1
|
Fang Z, Yang X, Wang C, Shang L. Microfluidics-Based Microcarriers for Live-Cell Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2414410. [PMID: 40184613 DOI: 10.1002/advs.202414410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/25/2025] [Indexed: 04/06/2025]
Abstract
Live-cell therapy has emerged as a revolutionary treatment modality, providing a novel therapeutic avenue for intractable diseases. However, a major challenge in live-cell therapy is to maintain live-cell viability and efficacy during the treatment. Microcarriers are crucial for enhancing cell retention, viability, and functions by providing a protective scaffold and creating a supportive environment for live-cell proliferation and metabolism. For microcarrier construction, the microfluidic technology demonstrates excellent characteristics in terms of controllability over microcarrier size and morphology as well as potential for high-throughput production. To date, multiple live-cell delivery microcarrier types (e.g., microspheres, microfibers, and microneedles) are prepared via microfluidic liquid templates to meet different therapeutic needs. In this review, recent developments in microfluidics-based microcarriers for live-cell delivery are presented. It is focused on categorizing the structural design of microfluidic-derived cell-laden microcarriers, and summarizing various therapeutic applications. Finally, an outlook is provided on the future challenges and opportunities in this field.
Collapse
Affiliation(s)
- Zhonglin Fang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Xinyuan Yang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Chong Wang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Luoran Shang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| |
Collapse
|
2
|
Chen S, Wang W, Shen L, Liu H, Luo J, Ren Y, Cui S, Ye Y, Shi G, Cheng F, Su X, Dai L, Gou M, Deng H. A 3D-printed microdevice encapsulates vascularized islets composed of iPSC-derived β-like cells and microvascular fragments for type 1 diabetes treatment. Biomaterials 2025; 315:122947. [PMID: 39547136 DOI: 10.1016/j.biomaterials.2024.122947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
Transplantation of insulin-secreting cells provides a promising method for re-establishing the autonomous blood glucose control ability of type 1 diabetes (T1D) patients, but the low survival of the transplanted cells hinder the therapeutic efficacy. In this study, we 3D-printed an encapsulation system containing β-like cells and microvascular fragments (MVF), to create a retrivable microdevice with vascularized islets in vivo for T1D therapy. The functional β-like cells were differentiated from the urine epithelial cell-derived induced pluripotent stem cells (UiPSCs). Single-cell RNA sequencing provided an integrative study and macroscopic developmental analyses of the entire process of differentiation, which revealed the developmental trajectory of differentiation in vitro follows the developmental pattern of embryonic pancreas in vivo. The MVF were isolated from the epididymal fat pad. The microdevice with a groove structure were rapidly fabricated by the digital light processing (DLP)-3D printing technology. The β-like cells and MVF were uniformly distributed in the device. After subcutaneous transplantation into C57BL/6 mice, the microdevice have less collagen accumulation and low immune cell infiltration. Moreover, the microdevice encapsulated vascularized islets reduced hyperglycemia in 33 % of the treated mice for up to 100 days without immunosuppressants, and the humanized C-peptide was also detected in the serum of the mice. In summary, we described the microdevice-protected vascularized islets for long-term treatment of T1D, with high safety and potential clinical transformative value, and may therefore provide a translatable solution to advance the research progress of β cell replacement therapy for T1D.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenshuang Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lanlin Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haofan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yushuang Ren
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Susu Cui
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yixin Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gang Shi
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fuyi Cheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaolan Su
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Dai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Maling Gou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Hongxin Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Gonzalez-Sanchez FA, Sanchez-Huerta TM, Huerta-Gonzalez A, Sepulveda-Villegas M, Altamirano J, Aguilar-Aleman JP, Garcia-Varela R. Diabetes current and future translatable therapies. Endocrine 2024; 86:865-881. [PMID: 38971945 DOI: 10.1007/s12020-024-03944-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/23/2024] [Indexed: 07/08/2024]
Abstract
Diabetes is one of the major diseases and concerns of public health systems that affects over 200 million patients worldwide. It is estimated that 90% of these patients suffer from diabetes type 2, while 10% present diabetes type 1. This type of diabetes and certain types of diabetes type 2, are characterized by dysregulation of blood glycemic levels due to the total or partial depletion of insulin-secreting pancreatic β-cells. Different approaches have been proposed for long-term treatment of insulin-dependent patients; amongst them, cell-based approaches have been the subject of basic and clinical research since they allow blood glucose level sensing and in situ insulin secretion. The current gold standard for insulin-dependent patients is on-demand exogenous insulin application; cell-based therapies aim to remove this burden from the patient and caregivers. In recent years, protocols to isolate and implant pancreatic islets from diseased donors have been developed and tested in clinical trials. Nevertheless, the shortage of donors, along with the need of immunosuppressive companion therapies, have pushed researchers to focus their attention and efforts to overcome these disadvantages and develop alternative strategies. This review discusses current tested clinical approaches and future potential alternatives for diabetes type 1, and some diabetes type 2, insulin-dependent patients. Additionally, advantages and disadvantages of these discussed methods.
Collapse
Affiliation(s)
- Fabio Antonio Gonzalez-Sanchez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Departamento de Bioingeniería y Biotecnología, Av. General Ramon Corona No 2514, Colonia Nuevo Mexico, CP 45201, Zapopan, Jalisco, México
| | - Triana Mayra Sanchez-Huerta
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Departamento de Bioingeniería y Biotecnología, Av. General Ramon Corona No 2514, Colonia Nuevo Mexico, CP 45201, Zapopan, Jalisco, México
| | - Alexandra Huerta-Gonzalez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Departamento de Bioingeniería y Biotecnología, Av. General Ramon Corona No 2514, Colonia Nuevo Mexico, CP 45201, Zapopan, Jalisco, México
| | - Maricruz Sepulveda-Villegas
- Departamento de Medicina Genómica y Hepatología, Hospital Civil de Guadalajara, "Fray Antonio Alcalde", Guadalajara, 44280, Jalisco, Mexico
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, 44100, Jalisco, Mexico
| | - Julio Altamirano
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Epigmenio González 500, San Pablo, 76130, Santiago de Queretaro, Qro, México
| | - Juan Pablo Aguilar-Aleman
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Departamento de Ingenieria Biomedica, Av. General Ramon Corona No 2514, Colonia Nuevo Mexico, CP 45201, Zapopan, Jalisco, México
| | - Rebeca Garcia-Varela
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Departamento de Bioingeniería y Biotecnología, Av. General Ramon Corona No 2514, Colonia Nuevo Mexico, CP 45201, Zapopan, Jalisco, México.
- Carbone Cancer Center, University of Wisconsin - Madison, 1111 Highland Ave, Wisconsin, 53705, Madison, USA.
| |
Collapse
|
4
|
Wong JM, Pepper AR. Status of islet transplantation and innovations to sustainable outcomes: novel sites, cell sources, and drug delivery strategies. FRONTIERS IN TRANSPLANTATION 2024; 3:1485444. [PMID: 39553396 PMCID: PMC11565603 DOI: 10.3389/frtra.2024.1485444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024]
Abstract
Islet transplantation (ITx) is an effective means to restore physiologic glycemic regulation in those living with type 1 diabetes; however, there are a handful of barriers that prevent the broad application of this functionally curative procedure. The restricted cell supply, requisite for life-long toxic immunosuppression, and significant immediate and gradual graft attrition limits the procedure to only those living with brittle diabetes. While intraportal ITx is the primary clinical site, portal vein-specific factors including low oxygen tension and the instant blood-mediated inflammatory reaction are detrimental to initial engraftment and long-term function. These factors among others prevent the procedure from granting recipients long-term insulin independence. Herein, we provide an overview of the status and limitations of ITx, and novel innovations that address the shortcomings presented. Despite the marked progress highlighted in the review from as early as the initial islet tissue transplantation in 1893, ongoing efforts to improve the procedure efficacy and success are also explored. Progress in identifying unlimited cell sources, more favourable transplant sites, and novel drug delivery strategies all work to broaden ITx application and reduce adverse outcomes. Exploring combination of these approaches may uncover synergies that can further advance the field of ITx in providing sustainable functional cures. Finally, the potential of biomaterial strategies to facilitate immune evasion and local immune modulation are featured and may underpin successful application in alternative transplant sites.
Collapse
Affiliation(s)
| | - Andrew R. Pepper
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
5
|
Huan Z, Li J, Luo Z, Yu Y, Li L. Hydrogel-Encapsulated Pancreatic Islet Cells as a Promising Strategy for Diabetic Cell Therapy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0403. [PMID: 38966749 PMCID: PMC11221926 DOI: 10.34133/research.0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/16/2024] [Indexed: 07/06/2024]
Abstract
Islet transplantation has now become a promising treatment for insulin-deficient diabetes mellitus. Compared to traditional diabetes treatments, cell therapy can restore endogenous insulin supplementation, but its large-scale clinical application is impeded by donor shortages, immune rejection, and unsuitable transplantation sites. To overcome these challenges, an increasing number of studies have attempted to transplant hydrogel-encapsulated islet cells to treat diabetes. This review mainly focuses on the strategy of hydrogel-encapsulated pancreatic islet cells for diabetic cell therapy, including different cell sources encapsulated in hydrogels, encapsulation methods, hydrogel types, and a series of accessorial manners to improve transplantation outcomes. In addition, the formation and application challenges as well as prospects are also presented.
