1
|
Martin FA, Garlantezec R, Chevrier C, Bihannic A, Pladys P, Béranger R, Rouget F. Domestic Use of Solvents and Pesticides and the Risk of Hypospadias in Offspring: A Case-Control Study From Brittany, France. Birth Defects Res 2025; 117:e2476. [PMID: 40276949 DOI: 10.1002/bdr2.2476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND There is a growing concern about the potential role of environmental exposure in congenital male anomalies. OBJECTIVE We aimed to assess the association between the domestic use of products containing solvents or pesticides during pregnancy and the risk of hypospadias in the offspring. METHODS We included newborns from the PENEW case-control study, which took place in Brittany, France, from October 2012 to December 2018. Newborns affected with hypospadias (n = 100) were matched with one to four controls (n = 283) according to the biological sex assigned at birth, center of birth, year, and season of birth. We assessed self-reported domestic exposure to solvents (cosmetics, house cleaning, and home renovation products) and pesticides (used indoors and outdoors) through a maternal questionnaire at birth. We performed multivariable conditional logistic regression, adjusting for potential confounders. RESULTS The self-reported use of indoor pesticides during pregnancy was associated with an increased risk of hypospadias in offspring (adjusted odds ratio [aOR] = 2.68, 95% CI = 1.5, 4.81), especially those against wood insects (aOR = 13.19, 95% CI = 1.11, 59.57), rodents (aOR = 4.61, 95% CI = 1.03, 20.7), and flying and crawling insects (aOR = 2.77, 95% CI = 1.46, 5.28). Other studies have shown that domestic exposure was not statistically significantly associated with a risk of hypospadias. CONCLUSION The use of indoor pesticides during pregnancy may be associated with a higher risk of hypospadias in offspring, especially those against flying and crawling insects. Further studies might be needed to identify specific molecules to target and confirm our results on a larger sample.
Collapse
Affiliation(s)
- Flore-Anne Martin
- Department of Gynecology, Obstetrics and Reproductive Medicine, CHU Rennes, Rennes, France
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en santé, Environnement et Travail), Rennes, France
| | - Ronan Garlantezec
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en santé, Environnement et Travail), Rennes, France
| | - Cécile Chevrier
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en santé, Environnement et Travail), Rennes, France
| | - Adèle Bihannic
- Brittany Registry of Congenital Anomalies, Department of Pediatrics, CHU Rennes, Rennes, France
| | - Patrick Pladys
- Univ Rennes, CHU Rennes, Inserm, LTSI-UMR, Rennes, France
| | - Rémi Béranger
- Department of Gynecology, Obstetrics and Reproductive Medicine, CHU Rennes, Rennes, France
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en santé, Environnement et Travail), Rennes, France
| | - Florence Rouget
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en santé, Environnement et Travail), Rennes, France
- Brittany Registry of Congenital Anomalies, Department of Pediatrics, CHU Rennes, Rennes, France
| |
Collapse
|
2
|
Ali MM. Effect of Pre-operative Parenteral Testosterone on Penile Dimensions and Vascularity in Proximal Hypospadias: A Prospective Observational Study. Afr J Paediatr Surg 2024; 21:228-231. [PMID: 38520239 PMCID: PMC11493235 DOI: 10.4103/ajps.ajps_160_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/22/2023] [Accepted: 04/03/2023] [Indexed: 03/25/2024] Open
Abstract
INTRODUCTION Severe or proximal hypospadias is associated with inadequate local tissue and small phallus size. Pre-operative androgens have been used to increase phallus size, but there are very few studies on its role in proximal hypospadias. This study aimed to assess the effects of pre-operative intramuscular (IM) testosterone on proximal penile hypospadias in terms of penile morphology and tissue characteristics of penile skin. MATERIALS AND METHODS This prospective observational study was conducted on 27 patients of proximal hypospadias over a period from June 2017 to July 2018. The patients were sequentially enrolled into two groups: Group A and Group B. Group A patients received IM testosterone before surgery, whereas Group B patients were operated without pre-operative testosterone. Outcomes were analysed in terms of change in penile dimensions and effect on vascularity of penile skin. RESULTS Pre-operative IM testosterone in Group A caused a significant increase in stretched penile length from a mean of 3.058 cm (±0.691) to 3.9 cm (±0.875) ( P = 0.002), penile circumference from a mean of 4.142 cm (±0.772) to 4.667 cm (±1.174) ( P = 0.029) and glans width from a mean of 1.225 cm (±0.245) to 1.750 cm (±0.571) ( P = 0.002). There was higher microvessel density in the preputial skin of Group A (mean: 12.212 [±4.745] blood vessels/high-power field [HPF]) compared to Group B (8.867 [±3.258] blood vessels/HPF) ( P = 0.043). CONCLUSION Pre-operative testosterone in proximal hypospadias causes significant changes in penile dimensions and tissue characteristics. Improvement in penile dimensions leads to ease in operability and better tissue handling. However, more studies with large sample size are required to establish the beneficial effects of pre-operative hormone stimulation on urethroplasty.
Collapse
Affiliation(s)
- Md Mokarram Ali
- Department of Pediatric Surgery, Pt BDS PGIMS, Rohtak, Haryana, India
| |
Collapse
|
3
|
Aksel S, Derpinghaus A, Cao M, Li Y, Cunha G, Baskin L. Neurovascular anatomy of the developing human fetal penis and clitoris. J Anat 2024; 245:35-49. [PMID: 38419143 PMCID: PMC11161816 DOI: 10.1111/joa.14029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/15/2024] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
The human penile and clitoral development begins from a morphologically indifferent genital tubercle. Under the influence of androgen, the genital tubercle forms the penis by forming a tubular urethra within the penile shaft. Without the effect of the androgen, the genital tubercle differentiates into the clitoris, and a lack of formation of the urethra within the clitoris is observed. Even though there are similarities during the development of the glans penis and glans clitoris, the complex canalization occurring along the penile shaft eventually leads to a morphological difference between the penis and clitoris. Based on the morphological differences, the main goal of this study was to define the vascular and neuronal anatomy of the developing penis and clitoris between 8 and 12 weeks of gestation using laser scanning confocal microscopy. Our results demonstrated there is a co-expression of CD31, which is an endothelial cell marker, and PGP9.5, which is a neuronal marker in the penis where the fusion is actively occurring at the ventral shaft. We also identified a unique anatomical structure for the first time, the clitoral ridge, which is a fetal structure running along the clitoral shaft in the vestibular groove. Contrary to previous anatomical findings which indicate that the neurovascular distribution in the developing penis and clitoris is similar, in this study, laser scanning confocal microscopy enabled us to demonstrate finer differences in the neurovascular anatomy between the penis and clitoris.
