1
|
Llerena Schiffmacher DA, Pai YJ, Pines A, Vermeulen W. Transcription-coupled repair: tangled up in convoluted repair. FEBS J 2025. [PMID: 40272095 DOI: 10.1111/febs.70104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/08/2025] [Accepted: 04/08/2025] [Indexed: 04/25/2025]
Abstract
Significant progress has been made in understanding the mechanism of transcription-coupled nucleotide excision repair (TC-NER); however, numerous aspects remain elusive, including TC-NER regulation, lesion-specific and cell type-specific complex composition, structural insights, and lesion removal dynamics in living cells. This review summarizes and discusses recent advancements in TC-NER, focusing on newly identified interactors, mechanistic insights from cryo-electron microscopy (Cryo-EM) studies and live cell imaging, and the contribution of post-translational modifications (PTMs), such as ubiquitin, in regulating TC-NER. Furthermore, we elaborate on the consequences of TC-NER deficiencies and address the role of accumulated damage and persistent lesion-stalled RNA polymerase II (Pol II) as major drivers of the disease phenotype of Cockayne syndrome (CS) and its related disorders. In this context, we also discuss the severe effects of transcription-blocking lesions (TBLs) on neurons, highlighting their susceptibility to damage. Lastly, we explore the potential of investigating three-dimensional (3D) chromatin structure and phase separation to uncover further insights into this essential DNA repair pathway.
Collapse
Affiliation(s)
- Diana A Llerena Schiffmacher
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Yun Jin Pai
- Master Scientific Illustrations, Department of Anatomy and Embryology, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands
| | - Alex Pines
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Wim Vermeulen
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Zhan Z, Luo X, Shi J, Chen L, Ye M, Jin X. Mechanisms of cisplatin sensitivity and resistance in testicular germ cell tumors and potential therapeutic agents (Review). Exp Ther Med 2025; 29:82. [PMID: 40084198 PMCID: PMC11904865 DOI: 10.3892/etm.2025.12832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/31/2024] [Indexed: 03/16/2025] Open
Abstract
Testicular germ cell tumors (TGCTs) are the most common tumors in men aged 20-40 years and are primarily treated with cisplatin-based drugs. Although TGCTs are highly sensitive to DNA damage induced by cisplatin and show a hypersensitive apoptotic response, cisplatin resistance still exists. Emerging evidence shows that cisplatin resistance in TGCTs is mainly related to the inhibition of apoptotic pathways such as MDM2/p53, OCT4/NOXA, PDGFR/PI3K/AKT, inhibition of cell cycle checkpoints, increased methylation or neddylation and DNA repair balance. In this review, recent advances regarding the mechanisms of TGCTs' sensitivity and resistance to cisplatin were summarized and potential therapeutic agents for cisplatin-resistant TGCTs were presented, providing a new therapeutic strategy for drug-resistant TGCTs.
Collapse
Affiliation(s)
- Ziqing Zhan
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Tumor Chemoradiotherapy, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Xia Luo
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Tumor Chemoradiotherapy, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Jiaxin Shi
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Tumor Chemoradiotherapy, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Litao Chen
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Tumor Chemoradiotherapy, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Meng Ye
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Tumor Chemoradiotherapy, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Tumor Chemoradiotherapy, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
3
|
Nakano T, Akamatsu K, Kohzaki M, Tsuda M, Hirayama R, Sassa A, Yasui M, Shoulkamy M, Hiromoto T, Tamada T, Ide H, Shikazono N. Deciphering repair pathways of clustered DNA damage in human TK6 cells: insights from atomic force microscopy direct visualization. Nucleic Acids Res 2025; 53:gkae1077. [PMID: 39797694 PMCID: PMC11724303 DOI: 10.1093/nar/gkae1077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 10/08/2024] [Accepted: 10/24/2024] [Indexed: 01/13/2025] Open
Abstract
Ionizing radiation induces various types of DNA damage, and the reparability and lethal effects of DNA damage differ depending on its spatial density. Elucidating the structure of radiation-induced clustered DNA damage and its repair processes will enhance our understanding of the lethal impact of ionizing radiation and advance progress toward precise therapeutics. Previously, we developed a method to directly visualize DNA damage using atomic force microscopy (AFM) and classified clustered DNA damage into simple base damage clusters (BDCs), complex BDCs and complex double-strand breaks (DSBs). This study investigated the repair of each type of damage in DNA-repair-deficient human TK6 cells and elucidated the association between each type of clustered DNA damage and the pathway responsible for its repair postirradiation with low linear energy transfer (LET) radiation (X-rays) and high-LET radiation (Fe-ion beams) in cells. We found that base excision repair and, surprisingly, nucleotide excision repair restored simple and complex BDCs. In addition, the number of complex DSBs in wild-type cells increases 1 h postirradiation, which was most likely caused by BDC cleavage initiated with DNA glycosylases. Furthermore, complex DSBs, which are likely associated with lethality, are repaired by homologous recombination with little contribution from nonhomologous-end joining.
Collapse
Affiliation(s)
- Toshiaki Nakano
- Kansai Institute for Photon Science, National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa-shi, Kyoto 619-0215, Japan
| | - Ken Akamatsu
- Kansai Institute for Photon Science, National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa-shi, Kyoto 619-0215, Japan
| | - Masaoki Kohzaki
- Department of Radiobiology and Hygiene Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Isegaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Masataka Tsuda
- Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Ryoichi Hirayama
- Department of Charged Particle Therapy Research, QST Hospital, QST Hospital, QST, 6-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Akira Sassa
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Manabu Yasui
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Mahmoud I Shoulkamy
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Department of Zoology, Faculty of Science, Minia University, El-Minia University Campus, Cairo-Aswan Road, Minia 61519, Egypt
| | - Takeshi Hiromoto
- Institute for Quantum Life Science, QST, 6-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Quantum Life Science Course, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Taro Tamada
- Institute for Quantum Life Science, QST, 6-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Quantum Life Science Course, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Hiroshi Ide
- Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Naoya Shikazono
- Kansai Institute for Photon Science, National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa-shi, Kyoto 619-0215, Japan
| |
Collapse
|
4
|
Anh Luong TL, Hoang TL, Tran DP, Le TM, Tran H, Ho PT, Hoang HN, Giang H, Vu DL, Dinh NH, Nguyen MT, Nguyen HS. Identification of novel variants of XPA and POLH/XPV genes in xeroderma pigmentosum patients in Vietnam. Per Med 2024; 21:341-351. [PMID: 39655645 DOI: 10.1080/17410541.2024.2393073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/13/2024] [Indexed: 12/21/2024]
Abstract
Xeroderma pigmentosum (XP) disorder is recognized as a genetic condition inherited by autosomal recessive fashion. XP results from a defective DNA repair mechanism that significantly increases skin cancer risk. Fifteen Vietnamese patients were investigated with typical clinical manifestations of XP. Eight XP genes (XPA to XPG and POLH/XPV) were sequenced using peripheral blood samples. Overall, three novel variants on the XPA and XPV genes were detected in members of two families. One novel missense variant c.388A>G (p.R130G) of XPA was found in three patients with XP group A, two novel variants: c.680G>A (p.C227Y) and c.1652dupC (p.Gln553Profs*8) of XPV in one patient with XP group F/G. Our study contributes to the recognition of new mutations in XP patients which have not been reported in Human Gene Mutation Database (HGMD).
Collapse
Affiliation(s)
- Thi Lan Anh Luong
- Hanoi Medical University, Hanoi city, Vietnam
- Hanoi Medical University Hospital, Hanoi city, Vietnam
| | - Thu Lan Hoang
- Hanoi Medical University, Hanoi city, Vietnam
- Hanoi Medical University Hospital, Hanoi city, Vietnam
| | - Duc Phan Tran
- Hanoi Medical University, Hanoi city, Vietnam
- Hanoi Medical University Hospital, Hanoi city, Vietnam
| | - Thi Mai Le
- National Hospital of Dermatology & Venereology, Hanoi city, Vietnam
| | - Hien Tran
- Hanoi Medical University, Hanoi city, Vietnam
| | - Phuong Thuy Ho
- National Hospital of Dermatology & Venereology, Hanoi city, Vietnam
| | | | - Hoa Giang
- Medical Genetics Institute, Ho Chi Minh city, Vietnam
| | - Duy Linh Vu
- Bach Mai Hospital, Dermatology and Burn Department, Hanoi city, Vietnam
| | - Nghi Huu Dinh
- Hanoi Medical University, Hanoi city, Vietnam
- National Hospital of Dermatology & Venereology, Hanoi city, Vietnam
| | - Manh Tan Nguyen
- Hanoi Medical University, Hanoi city, Vietnam
- National Hospital of Dermatology & Venereology, Hanoi city, Vietnam
| | - Huu Sau Nguyen
- Hanoi Medical University, Hanoi city, Vietnam
- National Hospital of Dermatology & Venereology, Hanoi city, Vietnam
| |
Collapse
|
5
|
Sagun JP, Khan SG, Imoto K, Tamura D, Oh KS, DiGiovanna JJ, Kraemer KH. Different germline variants in the XPA gene are associated with severe, intermediate, or mild neurodegeneration in xeroderma pigmentosum patients. PLoS Genet 2024; 20:e1011265. [PMID: 39621777 PMCID: PMC11637439 DOI: 10.1371/journal.pgen.1011265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 12/12/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024] Open
Abstract
Xeroderma pigmentosum (XP) is a rare autosomal recessive disease caused by pathogenic variants in seven nucleotide excision repair genes (XPA to XPG) and POLH involved in translesion synthesis. XP patients have a >1000-fold increased risk for sunlight-induced skin cancers. Many Japanese XP-A patients have severe neurological symptoms due to a founder variant in intron 3 of the XPA gene. However, in the United States we found XP-A patients with milder clinical features. We developed a simple scoring scale to assess XP-A patients of varying neurological disease severity. We report 18 XP-A patients examined between 1973 and 2023 under an IRB approved natural history study. Using our scale, we classified our XP-A cohort into severe (n = 8), intermediate (n = 5), and mild (n = 5) disease groups at age 10 years. DNA repair tests demonstrated greatest reduction of DNA repair in cells from severe patients as compared to cells from mild patients. Nucleotide sequencing identified 18 germline pathogenic variants in the 273 amino acid, 6 exon-containing XPA gene. Based on patient clinical features, we associated these XPA variants to severe (n = 8), intermediate (n = 6), and mild (n = 4) clinical phenotypes in the patients. Protein structural analysis showed that nonsense and frameshift premature stop codon pathogenic variants located in exons 3 and 5 correlated with severe disease. Intermediate disease correlated with a splice variant at the last base in exon 4. Mild disease correlated with a frameshift variant in exon 1 with a predicted re-initiation in exon 2; a splice variant that created a new strong donor site in intron 4; and a large genomic deletion spanning exon 6. Our findings revealed correlations between disease severity, DNA repair capacity, and XPA variant type and location. In addition, both XPA alleles contributed to the phenotypic differences in XP-A patients.
Collapse
Affiliation(s)
- Jeffrey P. Sagun
- Laboratory of Cancer Biology and Genetics, DNA Repair Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sikandar G. Khan
- Laboratory of Cancer Biology and Genetics, DNA Repair Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kyoko Imoto
- Laboratory of Cancer Biology and Genetics, DNA Repair Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Nara Medical University, Kashihara, Japan
| | - Deborah Tamura
- Laboratory of Cancer Biology and Genetics, DNA Repair Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kyu-Seon Oh
- Laboratory of Cancer Biology and Genetics, DNA Repair Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - John J. DiGiovanna
- Laboratory of Cancer Biology and Genetics, DNA Repair Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kenneth H. Kraemer
- Laboratory of Cancer Biology and Genetics, DNA Repair Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
6
|
Szuman M, Kaczmarek-Ryś M, Hryhorowicz S, Kryszczyńska A, Grot N, Pławski A. Low-Penetrance Susceptibility Variants in Colorectal Cancer-Current Outlook in the Field. Int J Mol Sci 2024; 25:8338. [PMID: 39125905 PMCID: PMC11313073 DOI: 10.3390/ijms25158338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most frequent and mortality-causing neoplasia, with various distributions between populations. Strong hereditary predispositions are the causatives of a small percentage of CRC, and most cases have no transparent genetic background. This is a vast arena for exploring cancer low-susceptibility genetic variants. Nonetheless, the research that has been conducted to date has failed to deliver consistent conclusions and often features conflicting messages, causing chaos in this field. Therefore, we decided to organize the existing knowledge on this topic. We screened the PubMed and Google Scholar databases. We drew up markers by gene locus gathered by hallmark: oncogenes, tumor suppressor genes, genes involved in DNA damage repair, genes involved in metabolic pathways, genes involved in methylation, genes that modify the colonic microenvironment, and genes involved in the immune response. Low-penetration genetic variants increasing the risk of cancer are often population-specific, hence the urgent need for large-scale testing. Such endeavors can be successful only when financial decision-makers are united with social educators, medical specialists, genetic consultants, and the scientific community. Countries' policies should prioritize research on this subject regardless of cost because it is the best investment. In this review, we listed potential low-penetrance CRC susceptibility alleles whose role remains to be established.
