1
|
Maranesi M, Palmioli E, Dall'Aglio C, Marini D, Anipchenko P, De Felice E, Scocco P, Mercati F. Resistin in endocrine pancreas of sheep: Presence and expression related to different diets. Gen Comp Endocrinol 2024; 348:114452. [PMID: 38246291 DOI: 10.1016/j.ygcen.2024.114452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/30/2023] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
Resistin (RETN), a recently discovered adipokine, is a cysteine-rich and secretory protein produced by adipocytes. RETN has been detected in several tissues, including human and laboratory animals' pancreas, wherein impairs glucose tolerance and insulin (INS) action and causes INS resistance. This study aims to evaluate the presence and expression of RETN in the pancreas of 15 adult female sheep reared on Apennine pastures, which show a decrease in their nutritional value due to the drought stress linked to the increasing summer aridity. The sheep were divided into 3 groups according to the diet they were subjected to: maximum pasture flowering (MxF) group, maximum pasture dryness (MxD) group, and experimental (Exp) group which received a feed supplementation in addition to the MxD group feeding. Immunohistochemistry and immunofluorescence were performed on formalin-fixed and paraffin-embedded sections of the pancreas to detect the RETN presence and to evaluate the co-localization of RETN with both glucagon (GCG)- and INS-producing cells. In addition, the expression of the three molecules was evaluated also in relation to different diets. RETN was observed only in the endocrine pancreas, showing a wide distribution throughout the pancreatic islets with few negative cells and the RETN producing cells colocalized with both α cells and ß cells. No differences in distribution and immunostaining intensity of RETN, GCG and INS were observed among the three groups. Quantitative PCR showed the expression of RETN, GCG and INS in all tested samples. No significant differences were observed for RETN and GCG among all three groups of sheep. Instead, a high statistically significant expression of INS was detected in the MxF group with respect to the Exp and MxD groups. These results highlight the localization of RETN in GCG- and INS-secreting cells involved in glucose homeostasis suggesting a modulatory role for RETN. Furthermore, the RETN expression is not influenced by food supplementation and thus is not affected by diet.
Collapse
Affiliation(s)
- Margherita Maranesi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy.
| | - Elisa Palmioli
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy; Department of Philosophy, Social Sciences, and Education, PhD Course in "Ethics of Communication, Scientific Research and Technological Innovation" Medical-Health Curriculum, University of Perugia, Piazza G. Ermini, 1, 06123 Perugia, IT, Italy.
| | - Cecilia Dall'Aglio
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy.
| | - Daniele Marini
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy; Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden.
| | - Polina Anipchenko
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy.
| | - Elena De Felice
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Pontoni 5, 62032 Camerino, IT, Italy.
| | - Paola Scocco
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Pontoni 5, 62032 Camerino, IT, Italy.
| | - Francesca Mercati
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy.
| |
Collapse
|
2
|
Thaqi G, Berisha B, Pfaffl MW. Local Expression Dynamics of Various Adipokines during Induced Luteal Regression (Luteolysis) in the Bovine Corpus Luteum. Animals (Basel) 2023; 13:3221. [PMID: 37893945 PMCID: PMC10603666 DOI: 10.3390/ani13203221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
The study aimed to evaluate the mRNA expression levels of various local novel adipokines, including vaspin, adiponectin, visfatin, and resistin, along with their associated receptors, heat shock 70 protein 5, adiponectin receptor 1, and adiponectin receptor 2, in the corpus luteum (CL) during luteal regression, also known as luteolysis, in dairy cows. We selected Fleckvieh cows in the mid-luteal phase (days 8-12, control group) and administered cloprostenol (PGF analog) to experimentally induce luteolysis. We collected CL samples at different time points following PGF application: before treatment (days 8-12, control group) and at 0.5, 2, 4, 12, 24, 48, and 64 h post-treatment (n = 5) per group. The mRNA expression was measured via real-time reverse transcription polymerase chain reaction (RT-qPCR). Vaspin was characterized by high mRNA levels at the beginning of the regression stage, followed by a significant decrease 48 h and 64 h after PGF treatment. Adiponectin mRNA levels were elevated 48 h after PGF. Resistin showed upregulation 4 h post PGF application. In summary, the alterations observed in the adipokine family within experimentally induced regressing CL tissue potentially play an integral role in the local regulatory processes governing the sequence of events culminating in functional luteolysis and subsequent structural changes in the bovine ovary.
Collapse
Affiliation(s)
- Granit Thaqi
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Weihenstephan, 85354 Munich, Germany; (B.B.); (M.W.P.)
| | - Bajram Berisha
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Weihenstephan, 85354 Munich, Germany; (B.B.); (M.W.P.)
- Department of Animal Biotechnology, Faculty of Agriculture and Veterinary, University of Prishtina, 10000 Prishtina, Kosovo
| | - Michael W. Pfaffl
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Weihenstephan, 85354 Munich, Germany; (B.B.); (M.W.P.)
| |
Collapse
|
3
|
Palmioli E, Dall'Aglio C, Fagotti A, Simoncelli F, Dobrzyn K, Di Rosa I, Maranesi M, De Felice E, Scocco P, Mercati F. Leptin system is not affected by different diets in the abomasum of the sheep reared in semi-natural pastures of the Central Apennines. Ann Anat 2023; 247:152069. [PMID: 36754242 DOI: 10.1016/j.aanat.2023.152069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/09/2023]
Abstract
The growing summer drought stress is affecting the nutritional value of pastures, no longer sufficient to support the nutritional status of sheep in extensive rearing. Adipokines affect organ and tissue functionality can be useful to evaluate animal welfare and prompt an improvement in the management of the grazing animals. Leptin (Lep) is an adipokine mainly produced by adipose tissue that regulates food intake by an anorexigenic action. Lep has also been detected in the human and rat gastrointestinal tract, where it regulates the rate of gastric emptying. In this study, Lep system was evaluated in the abomasum of 15 adult sheep reared on Apennine pastures and subjected to different diets. Until the maximum pasture flowering (MxF group), the sheep fed on fresh forage; from that moment until the maximum pasture dryness (MxD group), the experimental group (Exp group) received a feed supplementation in addition to MxD group feeding. The Lep system was investigated in the abomasum samples by immunohistochemistry (IHC) and RT-qPCR. Double-label localisation of Lep and leptin receptor (LepR) with neuroendocrine hormones was conducted to distinguish the gland cell types. The analysis performed revealed the presence of Lep and LepR in the chief and neuroendocrine cells of the fundic glands of the abomasum. RT-qPCR evidenced the transcript for Lep and LepR also identifying the long isoform (LepRb). No significant differences were observed among the three groups of sheep subjected to different diets. The abundant immunostaining observed in the fundic glands suggests that the Lep intervenes in the regulation of abomasum in sheep with a similar pattern to monogastric species while long term food supplementation seems do not influence the local function of the Lep system. A better understanding of the gastrointestinal system can contribute to improving sheep management and optimising the sustainability of livestock production.
