1
|
Zhao H, Zhou Z, Feng F, Yuan W, Chen L, Naman CB, Ju Z, Zhou Z, Lin W, He S, Ding L. SMART-assisted discovery of butenolides from the marine-derived Aspergillus sp. NBU4698 with multidrug resistance reversing and anti-inflammatory activity. PHYTOCHEMISTRY 2025; 236:114487. [PMID: 40122275 DOI: 10.1016/j.phytochem.2025.114487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/14/2025] [Accepted: 03/21/2025] [Indexed: 03/25/2025]
Abstract
Using together HSQC NMR-guided fractionation and an invivo screening zebrafish model for bioactivity-guided fractionation, four previously undescribed butenolides, perbutanolides A-D (1-4), were isolated from the marine-derived Aspergillus sp. NBU4698. HSQC NMR-based Small Molecule Accurate Recognition Technology (SMART 2.0) was used to simplify the process of discovering and characterizing these structurally related natural products. The structures and absolute configurations were determined by HRESIMS, NMR, polarimetry, and ECD calculations. All the compounds were evaluated for multidrug resistance (MDR) reversing activity in a zebrafish model, and compound 1 induced significant MDR reversal activity by inhibiting PXR-regulated efflux transporters. In addition, compounds 1-3 exhibited a moderate inhibitory effect on pro-inflammatory mediators in RAW264.7 macrophage cells. This is the first report of MDR reversal activity for marine-derived fungal butenolides. These results provide new insights for designing and developing probes and new drugs that can inhibit MDR.
Collapse
Affiliation(s)
- Hang Zhao
- School of Pharmacy, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Zhiyan Zhou
- School of Pharmacy, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Fangjian Feng
- School of Pharmacy, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Wei Yuan
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Lixin Chen
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - C Benjamin Naman
- Department of Science and Conservation, San Diego Botanic Garden, Encinitas, CA, 92024, United States
| | - Zhiran Ju
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ziyi Zhou
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Wenhan Lin
- Ningbo Institute of Marine Medicine, Peking University, Ningbo, 315800, China
| | - Shan He
- School of Pharmacy, Health Science Center, Ningbo University, Ningbo, 315211, China; Ningbo Institute of Marine Medicine, Peking University, Ningbo, 315800, China
| | - Lijian Ding
- School of Pharmacy, Health Science Center, Ningbo University, Ningbo, 315211, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
| |
Collapse
|
2
|
Li Y, Liu Y, Wu A, Liu H, Liang M, Pan Q, Cheng D. Aptamer inhibits P-glycoprotein efflux function via the Wnt/β-catenin signaling pathway. Biochem Biophys Res Commun 2025; 760:151709. [PMID: 40168709 DOI: 10.1016/j.bbrc.2025.151709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/10/2025] [Accepted: 03/25/2025] [Indexed: 04/03/2025]
Abstract
Inhibiting permeability glycoprotein (P-gp) efflux is a strategy to enhance drug efficacy or overcome multidrug resistance in tumors. However, whether P-gp aptamer (APTP-gp, an 81 bp ssDNA) inhibits P-gp efflux is unknown. Increased Rho123 uptake was observed in the rat brain and intestine. Bidirectional transport of Rho123 indicated that 100 nM of APTP-gp inhibited P-gp activity with inhibition ratios of 75.0 % in Caco-2 and 60.5 % in hCMEC/D3 cells. The apparent permeability coefficients (Papp) from the apical (AP) to basolateral (BL) sides significantly increased by 129.4 % in Caco-2 and 8.0 % in hCMEC/D3 cells, respectively. The Papp from the BL→AP sides in the two cell lines decreased. P-gp mRNA and protein expression in the rat ileum, brain, and two cell lines markedly decreased following APTP-gp exposure. APTP-gp downregulated Wnt3, pho-Dvl2, β-catenin expression and decreased the ratio of pho-GSK-3β to GSK-3β in the rat ileum and brain. Molecular docking analysis suggested that APTP-gp interact with Wnt/β-catenin signaling pathway proteins at various amino acid sites. The present study reports a novel a novel nucleic acid-based P-gp inhibitor, which may benefit for enhancing drug efficacy or overcome multidrug resistance in clinical application.
Collapse
Affiliation(s)
- Yujuan Li
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Yujiao Liu
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Aijia Wu
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Huayan Liu
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Min Liang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Qiuxia Pan
- People's Liberation Army Strategic Support Force Characteristic Medical Center, Beijing, 100101, China.
| | - Dongsheng Cheng
- Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, Shandong, China.
| |
Collapse
|
3
|
Álvarez-Carrasco P, Morales-Villamil F, Maldonado-Bernal C. P-Glycoprotein as a Therapeutic Target in Hematological Malignancies: A Challenge to Overcome. Int J Mol Sci 2025; 26:4701. [PMID: 40429842 PMCID: PMC12112708 DOI: 10.3390/ijms26104701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 05/07/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
P-glycoprotein (P-gp), a transmembrane efflux pump encoded by the ABCB1/MDR1 gene, is a major contributor to multidrug resistance in hematological malignancies. These malignancies, arising from hematopoietic precursors at various differentiation stages, can manifest in the bone marrow, circulate in the bloodstream, or infiltrate tissues. P-gp overexpression in malignant cells reduces the efficacy of chemotherapeutic agents by actively expelling them, decreasing intracellular drug concentrations, and promoting multidrug resistance, a significant obstacle to successful treatment. This review examines recent advances in combating P-gp-mediated resistance, including the development of novel P-gp inhibitors, innovative drug delivery systems (e.g., nanoparticle-based delivery), and strategies to modulate P-gp expression or activity. These modulation strategies encompass targeting relevant signaling pathways (e.g., NF-κB, PI3K/Akt) and exploring drug repurposing. While progress has been made, overcoming P-gp-mediated resistance remains crucial for improving patient outcomes. Future research directions should prioritize the development of potent, selective, and safe P-gp inhibitors with minimal off-target effects, alongside exploring synergistic combination therapies with existing chemotherapeutics or novel agents to effectively circumvent multidrug resistance in hematological malignancies.
Collapse
MESH Headings
- Humans
- Hematologic Neoplasms/drug therapy
- Hematologic Neoplasms/metabolism
- Drug Resistance, Neoplasm/drug effects
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Animals
- Drug Resistance, Multiple/drug effects
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- Signal Transduction/drug effects
- Drug Delivery Systems
- Molecular Targeted Therapy
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B/genetics
Collapse
Affiliation(s)
- Pablo Álvarez-Carrasco
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Fernanda Morales-Villamil
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
- Facultad de Medicina, Benemérita Universidad de Puebla, Puebla 72000, Mexico
| | - Carmen Maldonado-Bernal
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| |
Collapse
|
4
|
Mukhtar S, Lertnitikul N, Suttisri R, Boonyong C, Jianmongkol S. In vitro modulating effect and molecular docking of stilbene derivatives on P-gp efflux transporter. Nat Prod Res 2025:1-7. [PMID: 40347014 DOI: 10.1080/14786419.2025.2502183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 04/13/2025] [Accepted: 04/30/2025] [Indexed: 05/12/2025]
Abstract
Highly expressed P-glycoprotein (P-gp) in cancer cells reduces chemotherapeutic effectiveness by transporting drugs out of the cells. This study evaluated the potential of eight phenanthrene-structured stilbenoids isolated from orchids in modulating P-gp activity. Molecular docking studies were conducted to predict the best-fitting stilbenoids for P-gp binding domains, and a substrate uptake assay was used to assess their effects. Our results indicate that the modulating effects were influenced by the number and arrangement of hydroxyl or methoxyl substitutions on the phenanthrene structure. Among the tested compounds, 1-(4-hydroxybenzyl)-4,6-dimethoxy-9,10-dihydrophenanthrene-2,7-diol (compound 8) exhibited the highest potency in modulating P-gp activity, with the best alignment to the P-gp binding sites.
Collapse
Affiliation(s)
- Shahnila Mukhtar
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Nonthalert Lertnitikul
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Rutt Suttisri
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Cherdsak Boonyong
- Department of Medical Sciences, Pharmacology and Toxicology Unit, Faculty of Science, Rangsit University, Pathum Thani, Thailand
| | - Suree Jianmongkol
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Chand R, Palakkal AS, Neem M, Neogi S. Custom-Designed Robust MOF-Catalyst for Scalable 1,4-DHP Drugs With H-Bonding-Mediated Tandem Hantzsch Condensation and Shape-Reliant Friedel-Crafts Alkylation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2501767. [PMID: 40190206 DOI: 10.1002/smll.202501767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/19/2025] [Indexed: 05/27/2025]
Abstract
Flanked -NH2 functionality, polar carbonyl moiety and intrinsically unsaturated [Zn2(CO2)2(ATz)4] center-decked micropores in an ultra-robust metal-organic framework (MOF) are reported, assembled from bent dicarboxylate and triazole (ATz) ligand. The MOF serves as one-of-a-kind tandem Hantzsch condensation catalyst to yield a multitude of 1,4-dihydropyridines (1,4-DHPs) with low catalyst loading, short reaction duration at moderate temperature. Importantly, the MOF is used in the synthesis of six 1,4-DHP-based therapeutic molecules in >95% conversion, which are characterized in purest form via X-ray crystallography besides other spectroscopic analyses. Apart from gram-scale production of ethidine molecule at 40 °C in just 30 min, oxodipine drug is first-time synthesized by any framework-based catalyst. This mixed-ligand MOF further demonstrates highly recyclable Friedel-Crafts (FC) alkylation of indole and β-nitrostyrene and covers twenty electronically diverse substrates under relatively green conditions. Strikingly, larger-sized substrates can't diffuse inside the micropores and exemplifies rarest shape-reliant C‒C coupling reaction. Contrary to conventional Lewis-acid activation, the maximum contribution from hydrogen-bonding site promotes both tandem multi-component and FC reactions, as comprehensively supported from control experiments, analyte-induced emission articulation, inferior activity of task-specific site-truncated isoskeletal MOF, and density functional theory results. This work provides a major advancement on unconventional heterogeneous catalysis to produce valuable products.
Collapse
Affiliation(s)
- Rudra Chand
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, 364002, India
| | - Athulya S Palakkal
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, TN, 603203, India
| | - Mahesh Neem
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, 364002, India
| | - Subhadip Neogi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, 364002, India
| |
Collapse
|
6
|
Mahmoudi Gharehbaba A, Soltanmohammadi F, Vandghanooni S, Eskandani M, Adibkia K. A comprehensive review on overcoming the multifaceted challenge of cancer multidrug resistance: The emerging role of mesoporous silica nanoparticles. Biomed Pharmacother 2025; 186:118045. [PMID: 40215648 DOI: 10.1016/j.biopha.2025.118045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/26/2025] [Accepted: 04/03/2025] [Indexed: 04/25/2025] Open
Abstract
Multidrug resistance (MDR) is a significant challenge in tumor treatment, severely reducing the effectiveness of anticancer drugs and contributing to high mortality rates. This article overviews the various factors involved in the development of MDR, such as changes in drug targets, increased DNA repair mechanisms, and the impact of the tumor microenvironment. It also emphasizes the potential of mesoporous silica nanoparticles (MSNs) as a drug delivery system to combat MDR. With their unique characteristics-such as a high surface area, adjustable pore sizes, and the ability to be functionalized for targeted delivery-MSNs serve as excellent carriers for the simultaneous delivery of chemotherapeutics and siRNAs aimed at reversing resistance pathways. The paper focuses on innovative methods using MSNs for direct intranuclear delivery of their cargos to overcome efflux barrier and improve the effectiveness of combination therapies. This review highlights a promising approach for enhancing cancer treatment outcomes by integrating advanced nanotechnology with traditional therapies, addressing the ongoing challenge of MDR in oncology.
Collapse
Affiliation(s)
- Adel Mahmoudi Gharehbaba
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Soltanmohammadi
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Khosro Adibkia
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Franko O, Čižmáriková M, Kello M, Michalková R, Wesołowska O, Środa-Pomianek K, Marques SM, Bednář D, Háziková V, Liška TJ, Habalová V. Acridine-Based Chalcone 1C and ABC Transporters. Int J Mol Sci 2025; 26:4138. [PMID: 40362377 PMCID: PMC12071533 DOI: 10.3390/ijms26094138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Chalcones, potential anticancer agents, have shown promise in the suppression of multidrug resistance due to the inhibition of drug efflux driven by certain adenosine triphosphate (ATP)-binding cassette (ABC) transporters. The gene and protein expression of chosen ABC transporters (multidrug resistance protein 1, ABCB1; multidrug resistance-associated protein 1, ABCC1; and breast cancer resistance protein, ABCG2) in human colorectal cancer cells (COLO 205 and COLO 320, which overexpress active ABCB1) was mainly studied in this work under the influence of a novel synthetic acridine-based chalcone, 1C. While gene expression dropped just at 24 h, compound 1C selectively suppressed colorectal cancer cell growth and greatly lowered ABCB1 protein levels in COLO 320 cells at 24, 48, and 72 h. It also reduced ABCC1 protein levels after 48 h. Molecular docking and ATPase tests show that 1C probably acts as an allosteric modulator of ABCB1. It also lowered galectin-1 (GAL1) expression in COLO 205 cells at 24 h. Functional tests on COLO cells revealed ABCB1 and ABCC1/2 to be major contributors to multidrug resistance in both. Overall, 1C transiently lowered GAL1 in COLO 205 while affecting important functional ABC transporters, mostly ABCB1 and to a lesser extent ABCC1 in COLO 320 cells. COLO 320's absence of GAL1 expression points to a possible yet unknown interaction between GAL1 and ABCB1.