Collapse
Affiliation(s)
- Marcin Szuman
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (M.S.); (M.K.-R.); (S.H.); (A.K.); (N.G.)
| | - Marta Kaczmarek-Ryś
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (M.S.); (M.K.-R.); (S.H.); (A.K.); (N.G.)
- University Clinical Hospital, Przybyszewskiego 49, 60-355 Poznań, Poland
| | - Szymon Hryhorowicz
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (M.S.); (M.K.-R.); (S.H.); (A.K.); (N.G.)
| | - Alicja Kryszczyńska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (M.S.); (M.K.-R.); (S.H.); (A.K.); (N.G.)
| | - Natalia Grot
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (M.S.); (M.K.-R.); (S.H.); (A.K.); (N.G.)
| | - Andrzej Pławski
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (M.S.); (M.K.-R.); (S.H.); (A.K.); (N.G.)
- Department of General and Endocrine Surgery and Gastroenterological Oncology, Poznań University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland
| |
Collapse
|
7
|
Krasikova YS, Maltseva EA, Khodyreva SN, Evdokimov AN, Rechkunova NI, Lavrik OI. Does the XPA-FEN1 Interaction Concern to Nucleotide Excision Repair or Beyond? Biomolecules 2024; 14:814. [PMID: 39062528 PMCID: PMC11274875 DOI: 10.3390/biom14070814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Nucleotide excision repair (NER) is the most universal repair pathway, which removes a wide range of DNA helix-distorting lesions caused by chemical or physical agents. The final steps of this repair process are gap-filling repair synthesis and subsequent ligation. XPA is the central NER scaffolding protein factor and can be involved in post-incision NER stages. Replication machinery is loaded after the first incision of the damaged strand that is performed by the XPF-ERCC1 nuclease forming a damaged 5'-flap processed by the XPG endonuclease. Flap endonuclease I (FEN1) is a critical component of replication machinery and is absolutely indispensable for the maturation of newly synthesized strands. FEN1 also contributes to the long-patch pathway of base excision repair. Here, we use a set of DNA substrates containing a fluorescently labeled 5'-flap and different size gap to analyze possible repair factor-replication factor interactions. Ternary XPA-FEN1-DNA complexes with each tested DNA are detected. Furthermore, we demonstrate XPA-FEN1 complex formation in the absence of DNA due to protein-protein interaction. Functional assays reveal that XPA moderately inhibits FEN1 catalytic activity. Using fluorescently labeled XPA, formation of ternary RPA-XPA-FEN1 complex, where XPA accommodates FEN1 and RPA contacts simultaneously, can be proposed. We discuss possible functional roles of the XPA-FEN1 interaction in NER related DNA resynthesis and/or other DNA metabolic processes where XPA can be involved in the complex with FEN1.
Collapse
Affiliation(s)
- Yuliya S. Krasikova
- Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia; (Y.S.K.); (E.A.M.); (S.N.K.); (A.N.E.); (N.I.R.)
| | - Ekaterina A. Maltseva
- Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia; (Y.S.K.); (E.A.M.); (S.N.K.); (A.N.E.); (N.I.R.)
| | - Svetlana N. Khodyreva
- Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia; (Y.S.K.); (E.A.M.); (S.N.K.); (A.N.E.); (N.I.R.)
| | - Alexey N. Evdokimov
- Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia; (Y.S.K.); (E.A.M.); (S.N.K.); (A.N.E.); (N.I.R.)
| | - Nadejda I. Rechkunova
- Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia; (Y.S.K.); (E.A.M.); (S.N.K.); (A.N.E.); (N.I.R.)
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia; (Y.S.K.); (E.A.M.); (S.N.K.); (A.N.E.); (N.I.R.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
8
|
Duan M, Leng S, Mao P. Cisplatin in the era of PARP inhibitors and immunotherapy. Pharmacol Ther 2024; 258:108642. [PMID: 38614254 DOI: 10.1016/j.pharmthera.2024.108642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/21/2024] [Accepted: 03/29/2024] [Indexed: 04/15/2024]
Abstract
Platinum compounds such as cisplatin, carboplatin and oxaliplatin are widely used in chemotherapy. Cisplatin induces cytotoxic DNA damage that blocks DNA replication and gene transcription, leading to arrest of cell proliferation. Although platinum therapy alone is effective against many tumors, cancer cells can adapt to the treatment and gain resistance. The mechanisms for cisplatin resistance are complex, including low DNA damage formation, high DNA repair capacity, changes in apoptosis signaling pathways, rewired cell metabolisms, and others. Drug resistance compromises the clinical efficacy and calls for new strategies by combining cisplatin with other therapies. Exciting progress in cancer treatment, particularly development of poly (ADP-ribose) polymerase (PARP) inhibitors and immune checkpoint inhibitors, opened a new chapter to combine cisplatin with these new cancer therapies. In this Review, we discuss how platinum synergizes with PARP inhibitors and immunotherapy to bring new hope to cancer patients.
Collapse
Affiliation(s)
- Mingrui Duan
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| | - Shuguang Leng
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA.
| | - Peng Mao
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
9
|
Wang J, Fu K, Zhang M, Liang L, Ni M, Sun HX, Yin R, Tang M. Mutation characteristics of cancer susceptibility genes in Chinese ovarian cancer patients. Front Oncol 2024; 14:1395818. [PMID: 38817903 PMCID: PMC11137316 DOI: 10.3389/fonc.2024.1395818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024] Open
Abstract
Introduction The association between mutations in susceptibility genes and the occurrence of ovarian cancer has been extensively studied. Previous research has primarily concentrated on genes involved in the homologous recombination repair pathway, particularly BRCA1 and BRCA2. However, a wider range of genes related to the DNA damage response pathways has not been fully explored. Methods To investigate the mutation characteristics of cancer susceptibility genes in the Chinese ovarian cancer population and the associations between gene mutations and clinical data, this study initially gathered a total of 1171 Chinese ovarian cancer samples and compiled a dataset of germline mutations in 171 genes. Results In this study, it was determined that MC1R and PRKDC were high-frequency ovarian cancer susceptibility genes in the Chinese population, exhibiting notable distinctions from those in European and American populations; moreover high-frequency mutation genes, such as MC1R: c.359T>C and PRKDC: c.10681T>A, typically had high-frequency mutation sites. Furthermore, we identified c.8187G>T as a characteristic mutation of BRCA2 in the Chinese population, and the CHEK2 mutation was significantly associated with the early onset of ovarian cancer, while the CDH1 and FAM175A mutations were more prevalent in Northeast China. Additionally, Fanconi anemia pathway-related genes were significantly associated with ovarian carcinogenesis. Conclusion In summary, this research provided fundamental data support for the optimization of ovarian cancer gene screening policies and the determination of treatment, and contributed to the precise intervention and management of patients.
Collapse
Affiliation(s)
- Jie Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Genomics, Shenzhen, China
| | - Kaiyu Fu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Molecular Epidemiology of Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mengpei Zhang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Molecular Epidemiology of Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | | | - Meng Ni
- BGI Genomics, Shenzhen, China
| | | | - Rutie Yin
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Molecular Epidemiology of Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | | |
Collapse
|
10
|
Dubach RA, Dubach JM. Autocorrelation analysis of a phenotypic screen reveals hidden drug activity. Sci Rep 2024; 14:10046. [PMID: 38698021 PMCID: PMC11066105 DOI: 10.1038/s41598-024-60654-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024] Open
Abstract
Phenotype based screening is a powerful tool to evaluate cellular drug response. Through high content fluorescence imaging of simple fluorescent labels and complex image analysis phenotypic measurements can identify subtle compound-induced cellular changes unique to compound mechanisms of action (MoA). Recently, a screen of 1008 compounds in three cell lines was reported where analysis detected changes in cellular phenotypes and accurately identified compound MoA for roughly half the compounds. However, we were surprised that DNA alkylating agents and other compounds known to induce or impact the DNA damage response produced no measured activity in cells with fluorescently labeled 53BP1-a canonical DNA damage marker. We hypothesized that phenotype analysis is not sensitive enough to detect small changes in 53BP1 distribution and analyzed the screen images with autocorrelation image analysis. We found that autocorrelation analysis, which quantifies fluorescently-labeled protein clustering, identified higher compound activity for compounds and MoAs known to impact the DNA damage response, suggesting altered 53BP1 recruitment to damaged DNA sites. We then performed experiments under more ideal imaging settings and found autocorrelation analysis to be a robust measure of changes to 53BP1 clustering in the DNA damage response. These results demonstrate the capacity of autocorrelation to detect otherwise undetectable compound activity and suggest that autocorrelation analysis of specific proteins could serve as a powerful screening tool.
Collapse
Affiliation(s)
| | - J Matthew Dubach
- Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| |
Collapse
|
11
|
Muniesa-Vargas A, Davó-Martínez C, Ribeiro-Silva C, van der Woude M, Thijssen KL, Haspels B, Häckes D, Kaynak ÜU, Kanaar R, Marteijn JA, Theil AF, Kuijten MMP, Vermeulen W, Lans H. Persistent TFIIH binding to non-excised DNA damage causes cell and developmental failure. Nat Commun 2024; 15:3490. [PMID: 38664429 PMCID: PMC11045817 DOI: 10.1038/s41467-024-47935-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Congenital nucleotide excision repair (NER) deficiency gives rise to several cancer-prone and/or progeroid disorders. It is not understood how defects in the same DNA repair pathway cause different disease features and severity. Here, we show that the absence of functional ERCC1-XPF or XPG endonucleases leads to stable and prolonged binding of the transcription/DNA repair factor TFIIH to DNA damage, which correlates with disease severity and induces senescence features in human cells. In vivo, in C. elegans, this prolonged TFIIH binding to non-excised DNA damage causes developmental arrest and neuronal dysfunction, in a manner dependent on transcription-coupled NER. NER factors XPA and TTDA both promote stable TFIIH DNA binding and their depletion therefore suppresses these severe phenotypical consequences. These results identify stalled NER intermediates as pathogenic to cell functionality and organismal development, which can in part explain why mutations in XPF or XPG cause different disease features than mutations in XPA or TTDA.
Collapse
Affiliation(s)
- Alba Muniesa-Vargas
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Carlota Davó-Martínez
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Cristina Ribeiro-Silva
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Melanie van der Woude
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Karen L Thijssen
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Ben Haspels
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Oncode Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - David Häckes
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Ülkem U Kaynak
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Oncode Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Oncode Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Arjan F Theil
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Maayke M P Kuijten
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Oncode Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Wim Vermeulen
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Hannes Lans
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
12
|
Obermann R, Yemane B, Jarvis C, Franco FM, Kyriukha Y, Nolan W, Gohara B, Krezel AM, Wildman SA, Janetka JW. Small Molecule Antagonists of the DNA Repair ERCC1/XPA Protein-Protein Interaction. ChemMedChem 2024; 19:e202300648. [PMID: 38300970 PMCID: PMC11031295 DOI: 10.1002/cmdc.202300648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/03/2024]
Abstract
The DNA excision repair protein ERCC1 and the DNA damage sensor protein, XPA are highly overexpressed in patient samples of cisplatin-resistant solid tumors including lung, bladder, ovarian, and testicular cancer. The repair of cisplatin-DNA crosslinks is dependent upon nucleotide excision repair (NER) that is modulated by protein-protein binding interactions of ERCC1, the endonuclease, XPF, and XPA. Thus, inhibition of their function is a potential therapeutic strategy for the selective sensitization of tumors to DNA-damaging platinum-based cancer therapy. Here, we report on new small-molecule antagonists of the ERCC1/XPA protein-protein interaction (PPI) discovered using a high-throughput competitive fluorescence polarization binding assay. We discovered a unique structural class of thiopyridine-3-carbonitrile PPI antagonists that block a truncated XPA polypeptide from binding to ERCC1. Preliminary hit-to-lead studies from compound 1 reveal structure-activity relationships (SAR) and identify lead compound 27 o with an EC50 of 4.7 μM. Furthermore, chemical shift perturbation mapping by NMR confirms that 1 binds within the same site as the truncated XPA67-80 peptide. These novel ERCC1 antagonists are useful chemical biology tools for investigating DNA damage repair pathways and provide a good starting point for medicinal chemistry optimization as therapeutics for sensitizing tumors to DNA damaging agents and overcoming resistance to platinum-based chemotherapy.