Collapse
Affiliation(s)
- Elisa Palmioli
- Department of FISSUF, PhD Course in "Ethics of Communication, Scientific Research and Technological Innovation" Medical-Health Curriculum, University of Perugia, Piazza G. Ermini, 1, 06123 Perugia, Italy; Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy.
| | - Cecilia Dall'Aglio
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy.
| | - Anna Fagotti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto, 8, 06123 Perugia, Italy.
| | - Francesca Simoncelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto, 8, 06123 Perugia, Italy.
| | - Kamil Dobrzyn
- Department of Zoology, University of Warmia and Mazury in Olsztyn, Poland.
| | - Ines Di Rosa
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto, 8, 06123 Perugia, Italy.
| | - Margherita Maranesi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy.
| | - Elena De Felice
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Pontoni 5, 62032 Camerino, Italy.
| | - Paola Scocco
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Pontoni 5, 62032 Camerino, Italy.
| | - Francesca Mercati
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy.
| |
Collapse
|
4
|
Braun BC, Jewgenow K. Role of sex steroids and prostaglandins during the luteal life cycle in domestic cats and lynxes. Domest Anim Endocrinol 2022; 78:106689. [PMID: 34688216 DOI: 10.1016/j.domaniend.2021.106689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/07/2021] [Accepted: 09/22/2021] [Indexed: 11/20/2022]
Abstract
Although lynxes and domestic cats are both felids, their luteal life cycles differ. As in many species, corpora lutea (CLs) of domestic cats regress after pregnancy or pseudopregnancy. By contrast, CLs of lynxes do not functionally regress following the cycle of their formation. They stay physiologically active and persist for several years. To obtain an improved understanding of the life cycle of both species, we comparatively studied the CLs of these species in detail. In this review, we summarize the similarities and differences of their CLs regarding sex steroid and prostaglandin generation and receptors. The most evident differences were visible in the CLs of lynxes, which persist from previous cycles, compared with CLs of lynxes and domestic cats from the recent luteal cycle. We assume that these differences could indicate processes ensuring long-term luteal survival and functionality, for example, by high estrogen production/metabolism or by antioxidative effects.
Collapse
Affiliation(s)
- B C Braun
- Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research, 10315, Berlin, Germany.
| | - K Jewgenow
- Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research, 10315, Berlin, Germany
| |
Collapse
|
5
|
Mattioli S, Maranesi M, Castellini C, Dal Bosco A, Arias-Álvarez M, Lorenzo PL, Rebollar PG, García-García RM. Physiology and modulation factors of ovulation in rabbit reproduction management. WORLD RABBIT SCIENCE 2021. [DOI: 10.4995/wrs.2021.13184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Rabbit is an induced ovulatory species, so ovulation takes place after mating. Traditionally, exogenous and synthetic hormonal factors (administered by intramuscular and intravaginal route) such as GnRH and analogues, or different physical procedures (i.e. stimulation by intravaginal cannula) have been used to induce ovulation in females when artificial insemination is applied in rabbit farms. Restriction and public rejection of the use of hormones is leading to the study of the seminal plasma components with potential action on ovulation induction. The aim of the present review is to collect and summarise the strategies used in recent years to trigger ovulation and improve rabbit fertility management with respect to more animal-friendly manipulation methods. Furthermore, special attention has been paid to the use of a semen component (as endogen molecule) such as beta nerve growth factor (β-NGF) in male and female rabbit reproductive physiology. This neurotrophin and its receptors (TrKA and p75NTR) are abundantly distributed in both male and female rabbit reproductive tracts, and it seems to have an important physiological role in sperm maturation and behaviour (velocity, apoptosis and capacitation), as well as a modulatory factor of ovulation. Endogen β-NGF is diluted in the seminal doses with the extenders; hence it could be considered an innovative and alternative strategy to avoid the current exogenous (by intramuscular route) and stressful hormonal treatments used in ovulation induction. Their addition in seminal dose could be more physiological and improve animal welfare in rabbit farms.
Collapse
|
6
|
Maranesi M, Dall’Aglio C, Acuti G, Cappelli K, Trabalza Marinucci M, Galarini R, Suvieri C, Zerani M. Effects of Dietary Polyphenols from Olive Mill Waste Waters on Inflammatory and Apoptotic Effectors in Rabbit Ovary. Animals (Basel) 2021; 11:ani11061727. [PMID: 34207896 PMCID: PMC8228552 DOI: 10.3390/ani11061727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 01/02/2023] Open
Abstract
The aim of this study was to evaluate the effect of dietary polyphenols on the expression of the effectors involved in inflammation and apoptosis in rabbit ovary. New Zealand White female rabbits were fed a basal control diet (CTR), or the same diet supplemented with a polyphenolic concentrate (POL, 282.4 mg/kg) obtained from olive mill waste waters. The follicle counts and the relative mRNA (RT-qPCR) and protein (immunohistochemistry) expression of the effectors involved in inflammation (cyclooxygenase-2; interleukin-1beta; tumor necrosis factor-alpha, TNFA) and apoptosis (BCL2-associated X protein, BAX), detected in the ovaries of both groups, were examined. The POL diet increased the primary and total follicles number. Cyclooxygenase-2 gene expression was higher (p < 0.05) in the POL group than in the CTR group, whereas BAX was lower (p < 0.05) in POL than CTR. Immunohistochemistry revealed the presence of all the proteins examined, with weaker (p < 0.05) COX2 and BAX signals in POL. No differences between the CTR and POL groups were observed for IL1B and TNFA gene and protein expression. These preliminary findings show that dietary polyphenols modulate inflammatory and apoptotic activities in rabbit ovary, regulating cyclooxygenase-2 and BAX expression, thus suggesting a functional involvement of these dietary compounds in mammalian reproduction.
Collapse
Affiliation(s)
- Margherita Maranesi
- Dipartimento di Medicina Veterinaria, Università di Perugia, via San Costanzo 4, 06126 Perugia, Italy; (M.M.); (C.D.); (M.T.M.); (M.Z.)
| | - Cecilia Dall’Aglio
- Dipartimento di Medicina Veterinaria, Università di Perugia, via San Costanzo 4, 06126 Perugia, Italy; (M.M.); (C.D.); (M.T.M.); (M.Z.)
| | - Gabriele Acuti
- Dipartimento di Medicina Veterinaria, Università di Perugia, via San Costanzo 4, 06126 Perugia, Italy; (M.M.); (C.D.); (M.T.M.); (M.Z.)
- Correspondence: (G.A.); (K.C.)
| | - Katia Cappelli
- Dipartimento di Medicina Veterinaria, Università di Perugia, via San Costanzo 4, 06126 Perugia, Italy; (M.M.); (C.D.); (M.T.M.); (M.Z.)
- Correspondence: (G.A.); (K.C.)
| | - Massimo Trabalza Marinucci
- Dipartimento di Medicina Veterinaria, Università di Perugia, via San Costanzo 4, 06126 Perugia, Italy; (M.M.); (C.D.); (M.T.M.); (M.Z.)
| | - Roberta Galarini
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, via Gaetano Salvemini 1, 06126 Perugia, Italy;
| | - Chiara Suvieri
- Dipartimento di Medicina e Chirurgia, Sezione di Farmacologia, Università di Perugia, piazzale Severi 1, 06132 Perugia, Italy;
| | - Massimo Zerani
- Dipartimento di Medicina Veterinaria, Università di Perugia, via San Costanzo 4, 06126 Perugia, Italy; (M.M.); (C.D.); (M.T.M.); (M.Z.)
| |
Collapse
|
7
|
Hryciuk MM, Jewgenow K, Braun BC. Cloprostenol, a synthetic analog of prostaglandin F2α induces functional regression in cultured luteal cells of felids†. Biol Reprod 2021; 105:137-147. [PMID: 33864060 DOI: 10.1093/biolre/ioab070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022] Open
Abstract
In the present study, we investigated the effect of the synthetic analog of prostaglandin F2α (PGF2α)-cloprostenol-on cultured steroidogenic luteal cells of selected felid species over a 2-day culture period. The changes induced by cloprostenol were measured based on progesterone concentration and mRNA expression analysis of selected genes. Cloprostenol significantly reduced concentration of progesterone in cell culture medium of small luteal cells isolated from domestic cat corpora lutea (CL) at the development/maintenance stage (P < 0.05), but did not influence progesterone production in cultured cells from the regression stage. A decrease or complete silencing of progesterone production was also measured in cultured luteal cells of African lion (formation stage) and Javan leopard (development/maintenance stage). Gene-expression analysis by real-time PCR revealed that treatment with cloprostenol did not have an influence on expression of selected genes coding for enzymes of steroidogenesis (StAR, HSD3B, CYP11A1) or prostaglandin synthesis (PTGS2, PGES), nor did it effect hormone receptors (AR, ESR1, PGR, PTGER2), an anti-oxidative enzyme (SOD1) or factors of cell apoptosis (FAS, CASP3, TNFRSF1B, BCL2) over the studied period. Significant changes were measured only for expressions of luteinizing hormone (P < 0.05), prolactin (P < 0.05) and PGF2α receptors (P < 0.005) (LHCGR, PRLR, and PTGFR). The obtained results confirm that PGF2α/cloprostenol is a luteolytic agent in CL of felids and its impact on progesterone production depends on the developmental stage of the CL. Cloprostenol short-term treatment on luteal cells was associated only with functional but not structural changes related to luteal regression.