Collapse
Affiliation(s)
- Sena Aksel
- Department of UrologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Amber Derpinghaus
- Department of UrologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Mei Cao
- Department of UrologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Yi Li
- Department of UrologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Gerald Cunha
- Department of UrologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Laurence Baskin
- Department of UrologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| |
Collapse
|
4
|
Greenwald L, Dickstein DR, Chubak B, Marshall DC. We all get erections - de-gendering sexual arousal dysfunction in the ICD. Nat Rev Urol 2024; 21:319-320. [PMID: 38719915 DOI: 10.1038/s41585-024-00890-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Affiliation(s)
- Lucy Greenwald
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel R Dickstein
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Barbara Chubak
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deborah C Marshall
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
5
|
Cripps SM, Marshall SA, Mattiske DM, Ingham RY, Pask AJ. Estrogenic endocrine disruptor exposure directly impacts erectile function. Commun Biol 2024; 7:403. [PMID: 38565966 PMCID: PMC10987563 DOI: 10.1038/s42003-024-06048-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
Erectile dysfunction (ED) is an extremely prevalent condition which significantly impacts quality of life. The rapid increase of ED in recent decades suggests the existence of unidentified environmental risk factors contributing to this condition. Endocrine Disrupting Chemicals (EDCs) are one likely candidate, given that development and function of the erectile tissues are hormonally dependent. We use the estrogenic-EDC diethylstilbestrol (DES) to model how widespread estrogenic-EDC exposure may impact erectile function in humans. Here we show that male mice chronically exposed to DES exhibit abnormal contractility of the erectile tissue, indicative of ED. The treatment did not affect systemic testosterone production yet significantly increased estrogen receptor α (Esr1) expression in the primary erectile tissue, suggesting EDCs directly impact erectile function. In response, we isolated the erectile tissue from mice and briefly incubated them with the estrogenic-EDCs DES or genistein (a phytoestrogen). These acute-direct exposures similarly caused a significant reduction in erectile tissue contractility, again indicative of ED. Overall, these findings demonstrate a direct link between estrogenic EDCs and erectile dysfunction and show that both chronic and acute estrogenic exposures are likely risk factors for this condition.
Collapse
Affiliation(s)
- Samuel M Cripps
- School of BioSciences, The University of Melbourne, Melbourne, Australia
| | - Sarah A Marshall
- The Ritchie Centre, Department of Obstetrics & Gynaecology, Monash University, Melbourne, Australia
| | - Deidre M Mattiske
- School of BioSciences, The University of Melbourne, Melbourne, Australia
| | - Rachel Y Ingham
- School of BioSciences, The University of Melbourne, Melbourne, Australia
| | - Andrew J Pask
- School of BioSciences, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
6
|
Lucas-Herald AK, Montezano AC, Alves-Lopes R, Haddow L, O’Toole S, Flett M, Lee B, Amjad SB, Steven M, McNeilly J, Brooksbank K, Touyz RM, Ahmed SF. Effects of Sex Hormones on Vascular Reactivity in Boys With Hypospadias. J Clin Endocrinol Metab 2024; 109:e735-e744. [PMID: 37672642 PMCID: PMC10795938 DOI: 10.1210/clinem/dgad525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Arteries from boys with hypospadias demonstrate hypercontractility and impaired vasorelaxation. The role of sex hormones in these responses in unclear. AIMS We compared effects of sex steroids on vascular reactivity in healthy boys and boys with hypospadias. METHODS Excess foreskin tissue was obtained from 11 boys undergoing hypospadias repair (cases) and 12 undergoing routine circumcision (controls) (median age [range], 1.5 [1.2-2.7] years) and small resistance arteries were isolated. Vessels were mounted on wire myographs and vascular reactivity was assessed in the absence/presence of 17β-estradiol, dihydrotestosterone (DHT), and testosterone. RESULTS In controls, testosterone and 17β-estradiol increased contraction (percent of maximum contraction [Emax]: 83.74 basal vs 125.4 after testosterone, P < .0002; and 83.74 vs 110.2 after estradiol, P = .02). 17β-estradiol reduced vasorelaxation in arteries from controls (Emax: 10.6 vs 15.6 to acetylcholine, P < .0001; and Emax: 14.6 vs 20.5 to sodium nitroprusside, P < .0001). In hypospadias, testosterone (Emax: 137.9 vs 107.2, P = .01) and 17β-estradiol (Emax: 156.9 vs 23.6, P < .0001) reduced contraction. Androgens, but not 17β-estradiol, increased endothelium-dependent and endothelium-independent vasorelaxation in cases (Emax: 77.3 vs 51.7 with testosterone, P = .02; and vs 48.2 with DHT to acetylcholine, P = .0001; Emax: 43.0 vs 39.5 with testosterone, P = .02; and 39.6 vs 37.5 with DHT to sodium nitroprusside, P = .04). CONCLUSION In healthy boys, testosterone and 17β-estradiol promote a vasoconstrictor phenotype, whereas in boys with hypospadias, these sex hormones reduce vasoconstriction, with androgens promoting vasorelaxation. Differences in baseline artery function may therefore be sex hormone-independent and the impact of early-life variations in androgen exposure on vascular function needs further study.
