1
|
Kobialka RM, Ceruti A, Malwengo-Kasongo P, Okitale-Talunda P, Munyeku-Bazitama Y, Faye M, Truyen U, Abd El Wahed A, Weidmann M, Makiala-Mandanda S. Field deployment of the mobile suitcase laboratory for rapid detection of Mpox virus in the Democratic Republic of the Congo. Diagn Microbiol Infect Dis 2025; 112:116800. [PMID: 40117869 DOI: 10.1016/j.diagmicrobio.2025.116800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/06/2025] [Accepted: 03/11/2025] [Indexed: 03/23/2025]
Abstract
The 2022 Mpox outbreak in the DRC highlighted the urgent need for rapid, fielddeployable diagnostic tools in resource-limited LMIC settings. A mobile diagnostic setup was evaluated, demonstrating operational readiness within 20 minutes and safe testing within 50 minutes. This approach proved practical for Mpox detection in remote, rural regions.
Collapse
Affiliation(s)
- Rea Maja Kobialka
- Institute of Animal Hygiene and Veterinary Public Health, Leipzig University, Germany.
| | - Arianna Ceruti
- Institute of Animal Hygiene and Veterinary Public Health, Leipzig University, Germany
| | - Padra Malwengo-Kasongo
- Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of the Congo; Département de Biologie Médicale, Faculté de Médecine, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Patient Okitale-Talunda
- Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of the Congo; Département de Biologie Médicale, Faculté de Médecine, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Yannick Munyeku-Bazitama
- Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of the Congo; Département de Biologie Médicale, Faculté de Médecine, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | | | - Uwe Truyen
- Institute of Animal Hygiene and Veterinary Public Health, Leipzig University, Germany
| | - Ahmed Abd El Wahed
- Institute of Animal Hygiene and Veterinary Public Health, Leipzig University, Germany
| | - Manfred Weidmann
- Institute of Microbiology and Virology, Brandenburg Medical School Theodor Fontane, 01968, Senftenberg, Germany
| | - Sheila Makiala-Mandanda
- Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of the Congo; Département de Biologie Médicale, Faculté de Médecine, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| |
Collapse
|
2
|
Pang Y, Song J, Jiang L, Lin Y, Xiu Y. Development and Evaluation of a Rapid Visualisation Detection Method for Ameson portunus Based on RPA-LFD. JOURNAL OF FISH DISEASES 2025; 48:e14096. [PMID: 39934084 DOI: 10.1111/jfd.14096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/13/2025]
Abstract
The Ameson portunus is a prevalent pathogen affecting Portunus trituberculatus, which can infect P. trituberculatus and cause albinism, seriously damaging its economic value. Therefore, there is a pressing need for an efficient detection platform to rapidly and sensitively identify A. portunus. In this study, we have developed a method known as recombinase polymerase amplification combined with lateral flow dipstick (RPA-LFD) for the swift detection of A. portunus. Three sets of specific primer pairs and a probe were designed according to the spore wall protein (SWP) sequence of A. portunus, in which one of the primer pair (ApSWP-F1/R1) showed the best amplification effects. The optimal reaction temperature was ultimately determined to be 39°C and the optimal reaction time was set at 10 min after careful optimisation of both variables. The sensitivity of the RPA-LFD method was better than that of polymerase chain reaction (PCR), with a limit of 1.71 × 10-4 ng/μL. This RPA-LFD detection method has good specificity for the detection of A. portunus, and tests for other parasites such as Zschokkella ophiocephali, Myxobolus drjagini, Myxidium lieberkuhni and Pelteobagrus fulvidraeo are negative. The above results show that the RPA-LFD detection method of A. portunus established in this study has strong specificity, high sensitivity, simple operation and visual results, which can be widely used for rapid detection on site.
Collapse
Affiliation(s)
- Yunfei Pang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Jiaxue Song
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Lirong Jiang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Yiping Lin
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Yunji Xiu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| |
Collapse
|
3
|
Yigci D, Ergönül Ö, Tasoglu S. Mpox diagnosis at POC. Trends Biotechnol 2025:S0167-7799(25)00160-X. [PMID: 40393854 DOI: 10.1016/j.tibtech.2025.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 04/20/2025] [Accepted: 04/24/2025] [Indexed: 05/22/2025]
Abstract
The increasing number of Monkeypox (Mpox) cases in non-endemic countries resulted in the WHO declaring a public health emergency of international concern. Accurate and timely diagnosis of Mpox has a critical role in containing the spread of infection. Diagnosis currently relies on PCR, which requires trained personnel and complex laboratory infrastructure. Thus, the development of point-of-care (POC) tools are essential to facilitate rapid, accurate, and user-friendly diagnosis. Here, we review POC diagnostic tools available for Mpox. We also discuss bottlenecks preventing the widespread implementation of POC platforms for Mpox diagnosis and potential strategies to address these limitations. Furthermore, we describe future directions, including the role of machine learning (ML) and deep learning (DL)-based models and the integration of integrated field-deployable platforms for Mpox diagnosis.
Collapse
Affiliation(s)
- Defne Yigci
- School of Medicine, Koç University, Istanbul, 34450, Türkiye
| | - Önder Ergönül
- Koç University İşbank Center for Infectious Diseases, Istanbul, 34010, Türkiye; Department of Infectious Diseases and Clinical Microbiology, Koç University School of Medicine, Istanbul, 34010, Türkiye
| | - Savas Tasoglu
- Department of Mechanical Engineering, Koç University, Sariyer, Istanbul, 34450, Türkiye; Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul, 34450, Türkiye; Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Istanbul, 34684, Türkiye; Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Istanbul, 34450, Türkiye.
| |
Collapse
|
4
|
Madihi S, Benani A. A comprehensive review of current diagnostic techniques for Monkeypox virus detection. Biologicals 2025; 91:101841. [PMID: 40339561 DOI: 10.1016/j.biologicals.2025.101841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 04/13/2025] [Accepted: 05/03/2025] [Indexed: 05/10/2025] Open
Abstract
Monkeypox (Mpox) is an infectious disease caused by the Monkeypox virus (MPXV), initially confined to Central and Western Africa, but now spreading globally. The clinical manifestations are often atypical in the current Mpox outbreak, in addition to the critical challenges in MPXV typing and the difficulty in reliably distinguishing between clades. Therefore, diagnosing Mpox based on clinical signs and symptoms only can be challenging. Current treatment is not specific to MPXV and primarily involves supportive care and antiviral drugs that inhibit viral DNA synthesis, such as Tecovirimat and Brincidofovir. This review provides a comprehensive overview of current laboratory techniques for MPXV detection, encompassing both direct and indirect diagnostic methods. It highlights recent advancements, evaluates the strengths and limitations of each approach, and proposes innovative strategies to enhance global diagnostic capabilities, including the potential roles of computational drug discovery and immunoinformatics in designing multi-epitope vaccines targeting MPXV and its variants. The most effective measure to control MPXV spread remains vaccination, timely diagnosis, isolation of infected individuals, maintaining personal hygiene, and avoiding contact with contaminated persons, objects, and animal waste.
Collapse
Affiliation(s)
- Salma Madihi
- Molecular Biology Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.
| | - Abdelouaheb Benani
- Molecular Biology Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| |
Collapse
|
5
|
Cavuto ML, Malpartida-Cardenas K, Pennisi I, Pond MJ, Mirza S, Moser N, Comer M, Stokes I, Eke L, Lant S, Szostak-Lipowicz KM, Miglietta L, Stringer OW, Mantikas KT, Sumner RP, Bolt F, Sriskandan S, Holmes A, Georgiou P, Ulaeto DO, Maluquer de Motes C, Rodriguez-Manzano J. Portable molecular diagnostic platform for rapid point-of-care detection of mpox and other diseases. Nat Commun 2025; 16:2875. [PMID: 40128193 PMCID: PMC11933461 DOI: 10.1038/s41467-025-57647-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 02/24/2025] [Indexed: 03/26/2025] Open
Abstract
The World Health Organization's designation of mpox as a public health emergency of international concern in August 2024 underscores the urgent need for effective diagnostic solutions to combat this escalating threat. The rapid global spread of clade II mpox, coupled with the sustained human-to-human transmission of the more virulent clade I mpox in the Democratic Republic of Congo, highlights a critical gap in point-of-care diagnostics for this emergent disease. In response, we developed Dragonfly, a portable molecular diagnostic platform for point-of-care use that integrates power-free nucleic acid extraction (<5 minutes) with lyophilised colourimetric LAMP chemistry. The platform demonstrated an analytical limit-of-detection of 100 genome copies per reaction for monkeypox virus, effectively distinguishing it from other orthopoxviruses, herpes simplex virus, and varicella-zoster virus. Clinical validation on 164 samples, including 51 mpox-positive cases, yielded 96.1% sensitivity and 100% specificity for orthopoxviruses, and 94.1% sensitivity and 100% specificity for monkeypox virus. Here, we present a rapid, accessible, and robust point-of-care diagnostic solution for mpox, suitable for both low- and high-resource settings, addressing the global resurgence of orthopoxviruses in the context of declining smallpox immunity.
Collapse
Affiliation(s)
- Matthew L Cavuto
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- ProtonDx Ltd, Translation & Innovation Hub, Imperial College London, London, UK
| | - Kenny Malpartida-Cardenas
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- ProtonDx Ltd, Translation & Innovation Hub, Imperial College London, London, UK
| | - Ivana Pennisi
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- ProtonDx Ltd, Translation & Innovation Hub, Imperial College London, London, UK
| | - Marcus J Pond
- Department of Infection and Immunity, Imperial College Healthcare NHS Trust, London, UK
| | - Sohail Mirza
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- ProtonDx Ltd, Translation & Innovation Hub, Imperial College London, London, UK
| | - Nicolas Moser
- ProtonDx Ltd, Translation & Innovation Hub, Imperial College London, London, UK
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
| | - Mark Comer
- ProtonDx Ltd, Translation & Innovation Hub, Imperial College London, London, UK
| | - Isobel Stokes
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Lucy Eke
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Sian Lant
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | | | - Luca Miglietta
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Oliver W Stringer
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- ProtonDx Ltd, Translation & Innovation Hub, Imperial College London, London, UK
| | - Katerina-Theresa Mantikas
- ProtonDx Ltd, Translation & Innovation Hub, Imperial College London, London, UK
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
| | - Rebecca P Sumner
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Frances Bolt
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- ProtonDx Ltd, Translation & Innovation Hub, Imperial College London, London, UK
| | - Shiranee Sriskandan
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Alison Holmes
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- David Price Evans Infectious Diseases & Global Health Group, University of Liverpool, Liverpool, UK
- The Fleming Initiative, Imperial College London and Imperial College Healthcare NHS Trust, London, UK
| | - Pantelis Georgiou
- ProtonDx Ltd, Translation & Innovation Hub, Imperial College London, London, UK
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
| | - David O Ulaeto
- CBR Division, Defence Science and Technology Laboratory, Salisbury, UK
| | - Carlos Maluquer de Motes
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Jesus Rodriguez-Manzano
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK.
- ProtonDx Ltd, Translation & Innovation Hub, Imperial College London, London, UK.
| |
Collapse
|
6
|
Huang CY, Su SB, Chen KT. A review of epidemiology, diagnosis, and management of Mpox: The role of One Health. Glob Health Med 2025; 7:1-12. [PMID: 40026855 PMCID: PMC11866911 DOI: 10.35772/ghm.2024.01072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/11/2024] [Accepted: 12/30/2024] [Indexed: 03/05/2025]
Abstract
Human monkeypox (Mpox) is an emerging zoonotic disease. Its clinical features are similar to but less severe than those of smallpox. The etiology of this disease is the monkeypox virus. This virus is a double-stranded DNA virus that is classified into the genus Orthopoxvirus and the family Poxviridae. Human monkeypox was first identified in 1970 and mainly occurred in Central and Western Africa. In 2022, outbreaks of Mpox virus infection occurred in several non-endemic countries and caused a potential threat to humans. It is urgent to take immediate action to control and prevent the outbreak of the Mpox virus infection. This paper summarizes the current status of Mpox and generated strategies for managing the Mpox epidemic. Although progress in the diagnostic methods and treatment of Mpox produces better knowledge, we argue that the sensitive surveillance for animal and human Mpox virus infection and evidence-based response and management of Mpox outbreaks is critical. This study highlights the need for further research on preventive and control strategies for Mpox disease approached through the One Health concept.
Collapse
Affiliation(s)
- Chien-Yuan Huang
- Division of Occupational Medicine, Chi-Mei Medical Center, Liouying, Tainan, Taiwan
| | - Shih-Bin Su
- Department of Occupational Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - Kow-Tong Chen
- Department of Occupational Medicine, Tainan Municipal Hospital (managed by Show Chwan Medical Care Corporation), Tainan, Taiwan
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
7
|
Sun H, Miao Y, Yang X, Guo L, Li Q, Wang J, Long J, Zhang Z, Shi J, Li J, Cao Y, Yu C, Mai J, Rong Z, Feng J, Wang S, Yang J, Wang S. Rapid identification of A29L antibodies based on mRNA immunization and high-throughput single B cell sequencing to detect Monkeypox virus. Emerg Microbes Infect 2024; 13:2332665. [PMID: 38517731 PMCID: PMC10984235 DOI: 10.1080/22221751.2024.2332665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/15/2024] [Indexed: 03/24/2024]
Abstract
With the large number of atypical cases in the mpox outbreak, which was classified as a global health emergency by the World Health Organization (WHO) on 23 July 2022, rapid diagnosis of mpox and diseases with similar symptoms to mpox such as chickenpox and respiratory infectious diseases in the early stages of viral infection is key to controlling the spread of the outbreak. In this study, antibodies against the monkeypox virus A29L protein were efficiently and rapidly identified by combining rapid mRNA immunization with high-throughput sequencing of individual B cells. We obtained eight antibodies with a high affinity for A29L validated by ELISA, which were was used as the basis for developing an ultrasensitive fluorescent immunochromatographic assay based on multilayer quantum dot nanobeads (SiTQD-ICA). The SiTQD-ICA biosensor utilizing M53 and M78 antibodies showed high sensitivity and stability of detection: A29L was detected within 20 min, with a minimum detection limit of 5 pg/mL. A specificity test showed that the method was non-cross-reactive with chickenpox or common respiratory pathogens and can be used for early and rapid diagnosis of monkeypox virus infection by antigen detection. This antibody identification method can also be used for rapid acquisition of monoclonal antibodies in early outbreaks of other infectious diseases for various studies.