Collapse
Affiliation(s)
- Michał M Hryciuk
- Leibniz Institute for Zoo and Wildlife Research, Department of Reproduction Biology, Berlin, Germany
| | - Katarina Jewgenow
- Leibniz Institute for Zoo and Wildlife Research, Department of Reproduction Biology, Berlin, Germany
| | - Beate C Braun
- Leibniz Institute for Zoo and Wildlife Research, Department of Reproduction Biology, Berlin, Germany
| |
Collapse
|
8
|
Carrasco RA, Ratto MH, Adams GP. Differential Effects of Estradiol on Reproductive Function in Camelids. Front Vet Sci 2021; 8:646700. [PMID: 33681337 PMCID: PMC7929994 DOI: 10.3389/fvets.2021.646700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 01/28/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rodrigo A Carrasco
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Marcelo H Ratto
- Department of Animal Science, Universidad Austral de Chile, Valdivia, Chile
| | - Gregg P Adams
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
9
|
Zerani M, Polisca A, Boiti C, Maranesi M. Current Knowledge on the Multifactorial Regulation of Corpora Lutea Lifespan: The Rabbit Model. Animals (Basel) 2021; 11:ani11020296. [PMID: 33503812 PMCID: PMC7911389 DOI: 10.3390/ani11020296] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Corpora lutea (CL) are temporary endocrine structures that secrete progesterone, which is essential for maintaining a healthy pregnancy. A variety of regulatory factors come into play in modulating the functional lifespan of CL, with luteotropic and luteolytic effects. Many aspects of luteal phase physiology have been clarified, yet many others have not yet been determined, including the molecular and/or cellular mechanisms that maintain the CL from the beginning of luteolysis during early CL development. This paper summarizes our current knowledge of the endocrine and cellular mechanisms involved in multifactorial CL lifespan regulation, using the pseudopregnant rabbit model. Abstract Our research group studied the biological regulatory mechanisms of the corpora lutea (CL), paying particular attention to the pseudopregnant rabbit model, which has the advantage that the relative luteal age following ovulation is induced by the gonadotrophin-releasing hormone (GnRH). CL are temporary endocrine structures that secrete progesterone, which is essential for maintaining a healthy pregnancy. It is now clear that, besides the classical regulatory mechanism exerted by prostaglandin E2 (luteotropic) and prostaglandin F2α (luteolytic), a considerable number of other effectors assist in the regulation of CL. The aim of this paper is to summarize our current knowledge of the multifactorial mechanisms regulating CL lifespan in rabbits. Given the essential role of CL in reproductive success, a deeper understanding of the regulatory mechanisms will provide us with valuable insights on various reproductive issues that hinder fertility in this and other mammalian species, allowing to overcome the challenges for new and more efficient breeding strategies.
Collapse
|
10
|
Abd-Elkareem M, Abou-Elhamd AS. Immunohistochemical localization of progesterone receptors alpha (PRA) in ovary of the pseudopregnant rabbit. Anim Reprod 2019; 16:302-310. [PMID: 33224291 PMCID: PMC7673587 DOI: 10.21451/1984-3143-ar2018-0128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Progesterone plays an important role in the reproductive function and follicular development in mammals. The aim of the present study was to examine the localization of progesterone receptor alpha (PRA) in ovary of pseudopregnant rabbit by immunohistochemical methods. Samples were collected from 14 h. to 18 days of pseudopregnancy. At the first stage of pseudopregnancy (14 h.), the rabbit ovary showed moderate immunostaining of PRA in the granulosa cells and theca interna cells of preovulatory follicle and in the stroma cells. At the middle stage of pseudopregnancy (3-7 days), the rabbit ovary showed strong immunostaining of PRA in ovarian surface epithelial cells, follicular cells of the primary follicle, granulosa cells and theca interna cells of the growing and antral follicles. Moderate immunoexpression of PRA were observed in the large lutein cells and endothelial cells of the corpus haemorrhagicum and corpus luteum and in the stroma cells. At the end of pseudopregnancy (18 days) strong PRA reactions were detected in the small lutein cells of the regressed corpus luteum. Moderate to strong PRA immuno-expression were observed in the proliferated theca interna cells of the atretic antral follicles. The atretic large lutein cells of the regressed corpus luteum showed negative immunostaining for PRA. This study showed that the PRA positive small lutein cells of the regressed corpus luteum and the PRA positive proliferated theca interna cells of the atretic antral follicles were transformed into PRA positive interstitial gland cells. In conclusion, the present study had described the distribution of PRA in the ovary of pseudopregnant rabbit, which is not discussed before in the available literature. It also gives more information about follicular dynamic, formation and origin of interstitial glands, mechanism of ovulation, formation and regression of the corpus luteum.
Collapse
Affiliation(s)
- Mahmoud Abd-Elkareem
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Assiut University, Egypt
| | - Alaa Sayed Abou-Elhamd
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Assiut University, Egypt.,Department of Medical Laboratory Technology, Faculty of Medical applied sciences, Jazan University, KSA
| |
Collapse
|
11
|
Apelin system detection in the reproductive apparatus of ewes grazing on semi-natural pasture. Theriogenology 2019; 139:156-166. [PMID: 31412301 DOI: 10.1016/j.theriogenology.2019.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/19/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023]
Abstract
Apelin (APLN) is an adipokine with pleiotropic effects involved in the regulation of metabolic, cardiovascular, immune, and electrolyte balance function. Recent studies demonstrated a pivotal role in the regulation of male and female reproduction. APLN and its receptor (APLNR) were found in the hypothalamic-pituitary-gonad axis tissues, regulating gonadotropin release and steroidogenesis. However, to date, there are no studies that describe APLN system in the reproductive apparatus of the sheep. The study was performed on 10 Comisana x Appenninica adult dry ewes reared in a semi-natural pasture. Organ samples were collected from five animals in the two pasture functional phases: after maximum pasture flowering (Group 1) and after maximum pasture dryness (Group 2). Experiments were devised to characterize the gene expression and protein localization of the APLN/APLNR system in ewe reproductive apparatus; in addition, the concentration of plasma APLN was evaluated during the trial. Through immunohistochemical analysis, a positive staining for APLN was observed in the large luteal cells, in the epithelial cell coat of the ampulla, in the uterus epithelial lining and in the uterine glands. APLNR was observed in the granulosa cells, in the large luteal cells, in the secreting cells of the ampulla, in the uterus epithelial lining and uterine glands. The transcripts for APLN and APLNR were evidenced in all organ tissues examined. The highest level of APLN mRNA was detected in the Group 2 ewes in the luteal phase of the ovarian cycle compared to Group 1 ewes in the anestrous one. The relative content of APLN transcript was respectively twofold higher in the ovary (P < 0.05) and uterus (P < 0.05) and threefold higher in the ampulla (P < 0.05) in the Group 2 vs Group 1. The same trend of APLN transcript was evaluated for APLNR mRNA in uterus (P < 0.05) and ovary (P < 0.05). No difference was evidenced between Group 1 and Group 2 for APLNR mRNA levels. The plasma APLN level was fairly constant during the trial period. In conclusion, the present data suggest that the apelinergic system is involved in the reproduction function of ewes, being differentially distributed and expressed in the organs of the reproductive apparatus of ewes; these variations could be related to the sexual cycle and to the cyclic activity of the reproductive apparatus.
