1
|
Ning K, Tran M, Kowal TJ, Mesentier-Louro LA, Sendayen BE, Wang Q, Lo CH, Li T, Majumder R, Luo J, Hu Y, Liao YJ, Sun Y. Compartmentalized ciliation changes of oligodendrocytes in aged mouse optic nerve. J Neurosci Res 2024; 102:e25273. [PMID: 38284846 PMCID: PMC10827352 DOI: 10.1002/jnr.25273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 10/11/2023] [Accepted: 10/28/2023] [Indexed: 01/30/2024]
Abstract
Primary cilia are microtubule-based sensory organelles that project from the apical surface of most mammalian cells, including oligodendrocytes, which are myelinating cells of the central nervous system (CNS) that support critical axonal function. Dysfunction of CNS glia is associated with aging-related white matter diseases and neurodegeneration, and ciliopathies are known to affect CNS white matter. To investigate age-related changes in ciliary profile, we examined ciliary length and frequency in the retinogeniculate pathway, a white matter tract commonly affected by diseases of aging but in which expression of cilia has not been characterized. We found expression of Arl13b, a marker of primary cilia, in a small group of Olig2-positive oligodendrocytes in the optic nerve, optic chiasm, and optic tract in young and aged C57BL/6 wild-type mice. While the ciliary length and ciliated oligodendrocyte cells were constant in young mice in the retinogeniculate pathway, there was a significant increase in ciliary length in the anterior optic nerve as compared to the aged animals. Morphometric analysis confirmed a specific increase in the ciliation rate of CC1+ /Olig2+ oligodendrocytes in aged mice compared with young mice. Thus, the prevalence of primary cilia in oligodendrocytes in the visual pathway and the age-related changes in ciliation suggest that they may play important roles in white matter and age-associated optic neuropathies.
Collapse
Affiliation(s)
- Ke Ning
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Matthew Tran
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Tia J. Kowal
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
- Veterans Administration Palo Alto Health Care System, Palo Alto, CA, USA
| | | | - Brent E. Sendayen
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Qing Wang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Chien-Hui Lo
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Tingting Li
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Rishab Majumder
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
- Veterans Administration Palo Alto Health Care System, Palo Alto, CA, USA
| | - Jian Luo
- Veterans Administration Palo Alto Health Care System, Palo Alto, CA, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Yaping Joyce Liao
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
- Veterans Administration Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
2
|
Ki SM, Jeong HS, Lee JE. Primary Cilia in Glial Cells: An Oasis in the Journey to Overcoming Neurodegenerative Diseases. Front Neurosci 2021; 15:736888. [PMID: 34658775 PMCID: PMC8514955 DOI: 10.3389/fnins.2021.736888] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022] Open
Abstract
Many neurodegenerative diseases have been associated with defects in primary cilia, which are cellular organelles involved in diverse cellular processes and homeostasis. Several types of glial cells in both the central and peripheral nervous systems not only support the development and function of neurons but also play significant roles in the mechanisms of neurological disease. Nevertheless, most studies have focused on investigating the role of primary cilia in neurons. Accordingly, the interest of recent studies has expanded to elucidate the role of primary cilia in glial cells. Correspondingly, several reports have added to the growing evidence that most glial cells have primary cilia and that impairment of cilia leads to neurodegenerative diseases. In this review, we aimed to understand the regulatory mechanisms of cilia formation and the disease-related functions of cilia, which are common or specific to each glial cell. Moreover, we have paid close attention to the signal transduction and pathological mechanisms mediated by glia cilia in representative neurodegenerative diseases. Finally, we expect that this field of research will clarify the mechanisms involved in the formation and function of glial cilia to provide novel insights and ideas for the treatment of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Soo Mi Ki
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Hui Su Jeong
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Ji Eun Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
- Samsung Medical Center, Samsung Biomedical Research Institute, Seoul, South Korea
| |
Collapse
|
3
|
Ng DCH, Ho UY, Grounds MD. Cilia, Centrosomes and Skeletal Muscle. Int J Mol Sci 2021; 22:9605. [PMID: 34502512 PMCID: PMC8431768 DOI: 10.3390/ijms22179605] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
Primary cilia are non-motile, cell cycle-associated organelles that can be found on most vertebrate cell types. Comprised of microtubule bundles organised into an axoneme and anchored by a mature centriole or basal body, primary cilia are dynamic signalling platforms that are intimately involved in cellular responses to their extracellular milieu. Defects in ciliogenesis or dysfunction in cilia signalling underlie a host of developmental disorders collectively referred to as ciliopathies, reinforcing important roles for cilia in human health. Whilst primary cilia have long been recognised to be present in striated muscle, their role in muscle is not well understood. However, recent studies indicate important contributions, particularly in skeletal muscle, that have to date remained underappreciated. Here, we explore recent revelations that the sensory and signalling functions of cilia on muscle progenitors regulate cell cycle progression, trigger differentiation and maintain a commitment to myogenesis. Cilia disassembly is initiated during myoblast fusion. However, the remnants of primary cilia persist in multi-nucleated myotubes, and we discuss their potential role in late-stage differentiation and myofiber formation. Reciprocal interactions between cilia and the extracellular matrix (ECM) microenvironment described for other tissues may also inform on parallel interactions in skeletal muscle. We also discuss emerging evidence that cilia on fibroblasts/fibro-adipogenic progenitors and myofibroblasts may influence cell fate in both a cell autonomous and non-autonomous manner with critical consequences for skeletal muscle ageing and repair in response to injury and disease. This review addresses the enigmatic but emerging role of primary cilia in satellite cells in myoblasts and myofibers during myogenesis, as well as the wider tissue microenvironment required for skeletal muscle formation and homeostasis.
Collapse
Affiliation(s)
- Dominic C. H. Ng
- School of Biomedical Science, Faculty of Medicine, University of Queensland, St Lucia, Brisbane, QLD 4072, Australia;
| | - Uda Y. Ho
- School of Biomedical Science, Faculty of Medicine, University of Queensland, St Lucia, Brisbane, QLD 4072, Australia;
| | - Miranda D. Grounds
- School of Human Sciences, Faculty of Medicine, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
4
|
Kawata K, Narita K, Washio A, Kitamura C, Nishihara T, Kubota S, Takeda S. Odontoblast differentiation is regulated by an interplay between primary cilia and the canonical Wnt pathway. Bone 2021; 150:116001. [PMID: 33975031 DOI: 10.1016/j.bone.2021.116001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 01/29/2023]
Abstract
Primary cilium is a protruding cellular organelle that has various physiological functions, especially in sensory reception. While an avalanche of reports on primary cilia have been published, the function of primary cilia in dental cells remains to be investigated. In this study, we focused on the function of primary cilia in dentin-producing odontoblasts. Odontoblasts, like most other cell types, possess primary cilia, which disappear upon the knockdown of intraflagellar transport protein 88. In cilia-depleted cells, the expression of dentin sialoprotein, an odontoblastic marker, was elevated, while the deposition of minerals was slowed. This was recapitulated by the activation of canonical Wnt pathway, also decreased the ratio of ciliated cells. In dental pulp cells, as they differentiated into odontoblasts, the ratio of ciliated cells was increased, whereas the canonical Wnt signaling activity was repressed. Our results collectively underscore the roles of primary cilia in regulating odontoblastic differentiation through canonical Wnt signaling. This study implies the existence of a feedback loop between primary cilia and the canonical Wnt pathway.