Collapse
Affiliation(s)
- Huisheng Sun
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
- Bioinformatics center of AMMS, Beijing, People's Republic of China
| | - Yiqi Miao
- Bioinformatics center of AMMS, Beijing, People's Republic of China
| | - Xingsheng Yang
- Bioinformatics center of AMMS, Beijing, People's Republic of China
| | - Liang Guo
- Bioinformatics center of AMMS, Beijing, People's Republic of China
| | - Qingyu Li
- Bioinformatics center of AMMS, Beijing, People's Republic of China
| | - Jing Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing, People's Republic of China
| | - Jinrong Long
- Bioinformatics center of AMMS, Beijing, People's Republic of China
| | - Zhen Zhang
- Bioinformatics center of AMMS, Beijing, People's Republic of China
| | - Jingqi Shi
- Bioinformatics center of AMMS, Beijing, People's Republic of China
| | - Jian Li
- Bioinformatics center of AMMS, Beijing, People's Republic of China
| | - Yiming Cao
- Bioinformatics center of AMMS, Beijing, People's Republic of China
| | - Changxiao Yu
- Bioinformatics center of AMMS, Beijing, People's Republic of China
| | - Jierui Mai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
- Bioinformatics center of AMMS, Beijing, People's Republic of China
| | - Zhen Rong
- Bioinformatics center of AMMS, Beijing, People's Republic of China
| | - Jiannan Feng
- Beijing Institute of Pharmacology and Toxicology, Beijing, People's Republic of China
| | - Shumei Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Jing Yang
- Bioinformatics center of AMMS, Beijing, People's Republic of China
| | - Shengqi Wang
- Bioinformatics center of AMMS, Beijing, People's Republic of China
| |
Collapse
|
8
|
Ahamed MA, Politza AJ, Liu T, Khalid MAU, Zhang H, Guan W. CRISPR-based strategies for sample-to-answer monkeypox detection: current status and emerging opportunities. NANOTECHNOLOGY 2024; 36:042001. [PMID: 39433062 PMCID: PMC11533882 DOI: 10.1088/1361-6528/ad892b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/06/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
The global health threat posed by the Monkeypox virus (Mpox) requires swift, simple, and accurate detection methods for effective management, emphasizing the growing necessity for decentralized point-of-care (POC) diagnostic solutions. The clustered regularly interspaced short palindromic repeats (CRISPR), initially known for its effective nucleic acid detection abilities, presents itself as an attractive diagnostic strategy. CRISPR offers exceptional sensitivity, single-base specificity, and programmability. Here, we reviewed the latest developments in CRISPR-based POC devices and testing strategies for Mpox detection. We explored the crucial role of genetic sequencing in designing crRNA for CRISPR reaction and understanding Mpox transmission and mutations. Additionally, we showed the integration of CRISPR-Cas12 strategy with pre-amplification and amplification-free methods. Our study also focused on the significant role of Cas12 proteins and the effectiveness of Cas12 coupled with recombinase polymerase amplification (RPA) for Mpox detection. We envision the future prospects and challenges, positioning CRISPR-Cas12-based POC devices as a frontrunner in the next generation of molecular biosensing technologies.
Collapse
Affiliation(s)
- Md Ahasan Ahamed
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
| | - Anthony J Politza
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
| | - Tianyi Liu
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
| | - Muhammad Asad Ullah Khalid
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
| | - Huanshu Zhang
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
| | - Weihua Guan
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
| |
Collapse
|
9
|
Tanashat M, Altobaishat O, Sharaf A, Hossam El Din Moawad M, Al-Jafari M, Nashwan AJ. Assessment of the knowledge, attitude, and perception of the world's population towards monkeypox and its vaccines: A systematic review and descriptive analysis of cross-sectional studies. Vaccine X 2024; 20:100527. [PMID: 39221181 PMCID: PMC11363835 DOI: 10.1016/j.jvacx.2024.100527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 05/19/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Prevention and treatment of the monkeypox virus (Mpox) remain challenging in areas where it is endemic. This systematic review and meta-analysis aimed to collect this information from various studies in one study to give a comprehensive view of people's opinions, fears, and behaviors about this virus. METHODS We searched PubMed, Scopus, Web of Science, the Cochrane Library, and Google Scholar for descriptive cross-sectional study designs conducted in 2022 and 2023 addressing knowledge, attitude, perception, preparedness, willingness to get vaccinated, and practices against Mpox infection. RESULTS Among the included studies, 16 studies assessed the level of knowledge of study participants regarding Mpox with a total of 9066 participants. Among them, 4222 (46.6 %) were reported to have good knowledge, and 4844 (53.4%) were reported to have poor knowledge about Mpox. Regarding willingness to get vaccinated against Mpox, 14 studies with a total of 10,696 participants were included. Among them, 7006 (65 %) were willing to get vaccinated while 3690 (35 %) weren't willing to be vaccinated. CONCLUSION Knowledge about Mpox should be increased and awareness should be spread regarding the importance of preventive measures such as vaccination to protect the population from another COVID-19-like pandemic.
Collapse
Affiliation(s)
| | - Obieda Altobaishat
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Abdulrahman Sharaf
- Department of Clinical Pharmacy, Salmaniya Medical Complex, Government Hospital, Manama, Bahrain
| | - Mostafa Hossam El Din Moawad
- Faculty of Pharmacy, Clinical Department, Alexandria University, Alexandria, Egypt
- Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | | | | |
Collapse
|
10
|
Chen H, Guan Y, Zhang X, Chen Y, Li S, Deng Y, Wu Y. Novel point-of-care rapid detection of monkeypox virus. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6403-6410. [PMID: 39225013 DOI: 10.1039/d4ay01437e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Monkeypox, a viral zoonotic disease caused by MPXV, has emerged as a significant global health concern since the first outbreak outside Africa in 2003. As of the current data, there have been 30 189 confirmed cases of monkeypox in 88 countries, with 29 844 cases reported in 81 countries. Given the absence of prior documented instances of the disease, swift and accurate testing is imperative to contain the spread of monkeypox. In this study, we developed a LAMP detection reagent for monkeypox and evaluated its performance in terms of sensitivity, specificity, repeatability, stability, linear range, and linearity, utilizing a commercial magnetic bead-based nucleic acid extraction system. This has led to the establishment of an integrated on-site detection platform for the monkeypox virus, utilizing a closed cartridge. The sensitivity was found to be 100 copies per μL, with no cross-reactivity observed with three other viruses, indicating robust performance. The parameters of repeatability, stability, linear range, and linearity were also assessed. For 28 simulated samples, the detection results obtained from the integrated system were consistent with those from conventional laboratory methods, specifically qPCR and LAMP detection following nucleic acid extraction. The entire process can be completed in approximately one hour, making it highly suitable for immediate rapid testing.
Collapse
Affiliation(s)
- Hui Chen
- Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Yuhong Guan
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Xinyu Zhang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Yuting Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Song Li
- Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yan Deng
- Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yanqi Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China.
- Shenzhen LemnisCare Medical Technology Co., Ltd, Shenzhen, China
| |
Collapse
|
11
|
Dhanasekaran B, Chandran M, Chellasamy G, Veerapandian M, Govindaraju S, Yun K. Red Fluorescent Copper Nanoclusters for Fluorescence, Smartphone, and Electrochemical Sensor Arrays to Detect the Monkeypox A29 Protein. ACS APPLIED BIO MATERIALS 2024; 7:6065-6077. [PMID: 39207467 DOI: 10.1021/acsabm.4c00677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
An Orthopox zoonotic viral infection called monkeypox (MPXV) is the leading infectious disease globally. MPXV can easily spread from human to human through direct and indirect sexual contact; therefore, accurate and early detection of MPXV is crucial for reducing mortality. Fluorescence-based materials have received significant attention in recent years for biomedical applications. In this study, we synthesized red-fluorescent copper nanoclusters (CuNCs) with a size of less than 10 nm, which was confirmed by high-resolution transmission electron microscopy (HR-TEM) and atomic force microscopy (Bio-AFM) analysis. The synthesized CuNCs had a high fluorescence nature and were utilized for the detection of the MPXV (A29P) by an antigen-antibody conjugation using fluorescence, smartphone colorimetric, and electrochemical sensing techniques. The antigen (A29P) and antibody (Ab A29) interaction mechanisms were studied by X-ray photoelectron spectroscopic (XPS) analysis. Furthermore, fluorescence and electrochemical sensing were performed in PBS with detection limits of 0.096 and 0.114 nM, respectively. For real-world applications, the prepared immunosensor array can detect A29P in spiked serum samples, and point-of-care (POC) analysis, a smartphone-integrated sensor array, was used to measure the RGB color changes. The results showed that synthesized CuNCs are potential materials for detecting A29P via fluorescence and smartphone colorimetric and electrochemical sensing techniques.
Collapse
Affiliation(s)
- Barkavi Dhanasekaran
- Department of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Republic of Korea
| | - Murugesan Chandran
- Department of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Republic of Korea
| | - Gayathri Chellasamy
- Department of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Republic of Korea
| | - Mekala Veerapandian
- Department of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Republic of Korea
| | - Saravanan Govindaraju
- Department of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Republic of Korea
| | - Kyusik Yun
- Department of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Republic of Korea
| |
Collapse
|
12
|
Arunagiri T, Ganesan A, Ravi Kumaran V, Mani S, Chanduluru HK, Vellapandian C, Kannaiah KP. Diagnostic Strategies in the Era of Monkeypox Resurgence: A Comprehensive Analysis. Cureus 2024; 16:e67154. [PMID: 39295721 PMCID: PMC11410421 DOI: 10.7759/cureus.67154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/17/2024] [Indexed: 09/21/2024] Open
Abstract
The resurgence of monkeypox (Mpox), an orthopoxvirus infection closely related to smallpox, presents a significant global health challenge. This study presents a comprehensive overview of Mpox, focusing on its clinical manifestations, diagnostic strategies, and testing methodologies. A thorough review of the literature and available data on Mpox, emphasizing diagnostic assays, clinical indicators, and laboratory testing, constitutes the core of this analysis. The study involves insights from Mpox patients and healthcare professionals engaged in its diagnosis and management. Contextualizing the research within the global spread of Mpox addresses the complexities associated with the diagnosis of the disease. The findings illuminate diverse Mpox diagnostic techniques, encompassing viral culture, immunological methods, serology, quantitative polymerase chain reaction (qPCR), electron microscopy, and advanced technologies such as artificial intelligence (AI) and the GeneXpert system. qPCR is highlighted as the benchmark for MPXV detection and quantification. These diagnostic advancements have significantly enhanced the precision and efficiency of Mpox diagnosis, facilitating prompt identification and treatment of infected individuals. The study underscores the critical importance of accurate and timely diagnosis, proper handling and transportation of clinical specimens, and the imperative for point-of-care (POC) testing to control the global spread of Mpox.
Collapse
Affiliation(s)
- Thirumalai Arunagiri
- Pharmacy, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, IND
| | - Alagammai Ganesan
- Pharmacy, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, IND
| | - Vamsi Ravi Kumaran
- Pharmacy, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, IND
| | - Suganandhini Mani
- Pharmacy, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, IND
| | | | - Chitra Vellapandian
- Pharmacy and Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, IND
| | | |
Collapse
|
13
|
Zinnah MA, Uddin MB, Hasan T, Das S, Khatun F, Hasan MH, Udonsom R, Rahman MM, Ashour HM. The Re-Emergence of Mpox: Old Illness, Modern Challenges. Biomedicines 2024; 12:1457. [PMID: 39062032 PMCID: PMC11274818 DOI: 10.3390/biomedicines12071457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 07/28/2024] Open
Abstract
The Mpox virus (MPXV) is known to cause zoonotic disease in humans. The virus belongs to the genus Orthopoxvirus, of the family Poxviridae, and was first reported in monkeys in 1959 in Denmark and in humans in 1970 in the Congo. MPXV first appeared in the U.S. in 2003, re-emerged in 2017, and spread globally within a few years. Wild African rodents are thought to be the reservoir of MPXV. The exotic trade of animals and international travel can contribute to the spread of the Mpox virus. A phylogenetic analysis of MPXV revealed two distinct clades (Central African clade and West African clade). The smallpox vaccine shows cross-protection against MPXV infections in humans. Those who have not previously been exposed to Orthopoxvirus infections are more vulnerable to MPXV infections. Clinical manifestations in humans include fever, muscle pain, headache, and vesicle formation on the skin of infected individuals. Pathognomonic lesions include ballooning degenerations with Guarnieri-like inclusions in vesicular epithelial cells. Alterations in viral genome through genetic mutations might favor the re-emergence of a version of MPXV with enhanced virulence. As of November 2023, 92,783 cases and 171 deaths have been reported in 116 countries, representing a global public health concern. Here, we provide insights on the re-emergence of MPXV in humans. This review covers the origin, emergence, re-emergence, transmission, pathology, diagnosis, control measures, and immunomodulation of the virus, as well as clinical manifestations. Concerted efforts of health professionals and scientists are needed to prevent the disease and stop its transmission in vulnerable populations.