Collapse
Affiliation(s)
- Ondrej Franko
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| | - Martina Čižmáriková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| | - Radka Michalková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| | - Olga Wesołowska
- Department of Biophysics and Neurobiology, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Kamila Środa-Pomianek
- Department of Biophysics and Neurobiology, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Sérgio M. Marques
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - David Bednář
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Viktória Háziková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| | - Tomáš Ján Liška
- Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| | - Viera Habalová
- Department of Medical Biology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| |
Collapse
|
8
|
Shinde SD, Chamoli A, Uppalapati SS, Sharma J, Kumar V, Mandoli A, Kumar D. Adamantane-Quinoxalone Hybrids: Precision Chemotypes and Their Molecular Mechanisms in Acute Myeloid Leukemia. J Med Chem 2025; 68:7693-7706. [PMID: 40164542 DOI: 10.1021/acs.jmedchem.5c00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Acute myeloid leukemia (AML) is an aggressive blood cancer with a poor prognosis, especially when diagnosed late. Around 10-15% of cases involve the specific chromosomal abnormality t(8;21), which drives uncontrolled myeloid cell proliferation and contributes to disease onset. Despite advances in AML research and treatment protocols, outcomes for t(8;21) AML remain stagnant, as patients receive standard, nonspecific chemotherapies. This one-size-fits-all approach targets both cancerous and healthy cells, leading to unwanted toxicity and highlighting the urgent need for targeted therapies. In this study, we present a precision chemotype based on a quinoxalone-tethered adamantane framework developed via a metal- and light-free protocol. The compound selectively inhibits t(8;21) AML cell proliferation and induces cell death by disrupting growth and metabolic pathways, as demonstrated through bioassays, RNA sequencing, and proteomic analysis. Notably, it spares other leukemic and solid cancer cells, underscoring its specificity and potential as a targeted therapy for t(8;21) AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Adamantane/chemistry
- Adamantane/pharmacology
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/chemical synthesis
- Cell Proliferation/drug effects
- Quinoxalines/chemistry
- Quinoxalines/pharmacology
- Cell Line, Tumor
- Structure-Activity Relationship
- Drug Screening Assays, Antitumor
Collapse
Affiliation(s)
- Sangita Dattatray Shinde
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)─Ahmedabad, Palaj, Gandhinagar 382355 Gujarat, India
| | - Ambika Chamoli
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)─Ahmedabad, Palaj, Gandhinagar 382355 Gujarat, India
| | - Sai Swetha Uppalapati
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)─Ahmedabad, Palaj, Gandhinagar 382355 Gujarat, India
| | - Jaidev Sharma
- Department for Computational Biology, Indraprastha Institute of Information Technology, New Delhi 110020, India
| | - Vibhor Kumar
- Department for Computational Biology, Indraprastha Institute of Information Technology, New Delhi 110020, India
| | - Amit Mandoli
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)─Ahmedabad, Palaj, Gandhinagar 382355 Gujarat, India
| | - Dinesh Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)─Ahmedabad, Palaj, Gandhinagar 382355 Gujarat, India
| |
Collapse
|
9
|
Özkaya Gül S, Şimşek B, Yıldız F, Aydemir E. Cytotoxic Effect of Escitalopram/Etoposide Combination on Etoposide-Resistant Lung Cancer. Pharmaceuticals (Basel) 2025; 18:531. [PMID: 40283966 PMCID: PMC12030030 DOI: 10.3390/ph18040531] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/26/2025] [Accepted: 03/30/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Antidepressants are a class of pharmaceuticals utilized for the management of many psychiatric disorders, including depression. A considerable number of antidepressants, particularly selective serotonin reuptake inhibitors (SSRIs), have been documented to demonstrate significant anticancer properties in various cancer cell lines. Objectives: The aim of this study was to evaluate the selective cytotoxic and apoptotic effects of escitalopram oxalate (ES) alone and in combination with etoposide (ET) on ET-resistant A549 (A549/90E) lung cancer cells. Methods: The cytotoxic effects of the drugs were determined by CCK-8, trypan blue, and neutral red assays. Apoptosis was observed by Annexin V fluorescein isothiocyanate (FITC)/PI and mitochondrial membrane potential (ΔΨm) assays. Moreover, the effects of the drugs, alone and in combination, on apoptosis-related proteins, caspase-3, PTEN, and resistance-related P-gP were determined by ELISA. The relationship between drugs and lung cancer was determined with protein-protein interaction (PPI) network analysis. Results: Our results revealed that ES significantly exerted cytotoxic effects on both wild-type and A549/90E cells compared with BEAS-2B cells. The IC50 values of 48.67 and 51.6 μg/mL obtained for ET and ES, respectively, at the end of 24 h of incubation for A549 cells were applied reciprocally for each cell by including BEAS-2B together with the 2xIC50 and ½ IC50 values. The results of each combination were statistically evaluated with combination indices (CIs) obtained using the Compusyn synergistic effect analysis program. Combination doses with a synergistic effect in A549 and A549/90E cells and an antagonistic effect in BEAS-2B cells have been determined as ½ IC50 for ET and ½ IC50 for ES. ET ½ IC50, ES ½ IC50, and an ET ½ IC50 + ES ½ IC50 combination caused 18.37%, 55.19%, and 57.55% death in A549 cells, whereas they caused 44.9%, 22.4%, and 51.94% death in A549/90E cells, respectively. In A549 cells, the combination of ES ½ IC50 and ET ½ IC50 caused increased levels of caspase-3 (p < 0.01) and P-gP (p < 0.001), while PTEN levels remained unchanged. The combination resulted in an increase in caspase-3 (p < 0.001) and PTEN (p < 0.001) amounts, alongside a decrease in P-gP (p < 0.01) levels in A549/90E cells. The death mechanism induced by the combination was found to be apoptotic by Annexin V-FITC and ΔΨm assays. Conclusions: Based on our findings, ES was observed to induce cytotoxic and apoptotic activities in A549/90E cells in vitro. ES in combination therapy is considered to be effective to overcome ET resistance by reducing the amount of P-gP in A549/90E cells.
Collapse
Affiliation(s)
| | | | | | - Esra Aydemir
- Department of Biology, Faculty of Science, Akdeniz University, Antalya TR-07058, Turkey; (S.Ö.G.); (B.Ş.); (F.Y.)
| |
Collapse
|
10
|
Shaw S, Pore SK, Liu D, Kumeria T, Nayak R, Bose S. Combating chemoresistance: Current approaches & nanocarrier mediated targeted delivery. Biochim Biophys Acta Rev Cancer 2025; 1880:189261. [PMID: 39798822 DOI: 10.1016/j.bbcan.2025.189261] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Chemoresistance, a significant challenge in effective cancer treatment needs clear elucidation of the underlying molecular mechanism for the development of novel therapeutic strategies. Alterations in transporter pumps, oncogenes, tumour suppressor genes, mitochondrial function, DNA repair processes, autophagy, epithelial-mesenchymal transition (EMT), cancer stemness, epigenetic modifications, and exosome secretion lead to chemoresistance. Despite notable advancements in targeted cancer therapies employing both small molecules and macromolecules success rates remain suboptimal due to adverse effects like drug efflux, target mutation, increased mortality of normal cells, defective apoptosis, etc. This review proposes an advanced nanotechnological technique precisely targeting molecular determinants of chemoresistance which holds promise for enhancing cancer treatment efficacy. Further, the review explores various cancer hallmarks and pathways implicated in chemoresistance, current therapeutic modalities, and their limitations. It advocates the combination of nanoparticle-conjugated conventional drugs and natural compounds to specifically target molecular pathways that can potentially reverse or minimize chemoresistance incidences in cancer patients.
Collapse
Affiliation(s)
- Siuli Shaw
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Subrata Kumar Pore
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India
| | - Dutong Liu
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Tushar Kumeria
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Ranu Nayak
- Amity Institute of Nanotechnology, Amity University, Noida, Uttar Pradesh, India.
| | - Sudeep Bose
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India; Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India.
| |
Collapse
|
11
|
Sun JY, Qi SJ, Chen Q, Liu KX, Liu HY, Zheng HB, Sun B, Lou HX. Design, Synthesis, and Biological Evaluation of Marchantin C-NO Donor Hybrids for Overcoming Pgp-Mediated Drug Resistance by Targeting Lysosome. J Med Chem 2025; 68:5503-5528. [PMID: 40014032 DOI: 10.1021/acs.jmedchem.4c02733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
A series of marchantin C-NO donor hybrids were designed, synthesized, and evaluated for their antitumor activity in vitro and in vivo. Notably, MC-furoxan hybrid 14 exhibited the best selective inhibitory activity against MCF-7/ADR (IC50 = 0.024 μM) with 883 times potency compared with MCF-7 cells (IC50 = 21.20 μM), and the cytotoxicity toward A549/Taxol (IC50 = 1.43 μM) increased 17-fold compared with that in A549 cells (IC50 = 23.75 μM). Preliminary pharmacological studies revealed that 14 could "hijack" the lysosomal Pgp and release NO to produce reactive oxygen species (ROS) in lysosomes, resulting in lysosomal membrane permeabilization (LMP) and potentiated cytotoxicity. Additionally, compound 14 achieved stronger antitumor activity and superior biosafety at relatively low doses than paclitaxel in the A549/Taxol xenograft model. In summary, this study provides a promising strategy for the design of such MC-furoxan hybrids like 14 to overcome MDR via the utilization of lysosomal Pgp transport activity.
Collapse
Affiliation(s)
- Jia-Yu Sun
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, P. R. China
| | - Si-Jie Qi
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, P. R. China
| | - Qian Chen
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, P. R. China
| | - Ke-Xin Liu
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, P. R. China
| | - Hao-Yu Liu
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, P. R. China
| | - Hong-Bo Zheng
- Key Laboratory of Natural Products & Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, P. R. China
| | - Bin Sun
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, P. R. China
| | - Hong-Xiang Lou
- Key Laboratory of Natural Products & Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, P. R. China
| |
Collapse
|
12
|
Beretta GL, Cassinelli G, Rossi G, Azzariti A, Corbeau I, Tosi D, Perego P. Novel insights into taxane pharmacology: An update on drug resistance mechanisms, immunomodulation and drug delivery strategies. Drug Resist Updat 2025; 81:101223. [PMID: 40086175 DOI: 10.1016/j.drup.2025.101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/16/2025]
Abstract
Taxanes are effective in several solid tumors. Paclitaxel, the main clinically available taxane, was approved in the early nineties, for the treatment of ovarian cancer and later on, together with the analogs docetaxel and cabazitaxel, for other malignancies. By interfering with microtubule function and impairing the separation of sister cells at mitosis, taxanes act as antimitotic agents, thereby counteracting the high proliferation rate of cancer cells. The action of taxanes goes beyond their antimitotic function because their main cellular targets, the microtubules, participate in multiple processes such as intracellular transport and cell shape maintenance. The clinical efficacy of taxanes is limited by the development of multiple resistance mechanisms. Among these, extracellular vesicles have emerged as new players. In addition, taxane metronomic schedules shows an impact on the tumor microenvironment reflected by antiangiogenic and immunomodulatory effects, an aspect of growing interest considering their inclusion in treatment regimens with immunotherapeutics. Preclinical studies have paved the bases for synergistic combinations of taxanes both with conventional and targeted agents. A variety of drug delivery strategies have provided novel opportunities to increase the drug activity. The ability of taxanes to orchestrate different cellular effects amenable to modulation suggests novel options to improve cures in lethal malignancies.
Collapse
Affiliation(s)
- Giovanni Luca Beretta
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133, Italy.
| | - Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133, Italy.
| | - Giacomina Rossi
- Unit of Neurology 8, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy.
| | - Amalia Azzariti
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, Bari 70124, Italy.
| | - Iléana Corbeau
- Early Clinical Trial Unit, Medical Oncology Department, Institut régional du Cancer de Montpellier, Inserm U1194, Montpellier University, 208, rue de Apothicaires, 34298 Montpellier, France; Fondazione Gianni Bonadonna, via Bertani, 14, Milan 20154, Italy.
| | - Diego Tosi
- Early Clinical Trial Unit, Medical Oncology Department, Institut régional du Cancer de Montpellier, Inserm U1194, Montpellier University, 208, rue de Apothicaires, 34298 Montpellier, France; Fondazione Gianni Bonadonna, via Bertani, 14, Milan 20154, Italy.
| | - Paola Perego
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133, Italy.
| |
Collapse
|
13
|
Wu Z, Zhang J, Hao J, Liu P, Liu X. Understanding Efflux-Mediated Multidrug Resistance in Botrytis cinerea for Improved Management of Fungicide Resistance. Microb Biotechnol 2025; 18:e70074. [PMID: 40133238 PMCID: PMC11936762 DOI: 10.1111/1751-7915.70074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/21/2024] [Accepted: 12/19/2024] [Indexed: 03/27/2025] Open
Abstract
Botrytis cinerea is a major fungal pathogen infecting over 1400 plant species. It poses a significant threat to agriculture due to multiple fungicide resistance and multidrug resistance, involves resistance to fungicides with different modes of action. Multiple fungicide resistance is mostly due to an accumulation of point mutations in target genes over time, and MDR is result from efflux (e-MDR) and metabolism (m-MDR). This review introduces the occurrence of e-MDR of B. cinerea, the key mechanisms, origins and management strategies of e-MDR in fields. New materials such as nanomaterials become a strategy to overcoming MDR via inhibition of ABC transporter. A deeper understanding of efflux-mediated MDR will provide a support for the MDR management of B. cinerea and the efficient utilization of fungicides.
