1
|
Shahzad H, Ali S, Farooq MA, Summer M, Hassan A, Sulayman R, Kanwal L, Awan UA. UV-spectrophotometric and spectroscopic observed Vachellia nilotica and Nigella sativa formulations regularized the histopathological and biochemical parameters during wound contraction. Microsc Res Tech 2025; 88:4-16. [PMID: 39152992 DOI: 10.1002/jemt.24673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/15/2024] [Accepted: 07/25/2024] [Indexed: 08/19/2024]
Abstract
Diabetes mellitus causes impaired diabetic wounds which is linked to a number of pathological alterations that impede the healing of wounds. In the current research, Swiss albino mice were given alloxan monohydrate to induce diabetes and excision wounds of approximately 6 mm using biopsy punch. The diabetic wounds were treated with various biomaterials including Vachellia nilotica extract (VN), Nigella sativa extract (NS), V. nilotica nanoparticles (VNNPs) and N. sativa nanoparticles (NSNPs). Their effects were determined by evaluating the percent wound contraction, healing time, and histopathological analysis. The serum level of various biochemical parameters that is, pro-inflammatory cytokines, Matrix metalloproteinases (MMPs) and tissue inhibitor matrix metalloproteinases (TIMPs) were also determined. VNNPs group provided the best outcomes, with wound contraction 100% on 12th day. According to histopathological examination, VNNPs group reduced inflammation and encouraged the formation of blood vessels, fibroblasts, and keratinocytes. VNNPs group significantly alleviated the serum level of pro-inflammatory cytokines that are, TNF-α (19.4 ± 1.5 pg/mL), IL-6 (13.8 ± 0.6 pg/mL), and IL-8 (24.8 ± 1.2 pg/mL) as compared with the diabetic mice. The serum level of MMP2 (248.2 ± 7.9 pg/mL), MMP7 (316 ± 5.2 pg/mL), and MMP9 (167.8 ± 12.1 pg/mL) in the same group VNNPs were also observed much less than the diabetic mice. The serum level of TIMPs (176.8 ± 2.9 pg/mL) in the VNNPs group was increased maximally with respect to diabetic mice. It is concluded that nanoparticles and biomaterials possess healing properties and have the ability to repair the chronic/diabetic wound. RESEARCH HIGHLIGHTS: UV-spectrophotometric and Fourier transform infrared spectroscopy observation for functional group analysis and possible linkage between conjugates Optimization of the histopathological and biochemical markers after application of the formulations Microscopic analysis of epithelial tissues for evaluation of healing mechanisms Speedy contraction of wounds as the alleviation of the inflammatory and necrotic factors.
Collapse
Affiliation(s)
- Hafsa Shahzad
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Adeel Farooq
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Ali Hassan
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Rida Sulayman
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Lubna Kanwal
- Department of Zoology, University of Okara, Okara, Pakistan
| | - Uzma Azeem Awan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| |
Collapse
|
2
|
Lupu VV, Miron I, Trandafir LM, Jechel E, Starcea IM, Ioniuc I, Frasinariu OE, Mocanu A, Petrariu FD, Danielescu C, Nedelcu AH, Salaru DL, Revenco N, Lupu A. Challenging directions in pediatric diabetes - the place of oxidative stress and antioxidants in systemic decline. Front Pharmacol 2024; 15:1472670. [PMID: 39744134 PMCID: PMC11688324 DOI: 10.3389/fphar.2024.1472670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/04/2024] [Indexed: 01/06/2025] Open
Abstract
Diabetes is a complex condition with a rising global incidence, and its impact is equally evident in pediatric practice. Regardless of whether we are dealing with type 1 or type 2 diabetes, the development of complications following the onset of the disease is inevitable. Consequently, contemporary medicine must concentrate on understanding the pathophysiological mechanisms driving systemic decline and on finding ways to address them. We are particularly interested in the effects of oxidative stress on target cells and organs, such as pancreatic islets, the retina, kidneys, and the neurological or cardiovascular systems. Our goal is to explore, using the latest data from international scientific databases, the relationship between oxidative stress and the development or persistence of systemic damage associated with diabetes in children. Additionally, we highlight the beneficial roles of antioxidants such as vitamins, minerals, polyphenols, and other bioactive molecules; in mitigating the pathogenic cascade, detailing how they intervene and their bioactive properties. As a result, our study provides a comprehensive exploration of the key aspects of the oxidative stress-antioxidants-pediatric diabetes triad, expanding understanding of their significance in various systemic diseases.
Collapse
Affiliation(s)
- Vasile Valeriu Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ingrith Miron
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | | | - Elena Jechel
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | | | - Ileana Ioniuc
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | | | - Adriana Mocanu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | | | - Ciprian Danielescu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Alin Horatiu Nedelcu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Delia Lidia Salaru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ninel Revenco
- Pediatrics, “Nicolae Testemitanu” State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Ancuta Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
3
|
Zhang Y, Zou N, Xin C, Wang Y, Zhang Z, Rong P, Li S. Transcutaneous auricular vagal nerve stimulation modulates blood glucose in ZDF rats via intestinal melatonin receptors and melatonin secretion. Front Neurosci 2024; 18:1471387. [PMID: 39564526 PMCID: PMC11573758 DOI: 10.3389/fnins.2024.1471387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/18/2024] [Indexed: 11/21/2024] Open
Abstract
Background Melatonin (MLT) and its receptor deficiency have been shown to be associated with type 2 diabetes mellitus (T2DM). Transcutaneous auricular vagus nerve stimulation (taVNS) is a non-invasive alternative intervention for patients suffering from hyperglycemia. Here, we aimed to investigate the role of taVNS on blood glucose modulation via intestinal melatonin receptors (MRs) and MLT secretion in hyperglycemia. Methods Adult male Zucker diabetes fatty (ZDF) rats and Zucker lean (ZL) littermates were used. Forty ZDF rats were randomized into ZDF, taVNS, Px + taVNS and Lu + Px + taVNS groups (Px: pinealectomy, Lu: Luzindole). ZL rats served as a control group for comparison with ZDF rats without involvement in the taVNS intervention. Thirty min-taVNS interventions (2/15 Hz, 2 mA, 30 min/days) were administered once daily under anesthesia for 3 consecutive weeks in taVNS, Px + taVNS and Lu + Px + taVNS groups. Body weight and fasting blood glucose (FBG) were measured weekly in all rats, and real-time blood glucose was tested in the ZL and ZDF groups before, during and after the taVNS intervention. Plasma MLT concentration and the expression of MRs in the duodenum, jejunum and ileum were measured by the end of experiments. Results Compared with the ZL group, the level of FBG and body weight increased (all p < 0.01), plasma MLT secretion and the expression of MRs in duodenum, jejunum and ileum of ZDF rats decreased obviously (all p < 0.05), respectively. TaVNS can significantly reverse the hyperglycemia by regulating the non-pineal-derived MLT and MRs system in Px + taVNS group. Compared with the ZDF group, the expression of different intestinal MRs in the taVNS group was increased and more compactly arranged (both p < 0.05), the level of plasma MLT secretion was up-regulated (p < 0.01), and FBG and body weight were decreased (both p < 0.01). Meanwhile, after taVNS intervention in rats in the Px + taVNS group, we observed an increase in MLT secretion and the number of intestinal MRs compared with the taVNS group (all p > 0.05). In contrast, ZDF rats in which the pineal gland was excised by taVNS intervention and injected with the MRs antagonist Luzindole did not show these changes. Conclusion The glucose reduction effect of taVNS may be related to regulating MLT levels and expressing intestinal MRs.
Collapse
Affiliation(s)
- Yuzhengheng Zhang
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ningyi Zou
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chen Xin
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yifei Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zixuan Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peijing Rong
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shaoyuan Li
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Burhan Altemimi R, Nabil Ibrahim N, Ali Nazar L, Ali Hasan H, Heilo Al-Musawi M, Mortazavi Moghadam F. The Predictive Value of Melatonin Levels for the Development of Diabetic Nephropathy in Men with Type 2 Diabetes Mellitus. Rep Biochem Mol Biol 2024; 13:341-348. [PMID: 40330571 PMCID: PMC12050062 DOI: 10.61186/rbmb.13.3.341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/14/2024] [Indexed: 05/08/2025]
Abstract
Background Type 2 diabetes mellitus (T2DM) poses a significant public health challenge due to its high prevalence. Diabetic nephropathy (DN) is one of the most severe complications associated with T2DM. Early prediction of DN in patients with T2DM can significantly aid in managing this disease. This study takes an approach by investigating the potential role of melatonin and thyroid hormone levels as predictive biomarkers for the progression of diabetic nephropathy in individuals diagnosed with type 2 diabetes mellitus. Methods Our cross-sectional study involved 120 male participants, divided into two groups: 60 patients with T2DM and 60 with DN. The Cobas technique was used to measure serum thyroid hormone levels and quantified melatonin levels using an enzyme-linked immunosorbent assay (ELISA). A receiver utilizing characteristic (ROC) curve analysis to evaluate the predictive value of serum melatonin for DN was performed. Results No notable disparities in thyroid function tests were observed between diabetic patients with and without DN. However, the average serum melatonin quantity in patients with DN. (177.25 ± 60.48 pg/mL) was drastically lower in those with T2DM without DN (199.9 ± 55.16 pg/mL). The sensitivity and specificity of melatonin in predicting DN were 78% and 76%, respectively, with an optimal cut-off value of 178 pg/mL. Conclusions Serum melatonin levels exhibited a notable reduction. among individuals who were diabetic with DN, suggesting its potential utility as an additional predictive marker for developing DN in patients with T2DM.
Collapse
Affiliation(s)
- Refaa Burhan Altemimi
- Department of anesthesia techniques, College of Health and Medical Technology, Middle Technical university, Baghdad, Iraq.
| | - Nabaa Nabil Ibrahim
- Department of Pharmacognosy and Medicinal Plants, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq.
| | - Lara Ali Nazar
- Department of Chemistry, College of Sciences, Mustansiriyah University, Baghdad, Iraq.
| | - Hiba Ali Hasan
- Department of Pharmacognosy and Medicinal Plants, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq.
| | - Mastafa Heilo Al-Musawi
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq.
| | | |
Collapse
|
5
|
Rodriguez-Muñoz A, Motahari-Rad H, Martin-Chaves L, Benitez-Porres J, Rodriguez-Capitan J, Gonzalez-Jimenez A, Insenser M, Tinahones FJ, Murri M. A Systematic Review of Proteomics in Obesity: Unpacking the Molecular Puzzle. Curr Obes Rep 2024; 13:403-438. [PMID: 38703299 PMCID: PMC11306592 DOI: 10.1007/s13679-024-00561-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 05/06/2024]
Abstract
PURPOSE OF REVIEW The present study aims to review the existing literature to identify pathophysiological proteins in obesity by conducting a systematic review of proteomics studies. Proteomics may reveal the mechanisms of obesity development and clarify the links between obesity and related diseases, improving our comprehension of obesity and its clinical implications. RECENT FINDINGS Most of the molecular events implicated in obesity development remain incomplete. Proteomics stands as a powerful tool for elucidating the intricate interactions among proteins in the context of obesity. This methodology has the potential to identify proteins involved in pathological processes and to evaluate changes in protein abundance during obesity development, contributing to the identification of early disease predisposition, monitoring the effectiveness of interventions and improving disease management overall. Despite many non-targeted proteomic studies exploring obesity, a comprehensive and up-to-date systematic review of the molecular events implicated in obesity development is lacking. The lack of such a review presents a significant challenge for researchers trying to interpret the existing literature. This systematic review was conducted following the PRISMA guidelines and included sixteen human proteomic studies, each of which delineated proteins exhibiting significant alterations in obesity. A total of 41 proteins were reported to be altered in obesity by at least two or more studies. These proteins were involved in metabolic pathways, oxidative stress responses, inflammatory processes, protein folding, coagulation, as well as structure/cytoskeleton. Many of the identified proteomic biomarkers of obesity have also been reported to be dysregulated in obesity-related disease. Among them, seven proteins, which belong to metabolic pathways (aldehyde dehydrogenase and apolipoprotein A1), the chaperone family (albumin, heat shock protein beta 1, protein disulfide-isomerase A3) and oxidative stress and inflammation proteins (catalase and complement C3), could potentially serve as biomarkers for the progression of obesity and the development of comorbidities, contributing to personalized medicine in the field of obesity. Our systematic review in proteomics represents a substantial step forward in unravelling the complexities of protein alterations associated with obesity. It provides valuable insights into the pathophysiological mechanisms underlying obesity, thereby opening avenues for the discovery of potential biomarkers and the development of personalized medicine in obesity.