Collapse
Affiliation(s)
- Mohammad Ali Zinnah
- Department of Microbiology and Public Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Md Bashir Uddin
- Department of Medicine, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Tanjila Hasan
- Department of Medicine and Surgery, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Shobhan Das
- Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro, GA 30458, USA
| | - Fahima Khatun
- Department of Pathobiology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Md Hasibul Hasan
- Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Ruenruetai Udonsom
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Bangkok 73170, Thailand
| | - Md Masudur Rahman
- Department of Pathology, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
| | - Hossam M. Ashour
- Department of Integrative Biology, College of Arts and Sciences, University of South Florida, St. Petersburg, FL 33701, USA
| |
Collapse
|
14
|
Can G, Perk B, Çitil BE, Büyüksünetçi YT, Anık Ü. Electrochemical Immunoassay Platform for Human Monkeypox Virus Detection. Anal Chem 2024; 96:8342-8348. [PMID: 38728056 PMCID: PMC11140668 DOI: 10.1021/acs.analchem.3c05182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 05/29/2024]
Abstract
In this study, we reported a selective impedimetric biosensor for the detection of A29 which is the target protein of the monkeypox virus (MPXV). The working principle of the biosensor relies on the interaction mechanism between A29, which is an internal membrane protein of MPXV, and the heparan sulfate receptor. For this purpose, after immobilizing heparan sulfate onto the gold screen-printed electrode surface, its interaction with A29 protein was monitored using electrochemical impedance spectroscopy. After the optimization of experimental parameters, the analytical characteristics of the developed MPVX immunosensor were examined. The developed immunosensor exhibited a linear detection range between 2.0 and 50 ng mL-1, with a detection limit of 2.08 ng mL-1 and a quantification limit of 6.28 ng mL-1. Furthermore, a relative standard deviation value of 2.82% was determined for 25 ng mL-1. Apart from that, sample application studies were also performed with the standard addition of A29 protein to 1:10 diluted real serum samples that were taken from healthy individuals, and very good recovery values were obtained.
Collapse
Affiliation(s)
- Göksu Can
- Faculty
of Science, Chemistry Department, Mugla
Sitki Kocman University, Kotekli, Mugla 48000, Turkey
| | - Benay Perk
- Faculty
of Science, Chemistry Department, Mugla
Sitki Kocman University, Kotekli, Mugla 48000, Turkey
| | - Burak Ekrem Çitil
- Faculty
of Medicine, Department of Medical Microbiology, Mugla Sitki Kocman University, Kotekli-Mugla 48000, Turkey
| | | | - Ülkü Anık
- Faculty
of Science, Chemistry Department, Mugla
Sitki Kocman University, Kotekli, Mugla 48000, Turkey
- Sensors,
Biosensors and Nano-diagnostic Systems Laboratory, Research Laboratory
Center, Mugla Sitki Kocman University, Kotekli, Mugla 48000, Turkey
| |
Collapse
|
15
|
Zhou J, Xiao F, Huang X, Fu J, Jia N, Sun C, Chen M, Xu Z, Huang H, Wang Y. Rapid detection of monkeypox virus and differentiation of West African and Congo Basin strains using endonuclease restriction-mediated real-time PCR-based testing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2693-2701. [PMID: 38624185 DOI: 10.1039/d4ay00492b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The ongoing multi-country outbreak of monkeypox virus (MPXV) has continuously attracted global attention, highlighting the critical need for timely and accurate methods to detect MPXV and differentiate its clades. Herein, we devised a novel multiplex ET-PCR (endonuclease restriction-mediated real-time PCR) assay that integrates PCR amplification, restriction endonuclease cleavage and real-time fluorescence detection to diagnose MPXV infection and distinguish the Congo Basin and West African MPXV strains. In the MPXV ET-PCR system, three sets of specific primers were designed for MPXV, Congo Basin and West African strains. A short sequence, which could be recognized by restriction endonuclease enzyme BstUI, was added to the 5'end of amplification primers. Then, the modified primers were assigned different reporter dyes and corresponding quenching dyes to each of the three targets, enabling real-time fluorescence reporting of the results and multiplex detection. The designed assay enabled the detection of single or three targets in a single tube, with excellent specificity and analytical sensitivity in terms of plasmid and pseudotyped virus. Moreover, the clinical feasibility of our assay was validated using artificially simulated plasma, nasopharyngeal swab and skin swab samples. In conclusion, the multiplex ET-PCR assay devised here had the advantages of simple primer design, cost-effectiveness, low contamination risk, excellent sensitivity, high specificity and multiplex detection, making it a valuable and dependable tool for curbing the extensive spread of MPXV.
Collapse
Affiliation(s)
- Juan Zhou
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, 100020, P. R. China.
| | - Fei Xiao
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, 100020, P. R. China.
| | - Xiaolan Huang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, 100020, P. R. China.
| | - Jin Fu
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, 100020, P. R. China.
| | - Nan Jia
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, 100020, P. R. China.
| | - Chunrong Sun
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, 100020, P. R. China.
| | - Min Chen
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, 100020, P. R. China.
| | - Zheng Xu
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, 100020, P. R. China.
| | - Hui Huang
- Department of Infectious Diseases, Affiliated Children's Hospital, Capital Institute of Pediatrics, Beijing, 10020, P. R. China.
| | - Yi Wang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, 100020, P. R. China.
| |
Collapse
|
16
|
Chandran M, Chellasamy G, Veerapandian M, Dhanasekaran B, Kumar Arumugasamy S, Govindaraju S, Yun K. Fabrication of label-free immunoprobe for monkeypox A29 detection using one-step electrodeposited molybdenum oxide-graphene quantum rods. J Colloid Interface Sci 2024; 660:412-422. [PMID: 38244507 DOI: 10.1016/j.jcis.2023.12.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/08/2023] [Accepted: 12/31/2023] [Indexed: 01/22/2024]
Abstract
Monkeypox is a zoonotic viral infection caused by the monkeypox virus (MPXV), which belongs to the Poxviridae family of the Orthopoxvirus (OPXV) genus. Monkeypox is transmitted from animals to humans and humans to humans; therefore, the accurate and early detection of MPXV is crucial for reducing mortality. A novel graphene-based material, graphene quantum rods (GQRs) was synthesized and confirmed using high-resolution transmission electron microscopy (HR-TEM) and atomic force microscopy (AFM). In this study, molybdenum oxide was electrodeposited and one-pot electrodeposition of MoO3-GQRs composite on carbon fiber paper (CFP) enabled by an antibody (Ab A29)/MoO3-GQRs immunoprobe was developed for the early diagnosis of MPXV protein (A29P). Several studies were conducted to analyze the MoO3-GQRs composite, and the prepared Ab A29/MoO3-GQRs immunoprobe selectively bound to the A29P antigen that was measured using differential pulse voltammetry (DPV) analysis and impedance spectroscopy. The antigen-antibody interaction was analyzed using X-ray photoelectron spectroscopy. DPV analysis showed a wide linear range of detection from 0.5 nM to 1000 nM, a detection limit of 0.52 nM, and a sensitivity of 4.51 µA in PBS. The prepared immunoprobe was used to analyze A29P in serum samples without reducing electrode sensitivity. This system is promising for the clinical analysis of A29P antigen and offers several advantages, including cost-effectiveness, ease of use, accuracy, and high sensitivity.
Collapse
Affiliation(s)
- Murugesan Chandran
- Department of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Republic of Korea
| | - Gayathri Chellasamy
- Department of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Republic of Korea
| | - Mekala Veerapandian
- Department of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Republic of Korea
| | - Barkavi Dhanasekaran
- Department of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Republic of Korea
| | - Shiva Kumar Arumugasamy
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Saravanan Govindaraju
- Department of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Republic of Korea.
| | - Kyusik Yun
- Department of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Republic of Korea.
| |
Collapse
|
17
|
Tan Q, Shi Y, Duan C, Li Q, Gong T, Li S, Duan X, Xie H, Li Y, Chen L. Simple, sensitive, and visual detection of 12 respiratory pathogens with one-pot-RPA-CRISPR/Cas12a assay. J Med Virol 2024; 96:e29624. [PMID: 38647075 DOI: 10.1002/jmv.29624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/21/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Respiratory infections pose a serious threat to global public health, underscoring the urgent need for rapid, accurate, and large-scale diagnostic tools. In recent years, the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated) system, combined with isothermal amplification methods, has seen widespread application in nucleic acid testing (NAT). However, achieving a single-tube reaction system containing all necessary components is challenging due to the competitive effects between recombinase polymerase amplification (RPA) and CRISPR/Cas reagents. Furthermore, to enable precision medicine, distinguishing between bacterial and viral infections is essential. Here, we have developed a novel NAT method, termed one-pot-RPA-CRISPR/Cas12a, which combines RPA with CRISPR molecular diagnostic technology, enabling simultaneous detection of 12 common respiratory pathogens, including six bacteria and six viruses. RPA and CRISPR/Cas12a reactions are separated by paraffin, providing an independent platform for RPA reactions to generate sufficient target products before being mixed with the CRISPR/Cas12a system. Results can be visually observed under LED blue light. The sensitivity of the one-pot-RPA-CRISPR/Cas12a method is 2.5 × 100 copies/μL plasmids, with no cross-reaction with other bacteria or viruses. Additionally, the clinical utility was evaluated by testing clinical isolates of bacteria and virus throat swab samples, demonstrating favorable performance. Thus, our one-pot-RPA-CRISPR/Cas12a method shows immense potential for accurate and large-scale detection of 12 common respiratory pathogens in point-of-care testing.
Collapse
Affiliation(s)
- Qi Tan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Yaoqiang Shi
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Chenlu Duan
- Sichuan Provincial Judicial Police General Hospital, Chengdu, China
| | - Qingyuan Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
- North Sichuan Medical College, Nanchong, Sichuan, China
| | - Tao Gong
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
- North Sichuan Medical College, Nanchong, Sichuan, China
| | - Shilin Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Xiaoqiong Duan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - He Xie
- The Hospital of Xidian Group, Xi'an, China
| | - Yujia Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Limin Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
- The Hospital of Xidian Group, Xi'an, China
- The Joint-Laboratory on Transfusion-Transmitted Diseases (TTDs) between Institute of Blood Transfusion and Nanning Blood Center, Nanning Blood Center, Nanning, China
| |
Collapse
|
18
|
Sun Y, Nie W, Tian D, Ye Q. Human monkeypox virus: Epidemiologic review and research progress in diagnosis and treatment. J Clin Virol 2024; 171:105662. [PMID: 38432097 DOI: 10.1016/j.jcv.2024.105662] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Monkeypox virus (MPXV) is responsible for causing a zoonotic disease called monkeypox (mpox), which sporadically infects humans in West and Central Africa. It first infected humans in 1970 and, along with the variola virus, belongs to the genus Orthopoxvirus in the poxvirus family. Since the World Health Organization declared the MPXV outbreak a "Public Health Emergency of International Concern" on July 23, 2022, the number of infected patients has increased dramatically. To control this epidemic and address this previously neglected disease, MPXV needs to be better understood and reevaluated. In this review, we cover recent research on MPXV, including its genomic and pathogenic characteristics, transmission, mutations and mechanisms, clinical characteristics, epidemiology, laboratory diagnosis, and treatment measures, as well as prevention of MPXV infection in light of the 2022 and 2023 global outbreaks. The 2022 MPXV outbreak has been primarily associated with close intimate contact, including sexual activity, with most cases diagnosed among men who have sex with men. The incubation period of MPXV infection usually lasts from 6 to 13 days, and symptoms include fever, muscle pains, headache, swollen lymph nodes, and a characteristic painful rash, including several stages, such as macules, papules, blisters, pustules, scabs, and scab shedding involving the genitals and anus. Polymerase chain reaction (PCR) is usually used to detect MPXV in skin lesion material. Treatment includes supportive care, antivirals, and intravenous vaccinia immune globulin. Smallpox vaccines have been designed with four givens emergency approval for use against MPXV infection.
Collapse
Affiliation(s)
- Yanhong Sun
- Department of Clinical Laboratory, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Wenjian Nie
- Department of Clinical Laboratory, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Dandan Tian
- Department of Clinical Laboratory, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Qing Ye
- Department of Clinical Laboratory, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China.
| |
Collapse
|
19
|
Xiao F, Fu J, Huang X, Jia N, Sun C, Xu Z, Huang H, Zhou J, Wang Y. Loop-mediated isothermal amplification coupled with nanoparticle-based lateral flow biosensor for monkeypox virus detection. Talanta 2024; 269:125502. [PMID: 38070288 DOI: 10.1016/j.talanta.2023.125502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024]
Abstract
Monkeypox virus (MPXV) infection is currently an evolving public health concern, highlighting an urgent need for early and rapid detection of MPXV. Here, we present a diagnostic test called MPXV-LAMP-LFB, which combines loop-mediated isothermal amplification (LAMP) and nanoparticle-based lateral flow biosensor (LFB) for the simple, sensitive and specific detection of MPXV and differentiation of its two clades. The MPXV-LAMP-LFB can be conducted at a heating block and the detection results can be visually indicated with the biosensor without any specialized apparatus. Two sets of LAMP primers targeting the D14L and ATI genes were designed for the Central and West African MPXV isolates, respectively. The optimal amplification condition was 64 °C for 40 min. Thus, the MPXV-LAMP-LFB test can be completed within 1 h, incorporating rapid DNA extraction (∼15 min), LAMP reaction (∼40 min) and result indicating (∼5 min). The MPXV-LAMP-LFB assay could detect down to 5 copies of plasmid template and 12.5 copies of pseudotyped virus in simulated blood samples. Furthermore, the MPXV-LAMP-LFB assay correctly identified all the positive controls and successfully avoided cross-reactivity with the non-MPXV pathogens or clinical samples, demonstrating its high specificity. Overall, the MPXV-LAMP-LFB test developed in this study showed great promise as a rapid, sensitive and accurate molecular tool for diagnosing MPXV infection.