Collapse
Affiliation(s)
- Angela K Lucas-Herald
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Center for Research Excellence, University of Glasgow, 126 University Avenue, Glasgow G12 8TA, UK
- Developmental Endocrinology Research Group, School of Medicine, Dentistry and Nursing, University of Glasgow, Royal Hospital for Children, 1345 Govan Road, Glasgow G51 4TF, UK
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Center for Research Excellence, University of Glasgow, 126 University Avenue, Glasgow G12 8TA, UK
- Research Institute of McGill University Health Center, McGill University, 1001 Boul Décarie, Montréal, QC H4A 3J1, Canada
| | - Rheure Alves-Lopes
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Center for Research Excellence, University of Glasgow, 126 University Avenue, Glasgow G12 8TA, UK
| | - Laura Haddow
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Center for Research Excellence, University of Glasgow, 126 University Avenue, Glasgow G12 8TA, UK
| | - Stuart O’Toole
- Department of Pediatric Surgery, Royal Hospital for Children, Royal Hospital for Children, 1345 Govan Road, Glasgow G51 4TF, Scotland, UK
| | - Martyn Flett
- Department of Pediatric Surgery, Royal Hospital for Children, Royal Hospital for Children, 1345 Govan Road, Glasgow G51 4TF, Scotland, UK
| | - Boma Lee
- Department of Pediatric Surgery, Royal Hospital for Children, Royal Hospital for Children, 1345 Govan Road, Glasgow G51 4TF, Scotland, UK
| | - S Basith Amjad
- Department of Pediatric Surgery, Royal Hospital for Children, Royal Hospital for Children, 1345 Govan Road, Glasgow G51 4TF, Scotland, UK
| | - Mairi Steven
- Department of Pediatric Surgery, Royal Hospital for Children, Royal Hospital for Children, 1345 Govan Road, Glasgow G51 4TF, Scotland, UK
| | - Jane McNeilly
- Developmental Endocrinology Research Group, School of Medicine, Dentistry and Nursing, University of Glasgow, Royal Hospital for Children, 1345 Govan Road, Glasgow G51 4TF, UK
- Department of Clinical Biochemistry, Queen Elizabeth University Hospital, Glasgow G51 4TF, Scotland, UK
| | - Katriona Brooksbank
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Center for Research Excellence, University of Glasgow, 126 University Avenue, Glasgow G12 8TA, UK
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Center for Research Excellence, University of Glasgow, 126 University Avenue, Glasgow G12 8TA, UK
- Research Institute of McGill University Health Center, McGill University, 1001 Boul Décarie, Montréal, QC H4A 3J1, Canada
| | - S Faisal Ahmed
- Developmental Endocrinology Research Group, School of Medicine, Dentistry and Nursing, University of Glasgow, Royal Hospital for Children, 1345 Govan Road, Glasgow G51 4TF, UK
| |
Collapse
|
7
|
Perske C, Sennert M, Fawzy M, Wirmer J, Hadidi AT. Hormone receptor expression in hypospadias. J Pediatr Urol 2023; 19:697.e1-697.e8. [PMID: 37532608 DOI: 10.1016/j.jpurol.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/12/2023] [Accepted: 07/16/2023] [Indexed: 08/04/2023]
Abstract
INTRODUCTION Sex hormone imbalance in utero is hypothesized to play an important role in the pathogenesis of hypospadias. Due to its easy accessibility, foreskin samples have been used to describe hormone receptor expression in rodents, and both adult and pediatric patients. In this study we conducted a systematic approach to assess hormone receptor expression in pediatric patients with hypospadias compared to healthy controls with a focus on age-matching and differences in severity and degree of hypospadias. METHODS Foreskin samples were collected from 35 children during hypospadias operations (18 distal and 17 proximal hypospadias) and compared with ventral foreskin samples of a control group of 32 children during circumcision (15 age-matched and 17 older boys). The samples were stained with H/E, androgen (AR), estrogen (ER) and progesterone receptors (PR). The receptor stainings were blindly evaluated. An Allred score was used to evaluate receptor expression in both the epithelium as well as stroma. RESULTS AR was detected in all cases. AR expression in the stroma was more evident than in the epithelium. AR expression in the hypospadias groups was significantly less than the age matched controls (p < 0.05). There was no significant difference between the two hypospadias groups nor between the two control groups. Older control group showed significantly elevated levels of AR expression compared to the hypospadias group (p < 0.05). ER was also detected in all cases. The stroma showed more ER than in epithelium. PR was minimal or negative in all samples. CONCLUSION Boys with hypospadias showed significantly weaker expression of androgen receptors than age matched controls. The severity of hypospadias did not influence hormone receptor distribution. AR expression is better observed in the stroma than in the epithelium. There was no difference in ER expression between the hypospadias group (distal or proximal) and age matched normal controls. ER was expressed in larger numbers in normal older preputial tissue. The foreskin of prepubertal boys shows little to no expression of PR.
Collapse
Affiliation(s)
- Christina Perske
- Institute for Pathology, University Medical Center Goettingen, Germany
| | - Michael Sennert
- Hypospadias Centre, Department of Pediatric Surgery, Emma and Sana Klinikum Offenbach Hospitals, Germany
| | - Mohammed Fawzy
- Hypospadias Centre, Department of Pediatric Surgery, Emma and Sana Klinikum Offenbach Hospitals, Germany
| | - Johannes Wirmer
- Hypospadias Centre, Department of Pediatric Surgery, Emma and Sana Klinikum Offenbach Hospitals, Germany
| | - Ahmed T Hadidi
- Hypospadias Centre, Department of Pediatric Surgery, Emma and Sana Klinikum Offenbach Hospitals, Germany.
| |
Collapse
|
8
|
Huang J, Su C, Lu P, Zhao X, Liu Y, Xie Q, Chen C. hsa_circ_0000417 downregulation suppresses androgen receptor expression and apoptotic signals in human foreskin fibroblasts via sponging miR-6756-5p. Mol Biol Rep 2023; 50:6769-6781. [PMID: 37389702 DOI: 10.1007/s11033-023-08628-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/22/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Dysregulated apoptosis of penile mesenchymal cells during male urethragenesis has been previously demonstrated to underly hypospadiac urethral closure failure, and androgen receptor (AR) has been shown to play a central role in regulating penile mesenchyme cell proliferation and survival. However, the regulatory mechanisms upstream and downstream of AR remain poorly understood. Our clinical data and bioinformatics analysis previously indicated that hsa_circ_0000417, a circRNA significantly downregulated in hypospadias preputial specimens, may act as a ceRNA for AR via sequestering hsa_miR-6756-5p, and that the biological functions of hsa_circ_0000417 may significantly involve the PI3K/AKT pathway. In this study, we employed human foreskin fibroblasts (HFF-1) to experimentally validate this putative hsa_circ_0000417/miR-6756-5p/AR axis and its impact on penile mesenchymal cell proliferation and apoptosis. METHOD AND RESULTS We showed that hsa_circ_0000417 knockdown significantly promoted proliferation and suppressed apoptosis of HFF-1 cells. Mechanistically, hsa_circ_0000417 functioned as a molecular sponge for miR-6756-5p in HFF-1 cells and relieved the latter's translational repression on AR mRNA, leading to decreased AKT activation and increased expression of pro-apoptotic proteins BAX and cleaved-caspase 9. Conversely, elevated levels of miR-6756-5p resulted in diminished AR expression concomitant with enhanced AKT activation and HFF-1 cell proliferation. CONCLUSIONS Collectively, our data describe for the first time a circRNA-mediated post-transcriptional regulatory mechanism of AR and its functional consequences in penile mesenchymal cells in the context of hypospadias. These findings may contribute to advancing our current understanding of the roles of AR and mesenchymal cell fate decisions during penile morphogenesis.