Collapse
Affiliation(s)
- Alba Rodriguez-Muñoz
- Endocrinology and Nutrition UGC, Hospital Universitario Virgen de La Victoria, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Clínico Virgen de La Victoria, Málaga, Spain
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Málaga, Spain
| | - Hanieh Motahari-Rad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Laura Martin-Chaves
- Heart Area, Hospital Universitario Virgen de La Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Department of Dermatology and Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Javier Benitez-Porres
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Clínico Virgen de La Victoria, Málaga, Spain
- Department of Human Physiology, Physical Education and Sport, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Jorge Rodriguez-Capitan
- Heart Area, Hospital Universitario Virgen de La Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | | | - Maria Insenser
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology & Nutrition, Hospital Universitario Ramón y Cajal & Universidad de Alcalá & Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) & Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
| | - Francisco J Tinahones
- Endocrinology and Nutrition UGC, Hospital Universitario Virgen de La Victoria, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Clínico Virgen de La Victoria, Málaga, Spain
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Málaga, Spain
- Department of Dermatology and Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain
| | - Mora Murri
- Endocrinology and Nutrition UGC, Hospital Universitario Virgen de La Victoria, Málaga, Spain.
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Clínico Virgen de La Victoria, Málaga, Spain.
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Málaga, Spain.
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
6
|
Yang TN, Wang YX, Jian PA, Ma XY, Zhu SY, Li XN, Li JL. Exogenous Melatonin Alleviates Atrazine-Induced Glucose Metabolism Disorders in Mice Liver via Suppressing Endoplasmic Reticulum Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:742-751. [PMID: 38111124 DOI: 10.1021/acs.jafc.3c06441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Atrazine (ATZ) is a widely used herbicide that has toxic effects on animals. Melatonin (MLT) is a natural hormone with strong antioxidant properties. However, the effect of MLT on the glucose metabolism disorder caused by ATZ is still unclear. Mice were divided into four groups randomly and given 21 days of gavage: blank control group (Con), 5 mg/kg MLT group (MLT), 170 mg/kg ATZ group (ATZ), and 170 mg/kg ATZ and 5 mg/kg MLT group (ATZ + MLT). The results show that ATZ alters mRNA levels of metabolic enzymes related to glycogen synthesis and glycolysis and increased metabolites (glycogen, lactate, and pyruvate). ATZ causes abnormalities in glucose metabolism in mouse liver, interfering with glycemia regulation ability. MLT can regulate the endoplasmic reticulum to respond to disordered glucose metabolism in mice liver. This study suggested that MLT has the power to alleviate the ATZ-induced glycogen overdeposition and glycolytic deficit.
Collapse
Affiliation(s)
- Tian-Ning Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yu-Xiang Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Ping-An Jian
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xiang-Yu Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Shi-Yong Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P. R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P. R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
7
|
Reiter RJ, Sharma R, Chuffa LGDA, Simko F, Dominguez-Rodriguez A. Mitochondrial Melatonin: Beneficial Effects in Protecting against Heart Failure. Life (Basel) 2024; 14:88. [PMID: 38255703 PMCID: PMC10820220 DOI: 10.3390/life14010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Cardiovascular disease is the cause of physical infirmity and thousands of deaths annually. Typically, during heart failure, cardiomyocyte mitochondria falter in terms of energy production and metabolic processing. Additionally, inflammation and the accumulation of non-contractile fibrous tissue contribute to cardiac malfunction. Melatonin, an endogenously produced molecule, experimentally reduces the initiation and progression of atherosclerotic lesions, which are often the basis of coronary artery disease. The current review critically analyzes published data related to the experimental use of melatonin to forestall coronary artery pathologies. Collectively, these studies document melatonin's anti-atherosclerotic actions in reducing LDL oxidation and triglyceride levels, lowering endothelial malfunction, limiting adhesion molecule formation, preventing macrophage polarization to the M1 pro-inflammatory phenotype, changing cellular metabolism, scavenging destructive reactive oxygen species, preventing the proliferation and invasion of arterial smooth muscle cells into the lesioned area, restricting the ingrowth of blood vessels from the vasa vasorum, and solidifying the plaque cap to reduce the chance of its rupture. Diabetic hyperglycemia, which aggravates atherosclerotic plaque formation, is also inhibited by melatonin supplementation in experimental animals. The potential value of non-toxic melatonin as a possible inhibitor of cardiac pathology in humans should be seriously considered by performing clinical trials using this multifunctional molecule.
Collapse
Affiliation(s)
- Russel J. Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Ramaswamy Sharma
- Applied Biomedical Sciences, School of Osteopathic Medicine, University of the Incarnate Word, San Antonio, TX 78235, USA
| | - Luiz Gustavo de Almeida Chuffa
- Department of Structural and Functional Biology-IBB/UNESP, Institute of Biosciences of Botucatu, Universidade Estadual Paulista, Botucatu 18618-689, São Paulo, Brazil;
| | - Fedor Simko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia;
| | | |
Collapse
|
8
|
Tokuyama-Toda R, Umeki H, Okubo M, Terada-Ito C, Yudo T, Ide S, Tadokoro S, Shimozuma M, Satomura K. The Preventive Effect of Melatonin on Radiation-Induced Oral Mucositis. Cells 2023; 12:2178. [PMID: 37681910 PMCID: PMC10487273 DOI: 10.3390/cells12172178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
Melatonin exerts various physiological effects through melatonin receptors and their ability to scavenge free radicals. Radiotherapy is a common treatment for head and neck tumors, but stomatitis, a side effect affecting irradiated oral mucosa, can impact treatment outcomes. This study investigated the preventive effect of melatonin, a potent free radical scavenger, on radiation-induced oral mucositis. Mice were irradiated with 15 Gy of X-ray radiation to the head and neck, and the oral mucosa was histologically compared between a melatonin-administered group and a control group. The results showed that radiation-induced oral mucositis was suppressed in mice administered melatonin before and after irradiation. It was suggested that the mechanism involved the inhibition of apoptosis and the inhibition of DNA damage. From these findings, we confirmed that melatonin has a protective effect against radiation-induced oral mucositis.
Collapse
Affiliation(s)
- Reiko Tokuyama-Toda
- Department of Oral Medicine and Stomatology, School of Dental Medicine, Tsurumi University, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama City 230-8501, Japan; (H.U.); (M.O.); (C.T.-I.); (T.Y.); (S.I.); (S.T.); (M.S.); (K.S.)
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Nagagata BA, Ajackson M, Ornellas F, Mandarim-de-Lacerda CA, Aguila MB. Obese mothers supplemented with melatonin during gestation and lactation ameliorate the male offspring's pancreatic islet cellular composition and beta-cell function. J Dev Orig Health Dis 2023; 14:490-500. [PMID: 37366144 DOI: 10.1017/s2040174423000168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Melatonin supplementation to obese mothers during gestation and lactation might benefit the pancreatic islet cellular composition and beta-cell function in male offspring adulthood. C57BL/6 females (mothers) were assigned to two groups (n = 20/each) based on their consumption in control (C 17% kJ as fat) or high-fat diet (HF 49% kJ as fat). Mothers were supplemented with melatonin (Mel) (10 mg/kg daily) during gestation and lactation, or vehicle, forming the groups (n = 10/each): C, CMel, HF, and HFMel. The male offspring were studied, considering they only received the C diet after weaning until three months old. The HF mothers and their offspring showed higher body weight, glucose intolerance, insulin resistance, and low insulin sensitivity than the C ones. However, HFMel mothers and their offspring showed improved glucose metabolism and weight loss than the HF ones. Also, the offspring's higher expressions of pro-inflammatory markers and endoplasmic reticulum (ER) stress were observed in HF but reduced in HFMel. Contrarily, antioxidant enzymes were less expressed in HF but improved in HFMel. In addition, HF showed increased beta-cell mass and hyperinsulinemia but diminished in HFMel. Besides, the beta-cell maturity and identity gene expressions diminished in HF but enhanced in HFMel. In conclusion, obese mothers supplemented with melatonin benefit their offspring's islet cell remodeling and function. In addition, improving pro-inflammatory markers, oxidative stress, and ER stress resulted in better glucose and insulin levels control. Consequently, pancreatic islets and functioning beta cells were preserved in the offspring of obese mothers supplemented with melatonin.
Collapse
Affiliation(s)
- Brenda A Nagagata
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Matheus Ajackson
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Carlos A Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Mistletoe infested Moringa oleifera and Terminalia catappa leaves supplemented diet enhances antioxidant and insulin-like peptide mRNA levels in Drosophila melanogaster. FOOD CHEMISTRY: MOLECULAR SCIENCES 2022; 5:100124. [PMID: 35937041 PMCID: PMC9352460 DOI: 10.1016/j.fochms.2022.100124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022]
Abstract
This research reports the influence of mistletoe infested moringa and almond leaves supplemented diet on antioxidant and insulin-like peptide mRNA levels in diabetic-like flies. Mistletoe infestation on moringa and almond leaves caused upregulation of superoxide dismutase mRNA levels and downregulation of heat shock protein-70 gene. The mistletoe infested moringa and almond leaves also resulted in significant downregulation of drosophila insulin-like peptide-2 mRNA levels. Consumption of mistletoe infested Moringa and Almond leaves could possibly offer better antioxidative and hypoglycemic effects.
Moringa and Almond are common plants of medicinal and economic value which are often infested with mistletoe. Host plants’ infestation could result in major differences in their phytoconstituents and biological activities. Thus, effects of mistletoe infestation on Moringa and Almond host plants supplemented diets on mRNA expression levels of Drosophila insulin-like peptide-2 (Dilp2), heat shock protein-70 (Hsp70) and superoxide dismutase (Sod) in diabetic-like flies were evaluated using quantitative real-time PCR system. Mistletoe infestation on host leaves caused significant upregulation of Sod and significant downregulation of Hsp70 and Dilp2 genes. Hence, we opined that infestation of Moringa and Almond trees with mistletoe resulted in improved expression level of antioxidant and insulin-like peptide genes. This may be the mechanism by which host plants caused enhanced regulation of circulating glucose and oxidative stress. Therefore, consumption of mistletoe infested Moringa and Almond host leaves could possibly offer better antioxidant and hypoglycemic effects.