Collapse
Affiliation(s)
- Zhikun Huan
- Department of Endocrinology, Zhongda Hospital, School of Medicine,
Southeast University, Nanjing 210009, China
| | - Jingbo Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine,
Southeast University, Nanjing 210009, China
| | - Zhiqiang Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering,
Southeast University, Nanjing 210096, China
| | - Yunru Yu
- Pharmaceutical Sciences Laboratory,
Åbo Akademi University, Turku 20520, Finland
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine,
Southeast University, Nanjing 210009, China
| |
Collapse
|
6
|
Toftdal MS, Grunnet LG, Chen M. Emerging Strategies for Beta Cell Encapsulation for Type 1 Diabetes Therapy. Adv Healthc Mater 2024; 13:e2400185. [PMID: 38452393 DOI: 10.1002/adhm.202400185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/28/2024] [Indexed: 03/09/2024]
Abstract
Diabetes is a prevalent chronic disease affecting millions of people globally. To address this health challenge, advanced beta cell therapy using biomaterials-based macroscale, microscale, and nanoscale encapsulation devices must tackle various obstacles. First, overcoming foreign body responses is a major focus of research. Strategies such as immunomodulatory materials and physical immunoshielding are investigated to reduce the immune response and improve the longevity of the encapsulated cells. Furthermore, oxygenating strategies, such as the use of oxygen-releasing biomaterials, are developed to improve oxygen diffusion and promote cell survival. Finally, yet importantly, promoting vascularization through the use of angiogenic growth factors and the incorporation of pre-vascularized materials are also explored to enhance nutrient and oxygen supply to the encapsulated cells. This review seeks to specifically highlight the emerging research strategies developed to overcome these challenges using micro and nanoscale biomaterial encapsulation devices. Continuously improving and refining these strategies make an advance toward realizing the improved therapeutic potential of the encapsulated beta cells.
Collapse
Affiliation(s)
- Mette Steen Toftdal
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus C, 8000, Denmark
- Department of Cell Formulation and Delivery, Novo Nordisk A/S, Måløv, 2760, Denmark
| | - Lars Groth Grunnet
- Department of Cell Formulation and Delivery, Novo Nordisk A/S, Måløv, 2760, Denmark
| | - Menglin Chen
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus C, 8000, Denmark
| |
Collapse
|
7
|
Raoufinia R, Rahimi HR, Saburi E, Moghbeli M. Advances and challenges of the cell-based therapies among diabetic patients. J Transl Med 2024; 22:435. [PMID: 38720379 PMCID: PMC11077715 DOI: 10.1186/s12967-024-05226-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Diabetes mellitus is a significant global public health challenge, with a rising prevalence and associated morbidity and mortality. Cell therapy has evolved over time and holds great potential in diabetes treatment. In the present review, we discussed the recent progresses in cell-based therapies for diabetes that provides an overview of islet and stem cell transplantation technologies used in clinical settings, highlighting their strengths and limitations. We also discussed immunomodulatory strategies employed in cell therapies. Therefore, this review highlights key progresses that pave the way to design transformative treatments to improve the life quality among diabetic patients.
Collapse
Affiliation(s)
- Ramin Raoufinia
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Kotecha M, Wang L, Hameed S, Viswakarma N, Ma M, Stabler C, Hoesli CA, Epel B. In vitro oxygen imaging of acellular and cell-loaded beta cell replacement devices. Sci Rep 2023; 13:15641. [PMID: 37730815 PMCID: PMC10511476 DOI: 10.1038/s41598-023-42099-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that leads to the loss of insulin-producing beta cells. Bioartificial pancreas (BAP) or beta cell replacement strategies have shown promise in curing T1D and providing long-term insulin independence. Hypoxia (low oxygen concentration) that may occur in the BAP devices due to cell oxygen consumption at the early stages after implantation damages the cells, in addition to imposing limitations to device dimensions when translating promising results from rodents to humans. Finding ways to provide cells with sufficient oxygenation remains the major challenge in realizing BAP devices' full potential. Therefore, in vitro oxygen imaging assessment of BAP devices is crucial for predicting the devices' in vivo efficiency. Electron paramagnetic resonance oxygen imaging (EPROI, also known as electron MRI or eMRI) is a unique imaging technique that delivers absolute partial pressure of oxygen (pO2) maps and has been used for cancer hypoxia research for decades. However, its applicability for assessing BAP devices has not been explored. EPROI utilizes low magnetic fields in the mT range, static gradients, and the linear relationship between the spin-lattice relaxation rate (R1) of oxygen-sensitive spin probes such as trityl OX071 and pO2 to generate oxygen maps in tissues. With the support of the Juvenile Diabetes Research Foundation (JDRF), an academic-industry partnership consortium, the "Oxygen Measurement Core" was established at O2M to perform oxygen imaging assessment of BAP devices originated from core members' laboratories. This article aims to establish the protocols and demonstrate a few examples of in vitro oxygen imaging of BAP devices using EPROI. All pO2 measurements were performed using a recently introduced 720 MHz/25 mT preclinical oxygen imager instrument, JIVA-25™. We began by performing pO2 calibration of the biomaterials used in BAPs at 25 mT magnetic field since no such data exist. We compared the EPROI pO2 measurement with a single-point probe for a few selected materials. We also performed trityl OX071 toxicity studies with fibroblasts, as well as insulin-producing cells (beta TC6, MIN6, and human islet cells). Finally, we performed proof-of-concept in vitro pO2 imaging of five BAP devices that varied in size, shape, and biomaterials. We demonstrated that EPROI is compatible with commonly used biomaterials and that trityl OX071 is nontoxic to cells. A comparison of the EPROI with a fluorescent-based point oxygen probe in selected biomaterials showed higher accuracy of EPROI. The imaging of typically heterogenous BAP devices demonstrated the utility of obtaining oxygen maps over single-point measurements. In summary, we present EPROI as a quality control tool for developing efficient cell transplantation devices and artificial tissue grafts. Although the focus of this work is encapsulation systems for diabetes, the techniques developed in this project are easily transferable to other biomaterials, tissue grafts, and cell therapy devices used in the field of tissue engineering and regenerative medicine (TERM). In summary, EPROI is a unique noninvasive tool to experimentally study oxygen distribution in cell transplantation devices and artificial tissues, which can revolutionize the treatment of degenerative diseases like T1D.
Collapse
Affiliation(s)
- Mrignayani Kotecha
- Oxygen Measurement Core, O2M Technologies, LLC, Chicago, IL, 60612, USA.
| | - Longhai Wang
- Department of Biological and Environmental Engineering, Cornell University, NY, 14853, USA
| | - Safa Hameed
- Oxygen Measurement Core, O2M Technologies, LLC, Chicago, IL, 60612, USA
| | - Navin Viswakarma
- Oxygen Measurement Core, O2M Technologies, LLC, Chicago, IL, 60612, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, NY, 14853, USA
| | - Cherie Stabler
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Corinne A Hoesli
- Department of Chemical Engineering, McGill University, Montreal, QC, H3C 0C5, Canada
| | - Boris Epel
- Oxygen Measurement Core, O2M Technologies, LLC, Chicago, IL, 60612, USA
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
9
|
Magill E, Demartis S, Gavini E, Permana AD, Thakur RRS, Adrianto MF, Waite D, Glover K, Picco CJ, Korelidou A, Detamornrat U, Vora LK, Li L, Anjani QK, Donnelly RF, Domínguez-Robles J, Larrañeta E. Solid implantable devices for sustained drug delivery. Adv Drug Deliv Rev 2023; 199:114950. [PMID: 37295560 DOI: 10.1016/j.addr.2023.114950] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Implantable drug delivery systems (IDDS) are an attractive alternative to conventional drug administration routes. Oral and injectable drug administration are the most common routes for drug delivery providing peaks of drug concentrations in blood after administration followed by concentration decay after a few hours. Therefore, constant drug administration is required to keep drug levels within the therapeutic window of the drug. Moreover, oral drug delivery presents alternative challenges due to drug degradation within the gastrointestinal tract or first pass metabolism. IDDS can be used to provide sustained drug delivery for prolonged periods of time. The use of this type of systems is especially interesting for the treatment of chronic conditions where patient adherence to conventional treatments can be challenging. These systems are normally used for systemic drug delivery. However, IDDS can be used for localised administration to maximise the amount of drug delivered within the active site while reducing systemic exposure. This review will cover current applications of IDDS focusing on the materials used to prepare this type of systems and the main therapeutic areas of application.
