1
|
Shigenobu-Ueno K, Sakamoto R, Kanatsu E, Kawasoe Y, Takahashi TS. Replication across O6-methylguanine activates futile cycling of DNA mismatch repair attempts assisted by the chromatin-remodelling enzyme Smarcad1. J Biochem 2025; 177:247-258. [PMID: 39882945 DOI: 10.1093/jb/mvaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/31/2025] Open
Abstract
SN1-type alkylating reagents generate O6-methylguanine (meG) lesions that activate the mismatch repair (MMR) response. Since post-replicative MMR specifically targets the nascent strand, meG on the template strand is refractory to rectification by MMR and, therefore, can induce non-productive MMR reactions. The cycling of futile MMR attempts is proposed to cause DNA double-strand breaks in the subsequent S phase, leading to ATR-checkpoint-mediated G2 arrest and apoptosis. However, the mechanistic details of futile MMR cycling, especially how this reaction is maintained in chromatin, remain unclear. Using replication-competent Xenopus egg extracts, we herein establish an in vitro system that recapitulates futile MMR cycling in the chromatin context. The meG-T mispair, but not the meG-C pair, is efficiently targeted by MMR in our system. MMR attempts on the meG-strand result in the meG-to-A correction, whilst those on the T-strand induce iterative cycles of strand excision and resynthesis. Likewise, replication across meG generates persistent single-strand breaks on the daughter DNA containing meG. Moreover, the depletion of Smarcad1, a chromatin remodeller previously reported to facilitate MMR, impairs the retention of single-strand breaks. Our study thus provides experimental evidence that chromatin replication across meG induces futile MMR cycling that is assisted by Smarcad1.
Collapse
Affiliation(s)
- Karin Shigenobu-Ueno
- Division of Biological Sciences, Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Reihi Sakamoto
- Division of Biological Sciences, Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Eiichiro Kanatsu
- Division of Biological Sciences, Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshitaka Kawasoe
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tatsuro S Takahashi
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
2
|
Yang Y, Wang P, Zhou K, Zhang W, Liu S, Ouyang J, Bai M, Ding G, Huang S, Jia Z, Zhang A. HUWE1-Mediated Degradation of MUTYH Facilitates DNA Damage and Mitochondrial Dysfunction to Promote Acute Kidney Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412250. [PMID: 39921445 PMCID: PMC11967787 DOI: 10.1002/advs.202412250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/26/2025] [Indexed: 02/10/2025]
Abstract
The role of MUTYH, a DNA repair glycosylase in the pathogenesis of acute kidney injury (AKI) is unclear. In this study, it is found that MUTYH protein levels are significantly decreased in the kidneys of cisplatin- or folic acid (FA)-induced mouse AKI models and patients with AKI. MUTYH deficiency aggravates renal dysfunction and tubular injury following cisplatin and FA treatment, along with the accumulation of 7, 8-dihydro-8-oxoguanine (8-oxoG) and impairs mitochondrial function. Importantly, the overexpression of type 2 MUTYH (nuclear) significantly ameliorates cisplatin-induced apoptosis, oxidative stress, mitochondrial dysfunction, and DNA damage in vivo and in vitro. In contrast, overexpression of type 1 MUTYH (mitochondrial) shows a marginal effect against cisplatin-induced injury, indicating the chief role of type 2 MUTYH in antagonizing AKI. Interestingly, the results also indicate that the upregulation of the E3 ligase HUWE1 causes the ubiquitination and degradation of MUTYH in tubular epithelial cells. HUWE1 knockout or treatment with the HUWE1 inhibitor BI8622 significantly protect against cisplatin-induced AKI. Taken together, these results suggest that the ubiquitin E3 ligase HUWE1-mediates ubiquitination and degradation of MUTYH can aggravate DNA damage in the nucleus and mitochondria and promote AKI. Targeting the HUWE1/MUTYH pathway may be a potential strategy for AKI treatment.
Collapse
Affiliation(s)
- Yunwen Yang
- Department of NephrologyChildren's Hospital of Nanjing Medical University72 Guangzhou RoadNanjing210008P. R. China
- Nanjing Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing210008P. R. China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029P. R. China
| | - Peipei Wang
- Department of NephrologyChildren's Hospital of Nanjing Medical University72 Guangzhou RoadNanjing210008P. R. China
- Nanjing Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing210008P. R. China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029P. R. China
| | - Kaiqian Zhou
- Department of NephrologyChildren's Hospital of Nanjing Medical University72 Guangzhou RoadNanjing210008P. R. China
- Nanjing Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing210008P. R. China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029P. R. China
| | - Wen Zhang
- Department of NephrologyAffiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjing210028P. R. China
| | - Suwen Liu
- Department of PediatricsShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan250021P. R. China
| | - Jing Ouyang
- Department of NephrologyChildren's Hospital of Nanjing Medical University72 Guangzhou RoadNanjing210008P. R. China
- Nanjing Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing210008P. R. China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029P. R. China
| | - Mi Bai
- Department of NephrologyChildren's Hospital of Nanjing Medical University72 Guangzhou RoadNanjing210008P. R. China
- Nanjing Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing210008P. R. China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029P. R. China
| | - Guixia Ding
- Department of NephrologyChildren's Hospital of Nanjing Medical University72 Guangzhou RoadNanjing210008P. R. China
- Nanjing Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing210008P. R. China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029P. R. China
| | - Songming Huang
- Department of NephrologyChildren's Hospital of Nanjing Medical University72 Guangzhou RoadNanjing210008P. R. China
- Nanjing Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing210008P. R. China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029P. R. China
| | - Zhanjun Jia
- Department of NephrologyChildren's Hospital of Nanjing Medical University72 Guangzhou RoadNanjing210008P. R. China
- Nanjing Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing210008P. R. China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029P. R. China
| | - Aihua Zhang
- Department of NephrologyChildren's Hospital of Nanjing Medical University72 Guangzhou RoadNanjing210008P. R. China
- Nanjing Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing210008P. R. China
- Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in ChildrenNanjing Medical UniversityNanjing210029P. R. China
| |
Collapse
|
3
|
Sun M, Monahan K, Moquet J, Barnard S. Ionizing Radiation May Induce Tumors Partly Through the Alteration or Regulation of Mismatch Repair Genes. Cancers (Basel) 2025; 17:564. [PMID: 40002162 PMCID: PMC11852753 DOI: 10.3390/cancers17040564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Ionizing radiation is mutagenic and carcinogenic, and it is reported to induce primary and secondary tumors with intestinal tumors being one of the most commonly observed. However, the pathological and molecular mechanism(s) underlying the radiation-associated tumorigenesis remain unclear. A link between radiation and somatic tumorigenesis partly through genetic, epigenetic alteration and/or regulation of mismatch repair (MMR) genes has been hypothesized for the first time within this review. Clinical observations and experimental findings provide significant support for this association including MMR mutations as well as altered MMR RNA and protein expressions that occurred post-exposure, although existing evidence in published literature is sparse in this niche area. Some speculative mechanisms are suggested with this review to inform future research. Further studies are needed to understand the roles of the MMR system in response to radiation and to test this possible connection which could potentially provide useful and urgently needed information for clinical guidance.
Collapse
Affiliation(s)
- Mingzhu Sun
- UK Health Security Agency (UKHSA), Cytogenetics Group, Radiation Effects Department, Radiation, Chemical, Climate and Environmental Hazards Directorate, Chilton, Didcot OX11 0RQ, UK
| | - Kevin Monahan
- Lynch Syndrome Clinic, Centre for Familial Intestinal Cancer, St Mark’s Hospital, London North West University Healthcare NHS Trust, Watford Road, Harrow HA1 3UJ, UK
- Department of Surgery and Cancer, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Jayne Moquet
- UK Health Security Agency (UKHSA), Cytogenetics Group, Radiation Effects Department, Radiation, Chemical, Climate and Environmental Hazards Directorate, Chilton, Didcot OX11 0RQ, UK
| | - Stephen Barnard
- UK Health Security Agency (UKHSA), Cytogenetics Group, Radiation Effects Department, Radiation, Chemical, Climate and Environmental Hazards Directorate, Chilton, Didcot OX11 0RQ, UK
| |
Collapse
|
4
|
Pan Q, Zhang Z, Xiong Y, Bao Y, Chen T, Xu P, Liu Z, Ma H, Yu Y, Zhou Z, Wei W. Mapping functional elements of the DNA damage response through base editor screens. Cell Rep 2024; 43:115047. [PMID: 39661519 DOI: 10.1016/j.celrep.2024.115047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 09/05/2024] [Accepted: 11/19/2024] [Indexed: 12/13/2024] Open
Abstract
Maintaining genomic stability is vital for cellular equilibrium. In this study, we combined CRISPR-mediated base editing with pooled screening technologies to identify numerous mutations in lysine residues and protein-coding genes. The loss of these lysine residues and genes resulted in either sensitivity or resistance to DNA-damaging agents. Among the identified variants, we characterized both loss-of-function and gain-of-function mutations in response to DNA damage. Notably, we discovered that the K494 mutation of C17orf53 disrupts its interaction with RPA proteins, leading to increased sensitivity to cisplatin. Additionally, our analysis identified STK35 as a previously unrecognized gene involved in DNA damage response (DDR) pathways, suggesting that it may play a critical role in DNA repair. We believe that this resource will offer valuable insights into the broader functions of DNA damage response genes and accelerate research on variants relevant to cancer therapy.
Collapse
Affiliation(s)
- Qian Pan
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhixuan Zhang
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yangfang Xiong
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Bao
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Changping Laboratory, Beijing 102206, China
| | - Tianxin Chen
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ping Xu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhiheng Liu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Huazheng Ma
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Yu
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhuo Zhou
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
| | - Wensheng Wei
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Changping Laboratory, Beijing 102206, China.
| |
Collapse
|
5
|
Cao Z, Dai L, Li J, Zhang J, Wang X, Xu A, Du H. Reproductive and germ-cell mutagenic effects of poly-and perfluoroalkyl substances (PFAS) to Caenorhabditis elegans after multigenerational exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176224. [PMID: 39270858 DOI: 10.1016/j.scitotenv.2024.176224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of globally ubiquitous persistent organic pollutants (POPs). The developmental and reproductive toxicity of PFAS have attracted considerable attention. However, the influence of PFAS exposure on genomic stability of germ cells remains unexplored. In this study, we evaluated long-term reproductive toxicity of environmentally relevant levels of four long-chain PFAS compounds: perfluorooctanoic acid (PFOA, C8), perfluorononanoic acid (PFNA, C9), perfluorodecanoic acid (PFDA, C10), and perfluorooctanesulfonic acid (PFOS, C8), and examined their germ-cell mutagenicity in Caenorhabditis elegans. Our findings reveal that multigenerational exposure to PFAS exhibited minor impacts on development and reproduction of worms. Among all tested PFAS, PFNA significantly increased mutation frequencies of progeny by preferentially inducing T:A → C:G substitutions and small indels within repetitive regions. Further analysis of mutation spectra uncovered elevated frequencies of microhomology-mediated deletions and large deletions in PFOA-treated worms, indicating its potential activity in eliciting DNA double-strand breaks. This study provides the first comparative analysis of the genome-wide mutational profile of PFAS compounds, underscoring the importance of assessing germ-cell mutagenic actions of long-chain PFAS.
Collapse
Affiliation(s)
- Zhenxiao Cao
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, P. R. China
| | - Linglong Dai
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, P. R. China; Science Island Branch, Graduate School of USTC, Hefei 230026, Anhui, P. R. China
| | - Jiali Li
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, P. R. China; Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, P. R. China
| | - Jingyi Zhang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Anhui, No. 81, Mei-Shan Road, Hefei 230032, P. R. China
| | - Xialian Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, P. R. China; Science Island Branch, Graduate School of USTC, Hefei 230026, Anhui, P. R. China
| | - An Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, P. R. China.
| | - Hua Du
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, CAS, Hefei 230031, Anhui, P. R. China.
| |
Collapse
|
6
|
Raveneau M, Guerrini-Rousseau L, Levy R, Roux CJ, Bolle S, Doz F, Bourdeaut F, Colas C, Blauwblomme T, Beccaria K, Tauziède-Espariat A, Varlet P, Dufour C, Grill J, Boddaert N, Dangouloff-Ros V. Specific brain MRI features of constitutional mismatch repair deficiency syndrome in children with high-grade gliomas. Eur Radiol 2024; 34:7765-7775. [PMID: 38981890 DOI: 10.1007/s00330-024-10885-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/27/2024] [Accepted: 05/04/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Children with constitutional mismatch repair deficiency (CMMRD) syndrome have an increased risk of high-grade gliomas (HGG), and brain imaging abnormalities. This study analyzes brain imaging features in CMMRD syndrome children versus those with HGG without CMMRD. METHODS Retrospective comparative analysis of brain imaging in 30 CMMRD children (20 boys, median age eight years, 22 with HGG), seven with Lynch syndrome (7 HGG), 39 with type 1 neurofibromatosis (NF1) (four with HGG) and 50 with HGG without MMR or NF1 pathogenic variant ("no-predisposition" patients). RESULTS HGG in CMMRD and Lynch patients were predominantly hemispheric (versus midline) compared to NF1 and no-predisposition patients (91% and 86%, vs 25% and 54%, p = 0.004). CMMRD-associated tumors often had ill-defined boundaries (p = 0.008). All CMMRD patients exhibited at least one developmental venous anomaly (DVA), versus 14%, 10%, and 6% of Lynch, NF1, and no-predisposition patients (p < 0.0001). Multiple DVAs were observed in 83% of CMMRD patients, one NF1 patient (3%), and never in other groups (p < 0.0001). Cavernomas were discovered in 21% of CMMRD patients, never in other groups (p = 0.01). NF1-like focal areas of high T2-FLAIR signal intensity (FASI) were more prevalent in CMMRD patients than in Lynch or no-predisposition patients (50%, vs 20% and 0%, respectively, p < 0.0001). Subcortical and ill-limited FASI, possibly involving the cortex, were specific to CMMRD (p < 0.0001) and did not evolve in 93% of patients (13/14). CONCLUSION Diffuse hemispherically located HGG associated with multiple DVAs, cavernomas, and NF1-like or subcortical FASI strongly suggests CMMRD syndrome compared to children with HGG in other contexts. CLINICAL RELEVANCE STATEMENT The radiologic suggestion of CMMRD syndrome when confronted with HGGs in children may prompt genetic testing. This can influence therapeutic plans. Therefore, imaging features could potentially be incorporated into CMMRD testing recommendations. KEY POINTS Using imaging to detect CMMRD syndrome early may improve patient care. CMMRD features include: hemispheric HGG with multiple developmental venous anomalies and NF1-like or subcortical areas with high T2-FLAIR intensity. We propose novel imaging features to improve the identification of potential CMMRD patients.