Collapse
Affiliation(s)
- Fei Xiao
- Experimental research center, Capital Institute of pediatrics, Beijing, 100020, PR China
| | - Jin Fu
- Experimental research center, Capital Institute of pediatrics, Beijing, 100020, PR China
| | - Xiaolan Huang
- Experimental research center, Capital Institute of pediatrics, Beijing, 100020, PR China
| | - Nan Jia
- Experimental research center, Capital Institute of pediatrics, Beijing, 100020, PR China
| | - Chunrong Sun
- Experimental research center, Capital Institute of pediatrics, Beijing, 100020, PR China
| | - Zheng Xu
- Experimental research center, Capital Institute of pediatrics, Beijing, 100020, PR China
| | - Hui Huang
- Department of Infectious Diseases, Affiliated Children's Hospital, Capital Institute of Pediatrics, Beijing, 10020, PR China.
| | - Juan Zhou
- Experimental research center, Capital Institute of pediatrics, Beijing, 100020, PR China.
| | - Yi Wang
- Experimental research center, Capital Institute of pediatrics, Beijing, 100020, PR China.
| |
Collapse
|
20
|
Kumar A, Singh N, Anvikar AR, Misra G. Monkeypox virus: insights into pathogenesis and laboratory testing methods. 3 Biotech 2024; 14:67. [PMID: 38357674 PMCID: PMC10861412 DOI: 10.1007/s13205-024-03920-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 01/07/2024] [Indexed: 02/16/2024] Open
Abstract
The monkeypox virus (MPXV) is a zoonotic pathogen that transmits between monkeys and humans, exhibiting clinical similarities with the smallpox virus. Studies on the immunopathogenesis of MPXV revealed that an initial strong innate immune response is elicited on viral infection that subsequently helps in circumventing the host defense. Once the World Health Organization (WHO) declared it a global public health emergency in July 2022, it became essential to clearly demarcate the MPXV-induced symptoms from other viral infections. We have exhaustively searched the various databases involving Google Scholar, PubMed, and Medline to extract the information comprehensively compiled in this review. The primary focus of this review is to describe the diagnostic methods for MPXV such as polymerase chain reaction (PCR), and serological assays, along with developments in viral isolation, imaging techniques, and next-generation sequencing. These innovative technologies have the potential to greatly enhance the accuracy of diagnostic procedures. Significant discoveries involving MPXV immunopathogenesis have also been highlighted. Overall, this will be a knowledge repertoire that will be crucial for the development of efficient monitoring and control strategies in response to the MPXV infection helping clinicians and researchers in formulating healthcare strategies.
Collapse
Affiliation(s)
- Anoop Kumar
- National Institute of Biologicals, A-32, Sector-62, Institutional Area, Noida, U.P. 201309 India
| | - Neeraj Singh
- National Institute of Biologicals, A-32, Sector-62, Institutional Area, Noida, U.P. 201309 India
| | - Anupkumar R. Anvikar
- National Institute of Biologicals, A-32, Sector-62, Institutional Area, Noida, U.P. 201309 India
| | - Gauri Misra
- National Institute of Biologicals, A-32, Sector-62, Institutional Area, Noida, U.P. 201309 India
- Head Molecular Diagnostics and COVID-19 Kit Testing Laboratory, National Institute of Biologicals (Ministry of Health and Family Welfare), Noida, U.P. 201309 India
| |
Collapse
|
21
|
Yang Y, Gong F, Shan X, Tan Z, Zhou F, Ji X, Xiang M, Wang F, He Z. Amplification-free detection of Mpox virus DNA using Cas12a and multiple crRNAs. Mikrochim Acta 2024; 191:102. [PMID: 38231433 DOI: 10.1007/s00604-024-06184-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/01/2024] [Indexed: 01/18/2024]
Abstract
Mpox virus (MPXV) is a zoonotic DNA virus that caused human Mpox, leading to the 2022 global outbreak. MPXV infections can cause a number of clinical syndromes, which increases public health threats. Therefore, it is necessary to develop an effective and reliable method for infection prevention and control of epidemic. Here, a Cas12a-based direct detection assay for MPXV DNA is established without the need for amplification. By targeting the envelope protein gene (B6R) of MPXV, four CRISPR RNAs (crRNAs) are designed. When MPXV DNA is introduced, every Cas12a/crRNA complex can target a different site of the same MPXV gene. Concomitantly, the trans-cleavage activity of Cas12a is triggered to cleave the DNA reporter probes, releasing a fluorescence signal. Due to the application of multiple crRNAs, the amount of active Cas12a increases. Thus, more DNA reporter probes are cleaved. As a consequence, the detection signals are accumulated, which improves the limit of detection (LOD) and the detection speed. The LOD of the multiple crRNA system can be improved to ~ 0.16 pM, which is a decrease of the LOD by approximately ~ 27 times compared with the individual crRNA reactions. Furthermore, using multiple crRNAs increases the specificity of the assay. Given the outstanding performance, this assay has great potential for Mpox diagnosis.
Collapse
Affiliation(s)
- Yixia Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, 530004, China
| | - Feng Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaoyun Shan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhiyou Tan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, and Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xinghu Ji
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Ming Xiang
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China
| | - Fubing Wang
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China
| | - Zhike He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China
| |
Collapse
|
22
|
Wang Y, Tang Y, Chen Y, Yu G, Zhang X, Yang L, Zhao C, Wang P, Gao S. Ultrasensitive one-pot detection of monkeypox virus with RPA and CRISPR in a sucrose-aided multiphase aqueous system. Microbiol Spectr 2024; 12:e0226723. [PMID: 38078721 PMCID: PMC10782985 DOI: 10.1128/spectrum.02267-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/12/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE The monkeypox virus was declared as a Public Health Emergency of International Concern (PHEIC) by the World Health Organization (WHO) and continues to cause infection cases worldwide. Given the risk of virus evolution, it is essential to identify monkeypox virus infection in a timely manner to prevent outbreaks. This study establishes a novel one-pot recombinase polymerase amplification-Clustered Regularly Interspaced Short Palindromic Repeats (RPA-CRISPR) assay for monkeypox virus with an ultra-high sensitivity. The assay shows good specificity, accuracy, and the rapidness and convenience important for point-of-care testing. It provides an effective tool for the early diagnosis of monkeypox, which is useful for the prevention of an epidemic.
Collapse
Affiliation(s)
- Yue Wang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Yixin Tang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Yukang Chen
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Guangxi Yu
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Xue Zhang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Lihong Yang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Chenjie Zhao
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Pei Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Song Gao
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
23
|
Sun Y, Tang D, Li N, Wang Y, Yang M, Shen C. Development of a Rapid Epstein-Barr Virus Detection System Based on Recombinase Polymerase Amplification and a Lateral Flow Assay. Viruses 2024; 16:106. [PMID: 38257806 PMCID: PMC10818573 DOI: 10.3390/v16010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The quality of cellular products used in biological research can directly impact the ability to obtain accurate results. Epstein-Barr virus (EBV) is a latent virus that spreads extensively worldwide, and cell lines used in experiments may carry EBV and pose an infection risk. The presence of EBV in a single cell line can contaminate other cell lines used in the same laboratory, affecting experimental results. We developed three EBV detection systems: (1) a polymerase chain reaction (PCR)-based detection system, (2) a recombinase polymerase amplification (RPA)-based detection system, and (3) a combined RPA-lateral flow assay (LFA) detection system. The minimum EBV detection limits were 1 × 103 copy numbers for the RPA-based and RPA-LFA systems and 1 × 104 copy numbers for the PCR-based system. Both the PCR and RPA detection systems were applied to 192 cell lines, and the results were consistent with those obtained by the EBV assay methods specified in the pharmaceutical industry standards of the People's Republic of China. A total of 10 EBV-positive cell lines were identified. The combined RPA-LFA system is simple to operate, allowing for rapid result visualization. This system can be implemented in laboratories and cell banks as part of a daily quality control strategy to ensure cell quality and experimental safety and may represent a potential new technique for the rapid detection of EBV in clinical samples.
Collapse
Affiliation(s)
- Yidan Sun
- College of Life Sciences, Wuhan University, Wuhan 430072, China;
- China Center for Type Culture Collection, Wuhan University, Wuhan 430072, China; (D.T.); (N.L.); (Y.W.)
| | - Danni Tang
- China Center for Type Culture Collection, Wuhan University, Wuhan 430072, China; (D.T.); (N.L.); (Y.W.)
| | - Nan Li
- China Center for Type Culture Collection, Wuhan University, Wuhan 430072, China; (D.T.); (N.L.); (Y.W.)
| | - Yudong Wang
- China Center for Type Culture Collection, Wuhan University, Wuhan 430072, China; (D.T.); (N.L.); (Y.W.)
| | - Meimei Yang
- China Center for Type Culture Collection, Wuhan University, Wuhan 430072, China; (D.T.); (N.L.); (Y.W.)
| | - Chao Shen
- College of Life Sciences, Wuhan University, Wuhan 430072, China;
- China Center for Type Culture Collection, Wuhan University, Wuhan 430072, China; (D.T.); (N.L.); (Y.W.)
| |
Collapse
|
24
|
de Oliveira Thomasi RM, da Silva Correa T, Silva do Carmo D, Rodrigues DF, da Silva Correa LV, Xavier SR, Silva LS, da Silva JO, Santos MD, da Silva Dantas A, da Paz MC, Chávez-Fumagalli MA, Giunchetti RC, Ferraz Coelho EA, Machado JM, Galdino AS. Molecular Methods for Diagnosis of Monkeypox: A Mini-review. Curr Mol Med 2024; 24:1208-1218. [PMID: 37461338 DOI: 10.2174/1566524023666230717141920] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 09/21/2024]
Abstract
BACKGROUND Monkeypox is a global public health issue caused by the monkeypox virus (MPXV). As of October 28, 2022, a total of 77,115 laboratoryconfirmed cases and 3,610 probable cases, including 36 deaths, were reported, with 9,070 cases reported in Brazil, the second most affected country. The need to develop national technologies for the rapid diagnosis of emerging diseases for mass testing of the population is evident, as observed in the SARS-CoV-2 pandemic. OBJECTIVE With that in mind, this article provides an overview of current methods, techniques, and their applications in the molecular detection of monkeypox, focusing the search on real-time polymerase chain reaction (qPCR), polymerase chain reaction (PCR), and polymerase chain reaction-enzyme linked immunosorbent assay (PCRELISA). METHODS The relevant documents or papers covered in this study were selected by a search in international bibliographic databases. The search terms used in the databases were aimed at summarizing existing knowledge on molecular diagnostic methods, such as monkeypox; MPX, MPXV, qPCR, PCR, PCR-ELISA, diagnosis and detection searched separately or together using the Boolean operator "AND" either in the title or abstract. The searches took place in September 2022, and the corresponding articles were selected between 2012 and 2022. RESULTS We found 256 documents in total and twelve studies addressing the molecular diagnosis of monkeypox were classified as possible sources for this review. CONCLUSION It is evident there is a pressing need to develop national technologies for rapid diagnosis of emerging diseases for mass testing of the population. It is also extremely important to have national detection kits with greater diagnostic capacity to assist in developing effective public policies in countries affected by this disease.
Collapse
Affiliation(s)
- Rodrigo Michelini de Oliveira Thomasi
- Disciplina Biotecnologia e Inovações, Programa de Pós-graduação em Biotecnologia e Programa Multicentrico de Pós-graduação em Bíoquimica e Biologia Molecular, Universidade Federal de São João Del- Rei, Divinópolis, 35501-296, MG, Brazil
| | - Thais da Silva Correa
- Disciplina Biotecnologia e Inovações, Programa de Pós-graduação em Biotecnologia e Programa Multicentrico de Pós-graduação em Bíoquimica e Biologia Molecular, Universidade Federal de São João Del- Rei, Divinópolis, 35501-296, MG, Brazil
| | - Dalise Silva do Carmo
- Disciplina Biotecnologia e Inovações, Programa de Pós-graduação em Biotecnologia e Programa Multicentrico de Pós-graduação em Bíoquimica e Biologia Molecular, Universidade Federal de São João Del- Rei, Divinópolis, 35501-296, MG, Brazil
| | - Déborah Fernandes Rodrigues
- Disciplina Biotecnologia e Inovações, Programa de Pós-graduação em Biotecnologia e Programa Multicentrico de Pós-graduação em Bíoquimica e Biologia Molecular, Universidade Federal de São João Del- Rei, Divinópolis, 35501-296, MG, Brazil
| | - Luiz Vinicius da Silva Correa
- Disciplina Biotecnologia e Inovações, Programa de Pós-graduação em Biotecnologia e Programa Multicentrico de Pós-graduação em Bíoquimica e Biologia Molecular, Universidade Federal de São João Del- Rei, Divinópolis, 35501-296, MG, Brazil
| | - Sandra Rodrigues Xavier
- Disciplina Biotecnologia e Inovações, Programa de Pós-graduação em Biotecnologia e Programa Multicentrico de Pós-graduação em Bíoquimica e Biologia Molecular, Universidade Federal de São João Del- Rei, Divinópolis, 35501-296, MG, Brazil
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, Divinópolis, 35501-296, MG, Brazil
| | - Líria Souza Silva
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, Divinópolis, 35501-296, MG, Brazil
| | - Jonatas Oliveira da Silva
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, Divinópolis, 35501-296, MG, Brazil
| | - Michelli Dos Santos
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, Divinópolis, 35501-296, MG, Brazil
| | | | - Mariana Campos da Paz
- Laboratório de Bioativos & NanoBiotecnologia, Universidade Federal de São João Del-Rei, Sebastião Gonçalves Coelho, 400, 35501-296, Divinópolis, MG, Brazil
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José S/N, Umacollo, Arequipa 04000, Peru
| | - Rodolfo Cordeiro Giunchetti
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 31270- 901, Minas Gerais, Brazil
| | - Eduardo Antônio Ferraz Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina,Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brazil
| | - Juliana Martins Machado
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, Divinópolis, 35501-296, MG, Brazil
| | - Alexsandro Sobreira Galdino
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, Divinópolis, 35501-296, MG, Brazil
| |
Collapse
|
25
|
Agarwala P, Sharma A. Role of the Laboratory in the Diagnosis of Poxvirus Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:239-252. [PMID: 38801582 DOI: 10.1007/978-3-031-57165-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Although WHO-led global efforts led to eradication of smallpox over four decades ago, other poxviruses, especially monkeypox, have re-emerged to occupy the ecological niche vacated by smallpox. Many of these viruses produce similar lesions thus mandating a prompt laboratory confirmation. There has been considerable evolution in the techniques available to diagnose these infections and differentiate between them. With the 2022 multi-country outbreak of monkeypox, significant efforts were made to apprise the laboratory diagnosis of the virus and numerous real-time-PCR-based assays were made commercially available. This chapter discusses the sample collection and biosafety aspects along with the repertoire of diagnostic modalities, both traditional and emerging, for poxviruses which a special focus on monkeypox. The advantages and disadvantages of each technique have been illustrated. We have also reflected upon the newer advances and the existing lacunae.
