1
|
Godfrey H, Ellis JL, Verbrugghe A. A meta-analysis: dietary carbohydrates do not increase body fat or fasted insulin and glucose in cats. J Anim Sci 2025; 103:skaf071. [PMID: 40052519 PMCID: PMC12010702 DOI: 10.1093/jas/skaf071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/04/2025] [Indexed: 04/22/2025] Open
Abstract
Commercial cat foods contain a greater carbohydrate content, such as nitrogen-free extract (NFE), compared to a typical prey species. This has led to postulations that increased carbohydrate intake is causing a rise in obesity and IR in cats. Studies investigating high-carbohydrate diets on insulin and glucose responses show inconsistent results. A meta-analysis using 16 studies was conducted to elucidate the relationship between NFE content and body fat mass (BFM, n = 9), fasted insulin (n = 12), and fasted glucose concentrations (n = 14). Dietary NFE, fat, and protein content (% metabolizable energy), as well as daily energy intake (DEI), body weight, body condition (lean, obese), and study design metrics were considered as fixed effects in univariate and multivariate models using proc mixed in SAS, treating study as a random effect. Model evaluation was conducted using corrected Akaike Information Criteria, concordance correlation coefficient, and the root mean square prediction error. The best-fitting model for BFM was the interaction between NFE content and DEI, predicting BFM to decrease when NFE content increased as a proportion of the DEI (P < 0.05). From univariate models, fasted insulin was positively associated with BFM and dietary fat content (P < 0.05), whereas an increase in NFE content was associated with a decrease in fasted insulin in a subgroup of studies (n = 6) of only lean cats (P < 0.05). No significance was observed for models predicting fasted glucose from diet or body composition variables (P > 0.05). The results of this meta-analysis indicate that dietary carbohydrates (NFE), included between 2.8% and 57% ME, are not a risk factor for greater BFM, fasted insulin, and glucose concentrations in cats, suggesting that NFE does not pose a risk for feline obesity, IR, or hyperglycemia. However, future studies should consider postprandial responses of insulin and glucose to macronutrient compositions to further investigate the role of dietary carbohydrates on IR in cats, with particular attention to the role of dietary fat, and the role of body condition.
Collapse
Affiliation(s)
- Hannah Godfrey
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Jennifer L Ellis
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Adronie Verbrugghe
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada N1G 2W1
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
2
|
Mo R, Zhang M, Wang H, Liu T, Zhang G, Wu Y. Short-term changes in dietary fat levels and starch sources affect weight management, glucose and lipid metabolism, and gut microbiota in adult cats. J Anim Sci 2023; 101:skad276. [PMID: 37602405 PMCID: PMC10465269 DOI: 10.1093/jas/skad276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023] Open
Abstract
A 2 × 2 factorial randomized design was utilized to investigate the effects of fat level (8% or 16% fat on a fed basis) and starch source (pea starch or corn starch) on body weight, glycolipid metabolism, hematology, and fecal microbiota in cats. The study lasted for 28 d and included a low fat and pea starch diet (LFPS), a high fat and pea starch diet, a low fat and corn starch diet, and a high fat and corn starch diet. In this study, hematological analysis showed that all cats were healthy. The apparent total tract digestibility of gross energy, crude protein, and crude fat was above 85% in the four diets. After 28 d, cats fed the high fat diets (HF) gained an average of 50 g more than those fed the low fat diets (LF). The hematological results showed that the HF diets increased the body inflammation in cats, while the LFPS group improved the glucolipid metabolism. The levels of glucose and insulin were lower in cats fed the LF diets than those in cats fed the HF diets (P < 0.05). Meanwhile, compared with the LF, the concentrations of total cholesterol, triglyceride, and high-density lipoprotein cholesterol in serum were greater in the cats fed the HF diets (P < 0.05). Additionally, both fat level and starch source influenced the fecal microbiota, with the relative abundance of beneficial bacteria, such as Blautia being significantly greater in the LFPS group than in the other three groups (P < 0.05). Reducing energy density and using pea starch in foods are both valuable design additions to aid in the management of weight control and improve gut health in cats. This study highlights the importance of fat level and starch in weight management in cats.