Collapse
Affiliation(s)
- Kazumi Kawata
- Department of Anatomy and Cell Biology, University of Yamanashi Faculty of Medicine, 1110, Shimo-Kateau, Chuo, Yamanashi 4093898, Japan; Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 7008525, Japan.
| | - Keishi Narita
- Department of Anatomy and Cell Biology, University of Yamanashi Faculty of Medicine, 1110, Shimo-Kateau, Chuo, Yamanashi 4093898, Japan
| | - Ayako Washio
- Division of Endodontics and Restorative Dentistry, Department of Oral Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokura-kita, Kitakyushu, Fukuoka 8038580, Japan
| | - Chiaki Kitamura
- Division of Endodontics and Restorative Dentistry, Department of Oral Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokura-kita, Kitakyushu, Fukuoka 8038580, Japan
| | - Tatsuji Nishihara
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokura-kita, Kitakyushu, Fukuoka 8038580, Japan
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 7008525, Japan
| | - Sen Takeda
- Department of Anatomy and Cell Biology, University of Yamanashi Faculty of Medicine, 1110, Shimo-Kateau, Chuo, Yamanashi 4093898, Japan.
| |
Collapse
|
5
|
Gilloteaux J, Bouchat J, Bielarz V, Brion JP, Nicaise C. A primary cilium in oligodendrocytes: a fine structure signal of repairs in thalamic Osmotic Demyelination Syndrome (ODS). Ultrastruct Pathol 2021; 45:128-157. [PMID: 34154511 DOI: 10.1080/01913123.2021.1891161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A murine osmotic demyelination syndrome (ODS) model of the central nervous system included the relay thalamic ventral posterolateral (VPL) and ventral posteromedial (VPM) nuclei. Morphologic comparisons between treatments have revealed oligodendrocyte changes and, already 12 hours following the osmolality restoration, some heavily contrasted oligodendrocytes formed a unique intracellular primary cilium. This unique structure, found in vivo, in mature CNS oligodendrocytes, could account for a local awakening of some of the developmental proteome as it can be expressed in oligodendrocyte precursor cells. This resilience accompanied the emergence of arl13b protein expression along with restoration of nerve cell body axon hillocks shown in a previous issue of this journal. Additionally, the return of several thalamic oligodendrocyte fine features (nucleus, organelles) was shown 36 h later, including some mitosis. Those cell restorations and recognized translational activities comforted that local repairs could again take place, due to oligodendrocyte resilience after ODS instead or added to a postulated immigration of oligodendrocyte precursor cells distant from the sites of myelinolysis.
Collapse
Affiliation(s)
- Jacques Gilloteaux
- Unit of Research in Molecular Physiology (Urphym - NARILIS), Départment of Médecine, Université de Namur, Namur, Belgium.,Department of Anatomical Sciences, St George's University School of Medicine, KB Taylor Global Scholar's Program at UNN, School of Health and Life Sciences, Newcastle upon Tyne, UK
| | - Joanna Bouchat
- Unit of Research in Molecular Physiology (Urphym - NARILIS), Départment of Médecine, Université de Namur, Namur, Belgium
| | - Valery Bielarz
- Unit of Research in Molecular Physiology (Urphym - NARILIS), Départment of Médecine, Université de Namur, Namur, Belgium
| | - Jean-Pierre Brion
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculté de Médecine Université Libre de Bruxelles, Brussels, Belgium
| | - Charles Nicaise
- Unit of Research in Molecular Physiology (Urphym - NARILIS), Départment of Médecine, Université de Namur, Namur, Belgium
| |
Collapse
|
6
|
Cullen CL, O'Rourke M, Beasley SJ, Auderset L, Zhen Y, Pepper RE, Gasperini R, Young KM. Kif3a deletion prevents primary cilia assembly on oligodendrocyte progenitor cells, reduces oligodendrogenesis and impairs fine motor function. Glia 2020; 69:1184-1203. [PMID: 33368703 PMCID: PMC7986221 DOI: 10.1002/glia.23957] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/06/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022]
Abstract
Primary cilia are small microtubule‐based organelles capable of transducing signals from growth factor receptors embedded in the cilia membrane. Developmentally, oligodendrocyte progenitor cells (OPCs) express genes associated with primary cilia assembly, disassembly, and signaling, however, the importance of primary cilia for adult myelination has not been explored. We show that OPCs are ciliated in vitro and in vivo, and that they disassemble their primary cilia as they progress through the cell cycle. OPC primary cilia are also disassembled as OPCs differentiate into oligodendrocytes. When kinesin family member 3a (Kif3a), a gene critical for primary cilium assembly, was conditionally deleted from adult OPCs in vivo (Pdgfrα‐CreER™:: Kif3afl/fl transgenic mice), OPCs failed to assemble primary cilia. Kif3a‐deletion was also associated with reduced OPC proliferation and oligodendrogenesis in the corpus callosum and motor cortex and a progressive impairment of fine motor coordination.
Collapse
Affiliation(s)
- Carlie L Cullen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Megan O'Rourke
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Shannon J Beasley
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Loic Auderset
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Yilan Zhen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Renee E Pepper
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Robert Gasperini
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.,School of Medicine, University of Tasmania, Hobart, Australia
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| |
Collapse
|
7
|
Besser RR, Bowles AC, Alassaf A, Carbonero D, Maciel R, Saporta M, Agarwal A. A Chemically Defined Common Medium for Culture of C2C12 Skeletal Muscle and Human Induced Pluripotent Stem Cell Derived Spinal Spheroids. Cell Mol Bioeng 2020; 13:605-619. [PMID: 33281990 PMCID: PMC7704992 DOI: 10.1007/s12195-020-00624-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/03/2020] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Multicellular platforms and linked multi organ on chip devices are powerful tools for drug discovery, and basic mechanistic studies. Often, a critical constraint is defining a culture medium optimal for all cells present in the system. In this study, we focused on the key cells of the neuromuscular junction i.e., skeletal muscle and motor neurons. METHODS Formulation of a chemically defined medium for the co-culture of C2C12 skeletal muscle cells and human induced pluripotent stem cell (hiPSC) derived spinal spheroids (SpS) was optimized. C2C12 cells in 10 experimental media conditions and 2 topographies were evaluated over a 14-day maturation period to determine the ideal medium formulation for skeletal muscle tissue development. RESULTS During early maturation, overexpression of genes for myogenesis and myopathy was observed for several media conditions, corresponding to muscle delamination and death. Together, we identified 3 media formulations that allowed for more controlled differentiation, healthier muscle tissue, and long-term culture duration. This evidence was then used to select media formulations to culture SpS and subsequently assessed axonal growth. As axonal growth in SpS cultures was comparable in all selected media conditions, our data suggest that the neuronal basal medium with no added supplements is the ideal medium formulation for both cell types. CONCLUSIONS Optimization using both topographical cues and culture media formulations provides a comprehensive analyses of culture conditions that are vital to future applications for in vitro NMJ models.