Collapse
|
11
|
Hosseini A, Samadi M, Baeeri M, Rahimifard M, Haghi-Aminjan H. The neuroprotective effects of melatonin against diabetic neuropathy: A systematic review of non-clinical studies. Front Pharmacol 2022; 13:984499. [PMID: 36120309 PMCID: PMC9470957 DOI: 10.3389/fphar.2022.984499] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
Backgrounds: Diabetes can cause diabetic neuropathy (DN), a nerve injury. High blood sugar (glucose) levels can harm nerves all over your body. The nerves in your legs and feet are the most commonly affected by DN. The purpose of this study was to conduct a review of melatonin’s potential neuroprotective properties against DN. Method: A full systematic search was conducted in several electronic databases (Scopus, PubMed, and Web of Science) up to March 2022 under the PRISMA guidelines. Forty-seven studies were screened using predefined inclusion and exclusion criteria. Finally, the current systematic review included nine publications that met the inclusion criteria. Result: According to in vivo findings, melatonin treatment reduces DN via inhibition of oxidative stress and inflammatory pathways. However, compared to the diabetes groups alone, melatonin treatment exhibited an anti-oxidant trend. According to other research, DN also significantly produces biochemical alterations in neuron cells/tissues. Additionally, histological alterations in neuron tissue following DN were detected. Conclusion: Nonetheless, in the majority of cases, these diabetes-induced biochemical and histological alterations were reversed when melatonin was administered. It is worth noting that the administration of melatonin ameliorates the neuropathy caused by diabetes. Melatonin exerts these neuroprotective effects via various anti-oxidant, anti-inflammatory, and other mechanisms.
Collapse
Affiliation(s)
- Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahedeh Samadi
- Neuroscience Research Center, Iran University of Medical Science, Tehran, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahban Rahimifard
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
- *Correspondence: Mahban Rahimifard, ; Hamed Haghi-Aminjan,
| | - Hamed Haghi-Aminjan
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- *Correspondence: Mahban Rahimifard, ; Hamed Haghi-Aminjan,
| |
Collapse
|
12
|
Chopra A, Jayasinghe TN, Eberhard J. Are Inflamed Periodontal Tissues Endogenous Source of Advanced Glycation End-Products (AGEs) in Individuals with and without Diabetes Mellitus? A Systematic Review. Biomolecules 2022; 12:biom12050642. [PMID: 35625570 PMCID: PMC9138899 DOI: 10.3390/biom12050642] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/14/2022] [Accepted: 04/27/2022] [Indexed: 12/14/2022] Open
Abstract
Advanced glycation end-products (AGEs) are heterogeneous compounds formed when excess sugars condense with the amino groups of nucleic acids and proteins. Increased AGEs are associated with insulin resistance and poor glycemic control. Recently, inflamed periodontal tissues and certain oral bacteria were observed to increase the local and systemic AGE levels in both normoglycemic and hyperglycemic individuals. Although hyperglycemia induced AGE and its effect on the periodontal tissues is known, periodontitis as an endogenous source of AGE formation is not well explored. Hence, this systematic review is aimed to explore, for the first time, whether inflamed periodontal tissues and periodontal pathogens have the capacity to modulate AGE levels in individuals with or without T2DM and how this affects the glycemic load. Six electronic databases were searched using the following keywords: (Periodontitis OR Periodontal disease OR Periodontal Inflammation) AND (Diabetes mellitus OR Hyperglycemia OR Insulin resistance) AND Advanced glycation end products. The results yielded 1140 articles, of which 13 articles were included for the review. The results showed that the mean AGE levels in gingival crevicular fluid was higher in individuals with diabetes mellitus and periodontitis (521.9 pg/mL) compared to healthy individuals with periodontitis (234.84 pg/mL). The serum AGE levels in normoglycemic subjects having periodontitis was higher compared to those without periodontitis (15.91 ng/mL vs. 6.60 ng/mL). Tannerella forsythia, a common gram-negative anaerobe periodontal pathogen in the oral biofilm, was observed to produce methylglyoxal (precursor of AGE) in the gingival tissues. Increased AGE deposition and activate of AGE receptors was noted in the presence of periodontitis in both normoglycemic and hyperglycemic individuals. Hence, it can be concluded that periodontitis can modulate the local and systemic levels of AGE levels even in absence of hyperglycemia. This explains the bidirectional relationship between periodontitis and development of prediabetes, incident diabetes, poor glycemic control, and insulin resistance.
Collapse
Affiliation(s)
- Aditi Chopra
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal 576104, India
- Correspondence:
| | - Thilini N. Jayasinghe
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (T.N.J.); (J.E.)
- School of Dentistry, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Joerg Eberhard
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (T.N.J.); (J.E.)
- School of Dentistry, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
13
|
Kvetnoy I, Ivanov D, Mironova E, Evsyukova I, Nasyrov R, Kvetnaia T, Polyakova V. Melatonin as the Cornerstone of Neuroimmunoendocrinology. Int J Mol Sci 2022; 23:ijms23031835. [PMID: 35163757 PMCID: PMC8836571 DOI: 10.3390/ijms23031835] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/23/2022] Open
Abstract
Much attention has been recently drawn to studying melatonin – a hormone whose synthesis was first found in the epiphysis (pineal gland). This interest can be due to discovering the role of melatonin in numerous physiological processes. It was the discovery of melatonin synthesis in endocrine organs (pineal gland), neural structures (Purkinje cells in the cerebellum, retinal photoreceptors), and immunocompetent cells (T lymphocytes, NK cells, mast cells) that triggered the evolution of new approaches to the unifield signal regulation of homeostasis, which, at the turn of the 21st century, lead to the creation of a new integral biomedical discipline — neuroimmunoendocrinology. While numerous hormones have been verified over the last decade outside the “classical” locations of their formation, melatonin occupies an exclusive position with regard to the diversity of locations where it is synthesized and secreted. This review provides an overview and discussion of the major data regarding the role of melatonin in various physiological and pathological processes, which affords grounds for considering melatonin as the “cornerstone” on which neuroimmunoendocrinology has been built as an integral concept of homeostasis regulation.
Collapse
Affiliation(s)
- Igor Kvetnoy
- Center of Molecular Biomedicine, Saint-Petersburg Research Institute of Phthisiopulmonology, 191036 Saint-Petersburg, Russia;
- Department of Physiology and Department of Pathology, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia
| | - Dmitry Ivanov
- Department of Pathology, Saint-Petersburg State Pediatric Medical University, 194100 Saint-Petersburg, Russia; (D.I.); (R.N.); (V.P.)
| | - Ekaterina Mironova
- Center of Molecular Biomedicine, Saint-Petersburg Research Institute of Phthisiopulmonology, 191036 Saint-Petersburg, Russia;
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint-Petersburg, Russia;
- Correspondence:
| | - Inna Evsyukova
- Department of Perinatal Pathology, Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia;
| | - Ruslan Nasyrov
- Department of Pathology, Saint-Petersburg State Pediatric Medical University, 194100 Saint-Petersburg, Russia; (D.I.); (R.N.); (V.P.)
| | - Tatiana Kvetnaia
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint-Petersburg, Russia;
| | - Victoria Polyakova
- Department of Pathology, Saint-Petersburg State Pediatric Medical University, 194100 Saint-Petersburg, Russia; (D.I.); (R.N.); (V.P.)
| |
Collapse
|
14
|
Lima JEBF, Moreira NCS, Sakamoto-Hojo ET. Mechanisms underlying the pathophysiology of type 2 diabetes: From risk factors to oxidative stress, metabolic dysfunction, and hyperglycemia. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 874-875:503437. [PMID: 35151421 DOI: 10.1016/j.mrgentox.2021.503437] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/08/2021] [Accepted: 12/12/2021] [Indexed: 12/17/2022]
Abstract
Type 2 diabetes (T2D) is a complex multifactorial disease that emerges from the combination of genetic and environmental factors, and obesity, lifestyle, and aging are the most relevant risk factors. Hyperglycemia is the main metabolic feature of T2D as a consequence of insulin resistance and β-cell dysfunction. Among the cellular alterations induced by hyperglycemia, the overproduction of reactive oxygen species (ROS) and consequently oxidative stress, accompanied by a reduced antioxidant response and impaired DNA repair pathways, represent essential mechanisms underlying the pathophysiology of T2D and the development of late complications. Mitochondrial dysfunction, endoplasmic reticulum (ER) stress, and inflammation are also closely correlated with insulin resistance and β-cell dysfunction. This review focus on the mechanisms by which oxidative stress, mitochondrial dysfunction, ER stress, and inflammation are involved in the pathophysiology of T2D, highlighting the importance of the antioxidant response and DNA repair mechanisms counteracting the development of the disease. Moreover, we indicate evidence on how nutritional interventions effectively improve diabetes care. Additionally, we address key molecular characteristics and signaling pathways shared between T2D and Alzheimer's disease (AD), which might probably be implicated in the risk of T2D patients to develop AD.
Collapse
Affiliation(s)
- Jessica E B F Lima
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo - USP, Ribeirão Preto, SP, Brazil
| | - Natalia C S Moreira
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo - USP, Ribeirão Preto, SP, Brazil
| | - Elza T Sakamoto-Hojo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo - USP, Ribeirão Preto, SP, Brazil; Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
15
|
Liu Y, Zeng S, Ji W, Yao H, Lin L, Cui H, Santos HA, Pan G. Emerging Theranostic Nanomaterials in Diabetes and Its Complications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102466. [PMID: 34825525 PMCID: PMC8787437 DOI: 10.1002/advs.202102466] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/03/2021] [Indexed: 05/14/2023]
Abstract
Diabetes mellitus (DM) refers to a group of metabolic disorders that are characterized by hyperglycemia. Oral subcutaneously administered antidiabetic drugs such as insulin, glipalamide, and metformin can temporarily balance blood sugar levels, however, long-term administration of these therapies is associated with undesirable side effects on the kidney and liver. In addition, due to overproduction of reactive oxygen species and hyperglycemia-induced macrovascular system damage, diabetics have an increased risk of complications. Fortunately, recent advances in nanomaterials have provided new opportunities for diabetes therapy and diagnosis. This review provides a panoramic overview of the current nanomaterials for the detection of diabetic biomarkers and diabetes treatment. Apart from diabetic sensing mechanisms and antidiabetic activities, the applications of these bioengineered nanoparticles for preventing several diabetic complications are elucidated. This review provides an overall perspective in this field, including current challenges and future trends, which may be helpful in informing the development of novel nanomaterials with new functions and properties for diabetes diagnosis and therapy.
Collapse
Affiliation(s)
- Yuntao Liu
- School of Food & Biological EngineeringJiangsu UniversityZhenjiang212013China
- College of Food ScienceSichuan Agricultural UniversityYaan625014China
| | - Siqi Zeng
- College of Food ScienceSichuan Agricultural UniversityYaan625014China
| | - Wei Ji
- Department of PharmaceuticsSchool of PharmacyJiangsu UniversityZhenjiangJiangsu212013China
| | - Huan Yao
- Sichuan Institute of Food InspectionChengdu610097China
| | - Lin Lin
- School of Food & Biological EngineeringJiangsu UniversityZhenjiang212013China
| | - Haiying Cui
- School of Food & Biological EngineeringJiangsu UniversityZhenjiang212013China
| | - Hélder A. Santos
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Department of Biomedical Engineering and W.J. Kolff Institute for Biomedical Engineering and Materials ScienceUniversity of Groningen/University Medical Center GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Guoqing Pan
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangJiangsu212013China
| |
Collapse
|
16
|
Potentiating the Benefits of Melatonin through Chemical Functionalization: Possible Impact on Multifactorial Neurodegenerative Disorders. Int J Mol Sci 2021; 22:ijms222111584. [PMID: 34769013 PMCID: PMC8583879 DOI: 10.3390/ijms222111584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022] Open
Abstract
Although melatonin is an astonishing molecule, it is possible that chemistry will help in the discovery of new compounds derived from it that may exceed our expectations regarding antioxidant protection and perhaps even neuroprotection. This review briefly summarizes the significant amount of data gathered to date regarding the multiple health benefits of melatonin and related compounds. This review also highlights some of the most recent directions in the discovery of multifunctional pharmaceuticals intended to act as one-molecule multiple-target drugs with potential use in multifactorial diseases, including neurodegenerative disorders. Herein, we discuss the beneficial activities of melatonin derivatives reported to date, in addition to computational strategies to rationally design new derivatives by functionalization of the melatonin molecular framework. It is hoped that this review will promote more investigations on the subject from both experimental and theoretical perspectives.