Collapse
Affiliation(s)
| | | | - Cassie Jarvis
- Washington University School of Medicine, Department of Biochemistry and Molecular Biophysics, 660 S. Euclid Ave., Box 8231, St. Louis, MO 63110 USA
| | - Francisco M. Franco
- Washington University School of Medicine, Department of Biochemistry and Molecular Biophysics, 660 S. Euclid Ave., Box 8231, St. Louis, MO 63110 USA
| | - Yevhenii Kyriukha
- Washington University School of Medicine, Department of Biochemistry and Molecular Biophysics, 660 S. Euclid Ave., Box 8231, St. Louis, MO 63110 USA
| | - William Nolan
- Washington University School of Medicine, Department of Biochemistry and Molecular Biophysics, 660 S. Euclid Ave., Box 8231, St. Louis, MO 63110 USA
| | - Beth Gohara
- Washington University School of Medicine, Department of Biochemistry and Molecular Biophysics, 660 S. Euclid Ave., Box 8231, St. Louis, MO 63110 USA
| | - Andrzej M. Krezel
- Washington University School of Medicine, Department of Biochemistry and Molecular Biophysics, 660 S. Euclid Ave., Box 8231, St. Louis, MO 63110 USA
| | - Scott A. Wildman
- Washington University School of Medicine, Department of Biochemistry and Molecular Biophysics, 660 S. Euclid Ave., Box 8231, St. Louis, MO 63110 USA
| | - James W. Janetka
- Washington University School of Medicine, Department of Biochemistry and Molecular Biophysics, 660 S. Euclid Ave., Box 8231, St. Louis, MO 63110 USA
| |
Collapse
|
13
|
Hoag A, Duan M, Mao P. The role of Transcription Factor IIH complex in nucleotide excision repair. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 1:72-81. [PMID: 37545038 PMCID: PMC10903506 DOI: 10.1002/em.22568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/05/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
DNA damage occurs throughout life from a variety of sources, and it is imperative to repair damage in a timely manner to maintain genome stability. Thus, DNA repair mechanisms are a fundamental part of life. Nucleotide excision repair (NER) plays an important role in the removal of bulky DNA adducts, such as cyclobutane pyrimidine dimers from ultraviolet light or DNA crosslinking damage from platinum-based chemotherapeutics, such as cisplatin. A main component for the NER pathway is transcription factor IIH (TFIIH), a multifunctional, 10-subunit protein complex with crucial roles in both transcription and NER. In transcription, TFIIH is a component of the pre-initiation complex and is important for promoter opening and the phosphorylation of RNA Polymerase II (RNA Pol II). During repair, TFIIH is important for DNA unwinding, recruitment of downstream repair factors, and verification of the bulky lesion. Several different disease states can arise from mutations within subunits of the TFIIH complex. Most strikingly are xeroderma pigmentosum (XP), XP combined with Cockayne syndrome (CS), and trichothiodystrophy (TTD). Here, we summarize the recruitment and functions of TFIIH in the two NER subpathways, global genomic (GG-NER) and transcription-coupled NER (TC-NER). We will also discuss how TFIIH's roles in the two subpathways lead to different genetic disorders.
Collapse
Affiliation(s)
- Allyson Hoag
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, USA
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, United States
| | - Mingrui Duan
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, USA
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, United States
| | - Peng Mao
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, USA
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, United States
| |
Collapse
|
14
|
Kose C, Cao X, Dewey EB, Malkoç M, Adebali O, Sekelsky J, Lindsey-Boltz LA, Sancar A. Cross-species investigation into the requirement of XPA for nucleotide excision repair. Nucleic Acids Res 2024; 52:677-689. [PMID: 37994737 PMCID: PMC10810185 DOI: 10.1093/nar/gkad1104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/24/2023] Open
Abstract
After reconstitution of nucleotide excision repair (excision repair) with XPA, RPA, XPC, TFIIH, XPF-ERCC1 and XPG, it was concluded that these six factors are the minimal essential components of the excision repair machinery. All six factors are highly conserved across diverse organisms spanning yeast to humans, yet no identifiable homolog of the XPA gene exists in many eukaryotes including green plants. Nevertheless, excision repair is reported to be robust in the XPA-lacking organism, Arabidopsis thaliana, which raises a fundamental question of whether excision repair could occur without XPA in other organisms. Here, we performed a phylogenetic analysis of XPA across all species with annotated genomes and then quantitatively measured excision repair in the absence of XPA using the sensitive whole-genome qXR-Seq method in human cell lines and two model organisms, Caenorhabditis elegans and Drosophila melanogaster. We find that although the absence of XPA results in inefficient excision repair and UV-sensitivity in humans, flies, and worms, excision repair of UV-induced DNA damage is detectable over background. These studies have yielded a significant discovery regarding the evolution of XPA protein and its mechanistic role in nucleotide excision repair.
Collapse
Affiliation(s)
- Cansu Kose
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Xuemei Cao
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Evan B Dewey
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mustafa Malkoç
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Türkiye
| | - Ogün Adebali
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Türkiye
- Department of Computational Science-Biological Sciences, TÜBITAK Research Institute for Fundamental Sciences, Gebze, Türkiye
| | - Jeff Sekelsky
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura A Lindsey-Boltz
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
15
|
van den Heuvel D, Kim M, Wondergem AP, van der Meer PJ, Witkamp M, Lambregtse F, Kim HS, Kan F, Apelt K, Kragten A, González-Prieto R, Vertegaal ACO, Yeo JE, Kim BG, van Doorn R, Schärer OD, Luijsterburg MS. A disease-associated XPA allele interferes with TFIIH binding and primarily affects transcription-coupled nucleotide excision repair. Proc Natl Acad Sci U S A 2023; 120:e2208860120. [PMID: 36893274 PMCID: PMC10089173 DOI: 10.1073/pnas.2208860120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 01/30/2023] [Indexed: 03/11/2023] Open
Abstract
XPA is a central scaffold protein that coordinates the assembly of repair complexes in the global genome (GG-NER) and transcription-coupled nucleotide excision repair (TC-NER) subpathways. Inactivating mutations in XPA cause xeroderma pigmentosum (XP), which is characterized by extreme UV sensitivity and a highly elevated skin cancer risk. Here, we describe two Dutch siblings in their late forties carrying a homozygous H244R substitution in the C-terminus of XPA. They present with mild cutaneous manifestations of XP without skin cancer but suffer from marked neurological features, including cerebellar ataxia. We show that the mutant XPA protein has a severely weakened interaction with the transcription factor IIH (TFIIH) complex leading to an impaired association of the mutant XPA and the downstream endonuclease ERCC1-XPF with NER complexes. Despite these defects, the patient-derived fibroblasts and reconstituted knockout cells carrying the XPA-H244R substitution show intermediate UV sensitivity and considerable levels of residual GG-NER (~50%), in line with the intrinsic properties and activities of the purified protein. By contrast, XPA-H244R cells are exquisitely sensitive to transcription-blocking DNA damage, show no detectable recovery of transcription after UV irradiation, and display a severe deficiency in TC-NER-associated unscheduled DNA synthesis. Our characterization of a new case of XPA deficiency that interferes with TFIIH binding and primarily affects the transcription-coupled subpathway of nucleotide excision repair, provides an explanation of the dominant neurological features in these patients, and reveals a specific role for the C-terminus of XPA in TC-NER.
Collapse
Affiliation(s)
- Diana van den Heuvel
- Department of Human Genetics, Leiden University Medical Center, 2333 ZCLeiden, The Netherlands
| | - Mihyun Kim
- Center for Genomic Integrity, Institute for Basic Science, 44919Ulsan, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, 44919Ulsan, Republic of Korea
| | - Annelotte P. Wondergem
- Department of Human Genetics, Leiden University Medical Center, 2333 ZCLeiden, The Netherlands
| | - Paula J. van der Meer
- Department of Human Genetics, Leiden University Medical Center, 2333 ZCLeiden, The Netherlands
| | - Myrèse Witkamp
- Department of Human Genetics, Leiden University Medical Center, 2333 ZCLeiden, The Netherlands
| | - Ferdy Lambregtse
- Department of Human Genetics, Leiden University Medical Center, 2333 ZCLeiden, The Netherlands
| | - Hyun-Suk Kim
- Center for Genomic Integrity, Institute for Basic Science, 44919Ulsan, Republic of Korea
| | - Folkert Kan
- Department of Human Genetics, Leiden University Medical Center, 2333 ZCLeiden, The Netherlands
| | - Katja Apelt
- Department of Human Genetics, Leiden University Medical Center, 2333 ZCLeiden, The Netherlands
| | - Angela Kragten
- Department of Human Genetics, Leiden University Medical Center, 2333 ZCLeiden, The Netherlands
| | - Román González-Prieto
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZCLeiden, The Netherlands
- Andalusian Center for Molecular Biology and Regenerative Medicine, University of Sevilla, 41092Seville, Spain
- Department of Cell Biology, University of Seville, 41012Seville, Spain
| | - Alfred C. O. Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZCLeiden, The Netherlands
| | - Jung-Eun Yeo
- Center for Genomic Integrity, Institute for Basic Science, 44919Ulsan, Republic of Korea
| | - Byung-Gyu Kim
- Center for Genomic Integrity, Institute for Basic Science, 44919Ulsan, Republic of Korea
| | - Remco van Doorn
- Department of Dermatology, Leiden University Medical Center, 2333 ZALeiden, The Netherlands
| | - Orlando D. Schärer
- Center for Genomic Integrity, Institute for Basic Science, 44919Ulsan, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, 44919Ulsan, Republic of Korea
| | - Martijn S. Luijsterburg
- Department of Human Genetics, Leiden University Medical Center, 2333 ZCLeiden, The Netherlands
| |
Collapse
|
16
|
A nuclease-mimetic platinum nanozyme induces concurrent DNA platination and oxidative cleavage to overcome cancer drug resistance. Nat Commun 2022; 13:7361. [PMID: 36450764 PMCID: PMC9712435 DOI: 10.1038/s41467-022-35022-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Platinum (Pt) resistance in cancer almost inevitably occurs during clinical Pt-based chemotherapy. The spontaneous nucleotide-excision repair of cancer cells is a representative process that leads to Pt resistance, which involves the local DNA bending to facilitate the recruitment of nucleotide-excision repair proteins and subsequent elimination of Pt-DNA adducts. By exploiting the structural vulnerability of this process, we herein report a nuclease-mimetic Pt nanozyme that can target cancer cell nuclei and induce concurrent DNA platination and oxidative cleavage to overcome Pt drug resistance. We show that the Pt nanozyme, unlike cisplatin and conventional Pt nanoparticles, specifically induces the nanozyme-catalyzed cleavage of the formed Pt-DNA adducts by generating in situ reactive oxygen species, which impairs the damage recognition factors-induced DNA bending prerequisite for nucleotide-excision repair. The recruitment of downstream effectors of nucleotide-excision repair to DNA lesion sites, including xeroderma pigmentosum groups A and F, is disrupted by the Pt nanozyme in cisplatin-resistant cancer cells, allowing excessive accumulation of the Pt-DNA adducts for highly efficient cancer therapy. Our study highlights the potential benefits of applying enzymatic activities to the use of the Pt nanomedicines, providing a paradigm shift in DNA damaging chemotherapy.
Collapse
|
17
|
Krasikova YS, Lavrik OI, Rechkunova NI. The XPA Protein-Life under Precise Control. Cells 2022; 11:cells11233723. [PMID: 36496984 PMCID: PMC9739396 DOI: 10.3390/cells11233723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
Nucleotide excision repair (NER) is a central DNA repair pathway responsible for removing a wide variety of DNA-distorting lesions from the genome. The highly choreographed cascade of core NER reactions requires more than 30 polypeptides. The xeroderma pigmentosum group A (XPA) protein plays an essential role in the NER process. XPA interacts with almost all NER participants and organizes the correct NER repair complex. In the absence of XPA's scaffolding function, no repair process occurs. In this review, we briefly summarize our current knowledge about the XPA protein structure and analyze the formation of contact with its protein partners during NER complex assembling. We focus on different ways of regulation of the XPA protein's activity and expression and pay special attention to the network of post-translational modifications. We also discuss the data that is not in line with the currently accepted hypothesis about the functioning of the XPA protein.