Collapse
Affiliation(s)
- Magali Raveneau
- Pediatric Radiology Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades, F-75015, Paris, France
| | - Léa Guerrini-Rousseau
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Institute, 114 rue Edouard Vaillant, 94805, Villejuif, France
- Génomique et Oncogénèse des Tumeurs Cérébrales Pédiatriques, Gustave Roussy Cancer Center and Paris-Saclay University, INSERM U981, Villejuif, France
| | - Raphael Levy
- Pediatric Radiology Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades, F-75015, Paris, France
- INSERM U1299, F-75015, Paris, France
- UMR 1163, Institut Imagine, F-75015, Paris, France
| | - Charles-Joris Roux
- Pediatric Radiology Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades, F-75015, Paris, France
- INSERM U1299, F-75015, Paris, France
- UMR 1163, Institut Imagine, F-75015, Paris, France
| | - Stéphanie Bolle
- Radiation Therapy Department, Gustave Roussy Institute, 114 rue Edouard Vaillant, 94805, Villejuif, France
| | - François Doz
- 12 rue de l'École de Médecine, Université Paris Cité, Paris, France
- Oncology Center SIREDO (Care Innovation and Research for Children, Adolescents and Young Adults with Cancer), Institute Curie, 26 rue d'Ulm, 75005, Paris, France
| | - Franck Bourdeaut
- 12 rue de l'École de Médecine, Université Paris Cité, Paris, France
- Oncology Center SIREDO (Care Innovation and Research for Children, Adolescents and Young Adults with Cancer), Institute Curie, 26 rue d'Ulm, 75005, Paris, France
| | - Chrystelle Colas
- Clinical Genetics Unit, Institute Curie, 26 rue d'Ulm, 75005, Paris, France
| | - Thomas Blauwblomme
- 12 rue de l'École de Médecine, Université Paris Cité, Paris, France
- Pediatric Neurosurgery Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades, F-75015, Paris, France
| | - Kevin Beccaria
- 12 rue de l'École de Médecine, Université Paris Cité, Paris, France
- Pediatric Neurosurgery Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades, F-75015, Paris, France
| | - Arnault Tauziède-Espariat
- Department of Neuropathology, GHU Paris-Psychiatrie et Neurosciences, Hôpital Sainte-Anne, 75014, Paris, France
- Ima-Brain team, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Université Paris Cité, 75014, Paris, France
| | - Pascale Varlet
- 12 rue de l'École de Médecine, Université Paris Cité, Paris, France
- Department of Neuropathology, GHU Paris-Psychiatrie et Neurosciences, Hôpital Sainte-Anne, 75014, Paris, France
- Ima-Brain team, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Université Paris Cité, 75014, Paris, France
| | - Christelle Dufour
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Institute, 114 rue Edouard Vaillant, 94805, Villejuif, France
- Génomique et Oncogénèse des Tumeurs Cérébrales Pédiatriques, Gustave Roussy Cancer Center and Paris-Saclay University, INSERM U981, Villejuif, France
| | - Jacques Grill
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Institute, 114 rue Edouard Vaillant, 94805, Villejuif, France
- Génomique et Oncogénèse des Tumeurs Cérébrales Pédiatriques, Gustave Roussy Cancer Center and Paris-Saclay University, INSERM U981, Villejuif, France
| | - Nathalie Boddaert
- Pediatric Radiology Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades, F-75015, Paris, France
- INSERM U1299, F-75015, Paris, France
- UMR 1163, Institut Imagine, F-75015, Paris, France
- 12 rue de l'École de Médecine, Université Paris Cité, Paris, France
| | - Volodia Dangouloff-Ros
- Pediatric Radiology Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades, F-75015, Paris, France.
- INSERM U1299, F-75015, Paris, France.
- UMR 1163, Institut Imagine, F-75015, Paris, France.
- 12 rue de l'École de Médecine, Université Paris Cité, Paris, France.
| |
Collapse
|
7
|
Rico-Méndez MA, Ayala-Madrigal MDLL, González-Mercado A, Gutiérrez-Angulo M, Ramírez de Arellano Sánchez JA, Beltrán-Ontiveros SA, Contreras-Haro B, Gutiérrez-Hurtado IA, Moreno-Ortiz JM. Microsatellite Instability in Urine: Breakthrough Method for Bladder Cancer Identification. Biomedicines 2024; 12:2726. [PMID: 39767633 PMCID: PMC11727160 DOI: 10.3390/biomedicines12122726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
Bladder cancer (BC) is the most common neoplasm of the urinary system and ranks tenth in global cancer incidence. Due to its high recurrence rate and the need for continuous monitoring, it is the cancer with the highest cost per patient. Cystoscopy is the traditional method for its detection and surveillance; however, this is an invasive technique, while non-invasive methods, such as cytology, have a limited sensitivity. For this reason, new non-invasive strategies have emerged, analyzing useful markers for BC detection from urine samples. The identification of tumor markers is essential for early cancer detection and treatment. Urine analysis offers a non-invasive method to identify these markers. Microsatellite instability (MSI) has been proposed as a promising marker for tumor cell detection and guided targeted therapies. Therefore, this review aims to explore the evidence supporting the identification of MSI in exfoliated bladder tumor cells (EBTCs) in the urine, emphasizing its potential as a non-invasive and clinically effective alternative for tumor identification. Furthermore, establishing clinical guidelines is crucial for standardizing its application in oncological screening and validating its clinical utility.
Collapse
Affiliation(s)
- Manuel Alejandro Rico-Méndez
- Doctorado en Genética Humana, Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.A.R.-M.); (M.d.l.L.A.-M.); (A.G.-M.)
| | - María de la Luz Ayala-Madrigal
- Doctorado en Genética Humana, Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.A.R.-M.); (M.d.l.L.A.-M.); (A.G.-M.)
| | - Anahí González-Mercado
- Doctorado en Genética Humana, Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.A.R.-M.); (M.d.l.L.A.-M.); (A.G.-M.)
| | - Melva Gutiérrez-Angulo
- Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47600, Jalisco, Mexico;
| | - Jorge Adrián Ramírez de Arellano Sánchez
- Instituto de Investigación en Ciencias Biomédicas, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico;
| | - Saul Armando Beltrán-Ontiveros
- Centrode Investigación y Docencia en Ciencias de la Salud, Universidad Autónoma de Sinaloa, Culiacán Rosales 80030, Sinaloa, Mexico;
| | - Betsabe Contreras-Haro
- Unidad de Investigación Biomédica 02, Unidades Médicas de Alta Especialidad, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44329, Jalisco, Mexico;
| | - Itzae Adonai Gutiérrez-Hurtado
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - José Miguel Moreno-Ortiz
- Doctorado en Genética Humana, Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.A.R.-M.); (M.d.l.L.A.-M.); (A.G.-M.)
| |
Collapse
|
8
|
Provasek VE, Bacolla A, Rangaswamy S, Mitra J, Kodavati M, Yusuf IO, Malojirao VH, Vasquez V, Britz GW, Li GM, Xu Z, Mitra S, Garruto RM, Tainer JA, Hegde ML. RNA/DNA Binding Protein TDP43 Regulates DNA Mismatch Repair Genes with Implications for Genome Stability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594552. [PMID: 38798341 PMCID: PMC11118483 DOI: 10.1101/2024.05.16.594552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
TAR DNA-binding protein 43 (TDP43) is increasingly recognized for its involvement in neurodegenerative diseases, particularly amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). TDP43 proteinopathy, characterized by dysregulated nuclear export and cytoplasmic aggregation, is present in most ALS/FTD cases and is associated with a loss of nuclear function and genomic instability in neurons. Building on prior evidence linking TDP43 pathology to DNA double-strand breaks (DSBs), this study identifies a novel regulatory role for TDP43 in the DNA mismatch repair (MMR) pathway. We demonstrate that depletion or overexpression of TDP43 affects the expression of key MMR genes, including MLH1, MSH6, MSH2, MSH3, and PMS2. Specifically, TDP43 modulates the expression of MLH1 and MSH6 proteins through alternative splicing and transcript stability. These findings are validated in ALS mice models, patient-derived neural progenitor cells and autopsied brain tissues from ALS patients. Furthermore, MMR depletion showed a partial rescue of TDP43-induced DNA damage in neuronal cells. Bioinformatics analysis of TCGA cancer database reveals significant correlations between TDP43 and MMR gene expressions and mutational burden across various cancer subtypes. These results collectively establish TDP43 as a critical regulator of the MMR pathway, with broad implications for understanding the genomic instability underlying neurodegenerative and neoplastic diseases.
Collapse
Affiliation(s)
- Vincent E Provasek
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
- School of Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Suganya Rangaswamy
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Joy Mitra
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Manohar Kodavati
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Issa O Yusuf
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Vikas H Malojirao
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Velmarini Vasquez
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Gavin W Britz
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Neurosurgery and Department of Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA
| | - Guo-Min Li
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zuoshang Xu
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Sankar Mitra
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Ralph M Garruto
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY 13902
| | - John A Tainer
- Department of Molecular and Cellular Oncology, Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Muralidhar L Hegde
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
9
|
Murphy BÓ, Latimer C, Dobani S, Pourshahidi LK, Fontana M, Ternan NG, McDougall G, Rowland I, Pereira-Caro G, Tuohy KM, Del Rio D, Almutairi TM, Crozier A, Naumovski N, Gill CIR. Microbially mediated phenolic catabolites exert differential genoprotective activities in normal and adenocarcinoma cell lines. Int J Food Sci Nutr 2024; 75:673-686. [PMID: 39261459 DOI: 10.1080/09637486.2024.2397055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024]
Abstract
Age-associated decline of nuclear factor erythroid 2-related factor 2 (Nrf2) activity and DNA repair efficiency leads to the accumulation of DNA damage and increased risk of cancer. Understanding the mechanisms behind increased levels of damaged DNA is crucial for developing interventions to mitigate age-related cancer risk. Associated with various health benefits, (poly)phenols and their microbially mediated phenolic catabolites represent a potential means to reduce DNA damage. Four colonic-microbiota-derived phenolic catabolites were investigated for their ability to reduce H2O2-induced oxidative DNA damage and modulate the Nrf2-Antixoidant Response Element (ARE) pathway, in normal (CCD 841 CoN) and adenocarcinoma (HT29) colonocyte cell lines. Each catabolite demonstrated significant (p < .001) genoprotective activity and modulation of key genes in the Nrf2-ARE pathway. Overall, the colon-derived phenolic metabolites, when assessed at physiologically relevant concentrations, reduced DNA damage in both normal and adenocarcinoma colonic cells in response to oxidative challenge, mediated in part via upregulation of the Nrf2-ARE pathway.
Collapse
Affiliation(s)
- Brian Óg Murphy
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK
| | - Cheryl Latimer
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK
| | - Sara Dobani
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK
| | - L Kirsty Pourshahidi
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK
| | - Massimilano Fontana
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK
| | - Nigel G Ternan
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK
| | - Gordon McDougall
- Environmental and Biochemical Sciences Department, The James Hutton Institute, Dundee, UK
| | - Ian Rowland
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Gema Pereira-Caro
- Department of Food Science and Health, IFAPA-Alameda Del Obispo, Córdoba, Spain
| | - Kieran M Tuohy
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | | | - Alan Crozier
- Department of Chemistry, King Saud University Riyadh, Saudi Arabia
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
| | - Nenad Naumovski
- School of Rehabilitation and Exercise Sciences, Faculty of Health, University of Canberra, Canberra, Australia
| | - Chris I R Gill
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK
| |
Collapse
|
10
|
Rico-Méndez MA, López-Ceballos AG, Moreno-Ortiz JM, Ayala-Madrigal MDLL, Gutiérrez-Angulo M, Ramírez-Ramírez R, González-Mercado MG, González-Mercado A. Intronic Variants in the MSH2 (rs2303426 and rs10179950) and PMS2 (rs2286681 and rs62456178) Genes Are Not Associated with Colorectal Cancer in Mexican Patients. Genes (Basel) 2024; 15:1380. [PMID: 39596580 PMCID: PMC11594145 DOI: 10.3390/genes15111380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES In the origin and development of colorectal cancer (CRC), a global public health problem, a dysfunction mismatch repair system appears to be a key factor. The objective was to determine the association of intronic variants in the MSH2 and PMS2 genes with CRC in Mexican patients. METHODS Blood samples of 143 CRC patients and 146 reference individuals were genotyped through TaqMan® Genotyping Assays. Genotypic and allelic frequencies were determined by direct counting. To compare genotypic and allelic distributions, the chi-square test was used. For the association analysis, the risks of alleles and genotypes were estimated by odds ratio with 95% confidence intervals. Haplogroups were inferred with a Bayesian algorithm. Linkage disequilibrium was measured using D' and r2 with Arlequin v3.5.2. The in silico analysis was carried out using the SpliceAI, UCSC, JASPAR and TRRUST platforms. All statistical analyses were performed with SPSS v29.0.2.0. RESULTS In the CRC group, the mean age was 58.2 ± 14.7 years and 60.8% were men. No variant was associated with CRC or implicated in gene post-replicative processing. Linkage disequilibrium was observed for loci rs2303426 and rs10179950 in MSH2 and for loci rs2286681 and rs62456178 in PMS2. CONCLUSIONS The genotypic and allelic frequencies of the four variants are reported for the first time in Mexican patients with CRC. No association was found between gene variants and risk for CRC but there was a strong linkage disequilibrium between the loci of both MSH2 and PMS2 genes. None of the variants showed a possible repercussion on splicing.
Collapse
Affiliation(s)
- Manuel Alejandro Rico-Méndez
- Doctorado en Genética Humana e Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.A.R.-M.); (J.M.M.-O.); (M.d.l.L.A.-M.); (M.G.-A.)
| | - Anna Guadalupe López-Ceballos
- Doctorado en Genética Humana e Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.A.R.-M.); (J.M.M.-O.); (M.d.l.L.A.-M.); (M.G.-A.)
| | - José Miguel Moreno-Ortiz
- Doctorado en Genética Humana e Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.A.R.-M.); (J.M.M.-O.); (M.d.l.L.A.-M.); (M.G.-A.)
| | - María de la Luz Ayala-Madrigal
- Doctorado en Genética Humana e Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.A.R.-M.); (J.M.M.-O.); (M.d.l.L.A.-M.); (M.G.-A.)
| | - Melva Gutiérrez-Angulo
- Doctorado en Genética Humana e Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.A.R.-M.); (J.M.M.-O.); (M.d.l.L.A.-M.); (M.G.-A.)
- Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47600, Mexico
| | - Ruth Ramírez-Ramírez
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 45200, Mexico;
| | - Mirna Gisel González-Mercado
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Campus Guadalajara, Zapopan 45138, Mexico;
| | - Anahí González-Mercado
- Doctorado en Genética Humana e Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.A.R.-M.); (J.M.M.-O.); (M.d.l.L.A.-M.); (M.G.-A.)
| |
Collapse
|
11
|
Carvalho FM, Carvalho JP. Unraveling the Heterogeneity of Deficiency of Mismatch Repair Proteins in Endometrial Cancer: Predictive Biomarkers and Assessment Challenges. Cancers (Basel) 2024; 16:3452. [PMID: 39456546 PMCID: PMC11505891 DOI: 10.3390/cancers16203452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Endometrial cancer (EC) poses a significant global health challenge, with increasing prevalence in 26 of 43 countries and over 13,000 deaths projected in the United States by 2024. This rise correlates with aging populations, the obesity epidemic, and changing reproductive patterns, including delayed childbearing. Despite the early diagnosis in 67% of cases, approximately 30% of cases present with regional or distant spread, leading to nearly 20% mortality rates. Unlike many cancers, EC mortality rates are escalating, outpacing therapeutic advancements until recently. One of the reasons for this was the lack of effective therapeutic options for advanced disease until recently. The introduction of immunotherapy has marked a turning point in EC treatment, particularly benefiting patients with defects in mismatch repair proteins (dMMRs). However, dMMR status alone does not ensure a favorable response, underscoring the need for precise patient selection. This review explores the pivotal role of mismatch repair proteins in EC, emphasizing their heterogeneity, the challenges in their assessment, and their potential as predictive biomarkers.