Collapse
Affiliation(s)
- Elizabeth Magill
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Sara Demartis
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, 07100, Italy
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, 07100, Italy
| | - Andi Dian Permana
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Raghu Raj Singh Thakur
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Muhammad Faris Adrianto
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Airlangga University, Surabaya, East Java 60115, Indonesia
| | - David Waite
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Katie Glover
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Camila J Picco
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Anna Korelidou
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Usanee Detamornrat
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Linlin Li
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Fakultas Farmasi, Universitas Megarezky, Jl. Antang Raya No. 43, Makassar 90234, Indonesia
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain.
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
10
|
Qin T, Smink AM, de Vos P. Enhancing longevity of immunoisolated pancreatic islet grafts by modifying both the intracapsular and extracapsular environment. Acta Biomater 2023:S1742-7061(23)00362-8. [PMID: 37392934 DOI: 10.1016/j.actbio.2023.06.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic metabolic disease characterized by autoimmune destruction of pancreatic β cells. Transplantation of immunoisolated pancreatic islets might treat T1DM in the absence of chronic immunosuppression. Important advances have been made in the past decade as capsules can be produced that provoke minimal to no foreign body response after implantation. However, graft survival is still limited as islet dysfunction may occur due to chronic damage to islets during islet isolation, immune responses induced by inflammatory cells, and nutritional issues for encapsulated cells. This review summarizes the current challenges for promoting longevity of grafts. Possible strategies for improving islet graft longevity are also discussed, including supplementation of the intracapsular milieu with essential survival factors, promotion of vascularization and oxygenation near capsules, modulation of biomaterials, and co-transplantation of accessory cells. Current insight is that both the intracapsular as well as the extracapsular properties should be improved to achieve long-term survival of islet-tissue. Some of these approaches reproducibly induce normoglycemia for more than a year in rodents. Further development of the technology requires collective research efforts in material science, immunology, and endocrinology. STATEMENT OF SIGNIFICANCE: Islet immunoisolation allows for transplantation of insulin producing cells in absence of immunosuppression and might facilitate the use of xenogeneic cell sources or grafting of cells obtained from replenishable cell sources. However, a major challenge to date is to create a microenvironment that supports long-term graft survival. This review provides a comprehensive overview of the currently identified factors that have been demonstrated to be involved in either stimulating or reducing islet graft survival in immunoisolating devices and discussed current strategies to enhance the longevity of encapsulated islet grafts as treatment for type 1 diabetes. Although significant challenges remain, interdisciplinary collaboration across fields may overcome obstacles and facilitate the translation of encapsulated cell therapy from the laboratory to clinical application.
Collapse
Affiliation(s)
- Tian Qin
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands.
| | - Alexandra M Smink
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
11
|
Accolla RP, Simmons AM, Stabler CL. Integrating Additive Manufacturing Techniques to Improve Cell-Based Implants for the Treatment of Type 1 Diabetes. Adv Healthc Mater 2022; 11:e2200243. [PMID: 35412030 PMCID: PMC9262806 DOI: 10.1002/adhm.202200243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/22/2022] [Indexed: 12/12/2022]
Abstract
The increasing global prevalence of endocrine diseases like type 1 diabetes mellitus (T1DM) elevates the need for cellular replacement approaches, which can potentially enhance therapeutic durability and outcomes. Central to any cell therapy is the design of delivery systems that support cell survival and integration. In T1DM, well-established fabrication methods have created a wide range of implants, ranging from 3D macro-scale scaffolds to nano-scale coatings. These traditional methods, however, are often challenged by their inherent limitations in reproducible and discrete fabrication, particularly when scaling to the clinic. Additive manufacturing (AM) techniques provide a means to address these challenges by delivering improved control over construct geometry and microscale component placement. While still early in development in the context of T1DM cellular transplantation, the integration of AM approaches serves to improve nutrient material transport, vascularization efficiency, and the accuracy of cell, matrix, and local therapeutic placement. This review highlights current methods in T1DM cellular transplantation and the potential of AM approaches to overcome these limitations. In addition, emerging AM technologies and their broader application to cell-based therapy are discussed.
Collapse
Affiliation(s)
- Robert P. Accolla
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Amberlyn M. Simmons
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Cherie L. Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Department of Immunology and Pathology, College of Medicine, University of Florida, Gainesville, FL, USA
- University of Florida Diabetes Institute, Gainesville, FL, USA
| |
Collapse
|
12
|
Cardoso LMDF, Barreto T, Gama JFG, Alves LA. Natural Biopolymers as Additional Tools for Cell Microencapsulation Applied to Cellular Therapy. Polymers (Basel) 2022; 14:polym14132641. [PMID: 35808686 PMCID: PMC9268758 DOI: 10.3390/polym14132641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022] Open
Abstract
One of the limitations in organ, tissue or cellular transplantations is graft rejection. To minimize or prevent this, recipients must make use of immunosuppressive drugs (IS) throughout their entire lives. However, its continuous use generally causes several side effects. Although some IS dose reductions and withdrawal strategies have been employed, many patients do not adapt to these protocols and must return to conventional IS use. Therefore, many studies have been carried out to offer treatments that may avoid IS administration in the long term. A promising strategy is cellular microencapsulation. The possibility of microencapsulating cells originates from the opportunity to use biomaterials that mimic the extracellular matrix. This matrix acts as a support for cell adhesion and the syntheses of new extracellular matrix self-components followed by cell growth and survival. Furthermore, by involving the cells in a polymeric matrix, the matrix acts as an immunoprotective barrier, protecting cells against the recipient’s immune system while still allowing essential cell survival molecules to diffuse bilaterally through the polymer matrix pores. In addition, this matrix can be associated with IS, thus diminishing systemic side effects. In this context, this review will address the natural biomaterials currently in use and their importance in cell therapy.
Collapse
|
13
|
Campa-Carranza JN, Paez-Mayorga J, Chua CYX, Nichols JE, Grattoni A. Emerging local immunomodulatory strategies to circumvent systemic immunosuppression in cell transplantation. Expert Opin Drug Deliv 2022; 19:595-610. [PMID: 35588058 DOI: 10.1080/17425247.2022.2076834] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Cell transplantation is a promising curative therapeutic strategy whereby impaired organ functions can be restored without the need for whole organ transplantation. A key challenge in allotransplantation is the requirement for life-long systemic immunosuppression to prevent rejection, which is associated with serious adverse effects such as increased risk of opportunistic infections and the development of neoplasms. This challenge underscores the urgent need for novel strategies to prevent graft rejection while abrogating toxicity-associated adverse events. AREAS COVERED We review recent advances in immunoengineering strategies for localized immunomodulation that aim to support allograft function and provide immune tolerance in a safe and effective manner. EXPERT OPINION Immunoengineering strategies are tailored approaches for achieving immunomodulation of the transplant microenvironment. Biomaterials can be adapted for localized and controlled release of immunomodulatory agents, decreasing the effective dose threshold and frequency of administration. The future of transplant rejection management lies in the shift from systemic to local immunomodulation with suppression of effector and activation of regulatory T cells, to promote immune tolerance.
Collapse
Affiliation(s)
- Jocelyn Nikita Campa-Carranza
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.,School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, NL, Mexico
| | - Jesus Paez-Mayorga
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.,School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, NL, Mexico
| | - Corrine Ying Xuan Chua
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Joan E Nichols
- Center for Tissue Engineering, Houston Methodist Research Institute, Houston, TX, USA.,Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.,Department of Surgery, Houston Methodist Hospital, Houston, TX, USA.,Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
14
|
De Toni T, Stock AA, Devaux F, Gonzalez GC, Nunez K, Rubanich JC, Safley SA, Weber CJ, Ziebarth NM, Buchwald P, Tomei AA. Parallel Evaluation of Polyethylene Glycol Conformal Coating and Alginate Microencapsulation as Immunoisolation Strategies for Pancreatic Islet Transplantation. Front Bioeng Biotechnol 2022; 10:886483. [PMID: 35651551 PMCID: PMC9149081 DOI: 10.3389/fbioe.2022.886483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/12/2022] [Indexed: 01/21/2023] Open
Abstract
Pancreatic islet transplantation improves metabolic control and prevents complications in patients with brittle type 1 diabetes (T1D). However, chronic immunosuppression is required to prevent allograft rejection and recurrence of autoimmunity. Islet encapsulation may eliminate the need for immunosuppression. Here, we analyzed in parallel two microencapsulation platforms that provided long-term diabetes reversal in preclinical T1D models, alginate single and double capsules versus polyethylene glycol conformal coating, to identify benefits and weaknesses that could inform the design of future clinical trials with microencapsulated islets. We performed in vitro and in vivo functionality assays with human islets and analyzed the explanted grafts by immunofluorescence. We quantified the size of islets and capsules, measured capsule permeability, and used these data for in silico simulations of islet functionality in COMSOL Multiphysics. We demonstrated that insulin response to glucose stimulation is dependent on capsule size, and the presence of permselective materials augments delays in insulin secretion. Non-coated and conformally coated islets could be transplanted into the fat pad of diabetic mice, resulting in comparable functionality and metabolic control. Mac-2+ cells were found in conformally coated grafts, indicating possible host reactivity. Due to their larger volume, alginate capsules were transplanted in the peritoneal cavity. Despite achieving diabetes reversal, changes in islet composition were found in retrieved capsules, and recipient mice experienced hypoglycemia indicative of hyperinsulinemia induced by glucose retention in large capsules as the in silico model predicted. We concluded that minimal capsule size is critical for physiological insulin secretion, and anti-inflammatory modulation may be beneficial for small conformal capsules.