Collapse
Affiliation(s)
- Zhaochen Wu
- Department of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Junting Zhang
- Department of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Jianjun Hao
- School of Food and AgricultureUniversity of MaineOronoMaineUSA
| | - Pengfei Liu
- Department of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Xili Liu
- Department of Plant PathologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
14
|
Li YC, Lin BH, Murakami M, Wu YS, Hung TH, Chen CC, Ambudkar SV, Wu CP. Vodobatinib overcomes cancer multidrug resistance by attenuating the drug efflux function of ABCB1 and ABCG2. Eur J Pharmacol 2025; 988:177231. [PMID: 39725134 DOI: 10.1016/j.ejphar.2024.177231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Multidrug resistance (MDR) remains a significant obstacle in cancer treatment, primarily attributable to the overexpression of ATP-binding cassette (ABC) transporters such as ABCB1 and ABCG2 within cancer cells. These transporters actively diminish the effectiveness of cytotoxic drugs by facilitating ATP hydrolysis-dependent drug efflux, thereby reducing intracellular drug accumulation. Given the absence of approved treatments for multidrug-resistant cancers and the established benefits of combining tyrosine kinase inhibitors (TKIs) with conventional anticancer drugs, we investigate the potential of vodobatinib, a potent c-Abl TKI presently in clinical trials, to restore sensitivity to chemotherapeutic agents in multidrug-resistant cancer cells overexpressing ABCB1 and ABCG2. Results indicate that vodobatinib, administered at sub-toxic concentrations, effectively restores the sensitivity of multidrug-resistant cancer cells to cytotoxic drugs in a concentration-dependent manner. Moreover, vodobatinib enhances drug-induced apoptosis in these cells by inhibiting the drug-efflux function of ABCB1 and ABCG2, while maintaining their expression levels. Moreover, we found that while vodobatinib enhances the ATPase activity of ABCB1 and ABCG2, the overexpression of these transporters does not induce resistance to vodobatinib. These results strongly suggest that increased levels of ABCB1 or ABCG2 are unlikely to play a significant role in the development of resistance to vodobatinib in cancer patients. Overall, our findings unveil an additional pharmacological facet of vodobatinib against ABCB1 and ABCG2 activity, suggesting its potential incorporation into combination therapy for a specific subset of patients with tumors characterized by high ABCB1 or ABCG2 levels. Further investigation is warranted to fully elucidate the clinical implications of this therapeutic approach.
Collapse
Affiliation(s)
- Yen-Ching Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Bing-Huan Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung, 40704, Taiwan
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, 10507, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Chin-Chuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| | - Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, 10507, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan; Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan.
| |
Collapse
|
15
|
Berkley K, Zalejski J, Sharma N, Sharma A. Journey of PROTAC: From Bench to Clinical Trial and Beyond. Biochemistry 2025; 64:563-580. [PMID: 39791901 DOI: 10.1021/acs.biochem.4c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Proteolysis-targeting chimeras (PROTACs) represent a transformative advancement in drug discovery, offering a method to degrade specific intracellular proteins. Unlike traditional inhibitors, PROTACs are bifunctional molecules that target proteins for elimination, enabling the potential treatment of previously "undruggable" proteins. This concept, pioneered by Crews and his team, introduced the use of small molecules to link a target protein to an E3 ubiquitin ligase, inducing ubiquitination and subsequent degradation of the target protein. By promoting protein degradation rather than merely inhibiting function, PROTACs present a novel therapeutic strategy with enhanced specificity and effectiveness, especially in areas such as cancer and neurodegenerative diseases. Since their initial discovery, the field of PROTAC research has rapidly expanded with numerous PROTACs now designed to target a wide range of disease-relevant proteins. The substantial research, investment, and collaboration across academia and the pharmaceutical industry reflect the growing interest in PROTACs. This Review discusses the journey of PROTACs from initial discovery to clinical trials, highlighting advancements and challenges. Additionally, recent developments in fluorescent and photogenic PROTACs, used for real-time tracking of protein degradation, are presented, showcasing the evolving potential of PROTACs in targeted therapy.
Collapse
Affiliation(s)
- Kyli Berkley
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Julian Zalejski
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Nidhi Sharma
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Ashutosh Sharma
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
16
|
Li T, Cheng D, Xu X, Wang B, Xing W, Xu Y, Qian X, Yang Y, Zhu W. Transferrin-targeting pH-responsive and biodegradable mesoporous silica nanohybrid for nitric oxide-sensitized chemotherapy of cancer. Colloids Surf B Biointerfaces 2025; 246:114409. [PMID: 39612521 DOI: 10.1016/j.colsurfb.2024.114409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/16/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024]
Abstract
Weakly acidic pH, low oxygen and high glutathione levels are the main characteristics of tumor cells. Taking advantage of the unique acidic microenvironment of tumor cells, acid-responsive mesoporous organosilica nanoparticles (AMON) were designed for nitric oxide (NO)-sensitized chemotherapy of tumors. AMON served as a nanocarrier co-loaded with a nitric oxide donor (NOD) and chemotherapeutic drug doxorubicin (DOX). Transferrin (Tf) was modified on the surface as a targeting ligand to form NOD&DOX@AMON. In vitro experiments showed that AMON could be completely degraded under acidic conditions (pH 5.0) after 48 h. NOD&DOX@AMON entered cells via transferrin receptor-mediated internalization and degraded in the acidic microenvironment to release its payloads. NOD released NO in presence of one-electron reducing substances like Glutathione (GSH) and ascorbic acid, inhibiting P-glycoprotein(P-gp) function and thereby increasing the intracellular concentration of DOX. In vivo distribution studies revealed that the nanohybrids accumulated maximally in tumor tissue 12 h after intravenous injection and exhibited significant inhibitory effects on HepG2 xenograft tumors. Western blot experiments demonstrated that NOD&DOX@AMON could inhibit the expression of drug resistance-associated proteins and was expected to be employed as a therapeutic approach for drug-resistant ttumors.
Collapse
Affiliation(s)
- Ting Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Di Cheng
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiu Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Bin Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenqian Xing
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yufang Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Youjun Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weiping Zhu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
17
|
Zhang J, Zhou Y, Guo J, Yan M, Liu C, Du B. Core-Shell Nanoparticles with Sequential Drug Release Depleting Cholesterol for Reverse Tumor Multidrug Resistance. ACS APPLIED MATERIALS & INTERFACES 2025; 17:6689-6702. [PMID: 39813326 DOI: 10.1021/acsami.4c17858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Multidrug resistance (MDR) facilitates tumor recurrence and metastasis, which has become a main cause of chemotherapy failure in clinical. However, the current therapeutic effects against MDR remain unsatisfactory, mainly hampered by the rigid structure of drug-resistant cell membranes and the uncontrolled drug release. In this study, based on a sequential drug release strategy, we engineered a core-shell nanoparticle (DOX-M@CaP@ATV@HA) depleting cholesterol for reverse tumor MDR. DOX-M@CaP@ATV@HA could accurately target tumor cells due to the active targetability of hyaluronic acid (HA) toward CD44 receptors. The calcium phosphate (CaP) shell was cleaved in the lysosomal acidic environment so that the cholesterol-lowering drug atorvastatin (ATV) was rapidly released to diminish cholesterol and P-glycoprotein (P-gp) level on the membrane, thereby boosting tumor cell drug uptake. Next, doxorubicin (DOX) was gradually released from the hydrophobic core of the mPEG-DSPE micelle, inflicting irreversible DNA damage and triggering apoptosis. The nanosystem was proven both in vitro and in vivo to reverse MDR effectively and exhibited a remarkable therapeutic efficacy on drug-resistant tumors with high biosafety. In conclusion, DOX-M@CaP@ATV@HA effectively reverses MDR via cholesterol depletion, which provides an innovative strategy for tumor MDR treatment.
Collapse
Affiliation(s)
- Jieke Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yingying Zhou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jialing Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mei Yan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Chenxin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Du
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, Henan, China
| |
Collapse
|
18
|
Zhang S, Ding N, Zheng X, Lu Y, Wei J, Zeng H, Sun W, Zhou Y, Gao Y, Zhang Y, Hu Z. Chromones Featuring a [6,6]-Spiroketal Moiety Produced by Coculture of the Endophytic Fungi Chaetomium virescens and Xylaria Grammica. JOURNAL OF NATURAL PRODUCTS 2025; 88:36-48. [PMID: 39688569 DOI: 10.1021/acs.jnatprod.4c00773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Under the guidance of HPLC-DAD analysis, ten new chromones featuring a rare [6,6]-spiroketal moiety, namely chaetovirexylariones A-J (1-10), together with two known congeners (11-12), were isolated from coculture of the endophytic fungi Chaetomium virescens and Xylaria grammica, from the rhizome of the medicinal plant Smilax glabra Roxb. Their structures were elucidated via a combination of NMR and HRESIMS data, and the absolute configurations of 1-10 were determined by the chemical conversion and single-crystal X-ray diffraction (Cu Kα) experiments, as well as the comparison of the experimental and calculated electronic circular dichroism (ECD) data. Compound 6 is the first report as a racemate of this type of natural product. Compound 10 represents the first example of a [6,6]-spiroketal chromone bearing a 5-amino-3-methyl-2-pentenoic acid fragment. Compound 8 demonstrated a reduction in PTX resistance of SW620/AD300 by a factor of 45, and had the potential to be an effective P-gp inhibitor and an antitumor chemotherapy sensitizer.
Collapse
Affiliation(s)
- Sitian Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Nanjing Ding
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xinyu Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yuling Lu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jiangchun Wei
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Hanxiao Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yuan Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Ya Gao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
19
|
Doghish AS, Mageed SSA, Zaki MB, Abd-Elmawla MA, Sayed GA, Hatawsh A, Aborehab NM, Moussa R, Mohammed OA, Abdel-Reheim MA, Elimam H. Role of long non-coding RNAs and natural products in prostate cancer: insights into key signaling pathways. Funct Integr Genomics 2025; 25:16. [PMID: 39821470 DOI: 10.1007/s10142-025-01526-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/18/2024] [Accepted: 01/01/2025] [Indexed: 01/19/2025]
Abstract
Prostate cancer (PC) ranks among the most prevalent cancers in males. Recent studies have highlighted intricate connections between long non-coding RNAs (lncRNAs), natural products, and cellular signaling in PC development. LncRNAs, which are RNA transcripts without protein-coding function, influence cell growth, programmed cell death, metastasis, and resistance to treatments through pathways like PI3K/AKT, WNT/β-catenin, and androgen receptor signaling. Certain lncRNAs, including HOTAIR and PCA3, are associated with PC progression, with potential as diagnostic markers. Natural compounds, such as curcumin and resveratrol, demonstrate anticancer effects by targeting these pathways, reducing tumor growth, and modulating lncRNA expression. For instance, curcumin suppresses HOTAIR levels, hindering PC cell proliferation and invasion. The interaction between lncRNAs and natural compounds may open new avenues for therapy, as these substances can simultaneously impact multiple signaling pathways. These complex interactions offer promising directions for developing innovative PC treatments, enhancing diagnostics, and identifying new biomarkers for improved prevention and targeted therapy. This review aims to map the multifaceted relationship among natural products, lncRNAs, and signaling pathways in PC pathogenesis, focusing on key pathways such as AR, PI3K/AKT/mTOR, WNT/β-catenin, and MAPK, which are crucial in PC progression and therapy resistance. Regulation of these pathways by natural products and lncRNAs could lead to new insights into biomarker identification, preventive measures, and targeted PC therapies.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, CairoE, 11829, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ghadir A Sayed
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, 11829, Egypt
| | - Abdulrahman Hatawsh
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City, Giza, 12588, Egypt
| | - Nora M Aborehab
- Department of Biochemistry, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Rewan Moussa
- School Faculty of Medicine, Helwan University, Cairo, 11795, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | | | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| |
Collapse
|
20
|
Peng YY, Shi ZX, Yu M, Karam S, Chen ZL, Wang Y. Design, synthesis and biological evaluation of biaryl amide derivatives as modulators of multi-drug resistance. Eur J Med Chem 2025; 282:117090. [PMID: 39591850 DOI: 10.1016/j.ejmech.2024.117090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 11/28/2024]
Abstract
The emergence of multi-drug resistance (MDR) presents a significant impediment to the efficacy of cancer treatment. Aberrant expression of ABC (ATP-binding cassette) transporters is acknowledged as one of the underlying factors contributing to MDR. P-glycoprotein (P-gp, MDR1, ABCB1), breast cancer resistance protein (BCRP, ABCG2), and MDR-associated protein 1 (MRP1, ABCC1) are members of the ABC transporter, and their over-expression usually occurs in drug-resistant tumor cells. In this work, the structure-activity relationships of the biaryl amide skeleton were systematically investigated via structural optimization step by step, which led to the identification of an exceptionally potent resistance reversal agent, D2. Compound D2 effectively reversed MDR to paclitaxel and cisplatin in A2780/T, A2780/CDDP and A549/T cell lines. It could directly bind to P-gp and downregulate the expression of both P-gp and MRP1. The treatment with D2 increased the intracellular accumulation of Rh123 and inhibited P-gp-mediated drug efflux of Rh123 in A2780/T cells. Therefore, compound D2 exhibits promising potential in overcoming multidrug resistance (MDR) induced by P-gp in cancer.