Collapse
Affiliation(s)
- Filomena M. Carvalho
- Department of Pathology, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo 01246-903, Brazil
| | - Jesus P. Carvalho
- Department of Obstetrics and Gynecology, Instituto do Cancer do Estado de Sao Paulo, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo 01246-903, Brazil;
| |
Collapse
|
12
|
Pan F, Xu P, Roland C, Sagui C, Weninger K. Structural and Dynamical Properties of Nucleic Acid Hairpins Implicated in Trinucleotide Repeat Expansion Diseases. Biomolecules 2024; 14:1278. [PMID: 39456210 PMCID: PMC11505666 DOI: 10.3390/biom14101278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/26/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Dynamic mutations in some human genes containing trinucleotide repeats are associated with severe neurodegenerative and neuromuscular disorders-known as Trinucleotide (or Triplet) Repeat Expansion Diseases (TREDs)-which arise when the repeat number of triplets expands beyond a critical threshold. While the mechanisms causing the DNA triplet expansion are complex and remain largely unknown, it is now recognized that the expandable repeats lead to the formation of nucleotide configurations with atypical structural characteristics that play a crucial role in TREDs. These nonstandard nucleic acid forms include single-stranded hairpins, Z-DNA, triplex structures, G-quartets and slipped-stranded duplexes. Of these, hairpin structures are the most prolific and are associated with the largest number of TREDs and have therefore been the focus of recent single-molecule FRET experiments and molecular dynamics investigations. Here, we review the structural and dynamical properties of nucleic acid hairpins that have emerged from these studies and the implications for repeat expansion mechanisms. The focus will be on CAG, GAC, CTG and GTC hairpins and their stems, their atomistic structures, their stability, and the important role played by structural interrupts.
Collapse
Affiliation(s)
- Feng Pan
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA; (F.P.); (C.R.)
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Pengning Xu
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA; (F.P.); (C.R.)
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christopher Roland
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA; (F.P.); (C.R.)
| | - Celeste Sagui
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA; (F.P.); (C.R.)
| | - Keith Weninger
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA; (F.P.); (C.R.)
| |
Collapse
|
13
|
Varol A, Boulos JC, Jin C, Klauck SM, Zhitkovich A, Efferth T. Inhibition of MSH6 augments the antineoplastic efficacy of cisplatin in non-small cell lung cancer as autophagy modulator. Chem Biol Interact 2024; 402:111193. [PMID: 39168426 DOI: 10.1016/j.cbi.2024.111193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/18/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
The altered response to chemotherapeutic agents predominantly stems from heightened single-point mutations within coding regions and dysregulated expression levels of genes implicated in drug resistance mechanisms. The identification of biomarkers based on mutation profiles and expression levels is pivotal for elucidating the underlying mechanisms of altered drug responses and for refining combinatorial therapeutic strategies in the field of oncology. Utilizing comprehensive bioinformatic analyses, we investigated the impact of eight mismatch repair (MMR) genes on overall survival across 23 cancer types, encompassing more than 7500 tumors, by integrating their mutation profiles. Among these genes, MSH6 emerged as the most predictive biomarker, characterized by a pronounced mutation frequency and elevated expression levels, which correlated with poorer patient survival outcomes. The wet lab experiments disclosed the impact of MSH6 in mediating altered drug responses. Cytotoxic assays conducted revealed that the depletion of MSH6 in H460 non-small lung cancer cells augmented the efficacy of cisplatin, carboplatin, and gemcitabine. Pathway analyses further delineated the involvement of MSH6 as a modulator, influencing the delicate equilibrium between the pro-survival and pro-death functions of autophagy. Our study elucidates the intricate interplay between MSH6, autophagy, and cisplatin efficacy, highlighting MSH6 as a potential therapeutic target to overcome cisplatin resistance. By revealing the modulation of autophagy pathways by MSH6 inhibition, our findings offer insights into novel approaches for enhancing the efficacy of cisplatin-based cancer therapy through targeted interventions.
Collapse
Affiliation(s)
- Ayşegül Varol
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128, Mainz, Germany
| | - Joelle C Boulos
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128, Mainz, Germany
| | - Chunmei Jin
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128, Mainz, Germany
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ) Heidelberg, National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, 02903, USA
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128, Mainz, Germany.
| |
Collapse
|
14
|
Incorvaia L, Bazan Russo TD, Gristina V, Perez A, Brando C, Mujacic C, Di Giovanni E, Bono M, Contino S, Ferrante Bannera C, Vitale MC, Gottardo A, Peri M, Galvano A, Fanale D, Badalamenti G, Russo A, Bazan V. The intersection of homologous recombination (HR) and mismatch repair (MMR) pathways in DNA repair-defective tumors. NPJ Precis Oncol 2024; 8:190. [PMID: 39237751 PMCID: PMC11377838 DOI: 10.1038/s41698-024-00672-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
Homologous recombination (HR) and mismatch repair (MMR) defects are driver mutational imprints and actionable biomarkers in DNA repair-defective tumors. Although usually thought as mutually exclusive pathways, recent preclinical and clinical research provide preliminary evidence of a functional crosslink and crosstalk between HRR and MMR. Shared core proteins are identified as key players in both pathways, broadening the concept of DNA repair mechanism exclusivity in specific tumor types. These observations may result in unexplored forms of synthetic lethality or hypermutable tumor phenotypes, potentially impacting the cancer risk management, and considerably expanding in the future the therapeutic window for DNA repair-defective tumors.
Collapse
Affiliation(s)
- Lorena Incorvaia
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Tancredi Didier Bazan Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Valerio Gristina
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Alessandro Perez
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Chiara Brando
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Clarissa Mujacic
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Emilia Di Giovanni
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Marco Bono
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Silvia Contino
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Carla Ferrante Bannera
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Maria Concetta Vitale
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Andrea Gottardo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Marta Peri
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Antonio Galvano
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Daniele Fanale
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Giuseppe Badalamenti
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy.
| | - Antonio Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), Section of Medical Oncology, University of Palermo, Palermo, Italy.
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), Section of Medical Oncology, University of Palermo, Palermo, Italy
| |
Collapse
|
15
|
Uechi Y, Fujikane R, Morita S, Tamaoki S, Hidaka M. Bloom syndrome DNA helicase mitigates mismatch repair-dependent apoptosis. Biochem Biophys Res Commun 2024; 723:150214. [PMID: 38850810 DOI: 10.1016/j.bbrc.2024.150214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/26/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Generation of O6-methylguanine (O6-meG) by DNA-alkylating agents such as N-methyl N-nitrosourea (MNU) activates the multiprotein mismatch repair (MMR) complex and the checkpoint response involving ATR/CHK1 and ATM/CHK2 kinases, which may in turn trigger cell cycle arrest and apoptosis. The Bloom syndrome DNA helicase BLM interacts with the MMR complex, suggesting functional relevance to repair and checkpoint responses. We observed a strong interaction of BLM with MMR proteins in HeLa cells upon treatment with MNU as evidenced by co-immunoprecipitation as well as colocalization in the nucleus as revealed by dual immunofluorescence staining. Knockout of BLM sensitized HeLa MR cells to MNU-induced cell cycle disruption and enhanced expression of the apoptosis markers cleaved caspase-9 and PARP1. MNU-treated BLM-deficient cells also exhibited a greater number of 53BP1 foci and greater phosphorylation levels of H2AX at S139 and RPA32 at S8, indicating the accumulation of DNA double-strand breaks. These findings suggest that BLM prevents double-strand DNA breaks during the MMR-dependent DNA damage response and mitigates O6-meG-induced apoptosis.
Collapse
Affiliation(s)
- Yuka Uechi
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, 2-15-1, Tamura, Sawaraku, Fukuoka, 814-0193, Japan; Department of Oral Growth and Development, Fukuoka Dental College, 2-15-1, Tamura, Sawaraku, Fukuoka, 814-0193, Japan
| | - Ryosuke Fujikane
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, 2-15-1, Tamura, Sawaraku, Fukuoka, 814-0193, Japan; Oral Medicine Research Center, Fukuoka Dental College, 2-15-1, Tamura, Sawaraku, Fukuoka, 814-0193, Japan.
| | - Sho Morita
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, 2-15-1, Tamura, Sawaraku, Fukuoka, 814-0193, Japan
| | - Sachio Tamaoki
- Department of Oral Growth and Development, Fukuoka Dental College, 2-15-1, Tamura, Sawaraku, Fukuoka, 814-0193, Japan
| | - Masumi Hidaka
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, 2-15-1, Tamura, Sawaraku, Fukuoka, 814-0193, Japan; Oral Medicine Research Center, Fukuoka Dental College, 2-15-1, Tamura, Sawaraku, Fukuoka, 814-0193, Japan
| |
Collapse
|
16
|
Santos JAV, Silva D, Marques MPM, Batista de Carvalho LAE. Platinum-based chemotherapy: trends in organic nanodelivery systems. NANOSCALE 2024; 16:14640-14686. [PMID: 39037425 DOI: 10.1039/d4nr01483a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Despite the investment in platinum drugs research, cisplatin, carboplatin and oxaliplatin are still the only Pt-based compounds used as first line treatments for several cancers, with a few other compounds being approved for administration in some Asian countries. However, due to the severe and worldwide impact of oncological diseases, there is an urge for improved chemotherapeutic approaches. Furthermore, the pharmaceutical application of platinum complexes is hindered by their inherent toxicity and acquired resistance. Nanodelivery systems rose as a key strategy to overcome these challenges, with recognized versatility and ability towards improving the safety, bioavailability and efficacy of the available drugs. Among the known nanocarriers, organic systems have been widely applied, taking advantage of their potential as drug vehicles. Researchers have mainly focused on the development of lipidic and polymeric carriers, including supramolecular structures, with an overall improvement of encapsulated platinum complexes. Herein, an overview of recent trends and strategies is presented, with the main focus on the encapsulation of platinum compounds into organic nanocarriers, showcasing the evolution in the design and development of these promising systems. This comprehensive review highlights formulation methods as well as characterization procedures, providing insights that may be helpful for the development of novel platinum nanocarriers aiming at future pharmaceutical applications.
Collapse
Affiliation(s)
- João A V Santos
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Daniela Silva
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Maria Paula M Marques
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Luís A E Batista de Carvalho
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
17
|
Fujii S, Fuchs RP. Accidental Encounter of Repair Intermediates in Alkylated DNA May Lead to Double-Strand Breaks in Resting Cells. Int J Mol Sci 2024; 25:8192. [PMID: 39125763 PMCID: PMC11311527 DOI: 10.3390/ijms25158192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
In clinics, chemotherapy is often combined with surgery and radiation to increase the chances of curing cancers. In the case of glioblastoma (GBM), patients are treated with a combination of radiotherapy and TMZ over several weeks. Despite its common use, the mechanism of action of the alkylating agent TMZ has not been well understood when it comes to its cytotoxic effects in tumor cells that are mostly non-dividing. The cellular response to alkylating DNA damage is operated by an intricate protein network involving multiple DNA repair pathways and numerous checkpoint proteins that are dependent on the type of DNA lesion, the cell type, and the cellular proliferation state. Among the various alkylating damages, researchers have placed a special on O6-methylguanine (O6-mG). Indeed, this lesion is efficiently removed via direct reversal by O6-methylguanine-DNA methyltransferase (MGMT). As the level of MGMT expression was found to be directly correlated with TMZ efficiency, O6-mG was identified as the critical lesion for TMZ mode of action. Initially, the mode of action of TMZ was proposed as follows: when left on the genome, O6-mG lesions form O6-mG: T mispairs during replication as T is preferentially mis-inserted across O6-mG. These O6-mG: T mispairs are recognized and tentatively repaired by a post-replicative mismatched DNA correction system (i.e., the MMR system). There are two models (futile cycle and direct signaling models) to account for the cytotoxic effects of the O6-mG lesions, both depending upon the functional MMR system in replicating cells. Alternatively, to explain the cytotoxic effects of alkylating agents in non-replicating cells, we have proposed a "repair accident model" whose molecular mechanism is dependent upon crosstalk between the MMR and the base excision repair (BER) systems. The accidental encounter between these two repair systems will cause the formation of cytotoxic DNA double-strand breaks (DSBs). In this review, we summarize these non-exclusive models to explain the cytotoxic effects of alkylating agents and discuss potential strategies to improve the clinical use of alkylating agents.
Collapse
Affiliation(s)
- Shingo Fujii
- Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix Marseille University, 13273 Marseille, France
| | - Robert P. Fuchs
- SAS bioHalosis, Zone Luminy Biotech, 13009 Marseille, France
| |
Collapse
|
18
|
Liu X, Zhu H, Guo B, Chen J, Zhang J, Wang T, Zhang J, Shan W, Zou J, Cao Y, Wei B, Zhan L. NLRC5 promotes endometrial carcinoma progression by regulating NF-κB pathway-mediated mismatch repair gene deficiency. Sci Rep 2024; 14:12447. [PMID: 38822039 PMCID: PMC11143240 DOI: 10.1038/s41598-024-63457-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 05/29/2024] [Indexed: 06/02/2024] Open
Abstract
The innate immune molecule NLR family CARD domain-containing 5 (NLRC5) plays a significant role in endometrial carcinoma (EC) immunosurveillance. However, NLRC5 also plays a protumor role in EC cells. Mismatch repair gene deficiency (dMMR) can enable tumors to grow faster and also can exhibit high sensitivity to immune checkpoint inhibitors. In this study, we attempted to determine whether NLRC5-mediated protumor role in EC is via the regulation of dMMR. Our findings revealed that NLRC5 promoted the proliferation, migration, and invasion abilities of EC cells and induced the dMMR status of EC in vivo and in vitro. Furthermore, the mechanism underlying NLRC5 regulated dMMR was also verified. We first found NLRC5 could suppress nuclear factor-kappaB (NF-κB) pathway in EC cells. Then we validated that the positive effect of NLRC5 in dMMR was restricted when NF-κB was activated by lipopolysaccharides in NLRC5-overexpression EC cell lines. In conclusion, our present study confirmed the novel NLRC5/NF-κB/MMR regulatory mechanism of the protumor effect of NLRC5 on EC cells, thereby suggesting that the NLRC5-mediated protumor in EC was depend on the function of MMR.