Collapse
Affiliation(s)
- Pragya Agarwala
- Department of Microbiology, All India Institute of Medical Sciences, Raipur, 492001, India.
| | - Archa Sharma
- Department of Microbiology, Gandhi Medical College, Bhopal, Madhya Pradesh, India
| |
Collapse
|
26
|
Kalaba MH, El-Sherbiny GM, Sharaf MH, Farghal EE. Biological Characteristics and Pathogenesis of Monkeypox Virus: An Overview. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:91-109. [PMID: 38801573 DOI: 10.1007/978-3-031-57165-7_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Although the smallpox virus has been eradicated worldwide, the World Health Organization (WHO) has issued a warning about the virus's potential to propagate globally. The WHO labeled monkeypox a world public health emergency in July 2022, requiring urgent prevention and treatment. The monkeypox virus is a part of the Poxviridae family, Orthopoxvirus genus, and is accountable for smallpox, which has killed over a million people in the past. Natural hosts of the virus include squirrels, Gambian rodents, chimpanzees, and other monkeys. The monkeypox virus has transmitted to humans through primary vectors (various animal species) and secondary vectors, including direct touch with lesions, breathing particles from body fluids, and infected bedding. The viral particles are ovoid or brick-shaped, 200-250 nm in diameter, contain a single double-stranded DNA molecule, and reproduce only in the cytoplasm of infected cells. Monkeypox causes fever, cold, muscle pains, headache, fatigue, and backache. The phylogenetic investigation distinguished between two genetic clades of monkeypox: the more pathogenic Congo Basin clade and the West Africa clade. In recent years, the geographical spread of the human monkeypox virus has accelerated despite a paucity of information regarding the disease's emergence, ecology, and epidemiology. Using lesion samples and polymerase chain reaction (PCR), the monkeypox virus was diagnosed. In the USA, the improved Ankara vaccine can now be used to protect people who are at a higher risk of getting monkeypox. Antivirals that we have now work well against smallpox and may stop the spread of monkeypox, but there is no particular therapy for monkeypox.
Collapse
Affiliation(s)
- Mohamed H Kalaba
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Gamal M El-Sherbiny
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt.
| | - Mohammed H Sharaf
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Eman E Farghal
- Clinical and Chemical Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
27
|
Lv X, Zhang Z, Zhao Y, Sun X, Jiang H, Zhang S, Sun X, Qiu X, Li Y. Label-free detection of virus based on surface-enhanced Raman scattering. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123087. [PMID: 37406546 PMCID: PMC10300235 DOI: 10.1016/j.saa.2023.123087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Due to the background interference from biological samples, detecting viruses using surface-enhanced Raman scattering (SERS) in clinical samples is challenging. This study is based on SERS by reducing sodium borohydride and aggregating silver nanoparticles to develop suitable virus detection "hot spot." The monkeypox virus and human papillomavirus fingerprints were quickly obtained, tested, and identified in serum and artificial vaginal discharge, respectively, by combining the principal component analysis method. Therefore, these viruses were successfully identified in the biological background. In addition, the lowest detection limit was 100 copies/mL showing good reproducibility and signal-to-noise ratio. The concentration-dependent curve of the monkeypox virus had a good linear relationship. This method helps solve the SERS signal interference problem in complex biological samples, with low detection limits and high selectivity in virus characterization and quantitative analysis. Therefore, this method has a reasonable prospect of clinical application.
Collapse
Affiliation(s)
- Xinpeng Lv
- Department of Emergency Medicine, the Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Zhe Zhang
- School of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yue Zhao
- School of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Xiaomeng Sun
- School of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Heng Jiang
- College of Public Health, Harbin Medical University, Baojian Road No. 157, Harbin, Heilongjiang Province 150081, China
| | - Shuwen Zhang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Xianqi Sun
- Department of Dermatology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Xiaohong Qiu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China.
| | - Yang Li
- School of Pharmacy, Harbin Medical University, Harbin 150081, China; Research Unit of Health Sciences and Technology (HST), Faculty of Medicine University of Oulu, Oulu 90220, Finland; Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
28
|
Yashavarddhan MH, Bohra D, Rana R, Tuli HS, Ranjan V, Rana DS, Ganguly NK. Comprehensive overview of 2022 human monkeypox outbreak and its pathology, prevention, and treatment: A strategy for disease control. Microbiol Res 2023; 277:127504. [PMID: 37812873 DOI: 10.1016/j.micres.2023.127504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/11/2023]
Abstract
The 2022 Monkeypox virus, an evolved DNA strain originating in Africa, exhibits heightened human-to-human transmissibility and potential animal transmission. Its host remains unidentified. While its initial slow transmission rate restrained global impact, 2022 saw a surge in cases, causing widespread concern in over 103 countries by September. This virus's distinctive human-to-human transmission marks a crucial shift, demanding a prompt revaluation of containment strategies. However, the host source for this shift requires urgent research attention. Regrettably, no universal preventive or curative methods have emerged for this evolved virus. Repurposed from smallpox vaccines, only some vaccinations offer a partial defense. Solely one therapeutic drug is available. The article's essence is to provide a comprehensive grasp of the virus's epidemiology, morphology, immune invasion mechanisms, and existing preventive and treatment measures. This knowledge equips researchers to devise strategies against its spread and potential public health implications.
Collapse
Affiliation(s)
- M H Yashavarddhan
- Department of Biotechnology & Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Deepika Bohra
- Department of Biotechnology & Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Rashmi Rana
- Department of Biotechnology & Research, Sir Ganga Ram Hospital, New Delhi 110060, India.
| | | | - Vivek Ranjan
- Department of Blood Transfusion Medicine, Sir Ganga Ram Hospital, New Delhi 110060, India
| | | | - Nirmal Kumar Ganguly
- Department of Biotechnology & Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| |
Collapse
|
29
|
Li Z, Sinha A, Zhang Y, Tanner N, Cheng HT, Premsrirut P, Carlow CKS. Extraction-free LAMP assays for generic detection of Old World Orthopoxviruses and specific detection of Mpox virus. Sci Rep 2023; 13:21093. [PMID: 38036581 PMCID: PMC10689478 DOI: 10.1038/s41598-023-48391-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/26/2023] [Indexed: 12/02/2023] Open
Abstract
Mpox is a neglected zoonotic disease endemic in West and Central Africa. The Mpox outbreak with more than 90,000 cases worldwide since 2022 generated great concern about future outbreaks and highlighted the need for a simple and rapid diagnostic test. The Mpox virus, MPV, is a member of the Orthopoxvirus (OPV) genus that also contains other pathogenic viruses including variola virus, vaccinia virus, camelpox virus, and cowpox virus. Phylogenomic analysis of 200 OPV genomes identified 10 distinct phylogroups with the New World OPVs placed on a very long branch distant from the Old World OPVs. Isolates derived from infected humans were found to be distributed across multiple phylogroups interspersed with isolates from animal sources, indicating the zoonotic potential of these viruses. In this study, we developed a simple and sensitive colorimetric LAMP assay for generic detection of Old World OPVs. We also developed an MPV-specific probe that differentiates MPV from other OPVs in the N1R LAMP assay. In addition, we described an extraction-free protocol for use directly with swab eluates in LAMP assays, thereby eliminating the time and resources needed to extract DNA from the sample. Our direct LAMP assays are well-suited for low-resource settings and provide a valuable tool for rapid and scalable diagnosis and surveillance of OPVs and MPV.
Collapse
Affiliation(s)
- Zhiru Li
- Molecular Genetics and Genomics Division, New England Biolabs, Ipswich, MA, 01938, USA.
| | - Amit Sinha
- Molecular Genetics and Genomics Division, New England Biolabs, Ipswich, MA, 01938, USA
| | - Yinhua Zhang
- Molecular Genetics and Genomics Division, New England Biolabs, Ipswich, MA, 01938, USA
| | - Nathan Tanner
- Molecular Genetics and Genomics Division, New England Biolabs, Ipswich, MA, 01938, USA
| | | | | | - Clotilde K S Carlow
- Molecular Genetics and Genomics Division, New England Biolabs, Ipswich, MA, 01938, USA
| |
Collapse
|
30
|
Feng X, Liu Y, Zhao Y, Sun Z, Xu N, Zhao C, Xia W. Recombinase Polymerase Amplification-Based Biosensors for Rapid Zoonoses Screening. Int J Nanomedicine 2023; 18:6311-6331. [PMID: 37954459 PMCID: PMC10637217 DOI: 10.2147/ijn.s434197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/21/2023] [Indexed: 11/14/2023] Open
Abstract
Recent, outbreaks of new emergency zoonotic diseases have prompted an urgent need to develop fast, accurate, and portable screening assays for pathogen infections. Recombinase polymerase amplification (RPA) is sensitive and specific and can be conducted at a constant low temperature with a short response time, making it especially suitable for on-site screening and making it a powerful tool for preventing or controlling the spread of zoonoses. This review summarizes the design principles of RPA-based biosensors as well as various signal output or readout technologies involved in fluorescence detection, lateral flow assays, enzymatic catalytic reactions, spectroscopic techniques, electrochemical techniques, chemiluminescence, nanopore sequencing technologies, microfluidic digital RPA, and clustered regularly interspaced short palindromic repeats/CRISPR-associated systems. The current status and prospects of the application of RPA-based biosensors in zoonoses screening are highlighted. RPA-based biosensors demonstrate the advantages of rapid response, easy-to-read result output, and easy implementation for on-site detection, enabling development toward greater portability, automation, and miniaturization. Although there are still problems such as high cost with unstable signal output, RPA-based biosensors are increasingly becoming one of the most important means of on-site pathogen screening in complex samples involving environmental, water, food, animal, and human samples for controlling the spread of zoonotic diseases.
Collapse
Affiliation(s)
- Xinrui Feng
- College of Public Health, Jilin Medical University, Jilin, 132013, People’s Republic of China
- Medical College, Yanbian University, Yanji, 136200, People’s Republic of China
| | - Yan Liu
- College of Public Health, Jilin Medical University, Jilin, 132013, People’s Republic of China
| | - Yang Zhao
- Department of Emergency and Intensive Medicine, No. 965 Hospital of PLA Joint Logistic Support Force, Jilin, 132013, People’s Republic of China
| | - Zhe Sun
- College of Public Health, Jilin Medical University, Jilin, 132013, People’s Republic of China
- College of Medical Technology, Beihua University, Jilin, 132013, People’s Republic of China
| | - Ning Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, People’s Republic of China
| | - Chen Zhao
- College of Public Health, Jilin Medical University, Jilin, 132013, People’s Republic of China
| | - Wei Xia
- College of Medical Technology, Beihua University, Jilin, 132013, People’s Republic of China
| |
Collapse
|
31
|
Low SJ, O'Neill MT, Kerry WJ, Krysiak M, Papadakis G, Whitehead LW, Savic I, Prestedge J, Williams L, Cooney JP, Tran T, Lim CK, Caly L, Towns JM, Bradshaw CS, Fairley C, Chow EPF, Chen MY, Pellegrini M, Pasricha S, Williamson DA. Rapid detection of monkeypox virus using a CRISPR-Cas12a mediated assay: a laboratory validation and evaluation study. THE LANCET. MICROBE 2023; 4:e800-e810. [PMID: 37722405 DOI: 10.1016/s2666-5247(23)00148-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND The 2022 outbreak of mpox (formerly known as monkeypox) led to the spread of monkeypox virus (MPXV) in over 110 countries, demanding effective disease management and surveillance. As current diagnostics rely largely on centralised laboratory testing, our objective was to develop a simple rapid point-of-care assay to detect MPXV in clinical samples using isothermal amplification coupled with CRISPR and CRISPR-associated protein (Cas) technology. METHODS In this proof-of-concept study, we developed a portable isothermal amplification CRISPR-Cas12a-based assay for the detection of MPXV. We designed a panel of 22 primer-guide RNA sets using pangenome and gene-agnostic approaches, and subsequently shortlisted the three sets producing the strongest signals for evaluation of analytical sensitivity and specificity using a fluorescence-based readout. The set displaying 100% specificity and the lowest limit of detection (LOD) was selected for further assay validation using both a fluorescence-based and lateral-flow readout. Assay specificity was confirmed using a panel of viral and bacterial pathogens. Finally, we did a blind concordance study on genomic DNA extracted from 185 clinical samples, comparing assay results with a gold-standard quantitative PCR (qPCR) assay. We identified the optimal time to detection and analysed the performance of the assay relative to qPCR using receiver operating characteristic (ROC) curves. We also assessed the compatibility with lateral-flow strips, both visually and computationally, where strips were interpreted blinded to the fluorescence results on the basis of the presence or absence of test bands. FINDINGS With an optimal run duration of approximately 45 min from isothermal amplification to CRISPR-assay readout, the MPXV recombinase polymerase amplification CRISPR-Cas12a-based assay with the selected primer-guide set had an LOD of 1 copy per μL and 100% specificity against tested viral pathogens. Blinded concordance testing of 185 clinical samples resulted in 100% sensitivity (95% CI 89·3-100) and 99·3% specificity (95% CI 95·7-100) using the fluorescence readout. For optimal time to detection by fluorescence readout, we estimated the areas under the ROC curve to be 0·98 at 2 min and 0·99 at 4 min. Lateral-flow strips had 100% sensitivity (89·3-100) and 98·6% specificity (94·7-100) with both visual and computational assessment. Overall, lateral-flow results were highly concordant with fluorescence-based readouts (179 of 185 tests, 96·8% concordant), with discrepancies associated with low viral load samples. INTERPRETATION Our assay for the diagnosis of mpox displayed good performance characteristics compared with qPCR. Although optimisation of the assay will be required before deployment, its usability and versatility present a potential solution to MPXV detection in low-resource and remote settings, as well as a means of community-based, on-site testing. FUNDING Victorian Medical Research Accelerator Fund and the Australian Government Department of Health.