Collapse
Affiliation(s)
- Ruixia Mo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Mingrui Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Haotian Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tianyi Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Gang Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yi Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Berman CF, Lobetti RG, Zini E, Fosgate GT, Schoeman JP. Influence of high-protein and high-carbohydrate diets on serum lipid and fructosamine concentrations in healthy cats. J Feline Med Surg 2022; 24:759-769. [PMID: 34605307 PMCID: PMC10812288 DOI: 10.1177/1098612x211047062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The aim of this study was to determine whether high-protein and high-carbohydrate diets exert differential effects on serum cholesterol, triglyceride and fructosamine concentrations in healthy cats. METHODS A randomised, crossover diet trial was performed in 35 healthy shelter cats. Following baseline health assessments, cats were randomised into groups receiving either a high-protein or high-carbohydrate diet for 4 weeks. The cats were then fed a washout diet for 4 weeks before being transitioned to whichever of the two studied diets they had not yet received. Fasting serum cholesterol, triglyceride and fructosamine concentrations were determined at the end of each 4-week diet period. RESULTS Cats on the high-carbohydrate diet had significantly lower serum cholesterol (P <0.001) concentrations compared with baseline measurements. Cats on the high-protein diet had significantly higher serum cholesterol (P <0.001) and triglyceride (P <0.001) concentrations, yet lower fructosamine (P <0.001) concentrations compared with baseline measurements. In contrast, overweight cats (body condition score [BCS] >5) had lower cholesterol (P = 0.007) and triglyceride (P = 0.032) concentrations on the high-protein diet than cats within other BCS groups. CONCLUSIONS AND RELEVANCE Diets higher in protein and lower in carbohydrates appear beneficial for short-term glucose control in healthy cats. A high-protein diet was associated with significantly elevated cholesterol and triglyceride concentrations in healthy cats, even though the increase was significantly less pronounced in cats with a BCS >5. This finding suggests that overweight cats process high-protein diets, cholesterol and triglycerides differently than leaner cats.
Collapse
Affiliation(s)
- Chad F Berman
- Bryanston Veterinary Hospital, Bryanston, Johannesburg, South Africa
- Department of Companion Animal Clinical Studies, University of Pretoria, Pretoria, South Africa
| | - Remo G Lobetti
- Bryanston Veterinary Hospital, Bryanston, Johannesburg, South Africa
| | - Eric Zini
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Istituto Veterinario di Novara, Granozzo con Monticello, Italy
| | - Geoffrey T Fosgate
- Department of Production Animal Studies, University of Pretoria, Pretoria, South Africa
| | - Johan P Schoeman
- Department of Companion Animal Clinical Studies, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
4
|
Williams MC, McMillan CJ, Snead ER, Takada K, Chelikani PK. Association of circulating adipokine concentrations with indices of adiposity and sex in healthy, adult client owned cats. BMC Vet Res 2019; 15:332. [PMID: 31533709 PMCID: PMC6749635 DOI: 10.1186/s12917-019-2080-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 09/05/2019] [Indexed: 12/17/2022] Open
Abstract
Background Both diabetes mellitus (DM) and obesity are common in cats. The adipokines leptin, adiponectin, resistin and omentin are thought to have important roles in human obesity and glucose homeostasis; however, their functions in the pathophysiology of feline diabetes mellitus and obesity are poorly understood. We determined whether sexual dimorphism exists for circulating concentrations of these adipokines, whether they are associated with adiposity, and whether they correlate with basic indices of insulin sensitivity in cats. Healthy, client-owned male and female cats that were either ideal weight or obese were recruited into the study. Fasting blood glucose, fructosamine, cholesterol, triglycerides, insulin and plasma concentrations of adipokines were evaluated. Results Obese cats had greater serum concentrations of glucose and triglycerides than ideal weight cats, but fructosamine and cholesterol concentrations did not differ between groups. Body weight and body mass index were greater in male than female cats, but circulating metabolite cocentrations were similar between sexes of both the ideal weight and obese groups. Plasma concentrations of insulin and leptin were greater in obese than ideal weight cats, with reciprocal reduction in adiponectin concentrations in obese cats; there were no sex differences in these hormones. Interestingly, plasma omentin concentrations were greater in male than female cats but with no differences between obese and ideal weight states. Conclusion Together our findings suggest that rather than gender, body weight and adiposity are more important determinants of circulating concentrations of the adipokines leptin and adiponectin. On the contrary, the adipokine omentin is not affected by body weight or adiposity but instead exhibits sexual dimorphism in cats.