Collapse
Affiliation(s)
- Junqiang Huang
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Cheng Su
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Pingan Lu
- Faculty of Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
| | - Xiangyou Zhao
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuling Liu
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qike Xie
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chao Chen
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
9
|
Marc S, Mizeranschi AE, Paul C, Otavă G, Savici J, Sicoe B, Torda I, Huțu I, Mircu C, Ilie DE, Carabaș M, Boldura OM. Simultaneous Occurrence of Hypospadias and Bilateral Cleft Lip and Jaw in a Crossbred Calf: Clinical, Computer Tomographic, and Genomic Characterization. Animals (Basel) 2023; 13:ani13101709. [PMID: 37238140 DOI: 10.3390/ani13101709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023] Open
Abstract
Congenital abnormalities in animals, including abnormalities of the cleft lip and jaw and hypospadias have been reported in all domesticated species. They are a major concern for breeders due to the increased economic loss they entail. In this article, we described a congenital bilateral cheilognathoschisis (cleft lip and jaw) with campylognathia in association with penile hypospadias and preputial hypoplasia with failure of preputial fusion in a Bos taurus crossbred Piedmontese × Wagyu calf. Clinical examination, computed tomography, and whole genome sequencing were performed to describe and identify a possible cause of the abnormalities. Clinical examination revealed a bilateral cheilognathoschisis of approximately 4 cm in length and 3 cm in width in the widest part, with computer tomography analyses confirming the bilateral absence of the processus nasalis of the incisive bone and the lateral deviation of the processus palatinus towards the left side. Genomic data analyses identified 13 mutations with a high impact on the products of the following overlapped genes: ACVR1, ADGRA2, BHMT2, BMPR1B, CCDC8, CDH1, EGF, F13A1, GSTP1, IRF6, MMP14, MYBPHL, and PHC2 with ADGRA2, EGF, F13A1, GSTP1, and IRF6 having mutations in a homozygous state. The whole genome investigation indicates the involvement of multiple genes in the birth defects observed in this case.
Collapse
Affiliation(s)
- Simona Marc
- Faculty of Veterinary Medicine, University of Life Sciences ''King Mihai I'' from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
- Research Institute for Biosecurity and Bioengineering, University of Life Sciences ''King Mihai I'' from Timisoara, 300645 Timișoara, Romania
| | - Alexandru Eugeniu Mizeranschi
- The Molecular Research Department, Research and Development Station for Bovine Arad, Bodrogului Street, 32, 310059 Arad, Romania
| | - Cristina Paul
- Department of Applied Chemistry and Engineering of Organic and Natural Compounds, Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Carol Telbisz 6, 300001 Timisoara, Romania
| | - Gabriel Otavă
- Faculty of Veterinary Medicine, University of Life Sciences ''King Mihai I'' from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
- Research Institute for Biosecurity and Bioengineering, University of Life Sciences ''King Mihai I'' from Timisoara, 300645 Timișoara, Romania
| | - Jelena Savici
- Faculty of Veterinary Medicine, University of Life Sciences ''King Mihai I'' from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
| | - Bogdan Sicoe
- Faculty of Veterinary Medicine, University of Life Sciences ''King Mihai I'' from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
| | - Iuliu Torda
- Faculty of Veterinary Medicine, University of Life Sciences ''King Mihai I'' from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
- Research Institute for Biosecurity and Bioengineering, University of Life Sciences ''King Mihai I'' from Timisoara, 300645 Timișoara, Romania
| | - Ioan Huțu
- Faculty of Veterinary Medicine, University of Life Sciences ''King Mihai I'' from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
- Research Institute for Biosecurity and Bioengineering, University of Life Sciences ''King Mihai I'' from Timisoara, 300645 Timișoara, Romania
| | - Călin Mircu
- Faculty of Veterinary Medicine, University of Life Sciences ''King Mihai I'' from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
- Research Institute for Biosecurity and Bioengineering, University of Life Sciences ''King Mihai I'' from Timisoara, 300645 Timișoara, Romania
| | - Daniela Elena Ilie
- The Molecular Research Department, Research and Development Station for Bovine Arad, Bodrogului Street, 32, 310059 Arad, Romania
| | - Mihai Carabaș
- Faculty of Automatic Control and Computer Science, Politehnica University of Bucharest, Splaiul Independenţei 313, 060042 Bucharest, Romania
| | - Oana Maria Boldura
- Faculty of Veterinary Medicine, University of Life Sciences ''King Mihai I'' from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
- Research Institute for Biosecurity and Bioengineering, University of Life Sciences ''King Mihai I'' from Timisoara, 300645 Timișoara, Romania
| |
Collapse
|
10
|
Ruthig VA, Lamb DJ. Modeling development of genitourinary birth defects to understand disruption due to changes in gene dosage. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2022; 10:412-424. [PMID: 36636694 PMCID: PMC9831917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 01/14/2023]
Abstract
Genitourinary development is a delicately orchestrated process that begins in the embryo. Once complete, the genitourinary system is a collection of functionally disparate organs spread throughout the abdominal and pelvic regions. These distinct organs are interconnected through an elaborate duct system which aggregates the organs' products to a common exit point. The complicated nature of the genitourinary system makes it highly susceptible to developmental disruptions that produce anomalies. In fact, genitourinary anomalies are among the most common class of human birth defects. Aside from congenital anomalies of the kidney and urinary tract (CAKUT), for males, these birth defects can also occur in the penis (hypospadias) and testis (cryptorchism), which impact male fertility and male mental health. As genetic technology has advanced, it has become clear that a subset of cases of genitourinary birth defects are due to gene variation causing dosage changes in critical regulatory genes. Here we first review the parallels between human and mouse genitourinary development. We then demonstrate how translational research leverages mouse models of human gene variation cases to advance mechanistic understanding of causation in genitourinary birth defects. We close with a view to the future highlighting upcoming technologies that will provide a deeper understanding of gene variation affecting regulation of genitourinary development, which should ultimately advance treatment options for patients.