Collapse
|
17
|
Fatima N, Saleem M, Shahbaz U. Improvement of Chronic Wound Healing by Pre-activated Bone Marrow Cells with Sodium Nitroprusside in Rabbits. Drug Res (Stuttg) 2021; 72:139-147. [PMID: 34592771 DOI: 10.1055/a-1633-3010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AIM OF STUDY This study investigated whether pre-activated bone marrow cells with sodium nitro prusside have effectiveness in the inhibition of diabetic wound healing in diabetic rabbits. In diabetic skin disorders and conditions involved redox state disturbances. The aim was to determine the effect of two minimum dosages of sodium nitro prusside, and its' potential with bone marrow cells for chronic wound healing in-vivo. METHODS Full-thickness skin dorsal wounds were created on diabetic rabbits. The effects of two minimum concentrations of sodium nitro prusside solution with bone marrow cells on wound healing were studied. The useful combination of sodium nitro prusside with bone marrow cells on wound repair may be attributed to its functional influences on inflammation, angiogenesis, cell proliferation, matrix deposition, and remodeling. RESULTS The in-vivo experiments confirmed that pre-activated bone marrow cells contributed to wound healing by alleviating oxidative stress, increasing proliferation and migration, decreasing apoptosis. In histological results, improved collagen deposition, enhanced re-epithelization, angiogenesis, and decreased inflammatory infiltration were also detected in wound biopsies. CONCLUSIONS For the treatment of chronic wounds, cell-based therapy was an attractive approach. Bone marrow cells have a low ability to differentiate various types of cells or late healing without pretreatment. So it was needed to increase their potency of differentiation. The transplantation of pretreated bone marrow cells with a prime quantity of sodium nitro prusside solution improved chronic wound healing with a greater level of growth factors and a minimum level of oxidative stress.
Collapse
Affiliation(s)
- Nazira Fatima
- Animal Care Center; Department of Genetics, Xi'an Jiao Tong University, Xi'an Shaanxi, China
| | - Muhammad Saleem
- Department of Chemistry, University of Kotli Azad Jammu & Kashmir Pakistan, Kotli, AJK, Pakistan
| | | |
Collapse
|
18
|
Ren BC, Zhang W, Zhang W, Ma JX, Pei F, Li BY. Melatonin attenuates aortic oxidative stress injury and apoptosis in STZ-diabetes rats by Notch1/Hes1 pathway. J Steroid Biochem Mol Biol 2021; 212:105948. [PMID: 34224859 DOI: 10.1016/j.jsbmb.2021.105948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/21/2022]
Abstract
Oxidative stress injury is an important link in the pathogenesis of diabetes, and reducing oxidative stress damage caused by long-term hyperglycemia is an important diabetic treatment strategy. Melatonin has been proved to be a free radical scavenger with strong antioxidant activity, and its protective effect on diabetes and the complications has been confirmed. However, the role and potential mechanism of melatonin in oxidative stress injury of diabetic aorta have not been reported. Besides, Notch signaling pathway plays an important role in vascular growth, differentiation, and apoptosis. We speculated that melatonin could improve oxidative stress injury of diabetic aorta through Notch1/Hes1 signaling pathway. STZ-induced diabetic rats and vascular smooth muscle cells (VSMCs) cultured with high glucose were treated with or without melatonin, melatonin receptor antagonist Luzindole, γ-secretase inhibitor DAPT respectively. We found that melatonin could improve the oxidative stress injury of diabetic aorta and reduce the apoptosis of VSMCs. Interestingly, melatonin could activate Notch1 signaling pathway, play an antioxidant role, and reduce the expression of apoptosis-related proteins. However, these protective effects could be largely eliminated by Luzindole or DAPT. We concluded that the repression of Notch1 signaling pathway would inhibit the repair of oxidative stress injury in diabetes. Melatonin could ameliorate oxidative stress injury and apoptosis of diabetic aorta by activating Notch1/Hes1 signaling pathway.
Collapse
Affiliation(s)
- Bin-Cheng Ren
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi`an, Shaanxi, China.
| | - Wen Zhang
- Department of Cardiovascular Surgery, Fuwai Hospital Chinese Academy of Medical Sciences, ShenZhen, China.
| | - Wei Zhang
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi`an, Shaanxi, China.
| | - Jian-Xing Ma
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi`an, Shaanxi, China.
| | - Fei Pei
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi`an, Shaanxi, China.
| | - Bu-Ying Li
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi`an, Shaanxi, China.
| |
Collapse
|
19
|
Lin J, Sun-Waterhouse D, Cui C. The therapeutic potential of diet on immune-related diseases: based on the regulation on tryptophan metabolism. Crit Rev Food Sci Nutr 2021; 62:8793-8811. [PMID: 34085885 DOI: 10.1080/10408398.2021.1934813] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tryptophan (TRP), as an essential amino acid, plays crucial roles in maintaining immune homeostasis due to its complex metabolism pathway, including the microbial metabolism, 5-hydroxytryptamine and kynurenine pathways (KP). Metabolites from these pathways can act antioxidant and endogenous ligand of aryl hydrocarbon receptor (including microbiota metabolites: indole, indole aldehyde, indole acetic acid, indole acrylic acid, indole lactate, indole pyruvate acid, indole propionic acid, skatole, tryptamine, and indoxyl sulfate; and KP metabolites: kynurenine, kynurenic acid, 3-hydroxyanthranilic acid, xanthurenic acid, and cinnabarinic acid) for regulating immune response. In immune-related diseases, the production of pro-inflammatory cytokine activates indoleamine-2,3-dioxygenase, a rate-limiting enzyme of KP, leading to abnormal TRP metabolism in vivo. Many recent studies found that TRP metabolism could be regulated by diet, and the diet regulation on TRP metabolism could therapy related diseases. Accordingly, this review provides a critical overview of the relationships among diet, TRP metabolism and immunity with the aim to seek a treatment opportunity for immune-related diseases.
Collapse
Affiliation(s)
- Junjie Lin
- College of Food Science and Technology, South China University of Technology, Guangzhou, China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Technology, South China University of Technology, Guangzhou, China
| | - Chun Cui
- College of Food Science and Technology, South China University of Technology, Guangzhou, China.,Guangdong Wei-Wei Biotechnology Co., Ltd, Guangzhou, China
| |
Collapse
|
20
|
Cameron SJS, Perdones-Montero A, Van Meulebroek L, Burke A, Alexander-Hardiman K, Simon D, Schaffer R, Balog J, Karancsi T, Rickards T, Rebec M, Stead S, Vanhaecke L, Takáts Z. Sample Preparation Free Mass Spectrometry Using Laser-Assisted Rapid Evaporative Ionization Mass Spectrometry: Applications to Microbiology, Metabolic Biofluid Phenotyping, and Food Authenticity. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1393-1401. [PMID: 33980015 DOI: 10.1021/jasms.0c00452] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mass spectrometry has established itself as a powerful tool in the chemical, biological, medical, environmental, and agricultural fields. However, experimental approaches and potential application areas have been limited by a traditional reliance on sample preparation, extraction, and chromatographic separation. Ambient ionization mass spectrometry methods have addressed this challenge but are still somewhat restricted in requirements for sample manipulation to make it suitable for analysis. These limitations are particularly restrictive in view of the move toward high-throughput and automated analytical workflows. To address this, we present what we consider to be the first automated sample-preparation-free mass spectrometry platform utilizing a carbon dioxide (CO2) laser for sample thermal desorption linked to the rapid evaporative ionization mass spectrometry (LA-REIMS) methodology. We show that the pulsatile operation of the CO2 laser is the primary factor in achieving high signal-to-noise ratios. We further show that the LA-REIMS automated platform is suited to the analysis of three diverse biological materials within different application areas. First, clinical microbiology isolates were classified to species level with an accuracy of 97.2%, the highest accuracy reported in current literature. Second, fecal samples from a type 2 diabetes mellitus cohort were analyzed with LA-REIMS, which allowed tentative identification of biomarkers which are potentially associated with disease pathogenesis and a disease classification accuracy of 94%. Finally, we showed the ability of the LA-REIMS system to detect instances of adulteration of cooking oil and determine the geographical area of production of three protected olive oil products with 100% classification accuracy.
Collapse
Affiliation(s)
- Simon J S Cameron
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London SW7 2AZ, U.K
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, U.K
| | - Alvaro Perdones-Montero
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London SW7 2AZ, U.K
| | - Lieven Van Meulebroek
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Ghent University, Ghent B-9820, Belgium
| | - Adam Burke
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London SW7 2AZ, U.K
| | - Kate Alexander-Hardiman
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London SW7 2AZ, U.K
| | - Daniel Simon
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London SW7 2AZ, U.K
- Waters Research Center, Budapest 1031, Hungary
| | | | - Julia Balog
- Waters Research Center, Budapest 1031, Hungary
| | | | - Tony Rickards
- Department of Microbiology, Imperial College Healthcare NHS Trust, London W6 8RD, U.K
| | - Monica Rebec
- Department of Microbiology, Imperial College Healthcare NHS Trust, London W6 8RD, U.K
| | - Sara Stead
- Waters Corporation, Wilmslow SK9 4AX, U.K
| | - Lynn Vanhaecke
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, U.K
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Ghent University, Ghent B-9820, Belgium
| | - Zoltán Takáts
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London SW7 2AZ, U.K
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, U.K
| |
Collapse
|
21
|
Hydrogen Sulfide: Novel Endogenous and Exogenous Modulator of Oxidative Stress in Retinal Degeneration Diseases. Molecules 2021; 26:molecules26092411. [PMID: 33919146 PMCID: PMC8122398 DOI: 10.3390/molecules26092411] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 11/29/2022] Open
Abstract
Oxidative stress (OS) damage can cause significant injury to cells, which is related to the occurrence and development of many diseases. This pathological process is considered to be the first step to trigger the death of outer retinal neurons, which is related to the pathology of retinal degenerative diseases. Hydrogen sulfide (H2S) has recently received widespread attention as a physiological signal molecule and gas neuromodulator and plays an important role in regulating OS in eyes. In this article, we reviewed the OS responses and regulatory mechanisms of H2S and its donors as endogenous and exogenous regulators in retinal degenerative diseases. Understanding the relevant mechanisms will help to identify the therapeutic potential of H2S in retinal degenerative diseases.