Collapse
Affiliation(s)
- Maggie C Williams
- Department of Veterinary Clinical and Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, Canada
| | - Chantal J McMillan
- Department of Veterinary Clinical and Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, Canada.
| | - Elisabeth R Snead
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, Canada
| | - Kanae Takada
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, Canada
| | - Prasanth K Chelikani
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
5
|
Larsen JA. Controversies in Veterinary Nephrology: Differing Viewpoints: Role of Dietary Protein in the Management of Feline Chronic Kidney Disease. Vet Clin North Am Small Anim Pract 2016; 46:1095-8. [PMID: 27475027 DOI: 10.1016/j.cvsm.2016.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The role of diet in management of chronic kidney disease (CKD) is important. There are different interpretations of the current knowledge on this topic. Neither clinical trials involving product testing, nor prospective research investigating dietary influences on cats with induced kidney disease provide guidance on the utility of specific nutritional strategies. Likewise, data derived from other species also has limitations. More research is needed to further our understanding of this topic. However, practical guidance from current knowledge for the management of individual patients can be utilized with success.
Collapse
Affiliation(s)
- Jennifer A Larsen
- Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
6
|
Metabolic Effects of Obesity and Its Interaction with Endocrine Diseases. Vet Clin North Am Small Anim Pract 2016; 46:797-815. [PMID: 27297495 DOI: 10.1016/j.cvsm.2016.04.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity in pet dogs and cats is a significant problem in developed countries, and seems to be increasing in prevalence. Excess body fat has adverse metabolic consequences, including insulin resistance, altered adipokine secretion, changes in metabolic rate, abnormal lipid metabolism, and fat accumulation in visceral organs. Obese cats are predisposed to endocrine and metabolic disorders such as diabetes and hepatic lipidosis. A connection likely also exists between obesity and diabetes mellitus in dogs. No system has been developed to identify obese pets at greatest risk for development of obesity-associated metabolic diseases, and further study in this area is needed.