Collapse
Affiliation(s)
- Rachel R. Besser
- Department of Biomedical Engineering, DJTMF Biomedical Nanotechnology Institute, University of Miami, 1251 Memorial Dr, MEA 203, Coral Gables, FL 33146 USA
| | - Annie C. Bowles
- Department of Biomedical Engineering, DJTMF Biomedical Nanotechnology Institute, University of Miami, 1251 Memorial Dr, MEA 203, Coral Gables, FL 33146 USA
| | - Ahmad Alassaf
- Department of Biomedical Engineering, DJTMF Biomedical Nanotechnology Institute, University of Miami, 1251 Memorial Dr, MEA 203, Coral Gables, FL 33146 USA
- Department of Medical Equipment Technology, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, 11952 Saudi Arabia
| | - Daniel Carbonero
- Department of Biomedical Engineering, DJTMF Biomedical Nanotechnology Institute, University of Miami, 1251 Memorial Dr, MEA 203, Coral Gables, FL 33146 USA
| | - Renata Maciel
- Department of Neurology, University of Miami Miller School of Medicine, 1120 NW 14th St, Suite 1310, Miami, FL 33136 USA
| | - Mario Saporta
- Department of Neurology, University of Miami Miller School of Medicine, 1120 NW 14th St, Suite 1310, Miami, FL 33136 USA
| | - Ashutosh Agarwal
- Department of Biomedical Engineering, DJTMF Biomedical Nanotechnology Institute, University of Miami, 1251 Memorial Dr, MEA 203, Coral Gables, FL 33146 USA
| |
Collapse
|
8
|
Moreau N, Boucher Y. Hedging against Neuropathic Pain: Role of Hedgehog Signaling in Pathological Nerve Healing. Int J Mol Sci 2020; 21:ijms21239115. [PMID: 33266112 PMCID: PMC7731127 DOI: 10.3390/ijms21239115] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 12/23/2022] Open
Abstract
The peripheral nervous system has important regenerative capacities that regulate and restore peripheral nerve homeostasis. Following peripheral nerve injury, the nerve undergoes a highly regulated degeneration and regeneration process called Wallerian degeneration, where numerous cell populations interact to allow proper nerve healing. Recent studies have evidenced the prominent role of morphogenetic Hedgehog signaling pathway and its main effectors, Sonic Hedgehog (SHH) and Desert Hedgehog (DHH) in the regenerative drive following nerve injury. Furthermore, dysfunctional regeneration and/or dysfunctional Hedgehog signaling participate in the development of chronic neuropathic pain that sometimes accompanies nerve healing in the clinical context. Understanding the implications of this key signaling pathway could provide exciting new perspectives for future research on peripheral nerve healing.
Collapse
Affiliation(s)
- Nathan Moreau
- Department of Oral Medicine and Oral Surgery, Bretonneau Hospital (AP-HP), 75018 Paris, France;
- Faculty of Dental Medicine-Montrouge, University of Paris, 92120 Montrouge, France
| | - Yves Boucher
- Department of Dental Medicine, Pitié-Salpêtrière Hospital (AP-HP), 75013 Paris, France
- Faculty of Dental Medicine-Garancière, University of Paris, 75006 Paris, France
- Correspondence:
| |
Collapse
|
9
|
McCurdy EP, Chung KM, Benitez-Agosto CR, Hengst U. Promotion of Axon Growth by the Secreted End of a Transcription Factor. Cell Rep 2020; 29:363-377.e5. [PMID: 31597097 DOI: 10.1016/j.celrep.2019.08.101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/02/2019] [Accepted: 08/29/2019] [Indexed: 12/27/2022] Open
Abstract
Axon growth is regulated externally by attractive and repulsive cues generated in the environment. In addition, intrinsic pathways govern axon development, although the extent to which axons themselves can influence their own growth is unknown. We find that dorsal root ganglion (DRG) axons secrete a factor supporting axon growth and identify it as the C terminus of the ER stress-induced transcription factor CREB3L2, which is generated by site 2 protease (S2P) cleavage in sensory neurons. S2P and CREB3L2 knockdown or inhibition of axonal S2P interfere with the growth of axons, and C-terminal CREB3L2 is sufficient to rescue these effects. C-terminal CREB3L2 forms a complex with Shh and stabilizes its association with the Patched-1 receptor on developing axons. Our results reveal a neuron-intrinsic pathway downstream of S2P that promotes axon growth.
Collapse
Affiliation(s)
- Ethan P McCurdy
- Integrated Program in Cellular, Molecular and Biomedical Studies, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Kyung Min Chung
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Carlos R Benitez-Agosto
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Ulrich Hengst
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
10
|
Yamada Y, Trakanant S, Nihara J, Kudo T, Seo K, Saeki M, Kurose M, Matsumaru D, Maeda T, Ohazama A. Gli3 is a Key Factor in the Schwann Cells from Both Intact and Injured Peripheral Nerves. Neuroscience 2020; 432:229-239. [DOI: 10.1016/j.neuroscience.2020.02.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 01/06/2023]
|
11
|
Tajouri A, Kharrat M, Hizem S, Zaghdoudi H, M'rad R, Simic-Schleicher G, Kaiser FJ, Hiort O, Werner R. In vitro functional characterization of the novel DHH mutations p.(Asn337Lysfs*24) and p.(Glu212Lys) associated with gonadal dysgenesis. Hum Mutat 2018; 39:2097-2109. [PMID: 30298535 DOI: 10.1002/humu.23664] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/17/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022]
Abstract
In humans, mutations of Desert Hedgehog gene (DHH) have been described in patients with 46,XY gonadal dysgenesis (GD), associated or not with polyneuropathy. In this study, we describe two patients diagnosed with GD, both harboring novel DHH compound heterozygous mutations p.[Tyr176*];[Asn337Lysfs*24] and p.[Tyr176*];[Glu212Lys]. To investigate the functional consequences of p.(Asn337Lysfs*24) and p.(Glu212Lys) mutations, located within the C-terminal part of DHh on auto-processing, we performed in vitro cleavage assays of these proteins in comparison with Drosophila melanogaster Hedgehog (Hh). We found that p.(Glu212Lys) mutation retained 50% of its activity and led to a partially abolished DHh auto-processing. In contrast, p.(Asn337Lysfs*24) mutation resulted in a complete absence of auto-proteolysis. Furthermore, we found a different auto-processing profile between Drosophila Hh and human DHh, which suggests differences in the processing mechanism between the two species. Review of the literature shows that proven polyneuropathy and GD is associated with complete disruption of DHh-N, whereas disruption of the DHh auto-processing is only described with GD. We propose a model that may explain the differences between Schwann and Leydig cell development by autocrine versus paracrine DHh signaling. To our knowledge, this is the first study investigating the effect of DHH mutations on DHh in vitro auto-processing.