Collapse
|
12
|
Maranesi M, Petrucci L, Leonardi L, Piro F, Rebollar PG, Millán P, Cocci P, Vullo C, Parillo F, Moura A, Mariscal GG, Boiti C, Zerani M. New insights on a NGF-mediated pathway to induce ovulation in rabbits (Oryctolagus cuniculus). Biol Reprod 2019; 98:634-643. [PMID: 29438491 DOI: 10.1093/biolre/ioy041] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 02/07/2018] [Indexed: 12/26/2022] Open
Abstract
To investigate the ovulatory mechanisms triggered by raw semen (RS) in rabbits, we examined the expression of nerve growth factor (NGF)-a supposed ovulation-inducing factor (OIF)-and cognate receptors in anterior pituitary, ovary, and cervix as well as plasma NGF and luteinizing hormone (LH) concentrations. Six does/group were sham-inseminated with sterile saline (PBS), naturally mated (NM), inseminated with RS alone or after lumbar anesthesia (ARS), or treatment with COX inhibitors (CIRS). Immunohistochemistry revealed positive signals for NGF and receptors in all tissues. RT-PCR confirmed the presence of the target transcripts in the same tissues, except NTRK1 in the cervix. Circulating NGF concentrations rose 3- to 6-fold (P < 0.01) 15 min after semen deposition into the genital tract of NM, RS, and ARS rabbits and remained sustained thereafter. Circulating NGF was 4-fold lower (P < 0.01) in CIRS than in RS does indicating that NGF is mainly synthesized by the uterus. A concomitant rise of LH and NGF concentrations was found in 83.3%, 50.0%, and 16.7% of NM, RS, and CIRS does, respectively, but not in ARS (despite high NGF circulating levels). Seminal plasma NGF concentration was 151.9 ± 9.25 μg/mL. The ovulatory responses were 0%, 83.3%, 66.7%, 16.7%, and 0% in PBS, NM, RS, ARS, and CIRS groups, respectively. Present data confirm that, although RS may induce ovulation via endocrine mechanisms through binding to NGF receptors in the ovary, a novel OIF-mediated neural mechanism facilitates ovulation in rabbits.
Collapse
Affiliation(s)
- Margherita Maranesi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Perugia, Italy
| | - Linda Petrucci
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Perugia, Italy
| | - Leonardo Leonardi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Perugia, Italy
| | - Federica Piro
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Perugia, Italy
| | | | - Pilar Millán
- Departamento de Fisiología (Fisiología animal), Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Paolo Cocci
- Scuola di Bioscienze e Medicina Veterinaria, Università degli Studi di Camerino, Matelica, Italy
| | - Cecilia Vullo
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, Camerino, Italy
| | - Francesco Parillo
- Scuola di Bioscienze e Medicina Veterinaria, Università degli Studi di Camerino, Matelica, Italy
| | - Arlindo Moura
- Departamento de Zootecnia, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Gabriela Gonzalez Mariscal
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Cristiano Boiti
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Perugia, Italy
| | - Massimo Zerani
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Perugia, Italy.,Scuola di Bioscienze e Medicina Veterinaria, Università degli Studi di Camerino, Matelica, Italy
| |
Collapse
|
13
|
Kisspeptin/kisspeptin receptor system in pseudopregnant rabbit corpora lutea: presence and function. Sci Rep 2019; 9:5044. [PMID: 30911071 PMCID: PMC6433948 DOI: 10.1038/s41598-019-41623-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 03/11/2019] [Indexed: 11/09/2022] Open
Abstract
Kisspeptin (KiSS) and its related receptors (KiSS1R) have a critical role in the reproduction of mammals. The KiSS/KiSS1R system is expressed in numerous reproductive organs including the ovary. Here, we studied the expression of the KiSS/KiSS1R system and its functional role in rabbit corpora lutea (CL) at days 4 (early-), 9 (mid-), and 13 (late-stage) of pseudopregnancy. In vitro progesterone, prostaglandin (PG) F2α (PGF2α) and E2 (PGE2) productions and prostaglandin-endoperoxide synthase 1 (PTGS1) and 2 (PTGS2) activities were evaluated. Immune reactivity (IR) for KiSS and KiSS1R were detected in luteal cells at nuclear and cytoplasmic level at all luteal stage for KiSS and only at early- and mid-stage for KiSS1R; IR decreased from early- to later stages of pseudopregnancy. The KiSS-10 augmented progesterone and PGE2 and diminished PGF2α secretions by early- and mid-CL; KiSS-10 reduced PTGS2 activity at early- and mid-stages, but did not affect PTGS1 at any luteal stages. The antagonist KiSS-234 counteracted all KiSS-10 effects. This study shows that the KiSS/KiSS1R system is expressed in CL of pseudopregnant rabbits and exerts a luteotropic action by down-regulating PTGS2, which decreases PGF2α and increases PGE2 and progesterone.
Collapse
|
14
|
Mercati F, Dall'Aglio C, Timperi L, Scocco P, De Felice E, Maranesi M. Epithelial expression of the hormone leptin by bovine skin. Eur J Histochem 2019; 63. [PMID: 30652436 PMCID: PMC6340309 DOI: 10.4081/ejh.2019.2993] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/29/2018] [Indexed: 01/12/2023] Open
Abstract
Leptin (Lep) stimulates keratinocytes to proliferate, intervenes in the wound healing and participates to hair follicle morphogenesis and cycle. While it is secreted by skin structures including epidermis and hair follicles, intradermal adipose tissue also seems to have a role in Lep secretion and accordingly in the control of hair follicle growth in mice and humans. Lep was investigated in the skin of humans and laboratory animals but there are not data regarding bovine species. The aim of this work was to study the expression of Lep and its receptor (LepR) in the skin of bovine and, at the same time, to investigate the presence and extension of intradermal adipose tissue. A morphological evaluation of the skin was performed while the presence and localization of Lep and LepR were analyzed by RT-PCR and immunohistochemistry. A high and thick dermis without adipocytes was observed. Hair follicles and sebaceous and sweat glands were located in the proximal part of the skin while a thick layer of connective tissue, lacking adipose cells, separated these structures by subcutis. RT-PCR evidenced the transcripts for both molecules. By immunohistochemistry, Lep and LepR were observed in the epidermis and hair follicles. Based on the absence of intradermal adipose tissue and the presence of both Lep and LepR in the epidermis and in the hair follicle epithelium, it can be posited that in bovine skin Lep participates to the control of epidermis growth and hair follicle cycle through a paracrine and autocrine mechanisms.