Collapse
Affiliation(s)
- Victor A Ruthig
- Department of Urology, Weill Cornell MedicineNew York, NY, USA
- Sexual Medicine Laboratory, Weill Cornell MedicineNew York, NY, USA
| | - Dolores J Lamb
- Department of Urology, Weill Cornell MedicineNew York, NY, USA
- Center for Reproductive Genomics, Weill Cornell MedicineNew York, NY, USA
- Englander Institute for Precision Medicine, Weill Cornell MedicineNew York, NY, USA
| |
Collapse
|
11
|
Baskin LS. Response to: Letter to Editor - Utility of Genetic Work-Up for 46, XY Patients with Severe Hypospadias. J Pediatr Urol 2022:S1477-5131(22)00583-6. [PMID: 37005195 DOI: 10.1016/j.jpurol.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Laurence S Baskin
- UCSF Benioff Children's Hospitals, University of California, San Francisco, USA.
| |
Collapse
|
12
|
Srivastava P, Tenney J, Lodish M, Slavotinek A, Baskin L. Utility of genetic work-up for 46, XY patients with severe hypospadias. J Pediatr Urol 2022:S1477-5131(22)00537-X. [PMID: 36496321 DOI: 10.1016/j.jpurol.2022.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/25/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Hypospadias is a common congenital abnormality that has been increasing in prevalence over the last decades. Historically, 46, XY patients with severe hypospadias and descended scrotal testes at birth have frequently lacked a genetic diagnosis. Platforms for molecular genetic testing have become more readily available and can offer an insight into underlying genetic causes of severe hypospadias. The goal of this study was to define the anatomical characteristics of severe hypospadias that can accurately define patients with 46, XY severe hypospadias and determine the practical utility of performing molecular genetic testing in this group of patients. METHODS Patients who met the criteria for 46, XY severe hypospadias were offered a molecular genetic work-up in consultation with pediatric genetics. Patients were identified through chart review. Data extracted included karyotype, hypospadias phenotype including stretched penile length at diagnosis, age at genetic diagnosis, molecular genetic testing, pathogenic gene variant(s), gender identity, and clinical course. All patients underwent clinical genetic testing via 46, XY Disorders of Sexual Development (DSD) panels offered by Invitae®, GeneDx®, or Blueprint Genetics®. RESULTS Of the 14 patients that underwent genetic testing, there were 5 previously 27 published and 3 novel pathogenic or likely pathogenic variants in genes associated with 28 46, XY severe hypospadias Table. Pathogenic variants were identified in AR (3), 29 SRD5A2 [1], NR5A1 [2], WT1 [1], and ARTX [1]. Two patients had a variant of unknown significance, one in FREM2 and another in CEP41. Four had negative gene panels. The patient with the WT1 pathogenic variant was subsequently found to have developed a Wilms tumor and the patients with NR5A1 pathogenic variants are now undergoing adrenal insufficiency surveillance. DISCUSSION/CONCLUSION Patients with 46,XY severe hypospadias and descended testes in the scrotum at birth can benefit from molecular genetic testing as their underlying disorders may reveal pathogenic variants that could have potentially life-altering consequences and change surveillance and monitoring.
Collapse
Affiliation(s)
- Priya Srivastava
- University of California San Francisco, Division of Pediatric Endocrinology, USA
| | - Jessica Tenney
- University of California San Francisco, Division of Pediatric Genetics and Metabolism, USA
| | - Maya Lodish
- University of California San Francisco, Division of Pediatric Endocrinology, USA
| | - Anna Slavotinek
- University of California San Francisco, Division of Pediatric Genetics and Metabolism, USA
| | - Laurence Baskin
- University of California San Francisco, Division of Pediatric Urology, USA.
| |
Collapse
|
13
|
Amato CM, Yao HHC, Zhao F. One Tool for Many Jobs: Divergent and Conserved Actions of Androgen Signaling in Male Internal Reproductive Tract and External Genitalia. Front Endocrinol (Lausanne) 2022; 13:910964. [PMID: 35846302 PMCID: PMC9280649 DOI: 10.3389/fendo.2022.910964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
In the 1940s, Alfred Jost demonstrated the necessity of testicular secretions, particularly androgens, for male internal and external genitalia differentiation. Since then, our knowledge of androgen impacts on differentiation of the male internal (Wolffian duct) and external genitalia (penis) has been drastically expanded upon. Between these two morphologically and functionally distinct organs, divergent signals facilitate the establishment of tissue-specific identities. Conversely, conserved actions of androgen signaling are present in both tissues and are largely responsible for the growth and expansion of the organs. In this review we synthesize the existing knowledge of the cell type-specific, organ specific, and conserved signaling mechanisms of androgens. Mechanistic studies on androgen signaling in the Wolffian duct and male external genitalia have largely been conducted in mouse model organisms. Therefore, the majority of the review is focused on mouse model studies.
Collapse
Affiliation(s)
- Ciro M. Amato
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Humphrey H-C. Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Fei Zhao
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
14
|
Stancampiano MR, Suzuki K, O'Toole S, Russo G, Yamada G, Faisal Ahmed S. Congenital Micropenis: Etiology And Management. J Endocr Soc 2022; 6:bvab172. [PMID: 35036822 PMCID: PMC8754418 DOI: 10.1210/jendso/bvab172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 01/23/2023] Open
Abstract
In the newborn, penile length is determined by a number of androgen dependent and independent factors. The current literature suggests that there are interracial differences in stretched penile length in the newborn and although congenital micropenis should be defined as a stretched penile length of less than 2.5 SDS of the mean for the corresponding population and gestation, a pragmatic approach would be to evaluate all boys with a stretched penile length below 2 cm, as congenital micropenis can be a marker for a wide range of endocrine conditions. However, it remains unclear as to whether the state of micropenis, itself, is associated with any long-term consequences. There is a lack of systematic studies comparing the impact of different therapeutic options on long-term outcomes, in terms of genital appearance, quality of life, and sexual satisfaction. To date, research has been hampered by a small sample size and inclusion of a wide range of heterogeneous diagnoses; for these reasons, condition-specific outcomes have been difficult to compare between studies. Lastly, there is a need for a greater collaborative effort in collecting standardized data so that all real-world or experimental interventions performed at an early age can be studied systematically into adulthood.