Collapse
|
7
|
Kappen KL, Garner LM, Kerr KR, Swanson KS. Effects of photoperiod on food intake, activity and metabolic rate in adult neutered male cats. J Anim Physiol Anim Nutr (Berl) 2015; 98:958-67. [PMID: 25356486 DOI: 10.1111/jpn.12147] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
With the continued rise in feline obesity, novel weight management strategies are needed. To date, strategies aimed at altering physical activity, an important factor in weight maintenance, have been lacking. Photoperiod is known to cause physiological changes in seasonal mammals, including changes in body weight (BW) and reproductive status. Thus, our objective was to determine the effect of increased photoperiod (longer days) on voluntary physical activity levels, resting metabolic rate (RMR), food intake required to maintain BW, and fasting serum leptin and ghrelin concentrations in adult cats. Eleven healthy, adult, neutered, male domestic shorthair cats were used in a randomized crossover design study. During two 12-week periods, cats were exposed to either a short-day (SD) photoperiod of 8 h light: 16 h dark or a long-day (LD) photoperiod of 16 h light: 8 h dark. Cats were fed a commercial diet to maintain baseline BW. In addition to daily food intake and twice-weekly BW, RMR (via indirect calorimetry), body composition [via dual-energy X-ray absorptiometry (DEXA)] and physical activity (via Actical activity monitors) were measured at week 0 and 12 of each period. Fasting serum leptin and ghrelin concentrations were measured at week 0, 6 and 12 of each period. Average hourly physical activity was greater (p = 0.008) in LD vs. SD cats (3770 vs. 3129 activity counts/h), which was primarily due to increased (p < 0.001) dark period activity (1188 vs. 710 activity counts/h). This corresponded to higher (p < 0.0001) daily metabolizable energy intake (mean over 12-week period: 196 vs. 187 kcal/day), and increased (p = 0.048) RMR in LD cats (9.02 vs. 8.37 kcal/h). Body composition, serum leptin and serum ghrelin were not altered by photoperiod. More research is needed to determine potential mechanisms by which these physiological changes occurred and how they may apply to weight management strategies.
Collapse
|
8
|
Abstract
Although veterinary practitioners know that nutrition can make a difference in the health and recovery from disease or illness in dogs and cats, they may feel poorly equipped to provide unbiased information on nutrition. This article provides information about evaluating and recommending diets and interpreting a pet food label to allow for comparisons among pet foods and discussion about how to do a nutritional assessment. It provides an example of how nutritional assessment and recommendation were successfully introduced into a busy private practice. Finally, some of the myths and misperceptions about nutrition are discussed with information provided from evidence-based research.
Collapse
|
9
|
Clark M, Thomaseth K, Dirikolu L, Ferguson DC, Hoenig M. Effects of pioglitazone on insulin sensitivity and serum lipids in obese cats. J Vet Intern Med 2014; 28:166-74. [PMID: 24592408 PMCID: PMC4895531 DOI: 10.1111/jvim.12255] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Pioglitazone is a thiazolidinedione (TZD) insulin sensitizer approved for use in human type 2 diabetes mellitus. Therapeutic options for diabetes in cats are limited. Objective To evaluate the effects of pioglitazone in obese cats, which are predisposed to insulin resistance, to assess its potential for future use in feline diabetes mellitus. Animals A total of 12 obese purpose‐bred research cats (6 neutered males and 6 spayed females, 5–7 years of age, weighing 5.4–9.8 kg). Methods Randomized, placebo‐controlled 3‐way crossover study. Oral placebo or pioglitazone (Actos™; 1 or 3 mg/kg) was administered daily for 7‐week periods, with IV glucose tolerance testing before and after each period. Results Three mg/kg pioglitazone significantly improved insulin sensitivity (geometric mean [95% CI] 0.90 [0.64–1.28] to 2.03 [1.49–2.78] min −1pmol−1L; P = .0014 versus change with placebo), reduced insulin area under the curve during IVGTT (geometric mean [range] 27 [9–64] to 18 [6–54] min∙nmol/L; P = .0031 versus change with placebo), and lowered serum triglyceride (geometric mean [range] 71 [29–271] to 48 [27–75] mg/dL; P = .047 versus change with placebo) and cholesterol (geometric mean [range] 187 [133–294] to 162 [107–249] mg/dL; P = .0042 versus change with placebo) concentrations in the obese cats. No adverse effects attributable to pioglitazone were evident in the otherwise healthy obese cats at this dosage and duration. Conclusions and Clinical Importance Results of this study support a positive effect of pioglitazone on insulin sensitivity and lipid metabolism in obese cats, and suggest that further evaluation of the drug in cats with diabetes mellitus or other metabolic disorders might be warranted.