Collapse
Affiliation(s)
- Soo Jen Low
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Matthew T O'Neill
- Infectious Diseases and Immune Defence Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - William J Kerry
- Infectious Diseases and Immune Defence Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Marcelina Krysiak
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Georgina Papadakis
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Lachlan W Whitehead
- Infectious Diseases and Immune Defence Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Ivana Savic
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jacqueline Prestedge
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Lewis Williams
- Infectious Diseases and Immune Defence Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - James P Cooney
- Infectious Diseases and Immune Defence Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Thomas Tran
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Chuan K Lim
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Leon Caly
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Janet M Towns
- Melbourne Sexual Health Centre, Alfred Health, Melbourne, VIC, Australia; Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Catriona S Bradshaw
- Melbourne Sexual Health Centre, Alfred Health, Melbourne, VIC, Australia; Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Christopher Fairley
- Melbourne Sexual Health Centre, Alfred Health, Melbourne, VIC, Australia; Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Eric P F Chow
- Melbourne Sexual Health Centre, Alfred Health, Melbourne, VIC, Australia; Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Marcus Y Chen
- Melbourne Sexual Health Centre, Alfred Health, Melbourne, VIC, Australia; Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Marc Pellegrini
- Infectious Diseases and Immune Defence Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Shivani Pasricha
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Infectious Diseases and Immune Defence Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Deborah A Williamson
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Infectious Diseases and Immune Defence Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| |
Collapse
|
32
|
Xiao Y, Fei D, Li M, Ma Y, Ma M. Establishment and Application of CRISPR-Cas12a-Based Recombinase Polymerase Amplification and a Lateral Flow Dipstick and Fluorescence for the Detection and Distinction of Deformed Wing Virus Types A and B. Viruses 2023; 15:2041. [PMID: 37896818 PMCID: PMC10612068 DOI: 10.3390/v15102041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/21/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
Deformed wing virus (DWV) is one of the important pathogens of the honey bee (Apis mellifera), which consists of three master variants: types A, B, and C. Among them, DWV types A (DWV-A) and B (DWV-B) are the most prevalent variants in honey bee colonies and have been linked to colony decline. DWV-A and DWV-B have different virulence, but it is difficult to distinguish them via traditional methods. In this study, we established a visual detection assay for DWV-A and DWV-B using recombinase polymerase amplification (RPA) and a lateral flow dipstick (LFD) coupled with the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) 12a fluorescence system (RPA-CRISPR-Cas12a-LFD). The limit of detection of this system was ~6.5 × 100 and 6.2 × 101 copies/μL for DWV-A and DWV-B, respectively. The assays were specific and non-cross-reactive against other bee viruses, and the results could be visualized within 1 h. The assays were validated by extracting cDNA from 36 clinical samples of bees that were suspected to be infected with DWV. The findings were consistent with those of traditional reverse transcription-quantitative polymerase chain reaction, and the RPA-CRISPR-Cas12a assay showed the specific, sensitive, simple, and appropriate detection of DWV-A and DWV-B. This method can facilitate the visual and qualitative detection of DWV-A and DWV-B as well as the monitoring of different subtypes, thereby providing potentially better control and preventing current and future DWV outbreaks.
Collapse
Affiliation(s)
- Yuting Xiao
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121000, China; (Y.X.); (M.L.)
| | - Dongliang Fei
- Experimental Animal Center of Jinzhou Medical University, Jinzhou 121000, China; (D.F.); (Y.M.)
| | - Ming Li
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121000, China; (Y.X.); (M.L.)
| | - Yueyu Ma
- Experimental Animal Center of Jinzhou Medical University, Jinzhou 121000, China; (D.F.); (Y.M.)
| | - Mingxiao Ma
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121000, China; (Y.X.); (M.L.)
| |
Collapse
|
33
|
Giovanetti M, Cella E, Moretti S, Scarpa F, Ciccozzi A, Slavov SN, Benedetti F, Zella D, Ceccarelli G, Ciccozzi M, Borsetti A. Monitoring Monkeypox: Safeguarding Global Health through Rapid Response and Global Surveillance. Pathogens 2023; 12:1153. [PMID: 37764961 PMCID: PMC10537896 DOI: 10.3390/pathogens12091153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Monkeypox, a viral zoonotic disease, has emerged as a significant global threat in recent years. This review focuses on the importance of global monitoring and rapid response to monkeypox outbreaks. The unpredictable nature of monkeypox transmissions, its potential for human-to-human spread, and its high morbidity rate underscore the necessity for proactive surveillance systems. By analyzing the existing literature, including recent outbreaks, this review highlights the critical role of global surveillance in detecting, containing, and preventing the further spread of monkeypox. It also emphasizes the need for enhanced international collaboration, data sharing, and real-time information exchange to effectively respond to monkeypox outbreaks as a global health concern. Furthermore, this review discusses the challenges and opportunities of implementing robust surveillance strategies, including the use of advanced diagnostic tools and technologies. Ultimately, these findings underscore the urgency of establishing a comprehensive global monitoring framework for monkeypox, enabling early detection, prompt response, and effective control measures to protect public health worldwide.
Collapse
Affiliation(s)
- Marta Giovanetti
- Instituto Rene Rachou Fundação Oswaldo Cruz, Belo Horizonte 30190-009, Minas Gerais, Brazil
- Sciences and Technologies for Sustainable Development and One Health, University Campus Bio-Medico of Rome, 00128 Rome, Italy
- Climate Amplified Diseases and Epidemics (CLIMADE), Brazil
| | - Eleonora Cella
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA;
| | - Sonia Moretti
- National HIV/AIDS Research Center (CNAIDS), National Institute of Health, 00161 Rome, Italy;
| | - Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Alessandra Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (A.C.); (M.C.)
| | - Svetoslav Nanev Slavov
- Butantan Institute, Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 05508-220, São Paulo, Brazil;
| | - Francesca Benedetti
- Department of Biochemistry and Molecular Biology, Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (F.B.); (D.Z.)
| | - Davide Zella
- Department of Biochemistry and Molecular Biology, Institute of Human Virology and Global Virus Network Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (F.B.); (D.Z.)
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00161 Rome, Italy;
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (A.C.); (M.C.)
| | - Alessandra Borsetti
- National HIV/AIDS Research Center (CNAIDS), National Institute of Health, 00161 Rome, Italy;
| |
Collapse
|
34
|
Davis I, Payne JM, Olguin VL, Sanders MP, Clements T, Stefan CP, Williams JA, Hooper JW, Huggins JW, Mucker EM, Ricks KM. Development of a specific MPXV antigen detection immunodiagnostic assay. Front Microbiol 2023; 14:1243523. [PMID: 37744911 PMCID: PMC10516133 DOI: 10.3389/fmicb.2023.1243523] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
Human monkeypox (mpox) has recently become a global public health emergency; however, assays that detect mpox infection are not widely available, largely due to cross-reactivity within the Orthopoxvirus genus. Immunoassay development was largely confined to researchers who focus on biothreats and endemic areas (Central and West Africa) until the 2022 outbreak. As was noted in the COVID-19 pandemic, antigen detection assays, integrated with molecular assays, are necessary to help curb the spread of disease. Antigen-detecting immunoassays offer the advantage of providing results ranging from within min to h and in lateral flow formats; they can be deployed for point-of-care, home, or field use. This study reports the development of an mpox-specific antigen detection immunoassay developed on a multiplexed, magnetic-bead-based platform utilizing reagents from all research sectors (commercial, academic, and governmental). Two semi-quantitative assays were developed in parallel and standardized with infectious mpox virus (MPXV) cell culture fluid and MPXV-positive non-human primate (NHP) sera samples. These assays could detect viral antigens in serum, were highly specific toward MPXV as compared to other infectious orthopoxviruses (vaccinia virus, cowpox virus, and camelpox virus), and exhibited a correlation with quantitative PCR results from an NHP study. Access to a toolbox of assays for mpox detection will be key for identifying cases and ensuring proper treatment, as MPXV is currently a global traveler.
Collapse
Affiliation(s)
- Ian Davis
- Diagnostic Systems Division, United States Army Medical Research Institute of Diseases, Frederick, MD, United States
| | - Jackie M. Payne
- Diagnostic Systems Division, United States Army Medical Research Institute of Diseases, Frederick, MD, United States
| | - Victoria L. Olguin
- Diagnostic Systems Division, United States Army Medical Research Institute of Diseases, Frederick, MD, United States
| | - Madison P. Sanders
- Diagnostic Systems Division, United States Army Medical Research Institute of Diseases, Frederick, MD, United States
| | - Tamara Clements
- Diagnostic Systems Division, United States Army Medical Research Institute of Diseases, Frederick, MD, United States
| | - Christopher P. Stefan
- Diagnostic Systems Division, United States Army Medical Research Institute of Diseases, Frederick, MD, United States
| | - Janice A. Williams
- Pathology Division, United States Army Medical Research Institute of Diseases, Frederick, MD, United States
| | - Jay W. Hooper
- Virology Division, United States Army Medical Research Institute of Diseases, Frederick, MD, United States
| | - John W. Huggins
- Virology Division, United States Army Medical Research Institute of Diseases, Frederick, MD, United States
| | - Eric M. Mucker
- Virology Division, United States Army Medical Research Institute of Diseases, Frederick, MD, United States
| | - Keersten M. Ricks
- Diagnostic Systems Division, United States Army Medical Research Institute of Diseases, Frederick, MD, United States
| |
Collapse
|
35
|
Siami H, Asghari A, Parsamanesh N. Monkeypox: Virology, laboratory diagnosis and therapeutic approach. J Gene Med 2023; 25:e3521. [PMID: 37132057 DOI: 10.1002/jgm.3521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/04/2023] [Accepted: 04/12/2023] [Indexed: 05/04/2023] Open
Abstract
Monkeypox infection outbreaks have been observed sporadically in Africa, usually as a result of interaction with wildlife reservoirs. The genomes of the new strain range in size from 184.7 to 198.0 kb and are identified with 143-214 open reading frames. Viral cores are rapidly carried on microtubules away from the cell's perimeter and deeper into the cytoplasm once the virus and cell membranes fuse. Depending on the kind of exposure, patients with monkeypox may experience a febrile prodrome 5-13 days after exposure, which frequently includes lymphadenopathy, malaise, headaches, and muscle aches. A different diagnostic approach is available for monkeypox, including histopathological analysis, electron microscopy, immunoassays, polymerase chain reaction, genome sequencing, microarrays, loop-mediated isothermal amplification technology and CRISPR (i.e., "clustered regularly interspaced short palindromic repeats"). There are currently no particular, clinically effective treatments available for the monkeypox virus. An initial treatment is cidofovir. As a monophosphate nucleotide analog, cidofovir is transformed into an inhibitor of viral DNA polymerase by cellular kinases, which is analogous to cidofovir's function in inhibiting viral DNA synthesis. The European Medicine Agency and the Food and Drug Administration have both granted permission for IMVAMUNE, a replication-deficient, attenuated third-generation modified vaccinia Ankara vaccine, to be used for the prevention of smallpox and monkeypox in adults.
Collapse
Affiliation(s)
- Haleh Siami
- School of Medicine, Islamic Azad University of Medical Science, Tehran, Iran
| | - Arghavan Asghari
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Negin Parsamanesh
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Science, Zanjan, Iran
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
36
|
Ding N, Qi W, Wu Z, Zhang Y, Xu R, Lin Q, Zhu J, Zhang H. Development of Enzymatic Recombinase Amplification Assays for the Rapid Visual Detection of HPV16/18. J Microbiol Biotechnol 2023; 33:1091-1100. [PMID: 37635316 PMCID: PMC10468672 DOI: 10.4014/jmb.2304.04009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 08/29/2023]
Abstract
Human papillomavirus (HPV) types 16 and 18 are the major causes of cervical lesions and are associated with 71% of cervical cancer cases globally. However, public health infrastructures to support cervical cancer screening may be unavailable to women in low-resource areas. Therefore, sensitive, convenient, and cost-efficient diagnostic methods are required for the detection of HPV16/18. Here, we designed two novel methods, real-time ERA and ERA-LFD, based on enzymatic recombinase amplification (ERA) for quick point-of-care identification of the HPV E6/E7 genes. The entire detection process could be completed within 25 min at a constant low temperature (35-43°C), and the results of the combined methods could be present as the amplification curves or the bands presented on dipsticks and directly interpreted with the naked eye. The ERA assays evaluated using standard plasmids carrying the E6/E7 genes and clinical samples exhibited excellent specificity, as no cross-reaction with other common HPV types was observed. The detection limits of our ERA assays were 100 and 101 copies/μl for HPV16 and 18 respectively, which were comparable to those of the real-time PCR assay. Assessment of the clinical performance of the ERA assays using 114 cervical tissue samples demonstrated that they are highly consistent with real-time PCR, the gold standard for HPV detection. This study demonstrated that ERA-based assays possess excellent sensitivity, specificity, and repeatability for HPV16 and HPV18 detection with great potential to become robust diagnostic tools in local hospitals and field studies.