Collapse
Affiliation(s)
- Xiaojing Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230022, Anhui, China
| | - Haiqing Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230022, Anhui, China
| | - Bao Guo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230022, Anhui, China
| | - Jiahua Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230022, Anhui, China
| | - Junhui Zhang
- Department of Obstetrics and Gynecology, The Frist Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Tao Wang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jing Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230022, Anhui, China
| | - Wenjun Shan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230022, Anhui, China
| | - Junchi Zou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230022, Anhui, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The Frist Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - Bing Wei
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230022, Anhui, China.
| | - Lei Zhan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230022, Anhui, China.
| |
Collapse
|
19
|
Ma J, Lin J, Lin X, Ren Y, Liu D, Tang S, Huang L, Xu S, Mao X, Sun P. Assessment of Immune Status in Patients with Mismatch Repair Deficiency Endometrial Cancer. J Inflamm Res 2024; 17:2039-2050. [PMID: 38585471 PMCID: PMC10998506 DOI: 10.2147/jir.s453337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
Objective This study introduced a novel subtype classification method for endometrial cancer (EC) with mismatch repair deficiency (MMRd) by employing immune status and prognosis as the foundational criteria. The goal was to enhance treatment guidance through precise subtype delineation. Methods Study Cohort: This study encompassed a cohort of 119 patients diagnosed with MMRd-EC between 2015 and 2022. Analyses using t-tests and Mann-Whitney U-tests were performed to assess prognostic markers and peripheral blood immune cell profiles in patients with MutS deficiency (MutS-d) versus those with MutL deficiency (MutL-d). Logistic regression analysis was used to identify independent risk factors. Bioinformatics Analysis: An online database was used to assess the prognostic implications, immune cell infiltration, and immune checkpoint involvement associated with the deficiency of MutS versus MutL in EC. Results Patients with MutL-d exhibited heightened risk factors, including elevated cancer grade and increased myometrial invasion, leading to poorer prognosis and shorter overall survival and progression-free survival. Regarding systemic immune status, patients with MutL-d demonstrated decreased peripheral blood lymphocyte percentage, lymphocyte count, and CD8+ T cell percentage. For local immunity, the infiltration of natural killer cells, CD8+ T cells, and cytotoxic T lymphocytes in the tumor tissue was reduced in patients with MutL-d. Additionally, patients with MutL-d exhibited lower expression of immune checkpoint markers. The composition of immune subtypes and survival outcomes also indicate that patients with MutL-d have a poorer immune status and prognosis than the patients with MutS-d. Conclusion Patients with MMRd-EC can be subclassified according to MutS or MutL deficiency. Patients with MutS-d exhibited better immune status, prognosis, and immunotherapy benefits than those with MutL-d. These results can help guide patients to a more precise treatment.
Collapse
Affiliation(s)
- Jincheng Ma
- Laboratory of Gynecologic Oncology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
- Key Laboratory of Women and Children’s Critical Diseases Research, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, Fujian Province, People’s Republic of China
| | - Jiansong Lin
- Department of Pathology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Xite Lin
- Laboratory of Gynecologic Oncology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
- Key Laboratory of Women and Children’s Critical Diseases Research, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, Fujian Province, People’s Republic of China
| | - Yuan Ren
- Laboratory of Gynecologic Oncology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
- Key Laboratory of Women and Children’s Critical Diseases Research, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, Fujian Province, People’s Republic of China
| | - Dabin Liu
- Department of Gynecology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Shuting Tang
- Laboratory of Gynecologic Oncology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
- Key Laboratory of Women and Children’s Critical Diseases Research, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, Fujian Province, People’s Republic of China
| | - Leyi Huang
- Laboratory of Gynecologic Oncology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
- Key Laboratory of Women and Children’s Critical Diseases Research, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, Fujian Province, People’s Republic of China
| | - Shuxia Xu
- Department of Pathology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Xiaodan Mao
- Laboratory of Gynecologic Oncology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
- Key Laboratory of Women and Children’s Critical Diseases Research, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, Fujian Province, People’s Republic of China
| | - Pengming Sun
- Laboratory of Gynecologic Oncology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
- Key Laboratory of Women and Children’s Critical Diseases Research, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, Fujian Province, People’s Republic of China
- Department of Gynecology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| |
Collapse
|
20
|
Bratei AA, Stefan-van Staden RI. Pathological Features of Colorectal Adenocarcinoma Patients Related to MLH1. Cell Mol Bioeng 2024; 17:153-164. [PMID: 38737450 PMCID: PMC11082117 DOI: 10.1007/s12195-024-00797-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/30/2024] [Indexed: 05/14/2024] Open
Abstract
Background MLH1, one of the MMR proteins, is linked to DNA replication, its role being to repair the incorrect DNA sequences and to replace them with proper ones. The loss of the MLH1 gene expression is part of Lynch syndrome which can lead to a series of cancers like colorectal and endometrial ones. The aim of this paper is to correlate the levels of MLH1 in four different bio-logical fluids with clinicopathological features in colorectal cancer patients in order to predict them with high probability. Therefore, a mathematical model with given code in Matlab has been proposed to get the clinicopathological features with high probability by only introducing the values for MLH1 concentrations. All these data can be obtained in a very short time even before surgery which can be very helpful the surgeon and the oncologist. Methods Four types of samples (whole blood, saliva, urine and tissue) were analyzed using stochastic microsensors; concentrations of MLH1 were determined and compared with different macroscopic and micro-scopic pathological features to obtain mathematical models for early, non-invasive diagnostic of colorectal adenocarcinoma. Results There have been established criteria and mathematical models for tumor location, TNM grading system, depth of the tumor, lymphatic, vascular and perineural invasions and the presence of mucus in the tumoral mass. Conclusions By using whole blood, saliva and urine samples, the location can be approximated. The proposed mathematical models aimed to allow a minim/noninvasive characterization of the tumor and its location which can help the surgeon and the oncologist to choose faster the personalized treatment.
Collapse
Affiliation(s)
- Alexandru Adrian Bratei
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, Bucharest, Romania
- Laboratory of Electrochemistry and PATLAB, National Institute of Research for Electrochemistry and Condensed Matter, 060021 Bucharest-6, Romania
- Department of Pathology, Emergency University Hospital, Bucharest, Romania
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu-Mures, 540139 Targu Mures, Romania
| | - Raluca-Ioana Stefan-van Staden
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, Bucharest, Romania
- Laboratory of Electrochemistry and PATLAB, National Institute of Research for Electrochemistry and Condensed Matter, 060021 Bucharest-6, Romania
| |
Collapse
|
21
|
Cheng X, An J, Lou J, Gu Q, Ding W, Droby GN, Wang Y, Wang C, Gao Y, Anand JR, Shelton A, Satterlee AB, Mann B, Hsiao YC, Liu CW, Lu K, Hingtgen S, Wang J, Liu Z, Miller CR, Wu D, Vaziri C, Yang Y. Trans-lesion synthesis and mismatch repair pathway crosstalk defines chemoresistance and hypermutation mechanisms in glioblastoma. Nat Commun 2024; 15:1957. [PMID: 38438348 PMCID: PMC10912752 DOI: 10.1038/s41467-024-45979-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/08/2024] [Indexed: 03/06/2024] Open
Abstract
Almost all Glioblastoma (GBM) are either intrinsically resistant to the chemotherapeutical drug temozolomide (TMZ) or acquire therapy-induced mutations that cause chemoresistance and recurrence. The genome maintenance mechanisms responsible for GBM chemoresistance and hypermutation are unknown. We show that the E3 ubiquitin ligase RAD18 (a proximal regulator of TLS) is activated in a Mismatch repair (MMR)-dependent manner in TMZ-treated GBM cells, promoting post-replicative gap-filling and survival. An unbiased CRISPR screen provides an aerial map of RAD18-interacting DNA damage response (DDR) pathways deployed by GBM to tolerate TMZ genotoxicity. Analysis of mutation signatures from TMZ-treated GBM reveals a role for RAD18 in error-free bypass of O6mG (the most toxic TMZ-induced lesion), and error-prone bypass of other TMZ-induced lesions. Our analyses of recurrent GBM patient samples establishes a correlation between low RAD18 expression and hypermutation. Taken together we define molecular underpinnings for the hallmark tumorigenic phenotypes of TMZ-treated GBM.
Collapse
Affiliation(s)
- Xing Cheng
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Jing An
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Jitong Lou
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Qisheng Gu
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- Department of Immunology, Université Paris Cité, Paris, France
| | - Weimin Ding
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Gaith Nabil Droby
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Yilin Wang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Chenghao Wang
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Yanzhe Gao
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jay Ramanlal Anand
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Abigail Shelton
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Andrew Benson Satterlee
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Breanna Mann
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Yun-Chung Hsiao
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Chih-Wei Liu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Shawn Hingtgen
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jiguang Wang
- Division of Life Science, Department of Chemical and Biological Engineering, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Hong Kong Center for Neurodegenerative Diseases, InnoHK, Hong Kong SAR, China
| | - Zhaoliang Liu
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - C Ryan Miller
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Pathology, Division of Neuropathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Di Wu
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Division of Oral and Craniofacial Health Science, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Yang Yang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
22
|
Fang Q. The Versatile Attributes of MGMT: Its Repair Mechanism, Crosstalk with Other DNA Repair Pathways, and Its Role in Cancer. Cancers (Basel) 2024; 16:331. [PMID: 38254819 PMCID: PMC10814553 DOI: 10.3390/cancers16020331] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
O6-methylguanine-DNA methyltransferase (MGMT or AGT) is a DNA repair protein with the capability to remove alkyl groups from O6-AlkylG adducts. Moreover, MGMT plays a crucial role in repairing DNA damage induced by methylating agents like temozolomide and chloroethylating agents such as carmustine, and thereby contributes to chemotherapeutic resistance when these agents are used. This review delves into the structural roles and repair mechanisms of MGMT, with emphasis on the potential structural and functional roles of the N-terminal domain of MGMT. It also explores the development of cancer therapeutic strategies that target MGMT. Finally, it discusses the intriguing crosstalk between MGMT and other DNA repair pathways.
Collapse
Affiliation(s)
- Qingming Fang
- Department of Biochemistry and Structural Biology, Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
23
|
Watanabe T, Soeda S, Okoshi C, Fukuda T, Yasuda S, Fujimori K. Landscape of somatic mutated genes and inherited susceptibility genes in gynecological cancer. J Obstet Gynaecol Res 2023; 49:2629-2643. [PMID: 37632362 DOI: 10.1111/jog.15766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/26/2023] [Indexed: 08/28/2023]
Abstract
Traditionally, gynecological cancers have been classified based on histology. Since remarkable advancements in next-generation sequencing technology have enabled the exploration of somatic mutations in various cancer types, comprehensive sequencing efforts have revealed the genomic landscapes of some common forms of human cancer. The genomic features of various gynecological malignancies have been reported by several studies of large-scale genomic cohorts, including The Cancer Genome Atlas. Although recent comprehensive genomic profiling tests, which can detect hundreds of genetic mutations at a time from cancer tissues or blood samples, have been increasingly used as diagnostic clinical biomarkers and in therapeutic management decisions, germline pathogenic variants associated with hereditary cancers can also be detected using this test. Gynecological cancers are closely related to genetic factors, with approximately 5% of endometrial cancer cases and 20% of ovarian cancer cases being caused by germline pathogenic variants. Hereditary breast and ovarian cancer syndrome and Lynch syndrome are the two major cancer susceptibility syndromes among gynecological cancers. In addition, several other hereditary syndromes have been reported to be associated with gynecological cancers. In this review, we highlight the genes for somatic mutation and germline pathogenic variants commonly seen in gynecological cancers. We first describe the relationship between clinicopathological attributes and somatic mutated genes. Subsequently, we discuss the characteristics and clinical management of inherited cancer syndromes resulting from pathogenic germline variants in gynecological malignancies.
Collapse
Affiliation(s)
- Takafumi Watanabe
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima, Japan
| | - Shu Soeda
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima, Japan
| | - Chihiro Okoshi
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima, Japan
| | - Toma Fukuda
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima, Japan
| | - Shun Yasuda
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima, Japan
| | - Keiya Fujimori
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
24
|
Cheng X, An J, Lou J, Gu Q, Ding W, Droby G, Wang Y, Wang C, Gao Y, Shelton A, Satterlee AB, Mann BE, Hsiao YC, Liu CW, Liu K, Hingtgen S, Wang J, Liu Z, Miller R, Wu D, Vaziri C, Yang Y. Trans-Lesion Synthesis and Mismatch Repair Pathway Crosstalk Defines Chemoresistance and Hypermutation Mechanisms in Glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562506. [PMID: 37905107 PMCID: PMC10614844 DOI: 10.1101/2023.10.16.562506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Almost all Glioblastoma (GBM) are either intrinsically resistant to the chemotherapeutical drug temozolomide (TMZ) or acquire therapy-induced mutations that cause chemoresistance and recurrence. The genome maintenance mechanisms responsible for GBM chemoresistance and hypermutation are unknown. We show that the E3 ubiquitin ligase RAD18 (a proximal regulator of TLS) is activated in a Mismatch repair (MMR)-dependent manner in TMZ-treated GBM cells, promoting post-replicative gap-filling and survival. An unbiased CRISPR screen provides a new aerial map of RAD18-interacting DNA damage response (DDR) pathways deployed by GBM to tolerate TMZ genotoxicity. Analysis of mutation signatures from TMZ-treated GBM reveals a role for RAD18 in error-free bypass of O6mG (the most toxic TMZ-induced lesion), and error-prone bypass of other TMZ-induced lesions. Our analyses of recurrent GBM patient samples establishes a correlation between low RAD18 expression and hypermutation. Taken together we define novel molecular underpinnings for the hallmark tumorigenic phenotypes of TMZ-treated GBM.
Collapse
Affiliation(s)
- Xing Cheng
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Neuro-Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Jing An
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Jitong Lou
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Qisheng Gu
- Unit of Immunity and Pediatric Infectious Diseases, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- Department of Immunology, Université Paris Cité, Paris, France
| | - Weimin Ding
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Gaith Droby
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Yilin Wang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Chenghao Wang
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yanzhe Gao
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Abigail Shelton
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Andrew Benson Satterlee
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC 27599
| | - Breanna Elizabeth Mann
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC 27599
| | - Yun-Chung Hsiao
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Chih-Wei Liu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kun Liu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Shawn Hingtgen
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC 27599
| | - Jiguang Wang
- Division of Life Science, Department of Chemical and Biological Engineering, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Hong Kong Center for Neurodegenerative Diseases, InnoHK, Hong Kong SAR, China
| | - Zhaoliang Liu
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, China
| | - Ryan Miller
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pathology, Division of Neuropathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Di Wu
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Division of Oral and Craniofacial Health Science, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yang Yang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
25
|
O'Reilly D, Belgrad J, Ferguson C, Summers A, Sapp E, McHugh C, Mathews E, Boudi A, Buchwald J, Ly S, Moreno D, Furgal R, Luu E, Kennedy Z, Hariharan V, Monopoli K, Yang XW, Carroll J, DiFiglia M, Aronin N, Khvorova A. Di-valent siRNA-mediated silencing of MSH3 blocks somatic repeat expansion in mouse models of Huntington's disease. Mol Ther 2023; 31:1661-1674. [PMID: 37177784 PMCID: PMC10277892 DOI: 10.1016/j.ymthe.2023.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/10/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023] Open
Abstract
Huntington's disease (HD) is a severe neurodegenerative disorder caused by the expansion of the CAG trinucleotide repeat tract in the huntingtin gene. Inheritance of expanded CAG repeats is needed for HD manifestation, but further somatic expansion of the repeat tract in non-dividing cells, particularly striatal neurons, hastens disease onset. Called somatic repeat expansion, this process is mediated by the mismatch repair (MMR) pathway. Among MMR components identified as modifiers of HD onset, MutS homolog 3 (MSH3) has emerged as a potentially safe and effective target for therapeutic intervention. Here, we identify a fully chemically modified short interfering RNA (siRNA) that robustly silences Msh3 in vitro and in vivo. When synthesized in a di-valent scaffold, siRNA-mediated silencing of Msh3 effectively blocked CAG-repeat expansion in the striatum of two HD mouse models without affecting tumor-associated microsatellite instability or mRNA expression of other MMR genes. Our findings establish a promising treatment approach for patients with HD and other repeat expansion diseases.