Collapse
|
10
|
Hoenig M. Carbohydrate Metabolism and Pathogenesis of Diabetes Mellitus in Dogs and Cats. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 121:377-412. [DOI: 10.1016/b978-0-12-800101-1.00012-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Schermerhorn T. Normal glucose metabolism in carnivores overlaps with diabetes pathology in non-carnivores. Front Endocrinol (Lausanne) 2013; 4:188. [PMID: 24348462 PMCID: PMC3847661 DOI: 10.3389/fendo.2013.00188] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 11/19/2013] [Indexed: 12/15/2022] Open
Abstract
Carnivores, such as the dolphin and the domestic cat, have numerous adaptations that befit consumption of diets with high protein and fat content, with little carbohydrate content. Consequently, nutrient metabolism in carnivorous species differs substantially from that of non-carnivores. Important metabolic pathways known to differ between carnivores and non-carnivores are implicated in the development of diabetes and insulin resistance in non-carnivores: (1) the hepatic glucokinase (GCK) pathway is absent in healthy carnivores yet GCK deficiency may result in diabetes in rodents and humans, (2) healthy dolphins and cats are prone to periods of fasting hyperglycemia and exhibit insulin resistance, both of which are risk factors for diabetes in non-carnivores. Similarly, carnivores develop naturally occurring diseases such as hemochromatosis, fatty liver, obesity, and diabetes that have strong parallels with the same disorders in humans. Understanding how evolution, environment, diet, and domestication may play a role with nutrient metabolism in the dolphin and cat may also be relevant to human diabetes.
Collapse
Affiliation(s)
- Thomas Schermerhorn
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
- *Correspondence: Thomas Schermerhorn, Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506-5606, USA e-mail:
| |
Collapse
|
12
|
The cat as a model for human obesity: insights into depot-specific inflammation associated with feline obesity. Br J Nutr 2013; 110:1326-35. [DOI: 10.1017/s0007114513000226] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
According to human research, the location of fat accumulation seems to play an important role in the induction of obesity-related inflammatory complications. To evaluate whether an inflammatory response to obesity depends on adipose tissue location, adipokine gene expression, presence of immune cells and adipocyte cell size of subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) were compared between lean and obese cats. Additionally, the present study proposes the cat as a model for human obesity and highlights the importance of animal models for human research. A total of ten chronically obese and ten lean control cats were included in the present study. Body weight, body condition score and body composition were determined. T-lymphocyte, B-lymphocyte, macrophage concentrations and adipocyte cell size were measured in adipose tissue at different locations. Serum leptin concentration and the mRNA expression of leptin and adiponectin, monocyte chemoattractant protein-1, chemoligand-5, IL-8, TNF-α, interferon-γ, IL-6 and IL-10 were measured in blood and adipose tissues (abdominal and inguinal SAT, and omental, bladder and renal VAT). Feline obesity was characterised by increased adipocyte cell size and altered adipokine gene expression, in favour of pro-inflammatory cytokines and chemokines. Consequently, concentration of T-lymphocytes was increased in the adipose tissue of obese cats. Alteration of adipose tissue was location dependent in both lean and obese cats. Moreover, the observed changes were more prominent in SAT compared with VAT.
Collapse
|
13
|
Häring T, Haase B, Zini E, Hartnack S, Uebelhart D, Gaudenz D, Wichert BA. Overweight and impaired insulin sensitivity present in growing cats. J Anim Physiol Anim Nutr (Berl) 2012; 97:813-9. [DOI: 10.1111/j.1439-0396.2012.01322.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Abstract
Obesity is the most common nutritional disorder of cats and is a risk factor for diabetes. Similar to developments in obese people, obese cats show peripheral tissue insulin resistance and may demonstrate glucose intolerance when challenged with pharmacological amounts of glucose. However, they compensate well for the insulin resistance and do not show elevated glucose concentrations when monitored during their regular daily routine, including postprandial periods. This is possible because obese cats in the fasted and postprandial state are able to maintain hepatic insulin sensitivity and decrease endogenous glucose production, which allows them to maintain normoglycemia. Also dissimilar to what is seen in many obese humans, cats do not develop atherosclerosis and clinical hypertension. The time course for progression to overt diabetes of obese cats is unknown. One might speculate that diabetes develops when the liver finally becomes insulin resistant and/or insulin secretion becomes too low to overcome increased glucose production. In addition, amyloid, demonstrated to be deposited in islet of chronically obese cats, may contribute to a reduction in insulin secretion by reducing functional β-cell mass.