Collapse
|
15
|
Mercati F, Maranesi M, Dall'Aglio C, Petrucci L, Pasquariello R, Tardella FM, De Felice E, Scocco P. Apelin System in Mammary Gland of Sheep Reared in Semi-Natural Pastures of the Central Apennines. Animals (Basel) 2018; 8:E223. [PMID: 30486490 PMCID: PMC6315652 DOI: 10.3390/ani8120223] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/20/2018] [Accepted: 11/24/2018] [Indexed: 01/04/2023] Open
Abstract
Sheep are the most bred species in the Central Italy Apennine using the natural pastures as a trophic resource and grazing activity is fundamental to maintain the grassland biodiversity: this goal can be reached only ensuring an economical sustainability to the farmers. This study aimed to investigate the apelin/apelin receptor system in ovine mammary gland and to evaluate the differences induced by food supplementation, in order to shed light on this system function. A flock of 15 Comisana x Appenninica adult dry ewes were free to graze from June until pasture maximum flowering (MxF). From this period to pasture maximum dryness (MxD), in addition to grazing, the experimental group (Exp) was supplemented with 600 g/day/head of cereals. Apelin and apelin receptor were assessed by Real-Time PCR and immunohistochemistry on the mammary glands of subjects pertaining to MxF, MxD and Exp groups. They were detected in alveolar and ductal epithelial cells. The pasture maximum flowering group showed significant differences in apelin expression compared with experimental and MxD groups. Apelin receptor expression significantly differed among the three groups. The reduced apelin receptor expression and immunoreactivity levels during parenchyma involution enables us to hypothesize that apelin receptor plays a modulating role in the system control.
Collapse
Affiliation(s)
- Francesca Mercati
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy.
| | - Margherita Maranesi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy.
| | - Cecilia Dall'Aglio
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy.
| | - Linda Petrucci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy.
| | - Rolando Pasquariello
- Animal Reproduction and Biotechnology Laboratory, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 1683 Campus delivery, Fort Collins, CO 80523, USA.
| | - Federico Maria Tardella
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Pontoni 5, 62032 Camerino, Italy.
| | - Elena De Felice
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Pontoni 5, 62032 Camerino, Italy.
| | - Paola Scocco
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Pontoni 5, 62032 Camerino, Italy.
| |
Collapse
|
16
|
Troisi A, Orlandi R, Maranesi M, Dall'Aglio C, Brecchia G, Parillo F, Boiti C, Zerani M, Polisca A. Intra-ovarian dynamic blood flow in pseudopregnant rabbits during prostaglandin F2α-induced luteolysis. Reprod Domest Anim 2018; 54:176-183. [PMID: 30187583 DOI: 10.1111/rda.13332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/22/2018] [Indexed: 11/30/2022]
Abstract
In the present study, we evaluated the dynamic changes of intra-ovarian blood flow, by real-time colour-coded and pulsed Doppler ultrasonography, as well as the immunopresence of prostaglandin F2α (PGF2α) receptor (FP) and peripheral plasma progesterone concentrations in pseudopregnant rabbit after PGF2α treatments at either early- (4 days) and mid-luteal (9 days) stages. During the pre-treatment observation interval of one hour, the ovarian blood flows showed a fluctuating pattern. Independently of luteal stage, PGF2α administration caused a fourfold decline in the blood flow within 40 min that was followed 50 min later by a reactive hyperaemia that lasted several hours, while the resistive index showed an opposite trend. Twenty-four hour later, the blood flow was one half that measured before PGF2α injection. At day 4 of pseudopregnancy, PGF2α did not affect peripheral plasma progesterone concentrations, but at day 9, it caused functional luteolysis as progesterone levels declined 6 hr later to reach basal values after 24 hr. The changes in the ovarian blood flows of pseudopregnant rabbits receiving PGF2α were accompanied by simultaneous changes in the resistance index. This biphasic response in the blood flow and vascular resistances likely reflects reactive hyperaemia following vasoconstriction. By immunohistochemistry, strong positive immune reaction for FP was detected in the cytoplasm of endothelial cells of ovarian arteries, veins and capillaries. In conclusion, these results suggest that PGF2α could acutely regulate the ovarian blood flow of pseudopregnant rabbits, even if there is no evidence of a blood flow reduction anticipating luteolysis.
Collapse
Affiliation(s)
- Alessandro Troisi
- Dipartimento di Medicina Veterinaria, Università di Perugia, Perugia, Italy
| | - Riccardo Orlandi
- Dipartimento di Medicina Veterinaria, Università di Perugia, Perugia, Italy
| | | | - Cecilia Dall'Aglio
- Dipartimento di Medicina Veterinaria, Università di Perugia, Perugia, Italy
| | - Gabriele Brecchia
- Dipartimento di Medicina Veterinaria, Università di Perugia, Perugia, Italy
| | - Francesco Parillo
- Scuola di Bioscienze e Medicina veterinaria, Università di Camerino, Matelica, Italy
| | - Cristiano Boiti
- Dipartimento di Medicina Veterinaria, Università di Perugia, Perugia, Italy
| | - Massimo Zerani
- Dipartimento di Medicina Veterinaria, Università di Perugia, Perugia, Italy.,Scuola di Bioscienze e Medicina veterinaria, Università di Camerino, Matelica, Italy
| | - Angela Polisca
- Dipartimento di Medicina Veterinaria, Università di Perugia, Perugia, Italy
| |
Collapse
|
17
|
Presence and function of kisspeptin/KISS1R system in swine ovarian follicles. Theriogenology 2018; 115:1-8. [DOI: 10.1016/j.theriogenology.2018.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 04/01/2018] [Accepted: 04/04/2018] [Indexed: 12/19/2022]
|
18
|
Pirino C, Cappai MG, Maranesi M, Tomassoni D, Giontella A, Pinna W, Boiti C, Kamphues J, Dall'Aglio C. The presence and distribution of cannabinoid type 1 and 2 receptors in the mandibular gland: The influence of different physical forms of diets on their expression in piglets. J Anim Physiol Anim Nutr (Berl) 2017; 102:e870-e876. [PMID: 29218862 DOI: 10.1111/jpn.12848] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/12/2017] [Indexed: 12/12/2022]
Abstract
We explored the expression and cell type distribution of cannabinoid receptors type 1 (CB1) and cannabinoid receptors type 2 (CB2) in the mandibular glands of pigs in relation to different physical forms of the diet. Thirty-two crossbred growing pigs (ages 5-6 weeks) were randomly allotted to four experimental groups (eight pigs/group) and fed four different physical types of the same diet for 4 weeks: finely ground pellet (FP), coarsely ground meal (CM), coarsely ground pellet (CP) and coarsely ground extruded (CE) with dMEAN of 0.46, 0.88, 0.84 and 0.66 mm respectively. At the end of the feeding trial, the pigs were euthanized and the mandibular gland was collected after dissection. By immunohistochemistry, positive signals for CB1 were found in the cytoplasm of duct epithelial cells of pigs fed CP, FP and CE diets and in the serous cells of mixed acini in pigs fed the coarser CM diet. Positive signals for CB2 were detected in duct epithelial cells and in neurons of ganglia close to major secretory ducts of all pigs. The differential expression and localization of these receptors in response to variable chewing activity due to the type of diet suggest that endocannabinoids may influence the functional activity of the mandibular gland by modifying qualitative and/or quantitative aspects of salivary secretion.