Collapse
Affiliation(s)
- Yuliya S. Krasikova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Nadejda I. Rechkunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Correspondence:
| |
Collapse
|
18
|
Banicka V, Martens MC, Panzer R, Schrama D, Emmert S, Boeckmann L, Thiem A. Homozygous CRISPR/Cas9 Knockout Generated a Novel Functionally Active Exon 1 Skipping XPA Variant in Melanoma Cells. Int J Mol Sci 2022; 23:ijms231911649. [PMID: 36232946 PMCID: PMC9569948 DOI: 10.3390/ijms231911649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022] Open
Abstract
Defects in DNA repair pathways have been associated with an improved response to immune checkpoint inhibition (ICI). In particular, patients with the nucleotide excision repair (NER) defect disease Xeroderma pigmentosum (XP) responded impressively well to ICI treatment. Recently, in melanoma patients, pretherapeutic XP gene expression was predictive for anti-programmed cell death-1 (PD-1) ICI response. The underlying mechanisms of this finding are still to be revealed. Therefore, we used CRISPR/Cas9 to disrupt XPA in A375 melanoma cells. The resulting subclonal cell lines were investigated by Sanger sequencing. Based on their genetic sequence, candidates from XPA exon 1 and 2 were selected and further analyzed by immunoblotting, immunofluorescence, HCR and MTT assays. In XPA exon 1, we established a homozygous (c.19delG; p.A7Lfs*8) and a compound heterozygous (c.19delG/c.19_20insG; p.A7Lfs*8/p.A7Gfs*55) cell line. In XPA exon 2, we generated a compound heterozygous mutated cell line (c.206_208delTTG/c.208_209delGA; p.I69_D70delinsN/p.D70Hfs*31). The better performance of the homozygous than the heterozygous mutated exon 1 cells in DNA damage repair (HCR) and post-UV-C cell survival (MTT), was associated with the expression of a novel XPA protein variant. The results of our study serve as the fundamental basis for the investigation of the immunological consequences of XPA disruption in melanoma.
Collapse
Affiliation(s)
- Veronika Banicka
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany
| | - Marie Christine Martens
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany
| | - Rüdiger Panzer
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany
| | - David Schrama
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Steffen Emmert
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany
| | - Lars Boeckmann
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany
| | - Alexander Thiem
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany
- Correspondence:
| |
Collapse
|
19
|
Ercc2/Xpd deficiency results in failure of digestive organ growth in zebrafish with elevated nucleolar stress. iScience 2022; 25:104957. [PMID: 36065184 PMCID: PMC9440294 DOI: 10.1016/j.isci.2022.104957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/23/2022] [Accepted: 08/12/2022] [Indexed: 12/09/2022] Open
Abstract
Mutations in ERCC2/XPD helicase, an important component of the TFIIH complex, cause distinct human genetic disorders which exhibit various pathological features. However, the molecular mechanisms underlying many symptoms remain elusive. Here, we have shown that Ercc2/Xpd deficiency in zebrafish resulted in hypoplastic digestive organs with normal bud initiation but later failed to grow. The proliferation of intestinal endothelial cells was impaired in ercc2/xpd mutants, and mitochondrial abnormalities, autophagy, and inflammation were highly induced. Further studies revealed that these abnormalities were associated with the perturbation of rRNA synthesis and nucleolar stress in a p53-independent manner. As TFIIH has only been implicated in RNA polymerase I-dependent transcription in vitro, our results provide the first evidence for the connection between Ercc2/Xpd and rRNA synthesis in an animal model that recapitulates certain key characteristics of ERCC2/XPD-related human genetic disorders, and will greatly advance our understanding of the molecular pathogenesis of these diseases. Ercc2/Xpd deficiency results in failure of digestive organ growth in zebrafish Ercc2/Xpd-deficient intestinal endothelial cells exhibit impaired proliferation Mitochondrial abnormalities, autophagy, and inflammation are highly induced rRNA synthesis perturbation leads to nucleolar stress in a p53-independent manner
Collapse
|
20
|
Kim M, Kim HS, D’Souza A, Gallagher K, Jeong E, Topolska-Woś A, Ogorodnik Le Meur K, Tsai CL, Tsai MS, Kee M, Tainer JA, Yeo JE, Chazin WJ, Schärer OD. Two interaction surfaces between XPA and RPA organize the preincision complex in nucleotide excision repair. Proc Natl Acad Sci U S A 2022; 119:e2207408119. [PMID: 35969784 PMCID: PMC9407234 DOI: 10.1073/pnas.2207408119] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022] Open
Abstract
The xeroderma pigmentosum protein A (XPA) and replication protein A (RPA) proteins fulfill essential roles in the assembly of the preincision complex in the nucleotide excision repair (NER) pathway. We have previously characterized the two interaction sites, one between the XPA N-terminal (XPA-N) disordered domain and the RPA32 C-terminal domain (RPA32C), and the other with the XPA DNA binding domain (DBD) and the RPA70AB DBDs. Here, we show that XPA mutations that inhibit the physical interaction in either site reduce NER activity in biochemical and cellular systems. Combining mutations in the two sites leads to an additive inhibition of NER, implying that they fulfill distinct roles. Our data suggest a model in which the interaction between XPA-N and RPA32C is important for the initial association of XPA with NER complexes, while the interaction between XPA DBD and RPA70AB is needed for structural organization of the complex to license the dual incision reaction. Integrative structural models of complexes of XPA and RPA bound to single-stranded/double-stranded DNA (ss/dsDNA) junction substrates that mimic the NER bubble reveal key features of the architecture of XPA and RPA in the preincision complex. Most critical among these is that the shape of the NER bubble is far from colinear as depicted in current models, but rather the two strands of unwound DNA must assume a U-shape with the two ss/dsDNA junctions localized in close proximity. Our data suggest that the interaction between XPA and RPA70 is key for the organization of the NER preincision complex.
Collapse
Affiliation(s)
- Mihyun Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Hyun-Suk Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Areetha D’Souza
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-7917
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232-7917
| | - Kaitlyn Gallagher
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-7917
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232-7917
| | - Eunwoo Jeong
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Agnieszka Topolska-Woś
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-7917
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232-7917
| | - Kateryna Ogorodnik Le Meur
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-7917
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232-7917
| | - Chi-Lin Tsai
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Miaw-Sheue Tsai
- Biological and Systems Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Minyong Kee
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - John A. Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Jung-Eun Yeo
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Walter J. Chazin
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-7917
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232-7917
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232-7917
| | - Orlando D. Schärer
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-7917
| |
Collapse
|
21
|
Blee AM, Li B, Pecen T, Meiler J, Nagel ZD, Capra JA, Chazin WJ. An Active Learning Framework Improves Tumor Variant Interpretation. Cancer Res 2022; 82:2704-2715. [PMID: 35687855 PMCID: PMC9357215 DOI: 10.1158/0008-5472.can-21-3798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/26/2022] [Accepted: 06/07/2022] [Indexed: 02/05/2023]
Abstract
SIGNIFICANCE A novel machine learning approach predicts the impact of tumor mutations on cellular phenotypes, overcomes limited training data, minimizes costly functional validation, and advances efforts to implement cancer precision medicine.
Collapse
Affiliation(s)
- Alexandra M. Blee
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Bian Li
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Turner Pecen
- John B. Little Center of Radiation Sciences, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Jens Meiler
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, SAC 04103, Germany
| | - Zachary D. Nagel
- John B. Little Center of Radiation Sciences, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - John A. Capra
- Bakar Computational Health Sciences Institute and Department of Epidemiology and Biostatistics, University of California, San Francisco, CA 94107, USA
| | - Walter J. Chazin
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
22
|
Multiple Basal Cell Carcinomas in Immunocompetent Patients. Cancers (Basel) 2022; 14:cancers14133211. [PMID: 35804983 PMCID: PMC9264959 DOI: 10.3390/cancers14133211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary It is widely known that long-term treatment with immunosuppressive drugs represents a risk factor for the onset of malignancies, including multiple basal cell carcinomas. However, multiple basal carcinomas are ao found in the general population, and even in the absence of specific predisposing genetic mutations. This paper aims, through the retrospective evaluation of all patients diagnosed and surgically treated for basal cell carcinomas during 5 years at our Dermatological Division, to identify the characteristics of these subjects and any possible risk factors, useful for outlining specific surveillance programs. In our experience, multiple carcinomas were identified in over 24% of the subjects analyzed, with several lesions removed, ranging from 2 to 11, confirming the relevance of this phenomenon. Abstract Background: The onset of multiple BCCs is a relatively common condition, not only among patients undergoing chronic treatment with immunosuppressant drugs, but also in the general population, although specific risk factors for immunocompetent patients have not been identified. A putative role of somatic mutations in the hedgehog pathway should be considered. Methods: This study is a retrospective observation of all patients diagnosed and surgically treated for BCCs during 5 years at our Dermatological Division. For these patients, we evaluated clinical and histopathological characteristics and data about possible risk factors for BCC. Results: Five-hundred and six patients affected by multiple BCCs, accounting for the 24.2% of the entire sample, have been identified. In these patients, the total number of BCCs was 1516, ranging from 2 to 11. Subjects affected by multiple BCCs were more frequently males, with an older age at diagnosis; multiple BCCs developed mainly on the trunk and were often represented by a nodular histotype. The multivariate analysis highlighted that male gender, older age, nodular BCC, or face involvement at the first diagnosis are risk factors for the development of multiple BCCs. Conclusions: The frequency of multiple BCCs even among the non-immunocompromised population underlines the need to subject patients to a close surveillance program, to allow early diagnosis and treatment of additional cancers.
Collapse
|
23
|
Majid S, Van Belleghem F, Ploem JP, Wouters A, Blust R, Smeets K. Interactive toxicity of copper and cadmium in regenerating and adult planarians. CHEMOSPHERE 2022; 297:133819. [PMID: 35114265 DOI: 10.1016/j.chemosphere.2022.133819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/31/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
In a polluted environment, metals are present as complex mixtures. As a result, organisms are exposed to different metals at the same time, which affects both metal-specific as well as overall toxicity. Detailed information about the molecular mechanisms underlying the adverse effects of combined exposures remains limited in terms of different life stages. In this study, the freshwater planarian Schmidtea mediterranea was used to investigate developmental and physiological responses associated with a combined exposure to Cu and Cd. In addition, the cellular and molecular mechanisms underlying the provoked adverse effects were studied in different exposure scenarios. Mixed exposure resulted in a decline in survival, diverse non-lethal morphological changes, neuroregenerative impairments, altered behaviour and a limited repair capacity. Underlying to these effects, the cellular redox state was altered in all exposure conditions. In adult animals, this led to DNA damage and corresponding transcriptional changes in cell cycle and DNA repair genes. In regenerating animals, changes in hydrogen peroxide and glutathione contents led to regenerative defects. Overall, our results demonstrate that (1) developing organisms are more susceptible to metal exposures, and (2) the toxicity of an individual metal increases significantly in a mixed exposure scenario. These aspects have to be included in current risk assessment strategies.
Collapse
Affiliation(s)
- Sanah Majid
- Laboratory of Toxicology, Centre for Environmental Sciences (CMK), Hasselt University, Diepenbeek, 3590, Belgium; Systemic Physiological & Eco-toxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan, 2020, Belgium
| | - Frank Van Belleghem
- Laboratory of Toxicology, Centre for Environmental Sciences (CMK), Hasselt University, Diepenbeek, 3590, Belgium; Department of Environmental Sciences, Faculty of Science, Open University of the Netherlands, Heerlen, 6419, AT, the Netherlands
| | - Jan-Pieter Ploem
- Laboratory of Toxicology, Centre for Environmental Sciences (CMK), Hasselt University, Diepenbeek, 3590, Belgium
| | - Annelies Wouters
- Laboratory of Toxicology, Centre for Environmental Sciences (CMK), Hasselt University, Diepenbeek, 3590, Belgium
| | - Ronny Blust
- Systemic Physiological & Eco-toxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan, 2020, Belgium
| | - Karen Smeets
- Laboratory of Toxicology, Centre for Environmental Sciences (CMK), Hasselt University, Diepenbeek, 3590, Belgium.
| |
Collapse
|
24
|
Mahendra CK, Ser HL, Pusparajah P, Htar TT, Chuah LH, Yap WH, Tang YQ, Zengin G, Tang SY, Lee WL, Liew KB, Ming LC, Goh BH. Cosmeceutical Therapy: Engaging the Repercussions of UVR Photoaging on the Skin's Circadian Rhythm. Int J Mol Sci 2022; 23:2884. [PMID: 35270025 PMCID: PMC8911461 DOI: 10.3390/ijms23052884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023] Open
Abstract
Sunlight is an important factor in regulating the central circadian rhythm, including the modulation of our sleep/wake cycles. Sunlight had also been discovered to have a prominent influence on our skin's circadian rhythm. Overexposure or prolonged exposure to the sun can cause skin photodamage, such as the formation of irregular pigmentation, collagen degradation, DNA damage, and even skin cancer. Hence, this review will be looking into the detrimental effects of sunlight on our skin, not only at the aspect of photoaging but also at its impact on the skin's circadian rhythm. The growing market trend of natural-product-based cosmeceuticals as also caused us to question their potential to modulate the skin's circadian rhythm. Questions about how the skin's circadian rhythm could counteract photodamage and how best to maximize its biopotential will be discussed in this article. These discoveries regarding the skin's circadian rhythm have opened up a completely new level of understanding of our skin's molecular mechanism and may very well aid cosmeceutical companies, in the near future, to develop better products that not only suppress photoaging but remain effective and relevant throughout the day.