Collapse
Affiliation(s)
- Ying-Yuan Peng
- Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai, China; School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zhi-Xian Shi
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Min Yu
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Sami Karam
- Department of Pharmaceutical Science and Technology, Donghua University, Shanghai, China
| | - Zhi-Long Chen
- Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai, China; Department of Pharmaceutical Science and Technology, Donghua University, Shanghai, China.
| | - Yang Wang
- School of Pharmacy, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
21
|
Jiao C, Qiu J, Gong C, Li X, Liang H, He C, Cen S, Xie Y. Ganoderma lucidum extract reverses multidrug resistance in breast cancer cells through inhibiting ATPase activity of the P-glycoprotein via MAPK/ERK signaling pathway. Exp Cell Res 2025; 444:114355. [PMID: 39613022 DOI: 10.1016/j.yexcr.2024.114355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
Breast cancer represents a persistent global health challenge, with multidrug resistance (MDR) posing a significant obstacle to effective treatment. In this study, we investigate the potential of Ganoderma lucidum extract (GLE) in reversing MDR in breast cancer and delve into the underlying mechanisms. We establish a robust in vitro 3D model of breast cancer with acquired MDR induced by paclitaxel. Utilizing the CCK-8 method, we assess the impact of GLE on cytotoxic drug sensitivity to determine its in vitro MDR reversal activity. Our results reveal that GLE enhances the toxicity of paclitaxel in breast cancer cells by inhibiting the ATPase activity of P-glycoprotein (P-gp) and increasing the intracellular and extracellular excretion of P-gp substrates, all without significantly altering P-gp protein expression. Additionally, GLE inhibits the phosphorylation of ERK1/2, suggesting that the enhanced sensitivity of breast cancer cells to paclitaxel by GLE is associated with the MAPK pathway. These findings indicate that GLE may inhibit P-gp-mediated drug efflux via the MAPK pathway, thus effectively overcoming paclitaxel resistance in breast cancer. This study provides valuable insights into the potential clinical applications of GLE in reversing multidrug resistance, offering hope for improved breast cancer treatment strategies.
Collapse
Affiliation(s)
- Chunwei Jiao
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, 510663, PR China; Guangdong Yuewei Bioscience Co., Ltd., Zhaoqing, 526000, PR China
| | - Jinshou Qiu
- Zhangzhou Hospital Affiliated to Fujian Medical University, Zhangzhou, Fujian, 363000, PR China
| | - Congcong Gong
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, 510663, PR China; South China University of Technology, PR China
| | - Xiaoyi Li
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, 510663, PR China
| | - Huijia Liang
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, 510663, PR China
| | - Chunyan He
- Guangdong Yuewei Bioscience Co., Ltd., Zhaoqing, 526000, PR China
| | - Sien Cen
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, 510663, PR China
| | - Yizhen Xie
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, 510663, PR China; Guangdong Yuewei Bioscience Co., Ltd., Zhaoqing, 526000, PR China.
| |
Collapse
|
22
|
Bodun DS, Omoboyowa DA, Olofinlade VF, Ayodeji AO, Mauri A, Ogbodo UC, Balogun TA. In-silico-based lead optimization of hit compounds targeting mitotic kinesin Eg5 for cancer management. In Silico Pharmacol 2025; 13:9. [PMID: 39780769 PMCID: PMC11703796 DOI: 10.1007/s40203-024-00300-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/25/2024] [Indexed: 01/11/2025] Open
Abstract
Lead optimization is vital for turning hit compounds into therapeutic drugs. This study builds upon a prior in silico research, where the hit compounds had better binding affinity and stability compared to a reference drug. Using a genetic algorithm, 12,500 analogs of the top compounds from the prior study were generated. Virtual screening was done using a quantitative structure-activity relationship (QSAR) model. Top analogs, selected based on pChembL values below 6.000nM, underwent molecular docking targeting Human Eg5. The top five analogs from this study (Compound 9794, Compound 8592, Compound 9786, Compound 2744, and Compound 3246) demonstrated strong binding energies and interactions with key amino acids (GLU 116, GLU 117, and ARG 119). MMGBSA analysis revealed comparable affinities to the co-crystallized ligand, suggesting the top analogs' potential as Human Eg5 inhibitors. Induced fit docking highlighted Compound 9786's superior efficacy. Quantum Polarized Ligand Docking indicated promising scores for Compounds 8592 and 9786. ADMET predictions offered insights into pharmacological properties, with all compounds predicted to be HIA-positive and non-carcinogenic. Further MD simulation study confirms the stability of the top compounds in the active site of Eg5. This study shows the significance of integrated strategies in drug design. However, in vitro and in vivo studies should be conducted for these promising candidates to confirm their efficacy as Eg5 inhibitors. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00300-6.
Collapse
Affiliation(s)
- Damilola S. Bodun
- Phyto-medicine and Computational Biology Laboratory, Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Ondo State Nigeria
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
- Chemoinformatics Academy, Akungba-Akoko, Nigeria
| | - Damilola A. Omoboyowa
- Phyto-medicine and Computational Biology Laboratory, Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Ondo State Nigeria
| | - Victor F. Olofinlade
- Department of Computer Science, Federal University of Technology Akure, Akure, Ondo State Nigeria
| | - Adeyemi O. Ayodeji
- Enzymology and Molecular Biotechnology Laboratory, Deparment of Biochemistry, Joseph Ayo Babalola University, Ikeji-Arakeji, Nigeria
| | - Andrea Mauri
- Alvascience Srl, Via Giuseppe Parini, 35, Lecco, 23900 Italy
| | - Uchechukwu C. Ogbodo
- Department of Applied Biochemistry, Faculty of Biosciences, Nnamdi Azikwe University, Awka, Nigeria
| | - Toheeb A. Balogun
- Phyto-medicine and Computational Biology Laboratory, Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Ondo State Nigeria
| |
Collapse
|
23
|
Gharehbaba AM, Omidi Y, Barar J, Eskandani M, Adibkia K. Synergistic pH-responsive MUC-1 aptamer-conjugated Ag/MSN Janus nanoparticles for targeted chemotherapy, photothermal therapy, and gene therapy in breast cancer. BIOMATERIALS ADVANCES 2025; 166:214081. [PMID: 39454415 DOI: 10.1016/j.bioadv.2024.214081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
Drug resistance in cancer treatment, primarily attributed to the overexpression of the multidrug resistance (MDR) gene, significantly hampers the effectiveness of chemotherapy. This mechanism, driven by the increased production of P-glycoprotein (P-gp) efflux pumps, highlights the urgent need for innovative strategies to combat drug resistance in cancer patients. This study explores the application of antisense technology to suppress MDR gene expression, while addressing the challenges of instability and limited cellular uptake associated with antisense oligonucleotides. We synthesized Janus silver-mesoporous silica nanoparticles (Ag/MSN JNPs) using a sol-gel method, characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS), revealing uniformly sized, dumbbell-shaped nanoparticles with an average size of 285 ± 5.12 nm. Doxorubicin (DOX) was loaded into the porous structure of the mesoporous silica, and JNPs were functionalized with chitosan (CS) to incorporate P-gp antisense and a MUC-1 aptamer, serving as a pH-responsive gatekeeper. Our findings indicate that the Ap-As-DOX-JNPs achieved a remarkable 89 ± 0.59 % cell death in drug-resistant MCF-7/ADR cells after 48 h, alongside an 80 % reduction in P-gp expression. The combination of DOX, antisense technology, and photothermal therapy utilizing these JNPs demonstrates a promising strategy to effectively overcome drug resistance. Notably, normal MCF-7 cells exhibited reduced viability from 39.11 ± 1.12 % to 30.05 ± 1.07 % when treated with DOX-JNPs under near-infrared (NIR) irradiation. These results underscore the potential of utilizing MUC-1 aptamer-conjugated Janus nanoparticles in conjunction with chitosan as a gatekeeper to enhance the efficacy of chemotherapy, photothermal therapy, and gene therapy in overcoming multidrug resistance in cancer treatment.
Collapse
Affiliation(s)
- Adel Mahmoudi Gharehbaba
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA
| | - Jaleh Barar
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Khosro Adibkia
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Hou X, Ai X, Liu Z, Yang J, Wu Y, Zhang D, Feng N. Wheat germ agglutinin modified mixed micelles overcome the dual barrier of mucus/enterocytes for effective oral absorption of shikonin and gefitinib. Drug Deliv Transl Res 2025; 15:325-342. [PMID: 38656402 DOI: 10.1007/s13346-024-01602-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
The combination of shikonin (SKN) and gefitinib (GFB) can reverse the drug resistance of lung cancer cells by affecting energy metabolism. However, the poor solubility of SKN and GFB limits their clinical application because of low bioavailability. Wheat germ agglutinin (WGA) can selectively bind to sialic acid and N-acetylglucosamine on the surfaces of microfold cells and enterocytes, and is a targeted biocompatible material. Therefore, we created a co-delivery micelle system called SKN/GFB@WGA-micelles with the intestinal targeting functions to enhance the oral absorption of SKN and GFB by promoting mucus penetration for nanoparticles via oral administration. In this study, Caco-2/HT29-MTX-E12 co-cultured cells were used to simulate a mucus/enterocyte dual-barrier environment, and HCC827/GR cells were used as a model of drug-resistant lung cancer. We aimed to evaluate the oral bioavailability and anti-tumor effect of SKN and GFB using the SKN/GFB@WGA-micelles system. In vitro and in vivo experimental results showed that WGA promoted the mucus penetration ability of micelles, significantly enhanced the uptake efficiency of enterocytes, improved the oral bioavailability of SKN and GFB, and exhibited good anti-tumor effects by reversing drug resistance. The SKN/GFB@WGA-micelles were stable in the gastrointestinal tract and provided a novel safe and effective drug delivery strategy.
Collapse
Affiliation(s)
- Xuefeng Hou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, NO. 1200 Cailun Road, Shanghai, 201203, China
- School of Pharmacy, Wannan Medical College, Wuhu, 241002, China
| | - Xinyi Ai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, NO. 1200 Cailun Road, Shanghai, 201203, China
| | - Zhenda Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, NO. 1200 Cailun Road, Shanghai, 201203, China
| | - Jiayi Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, NO. 1200 Cailun Road, Shanghai, 201203, China
| | - Yihan Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, NO. 1200 Cailun Road, Shanghai, 201203, China
| | - Di Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, NO. 1200 Cailun Road, Shanghai, 201203, China
| | - Nianping Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, NO. 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
25
|
Tonk M, Singh I, Sharma RJ, Chauhan SB. A Revolutionary Approach for Combating Efflux Transporter-mediated Resistant Epilepsy: Advanced Drug Delivery Systems. Curr Pharm Des 2025; 31:95-106. [PMID: 39279709 DOI: 10.2174/0113816128332345240823111524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/18/2024]
Abstract
Epilepsy is a persistent neurological condition that affects 60 million individuals globally, with recurrent spontaneous seizures affecting 80% of patients. Antiepileptic drugs (AEDs) are the main course of therapy for approximately 65% of epileptic patients, and the remaining 35% develop resistance to medication, which leads to drug-resistant epilepsy (DRE). DRE continues to be an important challenge in clinical epileptology. There are several theories that attempt to explain the neurological causes of pharmacoresistance in epilepsy. The theory that has been studied the most is the transporter hypothesis. Therefore, it is believed that upregulation of multidrug efflux transporters at the blood-brain barrier (BBB), such as P-glycoprotein (P-gp), which extrudes AEDs from their target location, is the major cause, leading to pharmacoresistance in epilepsy. The most effective strategies for managing this DRE are peripheral and central inhibition of P-gp and maintaining an effective concentration of the drug in the brain parenchyma. Presently, no medicinal product that inhibits Pgp is being used in clinical practice. In this review, several innovative and promising treatment methods, including gene therapy, intracranial injections, Pgp inhibitors, nanocarriers, and precision medicine, are discussed. The primary goal of this work is to review the P-gp transporter, its substrates, and the latest novel treatment methods for the management of DRE.
Collapse
Affiliation(s)
- Megha Tonk
- Raj Kumar Goel Institute of Technology (Pharmacy), 5-Km, Stone, Delhi-Meerut Road, Ghaziabad, Uttar Pradesh 201017, India
| | - Indu Singh
- Amity Institute of Pharmacy, Amity University, Noida 201301, India
| | - Ram Jee Sharma
- Indian Herbs Specialities Pvt. Ltd., Nawada Road, Saharanpur (U.P.) 247001, India
| | | |
Collapse
|
26
|
Listratova AV, Samarelli F, Titov AA, Purgatorio R, de Candia M, Catto M, Varlamov AV, Voskressensky LG, Altomare CD. Advances in synthesis of novel annulated azecines and their unique pharmacological properties. Eur J Med Chem 2024; 280:116947. [PMID: 39437575 DOI: 10.1016/j.ejmech.2024.116947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/26/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024]
Abstract
Annulated azecines, mostly partially saturated benzo[d]azecine and dibenzo[c,g]azecine fusion isomers, constitute a unique class of alkaloids and nature-inspired azaheterocyclic compounds with interesting reactivity, physicochemical and biological properties. Due to difficulties associated with the synthesis of the benzazecine (or bioisosteric) scaffold they are not the focus of organic and medicinal chemists' consideration, whereas it is worth noting the range of their pharmacological activities and their potential application in medicinal chemistry. Herein, we reviewed the synthetic methodologies of arene-fused azecine derivatives known up to date and reported about the progress in disclosing their potential in drug discovery. Indeed, their conformational restriction or liberation drives their selectivity towards diverse biological targets, making them versatile scaffolds for developing drugs, including antipsychotic and anticancer drugs, but also small molecules with potential for anti-neurodegenerative treatments, as the recent literature shows.
Collapse
Affiliation(s)
- Anna V Listratova
- Organic Chemistry Department, Рeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation.
| | - Francesco Samarelli
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy.
| | - Alexander A Titov
- Organic Chemistry Department, Рeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation.
| | - Rosa Purgatorio
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy.
| | - Modesto de Candia
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy.
