madurai 625 002
- India
| | - Aparup Das
- Centre for Research in Medical Entomology (CRME)
- Indian Council of Medical Research
- Madurai 625 002
- India
| | - K. J. Dhananjeyan
- Centre for Research in Medical Entomology (CRME)
- Indian Council of Medical Research
- Madurai 625 002
- India
| | - S. Gowri Sankar
- Centre for Research in Medical Entomology (CRME)
- Indian Council of Medical Research
- Madurai 625 002
- India
| | - S. Victor Jerald Leo
- Centre for Research in Medical Entomology (CRME)
- Indian Council of Medical Research
- Madurai 625 002
- India
| | - S. Rathnapraba
- Department of Animal Biotechnology
- Madras Veterinary College
- Tamil Nadu Veterinary and Animal Sciences University
- Chennai
- India
| | - S. John Vennison
- Department of Biotechnology
- Anna University
- Tiruchirappalli 620 024
- India
| |
Collapse
|
9
|
Anand AM, Sistla S, Dhodapkar R, Hamide A, Biswal N, Srinivasan B. Evaluation of NS1 Antigen Detection for Early Diagnosis of Dengue in a Tertiary Hospital in Southern India. J Clin Diagn Res 2016; 10:DC01-4. [PMID: 27190798 DOI: 10.7860/jcdr/2016/15758.7562] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/02/2015] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Dengue is a mosquito-borne disease affecting mainly tropical and subtropical regions of the world. The early diagnosis of dengue is required for identifying an epidemic and also for implementing effective vector control measures. AIM To evaluate NS1 antigen assay as an alternative to RT-PCR for the early diagnosis of Dengue. MATERIALS AND METHODS A comparative study was conducted to evaluate NS1 antigen assay in clinically suspected dengue cases admitted to JIPMER hospital from January to November 2011. Serum samples were tested for NS1 antigen, IgM and IgG antibodies by ELISA and RT-PCR. RESULTS Out of total 112 clinically suspected dengue, 94 were laboratory-confirmed dengue cases (positive by one or more of the following tests - IgM ELISA, NS1 antigen ELISA and RT-PCR). NS1 was detectable from day 1 to day 12 of fever. The positive detection rate of NS1 antigen ELISA, RT-PCR and IgM ELISA were 80.9%, 68.1% and 47.9% respectively. NS1 antigen ELISA was evaluated using RT-PCR as the reference standard and showed a sensitivity of 96.8%, specificity of 53.3%, positive predictive value of 81.6% and negative predictive value of 88.9% with a likelihood ratio of 2.1 by Fisher's-exact test. The combination of NS1 and IgM had the highest sensitivity of 97.8%. DEN-3 was the serotype identified by RT-PCR for 24 randomly selected samples. NS1 antigen detection had the highest sensitivity in the early stages while IgM detection was more sensitive in the later half of the illness. CONCLUSION Both NS1 and RT-PCR are useful for early dengue diagnosis, although in terms of cost, ease of performance and rapidity, NS1 is superior to RT-PCR. NS1 in combination with IgM assay offers the most sensitive and cost-effective diagnostic modality for dengue.