Collapse
Affiliation(s)
- Asma Tajouri
- University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES10 Human Genetics Laboratory, Tunis, Tunisia.,Department of Paediatric and Adolescent Medicine, Division of Paediatric Endocrinology and Diabetes, University of Luebeck, Luebeck, Germany
| | - Maher Kharrat
- University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES10 Human Genetics Laboratory, Tunis, Tunisia
| | - Syrine Hizem
- University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES10 Human Genetics Laboratory, Tunis, Tunisia
| | - Hajer Zaghdoudi
- University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES10 Human Genetics Laboratory, Tunis, Tunisia
| | - Ridha M'rad
- University of Tunis El Manar, Faculty of Medicine of Tunis, LR99ES10 Human Genetics Laboratory, Tunis, Tunisia.,Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, Tunis, Tunisia
| | | | - Frank J Kaiser
- Section for Functional Genetics at the Institute of Human Genetics, University of Luebeck, Luebeck, Germany
| | - Olaf Hiort
- Department of Paediatric and Adolescent Medicine, Division of Paediatric Endocrinology and Diabetes, University of Luebeck, Luebeck, Germany
| | - Ralf Werner
- Department of Paediatric and Adolescent Medicine, Division of Paediatric Endocrinology and Diabetes, University of Luebeck, Luebeck, Germany
| |
Collapse
|
12
|
Wu X. Genome expression profiling predicts the molecular mechanism of peripheral myelination. Int J Mol Med 2017; 41:1500-1508. [PMID: 29286075 PMCID: PMC5819935 DOI: 10.3892/ijmm.2017.3348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 11/22/2017] [Indexed: 01/17/2023] Open
Abstract
The present study aimed to explore the molecular mechanism of myelination in the peripheral nervous system (PNS) based on genome expression profiles. Microarray data (GSE60345) was acquired from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were integrated and subsequently subjected to pathway and term enrichment analysis. A protein-protein interaction network was constructed and the top 200 DEGs according to their degree value were further subjected to pathway enrichment analysis. A microRNA (miR)-target gene regulatory network was constructed to explore the role of miRs associated with PNS myelination. A total of 783 upregulated genes and 307 downregulated genes were identified. The upregulated DEGs were significantly enriched in the biological function of complement and coagulation cascades, cytokine-cytokine receptor interactions and cell adhesion molecules. Pathways significantly enriched by the downregulated DEGs included the cell cycle, oocyte meiosis and the p53 signaling pathway. In addition, the upregulated DEGs among the top 200 DEGs were significantly enriched in natural killer (NK) cell mediated cytotoxicity and the B cell receptor (BCR) signaling pathway, in which Fc γ receptor (FCGR), ras-related C3 botulinum toxin substrate 2 (RAC2) and 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase γ-2 (PLCG2) were involved. miR-339-5p, miR-10a-5p and miR-10b-5p were identified as having a high degree value and may regulate the target genes TOX high mobility group box family member 4 (Tox4), DNA repair protein XRCC2 (Xrcc2) and C5a anaphylatoxin chemotactic receptor C5a2 (C5ar2). NK cell mediated cytotoxicity and the BCR pathway may be involved in peripheral myelination by targeting FCGR, RAC2 and PLCG2. The downregulation of oocyte meiosis, the cell cycle and the cellular tumor antigen p53 signaling pathway suggests decreasing schwann cell proliferation following the initiation of myelination. miR-339-5p, miR-10a-5p and miR-10b-5p may play important roles in PNS myelination by regulating Tox4, Xrcc2 and C5ar2.
Collapse
Affiliation(s)
- Xiaoming Wu
- Department of Radiology, Jinhua People's Hospital, Jinhua, Zhejiang 321000, P.R. China
| |
Collapse
|
13
|
KIF13B establishes a CAV1-enriched microdomain at the ciliary transition zone to promote Sonic hedgehog signalling. Nat Commun 2017; 8:14177. [PMID: 28134340 PMCID: PMC5290278 DOI: 10.1038/ncomms14177] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 12/06/2016] [Indexed: 12/20/2022] Open
Abstract
Ciliary membrane composition is controlled by transition zone (TZ) proteins such as RPGRIP1, RPGRIPL and NPHP4, which are vital for balanced coordination of diverse signalling systems like the Sonic hedgehog (Shh) pathway. Activation of this pathway involves Shh-induced ciliary accumulation of Smoothened (SMO), which is disrupted by disease-causing mutations in TZ components. Here we identify kinesin-3 motor protein KIF13B as a novel member of the RPGRIP1N-C2 domain-containing protein family and show that KIF13B regulates TZ membrane composition and ciliary SMO accumulation. KIF13B is upregulated during ciliogenesis and is recruited to the ciliary base by NPHP4, which binds to two distinct sites in the KIF13B tail region, including an RPGRIP1N-C2 domain. KIF13B and NPHP4 are both essential for establishment of a CAV1 membrane microdomain at the TZ, which in turn is required for Shh-induced ciliary SMO accumulation. Thus KIF13B is a novel regulator of ciliary TZ configuration, membrane composition and Shh signalling.
Collapse
|
14
|
Grussendorf KA, Trezza CJ, Salem AT, Al-Hashimi H, Mattingly BC, Kampmeyer DE, Khan LA, Hall DH, Göbel V, Ackley BD, Buechner M. Facilitation of Endosomal Recycling by an IRG Protein Homolog Maintains Apical Tubule Structure in Caenorhabditis elegans. Genetics 2016; 203:1789-806. [PMID: 27334269 PMCID: PMC4981278 DOI: 10.1534/genetics.116.192559] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 06/15/2016] [Indexed: 02/08/2023] Open
Abstract
Determination of luminal diameter is critical to the function of small single-celled tubes. A series of EXC proteins, including EXC-1, prevent swelling of the tubular excretory canals in Caenorhabditis elegans In this study, cloning of exc-1 reveals it to encode a homolog of mammalian IRG proteins, which play roles in immune response and autophagy and are associated with Crohn's disease. Mutants in exc-1 accumulate early endosomes, lack recycling endosomes, and exhibit abnormal apical cytoskeletal structure in regions of enlarged tubules. EXC-1 interacts genetically with two other EXC proteins that also affect endosomal trafficking. In yeast two-hybrid assays, wild-type and putative constitutively active EXC-1 binds to the LIM-domain protein EXC-9, whose homolog, cysteine-rich intestinal protein, is enriched in mammalian intestine. These results suggest a model for IRG function in forming and maintaining apical tubule structure via regulation of endosomal recycling.