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy.
| | - Alexey V Varlamov
- Organic Chemistry Department, Рeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation.
| | - Leonid G Voskressensky
- Organic Chemistry Department, Рeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation.
| | - Cosimo D Altomare
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy.
| |
Collapse
|
27
|
Poma P, Rigogliuso S, Labbozzetta M, Nicosia A, Costa S, Ragusa MA, Notarbartolo M. Epigenetic and Cellular Reprogramming of Doxorubicin-Resistant MCF-7 Cells Treated with Curcumin. Int J Mol Sci 2024; 25:13416. [PMID: 39769180 PMCID: PMC11679585 DOI: 10.3390/ijms252413416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
The MCF-7R breast cancer cell line, developed by treating the parental MCF-7 cells with increasing doses of doxorubicin, serves as a model for studying acquired multidrug resistance (MDR). MDR is a major challenge in cancer therapy, often driven by overexpression of the efflux pump P-glycoprotein (P-gp) and epigenetic modifications. While many P-gp inhibitors show promise in vitro, their nonspecific effects on the efflux pump limit in vivo application. Curcumin, a natural compound with pleiotropic action, is a nontoxic P-gp inhibitor capable of modulating multiple pathways. To explore curcumin's molecular effects on MCF-7R cells, we analyzed the expression of genes involved in DNA methylation and transcription regulation, including ABCB1/MDR1. Reduced representation bisulfite sequencing further unveiled key epigenetic changes induced by curcumin. Our findings indicate that curcumin treatment not only modulates critical cellular processes, such as ribosome biogenesis and cytoskeletal dynamics, but also reverses the resistant phenotype, toward that of sensitive cells. This study highlights curcumin's potential as an adjuvant therapy to overcome chemoresistance, offering new avenues for pharmacological strategies targeting epigenetic regulation to re-sensitize resistant cancer cells.
Collapse
Affiliation(s)
- Paola Poma
- Department of Biological Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, 90128 Palermo, Italy; (P.P.); (S.R.); (M.L.); (S.C.); (M.N.)
| | - Salvatrice Rigogliuso
- Department of Biological Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, 90128 Palermo, Italy; (P.P.); (S.R.); (M.L.); (S.C.); (M.N.)
| | - Manuela Labbozzetta
- Department of Biological Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, 90128 Palermo, Italy; (P.P.); (S.R.); (M.L.); (S.C.); (M.N.)
| | - Aldo Nicosia
- Institute for Biomedical Research and Innovation—National Research Council (IRIB-CNR), 90146 Palermo, Italy;
| | - Salvatore Costa
- Department of Biological Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, 90128 Palermo, Italy; (P.P.); (S.R.); (M.L.); (S.C.); (M.N.)
| | - Maria Antonietta Ragusa
- Department of Biological Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, 90128 Palermo, Italy; (P.P.); (S.R.); (M.L.); (S.C.); (M.N.)
| | - Monica Notarbartolo
- Department of Biological Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, 90128 Palermo, Italy; (P.P.); (S.R.); (M.L.); (S.C.); (M.N.)
| |
Collapse
|
28
|
Johnston CU, Kennedy CJ. Potency and mechanism of p-glycoprotein chemosensitizers in rainbow trout (Oncorhynchus mykiss) hepatocytes. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:2149-2164. [PMID: 39026113 DOI: 10.1007/s10695-024-01376-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
The membrane efflux transporter P-glycoprotein (P-gp, [ABCB1, MDR1]) exports a wide range of xenobiotic compounds, resulting in a continuous first line of defense against toxicant accumulation at basal expression levels, and contributing to the multixenobiotic resistance (MXR) phenotype at elevated expression levels. Relatively little information exists on P-gp inhibition in fish by chemosensitizers, compounds which lower toxicity thresholds for harmful P-gp substrates in complex mixtures. The effects of four known mammalian chemosensitizers (cyclosporin A [CsA], quinidine, valspodar [PSC833], and verapamil) on the P-gp-mediated transport of rhodamine 123 (R123) and cortisol in primary cultures of rainbow trout (Oncorhynchus mykiss) hepatocytes were examined. Competitive accumulation assays using 25 µM R123 or cortisol and varying concentrations of chemosensitizers (0-500 µM) were used. CsA, quinidine, and verapamil inhibited R123 export (IC50 values ± SE: 132 ± 60, 83.3 ± 27.2, and 43.2 ± 13.6 µM, respectively). CsA and valspodar inhibited cortisol export (IC50 values: 294 ± 106 and 92.2 ± 34.9 µM, respectively). In an ATP depletion assay, hepatocytes incubated with all four chemosensitizers resulted in lower free ATP concentrations, suggesting that they act via competitive inhibition. Chemosensitizers that inhibit MXR transporters are an important class of environmental pollutant, and these results show that rainbow trout transporters are inhibited by similar chemosensitizers (and mostly at similar concentrations) as seen in mammals and other fish species.
Collapse
Affiliation(s)
- Christina U Johnston
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive Burnaby, British Columbia, Canada
| | - Christopher J Kennedy
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive Burnaby, British Columbia, Canada.
| |
Collapse
|
29
|
Liu L, Yu K, Yu J, Tao W, Wei Y. MiR-133 promotes the multidrug resistance of acute myeloid leukemia cells (HL-60/ADR) to daunorubicin. Cytotechnology 2024; 76:833-846. [PMID: 39435426 PMCID: PMC11490624 DOI: 10.1007/s10616-024-00656-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/12/2024] [Indexed: 10/23/2024] Open
Abstract
This study aimed to explore the role and molecular mechanism of miR-133 in multidrug resistance in acute myeloid leukemia (AML) and provide a new theoretical basis for the treatment and prognosis of AML patients. We performed experiments at the cellular level. RT‒qPCR and Western blotting were used to detect gene and protein expression; cell viability was measured with CCK-8 assays; apoptosis was detected via flow cytometry; and a dual-luciferase reporter gene assay was used to verify the binding between miR-133 and CXCL12. In this study, we found that miR-133 was upregulated in HL-60/ADR multidrug-resistant cells. Functionally, the inhibition of miR-133 alleviated the resistance of HL-60/ADR cells to daunorubicin (DNR). After inhibiting miR-133 in HL-60/ADR cells treated with DNR, the expression of the intracellular drug resistance-related proteins MRP562 and P-gp was inhibited, cell proliferation decreased, and apoptosis increased. Mechanistically, the NF-κB signaling pathway regulates the expression of miR-133 in HL-60/ADR cells, and the targeting of CXCL12 by miR-133 enhances the resistance of HL-60/ADR cells to DNR. In conclusion, the NF-κB signaling pathway regulates the expression of miR-133, and inhibiting miR-133 expression can target CXCL12 to increase the sensitivity of HL-60/ADR cells to DNR.
Collapse
Affiliation(s)
- Lin Liu
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dianburma Avenue, Wuhua District, Kunming, 650101 Yunnan Province China
| | - Kun Yu
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jingxing Yu
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dianburma Avenue, Wuhua District, Kunming, 650101 Yunnan Province China
| | - Wei Tao
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dianburma Avenue, Wuhua District, Kunming, 650101 Yunnan Province China
| | - Yueping Wei
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dianburma Avenue, Wuhua District, Kunming, 650101 Yunnan Province China
| |
Collapse
|
30
|
Pan X, Tao J, Xing Q, Wang B, Dou M, Zhang Y, Jin S, Wu J. Borneol promotes berberine-induced cardioprotection in a rat model of myocardial ischemia/reperfusion injury via inhibiting P-glycoprotein expression. Eur J Pharmacol 2024; 983:177009. [PMID: 39306269 DOI: 10.1016/j.ejphar.2024.177009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Berberine is reported to protect the heart against ischemia/reperfusion (I/R) injury, although efficacy is limited by low bioavailability. This study aims to determine whether borneol, a classic guiding drug, can enhance the cardioprotection induced by berberine and to clarify the underlying mechanisms involving P-glycoprotein (P-gp) in the heart. Adult male Sprague Dawley rats were gavaged with berberine (200 mg/kg) with or without borneol (100 mg/kg) for 7 consecutive days. A rat model of myocardial I/R injury was established by 30 min left coronary artery occlusion followed with 120 min reperfusion. The arrhythmia score, cardiac enzyme content, and myocardial infarct size were determined following reperfusion. Heart tissues were collected for Western blot and immunofluorescence analyses to measure the protein expression levels of Bcl-2, Bax, and P-gp. The results showed that administration of berberine protected the heart against I/R injury, as demonstrated by lower arrhythmia scores, serum cTnI contents, myocardial infarct size, and cardiomyocytes apoptosis. Moreover, borneol substantially enhanced the cardioprotective effects of berberine. Western blot and immunofluorescence analyses showed that both berberine and I/R injury did not alter P-gp expression in heart. In contrast, borneol combined with berberine significantly reduced P-gp levels by 43.4% (P = 0.0240). Interestingly, treatment with borneol alone decreased P-gp levels, but did not protect against myocardial I/R injury. These findings suggest that borneol, as an adjuvant drug, improved the cardioprotective effects of berberine by inhibiting P-gp expression in heart. Borneol combined with berberine administration provides a new strategy to protect the heart against I/R injury.
Collapse
Affiliation(s)
- Xinxin Pan
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China
| | - Jing Tao
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China; Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
| | - Qijing Xing
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China
| | - Baoli Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China
| | - Mengyun Dou
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China
| | - Ye Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China.
| | - Shiyun Jin
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China.
| | - Juan Wu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
31
|
Dong J, Li Y, Jin Z, Wu Z, Cai M, Pan G, Ye W, Zhou W, Li Z, Tian S, Chen ZS, Qin JJ. Synthesis and evaluation of novel tetrahydroisoquinoline-benzo[h]chromen-4-one conjugates as dual ABCB1/CYP1B1 inhibitors for overcoming MDR in cancer. Bioorg Med Chem 2024; 114:117944. [PMID: 39418747 DOI: 10.1016/j.bmc.2024.117944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/25/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024]
Abstract
The emergence of multidrug resistance (MDR) in malignant tumors is one of the major threats encountered currently by many chemotherapeutic agents. Among the various mechanisms involved in drug resistance, P-glycoprotein (P-gp, ABCB1), a member of the ABC transporter family that significantly increases the efflux of various anticancer drugs from tumor cells, and the metabolic enzyme CYP1B1 are widely considered to be two critical targets for overcoming MDR. Unfortunately, no MDR modulator has been approved by the FDA to date. In this study, based on pharmacophore hybridization, bioisosteric and fragment-growing strategies, we designed and synthesized 11 novel tetrahydroisoquinoline-benzo[h]chromen-4-one conjugates as dual ABCB1/CYP1B1 inhibitors. Among them, the preferred compound A10 exhibited the best MDR reversal activity (IC50 = 0.25 μM, RF = 44.4) in SW620/AD300 cells, being comparable to one of the most potent third-generation P-gp inhibitors WK-X-34. In parallel, this dual ABCB1/CYP1B1 inhibitory effect drives compound A10 exhibiting prominent drug resistance reversal activity to doxorubicin (IC50 = 4.7 μM, RF = 13.7) in ABCB1/CYP1B1-overexpressing DOX-SW620/AD300-1B1 resistant cells, which is more potent than that of the CYP1B1 inhibitor ANF. Furthermore, although compound A2 possessed moderate ABCB1/CYP1B1 inhibitory activity, it showed considerable antiproliferative activity towards drug-resistant SW620/AD300 and MKN45-DDP-R cells, which may be partly related to the increase of PUMA expression to promote the apoptosis of the drug-resistant MKN45-DDP-R cells as confirmed by proteomics and western blot assay. These results indicated that the tetrahydroisoquinoline-benzo[h]chromen-4-one conjugates may provide a fundamental scaffold reference for further discovery of MDR reversal agents.
Collapse
Affiliation(s)
- Jinyun Dong
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| | - YuLong Li
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Zhiyuan Jin
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Zumei Wu
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Maohua Cai
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Guangzhao Pan
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Wenchong Ye
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China
| | - Zheshen Li
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Sichao Tian
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Jiang-Jiang Qin
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| |
Collapse
|
32
|
Wang S, Wang SQ, Chen XB, Xu Q, Deng H, Teng QX, Chen ZS, Zhang X, Chen FE. Cell-Based Screen Identifies a Highly Potent and Orally Available ABCB1 Modulator for Treatment of Multidrug Resistance. J Med Chem 2024; 67:18764-18780. [PMID: 39425773 DOI: 10.1021/acs.jmedchem.4c01081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Targeting ABCB1 is a promising strategy in combating multidrug resistance. Our cell-based phenotypic screening led to the discovery of novel triazolo[1,5-a]pyrimidone-based ABCB1 modulators. Notably, WS-917 was identified as a significant contributor to heightened sensitization of human colorectal adenocarcinoma cells (SW620/Ad300) to paclitaxel (IC50 = 5 nM). Mechanistic elucidation revealed that this compound substantially augmented intracellular paclitaxel and [3H]-paclitaxel, concurrently mitigating the efflux of [3H]-paclitaxel in SW620/Ad300 through the inhibition of ABCB1 efflux. The cellular thermal shift assay underscored its ability to stabilize ABCB1 through direct binding. Additionally, WS-917 induced stimulation of ABCB1 ATPase activity while exhibiting negligible inhibitory effect against CYP3A4. Remarkable was its capacity to enhance the sensitivity of SW620/Ad300 to paclitaxel, as well as the sensitivity of CT26/TAXOL to paclitaxel and PD-L1 inhibitor (Atezolizumab) in vivo, all achieved without inducing observable toxicity. The discovery of WS-917 holds promise for the development of more potent ABCB1 modulators.