Collapse
Affiliation(s)
- Daniel O'Reilly
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jillian Belgrad
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Chantal Ferguson
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Ashley Summers
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Ellen Sapp
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Cassandra McHugh
- Behavioral Neuroscience Program, Psychology Department, Western Washington University, Bellingham, WA 98225, USA
| | - Ella Mathews
- Behavioral Neuroscience Program, Psychology Department, Western Washington University, Bellingham, WA 98225, USA
| | - Adel Boudi
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Julianna Buchwald
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Socheata Ly
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Dimas Moreno
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Raymond Furgal
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Eric Luu
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Zachary Kennedy
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Vignesh Hariharan
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Kathryn Monopoli
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - X William Yang
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jeffery Carroll
- Behavioral Neuroscience Program, Psychology Department, Western Washington University, Bellingham, WA 98225, USA; Department of Neurology, University of Washington, Seattle, WA 98104-2499, USA
| | - Marian DiFiglia
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Neil Aronin
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
26
|
Zhan Y, Ni K, Liu Z, Xin R, Han Q, Ping H, Liu Y, Zhao X, Wang W, Yan S, Sun J, Zhang Q, Wang G, Zhang Z, Zhang X, Hu X, Li G, Zhang C. Stage III deficient mismatch repair colon patients get greater benefit from earlier starting oxaliplatin-based chemotherapy regimen. Sci Rep 2023; 13:8969. [PMID: 37268749 DOI: 10.1038/s41598-023-33153-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 04/07/2023] [Indexed: 06/04/2023] Open
Abstract
We evaluate the prognostic value of chemotherapy and other prognostic factors on overall survival among colon patients with deficient mismatch repair (dMMR), and determine the optimum time to start chemotherapy after surgery. Data of 306 colon cancer patients with dMMR who received radical surgery were collected from three Chinese centers between August 2012 and January 2018. Overall survival (OS) was assessed with the Kaplan-Meier method and log-rank. Cox regression analysis were used to assess influencing prognosis factors. The median follow-up time for all patients was 45.0 months (range, 1.0-100). There was a nonsignificant OS benefit from chemotherapy for patients with stage I and stage II disease, including high-risk stage II disease (log-rank p: 0.386, 0.779, 0.921), and a significant OS benefit for patients with stage III and stage IV disease for receiving post-operation chemotherapy (log-rank p = 0.002, 0.019). Stage III patients benefitted from chemotherapy regimens that contained oxaliplatin (log-rank p = 0.004), and Starting chemotherapy with oxaliplatin treatment earlier resulted in better outcomes (95% CI 0.013-0.857; p = 0.035). Chemotherapy regimens containing oxaliplatin can prolong the survival time of stage III and IV dMMR colon cancer patients. This beneficial manifestation was more pronounced after starting chemotherapy treatment early post operation. High risk stage II dMMR colon patients including T4N0M0 cannot benefit from chemotherapy.
Collapse
Affiliation(s)
- Yixiang Zhan
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
- School of Medicine, Nankai University, Tianjin, China
| | - Kemin Ni
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
- School of Medicine, Nankai University, Tianjin, China
| | - Zhaoce Liu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
- School of Medicine, Nankai University, Tianjin, China
| | - Ran Xin
- School of Medicine, Nankai University, Tianjin, China
| | - Qiurong Han
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
- Tianjin Institute of Coloproctology, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hangyu Ping
- School of Medicine, Nankai University, Tianjin, China
| | - Yaohong Liu
- School of Medicine, Nankai University, Tianjin, China
| | - Xuanzhu Zhao
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
- Tianjin Institute of Coloproctology, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wanting Wang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
- Tianjin Institute of Coloproctology, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Suying Yan
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
- Tianjin Institute of Coloproctology, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Sun
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
- Tianjin Institute of Coloproctology, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Qinghuai Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
- Tianjin Institute of Coloproctology, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Guihua Wang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zili Zhang
- The Third Central, Clinical College of Tianjin Medical University, Tianjin, China
| | - Xipeng Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
- Tianjin Institute of Coloproctology, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Xia Hu
- Department of Agriculture Insect, Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Guoxun Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China.
- Tianjin Institute of Coloproctology, Tianjin, China.
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China.
| | - Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China.
- Tianjin Institute of Coloproctology, Tianjin, China.
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China.
| |
Collapse
|
27
|
Singh N, Mathur N. Pulling short DNA with mismatch base pairs. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023:10.1007/s00249-023-01659-8. [PMID: 37249617 DOI: 10.1007/s00249-023-01659-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/13/2023] [Accepted: 04/30/2023] [Indexed: 05/31/2023]
Abstract
Due to misincorporation during gene replication, the accuracy of the gene expression is often compromised. This results in a mismatch or defective pair in the DNA molecule (James et al. 2016). Here, we present our study of the stability of DNA with defects in the thermal and force ensembles. We consider DNA with a different number of defects from 2to16 and study how the denaturation process differs in both ensembles. Using a statistical model, we calculate the melting point of the DNA chain in both the ensemble. Our findings display different manifestations of DNA denaturation in thermal and force ensembles. While the DNA with defects denatures at a lower temperature than the intact DNA, the point from which the DNA is pulled is important in force ensemble.
Collapse
Affiliation(s)
- Navin Singh
- Department of Physics, Birla Institute of Technology and Science, Pilani, Rajasthan, 333 031, India.
| | - Nehal Mathur
- Department of Physics, Birla Institute of Technology and Science, Pilani, Rajasthan, 333 031, India
| |
Collapse
|
28
|
Dong L, Jiang H, Kang Z, Guan M. Biomarkers for chemotherapy and drug resistance in the mismatch repair pathway. Clin Chim Acta 2023; 544:117338. [PMID: 37060988 DOI: 10.1016/j.cca.2023.117338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
Drugs targeting DNA repair have developed rapidly in cancer therapy, and numerous inhibitors have already been utilized in preclinical and clinical stages. To optimize the selection of patients for treatment, it is essential to discover biomarkers to anticipate chemotherapy response. The DNA mismatch repair (MMR) pathway is closely correlated with cancer susceptibility and plays an important role in the occurrence and development of cancers. Here, we give a concise introduction of the MMR genes and focus on the potential biomarkers of chemotherapeutic response and resistance. It has been clarified that the status of MMR may affect the outcome of chemotherapy. However, the specific underlying mechanisms as well as contradictory results continue to raise considerable controversy and concern. In this review, we summarize the current literature to provide a general overview.
Collapse
Affiliation(s)
- Liu Dong
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, People's Republic of China
| | - Haoqin Jiang
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, People's Republic of China
| | - Zhihua Kang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, USA.
| | - Ming Guan
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
29
|
Gallon R, Phelps R, Hayes C, Brugieres L, Guerrini-Rousseau L, Colas C, Muleris M, Ryan NAJ, Evans DG, Grice H, Jessop E, Kunzemann-Martinez A, Marshall L, Schamschula E, Oberhuber K, Azizi AA, Baris Feldman H, Beilken A, Brauer N, Brozou T, Dahan K, Demirsoy U, Florkin B, Foulkes W, Januszkiewicz-Lewandowska D, Jones KJ, Kratz CP, Lobitz S, Meade J, Nathrath M, Pander HJ, Perne C, Ragab I, Ripperger T, Rosenbaum T, Rueda D, Sarosiek T, Sehested A, Spier I, Suerink M, Zimmermann SY, Zschocke J, Borthwick GM, Wimmer K, Burn J, Jackson MS, Santibanez-Koref M. Constitutional Microsatellite Instability, Genotype, and Phenotype Correlations in Constitutional Mismatch Repair Deficiency. Gastroenterology 2023; 164:579-592.e8. [PMID: 36586540 DOI: 10.1053/j.gastro.2022.12.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/24/2022] [Accepted: 12/12/2022] [Indexed: 01/02/2023]
Abstract
BACKGROUND & AIMS Constitutional mismatch repair deficiency (CMMRD) is a rare recessive childhood cancer predisposition syndrome caused by germline mismatch repair variants. Constitutional microsatellite instability (cMSI) is a CMMRD diagnostic hallmark and may associate with cancer risk. We quantified cMSI in a large CMMRD patient cohort to explore genotype-phenotype correlations using novel MSI markers selected for instability in blood. METHODS Three CMMRD, 1 Lynch syndrome, and 2 control blood samples were genome sequenced to >120× depth. A pilot cohort of 8 CMMRD and 38 control blood samples and a blinded cohort of 56 CMMRD, 8 suspected CMMRD, 40 Lynch syndrome, and 43 control blood samples were amplicon sequenced to 5000× depth. Sample cMSI score was calculated using a published method comparing microsatellite reference allele frequencies with 80 controls. RESULTS Thirty-two mononucleotide repeats were selected from blood genome and pilot amplicon sequencing data. cMSI scoring using these MSI markers achieved 100% sensitivity (95% CI, 93.6%-100.0%) and specificity (95% CI 97.9%-100.0%), was reproducible, and was superior to an established tumor MSI marker panel. Lower cMSI scores were found in patients with CMMRD with MSH6 deficiency and patients with at least 1 mismatch repair missense variant, and patients with biallelic truncating/copy number variants had higher scores. cMSI score did not correlate with age at first tumor. CONCLUSIONS We present an inexpensive and scalable cMSI assay that enhances CMMRD detection relative to existing methods. cMSI score is associated with mismatch repair genotype but not phenotype, suggesting it is not a useful predictor of cancer risk.
Collapse
Affiliation(s)
- Richard Gallon
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - Rachel Phelps
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Christine Hayes
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Laurence Brugieres
- Department of Children and Adolescents Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Léa Guerrini-Rousseau
- Department of Children and Adolescents Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France; Team "Genomics and Oncogenesis of pediatric Brain Tumors," INSERM U981, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Chrystelle Colas
- Département de Génétique, Institut Curie, Paris, France; INSERM U830, Université de Paris, Paris, France
| | - Martine Muleris
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre de Recherche Saint-Antoine, Paris, France
| | - Neil A J Ryan
- The Academic Women's Health Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK; Department of Gynaecology Oncology, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - D Gareth Evans
- Division of Evolution, Infection and Genomics, University of Manchester, Manchester, UK
| | - Hannah Grice
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Emily Jessop
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Annabel Kunzemann-Martinez
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Centre for Inflammation and Tissue Repair, University College London, London, UK
| | - Lilla Marshall
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Esther Schamschula
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Oberhuber
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Amedeo A Azizi
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Hagit Baris Feldman
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Andreas Beilken
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Nina Brauer
- Pediatric Oncology, Helios-Klinikum, Krefeld, Germany
| | - Triantafyllia Brozou
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Karin Dahan
- Centre de Génétique Humaine, Institut de Pathologie et Génétique, Gosselies, Belgium
| | - Ugur Demirsoy
- Department of Pediatric Oncology, Kocaeli University, Kocaeli, Turkey
| | - Benoît Florkin
- Department of Pediatrics, Citadelle Hospital, University of Liège, Liège, Belgium
| | - William Foulkes
- Program in Cancer Genetics, Departments of Oncology and Human Genetics, McGill University, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Department of Medical Genetics, McGill University Health Centre, Montreal, Quebec, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | | | - Kristi J Jones
- Department of Clinical Genetics, Western Sydney Genetics Program, Children's Hospital at Westmead, Sydney, New South Wales, Australia; University of Sydney School of Medicine, Sydney, New South Wales, Australia
| | - Christian P Kratz
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Stephan Lobitz
- Gemeinschaftsklinikum Mittelrhein, Department of Pediatric Hematology and Oncology, Koblenz, Germany
| | - Julia Meade
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Michaela Nathrath
- Pediatric Hematology and Oncology, Klinikum Kassel, Kassel, Germany; Department of Pediatrics, Pediatric Oncology Center, Technische Universität München, Munich, Germany
| | | | - Claudia Perne
- Institute of Human Genetics, Medical Faculty, University of Bonn and National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany
| | - Iman Ragab
- Pediatrics Department, Hematology-Oncology Unit, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Tim Ripperger
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | - Daniel Rueda
- Hereditary Cancer Laboratory, University Hospital Doce de Octubre, i+12 Research Institute, Madrid, Spain
| | | | - Astrid Sehested
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Isabel Spier
- Institute of Human Genetics, Medical Faculty, University of Bonn and National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany
| | - Manon Suerink
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Stefanie-Yvonne Zimmermann
- Department of Pediatric Hematology and Oncology, Children's Hospital, University Hospital, Frankfurt, Germany
| | - Johannes Zschocke
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Gillian M Borthwick
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Katharina Wimmer
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - John Burn
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Michael S Jackson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Mauro Santibanez-Koref
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
30
|
Fu Y, Yang B, Cui Y, Hu X, Li X, Lu F, Qin T, Zhang L, Hu Z, Guo E, Fan J, Xiao R, Li W, Qin X, Hu D, Peng W, Liu J, Wang B, Mills GB, Chen G, Sun C. BRD4 inhibition impairs DNA mismatch repair, induces mismatch repair mutation signatures and creates therapeutic vulnerability to immune checkpoint blockade in MMR-proficient tumors. J Immunother Cancer 2023; 11:jitc-2022-006070. [PMID: 37072347 PMCID: PMC10124306 DOI: 10.1136/jitc-2022-006070] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Mismatch repair deficiency (dMMR) is a well-recognized biomarker for response to immune checkpoint blockade (ICB). Strategies to convert MMR-proficient (pMMR) to dMMR phenotype with the goal of sensitizing tumors to ICB are highly sought. The combination of bromodomain containing 4 (BRD4) inhibition and ICB provides a promising antitumor effect. However, the mechanisms underlying remain unknown. Here, we identify that BRD4 inhibition induces a persistent dMMR phenotype in cancers. METHODS We confirmed the correlation between BRD4 and mismatch repair (MMR) by the bioinformatic analysis on The Cancer Genome Atlas and Clinical Proteomic Tumor Analysis Consortium data, and the statistical analysis on immunohistochemistry (IHC) scores of ovarian cancer specimens. The MMR genes (MLH1,MSH2,MSH6,PMS2) were measured by quantitative reverse transcription PCR, western blot, and IHC. The MMR status was confirmed by whole exome sequencing, RNA sequencing, MMR assay and hypoxanthine-guanine phosphoribosyl transferase gene mutation assay. The BRD4i AZD5153 resistant models were induced both in vitro and in vivo. The transcriptional effects of BRD4 on MMR genes were investigated by chromatin immunoprecipitation among cell lines and data from the Cistrome Data Browser. The therapeutic response to ICB was testified in vivo. The tumor immune microenvironment markers, such as CD4, CD8, TIM-3, FOXP3, were measured by flow cytometry. RESULTS We identified the positive correlation between BRD4 and MMR genes in transcriptional and translational aspects. Also, the inhibition of BRD4 transcriptionally reduced MMR genes expression, resulting in dMMR status and elevated mutation loads. Furthermore, prolonged exposure to AZD5153 promoted a persistent dMMR signature both in vitro and in vivo, enhancing tumor immunogenicity, and increased sensitivity to α-programmed death ligand-1 therapy despite the acquired drug resistance. CONCLUSIONS We demonstrated that BRD4 inhibition suppressed expression of genes critical to MMR, dampened MMR, and increased dMMR mutation signatures both in vitro and in vivo, sensitizing pMMR tumors to ICB. Importantly, even in BRD4 inhibitors (BRD4i)-resistant tumor models, the effects of BRD4i on MMR function were maintained rendering tumors sensitive to ICB. Together, these data identified a strategy to induce dMMR in pMMR tumors and further, indicated that BRD4i sensitive and resistant tumors could benefit from immunotherapy.