Collapse
Affiliation(s)
- Teresa De Toni
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| | - Aaron A. Stock
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| | - Floriane Devaux
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| | - Grisell C. Gonzalez
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Kailyn Nunez
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| | - Jessica C. Rubanich
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| | - Susan A. Safley
- Department of Surgery, Emory University, Atlanta, GA, United States
| | - Collin J. Weber
- Department of Surgery, Emory University, Atlanta, GA, United States
| | - Noel M. Ziebarth
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| | - Peter Buchwald
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, United States
| | - Alice A. Tomei
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
- *Correspondence: Alice A. Tomei,
| |
Collapse
|
15
|
Chen S, Luo J, Shen L, Liu X, Wang W, Xu J, Ren Y, Ye Y, Shi G, Cheng F, Cheng L, Su X, Dai L, Gou M, Deng H. 3D Printing Mini-Capsule Device for Islet Delivery to Treat Type 1 Diabetes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23139-23151. [PMID: 35544723 DOI: 10.1021/acsami.2c02487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Transplantation of encapsulated islets has been shown to hold a promising potential treatment for type 1 diabetes (T1D). However, there are several obstacles to overcome, such as immune rejection by the host of the grafts, sustainability of islet function, and retrievability or replacement of the encapsulated system, hinder their clinical applications. In this study, mini-capsule devices containing islets were fabricated by using digital light processing (DLP) 3D printing. To ensure a high survival rate and low immunogenicity of the fabricated islets, 20s was selected as the most suitable printing condition. Meanwhile, the mini-capsule devices with a groove structure were fabricated to prevent islet cells leakage. Subcutaneous transplantations of encapsulated islets in immunocompetent C57BL/6 mice indicated significant improvement in the symptoms of streptozotocin-induced hyperglycemia without any immunosuppression treatment for at least 15 weeks. In vivo intraperitoneal glucose tolerance tests (IPGTT) performed at different time points demonstrated therapeutically relevant glycemic ameliorate of the device. The implants retrieved after 15 weeks still contained viable and adequate numbers of islet cells. The results of this study indicate that the proposed mini-capsule device can deliver sufficient islet cell mass, prevent islet cells leakage, and maintain long-term cell survival while allowing easy retrieval. Furthermore, the proposed encapsulated islets may help with T1D cellular treatment by overcoming the obstacles of islet transplantation.
Collapse
Affiliation(s)
- Shuang Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jing Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lanlin Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xuan Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenshuang Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jia Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yushuang Ren
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yixin Ye
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Gang Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fuyi Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lin Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaolan Su
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lei Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongxin Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
16
|
Zhang Q, Gonelle-Gispert C, Li Y, Geng Z, Gerber-Lemaire S, Wang Y, Buhler L. Islet Encapsulation: New Developments for the Treatment of Type 1 Diabetes. Front Immunol 2022; 13:869984. [PMID: 35493496 PMCID: PMC9046662 DOI: 10.3389/fimmu.2022.869984] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/16/2022] [Indexed: 12/21/2022] Open
Abstract
Islet transplantation is a promising approach for the treatment of type 1 diabetes (T1D). Currently, clinical islet transplantation is limited by allo - and autoimmunity that may cause partial or complete loss of islet function within a short period of time, and long-term immunosuppression is required to prevent rejection. Encapsulation into semipermeable biomaterials provides a strategy that allows nutrients, oxygen and secreted hormones to diffuse through the membrane while blocking immune cells and the like out of the capsule, allowing long-term graft survival and avoiding long-term use of immunosuppression. In recent years, a variety of engineering strategies have been developed to improve the composition and properties of encapsulation materials and to explore the clinical practicality of islet cell transplantation from different sources. In particular, the encapsulation of porcine islet and the co-encapsulation of islet cells with other by-standing cells or active ingredients for promoting long-term functionality, attracted significant research efforts. Hydrogels have been widely used for cell encapsulation as well as other therapeutic applications including tissue engineering, cell carriers or drug delivery. Here, we review the current status of various hydrogel biomaterials, natural and synthetic, with particular focus on islet transplantation applications. Natural hydrophilic polymers include polysaccharides (starch, cellulose, alginic acid, hyaluronic acid, chitosan) and peptides (collagen, poly-L-lysine, poly-L-glutamic acid). Synthetic hydrophilic polymers include alcohol, acrylic acid and their derivatives [poly (acrylic acid), poly (methacrylic acid), poly(acrylamide)]. By understanding the advantages and disadvantages of materials from different sources and types, appropriate materials and encapsuling methods can be designed and selected as needed to improve the efficacy and duration of islet. Islet capsule transplantation is emerging as a promising future treatment for T1D.
Collapse
Affiliation(s)
- Qi Zhang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Yanjiao Li
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhen Geng
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
- Institute of Organ Transplantation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Sandrine Gerber-Lemaire
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL SB ISIC SCI-SB-SG, Lausanne, Switzerland
- *Correspondence: Leo Buhler, ; Yi Wang, ; Sandrine Gerber-Lemaire,
| | - Yi Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
- Institute of Organ Transplantation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, China
- *Correspondence: Leo Buhler, ; Yi Wang, ; Sandrine Gerber-Lemaire,
| | - Leo Buhler
- Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
- Institute of Organ Transplantation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, China
- *Correspondence: Leo Buhler, ; Yi Wang, ; Sandrine Gerber-Lemaire,
| |
Collapse
|
17
|
Kami D, Suzuki Y, Yamanami M, Tsukimura T, Togawa T, Sakuraba H, Gojo S. Genetically Modified Cell Transplantation Through Macroencapsulated Spheroids with Scaffolds to Treat Fabry Disease. Cell Transplant 2021; 30:9636897211060269. [PMID: 34931534 PMCID: PMC8842475 DOI: 10.1177/09636897211060269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cell transplantation is expected to be another strategy to treat lysosomal diseases, having several advantages compared to enzyme replacement therapy, such as continuous enzyme secretion and one-time treatment to cure diseases. However, cell transplantation for lysosomal diseases holds issues to be resolved for the clinical field. In this study, we developed a new ex vivo gene therapy platform using a transplant pack, which consists of a porous membrane made of ethylene-vinyl alcohol in the pack-type and spheroids with scaffolds. These membranes have countless pores of less than 0.1 µm2 capable of secreting proteins, including alpha-galactosidase enzyme, and segregating the contents from the host immune system. When the packs were subcutaneously transplanted into the backs of green fluorescent protein (GFP) mice, no GFP-positive cells migrated to the transplanted pack in either autogenic or allogenic mice. The transplanted cells in the pack survived for 28 days after transplantation. When cells overexpressing alpha-galactosidase were used as donor cells for the packs and implanted into Fabry disease model mice, the accumulation of the alpha-galactosidase enzyme was also observed in the livers. In this study, we reported a new ex vivo therapeutic strategy combining macroencapsulation and cellular spheroids with scaffolds. This pack, macroencapsulated spheroids with scaffolds, can also be applied to other types of lysosomal diseases by modifying genes of interest.
Collapse
Affiliation(s)
- Daisuke Kami
- Department of Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yosuke Suzuki
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masashi Yamanami
- Department of Cardiovascular Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takahiro Tsukimura
- Department of Functional Bioanalysis, Meiji Pharmaceutical University, Tokyo, Japan
| | - Tadayasu Togawa
- Department of Functional Bioanalysis, Meiji Pharmaceutical University, Tokyo, Japan
| | - Hitoshi Sakuraba
- Department of Clinical Genetics, Meiji Pharmaceutical University, Tokyo, Japan
| | - Satoshi Gojo
- Department of Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
18
|
Глазова ОВ, Воронцова МВ, Шевкова ЛВ, Сакр Н, Онянов НА, Казиахмедова СА, Волчков ПЮ. [Gene and cell therapy of adrenal pathology: achievements and prospects]. PROBLEMY ENDOKRINOLOGII 2021; 67:80-89. [PMID: 35018764 PMCID: PMC9753849 DOI: 10.14341/probl12818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/16/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Our current understanding of the molecular and cellular mechanisms in tissues and organs during normal and pathological conditions opens up substantial prospects for the development of novel approaches to treatment of various diseases. For instance, lifelong replacement therapy is no longer mandatory for the management of some monogenic hereditary diseases. Genome editing techniques that have emerged in the last decade are being actively investigated as tools for correcting mutations in affected organs. Furthermore, new protocols for obtaining various types of human and animal cells and cellular systems are evolving, increasingly reflecting the real structures in vivo. These methods, together with the accompanying gene and cell therapy, are being actively developed and several approaches are already undergoing clinical trials. Adrenal insufficiency caused by a variety of factors can potentially be the target of such therapeutic strategies. The adrenal gland is a highly organized organ, with multiple structural components interacting with each other via a complex network of endocrine and paracrine signals. This review summarizes the findings of studies in the field of structural organization and functioning of the adrenal gland at the molecular level, as well as the modern approaches to the treatment of adrenal pathologies.