Collapse
Affiliation(s)
- Shuai Wang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, College of Pharmacy, Yanji, Jilin 133002, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Sai-Qi Wang
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Xiao-Bing Chen
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Qian Xu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Hao Deng
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Qiu-Xu Teng
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Xuyao Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Fen-Er Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, College of Pharmacy, Yanji, Jilin 133002, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
33
|
Mariya Vincent D, Mostafa H, Suneer A, Radha Krishnan S, Ong M, Itahana Y, Itahana K, Viswanathan R. Development of Natural-Product-Inspired ABCB1 Inhibitors Through Regioselective Tryptophan C3-Benzylation. Chemistry 2024; 30:e202401782. [PMID: 39190779 DOI: 10.1002/chem.202401782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 08/29/2024]
Abstract
The emergence of drug resistance in cancer cells eventually causing relapse is a serious threat that demands new advances. Upregulation of the ATP-dependent binding cassette (ABC) transporters, such as ABCB1, significantly contributes to the emergence of drug resistance in cancer. Despite more than 30 years of therapeutic discovery, and several generations of inhibitors against P-gp, the search for effective agents that minimize toxicity to human cells, while maintaining efflux pump inhibition is still underway. Leads derived from natural product scaffolds are well-known to be effective in various therapeutic approaches. Inspired by the biosynthetic pathway to Nocardioazine A, a marine alkaloid known to inhibit the P-gp efflux pump in cancer cells, we devised a regioselective pathway to create structurally unique indole-C3-benzyl cyclo-L-Trp-L-Trp diketopiperazines (DKPs). Using bat cells as a model to derive effective ABCB1 inhibitors for targeting human P-gp efflux pumps, we have recently identified exo-C3-N-Dbn-Trp2 (13) as a lead ABCB1 inhibitor. This C3-benzylated lead inhibited ABCB1 better than Verapamil.[21] Additionally, C3-N-Dbn-Trp2 restored chemotherapy sensitivity in drug-resistant human cancer cells and had no adverse effect on cell proliferation in cell cultures. For a clearer structure-activity relationship, we developed a broader screen to test C3-functionalized pyrroloindolines as ABCB1 inhibitors and observed that C3-benzylation is outperforming respective isoprenylated derivatives. Results arising from the molecular docking studies indicate that the interactions at the access tunnel between ABCB1 and the inhibitor result in a powerful predictor for the efficacy of the inhibitor. Based on fluorescence-based assays, we conclude that the most efficacious inhibitor is the p-cyano-derived exo-C3-N-Dbn-Trp2 (33 a), closely followed by the p-nitro substituted analogue. By combining assay results with molecular docking studies, we further correlate that the predictions based on the inhibitor interactions at the access tunnel provide clues about the design of improved ABCB1 inhibitors. As it has been well documented that ABCB1 itself is powerfully engaged in multi-drug resistance, this work lays the foundation for the design of a new class of inhibitors based on the endogenous amino acid-derived cyclo-L-Trp-L-Trp DKP scaffold.
Collapse
Affiliation(s)
- Dona Mariya Vincent
- Departments of Chemistry & Biology, Indian Institute of Science Education and Research, Tirupati, A. P., India
| | - Habib Mostafa
- Departments of Chemistry & Biology, Indian Institute of Science Education and Research, Tirupati, A. P., India
| | - Anza Suneer
- Departments of Chemistry & Biology, Indian Institute of Science Education and Research, Tirupati, A. P., India
| | | | - Mingmin Ong
- Programme in Cancer & Stem Cell Biology, Duke-NUS Medical School, 169857, Singapore, Singapore
| | - Yoko Itahana
- Programme in Cancer & Stem Cell Biology, Duke-NUS Medical School, 169857, Singapore, Singapore
| | - Koji Itahana
- Programme in Cancer & Stem Cell Biology, Duke-NUS Medical School, 169857, Singapore, Singapore
| | - Rajesh Viswanathan
- Departments of Chemistry & Biology, Indian Institute of Science Education and Research, Tirupati, A. P., India
| |
Collapse
|
34
|
Li L, Pan J, Huang M, Sun J, Wang C, Xu H. Metal-Phenolic Networks: A Promising Frontier in Cancer Theranostics. Int J Nanomedicine 2024; 19:11379-11395. [PMID: 39524920 PMCID: PMC11550784 DOI: 10.2147/ijn.s491421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
The burgeoning field of cancer theranostics has been significantly advanced by the development of Metal-Phenolic Networks (MPNs), a new class of supramolecular architectures that integrate the advantages of metals and polyphenols. This review focuses on MPNs and their promising applications in cancer theranostics. Through a systematic literature search spanning from 2010 to 2023 in databases including PubMed, Scopus, and Web of Science. The period of search was justified by the rapid evolution of nanomaterials in cancer therapy, with MPNs emerging as a significant player in biomedical applications within the specified timeframe. This review discusses the classification and structure of polyphenolic compounds, as well as their mechanisms of action in cancer treatment. The applications of MPNs in chemotherapy drug delivery, photothermal therapy, chemodynamic therapy, biomedical imaging, and synergistic therapy are especially detailed. The authors emphasize the significance of MPNs in cancer nanomedicine and look forward to their future development directions.
Collapse
Affiliation(s)
- Lingjun Li
- Department of Reproductive Medicine Center, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Jiaoyang Pan
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Mengwei Huang
- Obstetrics and Gynecology Department, The Third Affiliated Hospital of Nanjing Medical University (Changzhou No. 2 People’s Hospital), Changzhou, Jiangsu Province, People’s Republic of China
| | - Jiamin Sun
- Obstetrics and Gynecology Department, The Third Affiliated Hospital of Nanjing Medical University (Changzhou No. 2 People’s Hospital), Changzhou, Jiangsu Province, People’s Republic of China
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Hongbin Xu
- Obstetrics and Gynecology Department, The Third Affiliated Hospital of Nanjing Medical University (Changzhou No. 2 People’s Hospital), Changzhou, Jiangsu Province, People’s Republic of China
| |
Collapse
|
35
|
Fu XJ, Li N, Wu J, Wang ZY, Liu RR, Niu JB, Taleb M, Yuan S, Liu HM, Song J, Zhang SY. Discovery of novel pyrazolo[1,5-a]pyrimidine derivatives as potent reversal agents against ABCB1-mediated multidrug resistance. Eur J Med Chem 2024; 277:116761. [PMID: 39151276 DOI: 10.1016/j.ejmech.2024.116761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
The P-glycoprotein (ABCB1)-mediated multidrug resistance (MDR) has emerged as a significant impediment to the efficacy of cancer chemotherapy in clinical therapy, which could promote the development of effective agents for MDR reversal. In this work, we reported the exploration of novel pyrazolo [1,5-a]pyrimidine derivatives as potent reversal agents capable of enhancing the sensitivity of ABCB1-mediated MDR MCF-7/ADR cells to paclitaxel (PTX). Among them, compound 16q remarkably increased the sensitivity of MCF-7/ADR cells to PTX at 5 μM (IC50 = 27.00 nM, RF = 247.40) and 10 μM (IC50 = 10.07 nM, RF = 663.44). Compound 16q could effectively bind and stabilize ABCB1, and does not affect the expression and subcellular localization of ABCB1 in MCF-7/ADR cells. Compound 16q inhibited the function of ABCB1, thereby increasing PTX accumulation, and interrupting the accumulation and efflux of the ABCB1-mediated Rh123, thus resulting in exhibiting good reversal effects. In addition, due to the potent reversal effects of compound 16q, the abilities of PTX to inhibit tubulin depolymerization, and induce cell cycle arrest and apoptosis in MCF-7/ADR cells under low-dose conditions were restored. These results indicate that compound 16q might be a promising potent reversal agent capable of revising ABCB1-mediated MDR, and pyrazolo [1,5-a]pyrimidine might represent a novel scaffold for the discovery of new ABCB1-mediated MDR reversal agents.
Collapse
Affiliation(s)
- Xiang-Jing Fu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development Key, Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Na Li
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development Key, Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Ji Wu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development Key, Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Zi-Yue Wang
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development Key, Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Rui-Rui Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jin-Bo Niu
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Mohammad Taleb
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shuo Yuan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development Key, Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Esophageal Cancer Prevention &Treatment, Zhengzhou, 450001, China.
| |
Collapse
|
36
|
Zhou X, Zhang P, Yang Y, Shi W, Liu L, Lai Z, Zhang X, Pan P, Li L, Du J, Qian H, Cui S. Highly Potent and Intestine Specific P-Glycoprotein Inhibitor to Enable Oral Delivery of Taxol. Angew Chem Int Ed Engl 2024; 63:e202412649. [PMID: 39137118 DOI: 10.1002/anie.202412649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/29/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
Taxol is widely used in cancer chemotherapy; however, the oral absorption of Taxol remains a formidable challenge. Since the intestinal p-glycoprotein (P-gp) mediated drug efflux is one of the primary causes, the development of P-gp inhibitor is emerging as a promising strategy to realize Taxol's oral delivery. Because P-gp exists in many tissues, the non-selective P-gp inhibitors would lead to toxicity. Correspondingly, a potent and intestine specific P-gp inhibitor would be an ideal solution to boost the oral absorption of Taxol and avoid exogenous toxicity. Herein, we would like to report a highly potent and intestine specific P-gp inhibitor to enable oral delivery of Taxol in high efficiency. Through a multicomponent reaction and post-modification, various benzofuran-fused-piperidine derivatives were achieved and the biological evaluation identified 16 c with potent P-gp inhibitory activity. Notably, 16 c was intestine specific and showed almost none absorption (F=0.82 %), but possessing higher efficacy than Encequidar to improve the oral absorption of Taxol. In MDA-MB-231 xenograft model, the oral administration of Taxol and 16 c showed high therapeutic efficiency and low toxicity, thus providing a valuable chemotherapy strategy.
Collapse
MESH Headings
- Paclitaxel/administration & dosage
- Paclitaxel/chemistry
- Paclitaxel/pharmacology
- Paclitaxel/pharmacokinetics
- Humans
- Administration, Oral
- Animals
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Mice
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/administration & dosage
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/pharmacokinetics
- Cell Line, Tumor
- Molecular Structure
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Xianjing Zhou
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Ping Zhang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Yuyan Yang
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Wei Shi
- Center of Drug Discovery, State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Lei Liu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zhencheng Lai
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xing Zhang
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Peichen Pan
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Lan Li
- Department of Gastroenterology, T, he First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Juan Du
- Department of Gastroenterology, T, he First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Sunliang Cui
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
37
|
Li YC, Lee YC, Murakami M, Huang YH, Hung TH, Wu YS, Ambudkar SV, Wu CP. The colony-stimulating factor-1 receptor inhibitor edicotinib counteracts multidrug resistance in cancer cells by inhibiting ABCG2-mediated drug efflux. Biomed Pharmacother 2024; 180:117554. [PMID: 39405897 DOI: 10.1016/j.biopha.2024.117554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 11/14/2024] Open
Abstract
Chemotherapy treatment faces a major obstacle with the emergence of multidrug resistance (MDR), often attributed to the elevated expression of ATP-binding cassette (ABC) transporters such as ABCG2 and ABCB1 in cancer cells. These transporters hinder the efficacy of cytotoxic drugs via ATP hydrolysis-dependent efflux, leading to diminished intracellular drug levels. The scarcity of approved treatments for multidrug resistant cancers necessitates exploration of alternative strategies, including drug repositioning of molecular targeted agents to counteract ABCG2-mediated MDR in multidrug-resistant cancer cells. This study investigates the potential of edicotinib, a selective colony-stimulating factor-1 receptor (CSF-1R) tyrosine kinase inhibitor that is currently undergoing clinical trials for various diseases, to reverse MDR in ABCG2-overexpressing cancer cells. Our findings reveal that by attenuating the drug-efflux function of ABCG2 without altering its expression, edicotinib improves drug-induced apoptosis and reverses MDR in ABCG2-overexpressing multidrug-resistant cancer cells at non-toxic concentrations. Through ATPase activity analysis and molecular docking, potential interaction sites for edicotinib on ABCG2 were identified. These results underscore an additional pharmacological benefit of edicotinib against ABCG2 activity, suggesting its potential incorporation into combination therapies for patients with ABCG2-overexpressing tumors. Further research is warranted to validate these findings and explore their clinical implications.
Collapse
Affiliation(s)
- Yen-Ching Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yun-Chieh Lee
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yang-Hui Huang
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | - Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| |
Collapse
|
38
|
Lin BH, Li YC, Murakami M, Wu YS, Huang YH, Hung TH, Ambudkar SV, Wu CP. Epertinib counteracts multidrug resistance in cancer cells by antagonizing the drug efflux function of ABCB1 and ABCG2. Biomed Pharmacother 2024; 180:117542. [PMID: 39388999 DOI: 10.1016/j.biopha.2024.117542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
A significant hurdle in cancer treatment arises from multidrug resistance (MDR), often due to overexpression of ATP-binding cassette (ABC) transporters like ABCB1 and/or ABCG2 in cancer cells. These transporters actively diminish the efficacy of cytotoxic drugs by facilitating ATP hydrolysis-dependent drug efflux and reducing intracellular drug accumulation in cancer cells. Addressing multidrug-resistant cancers poses a significant challenge due to the lack of approved treatments, prompting the exploration of alternative avenues like drug repurposing (also referred to as drug repositioning) of molecularly targeted agents to reverse MDR-mediated by ABCB1 and/or ABCG2 in multidrug-resistant cancer cells. Epertinib, a potent inhibitor of EGFR and HER2 currently in clinical trials for solid tumors, was investigated for its potential to resensitize ABCB1- and ABCG2-overexpressing multidrug-resistant cancer cells to chemotherapeutic agents. Our findings reveal that at sub-toxic, submicromolar concentrations, epertinib restores the sensitivity of multidrug-resistant cancer cells to cytotoxic drugs in a concentration-dependent manner. The results demonstrate that epertinib enhances drug-induced apoptosis in these cancer cells by impeding the drug-efflux function of ABCB1 and ABCG2 without altering their expression. ATPase activity and molecular docking were employed to reveal potential interaction sites between epertinib and the drug-binding pockets of ABCB1 and ABCG2. In summary, our study demonstrates an additional pharmacological capability of epertinib against the activity of ABCB1 and ABCG2. These findings suggest that incorporating epertinib into combination therapy could be advantageous for a specific patient subset with tumors exhibiting high levels of ABCB1 or ABCG2, warranting further exploration.