Collapse
Affiliation(s)
| | - Kentaro Suzuki
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Stuart O'Toole
- Department of Paediatric Surgery and Urology, Royal Hospital for Children, Glasgow G51 4TF, UK
| | - Gianni Russo
- Department of Pediatrics, Endocrine Unit, Scientific Institute San Raffaele, Milan 20132, Italy
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Syed Faisal Ahmed
- Developmental Endocrinology Research Group, University of Glasgow, Glasgow G51 4TF, UK
| |
Collapse
|
15
|
Castagnetti M, El-Ghoneimi A. Surgical management of primary severe hypospadias in children: an update focusing on penile curvature. Nat Rev Urol 2022; 19:147-160. [PMID: 35039660 DOI: 10.1038/s41585-021-00555-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2021] [Indexed: 11/09/2022]
Abstract
Over the past two decades, assessment and treatment of associated curvature has emerged as a major issue in treating patients with proximal hypospadias. However, the cut-off for defining a curvature as clinically significant is still unclear, as not all patients are bothered by the same degree of curvature and, although the need for a method to assess the curvature objectively has been emphasized, no standard method yet exists. Curvature is multifactorial. The same degree of curvature can be due to any possible combination of skin and/or subcutaneous dartos tethering, a short urethral plate and an intrinsic corpora disproportion. Different strategies can be used to treat curvature, depending on the underlying cause, surgeon preferences, and the goals of the repair. In the past 10 years, use of urethral plate transection and ventral lengthening procedures has increased, although the lack of long-term follow-up data on ventral lengthening procedures suggests that the use of such procedures should be selective. Furthermore, straightening manoeuvres are influenced by the technique used for subsequent urethroplasty and, in turn, may influence the success rate of the urethroplasty. This Review provides a comprehensive overview of the major developments from the past 10 years in the management of severe proximal hypospadias in children.
Collapse
Affiliation(s)
- Marco Castagnetti
- Paediatric Urology Unit, Department of Surgery, Bambino Gesù Children Hospital and Research Institute, Rome, Italy. .,Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Padua, Italy.
| | - Alaa El-Ghoneimi
- Department of Paediatric Surgery and Urology, Reference Centre for Rare Urinary Tract Malformations (MARVU), Hôpital Robert Debré, APHP, Université de Paris, Paris, France
| |
Collapse
|
16
|
Tarulli GA, Cripps SM, Pask AJ, Renfree MB. Spatiotemporal map of key signaling factors during early penis development. Dev Dyn 2021; 251:609-624. [PMID: 34697862 PMCID: PMC9539974 DOI: 10.1002/dvdy.433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/27/2021] [Accepted: 09/28/2021] [Indexed: 12/31/2022] Open
Abstract
The formation of the external genitalia is a highly complex developmental process, considering it involves a wide range of cell types and results in sexually dimorphic outcomes. Development is controlled by several secreted signalling factors produced in complex spatiotemporal patterns, including the hedgehog (HH), bone morphogenic protein (BMP), fibroblast growth factor (FGF) and WNT signalling families. Many of these factors act on or are influenced by the actions of the androgen receptor (AR) that is critical to masculinisation. This complexity of expression makes it difficult to conceptualise patterns of potential importance. Mapping expression during key stages of development is needed to develop a comprehensive model of how different cell types interact in formation of external genitalia, and the global regulatory networks at play. This is particularly true in light of the sensitivity of this process to environmental disruption during key stages of development. The goal of this review is to integrate all recent studies on gene expression in early penis development to create a comprehensive spatiotemporal map. This serves as a resource to aid in visualising potentially significant interactions involved in external genital development. Diagrams of published RNA and protein localisation data for key secreted signalling factors during early penis development. Unconventional expression patterns are identified that suggest novel signalling axes during development. Key research gaps and limitations are identified and discussed.
Collapse
Affiliation(s)
- Gerard A Tarulli
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Samuel M Cripps
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew J Pask
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
17
|
Amato CM, Yao HHC. Developmental and sexual dimorphic atlas of the prenatal mouse external genitalia at the single-cell level. Proc Natl Acad Sci U S A 2021; 118:e2103856118. [PMID: 34155146 PMCID: PMC8237666 DOI: 10.1073/pnas.2103856118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Birth defects of the external genitalia are among the most common in the world. Proper formation of the external genitalia requires a highly orchestrated process that involves special cell populations and sexually dimorphic hormone signaling. It is clear what the end result of the sexually dimorphic development is (a penis in the male versus clitoris in the female); however, the cell populations involved in the process remain poorly defined. Here, we used single-cell messenger RNA sequencing in mouse embryos to uncover the dynamic changes in cell populations in the external genitalia during the critical morphogenetic window. We found that overall, male and female external genitalia are largely composed of the same core cellular components. At the bipotential stage of development (embryonic day or E14.5), few differences in cell populational composition exist between male and female. Although similar in cell population composition, genetic differences in key sexual differentiation developmental pathways arise between males and females by the early (E16.5) and late (E18.5) differentiation stages. These differences include discrete cell populations with distinct responsiveness to androgen and estrogen. By late sexual differentiation (E18.5), unique cell populations in both male and female genitalia become apparent and are enriched with androgen- and estrogen-responsive genes, respectively. These data provide insights into the morphogenesis of the external genitalia that could be used to understand diseases associated with defects in the external genitalia.
Collapse
Affiliation(s)
- Ciro Maurizio Amato
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Humphrey Hung-Chang Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| |
Collapse
|
18
|
Cripps SM, Mattiske DM, Pask AJ. Erectile Dysfunction in Men on the Rise: Is There a Link with Endocrine Disrupting Chemicals? Sex Dev 2021; 15:187-212. [PMID: 34134123 DOI: 10.1159/000516600] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/18/2021] [Indexed: 11/19/2022] Open
Abstract
Erectile dysfunction (ED) is one of the most prevalent chronic conditions affecting men. ED can arise from disruptions during development, affecting the patterning of erectile tissues in the penis and/or disruptions in adulthood that impact sexual stimuli, neural pathways, molecular changes, and endocrine signalling that are required to drive erection. Sexual stimulation activates the parasympathetic system which causes nerve terminals in the penis to release nitric oxide (NO). As a result, the penile blood vessels dilate, allowing the penis to engorge with blood. This expansion subsequently compresses the veins surrounding the erectile tissue, restricting venous outflow. As a result, the blood pressure localised in the penis increases dramatically to produce a rigid erection, a process known as tumescence. The sympathetic pathway releases noradrenaline (NA) which causes detumescence: the reversion of the penis to the flaccid state. Androgen signalling is critical for erectile function through its role in penis development and in regulating the physiological processes driving erection in the adult. Interestingly, estrogen signalling is also implicated in penis development and potentially in processes which regulate erectile function during adulthood. Given that endocrine signalling has a prominent role in erectile function, it is likely that exposure to endocrine disrupting chemicals (EDCs) is a risk factor for ED, although this is an under-researched field. Thus, our review provides a detailed description of the underlying biology of erectile function with a focus on the role of endocrine signalling, exploring the potential link between EDCs and ED based on animal and human studies.