Collapse
Affiliation(s)
- Ning Ding
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, P.R. China
| | - Wanwan Qi
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, P.R. China
| | - Zihan Wu
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing 210018, P.R. China
| | - Yaqin Zhang
- Department of Infectious Disease, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing 210029, P.R. China
| | - Ruowei Xu
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing 210018, P.R. China
- Nanjing Normal University, Nanjing 210023, P.R. China
| | - Qiannan Lin
- Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213004, P.R. China
| | - Jin Zhu
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing 210018, P.R. China
| | - Huilin Zhang
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, P.R. China
| |
Collapse
|
37
|
Zhou Y, Chen Z. Mpox: a review of laboratory detection techniques. Arch Virol 2023; 168:221. [PMID: 37543543 PMCID: PMC10404179 DOI: 10.1007/s00705-023-05848-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/04/2023] [Indexed: 08/07/2023]
Abstract
Mpox (formerly monkeypox) is a zoonotic disease caused by monkeypox virus (MPXV), which, like smallpox, is characterised by skin rashes. While the world is currently grappling with the coronavirus disease 2019 pandemic, the appearance of MPXV has presented a global threat and raised concerns worldwide. Since May 2022, MPXV has spread rapidly in non-endemic mpox areas. As of 27 June 2023, the virus has spread to more than 112 countries and regions, with over 88,060 laboratory-confirmed cases and 147 deaths. Thus, measures to control the mpox epidemic are urgently needed. As the principal methods for identifying and monitoring mpox, laboratory detection techniques play an important role in mpox diagnosis. This review summarises the currently-used laboratory techniques for MPXV detection, discusses progress in improving these methods, and compares the benefits and limitations of various diagnostic detection methods. Currently, nucleic acid amplification tests, such as the polymerase chain reaction, are the most commonly used. Immunological methods have also been applied to diagnose the disease, which can help us discover new features of MPXV, improve diagnostic accuracy, track epidemic trends, and guide future prevention and control strategies, which are also vital for controlling mpox epidemics. This review provides a resource for the scientific community and should stimulate more research and development in alternative diagnostics to be applied to this and future public health crises.
Collapse
Affiliation(s)
- Yunfan Zhou
- School of Medicine, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou, 510006, China.
| | - Zixin Chen
- School of Medicine, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou, 510006, China
| |
Collapse
|
38
|
Huang P, Huang Z, Liu M, Bai Y, Jin H, Huang J, Liu X, Guan Z, Duan M, Zhang H, Li Y, Chiu S, Wang H. A visual assay panel for the identification of monkeypox virus DNA belonging to the clades I and II. Virol Sin 2023; 38:635-638. [PMID: 37286135 PMCID: PMC10241493 DOI: 10.1016/j.virs.2023.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023] Open
Abstract
•A MPXV visual assay panel is a rapid and reliable tool to differentiate the clades I and II within 25 min. •This panel combines RAA and immunochromatography, and detects as low as 1 copy/μL recombinant plasmid. •Visual assay panel shows no cross-reactivity with orthopoxviruses and herpesvirus that infect humans, such as vaccinia virus.
Collapse
Affiliation(s)
- Pei Huang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Zanheng Huang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Meihui Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yujie Bai
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Hongli Jin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jingbo Huang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xingqi Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Zhenhong Guan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Ming Duan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Haili Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yuanyuan Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 244199, China.
| | - Hualei Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
39
|
Qudus MS, Cui X, Tian M, Afaq U, Sajid M, Qureshi S, Liu S, Ma J, Wang G, Faraz M, Sadia H, Wu K, Zhu C. The prospective outcome of the monkeypox outbreak in 2022 and characterization of monkeypox disease immunobiology. Front Cell Infect Microbiol 2023; 13:1196699. [PMID: 37533932 PMCID: PMC10391643 DOI: 10.3389/fcimb.2023.1196699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/21/2023] [Indexed: 08/04/2023] Open
Abstract
A new threat to global health re-emerged with monkeypox's advent in early 2022. As of November 10, 2022, nearly 80,000 confirmed cases had been reported worldwide, with most of them coming from places where the disease is not common. There were 53 fatalities, with 40 occurring in areas that had never before recorded monkeypox and the remaining 13 appearing in the regions that had previously reported the disease. Preliminary genetic data suggest that the 2022 monkeypox virus is part of the West African clade; the virus can be transmitted from person to person through direct interaction with lesions during sexual activity. It is still unknown if monkeypox can be transmitted via sexual contact or, more particularly, through infected body fluids. This most recent epidemic's reservoir host, or principal carrier, is still a mystery. Rodents found in Africa can be the possible intermediate host. Instead, the CDC has confirmed that there are currently no particular treatments for monkeypox virus infection in 2022; however, antivirals already in the market that are successful against smallpox may mitigate the spread of monkeypox. To protect against the disease, the JYNNEOS (Imvamune or Imvanex) smallpox vaccine can be given. The spread of monkeypox can be slowed through measures such as post-exposure immunization, contact tracing, and improved case diagnosis and isolation. Final Thoughts: The latest monkeypox epidemic is a new hazard during the COVID-19 epidemic. The prevailing condition of the monkeypox epidemic along with coinfection with COVID-19 could pose a serious condition for clinicians that could lead to the global epidemic community in the form of coinfection.
Collapse
Affiliation(s)
- Muhammad Suhaib Qudus
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xianghua Cui
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mingfu Tian
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Uzair Afaq
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Muhammad Sajid
- RNA Therapeutics Institute, Chan Medical School, University of Massachusetts Worcester, Worcester, MA, United States
| | - Sonia Qureshi
- Krembil Research Institute, University of Health Network, Toronto, ON, Canada
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Siyu Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - June Ma
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Guolei Wang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Muhammad Faraz
- Department of Microbiology, Quaid-I- Azam University, Islamabad, Pakistan
| | - Haleema Sadia
- Department of Biotechnology, Baluchistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, Pakistan
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chengliang Zhu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
40
|
Jiang T, Li G, Liu R, Zhou J, Gao N, Shen J. Creating an ultra-sensitive detection platform for monkeypox virus DNA based on CRISPR technology. J Med Virol 2023; 95:e28905. [PMID: 37386903 DOI: 10.1002/jmv.28905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
The recent major worldwide outbreak of monkeypox virus (MPXV) has highlighted the urgent need for accurate MPXV detection methods. Although quantitative PCR (qPCR) technique is currently the gold standard for MPXV diagnosis, the high costs associated with the technique and the need for complex instrumentation, limits its application in resource-poor settings. CRISPR technology has developed rapidly in recent years and provides an effective tool for point-of-care testing pathogen identification. Here, we exploited the cleavage properties of the Cas12a enzyme and Cas13a enzyme, to detect the MPXV specific genes, F3L gene and B6R gene, respectively. We developed two detection protocols: a 2-step method in which the CRISPR Dual System reaction and the multiplex recombinase polymerase amplification reaction were carried out in separate tubes and a single-tube method in which both reactions were carried out in one tube. Evaluation of the two methods showed that our protocol can detect the MPXV genome down to 10° copies/μL with good specificity and no cross-reactivity with other poxviruses pseudoviruses, and bacteria. Mock positive samples were used to assess clinical applicability, with the results showing satisfactory concordance with the qPCR method for parallel testing. In conclusion, our study provides a reliable molecular diagnostic strategy for detection of MPXV.
Collapse
Affiliation(s)
- Tong Jiang
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Ge Li
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Runde Liu
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Jin Zhou
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Nana Gao
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Jilu Shen
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| |
Collapse
|
41
|
Ogunkola IO, Abiodun OE, Bale BI, Elebesunu EE, Ujam SB, Umeh IC, Tom-James M, Musa SS, Manirambona E, Evardone SB, Lucero-Prisno DE. Monkeypox vaccination in the global south: Fighting a war without a weapon. CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2023; 22:101313. [PMID: 37220529 PMCID: PMC10195808 DOI: 10.1016/j.cegh.2023.101313] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 05/25/2023] Open
Abstract
Background The Mpox outbreak awakened countries worldwide to renew efforts in epidemiological surveillance and vaccination of susceptible populations. In terms of Mpox vaccination, various challenges exist in the global south, which impede adequate vaccine coverage, especially in Africa. This paper reviewed the situation of Mpox vaccination in the global south and potential ameliorative approaches. Methods A review of online literature from PubMed and Google Scholar concerning Mpox vaccination in countries belonging to the 'global south' category was done between August and September, 2022. The major focus areas included inequity in global vaccine distribution, challenges impeding vaccine coverage in the global south, and potential strategies for bridging the gap in vaccine equity. The papers that met the inclusion criteria were collated and narratively discussed. Results Our analysis revealed that, while the high-income countries secured large supplies of the Mpox vaccines, the low- and middle-income countries were unable to independently access substantial quantities of the vaccine and had to rely on vaccine donations from high-income countries, as was the case during the COVID-19 pandemic. The challenges in the global south particularly revolved around inadequate vaccine production capacity due to lack of qualified personnel and specialized infrastructure for full vaccine development and manufacturing, limited cold chain equipment for vaccine distribution, and consistent vaccine hesitancy. Conclusion To tackle the trend of vaccine inequity in the global south, African governments and international stakeholders must invest properly in adequate production and dissemination of Mpox vaccines in low- and middle-income countries.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mfoniso Tom-James
- Department of Public Health, University of Calabar, Calabar, Nigeria
| | | | - Emery Manirambona
- College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | | | - Don Eliseo Lucero-Prisno
- Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
42
|
Gong L, Chen X, Wang Y, Liang J, Liu X, Wang Y. Rapid, sensitive, and highly specific detection of monkeypox virus by CRISPR-based diagnostic platform. Front Public Health 2023; 11:1137968. [PMID: 37441636 PMCID: PMC10335395 DOI: 10.3389/fpubh.2023.1137968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/02/2023] [Indexed: 07/15/2023] Open
Abstract
Background Monkeypox (MPX), caused by the Monkeypox virus (MPXV), has incurred global attention since it broke out in many countries in recent times, which highlights the need for rapid and reliable diagnosis of MPXV infection. Methods We combined recombinase polymerase amplification (RPA) with CRISPR/Cas12a-based detection to devise a diagnostic test for detection of MPXV and differentiation of its two clades [Central Africa clade (MPXV-CA) and West Africa clade (MPXV-WA)], and called it MPXV-RCC. The sensitivity, specificity and practicability of this method have been analyzed. Results The optimal conditions of MPXV-RCC assay include two RPA reactions at 38°C for 25 min and a CRISPR/Cas12a-gRNA detection at 37°C for 10 min. The results of MPXV-RCC assay were indicated by a real-time fluorescence analysis software. Thus, the whole detection process, including rapid template preparation (20 min), RPA reaction (25 min) and CRISPR-based detection (10 min), could be finished within 1 hour. The sensitivity of MPXV-RCC for MPXV-CA and MPXV-WA detection was down to 5~10 copies of recombination plasmids and pseudovirus per reaction. Particularly, MPXV-RCC assay could clearly differentiate MPXV-CA from MPXV-WA, and had no cross-reactivity with other pathogens. In addition, the feasibility of MPXV-RCC assay was further validated by using spiked clinical samples. Conclusion The MPXV-RCC assay developed here is a promising tool for quick and reliable diagnosis of MPXV infection.
Collapse
Affiliation(s)
- Lin Gong
- Department of Disinfection and Pest Control, Wuhan Center for Disease Control and Prevention, Wuhan, Hubei, China
| | - Xiaomin Chen
- Department of Disinfection and Pest Control, Wuhan Center for Disease Control and Prevention, Wuhan, Hubei, China
| | - Yimei Wang
- Department of Disinfection and Pest Control, Wuhan Center for Disease Control and Prevention, Wuhan, Hubei, China
| | - Jiansheng Liang
- Department of Disinfection and Pest Control, Wuhan Center for Disease Control and Prevention, Wuhan, Hubei, China
| | - Xiaoli Liu
- Department of Disinfection and Pest Control, Wuhan Center for Disease Control and Prevention, Wuhan, Hubei, China
| | - Yi Wang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
43
|
Silva SJRD, Kohl A, Pena L, Pardee K. Clinical and laboratory diagnosis of monkeypox (mpox): Current status and future directions. iScience 2023; 26:106759. [PMID: 37206155 PMCID: PMC10183700 DOI: 10.1016/j.isci.2023.106759] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023] Open
Abstract
The emergence and rapid spread of the monkeypox virus (MPXV) to non-endemic countries has brought this once obscure pathogen to the forefront of global public health. Given the range of conditions that cause similar skin lesions, and because the clinical manifestation may often be atypical in the current mpox outbreak, it can be challenging to diagnose patients based on clinical signs and symptoms. With this perspective in mind, laboratory-based diagnosis assumes a critical role for the clinical management, along with the implementation of countermeasures. Here, we review the clinical features reported in mpox patients, the available laboratory tests for mpox diagnosis, and discuss the principles, advances, advantages, and drawbacks of each assay. We also highlight the diagnostic platforms with the potential to guide ongoing clinical response, particularly those that increase diagnostic capacity in low- and middle-income countries. With the outlook of this evolving research area, we hope to provide a resource to the community and inspire more research and the development of diagnostic alternatives with applications to this and future public health crises.
Collapse
Affiliation(s)
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Lindomar Pena
- Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Keith Pardee
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto ON M5S 3M2, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto ON M5S 3G8, Canada
| |
Collapse
|
44
|
Wang Y, Leng P, Zhou H. Global transmission of monkeypox virus-a potential threat under the COVID-19 pandemic. Front Immunol 2023; 14:1174223. [PMID: 37215147 PMCID: PMC10198437 DOI: 10.3389/fimmu.2023.1174223] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
Monkeypox virus (MPXV) cases have increased dramatically worldwide since May 2022. The Atlanta Center for Disease Control and Prevention (Atlanta CDC) had reported a total of 85,922 cases as of February 20th, 2023. During the COVID-19 pandemic, MPXV has emerged as a potential public threat. MPXV transmission and prevalence must be closely monitored. In this comprehensive review, we explained the basic characteristics and transmission routes of MPXV, individuals susceptible to it, as well as highlight the impact of the behavior of men who have sex with men (MSM) and airline traveling on recent outbreaks of MPXV. We also describe the clinical implications, the prevention of MPXV, and clinical measures of viral detection.