Collapse
Affiliation(s)
- Kelly A Grussendorf
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045 Department of Biological Sciences, Minnesota State University, Mankato, Minnesota 56001
| | - Christopher J Trezza
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Alexander T Salem
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Hikmat Al-Hashimi
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Brendan C Mattingly
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Drew E Kampmeyer
- Department of Biological Sciences, Minnesota State University, Mankato, Minnesota 56001
| | - Liakot A Khan
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - David H Hall
- Department of Neuroscience, Center for Caenorhabditis elegans Anatomy, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Verena Göbel
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Brian D Ackley
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Matthew Buechner
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| |
Collapse
|
15
|
Falcón-Urrutia P, Carrasco CM, Lois P, Palma V, Roth AD. Shh Signaling through the Primary Cilium Modulates Rat Oligodendrocyte Differentiation. PLoS One 2015. [PMID: 26218245 PMCID: PMC4517900 DOI: 10.1371/journal.pone.0133567] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Primary Cilia (PC) are a very likely place for signal integration where multiple signaling pathways converge. Two major signaling pathways clearly shown to signal through the PC, Sonic Hedgehog (Shh) and PDGF-Rα, are particularly important for the proliferation and differentiation of oligodendrocytes, suggesting that their interaction occurs in or around this organelle. We identified PC in rat oligodendrocyte precursor cells (OPCs) and found that, while easily detectable in early OPCs, PC are lost as these cells progress to terminal differentiation. We confirmed the interaction between these pathways, as cyclopamine inhibition of Hedgehog function impairs both PDGF-mediated OPC proliferation and Shh-dependent cell branching. However, we failed to detect PDGF-Rα localization into the PC. Remarkably, ciliobrevin-mediated disruption of PC and reduction of OPC process extension was counteracted by recombinant Shh treatment, while PDGF had no effect. Therefore, while PDGF-Rα-dependent OPC proliferation and survival most probably does not initiate at the PC, still the integrity of this organelle and cilium-centered pathway is necessary for OPC survival and differentiation.
Collapse
Affiliation(s)
- Paulina Falcón-Urrutia
- Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
- FONDAP Center for Genome Regulation, Santiago, Chile
| | - Carlos M. Carrasco
- Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
| | - Pablo Lois
- Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
- FONDAP Center for Genome Regulation, Santiago, Chile
| | - Veronica Palma
- Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
- FONDAP Center for Genome Regulation, Santiago, Chile
- * E-mail: (AR); (VP)
| | - Alejandro D. Roth
- Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
- * E-mail: (AR); (VP)
| |
Collapse
|
16
|
Werner R, Merz H, Birnbaum W, Marshall L, Schröder T, Reiz B, Kavran JM, Bäumer T, Capetian P, Hiort O. 46,XY Gonadal Dysgenesis due to a Homozygous Mutation in Desert Hedgehog (DHH) Identified by Exome Sequencing. J Clin Endocrinol Metab 2015; 100:E1022-9. [PMID: 25927242 PMCID: PMC4490300 DOI: 10.1210/jc.2015-1314] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND 46,XY disorders of sex development (DSD) comprise a heterogeneous group of congenital conditions. Mutations in a variety of genes can affect gonadal development or androgen biosynthesis/action and thereby influence the development of the internal and external genital organs. OBJECTIVE The objective of the study was to identify the genetic cause in two 46,XY sisters of a consanguineous family with DSD and gonadal tumor formation. METHODS We used a next-generation sequencing approach by exome sequencing. Electrophysiological and high-resolution ultrasound examination of peripheral nerves as well as histopathological examination of the gonads were performed. RESULTS We identified a novel homozygous R124Q mutation in the desert hedgehog gene (DHH), which alters a conserved residue among the three mammalian Hedgehog ligands sonic hedgehog, Indian hedgehog, and desert hedgehog. No other relevant mutations in DSD-related genes were encountered. The gonads of one patient showed partial gonadal dysgenesis with loss of Leydig cells in tubular areas with seminoma in situ and a hyperplasia of Leydig cell-like cells expressing CYP17A1 in more dysgenetic parts of the gonad. In addition, both patients suffer from a polyneuropathy. High-resolution ultrasound revealed a structural change of peripheral nerve structure that fits well to a minifascicle formation of peripheral nerves. CONCLUSION Mutations in DHH play a role in 46,XY gonadal dysgenesis and are associated with seminoma formation and a neuropathy with minifascicle formation. Gonadal dysgenesis in these cases may be due to impairment of Sertoli cell-Leydig cell interaction during gonadal development.
Collapse
Affiliation(s)
- Ralf Werner
- Department of Paediatric and Adolescent Medicine, and Division of Experimental Paediatric Endocrinology and Diabetes (R.W., W.B., L.M., O.H.), Departments of Pathology (H.M.), Gynecology (T.S.), Neurology and Institute of Neurogenetics (P.C.), and Paediatric and Adult Movement Disorders and Neuropsychiatry and Institute of Neurogenetics (T.B.), Institute of Integrative and Experimental Genomics (B.R.), University of Luebeck, 23538 Luebeck, Germany; and Department of Biophysics and Biophysical Chemistry (J.M.K.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Hartmut Merz
- Department of Paediatric and Adolescent Medicine, and Division of Experimental Paediatric Endocrinology and Diabetes (R.W., W.B., L.M., O.H.), Departments of Pathology (H.M.), Gynecology (T.S.), Neurology and Institute of Neurogenetics (P.C.), and Paediatric and Adult Movement Disorders and Neuropsychiatry and Institute of Neurogenetics (T.B.), Institute of Integrative and Experimental Genomics (B.R.), University of Luebeck, 23538 Luebeck, Germany; and Department of Biophysics and Biophysical Chemistry (J.M.K.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Wiebke Birnbaum
- Department of Paediatric and Adolescent Medicine, and Division of Experimental Paediatric Endocrinology and Diabetes (R.W., W.B., L.M., O.H.), Departments of Pathology (H.M.), Gynecology (T.S.), Neurology and Institute of Neurogenetics (P.C.), and Paediatric and Adult Movement Disorders and Neuropsychiatry and Institute of Neurogenetics (T.B.), Institute of Integrative and Experimental Genomics (B.R.), University of Luebeck, 23538 Luebeck, Germany; and Department of Biophysics and Biophysical Chemistry (J.M.K.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Louise Marshall