Collapse
Affiliation(s)
- Yu Fu
- Department of Gynecological Oncology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Bin Yang
- Department of Gynecological Oncology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yaoyuan Cui
- Department of Gynecological Oncology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xingyuan Hu
- Department of Gynecological Oncology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xi Li
- Department of Gynecological Oncology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Funian Lu
- Department of Gynecological Oncology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Tianyu Qin
- Department of Gynecological Oncology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Li Zhang
- Department of Gynecological Oncology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Zhe Hu
- Department of Gynecological Oncology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Ensong Guo
- Department of Gynecological Oncology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Junpeng Fan
- Department of Gynecological Oncology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Rourou Xiao
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Wenting Li
- Department of Gynecological Oncology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, People's Republic of China
| | - Xu Qin
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Department of Stomatology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Dianxing Hu
- Department of Gynecological Oncology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wenju Peng
- Department of Gynecological Oncology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jingbo Liu
- Department of Gynecological Oncology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Beibei Wang
- Department of Gynecological Oncology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Gordon B Mills
- Department of Cell, Development and Cancer Biology, Oregon Health & Science University Knight Cancer Institute, Portland, Oregon, USA
| | - Gang Chen
- Department of Gynecological Oncology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Chaoyang Sun
- Department of Gynecological Oncology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
31
|
Abildgaard AB, Nielsen SV, Bernstein I, Stein A, Lindorff-Larsen K, Hartmann-Petersen R. Lynch syndrome, molecular mechanisms and variant classification. Br J Cancer 2023; 128:726-734. [PMID: 36434153 PMCID: PMC9978028 DOI: 10.1038/s41416-022-02059-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022] Open
Abstract
Patients with the heritable cancer disease, Lynch syndrome, carry germline variants in the MLH1, MSH2, MSH6 and PMS2 genes, encoding the central components of the DNA mismatch repair system. Loss-of-function variants disrupt the DNA mismatch repair system and give rise to a detrimental increase in the cellular mutational burden and cancer development. The treatment prospects for Lynch syndrome rely heavily on early diagnosis; however, accurate diagnosis is inextricably linked to correct clinical interpretation of individual variants. Protein variant classification traditionally relies on cumulative information from occurrence in patients, as well as experimental testing of the individual variants. The complexity of variant classification is due to (1) that variants of unknown significance are rare in the population and phenotypic information on the specific variants is missing, and (2) that individual variant testing is challenging, costly and slow. Here, we summarise recent developments in high-throughput technologies and computational prediction tools for the assessment of variants of unknown significance in Lynch syndrome. These approaches may vastly increase the number of interpretable variants and could also provide important mechanistic insights into the disease. These insights may in turn pave the road towards developing personalised treatment approaches for Lynch syndrome.
Collapse
Affiliation(s)
- Amanda B Abildgaard
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sofie V Nielsen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Inge Bernstein
- Department of Surgical Gastroenterology, Aalborg University Hospital, Aalborg, Denmark
- Institute of Clinical Medicine, Aalborg University Hospital, Aalborg University, Aalborg, Denmark
| | - Amelie Stein
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
32
|
Yang J, Xu Y, Fu Z, Chen J, Fan W, Wu X. Progress in research and development of temozolomide brain-targeted preparations: a review. J Drug Target 2023; 31:119-133. [PMID: 36039767 DOI: 10.1080/1061186x.2022.2119243] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gliomas are a heterogeneous group of brain tumours with high malignancy, for which surgical resection remains the mainstay of treatment at present. However, the overall prognosis of gliomas remains poor because of their aggressiveness and high recurrence. Temozolomide (TMZ) has anti-proliferative and cytotoxic effects and is indicated for glioblastoma multiforme and recurrent mesenchymal astrocytoma. However, TMZ is disadvantaged by low efficacy and drug resistance, and therefore it is necessary to enhance the brain drug concentration of TMZ to improve its effectiveness and reduce the toxic and adverse effects from systemic administration. There have been many nano-formulations developed for the delivery of TMZ to gliomas that overcome the limitations of TMZ penetration to tumours and increase brain targeting. In this paper, we review the research progress of TMZ nano-formulations, and also discuss challenges and opportunities in the research and development of drug delivery systems, hoping that the data and information summarised herein could provide assistance for the clinical treatment of gliomas.
Collapse
Affiliation(s)
- Jiefen Yang
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Youfa Xu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Department of Pharmacy, Shanghai Wei Er Biopharmaceutical Technology Co., Ltd, Shanghai, China
| | - Zhiqin Fu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Department of Pharmacy, Shanghai Wei Er Biopharmaceutical Technology Co., Ltd, Shanghai, China
| | - Jianming Chen
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Wei Fan
- Department of Pharmacy, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Wu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Department of Pharmacy, Shanghai Wei Er Biopharmaceutical Technology Co., Ltd, Shanghai, China
| |
Collapse
|
33
|
Styk J, Pös Z, Pös O, Radvanszky J, Turnova EH, Buglyó G, Klimova D, Budis J, Repiska V, Nagy B, Szemes T. Microsatellite instability assessment is instrumental for Predictive, Preventive and Personalised Medicine: status quo and outlook. EPMA J 2023; 14:143-165. [PMID: 36866160 PMCID: PMC9971410 DOI: 10.1007/s13167-023-00312-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023]
Abstract
A form of genomic alteration called microsatellite instability (MSI) occurs in a class of tandem repeats (TRs) called microsatellites (MSs) or short tandem repeats (STRs) due to the failure of a post-replicative DNA mismatch repair (MMR) system. Traditionally, the strategies for determining MSI events have been low-throughput procedures that typically require assessment of tumours as well as healthy samples. On the other hand, recent large-scale pan-tumour studies have consistently highlighted the potential of massively parallel sequencing (MPS) on the MSI scale. As a result of recent innovations, minimally invasive methods show a high potential to be integrated into the clinical routine and delivery of adapted medical care to all patients. Along with advances in sequencing technologies and their ever-increasing cost-effectiveness, they may bring about a new era of Predictive, Preventive and Personalised Medicine (3PM). In this paper, we offered a comprehensive analysis of high-throughput strategies and computational tools for the calling and assessment of MSI events, including whole-genome, whole-exome and targeted sequencing approaches. We also discussed in detail the detection of MSI status by current MPS blood-based methods and we hypothesised how they may contribute to the shift from conventional medicine to predictive diagnosis, targeted prevention and personalised medical services. Increasing the efficacy of patient stratification based on MSI status is crucial for tailored decision-making. Contextually, this paper highlights drawbacks both at the technical level and those embedded deeper in cellular/molecular processes and future applications in routine clinical testing.
Collapse
Affiliation(s)
- Jakub Styk
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia ,Comenius University Science Park, 841 04 Bratislava, Slovakia ,Geneton Ltd, 841 04 Bratislava, Slovakia
| | - Zuzana Pös
- Comenius University Science Park, 841 04 Bratislava, Slovakia ,Geneton Ltd, 841 04 Bratislava, Slovakia ,Institute of Clinical and Translational Research, Biomedical Research Centre, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Ondrej Pös
- Comenius University Science Park, 841 04 Bratislava, Slovakia ,Geneton Ltd, 841 04 Bratislava, Slovakia
| | - Jan Radvanszky
- Comenius University Science Park, 841 04 Bratislava, Slovakia ,Institute of Clinical and Translational Research, Biomedical Research Centre, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia ,Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia
| | - Evelina Hrckova Turnova
- Comenius University Science Park, 841 04 Bratislava, Slovakia ,Slovgen Ltd, 841 04 Bratislava, Slovakia
| | - Gergely Buglyó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Daniela Klimova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Jaroslav Budis
- Comenius University Science Park, 841 04 Bratislava, Slovakia ,Geneton Ltd, 841 04 Bratislava, Slovakia ,Slovak Centre of Scientific and Technical Information, 811 04 Bratislava, Slovakia
| | - Vanda Repiska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia ,Medirex Group Academy, NPO, 949 05 Nitra, Slovakia
| | - Bálint Nagy
- Comenius University Science Park, 841 04 Bratislava, Slovakia ,Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tomas Szemes
- Comenius University Science Park, 841 04 Bratislava, Slovakia ,Geneton Ltd, 841 04 Bratislava, Slovakia ,Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia
| |
Collapse
|
34
|
Rath A, Radecki AA, Rahman K, Gilmore RB, Hudson JR, Cenci M, Tavtigian SV, Grady JP, Heinen CD. A calibrated cell-based functional assay to aid classification of MLH1 DNA mismatch repair gene variants. Hum Mutat 2022; 43:2295-2307. [PMID: 36054288 PMCID: PMC9772141 DOI: 10.1002/humu.24462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/21/2022] [Accepted: 08/30/2022] [Indexed: 01/25/2023]
Abstract
Functional assays provide important evidence for classifying the disease significance of germline variants in DNA mismatch repair genes. Numerous laboratories, including our own, have developed functional assays to study mismatch repair gene variants. However, previous assays are limited due to the model system employed, the manner of gene expression, or the environment in which function is assessed. Here, we developed a human cell-based approach for testing the function of variants of uncertain significance (VUS) in the MLH1 gene. Using clustered regularly interspaced short palindromic repeats gene editing, we knocked in MLH1 VUS into the endogenous MLH1 loci in human embryonic stem cells. We examined their impact on RNA and protein, including their ability to prevent microsatellite instability and instigate a DNA damage response. A statistical clustering analysis determined the range of functions associated with known pathogenic or benign variants, and linear regression was performed using existing odds in favor of pathogenicity scores for these control variants to calibrate our functional assay results. By converting the functional outputs into a single odds in favor of pathogenicity score, variant classification expert panels can use these results to readily reassess these VUS. Ultimately, this information will guide proper diagnosis and disease management for suspected Lynch syndrome patients.
Collapse
Affiliation(s)
- Abhijit Rath
- Center for Molecular Oncology, UConn Health, Farmington, CT
| | | | - Kaussar Rahman
- Center for Molecular Oncology, UConn Health, Farmington, CT
| | - Rachel B. Gilmore
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT
| | - Jonathan R. Hudson
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT
| | - Matthew Cenci
- Center for Molecular Oncology, UConn Health, Farmington, CT
| | - Sean V. Tavtigian
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| | - James P. Grady
- Connecticut Institute for Clinical and Translational Science, UConn Health, Farmington, CT
| | | |
Collapse
|
35
|
Madden-Hennessey K, Gupta D, Radecki AA, Guild C, Rath A, Heinen CD. Loss of mismatch repair promotes a direct selective advantage in human stem cells. Stem Cell Reports 2022; 17:2661-2673. [PMID: 36368329 PMCID: PMC9768573 DOI: 10.1016/j.stemcr.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022] Open
Abstract
Lynch syndrome (LS) is the most common hereditary form of colon cancer, resulting from a germline mutation in a DNA mismatch repair (MMR) gene. Loss of MMR in cells establishes a mutator phenotype, which may underlie its link to cancer. Acquired downstream mutations that provide the cell a selective advantage would contribute to tumorigenesis. It is unclear, however, whether loss of MMR has other consequences that would directly result in a selective advantage. We found that knockout of the MMR gene MSH2 results in an immediate survival advantage in human stem cells grown under standard cell culture conditions. This advantage results, in part, from an MMR-dependent response to oxidative stress. We also found that loss of MMR gives rise to enhanced formation and growth of human colonic organoids. These results suggest that loss of MMR may affect cells in ways beyond just increasing mutation frequency that could influence tumorigenesis.
Collapse
Affiliation(s)
| | - Dipika Gupta
- Center for Molecular Oncology, UConn Health, Farmington, CT 06030-3101, USA
| | | | - Caroline Guild
- Center for Molecular Oncology, UConn Health, Farmington, CT 06030-3101, USA
| | - Abhijit Rath
- Center for Molecular Oncology, UConn Health, Farmington, CT 06030-3101, USA
| | - Christopher D. Heinen
- Center for Molecular Oncology, UConn Health, Farmington, CT 06030-3101, USA,Corresponding author
| |
Collapse
|
36
|
Lin YJ, Feng YX, Zhang Q, Yu XZ. Proline-mediated modulation on DNA repair pathway in rice seedlings under chromium stress by integrating gene chip and co-expression network analysis. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1266-1275. [PMID: 36121537 DOI: 10.1007/s10646-022-02586-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 05/24/2023]
Abstract
Chromium (Cr) stress can cause oxidative burst to plants. Application of exogenous proline (Pro) is one of the most effective approaches to improve the tolerance of plants to Cr stress. In this study, we integrated the data of gene chip with co-expression network analysis to identify the key pathways involved in the DNA repair processes in rice seedlings under Cr(VI) stress. Based on KEGG pathway analysis, 158 genes identified are activated in five different types of DNA repair pathways, namely base excision repair (BER, 20 genes), mismatch repair (MMR, 30 genes), nonhomologous end joining (NHEJ, 8 genes), nucleotide excision repair (NER, 56 genes) and homologous recombination (HR, 44 genes). Co-expression network analysis showed that genes activated in DNA repair pathways were categorized into six different modules, wherein Module 1 (45.36%), Module 2 (27.84%) and Module 3 (19.59%) carried more weight than others. Integrating the data of gene chip and co-expression network analysis indicated that coordinated actions of HR and NER pathways are mainly associated with DNA repair processes in Cr(VI)-treated rice seedlings supplied with exogenous Pro. OsCSB, OsXPG, OsBRIP1, OsRAD51C, OsRAD51A2, OsRPA, OsTOPBP1C, OsTOP3, and OsXRCC3 activated in the HR pathway had a stronger impact on repairing DNA damage induced by Cr(VI) stress in rice seedlings supplied with exogenous Pro, while OsXPB1, OsTTDA2, OsTFIIH1, OsXPC, OsRAD23, OsDSS1, and OsRPA located at the NER pathway showed more contribution to repairing DNA damage than others.