Collapse
Affiliation(s)
- О. В. Глазова
- Национальный медицинский исследовательский центр эндокринологии;
Московский физико-технический институт (национальный исследовательский университет)
| | - М. В. Воронцова
- Национальный медицинский исследовательский центр эндокринологии;
Московский физико-технический институт (национальный исследовательский университет)
| | - Л. В. Шевкова
- Национальный медицинский исследовательский центр эндокринологии;
Московский физико-технический институт (национальный исследовательский университет)
| | - Н. Сакр
- Московский физико-технический институт (национальный исследовательский университет)
| | - Н. А. Онянов
- Московский физико-технический институт (национальный исследовательский университет), Долгопрудный, Россия
| | - С. А. Казиахмедова
- Московский физико-технический институт (национальный исследовательский университет)
| | - П. Ю. Волчков
- Национальный медицинский исследовательский центр эндокринологии;
Московский физико-технический институт (национальный исследовательский университет)
| |
Collapse
|
19
|
Derakhshankhah H, Sajadimajd S, Jahanshahi F, Samsonchi Z, Karimi H, Hajizadeh-Saffar E, Jafari S, Razmi M, Sadegh Malvajerd S, Bahrami G, Razavi M, Izadi Z. Immunoengineering Biomaterials in Cell-Based Therapy for Type 1 Diabetes. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:1053-1066. [PMID: 34696626 DOI: 10.1089/ten.teb.2021.0134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Type 1 diabetes (T1D) is caused by low insulin production and chronic hyperglycemia due to the destruction of pancreatic β-cells. Cell transplantation is an attractive alternative approach compared to insulin injection. However, cell therapy has been limited by major challenges including life-long requirements for immunosuppressive drugs in order to prevent host immune responses. Encapsulation of the transplanted cells can solve the problem of immune rejection, by providing a physical barrier between the transplanted cells and the recipient's immune cells. Despite current disputes in cell encapsulation approaches, thanks to recent advances in the fields of biomaterials and transplantation immunology, extensive effort has been dedicated to immunoengineering strategies in combination with encapsulation technologies to overcome the problem of the host's immune responses. The current review summarizes the most commonly used encapsulation and immunoengineering strategies combined with cell therapy which has been applied as a novel approach to improve cell replacement therapies for the management of T1D. Recent advances in the fields of biomaterial design, nanotechnology, as well as deeper knowledge about immune modulation had significantly improved cell encapsulation strategies. However, further progress requires the combined application of novel immunoengineering approaches and islet/ß-cell transplantation.
Collapse
Affiliation(s)
- Hossein Derakhshankhah
- Kermanshah University of Medical Sciences, 48464, Kermanshah, Kermanshah, Iran (the Islamic Republic of);
| | | | - Fatemeh Jahanshahi
- Iran University of Medical Sciences, 440827, Tehran, Tehran, Iran (the Islamic Republic of);
| | - Zakieh Samsonchi
- Royan Institute for Stem Cell Biology and Technology, 534061, Tehran, Iran (the Islamic Republic of);
| | - Hassan Karimi
- Royan Institute for Stem Cell Biology and Technology, 534061, Tehran, Iran (the Islamic Republic of);
| | - Ensiyeh Hajizadeh-Saffar
- Royan Institute for Stem Cell Biology and Technology, 534061, Tehran, Iran (the Islamic Republic of);
| | - Samira Jafari
- Kermanshah University of Medical Sciences, 48464, Kermanshah, Kermanshah, Iran (the Islamic Republic of);
| | - Mahdieh Razmi
- University of Tehran Institute of Biochemistry and Biophysics, 441284, Tehran, Tehran, Iran (the Islamic Republic of);
| | - Soroor Sadegh Malvajerd
- Tehran University of Medical Sciences, 48439, Tehran, Tehran, Iran (the Islamic Republic of);
| | - Gholamreza Bahrami
- Kermanshah University of Medical Sciences, 48464, Kermanshah, Kermanshah, Iran (the Islamic Republic of);
| | - Mehdi Razavi
- University of Central Florida, 6243, Orlando, Florida, United States;
| | - Zhila Izadi
- Kermanshah University of Medical Sciences, 48464, Kermanshah,Iran, Kermanshah, Iran (the Islamic Republic of), 6715847141;
| |
Collapse
|
20
|
Ghasemi A, Akbari E, Imani R. An Overview of Engineered Hydrogel-Based Biomaterials for Improved β-Cell Survival and Insulin Secretion. Front Bioeng Biotechnol 2021; 9:662084. [PMID: 34513805 PMCID: PMC8427138 DOI: 10.3389/fbioe.2021.662084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/16/2021] [Indexed: 12/28/2022] Open
Abstract
Islet transplantation provides a promising strategy in treating type 1 diabetes as an autoimmune disease, in which damaged β-cells are replaced with new islets in a minimally invasive procedure. Although islet transplantation avoids the complications associated with whole pancreas transplantations, its clinical applications maintain significant drawbacks, including long-term immunosuppression, a lack of compatible donors, and blood-mediated inflammatory responses. Biomaterial-assisted islet transplantation is an emerging technology that embeds desired cells into biomaterials, which are then directly transplanted into the patient, overcoming the aforementioned challenges. Among various biomaterials, hydrogels are the preferred biomaterial of choice in these transplants due to their ECM-like structure and tunable properties. This review aims to present a comprehensive overview of hydrogel-based biomaterials that are engineered for encapsulation of insulin-secreting cells, focusing on new hydrogel design and modification strategies to improve β-cell viability, decrease inflammatory responses, and enhance insulin secretion. We will discuss the current status of clinical studies using therapeutic bioengineering hydrogels in insulin release and prospective approaches.
Collapse
Affiliation(s)
| | | | - Rana Imani
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
21
|
Kharbikar BN, Chendke GS, Desai TA. Modulating the foreign body response of implants for diabetes treatment. Adv Drug Deliv Rev 2021; 174:87-113. [PMID: 33484736 PMCID: PMC8217111 DOI: 10.1016/j.addr.2021.01.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/30/2020] [Accepted: 01/10/2021] [Indexed: 02/06/2023]
Abstract
Diabetes Mellitus is a group of diseases characterized by high blood glucose levels due to patients' inability to produce sufficient insulin. Current interventions often require implants that can detect and correct high blood glucose levels with minimal patient intervention. However, these implantable technologies have not reached their full potential in vivo due to the foreign body response and subsequent development of fibrosis. Therefore, for long-term function of implants, modulating the initial immune response is crucial in preventing the activation and progression of the immune cascade. This review discusses the different molecular mechanisms and cellular interactions involved in the activation and progression of foreign body response (FBR) and fibrosis, specifically for implants used in diabetes. We also highlight the various strategies and techniques that have been used for immunomodulation and prevention of fibrosis. We investigate how these general strategies have been applied to implants used for the treatment of diabetes, offering insights on how these devices can be further modified to circumvent FBR and fibrosis.
Collapse
Affiliation(s)
- Bhushan N Kharbikar
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gauree S Chendke
- University of California Berkeley - University of California San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA; University of California Berkeley - University of California San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA; Department of Bioengineering, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
22
|
Shaheen R, Gurlin RE, Gologorsky R, Blaha C, Munnangi P, Santandreu A, Torres A, Carnese P, Nair GG, Szot G, Fissell WH, Hebrok M, Roy S. Superporous agarose scaffolds for encapsulation of adult human islets and human stem-cell-derived β cells for intravascular bioartificial pancreas applications. J Biomed Mater Res A 2021; 109:2438-2448. [PMID: 34196100 DOI: 10.1002/jbm.a.37236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/14/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022]
Abstract
Type 1 diabetic patients with severe hypoglycemia unawareness have benefitted from cellular therapies, such as pancreas or islet transplantation; however, donor shortage and the need for immunosuppression limits widespread clinical application. We previously developed an intravascular bioartificial pancreas (iBAP) using silicon nanopore membranes (SNM) for immunoprotection. To ensure ample nutrient delivery, the iBAP will need a cell scaffold with high hydraulic permeability to provide mechanical support and maintain islet viability and function. Here, we examine the feasibility of superporous agarose (SPA) as a potential cell scaffold in the iBAP. SPA exhibits 66-fold greater hydraulic permeability than the SNM along with a short (<10 μm) diffusion distance to the nearest islet. SPA also supports short-term functionality of both encapsulated human islets and stem-cell-derived enriched β-clusters in a convection-based system, demonstrated by high viability (>95%) and biphasic insulin responses to dynamic glucose stimulus. These findings suggest that the SPA scaffold will not limit nutrient delivery in a convection-based bioartificial pancreas and merits continued investigation.