Collapse
Affiliation(s)
- C Pirino
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - M G Cappai
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - M Maranesi
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - D Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Matelica (MC), Italy
| | - A Giontella
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - W Pinna
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - C Boiti
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - J Kamphues
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Hannover, Germany
| | - C Dall'Aglio
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
19
|
Garcia-Garcia RM, Masdeu MDM, Sanchez Rodriguez A, Millan P, Arias-Alvarez M, Sakr OG, Bautista JM, Castellini C, Lorenzo PL, Rebollar PG. β-nerve growth factor identification in male rabbit genital tract and seminal plasma and its role in ovulation induction in rabbit does. ITALIAN JOURNAL OF ANIMAL SCIENCE 2017. [DOI: 10.1080/1828051x.2017.1382315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Rosa M. Garcia-Garcia
- Departamento de Fisiología (Fisiología Animal), Complutense University of Madrid, Madrid, Spain
| | - Maria del Mar Masdeu
- Departamento de Fisiología (Fisiología Animal), Complutense University of Madrid, Madrid, Spain
| | - Ana Sanchez Rodriguez
- Departamento de Fisiología (Fisiología Animal), Complutense University of Madrid, Madrid, Spain
| | - Pilar Millan
- Departamento de Fisiología (Fisiología Animal), Complutense University of Madrid, Madrid, Spain
| | - Maria Arias-Alvarez
- Departmento de Producción Animal, Complutense University of Madrid, Madrid, Spain
| | - Osama G. Sakr
- Department of Animal Production (Animal Physiology), Agriculture College, Cairo University, Giza, Egypt
- Departamento de Producción Agraria, Agricultural Engineering School, Polytechnic University of Madrid, Ciudad Universitaria, Madrid, Spain
| | - Jose M. Bautista
- Departamento de Bioquímica IV y Biología Molecular, Complutense University of Madrid, Madrid, Spain
| | - Cesare Castellini
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Perugia University, Perugia, Italy
| | - Pedro L. Lorenzo
- Departamento de Fisiología (Fisiología Animal), Complutense University of Madrid, Madrid, Spain
| | - Pilar G. Rebollar
- Departamento de Producción Agraria, Agricultural Engineering School, Polytechnic University of Madrid, Ciudad Universitaria, Madrid, Spain
| |
Collapse
|
20
|
Camargos A, Wohlres-Viana S, Costa I, Camargo L, Ferreira J, Ramos A, Oba E. Cloprostenol administration in the first week postpartum reduces expression of oxytocin receptors in the endometrium in Holstein-Zebu cows. ARQ BRAS MED VET ZOO 2017. [DOI: 10.1590/1678-4162-9318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT The present study investigated the hormonal profile and expression of prostaglandin F2α (PGF2α), oxytocin and estrogen receptors in uterine tissues of postpartum cows treated with cloprostenol. Twenty Holstein-Zebu crossbred cows were treated with saline solution (treatment CONT) or cloprostenol (treatment CLO), both administered two and five days postpartum. Blood samples were collected on days two, seven, 14, 21 and 28 postpartum for progesterone, PGF2α metabolite (PGFM) and estradiol determination, and endometrial biopsy was performed in order to quantify the expression of oxytocin receptor (OXTR), prostaglandin F receptor (PTGFR) and estrogen receptor 1 (ERS1) genes. In the CLO treatment, expression of OXTR was reduced (P<0.05) but no difference (P>0.05) between treatments was found for PTGFR and ERS1 expression. Estrogen concentrations increased progressively until day 14 (P<0.05) and the highest OXTR expression and lowest PTGFR expression were observed on day 14 (P<0.05) in both treatments. Serum PGFM concentrations were high throughout the experiment. In conclusion, cloprostenol administration at days two and five of postpartum seems to reduce OXTR expression in the endometrium in crossbred cows.
Collapse
Affiliation(s)
| | | | - I.F. Costa
- Universidade Estadual Paulista “Julio de Mesquita Filho”, Brazil
| | - L.S. Camargo
- Empresa Brasileira de Pesquisa Agropecuária, Brazil
| | - J.C. Ferreira
- Universidade Estadual Paulista “Julio de Mesquita Filho”, Brazil
| | - A.A. Ramos
- Universidade Estadual Paulista “Julio de Mesquita Filho”, Brazil
| | - E. Oba
- Universidade Estadual Paulista “Julio de Mesquita Filho”, Brazil
| |
Collapse
|
21
|
Cell-specific immuno-localization of progesterone receptor alpha in the rabbit ovary during pregnancy and after parturition. Anim Reprod Sci 2017; 180:100-120. [DOI: 10.1016/j.anireprosci.2017.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 03/10/2017] [Indexed: 02/01/2023]
|
22
|
Maranesi M, Parillo F, Leonardi L, Rebollar PG, Alonso B, Petrucci L, Gobbetti A, Boiti C, Arruda-Alencar J, Moura A, Zerani M. Expression of nerve growth factor and its receptors in the uterus of rabbits: functional involvement in prostaglandin synthesis. Domest Anim Endocrinol 2016; 56:20-8. [PMID: 26986844 DOI: 10.1016/j.domaniend.2016.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 01/24/2023]
Abstract
The aim of the present study was to evaluate: (1) the presence of nerve growth factor (NGF), neurotrophic tyrosine kinase receptor 1 (NTRK1), and nerve growth factor receptor (NGFR) in the rabbit uterus; and (2) the in vitro effects of NGF on PGF2α and PGE2 synthesis and on the PGE2-9-ketoreductase (PGE2-9-K) activity by the rabbit uterus. Nerve growth factor, NTRK1, and NGFR were immunolocalized in the luminal and glandular epithelium and stroma cells of the endometrium. reverse transcriptase polymerase chain reaction indicated the presence of messenger RNA for NGF, NTRK1, and NGFR in the uterus. Nerve growth factor increased (P < 0.01) in vitro secretions of PGF2α and PGE2 but coincubation with either NTRK1 or oxide nitric synthase (NOS) inhibitors reduced (P < 0.01) PGF2α production and blocked (P < 0.01) PGE2 secretion. Prostaglandins releases were lower (P < 0.01) than control when uterine samples were treated with NGF plus cyclooxygenase inhibitor. However, addition of NGFR inhibitor reduced (P < 0.01) PGF2α secretion less efficiently than NTRK1 or NOS inhibitors but had no effect on PGE2 yield. Nerve growth factor increased (P < 0.01) the activity of PGE2-9-K, whereas coincubation with NTRK1 or NOS inhibitors abolished (P < 0.01) this increase in PGE2-9-K activity. However, cotreatment with either cyclooxygenase or NGFR inhibitors had no effect on PGE2-9-K activity. This is the first study to document the distribution of NGF/NTRK1 and NGFR systems and their effects on prostaglandin synthesis in the rabbit uterus. NGF/NTRK1 increases PGF2α and PGE2 productions by upregulating NOS and PGE2-9-K activities, whereas NGF/NGFR augments only PGF2α secretion, through an intracellular mechanism that is still unknown.
Collapse
Affiliation(s)
- M Maranesi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Perugia, 06216, Italy.