Collapse
Affiliation(s)
- Camille Keisha Mahendra
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (C.K.M.); (T.T.H.); (L.-H.C.)
| | - Hooi-Leng Ser
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; or
| | - Priyia Pusparajah
- Medical Health and Translational Research Group, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
| | - Thet Thet Htar
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (C.K.M.); (T.T.H.); (L.-H.C.)
| | - Lay-Hong Chuah
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (C.K.M.); (T.T.H.); (L.-H.C.)
| | - Wei Hsum Yap
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia; (W.H.Y.); (Y.-Q.T.)
- Centre of Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia
| | - Yin-Quan Tang
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia; (W.H.Y.); (Y.-Q.T.)
- Centre of Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey;
| | - Siah Ying Tang
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
- Advanced Engineering Platform, School of Engineering, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Tropical Medicine and Biology Platform, School of Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Wai Leng Lee
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
| | - Kai Bin Liew
- Faculty of Pharmacy, University of Cyberjaya, Cyberjaya 63000, Malaysia;
| | - Long Chiau Ming
- Pengiran Anak Puteri Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (C.K.M.); (T.T.H.); (L.-H.C.)
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Health and Well-Being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| |
Collapse
|
25
|
D'Souza A, Blee AM, Chazin WJ. Mechanism of action of nucleotide excision repair machinery. Biochem Soc Trans 2022; 50:375-386. [PMID: 35076656 PMCID: PMC9275815 DOI: 10.1042/bst20210246] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 11/08/2023]
Abstract
Nucleotide excision repair (NER) is a versatile DNA repair pathway essential for the removal of a broad spectrum of structurally diverse DNA lesions arising from a variety of sources, including UV irradiation and environmental toxins. Although the core factors and basic stages involved in NER have been identified, the mechanisms of the NER machinery are not well understood. This review summarizes our current understanding of the mechanisms and order of assembly in the core global genome (GG-NER) pathway.
Collapse
Affiliation(s)
- Areetha D'Souza
- Departments of Biochemistry and Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN 37240-7917, U.S.A
| | - Alexandra M Blee
- Departments of Biochemistry and Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN 37240-7917, U.S.A
| | - Walter J Chazin
- Departments of Biochemistry and Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN 37240-7917, U.S.A
| |
Collapse
|
26
|
Khan S, Cvammen W, Anabtawi N, Choi JH, Kemp MG. XPA is susceptible to proteolytic cleavage by cathepsin L during lysis of quiescent cells. DNA Repair (Amst) 2022; 109:103260. [PMID: 34883264 PMCID: PMC8748394 DOI: 10.1016/j.dnarep.2021.103260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023]
Abstract
The xeroderma pigmentosum group A (XPA) protein plays an essential role in the removal of UV photoproducts and other bulky lesions from DNA as a component of the nucleotide excision repair (NER) machinery. Using cell lysates prepared from confluent cultures of human cells and from human skin epidermis, we observed an additional XPA antibody-reactive band on immunoblots that was approximately 3-4 kDa smaller than the native, full-length XPA protein. Biochemical studies revealed this smaller molecular weight XPA species to be due to proteolysis at the C-terminus of the protein, which negatively impacted the ability of XPA to interact with the NER protein TFIIH. Further work identified the endopeptidase cathepsin L, which is expressed at higher levels in quiescent cells, as the protease responsible for cleaving XPA during cell lysis. These results suggest that supplementation of lysis buffers with inhibitors of cathepsin L is important to prevent cleavage of XPA during lysis of confluent cells.
Collapse
Affiliation(s)
- Saman Khan
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - William Cvammen
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - Nadeen Anabtawi
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - Jun-Hyuk Choi
- Biometrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 305-340, Republic of Korea;,Department of Bio-Analytical Science, University of Science & Technology, Daejeon 305-340, Republic of Korea
| | - Michael G. Kemp
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio;,Dayton Veterans Administration Medical Center, Dayton, Ohio,To whom correspondence should be addressed:
| |
Collapse
|
27
|
Malik S, Prasad S, Kishore S, Kumar A, Upadhyay V. A perspective review on impact and molecular mechanism of environmental carcinogens on human health. Biotechnol Genet Eng Rev 2021; 37:178-207. [PMID: 34672914 DOI: 10.1080/02648725.2021.1991715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cancer is one of the leading causes of death all around the world. It is a group of diseases characterized by abnormal and uncontrollable division of cells leading to severe health conditions and fatality if remains undiagnosed till later stages. Cancer can be caused due to mutation or sudden alterations by effect of certain external agents. Agents that can cause sudden alterations in the genetic content of an individual are known as mutagens. Mutations can lead to permanent changes in the genetic constituency of an individual and possibly lead to cancer. Mutagenic agents that possess the capacity to induce cancer in humans are called carcinogens. Carcinogens may be naturally present in the environment or generated by anthropogenic activities. However, with the progress in molecular techniques, genetic and/or epigenetic mechanisms of carcinogenesis of a wide range of carcinogens have been elucidated. Present review aims to discuss different types of environmental carcinogens and their respective mechanisms responsible for inducing cancer in humans.
Collapse
Affiliation(s)
- Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, India
| | - Shilpa Prasad
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, India
| | - Shristi Kishore
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, India
| | - Abhishek Kumar
- Institute of Bioinformatics (Iob), Whitefield, Bangalore, India.,Manipal Academy of Higher Education (Mahe), Manipal, India
| | - Vineet Upadhyay
- Institute of Bioinformatics (Iob), Whitefield, Bangalore, India
| |
Collapse
|
28
|
Li X, Wu Q, Zhou B, Liu Y, Lv J, Chang Q, Zhao Y. Umbrella Review on Associations Between Single Nucleotide Polymorphisms and Lung Cancer Risk. Front Mol Biosci 2021; 8:687105. [PMID: 34540891 PMCID: PMC8446528 DOI: 10.3389/fmolb.2021.687105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/18/2021] [Indexed: 12/03/2022] Open
Abstract
The aim is to comprehensively and accurately assess potential relationships between single nucleotide polymorphisms (SNP) and lung cancer (LC) risk by summarizing the evidence in systematic reviews and meta-analyses. This umbrella review was registered with the PROSPERO international prospective register of systematic reviews under registration number CRD42020204685. The PubMed, Web of Science, and Embase databases were searched to identify eligible systematic reviews and meta-analyses from inception to August 14, 2020. The evaluation of cumulative evidence was conducted for associations with nominally statistical significance based on the Venice criteria and false positive report probability (FPRP). This umbrella review finally included 120 articles of a total of 190 SNP. The median number of studies and sample size included in the meta-analyses were five (range, 3–52) and 4 389 (range, 354–256 490), respectively. A total of 85 SNP (in 218 genetic models) were nominally statistically associated with LC risk. Based on the Venice criteria and FPRP, 13 SNP (in 22 genetic models), 47 SNP (in 99 genetic models), and 55 SNP (in 94 genetic models) had strong, moderate, and weak cumulative evidence of associations with LC risk, respectively. In conclusion, this umbrella review indicated that only 13 SNP (of 11 genes and one miRNA) were strongly correlated to LC risk. These findings can serve as a general and helpful reference for further genetic studies.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qijun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Baosen Zhou
- Department of Clinical Epidemiology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yashu Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiale Lv
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Chang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuhong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
29
|
Deng Y, Chen QS, Huang WF, Dai JW, Wu ZJ. XPA serves as an autophagy and apoptosis inducer by suppressing hepatocellular carcinoma in a PI3K/Akt/mTOR dependent manner. J Gastrointest Oncol 2021; 12:1797-1810. [PMID: 34532129 DOI: 10.21037/jgo-21-310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022] Open
Abstract
Background To explore the potential biological function of XPA (Xeroderma pigmentosum group A) in hepatic neoplasms and the underlying molecular mechanisms. Methods Liver cells were used as experimental models to establish HCC (hepatocellular carcinoma) in vitro. Protein extractions were subjected to Western blotting to detect the proteins expression. The lentivirus transfection efficiency was confirmed by Western blot and RT-qPCR, Tunnel staining was used to detect apoptosis, and Transwell assays were used to observe cell migration and invasion. Cell proliferation was detected with colony formation and CCK-8 (cell counting kit-8) assays. Results XPA expression was obviously lower in HCC tissue and liver cancer cell lines. XPA overexpression induced autophagy and apoptosis by increasing LC3B II/I, Beclin1, cleaved-caspase-3, and Bax expression and decreasing p62 and Bcl2 protein levels. XPA also suppressed HCC EMT (Epithelial-Mesenchymal Transition) by increasing E-cadherin and decreasing N-cadherin and vimentin protein expression. Cell proliferation, migration and invasion in vivo were significantly inhibited by the overexpression of XPA, and p-PI3K, p-Akt, and p-mTOR expression were decreased in LV-XPA cells. In general, XPA inhibited HCC by inducing autophagy and apoptosis and by modulating the expression of PI3K/Akt/mTOR proteins. Conclusions XPA overexpression was found to suppress HCC by inducing autophagy and apoptosis and repressing EMT and proliferation. Each of these effects may be involved in modulating the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yi Deng
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Oncology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Qing-Song Chen
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Traumatology, Chongqing University Central Hospital, Chongqing, China
| | - Wei-Feng Huang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiang-Wen Dai
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Oncology, Chengdu Fifth People's Hospital, Chengdu, China
| | - Zhong-Jun Wu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
30
|
McPherson KS, Korzhnev DM. Targeting protein-protein interactions in the DNA damage response pathways for cancer chemotherapy. RSC Chem Biol 2021; 2:1167-1195. [PMID: 34458830 PMCID: PMC8342002 DOI: 10.1039/d1cb00101a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/20/2021] [Indexed: 12/11/2022] Open
Abstract
Cellular DNA damage response (DDR) is an extensive signaling network that orchestrates DNA damage recognition, repair and avoidance, cell cycle progression and cell death. DDR alteration is a hallmark of cancer, with the deficiency in one DDR capability often compensated by a dependency on alternative pathways endowing cancer cells with survival and growth advantage. Targeting these DDR pathways has provided multiple opportunities for the development of cancer therapies. Traditional drug discovery has mainly focused on catalytic inhibitors that block enzyme active sites, which limits the number of potential drug targets within the DDR pathways. This review article describes the emerging approach to the development of cancer therapeutics targeting essential protein-protein interactions (PPIs) in the DDR network. The overall strategy for the structure-based design of small molecule PPI inhibitors is discussed, followed by an overview of the major DNA damage sensing, DNA repair, and DNA damage tolerance pathways with a specific focus on PPI targets for anti-cancer drug design. The existing small molecule inhibitors of DDR PPIs are summarized that selectively kill cancer cells and/or sensitize cancers to front-line genotoxic therapies, and a range of new PPI targets are proposed that may lead to the development of novel chemotherapeutics.