Collapse
Affiliation(s)
- Margarethe Hoenig
- College of Veterinary Medicine, University of Illinois, Urbana, Illinois 61802, USA.
| |
Collapse
|
15
|
Verbrugghe A, Hesta M, Daminet S, Janssens GPJ. Nutritional modulation of insulin resistance in the true carnivorous cat: a review. Crit Rev Food Sci Nutr 2012; 52:172-82. [PMID: 22059962 DOI: 10.1080/10408398.2010.499763] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cats are strict carnivores that rely on nutrients in animal tissues to meet their specific and unique nutritional requirements. In their natural habitat, cats consume prey high in protein with moderate amounts of fat and minimal carbohydrates in contrast to commercial diets, which are sometimes moderate to high in carbohydrates. This change in diet has been accompanied by a shift from an outdoor environment to an indoor lifestyle and decreased physical activity, because cats no longer need to hunt to obtain food. This transformation of the lifestyle of cats is thought to be responsible for the recent increase in incidence of obesity, insulin resistance, and diabetes mellitus in domestic cats. At first, an overview of the evolutionary physiological adaptations of carbohydrate digestion in the feline digestive tract and of the hepatic carbohydrate and protein metabolism reflecting the true carnivorous nature of cats is given. Secondly, this literature review deals with nutritional modulation of insulin sensitivity, focusing on dietary macronutrients, carbohydrate sources, and dietary fiber for prevention and treatment of insulin resistance.
Collapse
|
16
|
Zoran DL, Buffington CAT. Effects of nutrition choices and lifestyle changes on the well-being of cats, a carnivore that has moved indoors. J Am Vet Med Assoc 2011; 239:596-606. [PMID: 21879959 DOI: 10.2460/javma.239.5.596] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Debra L Zoran
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | | |
Collapse
|
17
|
Backlund B, Zoran DL, Nabity MB, Norby B, Bauer JE. Effects of dietary protein content on renal parameters in normal cats. J Feline Med Surg 2011; 13:698-704. [PMID: 21752682 PMCID: PMC10832751 DOI: 10.1016/j.jfms.2011.05.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2011] [Indexed: 11/26/2022]
Abstract
This study evaluates the effect of dietary protein content on renal parameters in 23 healthy spayed female cats. The objective was to determine if cats eating diets high in protein will have higher serum urea nitrogen (UN) and creatinine values without a detectable change in kidney function, as assessed by urinalysis. A single random cross-over design was used. Cats were fed a standard maintenance diet for at least 1 month prior to the dietary trial. They were fed in two phases. For the first phase, cats were randomly assigned to receive either a high protein [HP=46% metabolizable energy (ME)] or low protein (LP=26% ME) diet. For the second phase, cats were fed whichever diet they were not fed during the phase I period. Blood and urine samples were collected at 2-week intervals for the duration of the study (10 weeks). UN, albumin, alanine aminotransferase and urine specific gravity were significantly higher, and creatinine and phosphorus were significantly lower (P<0.05) when cats were fed the HP diet as compared to when they were fed the LP diet, although none of the mean values were found to be outside of the corresponding reference interval. Dietary intake can result in clinically significant changes in UN and statistically significantly changes in several other biochemical analytes, although all analytes are likely to remain within normal reference intervals. Therefore, an accurate dietary history is necessary to help determine if renal parameters are being influenced by diet in a particular patient.