Collapse
Affiliation(s)
- Rebecca Shaheen
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Rachel E Gurlin
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Rebecca Gologorsky
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Charles Blaha
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA.,Silicon Kidney, San Francisco, California, USA
| | - Pujita Munnangi
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Ana Santandreu
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Alonso Torres
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Phichitpol Carnese
- Diabetes Center, Department of Medicine, University of California, San Francisco, California, USA
| | - Gopika G Nair
- Diabetes Center, Department of Medicine, University of California, San Francisco, California, USA
| | - Gregory Szot
- Diabetes Center, Department of Medicine, University of California, San Francisco, California, USA
| | - William H Fissell
- Silicon Kidney, San Francisco, California, USA.,Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, California, USA
| | - Shuvo Roy
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA.,Silicon Kidney, San Francisco, California, USA
| |
Collapse
|
23
|
Tissue Engineering Strategies for Improving Beta Cell Transplantation Outcome. CURRENT TRANSPLANTATION REPORTS 2021. [DOI: 10.1007/s40472-021-00333-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
Purpose of Review
Beta cell replacement therapy as a form of islet transplantation is a promising alternative therapy with the possibility to make selected patients with type 1 diabetes (T1D) insulin independent. However, this technique faces challenges such as extensive activation of the host immune system post-transplantation, lifelong need for immunosuppression, and the scarcity of islet donor pancreas. Advancement in tissue engineering strategies can improve these challenges and allow for a more widespread application of this therapy. This review will discuss the recent development and clinical translation of tissue engineering strategies in beta cell replacement therapy.
Recent Findings
Tissue engineering offers innovative solutions for producing unlimited glucose responsive cells and fabrication of appropriate devices/scaffolds for transplantation applications. Generation of pancreatic organoids with supporting cells in biocompatible biomaterials is a powerful technique to improve the function of insulin-producing cell clusters. Fabrication of physical barriers such as encapsulation strategies can protect the cells from the host immune system and allow for graft retrieval, although this strategy still faces major challenges to fully restore physiological glucose regulation.
Summary
The three main components of tissue engineering strategies including the generation of stem cell-derived insulin-producing cells and organoids and the possibilities for therapeutic delivery of cell-seeded devices to extra-hepatic sites need to come together in order to provide safe and functional insulin-producing devices for clinical beta cell replacement therapy.
Collapse
|
24
|
Kim HO, Lee SH, Na W, Lim JW, Park G, Park C, Lee H, Kang A, Haam S, Choi I, Kang JT, Song D. Cell-mimic polymersome-shielded islets for long-term immune protection of neonatal porcine islet-like cell clusters. J Mater Chem B 2021; 8:2476-2482. [PMID: 32108845 DOI: 10.1039/c9tb02270h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Although islet cell transplantation has emerged as a promising treatment for type 1 diabetes, it remains an unmet clinical application due to the need for immunosuppression to prevent islet elimination and autoimmunity. To solve these problems, we developed novel nanoencapsulation of neonatal porcine islet-like cell clusters (NPCCs) with cell-mimic polymersomes (PSomes) based on PEG-b-PLA (poly(ethylene glycol)-b-poly(dl-lactic acid)). To accomplish this, we first formulated NHS-, NH2-, COOH-, and m(methoxy)-PSomes. This coating utilizes interactions involving NPCC surfaces and PSomes that have covalent bonds, electrostatic interactions, and hydrogen bonds. We extended the range of applicability by comparing the binding affinity of electrostatic attraction and hydrogen bonding, as well as covalent bonds. Our protocol can be used as an efficient hydrogen bonding method because it reduces cell membrane damage as well as the use of covalent bonding methods. We verified the selective permeability of NHS-, NH2-, COOH-, and m-PSome-shielded NPCCs. Furthermore, we showed that a novel nanoencapsulation did not affect insulin secretion from NPCCs. This study offers engineering advances in islet encapsulation technologies to be used for cell-based transplantation therapies.
Collapse
Affiliation(s)
- Hyun-Ouk Kim
- Department of Pharmacy, College of Pharmacy, Korea University, Sejong 30019, Republic of Korea.
| | - Sang Hoon Lee
- MGENPLUS Biotechnology Research Institute, Seoul, 08511, Republic of Korea. and Department of Pharmaceutical Engineering, Hoseo University, Asan, 336-795, Republic of Korea
| | - Woonsung Na
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jong-Woo Lim
- Department of Chemical & Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Geunseon Park
- Department of Chemical & Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Chaewon Park
- Department of Chemical & Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hwunjae Lee
- Department of Radiology, College of Medicine, Yonsei University, YUHS-KRIBB Medical Convergence Research Institute, Seoul 03722, Republic of Korea
| | - Aram Kang
- Department of Pharmacy, College of Pharmacy, Korea University, Sejong 30019, Republic of Korea.
| | - Seungjoo Haam
- Department of Chemical & Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Inho Choi
- Department of Pharmaceutical Engineering, Hoseo University, Asan, 336-795, Republic of Korea
| | - Jung-Taek Kang
- MGENPLUS Biotechnology Research Institute, Seoul, 08511, Republic of Korea.
| | - Daesub Song
- Department of Pharmacy, College of Pharmacy, Korea University, Sejong 30019, Republic of Korea.
| |
Collapse
|
25
|
Huang L, Xiang J, Cheng Y, Xiao L, Wang Q, Zhang Y, Xu T, Chen Q, Xin H, Wang X. Regulation of Blood Glucose Using Islets Encapsulated in a Melanin-Modified Immune-Shielding Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12877-12887. [PMID: 33689267 DOI: 10.1021/acsami.0c23010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Islet transplantation is currently a promising treatment for type 1 diabetes mellitus. However, the foreign body reaction and retrieval difficulty often lead to transplantation failure and hinder the clinical application. To address these two challenges, we propose a balanced charged sodium alginate-polyethyleneimine-melanin (SA-PEI-Melanin) threadlike hydrogel with immune shielding and retrievable properties. The attractiveness of this study lies in that the introduction of melanin can stimulate insulin secretion, especially under near-infrared (NIR) irradiation. After demonstrating a good immune-shielding effect, we performed an in vivo transplantation experiment. The results showed that the blood glucose level in the SA-PEI-Melanin group was stably controlled below the diabetic blood glucose criterion, and this blood glucose level could be further adjusted after NIR irradiation. In addition, the evaluation after retrieving the SA-PEI-Melanin hydrogel indicated that the islets still maintained a normal physiological function, further proving its excellent immunological protection. This study provides a new approach for the accurate regulation of blood glucose in patients with type 1 diabetes mellitus and contributes to developing a promising transplant system to reconcile real-time and precise light-defined insulin secretion regulation.
Collapse
Affiliation(s)
- Ling Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Jiajia Xiang
- College of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
| | - Yukai Cheng
- College of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
| | - Ling Xiao
- College of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
| | - Qingqing Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Yini Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Tieling Xu
- College of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
| | - Qianrui Chen
- College of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
| | - Hongbo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Xiaolei Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| |
Collapse
|
26
|
Mariniello K, Guasti L. Towards novel treatments for adrenal diseases: Cell- and gene therapy-based approaches. Mol Cell Endocrinol 2021; 524:111160. [PMID: 33453297 DOI: 10.1016/j.mce.2021.111160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/23/2020] [Accepted: 01/06/2021] [Indexed: 12/30/2022]
Abstract
Adrenal insufficiency, the inability to produce adequate levels of corticosteroids, is a multi-causal disease that requires lifelong daily hormone replacement. Nevertheless, this cannot replace the physiological demand for steroids which are secreted following a circadian rhythm and vary in periods of stress; the consequences of under- or over-replacement include adrenal crisis and metabolic disturbances, respectively. Although clinical research has focused on enhancing the effectiveness/reducing side effects of current treatment modalities, only small improvements are deemed possible; thus, alternative solutions are urgently needed. Gene and cell therapy strategies have opened new possibilities for the cure of many diseases in a way that has never been possible before and could offer a viable option for the cure of adrenal diseases. The current state of cell- and gene-based approaches to restore adrenocortical function is discussed in this review.