Collapse
Affiliation(s)
- Kerry Silva McPherson
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center Farmington CT 06030 USA +1 860 679 3408 +1 860 679 2849
| | - Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center Farmington CT 06030 USA +1 860 679 3408 +1 860 679 2849
| |
Collapse
|
31
|
Sassa A, Fukuda T, Ukai A, Nakamura M, Sato R, Fujiwara S, Hirota K, Takeda S, Sugiyama KI, Honma M, Yasui M. Follow-up genotoxicity assessment of Ames-positive/equivocal chemicals using the improved thymidine kinase gene mutation assay in DNA repair-deficient human TK6 cells. Mutagenesis 2021; 36:331-338. [PMID: 34216473 DOI: 10.1093/mutage/geab025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 07/02/2021] [Indexed: 11/14/2022] Open
Abstract
Genotoxicity testing plays an important role in the safety assessment of pharmaceuticals, pesticides, and chemical substances. Among the guidelines for various genotoxicity tests, the in vitro genotoxicity test battery comprises the bacterial Ames test and mammalian cell assays. Several chemicals exhibit conflicting results for the bacterial Ames test and mammalian cell genotoxicity studies, which may stem from the differences in DNA repair capacity or metabolism, between different cell types or species. For better understanding the mechanistic implications regarding conflict outcomes between different assay systems, it is necessary to develop in vitro genotoxicity testing approaches with higher specificity towards DNA-damaging reagents. We have recently established an improved thymidine kinase (TK) gene mutation assay (TK assay) that is deficient in DNA excision repair system using human lymphoblastoid TK6 cells lacking XRCC1 and XPA (XRCC1 -/-/XPA -/-), the core factors of base excision repair and nucleotide excision repair, respectively. This DNA repair-deficient TK6 cell line is expected to specifically evaluate the genotoxic potential of chemical substances based on the DNA damage. We focused on four reagents, N-(1-naphthyl)ethylenediamine dihydrochloride (NEDA), p-phenylenediamine (PPD), auramine, and malachite green (MG) as the Ames test-positive chemicals. In our assay, assessment using XRCC1 -/-/XPA -/- cells revealed no statistically significant increase in the mutant frequencies after treatment with NEDA, PPD, and MG, suggesting the chemicals to be non-genotoxic in humans. The observations were consistent with that of the follow-up in vivo studies. In contrast, the mutant frequency was markedly increased in XRCC1 -/-/XPA -/- cells after treatment with auramine. The results suggest that auramine is the genotoxic reagent that preferentially induces DNA damages resolved by BER and/or NER in mammals. Taken together, BER/NER deficient cell-based genotoxicity testing will contribute to elucidate the mechanism of genotoxicity and therefore play a pivotal role in the accurate safety assessment of chemical substances.
Collapse
Affiliation(s)
- Akira Sassa
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Japan
| | - Takayuki Fukuda
- Tokyo Laboratory, BoZo Research Center Inc., Hanegi, Setagaya-ku, Tokyo, Japan
| | - Akiko Ukai
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Tonomachi, Kawasaki-ku, Kawasaki Japan
| | - Maki Nakamura
- Tokyo Laboratory, BoZo Research Center Inc., Hanegi, Setagaya-ku, Tokyo, Japan
| | - Ryosuke Sato
- Tokyo Laboratory, BoZo Research Center Inc., Hanegi, Setagaya-ku, Tokyo, Japan
| | - Sho Fujiwara
- Tokyo Laboratory, BoZo Research Center Inc., Hanegi, Setagaya-ku, Tokyo, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto, Japan
| | - Kei-Ichi Sugiyama
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Tonomachi, Kawasaki-ku, Kawasaki Japan
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Tonomachi, Kawasaki-ku, Kawasaki Japan
| | - Manabu Yasui
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Tonomachi, Kawasaki-ku, Kawasaki Japan
| |
Collapse
|
32
|
Bláha P, Feoli C, Agosteo S, Calvaruso M, Cammarata FP, Catalano R, Ciocca M, Cirrone GAP, Conte V, Cuttone G, Facoetti A, Forte GI, Giuffrida L, Magro G, Margarone D, Minafra L, Petringa G, Pucci G, Ricciardi V, Rosa E, Russo G, Manti L. The Proton-Boron Reaction Increases the Radiobiological Effectiveness of Clinical Low- and High-Energy Proton Beams: Novel Experimental Evidence and Perspectives. Front Oncol 2021; 11:682647. [PMID: 34262867 PMCID: PMC8274279 DOI: 10.3389/fonc.2021.682647] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Protontherapy is a rapidly expanding radiotherapy modality where accelerated proton beams are used to precisely deliver the dose to the tumor target but is generally considered ineffective against radioresistant tumors. Proton-Boron Capture Therapy (PBCT) is a novel approach aimed at enhancing proton biological effectiveness. PBCT exploits a nuclear fusion reaction between low-energy protons and 11B atoms, i.e. p+11B→ 3α (p-B), which is supposed to produce highly-DNA damaging α-particles exclusively across the tumor-conformed Spread-Out Bragg Peak (SOBP), without harming healthy tissues in the beam entrance channel. To confirm previous work on PBCT, here we report new in-vitro data obtained at the 62-MeV ocular melanoma-dedicated proton beamline of the INFN-Laboratori Nazionali del Sud (LNS), Catania, Italy. For the first time, we also tested PBCT at the 250-MeV proton beamline used for deep-seated cancers at the Centro Nazionale di Adroterapia Oncologica (CNAO), Pavia, Italy. We used Sodium Mercaptododecaborate (BSH) as 11B carrier, DU145 prostate cancer cells to assess cell killing and non-cancer epithelial breast MCF-10A cells for quantifying chromosome aberrations (CAs) by FISH painting and DNA repair pathway protein expression by western blotting. Cells were exposed at various depths along the two clinical SOBPs. Compared to exposure in the absence of boron, proton irradiation in the presence of BSH significantly reduced DU145 clonogenic survival and increased both frequency and complexity of CAs in MCF-10A cells at the mid- and distal SOBP positions, but not at the beam entrance. BSH-mediated enhancement of DNA damage response was also found at mid-SOBP. These results corroborate PBCT as a strategy to render protontherapy amenable towards radiotherapy-resilient tumor. If coupled with emerging proton FLASH radiotherapy modalities, PBCT could thus widen the protontherapy therapeutic index.
Collapse
Affiliation(s)
- Pavel Bláha
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Napoli, Naples, Italy
| | - Chiara Feoli
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Napoli, Naples, Italy
| | - Stefano Agosteo
- Energy Department, Politecnico di Milano, and INFN, Sezione di Milano, Milan, Italy
| | - Marco Calvaruso
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, Italy.,Laboratori Nazionali del Sud (LNS), INFN, Catania, Italy
| | - Francesco Paolo Cammarata
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, Italy.,Laboratori Nazionali del Sud (LNS), INFN, Catania, Italy
| | | | - Mario Ciocca
- Medical Physics Unit & Research Department, Centro Nazionale di Adroterapia Oncologica (CNAO) & INFN, Sezione di Pavia, Pavia, Italy
| | | | - Valeria Conte
- Laboratori Nazionali di Legnaro (LNL), INFN, Legnaro, Italy
| | | | - Angelica Facoetti
- Medical Physics Unit & Research Department, Centro Nazionale di Adroterapia Oncologica (CNAO) & INFN, Sezione di Pavia, Pavia, Italy
| | - Giusi Irma Forte
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, Italy.,Laboratori Nazionali del Sud (LNS), INFN, Catania, Italy
| | - Lorenzo Giuffrida
- Extreme Light Infrastructure (ELI)-Beamlines Center, Institute of Physics (FZU), Czech Academy of Sciences, Prague, Czechia
| | - Giuseppe Magro
- Medical Physics Unit & Research Department, Centro Nazionale di Adroterapia Oncologica (CNAO) & INFN, Sezione di Pavia, Pavia, Italy
| | - Daniele Margarone
- Extreme Light Infrastructure (ELI)-Beamlines Center, Institute of Physics (FZU), Czech Academy of Sciences, Prague, Czechia
| | - Luigi Minafra
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, Italy.,Laboratori Nazionali del Sud (LNS), INFN, Catania, Italy
| | - Giada Petringa
- Laboratori Nazionali del Sud (LNS), INFN, Catania, Italy.,Extreme Light Infrastructure (ELI)-Beamlines Center, Institute of Physics (FZU), Czech Academy of Sciences, Prague, Czechia
| | - Gaia Pucci
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, Italy.,Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), Università di Palermo, Palermo, Italy
| | - Valerio Ricciardi
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Napoli, Naples, Italy.,Department of Mathematics & Physics, Università L. Vanvitelli, Caserta, Italy
| | - Enrico Rosa
- Radiation Biophysics Laboratory, Department of Physics "E. Pancini", Università di Napoli Federico II, Naples, Italy
| | - Giorgio Russo
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, Italy.,Laboratori Nazionali del Sud (LNS), INFN, Catania, Italy.,The Sicilian Center of Nuclear Physics and the Structure of Matter (CSFNSM), Catania, Italy
| | - Lorenzo Manti
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Napoli, Naples, Italy.,Radiation Biophysics Laboratory, Department of Physics "E. Pancini", Università di Napoli Federico II, Naples, Italy
| |
Collapse
|
33
|
Wang H, Lautrup S, Caponio D, Zhang J, Fang EF. DNA Damage-Induced Neurodegeneration in Accelerated Ageing and Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22136748. [PMID: 34201700 PMCID: PMC8268089 DOI: 10.3390/ijms22136748] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/18/2022] Open
Abstract
DNA repair ensures genomic stability to achieve healthy ageing, including cognitive maintenance. Mutations on genes encoding key DNA repair proteins can lead to diseases with accelerated ageing phenotypes. Some of these diseases are xeroderma pigmentosum group A (XPA, caused by mutation of XPA), Cockayne syndrome group A and group B (CSA, CSB, and are caused by mutations of CSA and CSB, respectively), ataxia-telangiectasia (A-T, caused by mutation of ATM), and Werner syndrome (WS, with most cases caused by mutations in WRN). Except for WS, a common trait of the aforementioned progerias is neurodegeneration. Evidence from studies using animal models and patient tissues suggests that the associated DNA repair deficiencies lead to depletion of cellular nicotinamide adenine dinucleotide (NAD+), resulting in impaired mitophagy, accumulation of damaged mitochondria, metabolic derailment, energy deprivation, and finally leading to neuronal dysfunction and loss. Intriguingly, these features are also observed in Alzheimer’s disease (AD), the most common type of dementia affecting more than 50 million individuals worldwide. Further studies on the mechanisms of the DNA repair deficient premature ageing diseases will help to unveil the mystery of ageing and may provide novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Heling Wang
- Department of Clinical Molecular Biology, Akershus University Hospital, University of Oslo, 1478 Lørenskog, Norway; (H.W.); (S.L.); (D.C.); (J.Z.)
| | - Sofie Lautrup
- Department of Clinical Molecular Biology, Akershus University Hospital, University of Oslo, 1478 Lørenskog, Norway; (H.W.); (S.L.); (D.C.); (J.Z.)
| | - Domenica Caponio
- Department of Clinical Molecular Biology, Akershus University Hospital, University of Oslo, 1478 Lørenskog, Norway; (H.W.); (S.L.); (D.C.); (J.Z.)
| | - Jianying Zhang
- Department of Clinical Molecular Biology, Akershus University Hospital, University of Oslo, 1478 Lørenskog, Norway; (H.W.); (S.L.); (D.C.); (J.Z.)
- Xiangya School of Stomatology, Central South University, Changsha 410083, China
| | - Evandro F. Fang
- Department of Clinical Molecular Biology, Akershus University Hospital, University of Oslo, 1478 Lørenskog, Norway; (H.W.); (S.L.); (D.C.); (J.Z.)
- The Norwegian Centre on Healthy Ageing (NO-Age), 0010 Oslo, Norway
- Correspondence:
| |
Collapse
|
34
|
Krasikova Y, Rechkunova N, Lavrik O. Nucleotide Excision Repair: From Molecular Defects to Neurological Abnormalities. Int J Mol Sci 2021; 22:ijms22126220. [PMID: 34207557 PMCID: PMC8228863 DOI: 10.3390/ijms22126220] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 01/14/2023] Open
Abstract
Nucleotide excision repair (NER) is the most versatile DNA repair pathway, which can remove diverse bulky DNA lesions destabilizing a DNA duplex. NER defects cause several autosomal recessive genetic disorders. Xeroderma pigmentosum (XP) is one of the NER-associated syndromes characterized by low efficiency of the removal of bulky DNA adducts generated by ultraviolet radiation. XP patients have extremely high ultraviolet-light sensitivity of sun-exposed tissues, often resulting in multiple skin and eye cancers. Some XP patients develop characteristic neurodegeneration that is believed to derive from their inability to repair neuronal DNA damaged by endogenous metabolites. A specific class of oxidatively induced DNA lesions, 8,5′-cyclopurine-2′-deoxynucleosides, is considered endogenous DNA lesions mainly responsible for neurological problems in XP. Growing evidence suggests that XP is accompanied by defective mitophagy, as in primary mitochondrial disorders. Moreover, NER pathway is absent in mitochondria, implying that the mitochondrial dysfunction is secondary to nuclear NER defects. In this review, we discuss the current understanding of the NER molecular mechanism and focuses on the NER linkage with the neurological degeneration in patients with XP. We also present recent research advances regarding NER involvement in oxidative DNA lesion repair. Finally, we highlight how mitochondrial dysfunction may be associated with XP.