Collapse
Affiliation(s)
- Bing-Huan Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Yen-Ching Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan.
| | - Yang-Hui Huang
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan.
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung 20401, Taiwan.
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | - Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| |
Collapse
|
39
|
Ding L, Guo H, Zhang J, Zheng M, Zhang W, Wang L, Du Q, Zhou C, Xu Y, Wu H, He Q, Yang B. Zosuquidar Promotes Antitumor Immunity by Inducing Autophagic Degradation of PD-L1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400340. [PMID: 39229920 PMCID: PMC11538701 DOI: 10.1002/advs.202400340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/30/2024] [Indexed: 09/05/2024]
Abstract
The intracellular distribution and transportation process are essential for maintaining PD-L1 (programmed death-ligand 1) expression, and intervening in this cellular process may provide promising therapeutic strategies. Here, through a cell-based high content screening, it is found that the ABCB1 (ATP binding cassette subfamily B member 1) modulator zosuquidar dramatically suppresses PD-L1 expression by triggering its autophagic degradation. Mechanistically, ABCB1 interacts with PD-L1 and impairs COP II-mediated PD-L1 transport from ER (endoplasmic reticulum) to Golgi apparatus. The treatment of zosuquidar enhances ABCB1-PD-L1 interaction and leads the ER retention of PD-L1, which is subsequently degraded in the SQSTM1-dependent selective autophagy pathway. In CT26 mouse model and a humanized xenograft mouse model, zosuquidar significantly suppresses tumor growth and accompanies by increased infiltration of cytotoxic T cells. In summary, this study indicates that ABCB1 serves as a negative regulator of PD-L1, and zosuquidar may act as a potential immunotherapy agent by triggering PD-L1 degradation in the early secretory pathway.
Collapse
Affiliation(s)
- Ling Ding
- Zhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchInstitute of Pharmacology and ToxicologyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
- Nanhu Brain‐Computer Interface InstituteHangzhou311100China
| | - Hongjie Guo
- Zhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchInstitute of Pharmacology and ToxicologyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
- School of MedicineHangzhou City UniversityHangzhou310015China
| | - Jie Zhang
- Zhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchInstitute of Pharmacology and ToxicologyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Mingming Zheng
- Zhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchInstitute of Pharmacology and ToxicologyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Wenjie Zhang
- Zhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchInstitute of Pharmacology and ToxicologyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Longsheng Wang
- Zhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchInstitute of Pharmacology and ToxicologyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Qianqian Du
- Zhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchInstitute of Pharmacology and ToxicologyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Chen Zhou
- Zhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchInstitute of Pharmacology and ToxicologyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Yanjun Xu
- The Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital)Chinese Academy of SciencesHangzhou310022China
| | - Honghai Wu
- Zhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchInstitute of Pharmacology and ToxicologyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchInstitute of Pharmacology and ToxicologyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
- The Innovation Institute for Artificial Intelligence in MedicineZhejiang UniversityHangzhou310018China
- Cancer Center of Zhejiang UniversityHangzhou310058China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti‐Cancer Drug ResearchInstitute of Pharmacology and ToxicologyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
- The Innovation Institute for Artificial Intelligence in MedicineZhejiang UniversityHangzhou310018China
- School of MedicineHangzhou City UniversityHangzhou310015China
| |
Collapse
|
40
|
Guo Y, Ashrafizadeh M, Tambuwala MM, Ren J, Orive G, Yu G. P-glycoprotein (P-gp)-driven cancer drug resistance: biological profile, non-coding RNAs, drugs and nanomodulators. Drug Discov Today 2024; 29:104161. [PMID: 39245345 DOI: 10.1016/j.drudis.2024.104161] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/07/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Drug resistance has compromised the efficacy of chemotherapy. The dysregulation of drug transporters including P-glycoprotein (P-gp) can mediate drug resistance through drug efflux. In this review, we highlight the role of P-gp in cancer drug resistance and the related molecular pathways, including phosphoinositide 3-kinase (PI3K)-Akt, phosphatase and tensin homolog (PTEN) and nuclear factor-κB (NF-κB), along with non-coding RNAs (ncRNAs). Extracellular vesicles secreted by the cells can transport ncRNAs and other proteins to change P-gp activity in cancer drug resistance. P-gp requires ATP to function, and the induction of mitochondrial dysfunction or inhibition of glutamine metabolism can impair P-gp function, thus increasing chemosensitivity. Phytochemicals, small molecules and nanoparticles have been introduced as P-gp inhibitors to increase drug sensitivity in human cancers.
Collapse
Affiliation(s)
- Yang Guo
- Department of Respiratory and Critical Care Medicine, Shenyang Tenth People's Hospital (Shenyang Chest Hospital), No. 11 Beihai Street, Dadong District, Shenyang 110044, Liaoning, China
| | - Milad Ashrafizadeh
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore.
| | - Guiping Yu
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, No. 163 Shoushan Road, Jiangyin, China.
| |
Collapse
|
41
|
Moralev AD, Salomatina OV, Salakhutdinov NF, Zenkova MA, Markov AV. Soloxolone N-3-(Dimethylamino)propylamide Restores Drug Sensitivity of Tumor Cells with Multidrug-Resistant Phenotype via Inhibition of P-Glycoprotein Efflux Function. Molecules 2024; 29:4939. [PMID: 39459307 PMCID: PMC11510211 DOI: 10.3390/molecules29204939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Multidrug resistance (MDR) remains a significant challenge in cancer therapy, primarily due to the overexpression of transmembrane drug transporters, with P-glycoprotein (P-gp) being a central focus. Consequently, the development of P-gp inhibitors has emerged as a promising strategy to combat MDR. Given the P-gp targeting potential of soloxolone amides previously predicted by us by an absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis, the aim of the current study was to experimentally verify their P-gp inhibitory and MDR reversing activities in vitro. Screening of soloxolone amides as modulators of P-gp using molecular docking and cellular P-gp substrate efflux assays revealed the ability of compound 4 bearing a N-3-(dimethylamino)propylamide group to interact with the active site of P-gp and inhibit its transport function. Blind and site-specific molecular docking accompanied by a kinetic assay showed that 4 directly binds to the P-gp transmembrane domain with a binding energy similar to that of zosuquidar, a third-generation P-gp inhibitor (ΔG = -10.3 kcal/mol). In vitro assays confirmed that compound 4 enhanced the uptake of Rhodamine 123 (Rho123) and doxorubicin (DOX) by the P-gp-overexpressing human cervical carcinoma KB-8-5 (by 10.2- and 1.5-fold, respectively (p < 0.05, unpaired t-test)) and murine lymphosarcoma RLS40 (by 15.6- and 1.75-fold, respectively (p < 0.05, unpaired t-test)) cells at non-toxic concentrations. In these cell models, 4 showed comparable or slightly higher activity than the reference inhibitor verapamil (VPM), with the most pronounced effect of the hit compound in Rho123-loaded RLS40 cells, where 4 was 2-fold more effective than VPM. Moreover, 4 synergistically restored the sensitivity of KB-8-5 cells to the cytotoxic effect of DOX, demonstrating MDR reversal activity. Based on the data obtained, 4 can be considered as a drug candidate to combat the P-gp-mediated MDR of tumor cells and semisynthetic triterpenoids, with amide moieties in general representing a promising scaffold for the development of novel therapeutics for tumors with low susceptibility to antineoplastic agents.
Collapse
Affiliation(s)
- Arseny D. Moralev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.D.M.); (O.V.S.); (M.A.Z.)
| | - Oksana V. Salomatina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.D.M.); (O.V.S.); (M.A.Z.)
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Nariman F. Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.D.M.); (O.V.S.); (M.A.Z.)
| | - Andrey V. Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.D.M.); (O.V.S.); (M.A.Z.)
| |
Collapse
|
42
|
Jain P, Parikh S, Patel P, Shah S, Patel K. Comprehensive insights into herbal P-glycoprotein inhibitors and nanoformulations for improving anti-retroviral therapy efficacy. J Drug Target 2024; 32:884-908. [PMID: 38748868 DOI: 10.1080/1061186x.2024.2356751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/28/2024] [Accepted: 05/10/2024] [Indexed: 05/28/2024]
Abstract
The worldwide HIV cases were 39.0 million (33.1-45.7 million) in 2022. Due to genetic variations, HIV-1 is more easily transmitted than HIV-2 and favours CD4 + T cells and macrophages, producing AIDS. Conventional HIV drug therapy has many drawbacks, including adherence issues leading to resistance, side effects that lower life quality, drug interactions, high costs limiting global access, inability to eliminate viral reservoirs, chronicity requiring lifelong treatment, emerging toxicities, and a focus on managing infections. Conventional dosage forms have bioavailability issues due to intestinal P-glycoprotein (P-gp) efflux, which can reduce anti-retroviral drug efficacy and lead to resistance. Use of phyto-constituents with P-gp regulating actions has great benefits for semi-synthetic modification to create formulations with greater bioavailability and reduced toxicity, which improves drug effectiveness. Lipid-based nanocarriers, solid lipid nanoparticles, nanostructured lipid carriers, polymer-based nanocarriers, and inorganic nanoparticles may inhibit P-gp efflux. Employing potent P-gp inhibitors within nanocarriers as a Trojan horse approach can enhance the intracellular accumulation of anti-retroviral drugs (ARDs), which are substrates for efflux transporters. This technique increases oral bioavailability and offers lower-dose options, boosting HIV patient compliance and lowering costs. Molecular docking of the inhibitor with P-gp may anticipate optimum binding and function, allowing drug efflux to be minimised.
Collapse
Affiliation(s)
- Prexa Jain
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, L J University, Ahmedabad, India
| | - Shreni Parikh
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, L J University, Ahmedabad, India
| | - Paresh Patel
- Department of Pharmaceutical Chemistry, L. J. Institute of Pharmacy, L J University, Ahmedabad, India
| | - Shreeraj Shah
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, L J University, Ahmedabad, India
| | - Kaushika Patel
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, L J University, Ahmedabad, India
| |
Collapse
|
43
|
Yoo H, Kim Y, Kim J, Cho H, Kim K. Overcoming Cancer Drug Resistance with Nanoparticle Strategies for Key Protein Inhibition. Molecules 2024; 29:3994. [PMID: 39274842 PMCID: PMC11396748 DOI: 10.3390/molecules29173994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/06/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
Drug resistance remains a critical barrier in cancer therapy, diminishing the effectiveness of chemotherapeutic, targeted, and immunotherapeutic agents. Overexpression of proteins such as B-cell lymphoma 2 (Bcl-2), inhibitor of apoptosis proteins (IAPs), protein kinase B (Akt), and P-glycoprotein (P-gp) in various cancers leads to resistance by inhibiting apoptosis, enhancing cell survival, and expelling drugs. Although several inhibitors targeting these proteins have been developed, their clinical use is often hampered by systemic toxicity, poor bioavailability, and resistance development. Nanoparticle-based drug delivery systems present a promising solution by improving drug solubility, stability, and targeted delivery. These systems leverage the Enhanced Permeation and Retention (EPR) effect to accumulate in tumor tissues, reducing off-target toxicity and increasing therapeutic efficacy. Co-encapsulation strategies involving anticancer drugs and resistance inhibitors within nanoparticles have shown potential in achieving coordinated pharmacokinetic and pharmacodynamic profiles. This review discusses the mechanisms of drug resistance, the limitations of current inhibitors, and the advantages of nanoparticle delivery systems in overcoming these challenges. By advancing these technologies, we can enhance treatment outcomes and move towards more effective cancer therapies.
Collapse
Affiliation(s)
- Hyeonji Yoo
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yeonjin Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jinseong Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hanhee Cho
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kwangmeyung Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
44
|
Saliu JA. Machine Learning-Based Approach to Identify Inhibitors of Sterol-14-Alpha Demethylase: A Study on Chagas Disease. Bioinform Biol Insights 2024; 18:11779322241262635. [PMID: 39081668 PMCID: PMC11287730 DOI: 10.1177/11779322241262635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 05/23/2024] [Indexed: 08/02/2024] Open
Abstract
Objectives Chagas Disease, caused by the parasite Trypanosoma cruzi, remains a significant public health concern, particularly in Latin America. The current standard treatment for Chagas Disease, benznidazole, is associated with various side effects, necessitating the search for alternative therapeutic options. In this study, we aimed to identify potential therapeutics for Chagas Disease through a comprehensive computational analysis. Methods A library of compounds derived from Cananga odorata was screened using a combination of pharmacophore modeling, structure-based screening, and quantitative structure-activity relationship (QSAR) analysis. The pharmacophore model facilitated the efficient screening of the compound library, while the structure-based screening identified hit compounds with promising inhibitory potential against the target enzyme, sterol-14-alpha demethylase. Results The QSAR model predicted the bioactivity of the hit compounds, revealing one compound to exhibit superior activity compared to benznidazole. Evaluation of the physicochemical, pharmacokinetic, toxicity, and medicinal chemistry properties of the hit compounds indicated their drug-like characteristics, oral bioavailability, ease of synthesis, and reduced toxicity profiles. Conclusion Overall, our findings present a promising avenue for the discovery of novel therapeutics for Chagas Disease. The identified hit compounds possess favorable drug-like properties and demonstrate potent inhibitory effects against the target enzyme. Further in vitro and in vivo studies are warranted to validate their efficacy and safety profiles.