| | - F Parillo
- Scuola di Bioscienze e Medicina Veterinaria, Università degli Studi di Camerino, Matelica (MC), 62024, Italy
| | - L Leonardi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Perugia, 06216, Italy
| | - P G Rebollar
- Departamento Producción Animal, ETSI Agrónomos, Universidad Politécnica de Madrid, Ciudad Universitaria, Madrid, 28040, Spain
| | - B Alonso
- Departamento Producción Animal, ETSI Agrónomos, Universidad Politécnica de Madrid, Ciudad Universitaria, Madrid, 28040, Spain
| | - L Petrucci
- Scuola di Bioscienze e Medicina Veterinaria, Università degli Studi di Camerino, Matelica (MC), 62024, Italy
| | - A Gobbetti
- Scuola di Bioscienze e Medicina Veterinaria, Università degli Studi di Camerino, Matelica (MC), 62024, Italy
| | - C Boiti
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Perugia, 06216, Italy
| | - J Arruda-Alencar
- Department of Animal Science, Federal University of Ceará, Fortaleza, CE, 60020-181, Brazil
| | - A Moura
- Department of Animal Science, Federal University of Ceará, Fortaleza, CE, 60020-181, Brazil
| | - M Zerani
- Scuola di Bioscienze e Medicina Veterinaria, Università degli Studi di Camerino, Matelica (MC), 62024, Italy
| |
Collapse
|
23
|
Maranesi M, Zerani M, Leonardi L, Pistilli A, Arruda-Alencar J, Stabile AM, Rende M, Castellini C, Petrucci L, Parillo F, Moura A, Boiti C. Gene Expression and Localization of NGF and Its Cognate Receptors NTRK1 and NGFR in the Sex Organs of Male Rabbits. Reprod Domest Anim 2015; 50:918-25. [DOI: 10.1111/rda.12609] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/17/2015] [Indexed: 12/22/2022]
Affiliation(s)
- M Maranesi
- Dipartimento di Medicina Veterinaria; Università degli Studi di Perugia; Perugia Italy
| | - M Zerani
- Scuola di Bioscienze e Medicina Veterinaria; Università degli Studi di Camerino; Matelica Italy
| | - L Leonardi
- Dipartimento di Medicina Veterinaria; Università degli Studi di Perugia; Perugia Italy
| | - A Pistilli
- Dipartimento di Scienze Chirurgiche e Biomediche; Sezione di Anatomia Umana; Clinica e Forense; Università degli Studi di Perugia; Perugia Italy
| | - J Arruda-Alencar
- Department of Animal Science; Federal University of Ceará; Fortaleza CE Brazil
| | - AM Stabile
- Dipartimento di Scienze Chirurgiche e Biomediche; Sezione di Anatomia Umana; Clinica e Forense; Università degli Studi di Perugia; Perugia Italy
| | - M Rende
- Dipartimento di Scienze Chirurgiche e Biomediche; Sezione di Anatomia Umana; Clinica e Forense; Università degli Studi di Perugia; Perugia Italy
| | - C Castellini
- Dipartimento di Scienze Agrarie; Alimentari e Ambientali; Università degli Studi di Perugia; Perugia Italy
| | - L Petrucci
- Scuola di Bioscienze e Medicina Veterinaria; Università degli Studi di Camerino; Matelica Italy
| | - F Parillo
- Scuola di Bioscienze e Medicina Veterinaria; Università degli Studi di Camerino; Matelica Italy
| | - A Moura
- Department of Animal Science; Federal University of Ceará; Fortaleza CE Brazil
| | - C Boiti
- Dipartimento di Medicina Veterinaria; Università degli Studi di Perugia; Perugia Italy
| |
Collapse
|
24
|
Kim SO, Markosyan N, Pepe GJ, Duffy DM. Estrogen promotes luteolysis by redistributing prostaglandin F2α receptors within primate luteal cells. Reproduction 2015; 149:453-64. [PMID: 25687410 DOI: 10.1530/rep-14-0412] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Prostaglandin F2α (PGF2α) has been proposed as a functional luteolysin in primates. However, administration of PGF2α or prostaglandin synthesis inhibitors in vivo both initiate luteolysis. These contradictory findings may reflect changes in PGF2α receptors (PTGFRs) or responsiveness to PGF2α at a critical point during the life span of the corpus luteum. The current study addressed this question using ovarian cells and tissues from female cynomolgus monkeys and luteinizing granulosa cells from healthy women undergoing follicle aspiration. PTGFRs were present in the cytoplasm of monkey granulosa cells, while PTGFRs were localized in the perinuclear region of large, granulosa-derived monkey luteal cells by mid-late luteal phase. A PTGFR agonist decreased progesterone production in luteal cells obtained at mid-late and late luteal phases, but did not decrease progesterone production by granulosa cells or luteal cells from younger corpora lutea. These findings are consistent with a role for perinuclear PTGFRs in functional luteolysis. This concept was explored using human luteinizing granulosa cells maintained in vitro as a model for luteal cell differentiation. In these cells, PTGFRs relocated from the cytoplasm to the perinuclear area in an estrogen- and estrogen receptor-dependent manner. Similar to our findings with monkey luteal cells, human luteinizing granulosa cells with perinuclear PTGFRs responded to a PTGFR agonist with decreased progesterone production. These data support the concept that PTGFR stimulation promotes functional luteolysis only when PTGFRs are located in the perinuclear region. Estrogen receptor-mediated relocation of PTGFRs within luteal cells may be a necessary step in the initiation of luteolysis in primates.
Collapse
Affiliation(s)
- Soon Ok Kim
- Department of Physiological SciencesEastern Virginia Medical School, Norfolk, Virginia 23501, USA
| | - Nune Markosyan
- Department of Physiological SciencesEastern Virginia Medical School, Norfolk, Virginia 23501, USA
| | - Gerald J Pepe
- Department of Physiological SciencesEastern Virginia Medical School, Norfolk, Virginia 23501, USA
| | - Diane M Duffy
- Department of Physiological SciencesEastern Virginia Medical School, Norfolk, Virginia 23501, USA
| |
Collapse
|
25
|
Mercati F, Maranesi M, Dall’Aglio C, Scocco P, Pascucci L, Boiti C, Ceccarelli P. Leptin receptor is expressed by epidermis and skin appendages in dog. Acta Histochem 2014; 116:1270-5. [PMID: 25131155 DOI: 10.1016/j.acthis.2014.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 01/05/2023]
Abstract
Leptin is a polypeptide secreted by adipocytes which binds to a specific receptor (Ob-R) that is expressed in various tissues. The wide distribution of the Ob-R suggests that leptin might exert diverse biological functions, not only by regulating energy metabolism and appetite, but also by acting as a mitogen in many cell types, including keratinocytes. In this study, the presence and localization of Ob-R was investigated in the skin of the dog using RT-PCR and immunohistochemical techniques. RT-PCR revealed the presence of Ob-R m-RNA in the skin specimens collected from the dorsal region of two smooth coat breed dogs. Through immunohistochemistry performed on the skin of five dogs, the expression of the receptor was observed in the basal layer of the epidermis, in the hair follicles as well as in the apocrine sweat and sebaceous glands. No staining for Ob-R was detected in the suprabasal epidermis layers. Strong positive signals were observed in many cells of the outer root sheath of hair follicles in growing and in regressive phases. The identification of Ob-R in the above targets suggests that leptin may play a role in the regulation of cyclic renewal of the epidermis and skin appendages in dog. This study represents an important contribution to understand the complex mechanisms that are involved in the skin biology in this species.
Collapse
|
26
|
Shah KB, Tripathy S, Suganthi H, Rudraiah M. Profiling of luteal transcriptome during prostaglandin F2-alpha treatment in buffalo cows: analysis of signaling pathways associated with luteolysis. PLoS One 2014; 9:e104127. [PMID: 25102061 PMCID: PMC4125180 DOI: 10.1371/journal.pone.0104127] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 07/09/2014] [Indexed: 11/18/2022] Open
Abstract
In several species including the buffalo cow, prostaglandin (PG) F2α is the key molecule responsible for regression of corpus luteum (CL). Experiments were carried out to characterize gene expression changes in the CL tissue at various time points after administration of luteolytic dose of PGF2α in buffalo cows. Circulating progesterone levels decreased within 1 h of PGF2α treatment and evidence of apoptosis was demonstrable at 18 h post treatment. Microarray analysis indicated expression changes in several of immediate early genes and transcription factors within 3 h of treatment. Also, changes in expression of genes associated with cell to cell signaling, cytokine signaling, steroidogenesis, PG synthesis and apoptosis were observed. Analysis of various components of LH/CGR signaling in CL tissues indicated decreased LH/CGR protein expression, pCREB levels and PKA activity post PGF2α treatment. The novel finding of this study is the down regulation of CYP19A1 gene expression accompanied by decrease in expression of E2 receptors and circulating and intra luteal E2 post PGF2α treatment. Mining of microarray data revealed several differentially expressed E2 responsive genes. Since CYP19A1 gene expression is low in the bovine CL, mining of microarray data of PGF2α-treated macaques, the species with high luteal CYP19A1 expression, showed good correlation between differentially expressed E2 responsive genes between both the species. Taken together, the results of this study suggest that PGF2α interferes with luteotrophic signaling, impairs intra-luteal E2 levels and regulates various signaling pathways before the effects on structural luteolysis are manifest.