Collapse
Affiliation(s)
- Yuliya Krasikova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Y.K.); (N.R.)
| | - Nadejda Rechkunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Y.K.); (N.R.)
| | - Olga Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Y.K.); (N.R.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
35
|
van Eeuwen T, Shim Y, Kim HJ, Zhao T, Basu S, Garcia BA, Kaplan CD, Min JH, Murakami K. Cryo-EM structure of TFIIH/Rad4-Rad23-Rad33 in damaged DNA opening in nucleotide excision repair. Nat Commun 2021; 12:3338. [PMID: 34099686 PMCID: PMC8184850 DOI: 10.1038/s41467-021-23684-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 05/05/2021] [Indexed: 11/08/2022] Open
Abstract
The versatile nucleotide excision repair (NER) pathway initiates as the XPC-RAD23B-CETN2 complex first recognizes DNA lesions from the genomic DNA and recruits the general transcription factor complex, TFIIH, for subsequent lesion verification. Here, we present a cryo-EM structure of an NER initiation complex containing Rad4-Rad23-Rad33 (yeast homologue of XPC-RAD23B-CETN2) and 7-subunit coreTFIIH assembled on a carcinogen-DNA adduct lesion at 3.9-9.2 Å resolution. A ~30-bp DNA duplex could be mapped as it straddles between Rad4 and the Ssl2 (XPB) subunit of TFIIH on the 3' and 5' side of the lesion, respectively. The simultaneous binding with Rad4 and TFIIH was permitted by an unwinding of DNA at the lesion. Translocation coupled with torque generation by Ssl2 and Rad4 would extend the DNA unwinding at the lesion and deliver the damaged strand to Rad3 (XPD) in an open form suitable for subsequent lesion scanning and verification.
Collapse
Affiliation(s)
- Trevor van Eeuwen
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yoonjung Shim
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Hee Jong Kim
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tingting Zhao
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shrabani Basu
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jung-Hyun Min
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA.
| | - Kenji Murakami
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
36
|
Kajitani GS, Nascimento LLDS, Neves MRDC, Leandro GDS, Garcia CCM, Menck CFM. Transcription blockage by DNA damage in nucleotide excision repair-related neurological dysfunctions. Semin Cell Dev Biol 2021; 114:20-35. [DOI: 10.1016/j.semcdb.2020.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/18/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022]
|
37
|
The Role of Nucleotide Excision Repair in Cisplatin-Induced Peripheral Neuropathy: Mechanism, Prevention, and Treatment. Int J Mol Sci 2021; 22:ijms22041975. [PMID: 33671279 PMCID: PMC7921932 DOI: 10.3390/ijms22041975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Platinum-based chemotherapy-induced peripheral neuropathy (CIPN) is one of the most common dose-limiting effects of cancer treatment and results in dose reduction and discontinuation of life-saving chemotherapy. Its debilitating effects are often permanent and lead to lifelong impairment of quality of life in cancer patients. While the mechanisms underlying the toxicity are not yet fully defined, dorsal root ganglia sensory neurons play an integral role in symptom development. DNA-platinum adducts accumulate in these cells and inhibit normal cellular function. Nucleotide excision repair (NER) is integral to the repair of platinum adducts, and proteins involved in its mechanism serve as potential targets for future therapeutics. This review aims to highlight NER’s role in cisplatin-induced peripheral neuropathy, summarize current clinical approaches to the toxicity, and discuss future perspectives for the prevention and treatment of CIPN.
Collapse
|
38
|
Lee SY, Kim JJ, Miller KM. Emerging roles of RNA modifications in genome integrity. Brief Funct Genomics 2020; 20:106-112. [PMID: 33279952 DOI: 10.1093/bfgp/elaa022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022] Open
Abstract
Post-translational modifications of proteins are well-established participants in DNA damage response (DDR) pathways, which function in the maintenance of genome integrity. Emerging evidence is starting to reveal the involvement of modifications on RNA in the DDR. RNA modifications are known regulators of gene expression but how and if they participate in DNA repair and genome maintenance has been poorly understood. Here, we review several studies that have now established RNA modifications as key components of DNA damage responses. RNA modifying enzymes and the binding proteins that recognize these modifications localize to and participate in the repair of UV-induced and DNA double-strand break lesions. RNA modifications have a profound effect on DNA-RNA hybrids (R-loops) at DNA damage sites, a structure known to be involved in DNA repair and genome stability. Given the importance of the DDR in suppressing mutations and human diseases such as neurodegeneration, immunodeficiencies, cancer and aging, RNA modification pathways may be involved in human diseases not solely through their roles in gene expression but also by their ability to impact DNA repair and genome stability.
Collapse
Affiliation(s)
- Seo Yun Lee
- Miller laboratory at the University of Texas at Austin
| | - Jae Jin Kim
- Miller laboratory at the University of Texas at Austin
| | | |
Collapse
|
39
|
Role of Nucleotide Excision Repair in Cisplatin Resistance. Int J Mol Sci 2020; 21:ijms21239248. [PMID: 33291532 PMCID: PMC7730652 DOI: 10.3390/ijms21239248] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
Cisplatin is a chemotherapeutic drug used for the treatment of a number of cancers. The efficacy of cisplatin relies on its binding to DNA and the induction of cytotoxic DNA damage to kill cancer cells. Cisplatin-based therapy is best known for curing testicular cancer; however, treatment of other solid tumors with cisplatin has not been as successful. Pre-clinical and clinical studies have revealed nucleotide excision repair (NER) as a major resistance mechanism against cisplatin in tumor cells. NER is a versatile DNA repair system targeting a wide range of helix-distorting DNA damage. The NER pathway consists of multiple steps, including damage recognition, pre-incision complex assembly, dual incision, and repair synthesis. NER proteins can recognize cisplatin-induced DNA damage and remove the damage from the genome, thereby neutralizing the cytotoxicity of cisplatin and causing drug resistance. Here, we review the molecular mechanism by which NER repairs cisplatin damage, focusing on the recent development of genome-wide cisplatin damage mapping methods. We also discuss how the expression and somatic mutations of key NER genes affect the response of cancer cells to cisplatin. Finally, small molecules targeting NER factors provide important tools to manipulate NER capacity in cancer cells. The status of research on these inhibitors and their implications in cancer treatment will be discussed.
Collapse
|
40
|
Vosoughi A, Zhang T, Shohdy KS, Vlachostergios PJ, Wilkes DC, Bhinder B, Tagawa ST, Nanus DM, Molina AM, Beltran H, Sternberg CN, Motanagh S, Robinson BD, Xiang J, Fan X, Chung WK, Rubin MA, Elemento O, Sboner A, Mosquera JM, Faltas BM. Common germline-somatic variant interactions in advanced urothelial cancer. Nat Commun 2020; 11:6195. [PMID: 33273457 PMCID: PMC7713129 DOI: 10.1038/s41467-020-19971-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 11/10/2020] [Indexed: 12/30/2022] Open
Abstract
The prevalence and biological consequences of deleterious germline variants in urothelial cancer (UC) are not fully characterized. We performed whole-exome sequencing (WES) of germline DNA and 157 primary and metastatic tumors from 80 UC patients. We developed a computational framework for identifying putative deleterious germline variants (pDGVs) from WES data. Here, we show that UC patients harbor a high prevalence of pDGVs that truncate tumor suppressor proteins. Deepening somatic loss of heterozygosity in serial tumor samples is observed, suggesting a critical role for these pDGVs in tumor progression. Significant intra-patient heterogeneity in germline-somatic variant interactions results in divergent biological pathway alterations between primary and metastatic tumors. Our results characterize the spectrum of germline variants in UC and highlight their roles in shaping the natural history of the disease. These findings could have broad clinical implications for cancer patients.
Collapse
Affiliation(s)
- Aram Vosoughi
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Tuo Zhang
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, USA
- Genomic Resources Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Kyrillus S Shohdy
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
- Department of Clinical Oncology, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| | - Panagiotis J Vlachostergios
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - David C Wilkes
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, USA
| | - Bhavneet Bhinder
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, NY, USA
| | - Scott T Tagawa
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - David M Nanus
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Ana M Molina
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Himisha Beltran
- Division of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Cora N Sternberg
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Samaneh Motanagh
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Brian D Robinson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jenny Xiang
- Genomic Resources Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Xiao Fan
- Departments of Pediatrics and Medicine, Columbia University, NY, Columbia, NY, USA
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University, NY, Columbia, NY, USA
| | - Mark A Rubin
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, NY, USA
| | - Andrea Sboner
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, NY, USA
| | - Juan Miguel Mosquera
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, USA
| | - Bishoy M Faltas
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, USA.
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
41
|
Feltrin RDS, Segatto ALA, de Souza TA, Schuch AP. Open gaps in the evolution of the eukaryotic nucleotide excision repair. DNA Repair (Amst) 2020; 95:102955. [DOI: 10.1016/j.dnarep.2020.102955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 08/06/2020] [Accepted: 08/16/2020] [Indexed: 12/24/2022]
|
42
|
Kong M, Beckwitt EC, Van Houten B. Dynamic action of DNA repair proteins as revealed by single molecule techniques: Seeing is believing. DNA Repair (Amst) 2020; 93:102909. [PMID: 33087275 DOI: 10.1016/j.dnarep.2020.102909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
DNA repair is a highly dynamic process in which the actual damage recognition process occurs through an amazing dance between the DNA duplex containing the lesion and the DNA repair proteins. Single molecule investigations have revealed that DNA repair proteins solve the speed-stability paradox, of rapid search versus stable complex formation, by conformational changes induced in both the damaged DNA and the repair proteins. Using Rad4, XPA, PARP1, APE1, OGG1 and UV-DDB as examples, we have discovered how these repair proteins limit their travel on DNA, once a lesion is encountered through a process of anomalous diffusion. We have also observed how PARP1 and APE1, as well as UV-DDB and OGG1 or APE1, co-localize dynamically at sites near DNA damage. This review highlights how our group has greatly benefited from our productive collaborations with Sam Wilson's research group.
Collapse
Affiliation(s)
- Muwen Kong
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Emily C Beckwitt
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA; Laboratory of DNA Replication, The Rockefeller University, New York, NY, USA
| | - Bennett Van Houten
- UPMC Hillman Cancer Center, University of Pittsburgh, PA 15213, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
43
|
Lodovichi S, Cervelli T, Pellicioli A, Galli A. Inhibition of DNA Repair in Cancer Therapy: Toward a Multi-Target Approach. Int J Mol Sci 2020; 21:E6684. [PMID: 32932697 PMCID: PMC7554826 DOI: 10.3390/ijms21186684] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022] Open
Abstract
Alterations in DNA repair pathways are one of the main drivers of cancer insurgence. Nevertheless, cancer cells are more susceptible to DNA damage than normal cells and they rely on specific functional repair pathways to survive. Thanks to advances in genome sequencing, we now have a better idea of which genes are mutated in specific cancers and this prompted the development of inhibitors targeting DNA repair players involved in pathways essential for cancer cells survival. Currently, the pivotal concept is that combining the inhibition of mechanisms on which cancer cells viability depends is the most promising way to treat tumorigenesis. Numerous inhibitors have been developed and for many of them, efficacy has been demonstrated either alone or in combination with chemo or radiotherapy. In this review, we will analyze the principal pathways involved in cell cycle checkpoint and DNA repair focusing on how their alterations could predispose to cancer, then we will explore the inhibitors developed or in development specifically targeting different proteins involved in each pathway, underscoring the rationale behind their usage and how their combination and/or exploitation as adjuvants to classic therapies could help in patients clinical outcome.