Collapse
Affiliation(s)
- Ashwini Manoor Anand
- Senior Resident, Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER) , Puducherry, India
| | - Sujatha Sistla
- Professor, Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER) , Puducherry, India
| | - Rahul Dhodapkar
- Associate Professor, Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER) , Puducherry, India
| | - Abdoul Hamide
- Professor, Department of Medicine, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER) , Puducherry, India
| | - Niranjan Biswal
- Professor, Department of Medicine, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER) , Puducherry, India
| | - Badrinath Srinivasan
- Professor, Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER) , Puducherry, India
| |
Collapse
|
10
|
Lubell Y, Althaus T, Blacksell SD, Paris DH, Mayxay M, Pan-Ngum W, White LJ, Day NPJ, Newton PN. Modelling the Impact and Cost-Effectiveness of Biomarker Tests as Compared with Pathogen-Specific Diagnostics in the Management of Undifferentiated Fever in Remote Tropical Settings. PLoS One 2016; 11:e0152420. [PMID: 27027303 PMCID: PMC4814092 DOI: 10.1371/journal.pone.0152420] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/14/2016] [Indexed: 01/21/2023] Open
Abstract
Background Malaria accounts for a small fraction of febrile cases in increasingly large areas of the malaria endemic world. Point-of-care tests to improve the management of non-malarial fevers appropriate for primary care are few, consisting of either diagnostic tests for specific pathogens or testing for biomarkers of host response that indicate whether antibiotics might be required. The impact and cost-effectiveness of these approaches are relatively unexplored and methods to do so are not well-developed. Methods We model the ability of dengue and scrub typhus rapid tests to inform antibiotic treatment, as compared with testing for elevated C-Reactive Protein (CRP), a biomarker of host-inflammation. Using data on causes of fever in rural Laos, we estimate the proportion of outpatients that would be correctly classified as requiring an antibiotic and the likely cost-effectiveness of the approaches. Results Use of either pathogen-specific test slightly increased the proportion of patients correctly classified as requiring antibiotics. CRP testing was consistently superior to the pathogen-specific tests, despite heterogeneity in causes of fever. All testing strategies are likely to result in higher average costs, but only the scrub typhus and CRP tests are likely to be cost-effective when considering direct health benefits, with median cost per disability adjusted life year averted of approximately $48 USD and $94 USD, respectively. Conclusions Testing for viral infections is unlikely to be cost-effective when considering only direct health benefits to patients. Testing for prevalent bacterial pathogens can be cost-effective, having the benefit of informing not only whether treatment is required, but also as to the most appropriate antibiotic; this advantage, however, varies widely in response to heterogeneity in causes of fever. Testing for biomarkers of host inflammation is likely to be consistently cost-effective despite high heterogeneity, and can also offer substantial reductions in over-use of antimicrobials in viral infections.
Collapse
Affiliation(s)
- Yoel Lubell
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - Thomas Althaus
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Stuart D. Blacksell
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Daniel H. Paris
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Mayfong Mayxay
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Mahosot Hospital, Vientiane, Laos
- Faculty of Postgraduate Studies, University of Health Sciences, Vientiane, Laos
| | - Wirichada Pan-Ngum
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Lisa J. White
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas P. J. Day
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Paul N. Newton
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Mahosot Hospital, Vientiane, Laos
| |
Collapse
|
11
|
Enhanced performance of an innovative dengue IgG/IgM rapid diagnostic test using an anti-dengue EDI monoclonal antibody and dengue virus antigen. Sci Rep 2015; 5:18077. [PMID: 26655854 PMCID: PMC4676027 DOI: 10.1038/srep18077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/06/2015] [Indexed: 12/20/2022] Open
Abstract
High levels of anti-dengue IgM or IgG can be detected using numerous rapid diagnostic tests (RDTs). However, the sensitivity and specificity of these tests are reduced by changes in envelope glycoprotein antigenicity that inevitably occur in limited expression systems. A novel RDT was designed to enhance diagnostic sensitivity. Dengue viruses cultured in animal cells were used as antigens to retain the native viral coat protein. Monoclonal antibodies (mAbs) were then developed, for the first time, against domain I of envelope glycoprotein (EDI). The anti-dengue EDI mAb was employed as a capturer, and EDII and EDIII, which are mainly involved in the induction of neutralizing antibodies in patients, were fully available to bind to anti-dengue IgM or IgG in patients. A one-way automatic blood separation device prevented reverse migration of plasma and maximize the capture of anti-dengue antibodies at the test lines. A clinical evaluation in the field proved that the novel RDT (sensitivities of 96.5% and 96.7% for anti-dengue IgM and IgG) is more effective in detecting anti-dengue antibodies than two major commercial tests (sensitivities of 54.8% and 82% for SD BIOLINE; 50.4% and 75.3% for PanBio). The innovative format of RDT can be applied to other infectious viral diseases.
Collapse
|