Collapse
Affiliation(s)
- Kunal B Shah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Sudeshna Tripathy
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Hepziba Suganthi
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Medhamurthy Rudraiah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
27
|
Parillo F, Zerani M, Maranesi M, Dall'Aglio C, Galeati G, Brecchia G, Boiti C, González-Mariscal G. Ovarian hormones and fasting differentially regulate pituitary receptors for estrogen and gonadotropin-releasing hormone in rabbit female. Microsc Res Tech 2013; 77:201-10. [DOI: 10.1002/jemt.22328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 12/08/2013] [Accepted: 12/14/2013] [Indexed: 11/08/2022]
Affiliation(s)
- F. Parillo
- Scuola di Bioscienze e Medicina veterinaria; Università di Camerino; 62024 Matelica Italy
| | - M. Zerani
- Scuola di Bioscienze e Medicina veterinaria; Università di Camerino; 62024 Matelica Italy
| | - M. Maranesi
- Dipartimento di Scienze biopatologiche ed Igiene delle produzioni animali e alimentari; Laboratorio di Biotecnologie fisiologiche, Sezione di Fisiologia veterinaria, Università di Perugia; 06126 Perugia Italy
| | - C. Dall'Aglio
- Dipartimento di Scienze biopatologiche ed Igiene delle produzioni animali e alimentari; Laboratorio di Biotecnologie fisiologiche, Sezione di Fisiologia veterinaria, Università di Perugia; 06126 Perugia Italy
| | - G. Galeati
- Dipartimento di Scienze mediche veterinarie; Università di Bologna; 40064 Ozzano Emilia Italy
| | - G. Brecchia
- Dipartimento di Scienze biopatologiche ed Igiene delle produzioni animali e alimentari; Laboratorio di Biotecnologie fisiologiche, Sezione di Fisiologia veterinaria, Università di Perugia; 06126 Perugia Italy
| | - C. Boiti
- Dipartimento di Scienze biopatologiche ed Igiene delle produzioni animali e alimentari; Laboratorio di Biotecnologie fisiologiche, Sezione di Fisiologia veterinaria, Università di Perugia; 06126 Perugia Italy
| | - G. González-Mariscal
- Centro de Investigación en Reproducción Animal CINVESTAV; Universidad Autónoma de Tlaxcala-CINVESTAV; Tlaxcala Mexico
| |
Collapse
|
28
|
Dall'Aglio C, Millán P, Maranesi M, Rebollar PG, Brecchia G, Zerani M, Gobbetti A, Gonzalez-Mariscal G, Boiti C. Expression of the cannabinoid receptor type 1 in the pituitary of rabbits and its role in the control of LH secretion. Domest Anim Endocrinol 2013; 45:171-9. [PMID: 24099736 DOI: 10.1016/j.domaniend.2013.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/20/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
Abstract
The aim of this study was to elucidate the possible direct regulatory role of the endocannabinoids in the modulation of LH secretion in rabbits, a reflex ovulator species. The cannabinoid receptor type 1 (CB1) was characterized by RT-PCR techniques in the anterior pituitary of intact and ovariectomized does treated with GnRH and primed with estrogen and CB1 antagonist, rimonabant. Cannabinoid receptor type 1 immune reaction was evidenced by immunohistochemistry in the cytoplasm of approximately 10% of the pituitary cells with a density of 8.5 ± 1.9 (per 0.01 mm(2)), both periodic acid-Schiff positive (30%) and negative (70%). All CB1-immunoreactive cells were also immune reactive for estrogen receptor type 1. Ovariectomy, either alone or combined with estrogen priming, did not modify the relative abundances of pituitary CB1 mRNA, but decreased (P < 0.01) the expression of estrogen receptor type 1 mRNA. Treatment with CB1 antagonist (rimonabant) inhibited (P < 0.01) LH secretory capacity by the pituitary after GnRH injection, and estrogen priming had no effect. The present findings indicate that the endocannabinoid system is a potential candidate for the regulation of the hypothalamic-pituitary-ovarian axis in reflex ovulatory species.
Collapse
Affiliation(s)
- C Dall'Aglio
- Sezione di Anatomia, Dipartimento di Scienze biopatologiche veterinarie, Università di Perugia, Via S. Costanzo 4, 06126 Perugia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Schroeder K, Drews B, Roellig K, Goeritz F, Hildebrandt T. Embryonic resorption in context to intragestational corpus luteum regression: A longitudinal ultrasonographic study in the European brown hare (Lepus europaeus PALLAS, 1778). Theriogenology 2013; 80:479-86. [DOI: 10.1016/j.theriogenology.2013.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 05/10/2013] [Accepted: 05/12/2013] [Indexed: 10/26/2022]
|
30
|
Parillo F, Dall’Aglio C, Brecchia G, Maranesi M, Polisca A, Boiti C, Zerani M. Aglepristone (RU534) effects on luteal function of pseudopregnant rabbits: Steroid receptors, enzymatic activities, and hormone productions in corpus luteum and uterus. Anim Reprod Sci 2013; 138:118-32. [DOI: 10.1016/j.anireprosci.2013.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 01/31/2013] [Accepted: 02/07/2013] [Indexed: 11/30/2022]
|
31
|
Zorrilla LM, D'Annibale MA, Swing SE, Gadsby JE. Expression of Genes Associated with Apoptosis in the Porcine Corpus Luteum During the Oestrous Cycle. Reprod Domest Anim 2013; 48:755-61. [DOI: 10.1111/rda.12156] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/16/2013] [Indexed: 01/08/2023]
Affiliation(s)
- LM Zorrilla
- Department of Molecular Biomedical Sciences; College of Veterinary Medicine; North Carolina State University; Raleigh; NC; USA
| | - MA D'Annibale
- Department of Molecular Biomedical Sciences; College of Veterinary Medicine; North Carolina State University; Raleigh; NC; USA
| | - SE Swing
- Department of Molecular Biomedical Sciences; College of Veterinary Medicine; North Carolina State University; Raleigh; NC; USA
| | - JE Gadsby
- Department of Molecular Biomedical Sciences; College of Veterinary Medicine; North Carolina State University; Raleigh; NC; USA
| |
Collapse
|
32
|
Dall'aglio C, Mercati F, Maranesi M, Boiti C. Identification of orexins and cognate receptors in the lacrimal gland of sheep. Peptides 2012; 35:36-41. [PMID: 22465661 DOI: 10.1016/j.peptides.2012.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/14/2012] [Accepted: 03/14/2012] [Indexed: 01/01/2023]
Abstract
The aim of the present work was to study, by means of immunohistochemical and RT-PCR techniques, the presence and distribution of immunopositivity for orexin A and B (OXA and OXB) and orexin type 1 and 2 receptors (OX(1)R and OX(2)R) in the lacrimal gland of sheep as well as the gene expressions for prepro-orexin (PPOX) and cognate receptors. In serial sections, positive staining for OXA and OXB were localized in the same nervous fibers within the connective tissue septa. Positive staining for OX(1)R was evidenced in the wall of small arteries while that for OX(2)R was observed in the secretory portion of the acinar gland cells with a characteristic localization in the apical cytoplasm. RT-PCR analysis showed the presence of transcripts for PPOX, OX(1)R and OX(2)R in the sheep lacrimal gland; the gene expression of OX(1)R was two-fold greater (p<0.01) than that of OX(2)R. Taken together the present findings raise intriguing questions on the potential role of the orexinergic system in the regulation of lacrimal gland functions that require further investigations.
Collapse
Affiliation(s)
- Cecilia Dall'aglio
- Dipartimento di Scienze Biopatologiche ed Igiene delle Produzioni Animali ed Alimentari, Sezione di Anatomia Veterinaria, Via San Costanzo 4, 06126 Perugia, Italy.
| | | | | | | |
Collapse
|