Collapse
Affiliation(s)
- Yu-Juan Lin
- The Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Yu-Xi Feng
- The Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Qing Zhang
- The Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Xiao-Zhang Yu
- The Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China.
| |
Collapse
|
37
|
Yang Z, Wu G, Zhang X, Gao J, Meng C, Liu Y, Wei Q, Sun L, Wei P, Bai Z, Yao H, Zhang Z. Current progress and future perspectives of neoadjuvant anti-PD-1/PD-L1 therapy for colorectal cancer. Front Immunol 2022; 13:1001444. [PMID: 36159842 PMCID: PMC9501688 DOI: 10.3389/fimmu.2022.1001444] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapies, especially the programmed cell death 1/programmed cell death ligand 1 (PD-1/PD-L1) inhibitors, have revolutionized the therapeutic strategies of various cancers. As for colorectal cancer (CRC), the current clinical application of PD-1/PD-L1 inhibitors are mainly used according to the mutation pattern, which is categorized into deficient mismatch repair (dMMR)/high levels of microsatellite instability (MSI-H) and proficient mismatch repair (pMMR), or non-high levels of microsatellite instability (non-MSI-H). PD-1/PD-L1 inhibitors have been proven to have favorable outcomes against dMMR/MSI-H CRC because of more T-cell infiltration into tumor tissues. Nevertheless, the effectiveness of PD-1/PD-L1 inhibitors in pMMR/non-MSI-H CRC is still uncertain. Because of the quite-lower proportion of dMMR/MSI-H in CRC, PD-1/PD-L1 inhibitors have been reported to combine with other antitumor treatments including chemotherapy, radiotherapy, and targeted therapy for better therapeutic effect in recent clinical trials. Neoadjuvant therapy, mainly including chemotherapy and radiotherapy, not only can reduce clinical stage but also benefit from local control, which can improve clinical symptoms and the quality of life. Adding immunotherapy into neoadjuvant therapy may change the treatment strategy of primary resectable or some metastatic CRC. In this review, we focus on the development of neoadjuvant anti-PD-1/PD-L1 therapy and discuss the future perspectives in CRC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zhigang Bai
- *Correspondence: Zhongtao Zhang, ; Hongwei Yao, ; Zhigang Bai,
| | - Hongwei Yao
- *Correspondence: Zhongtao Zhang, ; Hongwei Yao, ; Zhigang Bai,
| | - Zhongtao Zhang
- *Correspondence: Zhongtao Zhang, ; Hongwei Yao, ; Zhigang Bai,
| |
Collapse
|
38
|
Inflammation accelerates BCR-ABL1+ B-ALL development through upregulation of AID. Blood Adv 2022; 6:4060-4072. [PMID: 35816360 PMCID: PMC9278295 DOI: 10.1182/bloodadvances.2021005017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/03/2022] [Indexed: 11/20/2022] Open
Abstract
Inflammatory stimulation promotes BCR-ABL1+ B-ALL disease progression by upregulating AID. Combination of imatinib and Hsp90 inhibitors significantly delays the inflammation-induced progression of BCR-ABL1+ B-ALL.
Inflammation contributes to the initiation and disease progression of several lymphoid malignancies. BCR-ABL1-positive B-cell acute lymphoblastic leukemia (BCR-ABL1+ B-ALL) is triggered by the malignant cloning of immature B cells promoted by the BCR-ABL1 fusion gene. However, it is unclear whether the mechanism driving the disease progression of BCR-ABL1+ B-ALL involves inflammatory stimulation. Here, we evaluate BCR-ABL1+ B-ALL cells’ response to inflammatory stimuli lipopolysaccharide (LPS) in vitro and in vivo. The results indicate that LPS promotes cell growth and genomic instability in cultured BCR-ABL1+ B-ALL cells and accelerates the BCR-ABL1+ B-ALL development in a mouse model. We show that the LPS-induced upregulation of activation-induced deaminase (AID) is required for the cell growth and disease progression of BCR-ABL1+ B-ALL. Moreover, AID modulates the expression of various genes that are dominated by suppressing apoptosis genes and upregulating DNA damage-repair genes. These genes lead to facilitation for BCR-ABL1+ B-ALL progression. The heat shock protein 90 (Hsp90) inhibitors significantly reduce AID protein level and delay the disease progression of BCR-ABL1+ B-ALL upon inflammatory stimulation. The present data demonstrate the causative role of AID in the development and progression of BCR-ABL1+ B-ALL during inflammation, thus highlighting potential therapeutic targets.
Collapse
|
39
|
Tosti E, Almeida AS, Tran TTT, Barbachan E Silva M, Broin PÓ, Dubin R, Chen K, Beck AP, Mclellan AS, Vilar E, Golden A, O'Toole PW, Edelmann W. Loss of MMR and TGFBR2 Increases the Susceptibility to Microbiota-Dependent Inflammation-Associated Colon Cancer. Cell Mol Gastroenterol Hepatol 2022; 14:693-717. [PMID: 35688320 PMCID: PMC9421583 DOI: 10.1016/j.jcmgh.2022.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/29/2022] [Accepted: 05/18/2022] [Indexed: 12/10/2022]
Abstract
BACKGROUND AND AIMS Mutations in DNA mismatch repair (MMR) genes are causative in Lynch syndrome and a significant proportion of sporadic colorectal cancers (CRCs). MMR-deficient (dMMR) CRCs display increased mutation rates, with mutations frequently accumulating at short repetitive DNA sequences throughout the genome (microsatellite instability). The TGFBR2 gene is one of the most frequently mutated genes in dMMR CRCs. Therefore, we generated an animal model to study how the loss of both TGFBR2 signaling impacts dMMR-driven intestinal tumorigenesis in vivo and explore the impact of the gut microbiota. METHODS We generated VCMsh2/Tgfbr2 mice in which Msh2loxP and Tgfbr2loxP alleles are inactivated by Villin-Cre recombinase in the intestinal epithelium. VCMsh2/Tgfbr2 mice were analyzed for their rate of intestinal cancer development and for the mutational spectra and gene expression profiles of tumors. In addition, we assessed the impact of chemically induced chronic inflammation and gut microbiota composition on colorectal tumorigenesis. RESULTS VCMsh2/Tgfbr2 mice developed small intestinal adenocarcinomas and CRCs with histopathological features highly similar to CRCs in Lynch syndrome patients. The CRCs in VCMsh2/Tgfbr2 mice were associated with the presence of colitis and displayed genetic and histological features that resembled inflammation-associated CRCs in human patients. The development of CRCs in VCMsh2/Tgfbr2 mice was strongly modulated by the gut microbiota composition, which in turn was impacted by the TGFBR2 status of the tumors. CONCLUSIONS Our results demonstrate a synergistic interaction between MMR and TGFBR2 inactivation in inflammation-associated colon tumorigenesis and highlight the crucial impact of the gut microbiota on modulating the incidence of inflammation-associated CRCs.
Collapse
Affiliation(s)
- Elena Tosti
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York.
| | - Ana S Almeida
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland
| | - Tam T T Tran
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Mariel Barbachan E Silva
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland Galway, Galway, Ireland
| | - Pilib Ó Broin
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland Galway, Galway, Ireland
| | - Robert Dubin
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Ken Chen
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Amanda P Beck
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Andrew S Mclellan
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aaron Golden
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland Galway, Galway, Ireland
| | - Paul W O'Toole
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland
| | - Winfried Edelmann
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
40
|
Interplay between H3K36me3, methyltransferase SETD2, and mismatch recognition protein MutSα facilitates processing of oxidative DNA damage in human cells. J Biol Chem 2022; 298:102102. [PMID: 35667440 PMCID: PMC9241034 DOI: 10.1016/j.jbc.2022.102102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/21/2022] Open
Abstract
Oxidative DNA damage contributes to aging and the pathogenesis of numerous human diseases including cancer. 8-hydroxyguanine (8-oxoG) is the major product of oxidative DNA lesions. Although OGG1-mediated base excision repair is the primary mechanism for 8-oxoG removal, DNA mismatch repair has also been implicated in processing oxidative DNA damage. However, the mechanism of the latter is not fully understood. Here, we treated human cells defective in various 8-oxoG repair factors with H2O2 and performed biochemical, live cell imaging, and chromatin immunoprecipitation sequencing analyses to determine their response to the treatment. We show that the mismatch repair processing of oxidative DNA damage involves cohesive interactions between mismatch recognition protein MutSα, histone mark H3K36me3, and H3K36 trimethyltransferase SETD2, which activates the ATM DNA damage signaling pathway. We found that cells depleted of MutSα or SETD2 accumulate 8-oxoG adducts and fail to trigger H2O2-induced ATM activation. Furthermore, we show that SETD2 physically interacts with both MutSα and ATM, which suggests a role for SETD2 in transducing DNA damage signals from lesion-bound MutSα to ATM. Consistently, MutSα and SETD2 are highly coenriched at oxidative damage sites. The data presented here support a model wherein MutSα, SETD2, ATM, and H3K36me3 constitute a positive feedback loop to help cells cope with oxidative DNA damage.
Collapse
|
41
|
Hong J, Meng Z, Zhang Z, Su H, Fan Y, Huang R, Ding R, Zhang N, Li F, Wang S. Comprehensive Analysis of CRISPR-Cas9 Editing Outcomes in Yeast Xanthophyllomyces dendrorhous. CRISPR J 2022; 5:558-570. [PMID: 35506993 DOI: 10.1089/crispr.2021.0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
DNA repair after Cas9 cutting can result in deletions/insertions, genomic rearrangements, and rare nucleotide substitutions. However, most work has only focused on deletions/insertions resulting from repair after CRISPR-Cas9 action. Here, we comprehensively analyzed the editing outcomes induced by CRISPR-Cas9 treatment in yeast Xanthophyllomyces dendrorhous by Sanger and Illumina sequencing and identified diverse DNA repair patterns, including DNA deletions, interchromosomal translocations, and on-target nucleotide substitutions (point mutations). Some deletions were observed repeatedly, and others, especially large deletions, varied in size. Genome sequencing and structural variation analysis showed that the interchromosomal translocations happened between Cas9 target sites and the endogenous ADH4 promoter. In contrast to previous studies, analysis revealed that the on-target point mutations were not random. Importantly, these point mutations showed strong sequence dependence that is not consistent with previous work in Hela cells, where CRISPR-mediated substitutions were found to lack sequence dependence and conversion preferences. Finally, we found that the non-homologous end joining components Ku70, Ku80, Mre11, or RAD50, and the overlapping roles of non-essential DNA polymerases were necessary for the production of both point mutations and deletions. This work expands our knowledge of CRISPR-Cas9 mediated DNA repair.
Collapse
Affiliation(s)
- Jixuan Hong
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Ziyue Meng
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Zixi Zhang
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Hang Su
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yuxuan Fan
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Ruilin Huang
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Ruirui Ding
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Ning Zhang
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Fuli Li
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Molecular and Microbial Engineering Group, Shandong Energy Institute, Qingdao, China
| | - Shi'an Wang
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Molecular and Microbial Engineering Group, Shandong Energy Institute, Qingdao, China
| |
Collapse
|
42
|
Morano F, Raimondi A, Pagani F, Lonardi S, Salvatore L, Cremolini C, Murgioni S, Randon G, Palermo F, Antonuzzo L, Pella N, Racca P, Prisciandaro M, Niger M, Corti F, Bergamo F, Zaniboni A, Ratti M, Palazzo M, Cagnazzo C, Calegari MA, Marmorino F, Capone I, Conca E, Busico A, Brich S, Tamborini E, Perrone F, Di Maio M, Milione M, Di Bartolomeo M, de Braud F, Pietrantonio F. Temozolomide Followed by Combination With Low-Dose Ipilimumab and Nivolumab in Patients With Microsatellite-Stable, O 6-Methylguanine-DNA Methyltransferase-Silenced Metastatic Colorectal Cancer: The MAYA Trial. J Clin Oncol 2022; 40:1562-1573. [PMID: 35258987 PMCID: PMC9084437 DOI: 10.1200/jco.21.02583] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This is a multicenter, single-arm phase II trial evaluating the efficacy and safety of an immune-sensitizing strategy with temozolomide priming followed by a combination of low-dose ipilimumab and nivolumab in patients with microsatellite-stable (MSS) and O6-methylguanine–DNA methyltransferase (MGMT)–silenced metastatic colorectal cancer (mCRC). MAYA shows that temozolomide priming followed by Ipi/Nivo combo induces durable benefit in MSS/MGMT-silenced mCRC.![]()
Collapse
Affiliation(s)
- Federica Morano
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandra Raimondi
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo Pagani
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Lonardi
- Medical Oncology 3, Istituto Oncologico Veneto IOV-IRCSS, Padua, Italy
| | - Lisa Salvatore
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Università Cattolica del Sacro Cuore, Rome, Italy
| | - Chiara Cremolini
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy.,Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Sabina Murgioni
- Medical Oncology 1, Istituto Oncologico Veneto IOV-IRCSS, Padua, Italy
| | - Giovanni Randon
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Federica Palermo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Lorenzo Antonuzzo
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy.,Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Nicoletta Pella
- Department of Oncology, ASUFC University Hospital of Udine, Udine, Italy
| | - Patrizia Racca
- ColoRectal Cancer Unit, Department of Oncology, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Michele Prisciandaro
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Monica Niger
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesca Corti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesca Bergamo
- Medical Oncology 1, Istituto Oncologico Veneto IOV-IRCSS, Padua, Italy
| | | | - Margherita Ratti
- Department of Medical Oncology, Azienda Socio Sanitaria Territoriale of Cremona, Cremona, Italy
| | - Michele Palazzo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Celeste Cagnazzo
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Maria Alessandra Calegari
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Federica Marmorino
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy.,Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Iolanda Capone
- Department of the Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Elena Conca
- Department of the Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Adele Busico
- Department of the Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Silvia Brich
- Department of the Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Elena Tamborini
- Department of the Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Federica Perrone
- Department of the Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Massimo Di Maio
- Department of Oncology, University of Turin, Division of Medical Oncology, Ordine Mauriziano Hospital, Turin, Italy
| | - Massimo Milione
- Department of the Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Maria Di Bartolomeo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo de Braud
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo Pietrantonio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
43
|
Fujii S, Sobol RW, Fuchs RP. Double-Strand Breaks: when DNA Repair Events Accidentally Meet. DNA Repair (Amst) 2022; 112:103303. [PMID: 35219626 PMCID: PMC8898275 DOI: 10.1016/j.dnarep.2022.103303] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/23/2022] [Accepted: 02/17/2022] [Indexed: 01/26/2023]
Abstract
The cellular response to alkylation damage is complex, involving multiple DNA repair pathways and checkpoint proteins, depending on the DNA lesion, the cell type, and the cellular proliferation state. The repair of and response to O-alkylation damage, primarily O6-methylguaine DNA adducts (O6-mG), is the purview of O6-methylguanine-DNA methyltransferase (MGMT). Alternatively, this lesion, if left un-repaired, induces replication-dependent formation of the O6-mG:T mis-pair and recognition of this mis-pair by the post-replication mismatch DNA repair pathway (MMR). Two models have been suggested to account for MMR and O6-mG DNA lesion dependent formation of DNA double-strand breaks (DSBs) and the resulting cytotoxicity - futile cycling and direct DNA damage signaling. While there have been hints at crosstalk between the MMR and base excision repair (BER) pathways, clear mechanistic evidence for such pathway coordination in the formation of DSBs has remained elusive. However, using a novel protein capture approach, Fuchs and colleagues have demonstrated that DSBs result from an encounter between MMR-induced gaps initiated at alkylation induced O6-mG:C sites and BER-induced nicks at nearby N-alkylation adducts in the opposite strand. The accidental encounter between these two repair events is causal in the formation of DSBs and the resulting cellular response, documenting a third model to account for O6-mG induced cell death in non-replicating cells. This graphical review highlights the details of this Repair Accident model, as compared to current models, and we discuss potential strategies to improve clinical use of alkylating agents such as temozolomide, that can be inferred from the Repair Accident model.