- Department of Paediatric and Adolescent Medicine, and Division of Experimental Paediatric Endocrinology and Diabetes (R.W., W.B., L.M., O.H.), Departments of Pathology (H.M.), Gynecology (T.S.), Neurology and Institute of Neurogenetics (P.C.), and Paediatric and Adult Movement Disorders and Neuropsychiatry and Institute of Neurogenetics (T.B.), Institute of Integrative and Experimental Genomics (B.R.), University of Luebeck, 23538 Luebeck, Germany; and Department of Biophysics and Biophysical Chemistry (J.M.K.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Tatjana Schröder
- Department of Paediatric and Adolescent Medicine, and Division of Experimental Paediatric Endocrinology and Diabetes (R.W., W.B., L.M., O.H.), Departments of Pathology (H.M.), Gynecology (T.S.), Neurology and Institute of Neurogenetics (P.C.), and Paediatric and Adult Movement Disorders and Neuropsychiatry and Institute of Neurogenetics (T.B.), Institute of Integrative and Experimental Genomics (B.R.), University of Luebeck, 23538 Luebeck, Germany; and Department of Biophysics and Biophysical Chemistry (J.M.K.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Benedikt Reiz
- Department of Paediatric and Adolescent Medicine, and Division of Experimental Paediatric Endocrinology and Diabetes (R.W., W.B., L.M., O.H.), Departments of Pathology (H.M.), Gynecology (T.S.), Neurology and Institute of Neurogenetics (P.C.), and Paediatric and Adult Movement Disorders and Neuropsychiatry and Institute of Neurogenetics (T.B.), Institute of Integrative and Experimental Genomics (B.R.), University of Luebeck, 23538 Luebeck, Germany; and Department of Biophysics and Biophysical Chemistry (J.M.K.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Jennifer M Kavran
- Department of Paediatric and Adolescent Medicine, and Division of Experimental Paediatric Endocrinology and Diabetes (R.W., W.B., L.M., O.H.), Departments of Pathology (H.M.), Gynecology (T.S.), Neurology and Institute of Neurogenetics (P.C.), and Paediatric and Adult Movement Disorders and Neuropsychiatry and Institute of Neurogenetics (T.B.), Institute of Integrative and Experimental Genomics (B.R.), University of Luebeck, 23538 Luebeck, Germany; and Department of Biophysics and Biophysical Chemistry (J.M.K.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Tobias Bäumer
- Department of Paediatric and Adolescent Medicine, and Division of Experimental Paediatric Endocrinology and Diabetes (R.W., W.B., L.M., O.H.), Departments of Pathology (H.M.), Gynecology (T.S.), Neurology and Institute of Neurogenetics (P.C.), and Paediatric and Adult Movement Disorders and Neuropsychiatry and Institute of Neurogenetics (T.B.), Institute of Integrative and Experimental Genomics (B.R.), University of Luebeck, 23538 Luebeck, Germany; and Department of Biophysics and Biophysical Chemistry (J.M.K.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Philipp Capetian
- Department of Paediatric and Adolescent Medicine, and Division of Experimental Paediatric Endocrinology and Diabetes (R.W., W.B., L.M., O.H.), Departments of Pathology (H.M.), Gynecology (T.S.), Neurology and Institute of Neurogenetics (P.C.), and Paediatric and Adult Movement Disorders and Neuropsychiatry and Institute of Neurogenetics (T.B.), Institute of Integrative and Experimental Genomics (B.R.), University of Luebeck, 23538 Luebeck, Germany; and Department of Biophysics and Biophysical Chemistry (J.M.K.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Olaf Hiort
- Department of Paediatric and Adolescent Medicine, and Division of Experimental Paediatric Endocrinology and Diabetes (R.W., W.B., L.M., O.H.), Departments of Pathology (H.M.), Gynecology (T.S.), Neurology and Institute of Neurogenetics (P.C.), and Paediatric and Adult Movement Disorders and Neuropsychiatry and Institute of Neurogenetics (T.B.), Institute of Integrative and Experimental Genomics (B.R.), University of Luebeck, 23538 Luebeck, Germany; and Department of Biophysics and Biophysical Chemistry (J.M.K.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
17
|
Desert hedgehog is a mediator of demyelination in compression neuropathies. Exp Neurol 2015; 271:84-94. [PMID: 25936873 DOI: 10.1016/j.expneurol.2015.04.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 04/17/2015] [Accepted: 04/23/2015] [Indexed: 11/23/2022]
Abstract
The secreted protein desert hedgehog (dhh) controls the formation of the nerve perineurium during development and is a key component of Schwann cells that ensures peripheral nerve survival. We postulated that dhh may play a critical role in maintaining myelination and investigated its role in demyelination-induced compression neuropathies by using a post-natal model of a chronic nerve injury in wildtype and dhh(-/-) mice. We evaluated demyelination using electrophysiological, morphological, and molecular approaches. dhh transcripts and protein are down-regulated early after injury in wild-type mice, suggesting an intimate relationship between the hedgehog pathway and demyelination. In dhh(-/-) mice, nerve injury induced more prominent and severe demyelination relative to their wild-type counterparts, suggesting a protective role of dhh. Alterations in nerve fiber characteristics included significant decreases in nerve conduction velocity, increased myelin debris, and substantial decreases in internodal length. Furthermore, in vitro studies showed that dhh blockade via either adenovirus-mediated (shRNA) or pharmacological inhibition both resulted in severe demyelination, which could be rescued by exogenous Dhh. Exogenous Dhh was protective against this demyelination and maintained myelination at baseline levels in a custom in vitro bioreactor to applied biophysical forces to myelinated DRG/Schwann cell co-cultures. Together, these results demonstrate a pivotal role for dhh in maintaining myelination. Furthermore, dhh signaling reveals a potential target for therapeutic intervention to prevent and treat demyelination of peripheral nerves in compression neuropathies.
Collapse
|
18
|
Waugh MG. PIPs in neurological diseases. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1066-82. [PMID: 25680866 DOI: 10.1016/j.bbalip.2015.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/29/2015] [Accepted: 02/01/2015] [Indexed: 12/19/2022]
Abstract
Phosphoinositide (PIP) lipids regulate many aspects of cell function in the nervous system including receptor signalling, secretion, endocytosis, migration and survival. Levels of PIPs such as PI4P, PI(4,5)P2 and PI(3,4,5)P3 are normally tightly regulated by phosphoinositide kinases and phosphatases. Deregulation of these biochemical pathways leads to lipid imbalances, usually on intracellular endosomal membranes, and these changes have been linked to a number of major neurological diseases including Alzheimer's, Parkinson's, epilepsy, stroke, cancer and a range of rarer inherited disorders including brain overgrowth syndromes, Charcot-Marie-Tooth neuropathies and neurodevelopmental conditions such as Lowe's syndrome. This article analyses recent progress in this area and explains how PIP lipids are involved, to varying degrees, in almost every class of neurological disease. This article is part of a Special Issue entitled Brain Lipids.