Collapse
Affiliation(s)
| | | | - Hao Zhou
- College of Medical Technology, Chengdu University of Traditional Chinese
Medicine, Chengdu, China
| |
Collapse
|
45
|
Yang X, Zeng X, Chen X, Huang J, Wei X, Ying X, Tan Q, Wang Y, Li S. Development of a CRISPR/Cas12a-recombinase polymerase amplification assay for visual and highly specific identification of the Congo Basin and West African strains of mpox virus. J Med Virol 2023; 95:e28757. [PMID: 37212293 DOI: 10.1002/jmv.28757] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/27/2023] [Accepted: 04/13/2023] [Indexed: 05/23/2023]
Abstract
Human mpox is a zoonotic disease, similar to smallpox, caused by the mpox virus, which is further subdivided into Congo Basin and West African clades with different pathogenicity. In this study, a novel diagnostic protocol utilizing clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 12a nuclease (CRISPR/Cas12a)-mediated recombinase polymerase amplification (RPA) was developed to identify mpox in the Congo Basin and West Africa (CRISPR-RPA). Specific RPA primers targeting D14L and ATI were designed. CRISPR-RPA assay was performed using various target templates. In the designed CRISPR-RPA reaction system, the exponentially amplified RPA amplification products with a protospacer adjacent motif (PAM) site can locate the Cas12a/crRNA complex to its target regions, which successfully activates the CRISPR/Cas12a effector and achieves ultrafast trans-cleavage of a single-stranded DNA probe. The limit of detection for the CRISPR-RPA assay was 10 copies per reaction for D14L- and ATI-plasmids. No cross-reactivity was observed with non-mpox strains, confirming the high specificity of the CRISPR-RPA assay for distinguishing between the Congo Basin and West African mpox. The CRISPR-RPA assay can be completed within 45 min using real-time fluorescence readout. Moreover, the cleavage results were visualized under UV light or an imaging system, eliminating the need for a specialized apparatus. In summary, the developed CRISPR/RPA assay is a visual, rapid, sensitive, and highly specific detection technique that can be used as an attractive potential identification tool for Congo Basin and West African mpox in resource-limited laboratories.
Collapse
Affiliation(s)
- Xinggui Yang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, P.R. China
| | - Xiaoyan Zeng
- The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, P.R. China
| | - Xu Chen
- The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, P.R. China
| | - Junfei Huang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, P.R. China
| | - Xiaoyu Wei
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, P.R. China
| | - Xia Ying
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, P.R. China
| | - Qinqin Tan
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, P.R. China
| | - Yi Wang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, P.R. China
| | - Shijun Li
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, P.R. China
| |
Collapse
|
46
|
Lin F, Shen J, Liu Y, Huang A, Zhang H, Chen F, Zhou D, Zhou Y, Hao G. Rapid and effective detection of Macrobrachium rosenbergii nodavirus using a combination of nucleic acid sequence-based amplification test and immunochromatographic strip. J Invertebr Pathol 2023; 198:107921. [PMID: 37023892 DOI: 10.1016/j.jip.2023.107921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/21/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
Nucleic acid sequence-based amplification (NASBA) provides a fast and convenient approach for nucleic acid amplification under isothermal conditions, and its combination with an immunoassay-based lateral flow dipstick (LFD) could produce a higher detection efficiency for M. rosenbergii nodavirus isolated from China (MrNV-chin). In this study, two specific primers and a labelled probe of the capsid protein gene of MrNV-chin were constructed. The process of this assay mainly included a single-step amplification at a temperature of 41 ℃ for 90 min, and hybridization with an FITC-labeled probe for 5 min, with the hybridization been required for visual identification during LFD assay. The test results indicated that, the NASBA-LFD assay showed sensitivity for 1.0 fg M. rosenbergii total RNA with MrNV-chin infection, which was 104 times that of the present RT-PCR approach for the detection of MrNV. In addition, no products were created for shrimps with infection of other kinds of either DNA or RNA virus, which indicated that the NASBA-LFD was specific for MrNV. Therefore, the combination of NASBA and LFD is a new alternative detection method for MrNV which is rapid, accurate, sensitive and specific without expensive equipment and specialised personnel. Early detection of this infectious disease among aquatic organisms will help implement efficient therapeutic strategy to prevent its spread, enhance animal health and limit loss of aquatic breeds in the event of an outbreak.
Collapse
Affiliation(s)
- Feng Lin
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China; Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Jinyu Shen
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Yuelin Liu
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Aixia Huang
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Haiqi Zhang
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Fan Chen
- Hangzhou Centre for Agricultural Technology Extension, Hangzhou 310017, China.
| | - Dongren Zhou
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Yang Zhou
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Guijie Hao
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China.
| |
Collapse
|
47
|
Abstract
BACKGROUND In addition to the COVID-19 waves, the globe is recently facing global monkeypox (MPX) outbreak. As the daily confirmed cases of MPX infection across epidemic and nonepidemic countries are increasing, taking measures to control global pandemic remains crucial. Therefore, this review aimed to provide fundamental knowledge for the prevention and control of future outbreaks of this emerging epidemic. METHODS The review was conducted using PubMed and Google Scholar databases; the search terms used were "monkeypox," "MPX tropism," "replication signaling of MPX," "biology and pathogenicity of MPX," "diagnosis of MPX," "treatment of MPX," "prevention of MPX," etc. The update epidemic data were collected from the websites of the World Health Organization (WHO), United States Centers for Disease Control and Prevention (CDC), and Africa Center for Disease Control and Prevention (ADCC). High-quality research results published in authoritative journals were summarized and preferred cited. Excluding all duplicates, non-English published references, and irrelevant literature, totally 1,436 articles were assessed for eligibility. RESULTS It is still difficult to diagnose the patient as MPX simply based on clinical manifestations; therefore, under this situation, employing polymerase chain reaction (PCR) technology to provide confirmed evidence for the diagnosis of MPX seems to be the preferred and indispensable strategy. The treatment approach for MPX infection is mainly symptomatic and supportive; anti-smallpox virus drugs including tecovirimat, cidofovir, and brincidofovir can be employed in severe cases. Timely identification and isolation of confirmed cases, cutting off dissemination routes, and vaccination of close contacts are effective measures to control MPX. Also, smallpox vaccines (JYNNEOS, LC16m8, and ACAM2000) can be under consideration due to their immunological cross-protection among Orthopoxvirus. Nevertheless, given the low quality and scarcity of relevant evidence of current antiviral drugs and vaccines, deeply seeking for the MAPK/ERK, PAK-1, PI3K/Akt signaling, and other pathways involved in MPX invasion may provide potential targets for the treatment, prevention, and control of the epidemic. CONCLUSIONS In response to the current MPX epidemic, the development of vaccines and antiviral drugs against MPX, as well as the rapid and precise diagnostic methods are still urgently needed. Sound monitoring and detection systems should be established to limit the rapid spread of MPX worldwide.
Collapse
Affiliation(s)
- Yue Kang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yue Yu
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian China
| | - Silu Xu
- Department of Pharmacy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
48
|
Huang X, Xiao F, Jia N, Sun C, Fu J, Xu Z, Cui X, Huang H, Qu D, Zhou J, Wang Y. Loop-mediated isothermal amplification combined with lateral flow biosensor for rapid and sensitive detection of monkeypox virus. Front Public Health 2023; 11:1132896. [PMID: 37033067 PMCID: PMC10080115 DOI: 10.3389/fpubh.2023.1132896] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
The ongoing outbreak of the monkeypox, caused by monkeypox virus (MPXV), has been a public health emergency of international concern, indicating an urgent need for rapid and sensitive MPXV detection. Here, we designed a diagnostic test based on loop-mediated isothermal amplification (LAMP) and nanoparticle-based lateral flow biosensor(LFB)for diagnosis of MPXV infection, termed MPX-LAMP-LFB. A set of six LAMP primers was designed based the ATI gene of MPXV, and LAMP amplification of MPXV templates was performed at 63°C for only 40 min. The results were rapidly and visually decided using the LFB test within 2 min. The MPX-LAMP-LFB assay can specifically detect MPXV strains without cross-reaction with non-MPXV pathogens. The sensitivity of the MPX-LAMP-LFB assay is as low as 5 copies/μl of plasmid template and 12.5 copies/μl of pseudovirus in human blood samples. The whole process of the MPX-LAMP-LFB assay could be completed ~1 h, including rapid template preparation (15 min), LAMP reaction (40 min)and result reporting (<2 min). Collectively, MPX-LAMP-LFB assay developed here is a useful tool for rapid and reliable diagnosis of MPXV infection.
Collapse
Affiliation(s)
- Xiaolan Huang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Fei Xiao
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Nan Jia
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Chunrong Sun
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Jin Fu
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Zheng Xu
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Xiaodai Cui
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Hui Huang
- Department of Infectious Diseases, Children’s Hospital Affiliated Capital Institute of Pediatrics, Beijing, China
| | - Dong Qu
- Department of Critical Medicine, Children’s Hospital Affiliated Capital Institute of Pediatrics, Beijing, China
| | - Juan Zhou
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Yi Wang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
49
|
Chen X, Yuan W, Yang X, Shi Y, Zeng X, Huang J, Wang Y, Li S. Ultrasensitive and Specific Identification of Monkeypox Virus Congo Basin and West African Strains Using a CRISPR/Cas12b-Based Platform. Microbiol Spectr 2023; 11:e0403522. [PMID: 36821485 PMCID: PMC10100855 DOI: 10.1128/spectrum.04035-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/29/2023] [Indexed: 02/24/2023] Open
Abstract
Human monkeypox (MPX) is a severe and reemerging infectious disease caused by monkeypox virus (MPXV) and forms two distinct lineages, including Congo Basin and West African clades. Due to the absence of specific vaccines and antiviral drugs, developing a point-of-care (POC) testing system to identify MPXV is critical for preventing and controlling MPX transmission. Here, a CRISPR/Cas12b diagnostic platform was integrated with loop-mediated isothermal amplification (LAMP) to devise a novel CRISPR-MPXV approach for ultrasensitive, highly specific, rapid, and simple detection of MPXV Congo Basin and West African strains, and the detection results were interpreted with real-time fluorescence and a gold nanoparticle-based lateral flow biosensor (AuNP-LFB). The optimal detection process, including genomic DNA extraction (15 min), LAMP preamplification (35 min at 66°C), CRISPR/Cas12b-based detection (5 min at 45°C), and AuNP-LFB readout (~2 min), can be completed within 60 min without expensive instruments. Our assay has a limit of detection of 10 copies per test and produces no cross-reaction with any other types of pathogens. Hence, our CRISPR-MPXV assay exhibited considerable potential for POC testing for identifying and distinguishing MPXV Congo Basin and West African strains, especially in regions with resource shortages. IMPORTANCE Monkeypox (MPX), a reemerging zoonotic disease caused by monkeypox virus (MPXV), causes a smallpox-like disease in humans. Early diagnosis is critical to prevent MPX epidemics. Here, CRISPR/Cas12b was integrated with LAMP amplification to devise a novel CRISPR-MPXV approach to achieve highly specific, ultrasensitive, rapid, and visual identification of MPXV Congo Basin and West African strains.
Collapse
Affiliation(s)
- Xu Chen
- The Second Clinical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People’s Republic of China
- Clinical Medical Laboratory of the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People’s Republic of China
| | - Wei Yuan
- Department of Quality Control, Guizhou Provincial Center for Clinical Laboratory, Guiyang, Guizhou, People’s Republic of China
| | - Xinggui Yang
- Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, Guizhou, People’s Republic of China
| | - Yuanfang Shi
- The Second Clinical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People’s Republic of China
| | - Xiaoyan Zeng
- The Second Clinical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People’s Republic of China
- Clinical Medical Laboratory of the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People’s Republic of China
| | - Junfei Huang
- Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, Guizhou, People’s Republic of China
| | - Yi Wang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, People’s Republic of China
| | - Shijun Li
- Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, Guizhou, People’s Republic of China
| |
Collapse
|
50
|
Mohamed NA, Zupin L, Mazi SI, Al-Khatib HA, Crovella S. Nanomedicine as a Potential Tool against Monkeypox. Vaccines (Basel) 2023; 11:428. [PMID: 36851305 PMCID: PMC9963669 DOI: 10.3390/vaccines11020428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/24/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
Human monkeypox is a rare viral zoonosis that was first identified in 1970; since then, this infectious disease has been marked as endemic in central and western Africa. The disease has always been considered rare and self-limiting; however, recent worldwide reports of several cases suggest otherwise. Especially with monkeypox being recognized as the most important orthopoxvirus infection in humans in the smallpox post-eradication era, its spread across the globe marks a new epidemic. Currently, there is no proven treatment for human monkeypox, and questions about the necessity of developing a vaccine persist. Notably, if we are to take lessons from the COVID-19 pandemic, developing a nanomedicine-based preventative strategy might be prudent, particularly with the rapid growth of the use of nanotechnology and nanomaterials in medical research. Unfortunately, the collected data in this area is limited, dispersed, and often incomplete. Therefore, this review aims to trace all reported nanomedicine approaches made in the monkeypox area and to suggest possible directions that could be further investigated to develop a counteractive strategy against emerging and existing viruses that could diminish this epidemic and prevent it from becoming a potential pandemic, especially with the world still recovering from the COVID-19 pandemic.
Collapse
Affiliation(s)
- Nura Adam Mohamed
- Biomedical Research Center (BRC), Qatar University, Doha P.O. Box 2713, Qatar
| | - Luisa Zupin
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137 Trieste, Italy
| | - Sarah Ismail Mazi
- Department of Cardiac Sciences, College of Medicine, King Saud University, P.O. Box 7805, Riyadh 11472, Saudi Arabia
| | - Hebah A. Al-Khatib
- Biomedical Research Center (BRC), Qatar University, Doha P.O. Box 2713, Qatar
| | - Sergio Crovella
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|