Collapse
|
22
|
Mustafa I, Faisal MN, Hussain G, Muzaffar H, Imran M, Ijaz MU, Sohail MU, Iftikhar A, Shaukat A, Anwar H. Efficacy of Euphorbia helioscopia in context to a possible connection between antioxidant and antidiabetic activities: a comparative study of different extracts. BMC Complement Med Ther 2021; 21:62. [PMID: 33579270 PMCID: PMC7881459 DOI: 10.1186/s12906-021-03237-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 02/02/2021] [Indexed: 11/26/2022] Open
Abstract
Background Euphorbia helioscopia, conventionally known as sun spurge, has been used as a traditional medicine to treat different diseases owing to its reported antitumor, antiviral and antioxidant activities. Methods The current research was formulated to assess the in-vitro antioxidant and antidiabetic ability of Euphorbia helioscopia subsequent to the phytochemical analysis of its various extracts. For this purpose, methanol, ethanol and aqueous extracts were prepared using the whole dried plant. Phytochemical analysis of the extracts was done to evaluate the total flavonoid components (TFC) and total phenolic components (TPC) in the extracts. A total of seven phenolic and three flavonoid contents were documented and quantified using HPLC. Antioxidant values were found by DPPH● assay, FRAP and ABTS assays. The antidiabetic potential of the extracts was evaluated by measuring the inhibition ability of the activity of enzymes α amylase and α glucosidase. Results After analyzing statistically, the results showed that methanolic extract possesses the highest TFC and TPC values while aqueous extract encompassed the lowest level of these contents. Invitro results showed that methanolic extract of the Euphorbia helioscopia has the maximum antioxidant capability since it showed the highest scavenging ability towards the DPPH● (IC50 value = 0.06 ± 0.02 mg/ml), FRAP (758.9 ± 25.1 μMFe+ 2/g), and ABTS (689 ± 25.94 μMTEq/g) due to the presence of high TPC (24.77 ± 0.35 mgGAEq/g) and TFC (17.95 ± 0.32 mgQEq/g) values. Antidiabetic activity in terms of inhibition potential of α amylase and α glucosidase activity was also observed maximum in methanolic extract having lowest IC50 value (0.4 ± 0.01 mg/ml and 0.45 ± 0.01 mg/ml respectively) and minimum in the aqueous extract (IC50 value = 0.57 ± 0.02 mg/ml and 0.76 ± 0.1 mg/ml respectively). Conclusion The experiment outcomes have shown that Euphorbia helioscopia extracts used in the current study contain antioxidant and antidiabetic activities; however, it is highest in its methanolic extract. The presence of the same trend towards the highest antidiabetic activity of the methanolic extract in terms of maximum inhibiting activity of α amylase and α glucosidase enzymes suggests a close association of TFC and TPC in minimizing diabetes.
Collapse
Affiliation(s)
- Imtiaz Mustafa
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Naeem Faisal
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Ghulam Hussain
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Humaira Muzaffar
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Imran
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | | | - Arslan Iftikhar
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Arslan Shaukat
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan.
| |
Collapse
|
23
|
Tavares BS, Tsosura TVS, Mattera MSLC, Santelli JO, Belardi BE, Chiba FY, Cintra LTA, Silva CC, Matsushita DH. Effects of melatonin on insulin signaling and inflammatory pathways of rats with apical periodontitis. Int Endod J 2021; 54:926-940. [PMID: 33411973 DOI: 10.1111/iej.13474] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
AIM To verify the effects of melatonin supplementation on insulin sensitivity, plasma concentrations of inflammatory cytokines, insulin signalling and inflammatory pathways in the soleus (SM) and extensor digitorum longus (EDL) muscles of rats with apical periodontitis (AP). METHODOLOGY Seventy-two Wistar rats were distributed into 4 groups: (a) control (C), (b) control supplemented with melatonin (M), (c) AP (AP), and (d) AP supplemented with melatonin (AP + M). AP was induced by pulp exposure of the maxillary and mandibular right first and second molars to the oral environment. After AP induction, oral supplementation with 5 mg kg-1 melatonin (diluted in drinking water) for 60 days was initiated. At the end of the treatment, the following were analysed: (1) plasma concentrations of insulin and inflammatory cytokines (TNF-α, IL-6, IL-1β and IL-10) using ELISA kits; (2) glycaemia using enzymatic assay; (3) insulin resistance using homoeostasis model assessment of insulin resistance (HOMA-IR) index; and (4) phosphorylation status of pp185 tyrosine, Akt serine, IKKα/β, and JNK in SM and EDL using Western blot. Analysis of variance of two or three factors was performed, followed by the Bonferroni test. P values < 0.05 were considered statistically significant. RESULTS AP promoted insulin resistance, significantly increased (P < 0.05) plasma concentrations of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β), significantly decreased (P < 0.05) the concentration of anti-inflammatory cytokine IL-10, impaired insulin signalling in SM, and increased IKKα/β phosphorylation status in SM and EDL. Melatonin supplementation in rats with AP improved insulin sensitivity, significantly decreased (P < 0.05) TNF-α and IL-1β, significantly increased (P < 0.05) IL-10 plasma concentrations, and changed the insulin signalling in soleus muscle and IKKα/β phosphorylation status in SM and EDL muscles. CONCLUSIONS Melatonin is a potent adjuvant treatment for improving apical periodontitis-associated changes in insulin sensitivity, insulin signalling and inflammatory pathways. In addition, the negative impact of AP on general health was also demonstrated.
Collapse
Affiliation(s)
- B S Tavares
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, PPGMCF, SBFis, Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - T V S Tsosura
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, PPGMCF, SBFis, Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - M S L C Mattera
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, PPGMCF, SBFis, Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - J O Santelli
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, PPGMCF, SBFis, Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - B E Belardi
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, PPGMCF, SBFis, Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - F Y Chiba
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - L T A Cintra
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - C C Silva
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - D H Matsushita
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, PPGMCF, SBFis, Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| |
Collapse
|
24
|
Ramirez AVG, Filho DR, de Sá LBPC. Melatonin and its Relationships with Diabetes and Obesity: A Literature Review. Curr Diabetes Rev 2021; 17:e072620184137. [PMID: 32718296 DOI: 10.2174/1573399816666200727102357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Obesity is an important clinical entity, causing many public health issues. Around two billion people in the world are overweight and obese. Almost 40% of American adults are obese and Brazil has about 18 million obese people. Nowadays, 415 million people have diabetes, around 1 in every 11 adults. These numbers will rise to 650 million people within 20 years. Melatonin shows a positive profile on the regulation of the metabolism of the human body. OBJECTIVE This study aimed to carry out a broad narrative review of the metabolic profile and associations between melatonin, diabetes and obesity. METHODS Article reviews, systematic reviews, prospective studies, retrospective studies, randomized, double-blind, and placebo-controlled trials in humans recently published were selected and analyzed. A total of 368 articles were collated and submitted to the eligibility analysis. Subsequently, 215 studies were selected to compose the content part of the paper, and 153 studies composed the narrative review. RESULTS Studies suggest a possible role of melatonin in metabolic diseases such as obesity, T2DM and metabolic syndrome. Intervention studies using this hormone in metabolic diseases are still unclear regarding the possible benefit of it. There is so far no consensus about the possible role of melatonin as an adjuvant in the treatment of metabolic diseases. More studies are necessary to define possible risks and benefits of melatonin as a therapeutic agent.
Collapse
Affiliation(s)
- Ana V G Ramirez
- Clinic Ana Valeria (CAV)- Clinic of Nutrition and Health Science, Street Antônio José Martins Filho, 300, Sao Jose do Rio Preto SP, 15092-230, Brazil
| | - Durval R Filho
- Associacao Brasileira de Nutrologia (ABRAN)/Brazilian Association of Nutrology, Catanduva/SP, Rua Belo Horizonte, 909 - Centro, Catanduva SP, Brazil
| | | |
Collapse
|
25
|
Wajid F, Poolacherla R, Mim FK, Bangash A, Rutkofsky IH. Therapeutic potential of melatonin as a chronobiotic and cytoprotective agent in diabetes mellitus. J Diabetes Metab Disord 2020; 19:1797-1825. [PMID: 33520862 PMCID: PMC7843808 DOI: 10.1007/s40200-020-00585-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Diabetes mellitus is a complex metabolic disorder characterized by hyperglycemia occurring as a result of dysregulation and balance of various metabolic pathways. In recent years, circadian misalignment (due to altered sleep/wake, feeding/fasting cycles), has been intimately linked with the development of diabetes mellitus. Herein, we review our knowledge of oxidative stress, circadian rhythms control of metabolism, and the effects of its disruption on homeostasis while emphasizing the importance of melatonin, a nocturnally peaking, pineal hormone, as a potential therapeutic drug for the prevention and treatment of diabetes. METHODS PubMed database was systematically searched for related articles and data from all types of studies, including clinical trials, review articles, and case reports were considered without limiting the study to one specific category. RESULTS Experimental and epidemiological evidence indicate melatonin's multifaceted effects in intermediary metabolism via resynchronization of the circadian rhythms and its deficiency is associated with metabolic derangements. As a chronobiotic, it cures insomnia and sleep disorders caused by shift work or jet lag. The antagonistic relationship between melatonin and insulin highlights its influence in regulating insulin secretion, its action, and melatonin treatment successfully improved glucose homeostasis, energy balance, and overall health in diabetes mellitus. Melatonin's cytoprotective role as an antioxidant and free radical scavenger, proved useful in combating oxidative stress, preserving beta-cell function, and influencing the development of diabetic complications. CONCLUSION The therapeutic application of melatonin as a chronobiotic and cytoprotective agent is of promising significance in diabetes mellitus. Future investigations are encouraged to fully explore the efficacy of this ubiquitous molecule in various metabolic disorders.
Collapse
Affiliation(s)
- Fareha Wajid
- California Institute of Behavioural Neuroscience and Psychology, Fairfield, CA USA
| | - Raju Poolacherla
- California Institute of Behavioural Neuroscience and Psychology, Fairfield, CA USA
| | - Fatiha Kabir Mim
- California Institute of Behavioural Neuroscience and Psychology, Fairfield, CA USA
| | - Amna Bangash
- California Institute of Behavioural Neuroscience and Psychology, Fairfield, CA USA
| | - Ian H. Rutkofsky
- California Institute of Behavioural Neuroscience and Psychology, Fairfield, CA USA
| |
Collapse
|
26
|
Magar A, Devasani K, Majumdar A. Melatonin ameliorates neuropathy in diabetic rats by abating mitochondrial dysfunction and metabolic derangements. ENDOCRINE AND METABOLIC SCIENCE 2020. [DOI: 10.1016/j.endmts.2020.100067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
27
|
Dehdashtian E, Pourhanifeh MH, Hemati K, Mehrzadi S, Hosseinzadeh A. Therapeutic application of nutraceuticals in diabetic nephropathy: Current evidence and future implications. Diabetes Metab Res Rev 2020; 36:e3336. [PMID: 32415805 DOI: 10.1002/dmrr.3336] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus (DM) is a common metabolic disease which may cause several complications, such as diabetic nephropathy (DN). The routine medical treatments used for DM are not effective enough and have many undesirable side effects. Moreover, the global increased prevalence of DM makes researchers try to explore potential complementary or alternative treatments. Nutraceuticals, as natural products with pharmaceutical agents, have a wide range of therapeutic properties in various pathologic conditions such as DN. However, the exact underlying mechanisms have not been fully understood. The purpose of this review is to summarize recent findings on the effect of nutraceuticals on DN.