Collapse
Affiliation(s)
- Jamiyu A Saliu
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| |
Collapse
|
45
|
Antonio-Andres G, Morales-Martinez M, Jimenez-Hernandez E, Huerta-Yepez S. The Role of PTEN in Chemoresistance Mediated by the HIF-1α/YY1 Axis in Pediatric Acute Lymphoblastic Leukemia. Int J Mol Sci 2024; 25:7767. [PMID: 39063014 PMCID: PMC11276810 DOI: 10.3390/ijms25147767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/26/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. Current chemotherapy treatment regimens have improved survival rates to approximately 80%; however, resistance development remains the primary cause of treatment failure, affecting around 20% of cases. Some studies indicate that loss of the phosphatase and tensin homolog (PTEN) leads to deregulation of the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, increasing the expression of proteins involved in chemoresistance. PTEN loss results in deregulation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and induces hypoxia-inducible factor 1-alpha (HIF-1α) expression in various cancers. Additionally, it triggers upregulation of the Yin Yang 1 (YY1) transcription factor, leading to chemoresistance mediated by glycoprotein p-170 (Gp-170). The aim of this study was to investigate the role of the PTEN/NF-κB axis in YY1 regulation via HIF-1α and its involvement in ALL. A PTEN inhibitor was administered in RS4;11 cells, followed by the evaluation of PTEN, NF-κB, HIF-1α, YY1, and Gp-170 expression, along with chemoresistance assessment. PTEN, HIF-1α, and YY1 expression levels were assessed in the peripheral blood mononuclear cells (PBMC) from pediatric ALL patients. The results reveal that the inhibition of PTEN activity significantly increases the expression of pAkt and NF-κB, which is consistent with the increase in the expression of HIF-1α and YY1 in RS4;11 cells. In turn, this inhibition increases the expression of the glycoprotein Gp-170, affecting doxorubicin accumulation in the cells treated with the inhibitor. Samples from pediatric ALL patients exhibit PTEN expression and higher HIF-1α and YY1 expression compared to controls. PTEN/Akt/NF-κB axis plays a critical role in the regulation of YY1 through HIF-1α, and this mechanism contributes to Gp-170-mediated chemoresistance in pediatric ALL.
Collapse
Affiliation(s)
- Gabriela Antonio-Andres
- Oncology Disease Research Unit, Children’s Hospital of Mexico, Federico Gomez, Mexico City 06720, Mexico;
| | - Mario Morales-Martinez
- Department of Medicine, Division of Hematology-Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | | | - Sara Huerta-Yepez
- Oncology Disease Research Unit, Children’s Hospital of Mexico, Federico Gomez, Mexico City 06720, Mexico;
| |
Collapse
|
46
|
Yu T, Zeng R, Guan Y, Pan B, Li HW, Gu J, Zheng PF, Qian Y, Ouyang Q. Discovery of new tricyclic spiroindole derivatives as potent P-glycoprotein inhibitors for reversing multidrug resistance enabled by a synthetic methodology-based library. RSC Med Chem 2024; 15:1675-1685. [PMID: 38784466 PMCID: PMC11110728 DOI: 10.1039/d4md00136b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/23/2024] [Indexed: 05/25/2024] Open
Abstract
The discovery of novel and highly effective P-gp inhibitors is considered to be an effective strategy for overcoming tumor drug resistance. In this paper, a phenotypic screening via a self-constructed synthetic methodology-based library identified a new class of tricyclic spiroindole derivatives with excellent tumor multidrug resistance reversal activity. A stereospecific compound OY-103-B with the best reversal activity was obtained based on a detailed structure-activity relationship study, metabolic stability optimization and chiral resolution. For the VCR-resistant Eca109 cell line (Eca109/VCR), co-administration of 5.0 μM OY-103-B resulted in a reversal fold of up to 727.2, superior to the typical third-generation P-gp inhibitor tariquidar. Moreover, the compound inhibited the proliferation of Eca109/VCR cells in a concentration-dependent manner in plate cloning and flow cytometry. Furthermore, fluorescence substrate accumulation assay and chemotherapeutic drug reversal activity tests demonstrated that OY-103-B reversed tumor drug resistance via P-gp inhibition. In conclusion, this study provides a novel skeleton that inspires the design of new P-gp inhibitors, laying the foundation for the treatment of drug-resistant tumors.
Collapse
Affiliation(s)
- Tao Yu
- Department of Pharmacy, The Second Affiliated Hospital of Chongqing Medical University Chongqing 400010 China
- Department of Medicinal Chemistry, Third Military Medical University Chongqing 400038 China
| | - Rong Zeng
- Department of Medicinal Chemistry, Third Military Medical University Chongqing 400038 China
- Department of Gastroenterology, Xinqiao Hospital, The Second Affiliated Hospital of Army Medical University (Third Military Medical University) Chongqing 400037 China
| | - Yu Guan
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering Zigong 643000 China
| | - Bin Pan
- Department of Medicinal Chemistry, Third Military Medical University Chongqing 400038 China
| | - Hong-Wei Li
- Department of Medicinal Chemistry, Third Military Medical University Chongqing 400038 China
| | - Jing Gu
- Department of Medicinal Chemistry, Third Military Medical University Chongqing 400038 China
| | - Peng-Fei Zheng
- Department of Medicinal Chemistry, Third Military Medical University Chongqing 400038 China
| | - Yan Qian
- Department of Pharmacy, The Second Affiliated Hospital of Chongqing Medical University Chongqing 400010 China
| | - Qin Ouyang
- Department of Medicinal Chemistry, Third Military Medical University Chongqing 400038 China
| |
Collapse
|
47
|
Liu Z, Liu X, Zhang W, Gao R, Wei H, Yu CY. Current advances in modulating tumor hypoxia for enhanced therapeutic efficacy. Acta Biomater 2024; 176:1-27. [PMID: 38232912 DOI: 10.1016/j.actbio.2024.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/08/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Hypoxia is a common feature of most solid tumors, which promotes the proliferation, invasion, metastasis, and therapeutic resistance of tumors. Researchers have been developing advanced strategies and nanoplatforms to modulate tumor hypoxia to enhance therapeutic effects. A timely review of this rapidly developing research topic is therefore highly desirable. For this purpose, this review first introduces the impact of hypoxia on tumor development and therapeutic resistance in detail. Current developments in the construction of various nanoplatforms to enhance tumor treatment in response to hypoxia are also systematically summarized, including hypoxia-overcoming, hypoxia-exploiting, and hypoxia-disregarding strategies. We provide a detailed discussion of the rationale and research progress of these strategies. Through a review of current trends, it is hoped that this comprehensive overview can provide new prospects for clinical application in tumor treatment. STATEMENT OF SIGNIFICANCE: As a common feature of most solid tumors, hypoxia significantly promotes tumor progression. Advanced nanoplatforms have been developed to modulate tumor hypoxia to enhanced therapeutic effects. In this review, we first introduce the impact of hypoxia on tumor progression. Current developments in the construction of various nanoplatforms to enhance tumor treatment in response to hypoxia are systematically summarized, including hypoxia-overcoming, hypoxia-exploiting, and hypoxia-disregarding strategies. We discuss the rationale and research progress of the above strategies in detail, and finally introduce future challenges for treatment of hypoxic tumors. By reviewing the current trends, this comprehensive overview can provide new prospects for clinical translatable tumor therapy.
Collapse
Affiliation(s)
- Zihan Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xinping Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Wei Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Ruijie Gao
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
48
|
Cao F, Li Y, Ma F, Wu Z, Li Z, Chen ZS, Cheng X, Qin JJ, Dong J. Synthesis and evaluation of WK-X-34 derivatives as P-glycoprotein (P-gp/ABCB1) inhibitors for reversing multidrug resistance. RSC Med Chem 2024; 15:506-518. [PMID: 38389882 PMCID: PMC10880894 DOI: 10.1039/d3md00612c] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/30/2023] [Indexed: 02/24/2024] Open
Abstract
The emergence of multidrug resistance (MDR) in malignant tumors is one of the leading threats encountered currently by many chemotherapeutic agents. A proposed strategy to overcome MDR is to disable the efflux function of P-glycoprotein (P-gp/ABCB1), a critical member of the ABC transporter family that significantly increases the efflux of various anticancer drugs from tumor cells. In this study, structural modification of a third-generation P-gp inhibitor WK-X-34 based on bioisosteric and fragment-growing strategies led to the discovery of the adamantane derivative PID-9, which exhibited the best MDR reversal activity (IC50 = 0.1338 μM, RF = 78.6) in this series, exceeding those of the reported P-gp inhibitors verapamil and WK-X-34. In addition, compared with WK-X-34, PID-9 showed decreased toxicity to cells. Furthermore, the mechanism studies revealed that the reversal activity of adamantane derivatives PID-5, PID-7, and PID-9 stemmed from the inhibition of P-gp efflux. These results indicated that compound PID-9 is the most effective P-gp inhibitor among them with low toxicity and high MDR reversal activity, which provided a fundamental structural reference for further discovery of novel, effective, and non-toxic P-gp inhibitors.
Collapse
Affiliation(s)
- Fei Cao
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou 310022 China
- College of Pharmaceutical Science, Zhejiang University of Technology Hangzhou 310032 China
| | - Yulong Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University Hangzhou 310053 China
| | - Furong Ma
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University Hangzhou 310053 China
| | - Zumei Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University Hangzhou 310053 China
| | - Zheshen Li
- College of Pharmacy and Health Sciences, St. John's University Queens NY 11439 USA
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University Queens NY 11439 USA
| | - Xiangdong Cheng
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou 310022 China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province Hangzhou 310022 China
| | - Jiang-Jiang Qin
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou 310022 China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province Hangzhou 310022 China
| | - Jinyun Dong
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou 310022 China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province Hangzhou 310022 China
| |
Collapse
|
49
|
Roostaee M, Derakhshani A, Mirhosseini H, Banaee Mofakham E, Fathi-Karkan S, Mirinejad S, Sargazi S, Barani M. Composition, preparation methods, and applications of nanoniosomes as codelivery systems: a review of emerging therapies with emphasis on cancer. NANOSCALE 2024; 16:2713-2746. [PMID: 38213285 DOI: 10.1039/d3nr03495j] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Nanoniosome-based drug codelivery systems have become popular therapeutic instruments, demonstrating tremendous promise in cancer therapy, infection treatment, and other therapeutic domains. An emerging form of vesicular nanocarriers, niosomes are self-assembling vesicles composed of nonionic surfactants, along with cholesterol or other amphiphilic molecules. This comprehensive review focuses on how nanosystems may aid in making anticancer and antibacterial pharmaceuticals more stable and soluble. As malleable nanodelivery instruments, the composition, types, preparation procedures, and variables affecting the structure and stability of niosomes are extensively investigated. In addition, the advantages of dual niosomes for combination therapy and the administration of multiple medications simultaneously are highlighted. Along with categorizing niosomal drug delivery systems, a comprehensive analysis of various preparation techniques, including thin-layer injection, ether injection, and microfluidization, is provided. Dual niosomes for cancer treatment are discussed in detail regarding the codelivery of two medications and the codelivery of a drug with organic, plant-based bioactive compounds or gene agents. In addition, niogelosomes and metallic niosomal carriers for targeted distribution are discussed. The review also investigates the simultaneous delivery of bioactive substances and gene agents, including siRNA, microRNA, shRNA, lncRNA, and DNA. Additional sections discuss the use of dual niosomes for cutaneous drug delivery and treating leishmanial infections, Pseudomonas aeruginosa, and Mycobacterium tuberculosis. The study concludes by delineating the challenges and potential routes for nanoniosome-based pharmaceutical codelivery systems, which will be useful for nanomedicine practitioners and researchers.
Collapse
Affiliation(s)
- Maryam Roostaee
- Department of Chemistry, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
| | - Atefeh Derakhshani
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hadiseh Mirhosseini
- Department of Chemistry, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Elmira Banaee Mofakham
- Department of Nanotechnology and Advanced Materials Research, Materials & Energy Research Center, Karaj, Iran.
| | - Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94531-55166, Iran.
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 9414974877, Iran.
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran.
| |
Collapse
|
50
|
Miwa S, Takikawa H, Takeuchi R, Mizunuma R, Matsuoka K, Ogawa H, Kato H, Takasu K. Structure-ATPase Activity Relationship of Rhodamine Derivatives as Potent Inhibitors of P-Glycoprotein CmABCB1. ACS Med Chem Lett 2024; 15:287-293. [PMID: 38352840 PMCID: PMC10860176 DOI: 10.1021/acsmedchemlett.3c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/05/2024] [Accepted: 01/13/2024] [Indexed: 02/16/2024] Open
Abstract
Understanding the transport and inhibition mechanisms of substrates by P-glycoprotein (P-gp) is one of the important approaches in addressing multidrug resistance (MDR). In this study, we evaluated a variety of rhodamine derivatives as potential P-gp inhibitors targeting CmABCB1, a P-gp homologue, with a focus on their ATPase activity. Notably, a Q-rhodamine derivative with an o,o'-dimethoxybenzyl ester moiety (RhQ-DMB) demonstrated superior affinity and inhibitory activity, which was further confirmed by a drug susceptibility assay in yeast strains expressing CmABCB1. Results from a tryptophan fluorescence quenching experiment using a CmABCB1 mutant suggested that RhQ-DMB effectively enters and binds to the inner chamber of CmABCB1. These findings underscore the promising potential of RhQ-DMB as a tool for future studies aimed at elucidating the substrate-bound state of CmABCB1.
Collapse
Affiliation(s)
- Sorachi Miwa
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Yoshida,
Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Takikawa
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Yoshida,
Sakyo-ku, Kyoto 606-8501, Japan
| | - Rina Takeuchi
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Yoshida,
Sakyo-ku, Kyoto 606-8501, Japan
| | - Ryo Mizunuma
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Yoshida,
Sakyo-ku, Kyoto 606-8501, Japan
| | - Keita Matsuoka
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Yoshida,
Sakyo-ku, Kyoto 606-8501, Japan
| | - Haruo Ogawa
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Yoshida,
Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroaki Kato
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Yoshida,
Sakyo-ku, Kyoto 606-8501, Japan
- RIKEN
Harima Institute at SPring-8, Hyogo 679-5148 Japan
| | - Kiyosei Takasu
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Yoshida,
Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|