Collapse
Affiliation(s)
- Mark G Waugh
- Lipid and Membrane Biology Group, Institute for Liver and Digestive Health, UCL, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom.
| |
Collapse
|
19
|
Voigt T, Neve A, Schümperli D. The craniosacral progression of muscle development influences the emergence of neuromuscular junction alterations in a severe murine model for spinal muscular atrophy. Neuropathol Appl Neurobiol 2015; 40:416-34. [PMID: 23718187 DOI: 10.1111/nan.12064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 05/30/2013] [Accepted: 05/21/2013] [Indexed: 11/28/2022]
Abstract
AIMS As 4-day-old mice of the severe spinal muscular atrophy (SMA) model (dying at 5-8 days) display pronounced neuromuscular changes in the diaphragm but not the soleus muscle, we wanted to gain more insight into the relationship between muscle development and the emergence of pathological changes and additionally to analyse intercostal muscles which are affected in human SMA. METHODS Structures of muscle fibres and neuromuscular junctions (NMJs) of the diaphragm, intercostal and calf muscles of prenatal (E21) and postnatal (P0 and P4) healthy and SMA mice were analysed by light and transmission electron microscopy. NMJ innervation was studied by whole mount immunofluorescence in diaphragms of P4 mice. RESULTS During this period, the investigated muscles still show a significant neck-to-tail developmental gradient. The diaphragm and calf muscles are most and least advanced, respectively, with respect to muscle fibre fusion and differentiation. The number and depth of subsynaptic folds increases, and perisynaptic Schwann cells (PSCs) acquire a basal lamina on their outer surface. Subsynaptic folds are connected to an extensive network of tubules and beaded caveolae, reminiscent of the T system in adult muscle. Interestingly, intercostal muscles from P4 SMA mice show weaker pathological involvement (that is, vacuolization of PSCs and perineurial cells) than those previously described by us for the diaphragm, whereas calf muscles show no pathological changes. CONCLUSION SMA-related alterations appear to occur only when the muscles have reached a certain developmental maturity. Moreover, glial cells, in particular PSCs, play an important role in SMA pathogenesis.
Collapse
Affiliation(s)
- Tilman Voigt
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
20
|
Manara R, Citton V, Maffei P, Marshall JD, Naggert JK, Milan G, Vettor R, Baglione A, Vitale A, Briani C, Di Salle F, Favaro A. Degeneration and plasticity of the optic pathway in Alström syndrome. AJNR Am J Neuroradiol 2015; 36:160-5. [PMID: 25355816 PMCID: PMC7965932 DOI: 10.3174/ajnr.a4115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/04/2014] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Alström syndrome is a rare inherited ciliopathy in which early progressive cone-rod dystrophy leads to childhood blindness. We investigated functional and structural changes of the optic pathway in Alström syndrome by using MR imaging to provide insight into the underlying pathogenic mechanisms. MATERIALS AND METHODS Eleven patients with genetically proved Alström syndrome (mean age, 23 years; range, 6-45 years; 5 females) and 19 age- and sex-matched controls underwent brain MR imaging. The study protocol included conventional sequences, resting-state functional MR imaging, and diffusion tensor imaging. RESULTS In patients with Alström syndrome, the evaluation of the occipital regions showed the following: 1) diffuse white matter volume decrease while gray matter volume decrease spared the occipital poles (voxel-based morphometry), 2) diffuse fractional anisotropy decrease and radial diffusivity increase while mean and axial diffusivities were normal (tract-based spatial statistics), and 3) reduced connectivity in the medial visual network strikingly sparing the occipital poles (independent component analysis). After we placed seeds in both occipital poles, the seed-based analysis revealed significantly increased connectivity in patients with Alström syndrome toward the left frontal operculum, inferior and middle frontal gyri, and the medial portion of both thalami (left seed) and toward the anterior portion of the left insula (right and left seeds). CONCLUSIONS The protean occipital brain changes in patients with Alström syndrome likely reflect the coexistence of diffuse primary myelin derangement, anterograde trans-synaptic degeneration, and complex cortical reorganization affecting the anterior and posterior visual cortex to different degrees.
Collapse
Affiliation(s)
- R Manara
- From the Department of Medicine and Surgery (R.M., A.V., F.D.S.), Neuroradiology, University of Salerno, Salerno, Italy
| | - V Citton
- Department of Radiology (V.C.), Neuroradiology Unit, IRCCS San Camillo Hospital, Venezia, Italy
| | - P Maffei
- Department of Internal Medicine (P.M., G.M., R.V.), University Hospital of Padova, Padova, Italy
| | - J D Marshall
- Jackson Laboratory (J.D.M., J.K.N.), Bar Harbor, Maine
| | - J K Naggert
- Jackson Laboratory (J.D.M., J.K.N.), Bar Harbor, Maine
| | - G Milan
- Department of Internal Medicine (P.M., G.M., R.V.), University Hospital of Padova, Padova, Italy
| | - R Vettor
- Department of Internal Medicine (P.M., G.M., R.V.), University Hospital of Padova, Padova, Italy
| | - A Baglione
- Department of Neurosciences (A.B., C.B., A.F.), University of Padua, Padova, Italy
| | - A Vitale
- From the Department of Medicine and Surgery (R.M., A.V., F.D.S.), Neuroradiology, University of Salerno, Salerno, Italy
| | - C Briani
- Department of Neurosciences (A.B., C.B., A.F.), University of Padua, Padova, Italy
| | - F Di Salle
- From the Department of Medicine and Surgery (R.M., A.V., F.D.S.), Neuroradiology, University of Salerno, Salerno, Italy
| | - A Favaro
- Department of Neurosciences (A.B., C.B., A.F.), University of Padua, Padova, Italy
| |
Collapse
|
21
|
Sarkisian MR, Guadiana SM. Influences of Primary Cilia on Cortical Morphogenesis and Neuronal Subtype Maturation. Neuroscientist 2014; 21:136-51. [DOI: 10.1177/1073858414531074] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recognition that virtually every neuronal progenitor cell and neuron in the cerebral cortex is ciliated has triggered intense interest in neuronal cilia function. Here, we review recent studies that suggest the primary cilia of cortical progenitor cells are required for establishing and maintaining the organization within pools of proliferative cells. In addition, signaling via primary cilia differentially influence the migration and differentiation of excitatory and inhibitory neurons in the developing cortex. Specifically, the primary cilia of excitatory neurons appear to play a significant role in regulating the post-migratory differentiation of these neurons whereas cilia of inhibitory neurons appear to be required for the proper migration and positioning of those cells in cortex. Given the recently discovered functions of cilia in proliferation, neuronal migration, and differentiation, it is likely that further studies of cilia signaling will improve our understanding of how these basic developmental processes are regulated and may provide insight into how mutations in specific cilia genes linked to ciliopathies lead to the many neurological deficits associated with these diseases.