Collapse
Affiliation(s)
- Ehsan Dehdashtian
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Karim Hemati
- Department of Anesthesiology, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Benedito-Silva AA, Evans S, Viana Mendes J, Castro J, Gonçalves BDSB, Ruiz FS, Beijamini F, Evangelista FS, Vallada H, Krieger JE, von Schantz M, Pereira AC, Pedrazzoli M. Association between light exposure and metabolic syndrome in a rural Brazilian town. PLoS One 2020; 15:e0238772. [PMID: 32946454 PMCID: PMC7500684 DOI: 10.1371/journal.pone.0238772] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 08/24/2020] [Indexed: 01/10/2023] Open
Abstract
Context Metabolic syndrome (MetS) is a complex condition comprising a ‘clustering’ of components representing cardiometabolic risk factors for heart disease and diabetes; its prevalence rate is high and consequences serious. Evidence suggests that light exposure patterns and misalignment of circadian rhythms might contribute to MetS etiology by impacting energy metabolism and glucose regulation. Objective We hypothesised that individuals with MetS would show disrupted circadian and sleep parameters alongside differences in light exposure profiles. We investigated this using data from a cohort study in Brazil. Methods Data from 103 individuals from the Baependi Heart Cohort Study aged between 50 and 70 were analysed. Motor activity and light exposure were measured using wrist-worn actigraphy devices. Cardiometabolic data were used to calculate the number of MetS components present in each participant, and participants grouped as MetS/non-MetS according to standard guidelines. Between-group comparisons were made for the actigraphy measures; additionally, correlation analyses were conducted. Results Motor activity and circadian profiles showed no differences between groups. However, the MetS group presented lower light exposure during the day and higher light exposure at night. Correlation analyses, including all participants, showed that greater daytime light exposure and greater light exposure difference between day and night were associated with reduced MetS risk (a lower number of MetS components). Also, the light exposure difference between day and night correlated with body mass index across all participants. Conclusions The observed results suggest a direct association between light exposure and MetS which appears to not be attributable to disruptions in circadian activity rhythm nor to sleep parameters. This link between light exposure patterns and MetS risk could inform possible prevention strategies.
Collapse
Affiliation(s)
| | - Simon Evans
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Juliana Viana Mendes
- School of Arts, Science and Humanities, University of São Paulo, São Paulo, Brazil
| | - Juliana Castro
- School of Arts, Science and Humanities, University of São Paulo, São Paulo, Brazil
| | | | - Francieli S. Ruiz
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
- Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Felipe Beijamini
- Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
- Federal University of Fronteira Sul (UFFS), Realeza, Brazil
| | | | - Homero Vallada
- Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | | | - Malcolm von Schantz
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Alexandre C. Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Mario Pedrazzoli
- School of Arts, Science and Humanities, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
29
|
Chitimus DM, Popescu MR, Voiculescu SE, Panaitescu AM, Pavel B, Zagrean L, Zagrean AM. Melatonin's Impact on Antioxidative and Anti-Inflammatory Reprogramming in Homeostasis and Disease. Biomolecules 2020; 10:biom10091211. [PMID: 32825327 PMCID: PMC7563541 DOI: 10.3390/biom10091211] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/30/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022] Open
Abstract
There is a growing consensus that the antioxidant and anti-inflammatory properties of melatonin are of great importance in preserving the body functions and homeostasis, with great impact in the peripartum period and adult life. Melatonin promotes adaptation through allostasis and stands out as an endogenous, dietary, and therapeutic molecule with important health benefits. The anti-inflammatory and antioxidant effects of melatonin are intertwined and are exerted throughout pregnancy and later during development and aging. Melatonin supplementation during pregnancy can reduce ischemia-induced oxidative damage in the fetal brain, increase offspring survival in inflammatory states, and reduce blood pressure in the adult offspring. In adulthood, disturbances in melatonin production negatively impact the progression of cardiovascular risk factors and promote cardiovascular and neurodegenerative diseases. The most studied cardiovascular effects of melatonin are linked to hypertension and myocardial ischemia/reperfusion injury, while the most promising ones are linked to regaining control of metabolic syndrome components. In addition, there might be an emerging role for melatonin as an adjuvant in treating coronavirus disease 2019 (COVID 19). The present review summarizes and comments on important data regarding the roles exerted by melatonin in homeostasis and oxidative stress and inflammation related pathologies.
Collapse
Affiliation(s)
- Diana Maria Chitimus
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; (D.M.C.); (S.E.V.); (B.P.); (L.Z.)
| | - Mihaela Roxana Popescu
- Department of Cardiology, “Carol Davila” University of Medicine and Pharmacy, Elias University Hospital, 010164 Bucharest, Romania;
| | - Suzana Elena Voiculescu
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; (D.M.C.); (S.E.V.); (B.P.); (L.Z.)
| | - Anca Maria Panaitescu
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, Filantropia Clinical Hospital, 010164 Bucharest, Romania;
| | - Bogdan Pavel
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; (D.M.C.); (S.E.V.); (B.P.); (L.Z.)
| | - Leon Zagrean
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; (D.M.C.); (S.E.V.); (B.P.); (L.Z.)
| | - Ana-Maria Zagrean
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; (D.M.C.); (S.E.V.); (B.P.); (L.Z.)
- Correspondence:
| |
Collapse
|
30
|
Farrokhian A, Tohidi M, Ahanchi NS, Khalili D, Niroomand M, Mahboubi A, Derakhshi A, Abbasinazari M, Hadaegh F. Effect of Bedtime Melatonin Administration in Patients with Type 2 Diabetes: A Triple-Blind, Placebo-Controlled, Randomized Trial. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 18:258-268. [PMID: 32802105 PMCID: PMC7393042 DOI: 10.22037/ijpr.2019.112011.13485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Melatonin is widely available as over the counter product. Despite promising effects of melatonin supplementation on glycemic control, there is a significant heterogeneity between studies. The current study aimed at determining the effect of melatonin on fasting blood glucose (FBG), insulin resistance/sensitivity indices, glycosylated hemoglobin A1c (HbA1c), and high sensitivity C-reactive protein (hs-CRP) among type 2 diabetes mellitus (T2D) population during 8 weeks in a randomized, triple-blind, placebo-controlled trial. Thirty four subjects with the mean age ± standard deviation of 57.74 ± 8.57 years and 36 subjects with the mean age of 57.61 ± 9.11 years were allocated to 6 mg nightly melatonin and placebo groups, respectively. Melatonin and placebo groups were matched by age, gender, body mass index, and duration of diabetes. Also, there was no significant difference in laboratory findings except for HbA1c, which was lower in the placebo group (7.00 ± 0.89% vs 7.60 ± 1.47%, P=0.042). After trial completion, the increase of serum levels of melatonin was greater in the intervention than the placebo group (3.38 ± 1.33 vs 0.94 ± 1.28 ng/L, P=0.192). Moreover, compared to placebo group, among melatonin users, homeostasis model assessment of insulin resistance (HOMA1-IR) tended to be unfavorable at the end of follow-up [-0.51 (-1.76-0.81) vs. 0.28 (-1.24-1.74), P=0.20]; the similar trend was also shown for insulin sensitivity index (HOMA1-S) [2.33 (-3.59-12.46) vs. -2.33 (-10.61-9.16), P=0.148]. No differences were observed in FBG, HbA1C, and hs-CRP changes between the trial groups. The current study did not support the improving effect of melatonin on glucose homeostasis.
Collapse
Affiliation(s)
- Amir Farrokhian
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Tohidi
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Noushin Sadat Ahanchi
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Khalili
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran .,Department of Biostatistics and Epidemiology, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahtab Niroomand
- Internal Medicine Department, Endocrinology Division, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Mahboubi
- Food Safety Research Center, Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Derakhshi
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Abbasinazari
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Hadaegh
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Muronetz VI, Melnikova AK, Saso L, Schmalhausen EV. Influence of Oxidative Stress on Catalytic and Non-glycolytic Functions of Glyceraldehyde-3-phosphate Dehydrogenase. Curr Med Chem 2020; 27:2040-2058. [PMID: 29848267 DOI: 10.2174/0929867325666180530101057] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) is a unique enzyme that, besides its main function in glycolysis (catalysis of glyceraldehyde-3-phosphate oxidation), possesses a number of non-glycolytic activities. The present review summarizes information on the role of oxidative stress in the regulation of the enzymatic activity as well as non-glycolytic functions of GAPDH. METHODS Based on the analysis of literature data and the results obtained in our research group, mechanisms of the regulation of GAPDH functions through the oxidation of the sulfhydryl groups in the active site of the enzyme have been suggested. RESULTS Mechanism of GAPDH oxidation includes consecutive oxidation of the catalytic Cysteine (Cys150) into sulfenic, sulfinic, and sulfonic acid derivatives, resulting in the complete inactivation of the enzyme. The cysteine sulfenic acid reacts with reduced glutathione (GSH) to form a mixed disulfide (S-glutathionylated GAPDH) that further reacts with Cys154 yielding the disulfide bond in the active site of the enzyme. In contrast to the sulfinic and sulfonic acids, the mixed disulfide and the intramolecular disulfide bond are reversible oxidation products that can be reduced in the presence of GSH or thioredoxin. CONCLUSION Oxidation of sulfhydryl groups in the active site of GAPDH is unavoidable due to the enhanced reactivity of Cys150. The irreversible oxidation of Cys150 is prevented by Sglutathionylation and disulfide bonding with Cys154. The oxidation/reduction of the sulfhydryl groups in the active site of GAPDH can be used for regulation of glycolysis and numerous side activities of this enzyme including the induction of apoptosis.
Collapse
Affiliation(s)
- Vladimir I Muronetz
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Aleksandra K Melnikova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer"Sapienza, University of Rome, Rome, Italy
| | - Elena V Schmalhausen
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
32
|
Melatonin enhances atherosclerotic plaque stability by inducing prolyl-4-hydroxylase α1 expression. J Hypertens 2020; 37:964-971. [PMID: 30335670 DOI: 10.1097/hjh.0000000000001979] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Melatonin, an endogenous neurohormone secreted predominately by the pineal gland, has a variety of physiological functions. However, its protective role in atherosclerosis is not clear. In this study, we sought to investigate the potential effects of melatonin in modulating atherosclerotic plaque stability in apolipoprotein E knockout (ApoE) mice. METHOD AND RESULTS Smooth muscle cells were treated with melatonin, which significantly increased mRNA and protein levels of a key intracellular enzyme essential for collagen maturation and secretion, prolyl-4-hydroxylase α1 (P4Hα1). Mechanistically, melatonin increased Akt phosphorylation and transcriptional activation of specificity protein 1 (Sp1), which bound with the P4Hα1 promoter and then induced P4Hα1 expression. Pretreatment with either Akt inhibitor LY294002 or Sp1 inhibitor mithramycin A (MTM) could inhibit melatonin-induced P4Hα1 expression. Finally, atherosclerotic lesions were induced by placing a perivascular collar on the right common carotid artery of ApoE mice, which were received with or without different doses of melatonin or MTM. High-dose melatonin enhanced atherosclerotic plaque stability in ApoE mice in vivo by inducing the expression of P4Hα1, which was reversed by MTM. CONCLUSION We propose that melatonin supplementation may provide a novel and promising approach to atherosclerosis treatment.
Collapse
|
33
|
Pourhanifeh MH, Hosseinzadeh A, Dehdashtian E, Hemati K, Mehrzadi S. Melatonin: new insights on its therapeutic properties in diabetic complications. Diabetol Metab Syndr 2020; 12:30. [PMID: 32280378 PMCID: PMC7140344 DOI: 10.1186/s13098-020-00537-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetes and diabetic complications are considered as leading causes of both morbidity and mortality in the world. Unfortunately, routine medical treatments used for affected patients possess undesirable side effects, including kidney and liver damages as well as gastrointestinal adverse reactions. Therefore, exploring the novel therapeutic strategies for diabetic patients is a crucial issue. It has been recently shown that melatonin, as main product of the pineal gland, despite its various pharmacological features including anticancer, anti-aging, antioxidant and anti-inflammatory effects, exerts anti-diabetic properties through regulating various cellular mechanisms. The aim of the present review is to describe potential roles of melatonin in the treatment of diabetes and its complications.