Collapse
Affiliation(s)
- Shingo Fujii
- Marseille Medical Genetics, UMR1251 Marseille, France
| | - Robert W Sobol
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA; Dept of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, USA.
| | | |
Collapse
|
44
|
Pálinkás HL, Pongor L, Balajti M, Nagy Á, Nagy K, Békési A, Bianchini G, Vértessy BG, Győrffy B. Primary Founder Mutations in the PRKDC Gene Increase Tumor Mutation Load in Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23020633. [PMID: 35054819 PMCID: PMC8775830 DOI: 10.3390/ijms23020633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
The clonal composition of a malignant tumor strongly depends on cellular dynamics influenced by the asynchronized loss of DNA repair mechanisms. Here, our aim was to identify founder mutations leading to subsequent boosts in mutation load. The overall mutation burden in 591 colorectal cancer tumors was analyzed, including the mutation status of DNA-repair genes. The number of mutations was first determined across all patients and the proportion of genes having mutation in each percentile was ranked. Early mutations in DNA repair genes preceding a mutational expansion were designated as founder mutations. Survival analysis for gene expression was performed using microarray data with available relapse-free survival. Of the 180 genes involved in DNA repair, the top five founder mutations were in PRKDC (n = 31), ATM (n = 26), POLE (n = 18), SRCAP (n = 18), and BRCA2 (n = 15). PRKDC expression was 6.4-fold higher in tumors compared to normal samples, and higher expression led to longer relapse-free survival in 1211 patients (HR = 0.72, p = 4.4 × 10-3). In an experimental setting, the mutational load resulting from UV radiation combined with inhibition of PRKDC was analyzed. Upon treatments, the mutational load exposed a significant two-fold increase. Our results suggest PRKDC as a new key gene driving tumor heterogeneity.
Collapse
Affiliation(s)
- Hajnalka Laura Pálinkás
- Genome Metabolism Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (H.L.P.); (K.N.); (A.B.)
- Department of Applied Biotechnology and Food Sciences, BME Budapest University of Technology and Economics, Szt Gellért tér 4, H-1111 Budapest, Hungary
| | - Lőrinc Pongor
- TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (L.P.); (M.B.); (Á.N.)
- Department of Bioinformatics and 2nd Department of Pediatrics, Semmelweis University, Tűzoltó u. 7-9, H-1094 Budapest, Hungary
| | - Máté Balajti
- TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (L.P.); (M.B.); (Á.N.)
| | - Ádám Nagy
- TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (L.P.); (M.B.); (Á.N.)
- Department of Bioinformatics and 2nd Department of Pediatrics, Semmelweis University, Tűzoltó u. 7-9, H-1094 Budapest, Hungary
| | - Kinga Nagy
- Genome Metabolism Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (H.L.P.); (K.N.); (A.B.)
- Department of Applied Biotechnology and Food Sciences, BME Budapest University of Technology and Economics, Szt Gellért tér 4, H-1111 Budapest, Hungary
| | - Angéla Békési
- Genome Metabolism Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (H.L.P.); (K.N.); (A.B.)
- Department of Applied Biotechnology and Food Sciences, BME Budapest University of Technology and Economics, Szt Gellért tér 4, H-1111 Budapest, Hungary
| | - Giampaolo Bianchini
- Department of Medical Oncology, San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy;
| | - Beáta G. Vértessy
- Genome Metabolism Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (H.L.P.); (K.N.); (A.B.)
- Department of Applied Biotechnology and Food Sciences, BME Budapest University of Technology and Economics, Szt Gellért tér 4, H-1111 Budapest, Hungary
- Correspondence: (B.G.V.); (B.G.)
| | - Balázs Győrffy
- TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (L.P.); (M.B.); (Á.N.)
- Department of Bioinformatics and 2nd Department of Pediatrics, Semmelweis University, Tűzoltó u. 7-9, H-1094 Budapest, Hungary
- Correspondence: (B.G.V.); (B.G.)
| |
Collapse
|
45
|
Costa PM. Current aspects of DNA damage and repair in ecotoxicology: a mini-review. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1-11. [PMID: 34623548 DOI: 10.1007/s10646-021-02487-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
The preservation of genomic stability against environmental stressors is a major adaptive feature that is well-conserved among both prokaryotes and eukaryotes. The complex and fine-tuned mechanisms that evolved to repair DNA following exposure to radiation and chemical insult are also the first line of defence against genotoxicants. Consequently, impairing the DNA damage response leads to accumulation of genomic lesions that may ultimately lead to cell death, mutagenesis and even teratogenesis and neoplasia. Understanding how pollutants affect DNA repair machinery is thus paramount to interpret the often unclear or contradictory findings from genotoxicity assessment. The main purpose of the present mini-review is to contribute to the slowly-growing awareness among ecotoxicologists that DNA damage is not limited to direct interactions of noxious compounds with the DNA molecule. Despite the limited number of studies addressing this issue in the field, special modifications of methods for genotoxicity assessment, combined with state-of-the-art molecular tools, are beginning to show promising results in the unravelling of DNA repair proteins, genes and networks in non-conventional model organisms. I will review the essentials of the most important DNA repair pathways and discuss methods and approaches that can assist steering ecotoxicologists towards a better understanding of genotoxic hazard and risk.
Collapse
Affiliation(s)
- Pedro M Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516, Caparica, Portugal.
| |
Collapse
|
46
|
Huang Z, Liu Z, Cheng X, Han Z, Li J, Xia T, Gao Y, Wei L. Prognostic significance of HSF2BP in lung adenocarcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1559. [PMID: 34790765 PMCID: PMC8576644 DOI: 10.21037/atm-21-4935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/13/2021] [Indexed: 02/01/2023]
Abstract
Background Recent studies have demonstrated that upregulation of heat shock transcription factor 2 binding protein (HSF2BP) may promote genomic instability, thereby leading to the development of tumors and also providing a potential target for biological antitumor therapy. However, the role of HSF2BP has so far remained unclear in lung adenocarcinoma (LUAD). Methods To explore the function of HSF2BP in LUAD, we collected transcriptome data for 551 lung samples from The Cancer Genome Atlas (TCGA) database and methylation data for 461 lung samples from the University of California Santa Cruz (UCSC) genome database, in addition to corresponding clinical information. We used bioinformatic approaches to systematically explore the role of HSF2BP in LUAD, including Gene Set Enrichment Analysis (GSEA), coexpression analysis, the Tumor IMmune Estimation Resource (TIMER) tool, Connectivity Map (CMap) analysis, and a meta-analysis involving three Gene Expression Omnibus (GEO) datasets and one TCGA dataset. Results Our results found that upregulation of HSF2BP in LUAD was an independent risk factor for the prognosis and diagnosis of LUAD. GSEA analysis showed HSF2BP expression was associated with vital signaling pathways, including the cell cycle, P53 signaling pathway, and homologous recombination. Coexpression analysis revealed 10 HSF2BP-associated genes, including oncogenes and tumor suppressor genes. Additionally, we found that HSF2BP expression was negatively correlated with B-cell infiltration and had a potential interaction with CD80 in LUAD, which may play an important role in tumor immune escape. Finally, we identified four small-molecule drugs which show promise for LUAD treatment. Conclusions The present study found that elevated HSF2BP posed a threat to prognosis in LUAD patients. HSF2BP might have been involved in tumorigenesis by influencing genomic stability and contributing to tumor immune evasion in the tumor immune microenvironment of LUAD. These findings suggest that HSF2BP may provide a vulnerable target for improving and enhancing treatment of LUAD.
Collapse
Affiliation(s)
- Zhendong Huang
- Department of Thoracic Surgery, Zhengzhou Key Laboratory for Surgical Treatment for End-Stage Lung Disease, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Zhendong Liu
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, Zhengzhou University People's Hospital, People's Hospital of Henan University, Zhengzhou, China
| | - Xingbo Cheng
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, Zhengzhou University People's Hospital, People's Hospital of Henan University, Zhengzhou, China
| | - Zhibin Han
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, Zhengzhou University People's Hospital, People's Hospital of Henan University, Zhengzhou, China
| | - Jiwei Li
- Department of Thoracic Surgery, Zhengzhou Key Laboratory for Surgical Treatment for End-Stage Lung Disease, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Tian Xia
- Department of Thoracic Surgery, Zhengzhou Key Laboratory for Surgical Treatment for End-Stage Lung Disease, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yanzheng Gao
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, Zhengzhou University People's Hospital, People's Hospital of Henan University, Zhengzhou, China
| | - Li Wei
- Department of Thoracic Surgery, Zhengzhou Key Laboratory for Surgical Treatment for End-Stage Lung Disease, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
47
|
Yoshioka KI, Kusumoto-Matsuo R, Matsuno Y, Ishiai M. Genomic Instability and Cancer Risk Associated with Erroneous DNA Repair. Int J Mol Sci 2021; 22:12254. [PMID: 34830134 PMCID: PMC8625880 DOI: 10.3390/ijms222212254] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 12/23/2022] Open
Abstract
Many cancers develop as a consequence of genomic instability, which induces genomic rearrangements and nucleotide mutations. Failure to correct DNA damage in DNA repair defective cells, such as in BRCA1 and BRCA2 mutated backgrounds, is directly associated with increased cancer risk. Genomic rearrangement is generally a consequence of erroneous repair of DNA double-strand breaks (DSBs), though paradoxically, many cancers develop in the absence of DNA repair defects. DNA repair systems are essential for cell survival, and in cancers deficient in one repair pathway, other pathways can become upregulated. In this review, we examine the current literature on genomic alterations in cancer cells and the association between these alterations and DNA repair pathway inactivation and upregulation.
Collapse
Affiliation(s)
- Ken-ichi Yoshioka
- Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (R.K.-M.); (Y.M.)
| | - Rika Kusumoto-Matsuo
- Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (R.K.-M.); (Y.M.)
| | - Yusuke Matsuno
- Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (R.K.-M.); (Y.M.)
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Masamichi Ishiai
- Central Radioisotope Division, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan;
| |
Collapse
|
48
|
Stoof J, Harrold E, Mariottino S, Lowery MA, Walsh N. DNA Damage Repair Deficiency in Pancreatic Ductal Adenocarcinoma: Preclinical Models and Clinical Perspectives. Front Cell Dev Biol 2021; 9:749490. [PMID: 34712667 PMCID: PMC8546202 DOI: 10.3389/fcell.2021.749490] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/22/2021] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers worldwide, and survival rates have barely improved in decades. In the era of precision medicine, treatment strategies tailored to disease mutations have revolutionized cancer therapy. Next generation sequencing has found that up to a third of all PDAC tumors contain deleterious mutations in DNA damage repair (DDR) genes, highlighting the importance of these genes in PDAC. The mechanisms by which DDR gene mutations promote tumorigenesis, therapeutic response, and subsequent resistance are still not fully understood. Therefore, an opportunity exists to elucidate these processes and to uncover relevant therapeutic drug combinations and strategies to target DDR deficiency in PDAC. However, a constraint to preclinical research is due to limitations in appropriate laboratory experimental models. Models that effectively recapitulate their original cancer tend to provide high levels of predictivity and effective translation of preclinical findings to the clinic. In this review, we outline the occurrence and role of DDR deficiency in PDAC and provide an overview of clinical trials that target these pathways and the preclinical models such as 2D cell lines, 3D organoids and mouse models [genetically engineered mouse model (GEMM), and patient-derived xenograft (PDX)] used in PDAC DDR deficiency research.
Collapse
Affiliation(s)
- Jojanneke Stoof
- Trinity St. James Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - Emily Harrold
- Trinity College Dublin, Dublin, Ireland
- Mater Private Hospital, Dublin, Ireland
| | - Sarah Mariottino
- Trinity St. James Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - Maeve A Lowery
- Trinity St. James Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - Naomi Walsh
- National Institute of Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|
49
|
MC1R Is a Prognostic Marker and Its Expression Is Correlated with MSI in Colorectal Cancer. Curr Issues Mol Biol 2021; 43:1529-1547. [PMID: 34698109 PMCID: PMC8929037 DOI: 10.3390/cimb43030108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 12/16/2022] Open
Abstract
Melanocortin 1 receptor (MC1R) is thought to be a marker of poor prognosis and a potential target for the treatment of melanoma. Studies have found that MC1R promotes several tumor behaviors, including cell proliferation and differentiation, pigment formation, and genome damage repair. Some single-nucleotide polymorphisms (SNPs) of MC1R are involved in the occurrence and development of melanoma. A few studies have reported a relationship between MC1R and colorectal cancer (CRC). In this research, our objective was to examine MC1R expression and MC1R SNPs and investigate their correlation with the clinicopathological features of human CRC tissues. We evaluated MC1R mRNA expression by performing bioinformatic analyses on human CRC expression datasets. We used Western blotting and RT-qPCR to compare MC1R expression in CRC tissues with that in normal tissues, and MC1R SNPs in CRC tissues were detected by PCR-direct sequencing (DS). The expression of MC1R was significantly decreased in CRC tissues compared with normal tissue, and its expression was negatively associated with P53 expression, MLH1 expression, and PMS2 expression, and high MC1R expression was significantly associated with microsatellite instability (MSI). MC1R SNPs were also associated with the clinicopathological characteristics of CRC; for example, the rs2228479 locus genotype was correlated with Ki67 status, and the rs885479 locus genotype was correlated with age and T stage. In conclusion, MC1R plays a crucial role in the progression of CRC and may be a marker of poor prognosis in CRC.
Collapse
|
50
|
Dragun M, Filipović N, Racetin A, Kostić S, Vukojević K. Immunohistochemical Expression Pattern of Mismatch Repair Genes in the Short-term Streptozotocin-induced Diabetic Rat Kidneys. Appl Immunohistochem Mol Morphol 2021; 29:e83-e91. [PMID: 33901031 DOI: 10.1097/pai.0000000000000937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/23/2021] [Indexed: 11/25/2022]
Abstract
We studied the expression of mismatch repair genes (MMRs)-mutS protein homolog 2 (MSH2), PMS2, MutL homolog 1 (MLH1), and yH2AFX in diabetic rat kidneys. Streptozotocin-induced diabetes mellitus type 1 rat model (DM1) was used. Renal samples were collected 2 weeks and 2 months after DM1 induction and immunohistochemical expression of MMR genes in the renal cortex was analyzed. Diabetic animals showed lower MSH2 and higher yH2AFX kidney expression both 2 weeks and 2 months after DM1 induction. MLH1 expression significantly increased 2 weeks after DM1 induction (P<0.0001). The most substantial differences were observed in the period 2 weeks after induction, with lower MSH2 and higher MLH1 expression in the proximal convoluted tubules and distal convoluted tubules (DCT) of diabetic animals (P<0.001). yH2AFX expression significantly increased in the DCT of diabetic animals at both time points (P<0.001; P<0.01). PMS2 expression changed only in the glomeruli, where it significantly decreased 2 months after DM1 induction (P<0.05). We concluded that the most substantial changes in renal expression of MMRs are happening already 2 weeks after diabetes induction, predominantly in the proximal convoluted tubules and DCT. Moreover, DCT could have a critical role in the pathophysiology of diabetic nephropathy (DN) and might be a future therapeutic target in this condition. The obtained results point to the MMRs as a potential factor in the development and progression of DN, as well as the possible link between DN and renal carcinogenesis.
Collapse
Affiliation(s)
- Matea Dragun
- Intensive Care Unit, Department of Internal Medicine, University Hospital Centre Split
| | - Natalija Filipović
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Split, Croatia
| | - Anita Racetin
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Split, Croatia
| | - Sandra Kostić
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Split, Croatia
| | - Katarina Vukojević
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Split, Croatia
| |
Collapse
|