Collapse
Affiliation(s)
- Katia Mariniello
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
27
|
C-Peptide as a Therapy for Type 1 Diabetes Mellitus. Biomedicines 2021; 9:biomedicines9030270. [PMID: 33800470 PMCID: PMC8000702 DOI: 10.3390/biomedicines9030270] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus (DM) is a complex metabolic disease affecting one-third of the United States population. It is characterized by hyperglycemia, where the hormone insulin is either not produced sufficiently or where there is a resistance to insulin. Patients with Type 1 DM (T1DM), in which the insulin-producing beta cells are destroyed by autoimmune mechanisms, have a significantly increased risk of developing life-threatening cardiovascular complications, even when exogenous insulin is administered. In fact, due to various factors such as limited blood glucose measurements and timing of insulin administration, only 37% of T1DM adults achieve normoglycemia. Furthermore, T1DM patients do not produce C-peptide, a cleavage product from insulin processing. C-peptide has potential therapeutic effects in vitro and in vivo on many complications of T1DM, such as peripheral neuropathy, atherosclerosis, and inflammation. Thus, delivery of C-peptide in conjunction with insulin through a pump, pancreatic islet transplantation, or genetically engineered Sertoli cells (an immune privileged cell type) may ameliorate many of the cardiovascular and vascular complications afflicting T1DM patients.
Collapse
|
28
|
Gurlin RE, Giraldo JA, Latres E. 3D Bioprinting and Translation of Beta Cell Replacement Therapies for Type 1 Diabetes. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:238-252. [PMID: 32907514 DOI: 10.1089/ten.teb.2020.0192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disorder in which the body's own immune system selectively attacks beta cells within pancreatic islets resulting in insufficient insulin production and loss of the ability to regulate blood glucose (BG) levels. Currently, the standard of care consists of BG level monitoring and insulin administration, which are essential to avoid the consequences of dysglycemia and long-term complications. Although recent advances in continuous glucose monitoring and automated insulin delivery systems have resulted in improved clinical outcomes for users, nearly 80% of people with T1D fail to achieve their target hemoglobin A1c (HbA1c) levels defined by the American Diabetes Association. Intraportal islet transplantation into immunosuppressed individuals with T1D suffering from impaired awareness of hypoglycemia has resulted in lower HbA1c, elimination of severe hypoglycemic events, and insulin independence, demonstrating the unique potential of beta cell replacement therapy (BCRT) in providing optimal glycemic control and a functional cure for T1D. BCRTs need to maximize cell engraftment, long-term survival, and function in the absence of immunosuppression to provide meaningful clinical outcomes to all people living with T1D. One innovative technology that could enable widespread translation of this approach into the clinic is three-dimensional (3D) bioprinting. Herein, we review how bioprinting could facilitate translation of BCRTs as well as the current and forthcoming techniques used for bioprinting of a BCRT product. We discuss the strengths and weaknesses of 3D bioprinting in this context in addition to the road ahead for the development of BCRTs. Impact statement Significant research developments in beta cell replacement therapies show its promise in providing a functional cure for type 1 diabetes (T1D); yet, their widespread clinical use has been difficult to achieve. This review provides a brief overview of the requirements for a beta cell replacement product followed by a discussion on both the promise and limitations of three-dimensional bioprinting in facilitating the fabrication of such products to enable translation into the clinic. Advancements in this area could be a key component to unlocking the safety and effectiveness of beta cell therapy for T1D.
Collapse
Affiliation(s)
- Rachel E Gurlin
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | | | | |
Collapse
|
29
|
Kuncorojakti S, Rodprasert W, Yodmuang S, Osathanon T, Pavasant P, Srisuwatanasagul S, Sawangmake C. Alginate/Pluronic F127-based encapsulation supports viability and functionality of human dental pulp stem cell-derived insulin-producing cells. J Biol Eng 2020; 14:23. [PMID: 32855655 PMCID: PMC7446208 DOI: 10.1186/s13036-020-00246-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/13/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Current approach for diabetes treatment remained several adverse events varied from gastrointestinal to life-threatening symptoms. Regenerative therapy regarding Edmonton protocol has been facing serious limitations involving protocol efficiency and safety. This led to the study for alternative insulin-producing cell (IPC) resource and transplantation platform. In this study, evaluation of encapsulated human dental pulp-derived stem cell (hDPSC)-derived IPCs by alginate (ALG) and pluronic F127-coated alginate (ALGPA) was performed. RESULTS The results showed that ALG and ALGPA preserved hDPSC viability and allowed glucose and insulin diffusion in and out. ALG and ALGPA-encapsulated hDPSC-derived IPCs maintained viability for at least 336 h and sustained pancreatic endoderm marker (NGN3), pancreatic islet markers (NKX6.1, MAF-A, ISL-1, GLUT-2 and INSULIN), and intracellular pro-insulin and insulin expressions for at least 14 days. Functional analysis revealed a glucose-responsive C-peptide secretion of ALG- and ALGPA-encapsulated hDPSC-derived IPCs at 14 days post-encapsulation. CONCLUSION ALG and ALGPA encapsulations efficiently preserved the viability and functionality of hDPSC-derived IPCs in vitro and could be the potential transplantation platform for further clinical application.
Collapse
Affiliation(s)
- Suryo Kuncorojakti
- International Graduate Course in Veterinary Science and Technology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330 Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Watchareewan Rodprasert
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Supansa Yodmuang
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand
- Excellence Center for Advanced Therapy Medicinal Products, King Chulalongkorn Memorial Hospital, Bangkok, 10330 Thailand
| | - Thanaphum Osathanon
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330 Thailand
- Center of Excellence in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Prasit Pavasant
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330 Thailand
- Center of Excellence in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Sayamon Srisuwatanasagul
- Department of Veterinary Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Chenphop Sawangmake
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330 Thailand
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330 Thailand
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330 Thailand
| |
Collapse
|
30
|
Stephens CH, Morrison RA, McLaughlin M, Orr K, Tersey SA, Scott-Moncrieff JC, Mirmira RG, Considine RV, Voytik-Harbin S. Oligomeric collagen as an encapsulation material for islet/β-cell replacement: effect of islet source, dose, implant site, and administration format. Am J Physiol Endocrinol Metab 2020; 319:E388-E400. [PMID: 32543944 PMCID: PMC7473915 DOI: 10.1152/ajpendo.00066.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Replacement of islets/β-cells that provide long-lasting glucose-sensing and insulin-releasing functions has the potential to restore extended glycemic control in individuals with type 1 diabetes. Unfortunately, persistent challenges preclude such therapies from widespread clinical use, including cumbersome administration via portal vein infusion, significant loss of functional islet mass upon administration, limited functional longevity, and requirement for systemic immunosuppression. Previously, fibril-forming type I collagen (oligomer) was shown to support subcutaneous injection and in situ encapsulation of syngeneic islets within diabetic mice, with rapid (<24 h) reversal of hyperglycemia and maintenance of euglycemia for beyond 90 days. Here, we further evaluated this macroencapsulation strategy, defining effects of islet source (allogeneic and xenogeneic) and dose (500 and 800 islets), injection microenvironment (subcutaneous and intraperitoneal), and macrocapsule format (injectable and preformed implantable) on islet functional longevity and recipient immune response. We found that xenogeneic rat islets functioned similarly to or better than allogeneic mouse islets, with only modest improvements in longevity noted with dosage. Additionally, subcutaneous injection led to more consistent encapsulation outcomes along with improved islet health and longevity, compared with intraperitoneal administration, whereas no significant differences were observed between subcutaneous injectable and preformed implantable formats. Collectively, these results document the benefits of incorporating natural collagen for islet/β-cell replacement therapies.
Collapse
Affiliation(s)
| | - Rachel A Morrison
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Madeline McLaughlin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Kara Orr
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sarah A Tersey
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Raghavendra G Mirmira
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Robert V Considine
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sherry Voytik-Harbin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana
| |
Collapse
|
31
|
Dinnyes A, Schnur A, Muenthaisong S, Bartenstein P, Burcez CT, Burton N, Cyran C, Gianello P, Kemter E, Nemeth G, Nicotra F, Prepost E, Qiu Y, Russo L, Wirth A, Wolf E, Ziegler S, Kobolak J. Integration of nano- and biotechnology for beta-cell and islet transplantation in type-1 diabetes treatment. Cell Prolif 2020; 53:e12785. [PMID: 32339373 PMCID: PMC7260069 DOI: 10.1111/cpr.12785] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/30/2019] [Accepted: 02/02/2020] [Indexed: 12/14/2022] Open
Abstract
Regenerative medicine using human or porcine β‐cells or islets has an excellent potential to become a clinically relevant method for the treatment of type‐1 diabetes. High‐resolution imaging of the function and faith of transplanted porcine pancreatic islets and human stem cell–derived beta cells in large animals and patients for testing advanced therapy medicinal products (ATMPs) is a currently unmet need for pre‐clinical/clinical trials. The iNanoBIT EU H2020 project is developing novel highly sensitive nanotechnology‐based imaging approaches allowing for monitoring of survival, engraftment, proliferation, function and whole‐body distribution of the cellular transplants in a porcine diabetes model with excellent translational potential to humans. We develop and validate the application of single‐photon emission computed tomography (SPECT) and optoacoustic imaging technologies in a transgenic insulin‐deficient pig model to observe transplanted porcine xeno‐islets and in vitro differentiated human beta cells. We are progressing in generating new transgenic reporter pigs and human‐induced pluripotent cell (iPSC) lines for optoacoustic imaging and testing them in transplantable bioartificial islet devices. Novel multifunctional nanoparticles have been generated and are being tested for nuclear imaging of islets and beta cells using a new, high‐resolution SPECT imaging device. Overall, the combined multidisciplinary expertise of the project partners allows progress towards creating much needed technological toolboxes for the xenotransplantation and ATMP field, and thus reinforces the European healthcare supply chain for regenerative medicinal products.