Collapse
Affiliation(s)
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsan Dehdashtian
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Karim Hemati
- Department of Anesthesiology, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Bioavailability of Melatonin from Lentil Sprouts and Its Role in the Plasmatic Antioxidant Status in Rats. Foods 2020; 9:foods9030330. [PMID: 32178261 PMCID: PMC7143261 DOI: 10.3390/foods9030330] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/26/2020] [Accepted: 03/10/2020] [Indexed: 12/29/2022] Open
Abstract
Melatonin is a multifunctional antioxidant neurohormone found in plant foods such as lentil sprouts. We aim to evaluate the effect of lentil sprout intake on the plasmatic levels of melatonin and metabolically related compounds (plasmatic serotonin and urinary 6-sulfatoxymelatonin), total phenolic compounds, and plasmatic antioxidant status, and compare it with synthetic melatonin. The germination of lentils increases the content of melatonin. However, the phenolic content diminished due to the loss of phenolic acids and flavan-3-ols. The flavonol content remained unaltered, being the main phenolic family in lentil sprouts, primarily composed of kaempferol glycosides. Sprague Dawley rats were used to investigate the pharmacokinetic profile of melatonin after oral administration of a lentil sprout extract and to evaluate plasma and urine melatonin and related biomarkers and antioxidant capacity. Melatonin showed maximum concentration (45.4 pg/mL) 90 min after lentil sprout administration. The plasmatic melatonin levels increased after lentil sprout intake (70%, p < 0.05) with respect to the control, 1.2-fold more than after synthetic melatonin ingestion. These increments correlated with urinary 6-sulfatoxymelatonin content (p < 0.05), a key biomarker of plasmatic melatonin. Nonetheless, the phenolic compound content did not exhibit any significant variation. Plasmatic antioxidant status increased in the antioxidant capacity upon both lentil sprout and synthetic melatonin administration. For the first time, we investigated the bioavailability of melatonin from lentil sprouts and its role in plasmatic antioxidant status. We concluded that their intake could increase melatonin plasmatic concentration and attenuate plasmatic oxidative stress.
Collapse
|
35
|
Samare M, Samareh AN, Safari S, Zaree R, Moghadam D, Azhdarpoor A, Badeenezhad A, Rostami S. A survey of the secondary exposure to organophosphate and organochlorine pesticides and the impact of preventive factors in female villagers. CHEMOSPHERE 2020; 240:124887. [PMID: 31563724 DOI: 10.1016/j.chemosphere.2019.124887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/06/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Organophosphates (OPs) and organochlorine pesticides (OCPs) are two main types of pesticides that are widely used worldwide, and their toxicities have been reported in high-risk individuals, such as farmers and their wives. The aim of this study was to evaluate the levels of mentioned pesticides in farmers' wives (FWs) and compare them with the control group; we also aimed to assess the effect of personal health factors on the biochemical parameters. This case-control study was conducted on two FWs and control groups, consisting of 124 and 62 individuals, respectively. Serum levels of OCPs were measured using gas chromatography (GC) method. In addition, the activity of acetylcholine esterase (AChE), total antioxidant capacity (TAC), and serum levels of malondialdehyde (MDA) were evaluated in all participants. Additionally, the observance of personal health guidelines was assessed. Serum levels of OCPs in the FWs group were significantly higher than the controls. In addition, AChE activity in FWs was significantly lower than the controls. Moreover, it was found that higher levels of education lead to a better observation of most individual health guidelines, which results in reducing the biological adverse effects of pesticides. The results of this study indicated that the use of OCPs, as an illegal pesticide with known toxic and carcinogenic effects, has spread to southern Iran, which may have biological toxic effects. Also, observing the personal health points significantly reduced these complications and it is, therefore, recommended that more attention should be paid to this issue.
Collapse
Affiliation(s)
- Mohammad Samare
- Department of Biochemistry, Behbahan Faculty of Medical Sciences, Behbahan, Iran; Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali N Samareh
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Soolmaz Safari
- Department of Medical Laboratory, Marvdasht Martyr Motahari Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Zaree
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Delaram Moghadam
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abooalfazl Azhdarpoor
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Badeenezhad
- Department of Environmental Health Engineering, School of Health, Behbahan Faculty of Medical Sciences, Behbahan, Iran.
| | - Saeid Rostami
- Department of Environmental Health Engineering, School of Health, Behbahan Faculty of Medical Sciences, Behbahan, Iran.
| |
Collapse
|
36
|
Siddiqui Z, Faisal M, Alatar AR, Ahmad S. Prevalence of auto-antibodies against D-ribose-glycated-hemoglobin in diabetes mellitus. Glycobiology 2019; 29:409-418. [PMID: 30834437 DOI: 10.1093/glycob/cwz012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 02/25/2019] [Accepted: 02/28/2019] [Indexed: 01/01/2023] Open
Abstract
Glycation of biological macromolecules, due to hyperglycemia, promotes the formation of advanced glycation end products (AGEs). It is accelerated in diabetic patients and is responsible for the pathophysiology and progression of diabetes. Previous reports have shown that amount of AGEs formation and glycation-induced structural damage is higher in hemoglobin (Hb) than other proteins present in blood. In our previous study, we have shown structural changes in Hb by D-ribose which may result into the generation of immunogenic neo-epitopes. Thus, we hypothesized that D-ribose induced structural perturbations in Hb, could result in the formation of neo-epitopes which may provoke an auto-immune response and may also be involved in the immuno-pathogenesis of diabetes type-2 associated complications. Therefore, in the current study, we analyzed the prevalence of autoantibodies in diabetic patient's sera against D-ribose glycated-Hb by direct binding and competitive ELISA. Direct binding ELISA confirmed that autoantibodies in diabetic patients exhibit significantly high binding with D-ribose glycated-Hb as compared to its native form. The antigen binding specificity of these antibodies was also screened by competitive inhibition ELISA. We also used D-glucose glycated-Hb as a positive control to detect the presence of auto-antibodies by direct binding and inhibiton ELISA. We found that D-glucose glycated-Hb binds with T2DM samples but the affinity to binding is lower than D-ribose glycated-Hb. The overall findings of this study suggest the prevalence of circulating autoantibodies against D-ribose glycated-Hb in diabetic patients and thus, the level of these autoantibodies may be used as biomarker for progression of diabetes.
Collapse
Affiliation(s)
- Zeba Siddiqui
- Department of Biosciences, Integral University, Lucknow, India.,IIRC-1 Laboratory of Glycation Biology and Metabolic Disorders, Integral University, Lucknow, India
| | - Mohammad Faisal
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdul Rahman Alatar
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saheem Ahmad
- Department of Biosciences, Integral University, Lucknow, India.,IIRC-1 Laboratory of Glycation Biology and Metabolic Disorders, Integral University, Lucknow, India
| |
Collapse
|
37
|
Mok JX, Ooi JH, Ng KY, Koh RY, Chye SM. A new prospective on the role of melatonin in diabetes and its complications. Horm Mol Biol Clin Investig 2019; 40:/j/hmbci.ahead-of-print/hmbci-2019-0036/hmbci-2019-0036.xml. [PMID: 31693492 DOI: 10.1515/hmbci-2019-0036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/01/2019] [Indexed: 01/01/2023]
Abstract
Melatonin is a hormone secreted by the pineal gland under the control of the circadian rhythm, and is released in the dark and suppressed during the day. In the past decades, melatonin has been considered to be used in the treatment for diabetes mellitus (DM). This is due to a functional inter-relationship between melatonin and insulin. Elevated oxidative stress is a feature found in DM associated with diabetic neuropathy (DN), retinopathy (DR), nephropathy and cardiovascular disease. Reactive oxygen species (ROS) and nitrogen oxidative species (NOS) are usually produced in massive amounts via glucose and lipid peroxidation, and this leads to diabetic complications. At the molecular level, ROS causes damage to the biomolecules and triggers apoptosis. Melatonin, as an antioxidant and a free radical scavenger, ameliorates oxidative stress caused by ROS and NOS. Besides that, melatonin administration is proven to bring other anti-DM effects such as reducing cellular apoptosis and promoting the production of antioxidants.
Collapse
Affiliation(s)
- Jia Xin Mok
- School of Medical Laboratory Science, University of Otago, Dunedin 9054, New Zealand.,University of Otago, Dunedin School of Medicine, Department of Pathology, Medical Laboratory Science, Dunedin 9016, New Zealand
| | - Jack Hau Ooi
- International Medical University, School of Health Science, Kuala Lumpur 57000, Malaysia
| | - Khuen Yen Ng
- Monash University Malaysia, School of Pharmacy, Selangor 47500, Malaysia
| | - Rhun Yian Koh
- International Medical University, School of Health Science, Kuala Lumpur 57000, Malaysia
| | - Soi Moi Chye
- International Medical University, School of Health Science, Kuala Lumpur 57000, Malaysia.,School of Health Science, Division of Biomedical Science and Biotechnology, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia, Phone: +60-3-27317220, Fax: +06-3-86567229
| |
Collapse
|
38
|
Dodda BR, Bondi CD, Hasan M, Clafshenkel WP, Gallagher KM, Kotlarczyk MP, Sethi S, Buszko E, Latimer JJ, Cline JM, Witt-Enderby PA, Davis VL. Co-administering Melatonin With an Estradiol-Progesterone Menopausal Hormone Therapy Represses Mammary Cancer Development in a Mouse Model of HER2-Positive Breast Cancer. Front Oncol 2019; 9:525. [PMID: 31355130 PMCID: PMC6636553 DOI: 10.3389/fonc.2019.00525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/30/2019] [Indexed: 12/20/2022] Open
Abstract
Melatonin has numerous anti-cancer properties reported to influence cancer initiation, promotion, and metastasis. With the need for effective hormone therapies (HT) to treat menopausal symptoms without increasing breast cancer risk, co-administration of nocturnal melatonin with a natural, low-dose HT was evaluated in mice that develop primary and metastatic mammary cancer. Individually, melatonin (MEL) and estradiol-progesterone therapy (EPT) did not significantly affect mammary cancer development through age 14 months, but, when combined, the melatonin-estradiol-progesterone therapy (MEPT) significantly repressed tumor formation. This repression was due to effects on tumor incidence, but not latency. These results demonstrate that melatonin and the HT cooperate to decrease the mammary cancer risk. Melatonin and EPT also cooperate to alter the balance of the progesterone receptor (PR) isoforms by significantly increasing PRA protein expression only in MEPT mammary glands. Melatonin significantly suppressed amphiregulin transcripts in MEL and MEPT mammary glands, suggesting that amphiregulin together with the higher PRA:PRB balance and other factors may contribute to reducing cancer development in MEPT mice. Melatonin supplementation influenced mammary morphology by increasing tertiary branching in the mouse mammary glands and differentiation in human mammary epithelial cell cultures. Uterine weight in the luteal phase was elevated after long-term exposure to EPT, but not to MEPT, indicating that melatonin supplementation may reduce estrogen-induced uterine stimulation. Melatonin supplementation significantly decreased the incidence of grossly-detected lung metastases in MEL mice, suggesting that melatonin delays the formation of metastatic lesions and/or decreases aggressiveness in this model of HER2+ breast cancer. Mammary tumor development was similar in EPT and MEPT mice until age 8.6 months, but after 8.6 months, only MEPT continued to suppress cancer development. These data suggest that melatonin supplementation has a negligible effect in young MEPT mice, but is required in older mice to inhibit tumor formation. Since melatonin binding was significantly decreased in older mammary glands, irrespective of treatment, melatonin supplementation may overcome reduced melatonin responsiveness in the aged MEPT mice. Since melatonin levels are known to decline near menopause, nocturnal melatonin supplementation may also be needed in aging women to cooperate with HT to decrease breast cancer risk.