Collapse
Affiliation(s)
- Samuel M Cripps
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Deidre M Mattiske
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew J Pask
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
19
|
Grimstad F, Boskey ER, Taghinia A, Estrada CR, Ganor O. The role of androgens in clitorophallus development and possible applications to transgender patients. Andrology 2021; 9:1719-1728. [PMID: 33834632 DOI: 10.1111/andr.13016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND The clitorophallus, or glans, is a critical structure in sexual development and plays an important role in how gender is conceptualized across the life span. This can be seen in both the evaluation and treatment of intersex individuals and the use of gender-affirming masculinizing therapies to help those born with a clitoris (small clitorophallus with separate urethra) enlarge or alter the function of that structure. OBJECTIVES To review the role of testosterone in clitorophallus development from embryo to adulthood, including how exogenous testosterone is used to stimulate clitorophallus enlargement in masculinizing gender-affirming therapy. MATERIALS AND METHODS Relevant English-language literature was identified and evaluated for data regarding clitorophallus development in endosex and intersex individuals and the utilization of hormonal and surgical masculinizing therapies on the clitorophallus. Studies included evaluated the spectrum of terms regarding the clitorophallus (genital tubercle, clitoris, micropenis, penis). RESULTS Endogenous testosterone, and its more active metabolite dihydrotestosterone, plays an important role in the development of the genital tubercle into the clitorophallus, primarily during the prenatal and early postnatal periods and then again during puberty. Androgens contribute to not only growth but also the inclusion of a urethra on the ventral aspect. Exogenous testosterone can be used to enlarge the small clitorophallus (clitoris or micropenis) as part of both intersex and gender-affirming care (in transmasculine patients, up to 2 cm of additional growth). Where testosterone is insufficient to provide the degree of masculinization desired, surgical options including phalloplasty and metoidioplasty are available. DISCUSSION AND CONCLUSION Endogenous testosterone plays an important role in clitorophallus development, and there are circumstances where exogenous testosterone may be useful for masculinization. Surgical options may also help some patients reach their personal goals. As masculinizing gender-affirming care advances, the options available for clitorophallus modifications will likely continue to expand and improve.
Collapse
Affiliation(s)
- Frances Grimstad
- Division of Gynecology, Department of Surgery, Boston Children's Hospital, Boston, MA, USA.,Department of Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA, USA.,Center for Gender Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Elizabeth R Boskey
- Center for Gender Surgery, Boston Children's Hospital, Boston, MA, USA.,Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA.,Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Amir Taghinia
- Center for Gender Surgery, Boston Children's Hospital, Boston, MA, USA.,Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Carlos R Estrada
- Center for Gender Surgery, Boston Children's Hospital, Boston, MA, USA.,Department of Urology, Boston Children's Hospital, Boston, MA, USA
| | - Oren Ganor
- Center for Gender Surgery, Boston Children's Hospital, Boston, MA, USA.,Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Cunha GR, Baskin L. Editorial: Developmental effects of estrogens. Differentiation 2021; 118:1-3. [PMID: 33516564 DOI: 10.1016/j.diff.2021.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Gerald R Cunha
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA.
| | - Laurence Baskin
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| |
Collapse
|
21
|
Baskin LS. New Insights into Hypospadias: Next-generation Sequencing Reveals Potential Genetic Factors in Male Urethral Development. Eur Urol 2021; 79:516-518. [PMID: 33483178 DOI: 10.1016/j.eururo.2021.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 02/05/2023]
Affiliation(s)
- Laurence S Baskin
- Pediatric Urology, UCSF Benioff Children's Hospitals, University of California-San Francisco, San Francisco, CA, USA.
| |
Collapse
|
22
|
Rouget F, Bihannic A, Cordier S, Multigner L, Meyer-Monath M, Mercier F, Pladys P, Garlantezec R. Petroleum and Chlorinated Solvents in Meconium and the Risk of Hypospadias: A Pilot Study. Front Pediatr 2021; 9:640064. [PMID: 34150682 PMCID: PMC8206475 DOI: 10.3389/fped.2021.640064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/26/2021] [Indexed: 12/04/2022] Open
Abstract
Background: Hypospadias is a male congenital malformation that occurs in ~2 of 1,000 births. The association between hypospadias and fetal exposure to environmental chemicals has been studied, but the results are inconsistent. Although several petroleum and chlorinated solvents are suspected to have teratogenic effects, their role in the occurrence of hypospadias has been little studied and never using biomarkers of exposure. We aimed to evaluate the association between fetal exposure to petroleum and chlorinated solvents measured in meconium and the occurrence of hypospadias. Methods: We conducted a pilot case-control study in the maternity of the University Hospital of Rennes (France). Eleven cases of hypospadias and 46 controls were recruited between October 2012 and January 2014. Data from hospital records and maternal self-reported questionnaires, including socio-demographic characteristics and occupational and non-occupational exposure to chemicals, were collected. Meconium samples were collected using a standardized protocol. Levels of petroleum solvents (toluene, benzene, ethylbenzene, and p, m, and o xylene), certain metabolites (mandelic acid, hippuric acid, methylhippuric acid, S-phenylmercapturic acid, S-benzylmercapturic acid, and phenylglyoxylic acid), and two chlorinated solvents (trichloroethylene and tetrachloroethylene) were measured in meconium by gas and liquid chromatography, both coupled to tandem mass spectrometry. Associations between the concentration of each chemical and the occurrence of hypospadias were analyzed using exact logistic regressions adjusted for maternal age, educational level, pre-pregnancy body mass index, and alcohol, and tobacco consumption during pregnancy. Results are presented with odds ratios (ORs) and their 95% confidence intervals (CIs). Results: Quantification rates for petroleum and chlorinated solvents or metabolites ranged from 2.2% (for methylhippuric acid) to 77.1% (for trichloroethylene) of the meconium samples. We found a significant association between the quantification of phenylglyoxylic acid (metabolite of styrene and ethylbenzene) in the meconium and a higher risk of hypospadias (OR = 14.2, 95% CI [2.5-138.7]). The risk of hypospadias was non-significantly elevated for most of the other solvents and metabolites. Conclusion: This exploratory study, on a limited number of cases, suggests an association between petroleum solvents and hypospadias. Additional studies are needed to confirm these results and identify the determinants for the presence of these solvents in meconium.