Collapse
Affiliation(s)
- Andras Dinnyes
- Biotalentum Ltd, Hungary, Godollo, Hungary.,Sichuan University, College of Life Sciences, Chengdu, China.,Department of Dermatology and Allergology, Research Institute of Translational Biomedicine, University of Szeged, Szeged, Hungary
| | | | | | - Peter Bartenstein
- Department of Nuclear Medicine, Faculty of Medicine, Ludwig-Maximilians University, Munchen, Germany
| | | | | | - Clemens Cyran
- Department of Clinical Radiology, Faculty of Medicine, Ludwig-Maximilians University, Munchen, Germany
| | - Pierre Gianello
- Health Science Sector - Laboratory of Experimental Surgery and Transplantation, Université Catholique de Louvain, Brussels, Belgium
| | - Elisabeth Kemter
- Faculty of Veterinary Medicine, Gene Center and Department of Biochemistry, Ludwig-Maximilians University, Munchen, Germany
| | - Gabor Nemeth
- Mediso Medical Imaging Systems, Budapest, Hungary
| | - Francesco Nicotra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | | - Yi Qiu
- iThera Medical GmbH, Munchen, Germany
| | - Laura Russo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Andras Wirth
- Mediso Medical Imaging Systems, Budapest, Hungary
| | - Eckhard Wolf
- Faculty of Veterinary Medicine, Gene Center and Department of Biochemistry, Ludwig-Maximilians University, Munchen, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, Faculty of Medicine, Ludwig-Maximilians University, Munchen, Germany
| | | |
Collapse
|
32
|
Scheiner KC, Coulter F, Maas-Bakker RF, Ghersi G, Nguyen TT, Steendam R, Duffy GP, Hennink WE, O’Cearbhaill ED, Kok RJ. Vascular Endothelial Growth Factor–Releasing Microspheres Based on Poly(ε-Caprolactone-PEG-ε-Caprolactone)-b-Poly(L-Lactide) Multiblock Copolymers Incorporated in a Three-Dimensional Printed Poly(Dimethylsiloxane) Cell Macroencapsulation Device. J Pharm Sci 2020; 109:863-870. [DOI: 10.1016/j.xphs.2019.10.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022]
|
33
|
Santos-Vizcaino E, Orive G, Pedraz JL, Hernandez RM. Clinical Applications of Cell Encapsulation Technology. Methods Mol Biol 2020; 2100:473-491. [PMID: 31939144 DOI: 10.1007/978-1-0716-0215-7_32] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cell encapsulation comprises immunoisolation three-dimensional systems for housing therapeutic cells that secrete bioactive compounds de novo and in a sustained manner. This allows transplantation of multiple allo- or xenogeneic cells without the aid of immunosuppressant drugs. Recent advances in the field have provided improvements to these cell-based drug delivery systems, which have gained the attention of the scientific community and inspired many biotechnological companies to develop their own product candidates. From micro- to macroencapsulation devices, this chapter describes some of the most important approaches that are being currently tested in late-stage clinical trials and are likely to reach the market as future game changers. Most studies involve the treatment of diabetes, eye disorders, and diseases of the central nervous system. However, many other pathologies are also amenable to benefit from this technology. Latest advances to overcome major pending challenges related to biosafety and efficacy are also discussed.
Collapse
Affiliation(s)
- Edorta Santos-Vizcaino
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.,University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain.,BTI Biotechnology Institute, Vitoria, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain. .,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| |
Collapse
|
34
|
White AM, Shamul JG, Xu J, Stewart S, Bromberg JS, He X. Engineering Strategies to Improve Islet Transplantation for Type 1 Diabetes Therapy. ACS Biomater Sci Eng 2019; 6:2543-2562. [PMID: 33299929 DOI: 10.1021/acsbiomaterials.9b01406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Type 1 diabetes is an autoimmune disease in which the immune system attacks insulin-producing beta cells of pancreatic islets. Type 1 diabetes can be treated with islet transplantation; however, patients must be administered immunosuppressants to prevent immune rejection of the transplanted islets if they are not autologous or not engineered with immune protection/isolation. To overcome biological barriers of islet transplantation, encapsulation strategies have been developed and robustly investigated. While islet encapsulation can prevent the need for immunosuppressants, these approaches have not shown much success in clinical trials due to a lack of long-term insulin production. Multiple engineering strategies have been used to improve encapsulation and post-transplantation islet survival. In addition, more efficient islet cryopreservation methods have been designed to facilitate the scaling-up of islet transplantation. Other islet sources have been identified including porcine islets and stem cell-derived islet-like aggregates. Overall, islet-laden capsule transplantation has greatly improved over the past 30 years and is moving towards becoming a clinically feasible treatment for type 1 diabetes.
Collapse
Affiliation(s)
- Alisa M White
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - James G Shamul
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Jiangsheng Xu
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Samantha Stewart
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Jonathan S Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201.,Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA, Baltimore, MD 21201, USA
| |
Collapse
|
35
|
Espona-Noguera A, Ciriza J, Cañibano-Hernández A, Orive G, Hernández RM, Saenz del Burgo L, Pedraz JL. Review of Advanced Hydrogel-Based Cell Encapsulation Systems for Insulin Delivery in Type 1 Diabetes Mellitus. Pharmaceutics 2019; 11:E597. [PMID: 31726670 PMCID: PMC6920807 DOI: 10.3390/pharmaceutics11110597] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022] Open
Abstract
: Type 1 Diabetes Mellitus (T1DM) is characterized by the autoimmune destruction of β-cells in the pancreatic islets. In this regard, islet transplantation aims for the replacement of the damaged β-cells through minimally invasive surgical procedures, thereby being the most suitable strategy to cure T1DM. Unfortunately, this procedure still has limitations for its widespread clinical application, including the need for long-term immunosuppression, the lack of pancreas donors and the loss of a large percentage of islets after transplantation. To overcome the aforementioned issues, islets can be encapsulated within hydrogel-like biomaterials to diminish the loss of islets, to protect the islets resulting in a reduction or elimination of immunosuppression and to enable the use of other insulin-producing cell sources. This review aims to provide an update on the different hydrogel-based encapsulation strategies of insulin-producing cells, highlighting the advantages and drawbacks for a successful clinical application.
Collapse
Affiliation(s)
- Albert Espona-Noguera
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.E.-N.); (J.C.); (A.C.-H.); (R.M.H.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
| | - Jesús Ciriza
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.E.-N.); (J.C.); (A.C.-H.); (R.M.H.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
| | - Alberto Cañibano-Hernández
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.E.-N.); (J.C.); (A.C.-H.); (R.M.H.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.E.-N.); (J.C.); (A.C.-H.); (R.M.H.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01006 Vitoria, Spain
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
| | - Rosa María Hernández
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.E.-N.); (J.C.); (A.C.-H.); (R.M.H.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
| | - Laura Saenz del Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.E.-N.); (J.C.); (A.C.-H.); (R.M.H.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.E.-N.); (J.C.); (A.C.-H.); (R.M.H.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
36
|
Photo-triggered capsules based on lanthanide-doped upconverting nanoparticles for medical applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
37
|
Townsend SE, Gannon M. Extracellular Matrix-Associated Factors Play Critical Roles in Regulating Pancreatic β-Cell Proliferation and Survival. Endocrinology 2019; 160:1885-1894. [PMID: 31271410 PMCID: PMC6656423 DOI: 10.1210/en.2019-00206] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/27/2019] [Indexed: 12/27/2022]
Abstract
This review describes formation of the islet basement membrane and the function of extracellular matrix (ECM) components in β-cell proliferation and survival. Implications for islet transplantation are discussed. The insulin-producing β-cell is key for maintaining glucose homeostasis. The islet microenvironment greatly influences β-cell survival and proliferation. Within the islet, β-cells contact the ECM, which is deposited primarily by intraislet endothelial cells, and this interaction has been shown to modulate proliferation and survival. ECM-localized growth factors, such as vascular endothelial growth factor and cellular communication network 2, signal through specific receptors and integrins on the β-cell surface. Further understanding of how the ECM functions to influence β-cell proliferation and survival will provide targets for enhancing functional β-cell mass for the treatment of diabetes.
Collapse
Affiliation(s)
- Shannon E Townsend
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Maureen Gannon
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
- Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Correspondence: Maureen Gannon, PhD, Vanderbilt University Medical Center, 2213 Garland Avenue, MRB IV 7465, Nashville, Tennessee 37232. E-mail:
| |
Collapse
|