Collapse
Affiliation(s)
- Brianna Backlund
- Department of Small Animal Clinical Sciences, Texas A&M College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA.
| | | | | | | | | |
Collapse
|
18
|
Hoenig M, Jordan ET, Glushka J, Kley S, Patil A, Waldron M, Prestegard JH, Ferguson DC, Wu S, Olson DE. Effect of macronutrients, age, and obesity on 6- and 24-h postprandial glucose metabolism in cats. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1798-807. [PMID: 21940405 DOI: 10.1152/ajpregu.00342.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Obesity and age are risk factors for feline diabetes. This study aimed to test the hypothesis that age, long-term obesity, and dietary composition would lead to peripheral and hepatorenal insulin resistance, indicated by higher endogenous glucose production (EGP) in the fasted and postprandial state, higher blood glucose and insulin, and higher leptin, free thyroxine, and lower adiponectin concentrations. Using triple tracer-(2)H(2)O, [U-(13)C(3)] propionate, and [3,4-(13)C(2)] glucose infusion, and indirect calorimetry-we investigated carbohydrate and fat metabolic pathways in overnight-fasted neutered cats (13 young lean, 12 old lean, and 12 old obese), each fed three different diets (high protein with and without polyunsaturated fatty acids, and high carbohydrate) in a crossover design. EGP was lowest in fasted and postprandial obese cats despite peripheral insulin resistance, indicated by hyperinsulinemia. Gluconeogenesis was the most important pathway for EGP in all groups, but glycogen contributed significantly. Insulin and leptin concentrations were higher in old than in young lean cats; adiponectin was lowest in obese cats but surprisingly highest in lean old cats. Diet had little effect on metabolic parameters. We conclude that hepatorenal insulin resistance does not develop in the fasted or postprandial state, even in long-term obese cats, allowing the maintenance of euglycemia through lowering EGP. Glycogen plays a major role in EGP, especially in lean fasted cats, and in the postprandial state. Aging may predispose to insulin resistance, which is a risk factor for diabetes in cats. Mechanisms underlying the high adiponectin of healthy old lean cats need to be further explored.
Collapse
Affiliation(s)
- Margarethe Hoenig
- Department of Physiology and Pharmacology, University of Georgia College of Veterinary Medicine, Athens, Georgia, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hoenig M, Jordan ET, Ferguson DC, de Vries F. Oral glucose leads to a differential response in glucose, insulin, and GLP-1 in lean versus obese cats. Domest Anim Endocrinol 2010; 38:95-102. [PMID: 19781890 DOI: 10.1016/j.domaniend.2009.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 08/06/2009] [Accepted: 08/09/2009] [Indexed: 11/16/2022]
Abstract
The response to oral glucose was examined in 10 obese and 9 lean age-matched, neutered cats. In all cats, oral administration of 2g/kg glucose was followed by a prompt increase in glucose, insulin, and glucagon-like peptide (GLP)-1. There were significant differences between lean and obese cats in the areas under the curve for glucose, insulin, and GLP-1. However, the responses were variable, and a clear distinction between individual lean and obese cats was not possible. Therefore, this test cannot be recommended as a routine test to examine insulin resistance in individual cats as it is used in people. A further disadvantage for routine use is also the fact that this test requires gastric tubing for the correct administration of the glucose and associated tranquilization to minimize stress and that it was associated with development of diarrhea in 25% of the cats. GLP-1 concentrations were much lower in obese than lean cats. The low GLP-1 concentrations in obese cats might indicate a contribution of GLP-1 to the lower insulin sensitivity of obese cats, but this hypothesis needs to be further investigated.