Collapse
Affiliation(s)
- Florence Rouget
- CHU Rennes, Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Rennes, France.,Brittany Registry of Congenital Anomalies, CHU Rennes, Rennes, France
| | - Adèle Bihannic
- Brittany Registry of Congenital Anomalies, CHU Rennes, Rennes, France
| | - Sylvaine Cordier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Rennes, France
| | - Luc Multigner
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Rennes, France
| | | | - Fabien Mercier
- LERES, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Rennes, France
| | - Patrick Pladys
- Univ Rennes, CHU Rennes, Inserm, LTSI-UMR 1099, Rennes, France
| | - Ronan Garlantezec
- CHU Rennes, Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Rennes, France
| |
Collapse
|
23
|
Expression of androgen receptors in the structures of vulvovaginal tissue. ACTA ACUST UNITED AC 2020; 27:1336-1342. [DOI: 10.1097/gme.0000000000001587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Cunha GR, Li Y, Mei C, Derpinghaus A, Baskin LS. Ontogeny of estrogen receptors in human male and female fetal reproductive tracts. Differentiation 2020; 118:107-131. [PMID: 33176961 DOI: 10.1016/j.diff.2020.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/27/2022]
Abstract
This paper reviews and provides new observations on the ontogeny of estrogen receptor alpha (ESR1) and estrogen receptor beta (ESR2) in developing human male and female internal and external genitalia. Included in this study are observations on the human fetal uterine tube, the uterotubal junction, uterus, cervix, vagina, penis and clitoris. We also summarize and report on the ontogeny of estrogen receptors in the human fetal prostate, prostatic urethra and epididymis. The ontogeny of ESR1 and ESR2, which spans from 8 to 21 weeks correlates well with the known "window of susceptibility" (7-15 weeks) for diethylstilbestrol (DES)-induced malformations of the human female reproductive tract as determined through examination of DES daughters exposed in utero to this potent estrogen. Our fairly complete mapping of the ontogeny of ESR1 and ESR2 in developing human male and female internal and external genitalia provides a mechanistic framework for further investigation of the role of estrogen in normal development and of abnormalities elicited by exogenous estrogens.
Collapse
Affiliation(s)
- Gerald R Cunha
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA.
| | - Yi Li
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Cao Mei
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Amber Derpinghaus
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Laurence S Baskin
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| |
Collapse
|
25
|
Baskin L, Sinclair A, Derpinghaus A, Cao M, Li Y, Overland M, Aksel S, Cunha GR. Estrogens and development of the mouse and human external genitalia. Differentiation 2020; 118:82-106. [PMID: 33092894 DOI: 10.1016/j.diff.2020.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 09/18/2020] [Indexed: 01/02/2023]
Abstract
The Jost hypothesis states that androgens are necessary for normal development of the male external genitalia. In this review, we explore the complementary hypothesis that estrogens can elicit abnormal development of male external genitalia. Herein, we review available data in both humans and mice on the deleterious effects of estrogen on external genitalia development, especially during the "window of susceptibility" to exogenous estrogens. The male and female developing external genitalia in both the human and mouse express ESR1 and ESR2, along with the androgen receptor (AR). Human clinical data suggests that exogenous estrogens can adversely affect normal penile and urethral development, resulting in hypospadias. Experimental mouse data also strongly supports the idea that exogenous estrogens cause penile and urethral defects. Despite key differences, estrogen-induced hypospadias in the mouse displays certain morphogenetic homologies to human hypospadias, including disruption of urethral fusion and preputial abnormalities. Timing of estrogenic exposure, or the "window of susceptibility," is an important consideration when examining malformations of the external genitalia in both humans and mice. In addition to a review of normal human and mouse external genital development, this article aims to review the present data on the role of estrogens in normal and abnormal development of the mouse and human internal and external genitalia. Based on the current literature for both species, we conclude that estrogen-dependent processes may play a role in abnormal genital development.
Collapse
Affiliation(s)
- Laurence Baskin
- University of California, San Francisco, Division of Pediatric Urology, Department of Urology, 550 16th St, 5th Floor, Mission Hall Pediatric Urology, San Francisco, CA, 94158, USA.
| | - Adriane Sinclair
- University of California, San Francisco, Division of Pediatric Urology, Department of Urology, 550 16th St, 5th Floor, Mission Hall Pediatric Urology, San Francisco, CA, 94158, USA
| | - Amber Derpinghaus
- University of California, San Francisco, Division of Pediatric Urology, Department of Urology, 550 16th St, 5th Floor, Mission Hall Pediatric Urology, San Francisco, CA, 94158, USA
| | - Mei Cao
- University of California, San Francisco, Division of Pediatric Urology, Department of Urology, 550 16th St, 5th Floor, Mission Hall Pediatric Urology, San Francisco, CA, 94158, USA
| | - Yi Li
- University of California, San Francisco, Division of Pediatric Urology, Department of Urology, 550 16th St, 5th Floor, Mission Hall Pediatric Urology, San Francisco, CA, 94158, USA
| | - Maya Overland
- University of California, San Francisco, Division of Pediatric Urology, Department of Urology, 550 16th St, 5th Floor, Mission Hall Pediatric Urology, San Francisco, CA, 94158, USA
| | - Sena Aksel
- University of California, San Francisco, Division of Pediatric Urology, Department of Urology, 550 16th St, 5th Floor, Mission Hall Pediatric Urology, San Francisco, CA, 94158, USA
| | - Gerald R Cunha
- University of California, San Francisco, Division of Pediatric Urology, Department of Urology, 550 16th St, 5th Floor, Mission Hall Pediatric Urology, San Francisco, CA, 94158, USA
| |
Collapse
|
26
|
Baskin LS. EDITORIAL COMMENT. Urology 2020; 144:192-193. [DOI: 10.1016/j.urology.2020.04.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Cunha GR, Baskin LS. Development of the external genitalia. Differentiation 2020; 112:7-9. [PMID: 31881402 PMCID: PMC7138693 DOI: 10.1016/j.diff.2019.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/16/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Gerald R Cunha
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA.
| | - Laurence S Baskin
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| |
Collapse
|