Collapse
Affiliation(s)
| | - Sarah M. Guadiana
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
22
|
Huang JG, Shen CB, Wu WB, Ren JW, Xu L, Liu S, Yang Q. Primary cilia mediate sonic hedgehog signaling to regulate neuronal-like differentiation of bone mesenchymal stem cells for resveratrol induction in vitro. J Neurosci Res 2014; 92:587-96. [PMID: 24464877 DOI: 10.1002/jnr.23343] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/10/2013] [Accepted: 11/10/2013] [Indexed: 01/12/2023]
Affiliation(s)
- Jia-Gui Huang
- Department of Neurology; The First Affiliated Hospital of Chongqing Medical University; Chongqing China
| | - Chang-Bo Shen
- Department of Neurology; The First Affiliated Hospital of Chongqing Medical University; Chongqing China
| | - Wen-Bin Wu
- Department of Neurology; Sichuan Provincial Academy of Medical Sciences and Sichuan Provincial People's Hospital; Chengdu Sichuan China
| | - Jun-Wei Ren
- Department of Neurology; The First Affiliated Hospital of Chongqing Medical University; Chongqing China
- Department of Neurology; Chongqing Fuling Central Hospital, Fuling District; Chongqing China
| | - Lan Xu
- Department of Neurology; The First Affiliated Hospital of Chongqing Medical University; Chongqing China
| | - Shu Liu
- Department of Neurology; The First Affiliated Hospital of Chongqing Medical University; Chongqing China
| | - Qin Yang
- Department of Neurology; The First Affiliated Hospital of Chongqing Medical University; Chongqing China
| |
Collapse
|
23
|
A new role for Hedgehogs in juxtacrine signaling. Mech Dev 2013; 131:137-49. [PMID: 24342078 DOI: 10.1016/j.mod.2013.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/26/2013] [Accepted: 12/09/2013] [Indexed: 12/30/2022]
Abstract
The Hedgehog pathway plays important roles in embryonic development, adult stem cell maintenance and tumorigenesis. In mammals these effects are mediated by Sonic, Desert and Indian Hedgehog (Shh, Dhh and Ihh). Shh undergoes autocatalytic cleavage and dual lipidation prior to secretion and forming a response gradient. Post-translational processing and secretion of Dhh and Ihh ligands has not previously been investigated. This study reports on the synthesis, processing, secretion and signaling activities of SHH, IHH and DHH preproteins expressed in cultured cells, providing unexpected evidence that DHH does not undergo substantial autoprocessing or secretion, and does not function in paracrine signaling. Rather, DHH functions as a juxtacrine signaling ligand to activate a cell contact-mediated HH signaling response, consistent with its localised signaling in vivo. Further, the LnCAP prostate cancer cell, when induced to express endogenous DHH and SHH, is active only in juxtacrine signaling. Domain swap studies reveal that the C-terminal domain of HH regulates its processing and secretion. These findings establish a new regulatory role for HHs in cell-mediated juxtacrine signaling in development and cancer.
Collapse
|
24
|
Hadden MK. Hedgehog pathway agonism: therapeutic potential and small-molecule development. ChemMedChem 2013; 9:27-37. [PMID: 24203435 DOI: 10.1002/cmdc.201300358] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Indexed: 11/10/2022]
Abstract
The Hedgehog (Hh) pathway is a developmental signaling pathway that plays multiple roles during embryonic development and in adult tissues. Constitutive Hh signaling has been linked to the development and progression of several forms of cancer, and the application of small-molecule pathway inhibitors as anticancer chemotherapeutics is well studied and clearly defined. Activation of the Hh pathway as a therapeutic strategy for a variety of degenerative or ischemic disorders has also been proposed; however, the development of small-molecule Hh agonists has received less attention. The goal of this review is to highlight the recent evidence supporting the therapeutic potential of Hh pathway activators and to provide a comprehensive overview of small-molecule pathway agonists.
Collapse
Affiliation(s)
- M Kyle Hadden
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, CT 06269 (USA).
| |
Collapse
|
25
|
Citton V, Favaro A, Bettini V, Gabrieli J, Milan G, Greggio NA, Marshall JD, Naggert JK, Manara R, Maffei P. Brain involvement in Alström syndrome. Orphanet J Rare Dis 2013; 8:24. [PMID: 23406482 PMCID: PMC3584911 DOI: 10.1186/1750-1172-8-24] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 01/29/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Alström Syndrome (AS) is a rare ciliopathy characterized by cone-rod retinal dystrophy, sensorineural hearing loss, obesity, type 2 diabetes mellitus and cardiomyopathy. Most patients do not present with neurological issues and demonstrate normal intelligence, although delayed psychomotor development and psychiatric disorders have been reported. To date, brain Magnetic Resonance Imaging (MRI) abnormalities in AS have not been explored. METHODS We investigated structural brain changes in 12 genetically proven AS patients (mean-age 22 years; range: 6-45, 6 females) and 19 matched healthy and positive controls (mean-age 23 years; range: 6-43; 12 females) using conventional MRI, Voxel-Based Morphometry (VBM) and Diffusion Tensor Imaging (DTI). RESULTS 6/12 AS patients presented with brain abnormalities such as ventricular enlargement (4/12), periventricular white matter abnormalities (3/12) and lacune-like lesions (1/12); all patients older than 30 years had vascular-like lesions. VBM detected grey and white matter volume reduction in AS patients, especially in the posterior regions. DTI revealed significant fractional anisotropy decrease and radial diffusivity increase in the supratentorial white matter, also diffusely involving those regions that appeared normal on conventional imaging. On the contrary, axial and mean diffusivity did not differ from controls except in the fornix. CONCLUSIONS Brain involvement in Alström syndrome is not uncommon. Early vascular-like lesions, gray and white matter atrophy, mostly involving the posterior regions, and diffuse supratentorial white matter derangement suggest a role of cilia in endothelial cell and oligodendrocyte function.
Collapse
Affiliation(s)
- Valentina Citton
- Neuroradiology Unit, IRCCS San Camillo Hospital Venezia, and Department of Neurosciences, University of Padua, Padova, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Takeda S, Narita K. Structure and function of vertebrate cilia, towards a new taxonomy. Differentiation 2011; 83:S4-11. [PMID: 22118931 DOI: 10.1016/j.diff.2011.11.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 11/04/2011] [Accepted: 11/04/2011] [Indexed: 10/15/2022]
Abstract
In this review, we propose a new classification of vertebrate cilia/flagella and discuss the evolution and prototype of cilia. Cilia/flagella are evolutionarily well-conserved membranous organelles in eukaryotes and serve a variety of functions, including motility and sensation. Vertebrate cilia have been traditionally classified into conventional motile cilia and sensory primary cilia. However, an avalanche of emerging evidence on the variations of cilia has made it almost impossible to classify them in a simple dichotomic manner. For example, conventional motile cilia are also involved in the sensation of bitter taste to facilitate the beating of cilia as a defense system of the respiratory system. On the other hand, the primary cilium, often regarded as a non-motile sensory organelle, has been revealed to be motile in vertebrate embryonic nodes, where they play a crucial role in the determination of left-right asymmetry of the body. Moreover, choroid plexus epithelial cells in the cerebral ventricular system exhibit multiple primary cilia on a single cell. Considering these lines of evidence on the diversity of cilia, we believe the classification of cilia should be based on their structure and function, and include more detailed criteria. Another intriguing issue is how in the evolution of cilia, their function and morphology are combined. For example, has motility been acquired from originally sensory cilia, or vice versa? Alternatively, were they originally hybrid in nature? These questions are inseparable from the classification of cilia per se. We would like to address these conundrums in this review article, principally from the standpoint of differentiation of the animal cell.
Collapse
Affiliation(s)
- Sen Takeda
- Department of Anatomy and Cell Biology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimo-Kateau, Chuo, Yamanashi 409-3898, Japan.
| | | |
Collapse
|