Collapse
Affiliation(s)
- Samuele Lodovichi
- Bioscience Department, University of Milan, Via Celoria 26, 20131 Milan, Italy;
| | - Tiziana Cervelli
- Yeast Genetics and Genomics Group, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology CNR, Via Moruzzi 1, 56125 Pisa, Italy;
| | - Achille Pellicioli
- Bioscience Department, University of Milan, Via Celoria 26, 20131 Milan, Italy;
| | - Alvaro Galli
- Yeast Genetics and Genomics Group, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology CNR, Via Moruzzi 1, 56125 Pisa, Italy;
| |
Collapse
|
44
|
Matt K, Hochecker B, Schöller-Mann A, Bergemann J. mRNA expression of ageing-associated genes in calorie reduction is subject to donor variability and can be induced by calorie restriction mimetics. Nutr Health 2020; 26:253-262. [PMID: 32552390 DOI: 10.1177/0260106020932732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Finding ways to a healthier ageing are increasingly becoming the focus of geriatric research. One way to accomplish this could be calorie restriction, as this is known to positively influence the ageing of model organisms. AIM The aim of this study was to investigate the influence of calorie reduction (F. X. Mayr therapy) and of the calorie restriction mimetics resveratrol and spermidine on the expression of ageing-associated genes. METHODS mRNA expression in peripheral blood mononuclear cells (PBMCs) of 18 participants taking part in an F. X. Mayr therapy was analysed. The PBMCs of one additional participant were treated ex vivo with spermidine or resveratrol. mRNA expression of SIRT1, SIRT3, FOXO3 and SOD2 was determined for these two calorie restriction mimetics. For the F. X. Mayr therapy samples, mRNA of XPA was analysed additionally. RESULTS mRNA expression of the ageing-associated genes showed a distinct donor variation during F. X. Mayr therapy, with a significant increase in mRNA expression of SIRT1. Expression of XPA was similar to SIRT1, with a significant correlation at the last time point tested. Spermidine treatment of PBMCs resulted in a significantly increased expression of all genes tested, whereas resveratrol treatment caused a significant increase of SIRT3, FOXO3 and SOD2 mRNA expression. CONCLUSIONS By increasing SIRT1 and XPA mRNA expression, calorie reduction in the form of F. X. Mayr therapy could contribute to a healthier ageing; however, the donor variability observed showed that not everyone benefited from this. Calorie restriction mimetics may be an option for promote healthier ageing for those who do not benefit from calorie reduction.
Collapse
Affiliation(s)
- Katja Matt
- Department of Life Sciences, Albstadt-Sigmaringen University of Applied Sciences, Sigmaringen, Germany
| | - Barbara Hochecker
- Department of Life Sciences, Albstadt-Sigmaringen University of Applied Sciences, Sigmaringen, Germany
| | - Alica Schöller-Mann
- Department of Life Sciences, Albstadt-Sigmaringen University of Applied Sciences, Sigmaringen, Germany
| | - Jörg Bergemann
- Department of Life Sciences, Albstadt-Sigmaringen University of Applied Sciences, Sigmaringen, Germany
| |
Collapse
|
45
|
Sabatella M, Pines A, Slyskova J, Vermeulen W, Lans H. ERCC1-XPF targeting to psoralen-DNA crosslinks depends on XPA and FANCD2. Cell Mol Life Sci 2020; 77:2005-2016. [PMID: 31392348 PMCID: PMC7228994 DOI: 10.1007/s00018-019-03264-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/19/2019] [Accepted: 07/31/2019] [Indexed: 01/02/2023]
Abstract
The effectiveness of many DNA-damaging chemotherapeutic drugs depends on their ability to form monoadducts, intrastrand crosslinks and/or interstrand crosslinks (ICLs) that interfere with transcription and replication. The ERCC1-XPF endonuclease plays a critical role in removal of these lesions by incising DNA either as part of nucleotide excision repair (NER) or interstrand crosslink repair (ICLR). Engagement of ERCC1-XPF in NER is well characterized and is facilitated by binding to the XPA protein. However, ERCC1-XPF recruitment to ICLs is less well understood. Moreover, specific mutations in XPF have been found to disrupt its function in ICLR but not in NER, but whether this involves differences in lesion targeting is unknown. Here, we imaged GFP-tagged ERCC1, XPF and ICLR-defective XPF mutants to investigate how in human cells ERCC1-XPF is localized to different types of psoralen-induced DNA lesions, repaired by either NER or ICLR. Our results confirm its dependence on XPA in NER and furthermore show that its engagement in ICLR is dependent on FANCD2. Interestingly, we find that two ICLR-defective XPF mutants (R689S and S786F) are less well recruited to ICLs. These studies highlight the differential mechanisms that regulate ERCC1-XPF activity in DNA repair.
Collapse
Affiliation(s)
- Mariangela Sabatella
- Department of Molecular Genetics, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
- Oncode Institute, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
| | - Alex Pines
- Department of Molecular Genetics, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
- Oncode Institute, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
| | - Jana Slyskova
- Department of Molecular Genetics, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Wim Vermeulen
- Department of Molecular Genetics, Erasmus MC, 3015 GE, Rotterdam, The Netherlands.
- Oncode Institute, Erasmus MC, 3015 GE, Rotterdam, The Netherlands.
| | - Hannes Lans
- Department of Molecular Genetics, Erasmus MC, 3015 GE, Rotterdam, The Netherlands.
- Oncode Institute, Erasmus MC, 3015 GE, Rotterdam, The Netherlands.
| |
Collapse
|
46
|
Wang Y, Argiles-Castillo D, Kane EI, Zhou A, Spratt DE. HECT E3 ubiquitin ligases - emerging insights into their biological roles and disease relevance. J Cell Sci 2020; 133:133/7/jcs228072. [PMID: 32265230 DOI: 10.1242/jcs.228072] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Homologous to E6AP C-terminus (HECT) E3 ubiquitin ligases play a critical role in various cellular pathways, including but not limited to protein trafficking, subcellular localization, innate immune response, viral infections, DNA damage responses and apoptosis. To date, 28 HECT E3 ubiquitin ligases have been identified in humans, and recent studies have begun to reveal how these enzymes control various cellular pathways by catalyzing the post-translational attachment of ubiquitin to their respective substrates. New studies have identified substrates and/or interactors with different members of the HECT E3 ubiquitin ligase family, particularly for E6AP and members of the neuronal precursor cell-expressed developmentally downregulated 4 (NEDD4) family. However, there still remains many unanswered questions about the specific roles that each of the HECT E3 ubiquitin ligases have in maintaining cellular homeostasis. The present Review discusses our current understanding on the biological roles of the HECT E3 ubiquitin ligases in the cell and how they contribute to disease development. Expanded investigations on the molecular basis for how and why the HECT E3 ubiquitin ligases recognize and regulate their intracellular substrates will help to clarify the biochemical mechanisms employed by these important enzymes in ubiquitin biology.
Collapse
Affiliation(s)
- Yaya Wang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, Shanxi, China 710054.,Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA
| | - Diana Argiles-Castillo
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA
| | - Emma I Kane
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA
| | - Anning Zhou
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, Shanxi, China 710054
| | - Donald E Spratt
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA
| |
Collapse
|
47
|
Prikas E, Poljak A, Ittner A. Mapping p38α mitogen-activated protein kinase signaling by proximity-dependent labeling. Protein Sci 2020; 29:1196-1210. [PMID: 32189389 DOI: 10.1002/pro.3854] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/03/2020] [Accepted: 03/16/2020] [Indexed: 12/15/2022]
Abstract
Mitogen-activated protein (MAP) kinase signaling is central to multiple cellular responses and processes. MAP kinase p38α is the best characterized member of the p38 MAP kinase family. Upstream factors and downstream targets of p38α have been identified in the past by conventional methods such as coimmunoprecipitation. However, a complete picture of its interaction partners and substrates in cells is lacking. Here, we employ a proximity-dependent labeling approach using biotinylation tagging to map the interactome of p38α in cultured 293T cells. Fusing the advanced biotin ligase BioID2 to the N-terminus of p38α, we used mass spectrometry to identify 37 biotin-labeled proteins that putatively interact with p38α. Gene ontology analysis confirms known upstream and downstream factors in the p38 MAP kinase cascade (e.g., MKK3, MAPKAPK2, TAB2, and c-jun). We furthermore identify a cluster of zinc finger (ZnF) domain-containing proteins that is significantly enriched among proximity-labeled interactors and is involved in gene transcription and DNA damage response. Fluorescence imaging and coimmunoprecipitation with overexpressed p38α in cells supports an interaction of p38α with ZnF protein XPA, a key factor in the DNA damage response, that is promoted by UV irradiation. These results define an extensive network of interactions of p38α in cells and new direct molecular targets of MAP kinase p38α in gene regulation and the DNA damage response.
Collapse
Affiliation(s)
- Emmanuel Prikas
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Anne Poljak
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
| | - Arne Ittner
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
48
|
XPA: DNA Repair Protein of Significant Clinical Importance. Int J Mol Sci 2020; 21:ijms21062182. [PMID: 32235701 PMCID: PMC7139726 DOI: 10.3390/ijms21062182] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 02/08/2023] Open
Abstract
The nucleotide excision repair (NER) pathway is activated in response to a broad spectrum of DNA lesions, including bulky lesions induced by platinum-based chemotherapeutic agents. Expression levels of NER factors and resistance to chemotherapy has been examined with some suggestion that NER plays a role in tumour resistance; however, there is a great degree of variability in these studies. Nevertheless, recent clinical studies have suggested Xeroderma Pigmentosum group A (XPA) protein, a key regulator of the NER pathway that is essential for the repair of DNA damage induced by platinum-based chemotherapeutics, as a potential prognostic and predictive biomarker for response to treatment. XPA functions in damage verification step in NER, as well as a molecular scaffold to assemble other NER core factors around the DNA damage site, mediated by protein–protein interactions. In this review, we focus on the interacting partners and mechanisms of regulation of the XPA protein. We summarize clinical oncology data related to this DNA repair factor, particularly its relationship with treatment outcome, and examine the potential of XPA as a target for small molecule inhibitors.
Collapse
|
49
|
Topolska-Woś AM, Sugitani N, Cordoba JJ, Le Meur KV, Le Meur RA, Kim HS, Yeo JE, Rosenberg D, Hammel M, Schärer OD, Chazin WJ. A key interaction with RPA orients XPA in NER complexes. Nucleic Acids Res 2020; 48:2173-2188. [PMID: 31925419 PMCID: PMC7038936 DOI: 10.1093/nar/gkz1231] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 01/25/2023] Open
Abstract
The XPA protein functions together with the single-stranded DNA (ssDNA) binding protein RPA as the central scaffold to ensure proper positioning of repair factors in multi-protein nucleotide excision repair (NER) machinery. We previously determined the structure of a short motif in the disordered XPA N-terminus bound to the RPA32C domain. However, a second contact between the XPA DNA-binding domain (XPA DBD) and the RPA70AB tandem ssDNA-binding domains, which is likely to influence the orientation of XPA and RPA on the damaged DNA substrate, remains poorly characterized. NMR was used to map the binding interfaces of XPA DBD and RPA70AB. Combining NMR and X-ray scattering data with comprehensive docking and refinement revealed how XPA DBD and RPA70AB orient on model NER DNA substrates. The structural model enabled design of XPA mutations that inhibit the interaction with RPA70AB. These mutations decreased activity in cell-based NER assays, demonstrating the functional importance of XPA DBD-RPA70AB interaction. Our results inform ongoing controversy about where XPA is bound within the NER bubble, provide structural insights into the molecular basis for malfunction of disease-associated XPA missense mutations, and contribute to understanding of the structure and mechanical action of the NER machinery.
Collapse
Affiliation(s)
- Agnieszka M Topolska-Woś
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37240-7917, USA.,Center for Structural Biology, Vanderbilt University, Nashville, TN 37240-7917, USA
| | - Norie Sugitani
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240-7917, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN 37240-7917, USA
| | - John J Cordoba
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37240-7917, USA.,Center for Structural Biology, Vanderbilt University, Nashville, TN 37240-7917, USA
| | - Kateryna V Le Meur
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37240-7917, USA.,Center for Structural Biology, Vanderbilt University, Nashville, TN 37240-7917, USA
| | - Rémy A Le Meur
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37240-7917, USA.,Center for Structural Biology, Vanderbilt University, Nashville, TN 37240-7917, USA
| | - Hyun Suk Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| | - Jung-Eun Yeo
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| | - Daniel Rosenberg
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Orlando D Schärer
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37240-7917, USA.,Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Walter J Chazin
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37240-7917, USA.,Center for Structural Biology, Vanderbilt University, Nashville, TN 37240-7917, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN 37240-7917, USA
| |
Collapse
|
50
|
Abstract
Exposure to arsenic in contaminated drinking water is an emerging public health problem that impacts more than 200 million people worldwide. Accumulating lines of evidence from epidemiological studies revealed that chronic exposure to arsenic can result in various human diseases including cancer, type 2 diabetes, and neurodegenerative disorders. Arsenic is also classified as a Group I human carcinogen. In this review, we survey extensively different modes of action for arsenic-induced carcinogenesis, with focus being placed on arsenic-mediated impairment of DNA repair pathways. Inorganic arsenic can be bioactivated by methylation, and the ensuing products are highly genotoxic. Bioactivation of arsenicals also elicits the production of reactive oxygen and nitrogen species (ROS and RNS), which can directly damage DNA and modify cysteine residues in proteins. Results from recent studies suggest zinc finger proteins as crucial molecular targets for direct binding to As3+ or for modifications by arsenic-induced ROS/RNS, which may constitute a common mechanism underlying arsenic-induced perturbations of DNA repair.
Collapse
|