Collapse
Affiliation(s)
- M Hoenig
- Department of Veterinary Clinical Medicine and College of Veterinary Medicine, University of Illinois, Urbana, IL, USA.
| | | | | | | |
Collapse
|
20
|
Response to Fasting in an Unnaturally Obese Carnivore, the Captive European Polecat Mustela putorius. Exp Biol Med (Maywood) 2009; 234:1287-95. [DOI: 10.3181/0904-rm-140] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The European polecat ( Mustela putorius) is a naturally lean carnivore prone to excessive weight gain in captivity. This study assessed its suitability to investigate the natural history of the obese phenotype displayed in overweight humans, domestic animals, and seasonally obese wild mammals. Ten farm-bred polecats were subjected to a 5-day fast with 10 controls. Obesity (40% body fat) was associated with an unfavorable plasma lipid profile and high glucose and insulin concentrations. The polecats were in phase II of fasting with normoglycemia, low liver carbohydrate stores, and decreased plasma concentrations of urea and most amino acids. Although the plasma nonesterified fatty acid (NEFA) levels were elevated, the adipose tissue lipase activities suggested a blunted lipolytic response. Lipid mobilization was more efficient from intraabdominal fat. The animals developed hepatic lipidosis with elevated NEFA influx into the liver and losses of n-3 polyunsaturated fatty acids and arginine as hypothetical etiological factors. The plasma leptin, insulin, and triiodothyronine levels decreased but were not accompanied by reduced sex steroid or increased stress hormone concentrations. The blunted lipolytic response often encountered in obesity suggests that the organism is trying to defend the obese phenotype. Liver lipidosis and decreased insulin and triiodothyronine levels seem to be among the most consistent responses to fasting manifested in diverse mammalian orders and different levels of body fatness. The polecat could be recommended as an easily accessible carnivorean model to study the natural history of the obese phenotype and its comorbidities.
Collapse
|
21
|
Kley S, Hoenig M, Glushka J, Jin ES, Burgess SC, Waldron M, Jordan ET, Prestegard JH, Ferguson DC, Wu S, Olson DE. The impact of obesity, sex, and diet on hepatic glucose production in cats. Am J Physiol Regul Integr Comp Physiol 2009; 296:R936-43. [PMID: 19193946 DOI: 10.1152/ajpregu.90771.2008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Obesity is a risk factor for type 2 diabetes in cats. The risk of developing diabetes is severalfold greater for male cats than for females, even after having been neutered early in life. The purpose of this study was to investigate the role of different metabolic pathways in the regulation of endogenous glucose production (EGP) during the fasted state considering these risk factors. A triple tracer protocol using (2)H(2)O, [U-(13)C(3)]propionate, and [3,4-(13)C(2)]glucose was applied in overnight-fasted cats (12 lean and 12 obese; equal sex distribution) fed three different diets. Compared with lean cats, obese cats had higher insulin (P < 0.001) but similar blood glucose concentrations. EGP was lower in obese cats (P < 0.001) due to lower glycogenolysis and gluconeogenesis (GNG; P < 0.03). Insulin, body mass index, and girth correlated negatively with EGP (P < 0.003). Female obese cats had approximately 1.5 times higher fluxes through phosphoenolpyruvate carboxykinase (P < 0.02) and citrate synthase (P < 0.05) than male obese cats. However, GNG was not higher because pyruvate cycling was increased 1.5-fold (P < 0.03). These results support the notion that fasted obese cats have lower hepatic EGP compared with lean cats and are still capable of maintaining fasting euglycemia, despite the well-documented existence of peripheral insulin resistance in obese cats. Our data further suggest that sex-related differences exist in the regulation of hepatic glucose metabolism in obese cats, suggesting that pyruvate cycling acts as a controlling mechanism to modulate EGP. Increased pyruvate cycling could therefore be an important factor in modulating the diabetes risk in female cats.
Collapse
Affiliation(s)
- Saskia Kley
- College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Indoor confinement and physical inactivity rather than the proportion of dry food are risk factors in the development of feline type 2 diabetes mellitus. Vet J 2009; 179:247-53. [DOI: 10.1016/j.tvjl.2007.08.035] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 08/29/2007] [Accepted: 08/30/2007] [Indexed: 11/20/2022]
|