Collapse
Affiliation(s)
- Balasunder R Dodda
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Corry D Bondi
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Mahmud Hasan
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - William P Clafshenkel
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Katie M Gallagher
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Mary P Kotlarczyk
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Shalini Sethi
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Ethan Buszko
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Jean J Latimer
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - J Mark Cline
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Paula A Witt-Enderby
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States.,UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Vicki L Davis
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| |
Collapse
|
39
|
Lan H, Su Y, Liu Y, Deng C, Wang J, Chen T, Jules KED, Masau JF, Li H, Wei X. Melatonin protects circulatory death heart from ischemia/reperfusion injury via the JAK2/STAT3 signalling pathway. Life Sci 2019; 228:35-46. [DOI: 10.1016/j.lfs.2019.04.057] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023]
|
40
|
Mendoza-Núñez VM, García-Martínez BI, Rosado-Pérez J, Santiago-Osorio E, Pedraza-Chaverri J, Hernández-Abad VJ. The Effect of 600 mg Alpha-lipoic Acid Supplementation on Oxidative Stress, Inflammation, and RAGE in Older Adults with Type 2 Diabetes Mellitus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3276958. [PMID: 31285784 PMCID: PMC6594273 DOI: 10.1155/2019/3276958] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/22/2018] [Accepted: 05/26/2019] [Indexed: 12/17/2022]
Abstract
Alpha-lipoic acid (ALA) has been used as a dietary supplement at different doses in patients with diabetes mellitus type 2 (T2DM) due to its antioxidant, anti-inflammatory, and hypoglycemic effects. However, the reports on the effects of ALA are controversial. For this reason, the purpose of the present study was to determine the effect of 600 mg/day of ALA on the markers of oxidative stress (OxS) and inflammation and RAGE in older adults with T2DM. A quasiexperimental study was carried out with a sample of 135 sedentary subjects (98 women and 37 men) with a mean age of 64 ± 1 years, who all had T2DM. The sample was divided into three groups: (i) experimental group (EG) with 50 subjects, (ii) placebo group (PG) with 50 subjects, and control group (CG) with 35 subjects. We obtained the following measurements in all subjects (pre- and posttreatment): glycosylated hemoglobin (HbA1c), receptor for advanced glycation end products (RAGE), 8-isoprostane, superoxide dismutase (SOD), glutathione peroxidase (GPx), total antioxidant status (TAS), and inflammatory (CRP, TNF-α, IL-6, IL-8, and IL-10) markers. Regarding the effect of ALA on HbA1c, a decrease was observed in the EG (baseline 8.9 ± 0.2 vs. posttreatment 8.6 ± 0.3) and the PG (baseline 8.8 ± 0.2 vs. posttreatment 8.4 ± 0.3) compared to the CG (baseline 8.8 ± 0.3 vs. six months 9.1 ± 0.3) although the difference was not statistically significant (p < 0.05). There was a statistically significant decrease (p < 0.05) in the blood concentration of 8-isoprostane in the EG and PG with respect to the CG (EG: baseline 100 ± 3 vs. posttreatment 57 ± 3, PG: baseline 106 ± 7 vs. posttreatment 77 ± 5, and CG: baseline 94 ± 10 vs. six months 107 ± 11 pg/mL). Likewise, a statistically significant decrease (p < 0.05) in the concentration of the RAGE was found in the EG (baseline 1636 ± 88 vs. posttreatment 1144 ± 68) and the PG (baseline 1506 ± 97 vs. posttreatment 1016 ± 82) compared to CG (baseline 1407 ± 112 vs. six months 1506 ± 128). A statistically significant decrease was also observed in all markers of inflammation and in the activity of SOD and GPx in the CG with respect to the EG and PG. Our findings suggest that the administration of ALA at a dose of 600 mg/day for six months has a similar effect to that of placebo on oxidative stress, inflammation, and RAGE in older adults with T2DM. Therefore, higher doses of ALA should be tried to have this effect. This trial is registered with trial registration number ISRCTN13159380.
Collapse
Affiliation(s)
| | | | - Juana Rosado-Pérez
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City, Mexico
| | - Edelmiro Santiago-Osorio
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, Mexico City, Mexico
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| | | |
Collapse
|
41
|
Oliveira-Abreu K, Silva-Dos-Santos NM, Coelho-de-Souza AN, Ferreira-da-Silva FW, Silva-Alves KSD, Cardoso-Teixeira AC, Cipolla-Neto J, Leal-Cardoso JH. Melatonin Reduces Excitability in Dorsal Root Ganglia Neurons with Inflection on the Repolarization Phase of the Action Potential. Int J Mol Sci 2019; 20:ijms20112611. [PMID: 31141907 PMCID: PMC6600424 DOI: 10.3390/ijms20112611] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/23/2019] [Indexed: 12/22/2022] Open
Abstract
Melatonin is a neurohormone produced and secreted at night by pineal gland. Many effects of melatonin have already been described, for example: Activation of potassium channels in the suprachiasmatic nucleus and inhibition of excitability of a sub-population of neurons of the dorsal root ganglia (DRG). The DRG is described as a structure with several neuronal populations. One classification, based on the repolarizing phase of the action potential (AP), divides DRG neurons into two types: Without (N0) and with (Ninf) inflection on the repolarization phase of the action potential. We have previously demonstrated that melatonin inhibits excitability in N0 neurons, and in the present work, we aimed to investigate the melatonin effects on the other neurons (Ninf) of the DRG neuronal population. This investigation was done using sharp microelectrode technique in the current clamp mode. Melatonin (0.01–1000.0 nM) showed inhibitory activity on neuronal excitability, which can be observed by the blockade of the AP and by the increase in rheobase. However, we observed that, while some neurons were sensitive to melatonin effect on excitability (excitability melatonin sensitive—EMS), other neurons were not sensitive to melatonin effect on excitability (excitability melatonin not sensitive—EMNS). Concerning the passive electrophysiological properties of the neurons, melatonin caused a hyperpolarization of the resting membrane potential in both cell types. Regarding the input resistance (Rin), melatonin did not change this parameter in the EMS cells, but increased its values in the EMNS cells. Melatonin also altered several AP parameters in EMS cells, the most conspicuously changed was the (dV/dt)max of AP depolarization, which is in coherence with melatonin effects on excitability. Otherwise, in EMNS cells, melatonin (0.1–1000.0 nM) induced no alteration of (dV/dt)max of AP depolarization. Thus, taking these data together, and the data of previous publication on melatonin effect on N0 neurons shows that this substance has a greater pharmacological potency on Ninf neurons. We suggest that melatonin has important physiological function related to Ninf neurons and this is likely to bear a potential relevant therapeutic use, since Ninf neurons are related to nociception.
Collapse
Affiliation(s)
- Klausen Oliveira-Abreu
- Laboratório de Eletrofisiologia, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza 60714-903, CE, Brazil.
| | - Nathalia Maria Silva-Dos-Santos
- Laboratório de Eletrofisiologia, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza 60714-903, CE, Brazil.
| | - Andrelina Noronha Coelho-de-Souza
- Laboratório de Eletrofisiologia, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza 60714-903, CE, Brazil.
| | - Francisco Walber Ferreira-da-Silva
- Laboratório de Eletrofisiologia, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza 60714-903, CE, Brazil.
| | - Kerly Shamyra da Silva-Alves
- Laboratório de Eletrofisiologia, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza 60714-903, CE, Brazil.
| | - Ana Carolina Cardoso-Teixeira
- Laboratório de Eletrofisiologia, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza 60714-903, CE, Brazil.
| | - José Cipolla-Neto
- Laboratório de Neurobiologia, Instituto de Ciências Biomédicas 1, Universidade de São Paulo, São Paulo 05508-000, SP, Brasil.
| | - José Henrique Leal-Cardoso
- Laboratório de Eletrofisiologia, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza 60714-903, CE, Brazil.
| |
Collapse
|
42
|
Wang C, Liu Z, Zhang P, Ma X, Che K, Wang Y. The differences in homeostasis model assessment values in type 2 diabetic patients with different lengths of history of diabetes. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2019; 63:222-227. [PMID: 31066759 PMCID: PMC10522207 DOI: 10.20945/2359-3997000000134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/17/2019] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Type 2 diabetes (T2DM) is characterized by the progressive deterioration of pancreatic islet β-cell function over time and insulin resistance. Knowing more about the differences in pancreatic islet function in T2DM patients who have had diabetes for different lengths of time can help improve therapy for T2DM. SUBJECTS AND METHODS We conducted a cross-sectional study to compare islet β-cell function and insulin resistance in T2DM patients (n = 3,254) who had had diabetes for different lengths of time and those in normal controls (n = 794) using ANOVA and LSD analysis. RESULTS We found that compared with that in normal controls, HOMA-β in T2DM patients with a history of diabetes of less than 1 year was lower (approximately 52% of that of normal controls, p = 0.003), while HOMA-IR in these patients was higher (approximately 50% of that of normal controls, p = 0.007). Compared with that in other diabetic patients, HOMA-β in patients with a history of diabetes of more than 30 years was the lowest. HOMA-IR in patients with a history of diabetes of between 20 and 30 years was lower than that in other diabetic patients (p < 0.05). CONCLUSIONS There were obvious decreases in HOMA-β and increases in HOMA-IR in T2DM patients with a history of diabetes of less than 1 year compared with those in normal controls. Therefore, early screening and intervention for T2DM might help improve islet function and delay the progression of diabetes.
Collapse
Affiliation(s)
- Chen Wang
- Endocrinology DepartmentThe Affiliated Hospital of Qingdao UniversityQingdaoShandongChinaEndocrinology Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zaibo Liu
- Department of General SurgeryPeople’s Hospital of HaiyangYantaiShandongChinaDepartment of General Surgery, People’s Hospital of Haiyang, Yantai, Shandong, China
| | - Peng Zhang
- Department of Gastroenterology,The Affiliated Hospital of Qingdao UniversityQingdaoShandongChinaDepartment of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaolong Ma
- Endocrinology DepartmentThe Affiliated Hospital of Qingdao UniversityQingdaoShandongChinaEndocrinology Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Kui Che
- Laboratory of Thyroid DiseaseThe Affiliated Hospital of Qingdao UniversityQingdaoShandongChinaLaboratory of Thyroid Disease, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yangang Wang
- Endocrinology DepartmentThe Affiliated Hospital of Qingdao UniversityQingdaoShandongChinaEndocrinology Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
43
|
Dos Santos JM, Tewari S, Mendes RH. The Role of Oxidative Stress in the Development of Diabetes Mellitus and Its Complications. J Diabetes Res 2019; 2019:4189813. [PMID: 31192263 PMCID: PMC6525877 DOI: 10.1155/2019/4189813] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 01/01/2023] Open
Affiliation(s)
- Julia M. Dos Santos
- School of Education, Health and Human Performance, Fairmont State University, West Virginia, USA
- Henry Ford College, Dearborn, Michigan, USA
| | - Shikha Tewari
- Department of Pathology, King George Medical University, Lucknow, India
| | - Roberta H. Mendes
- UCD School of Agriculture and Food Science Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
44
|
Yin J, Ren W, Chen S, Li Y, Han H, Gao J, Liu G, Wu X, Li T, Woo Kim S, Yin Y. Metabolic Regulation of Methionine Restriction in Diabetes. Mol Nutr Food Res 2018; 62:e1700951. [PMID: 29603632 DOI: 10.1002/mnfr.201700951] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/25/2018] [Indexed: 12/16/2022]
Abstract
Although the effects of dietary methionine restriction have been investigated in the physiology of aging and diseases related to oxidative stress, the relationship between methionine restriction (MR) and the development of metabolic disorders has not been explored extensively. This review summarizes studies of the possible involvement of dietary methionine restriction in improving insulin resistance, glucose homeostasis, oxidative stress, lipid metabolism, the pentose phosphate pathway (PPP), and inflammation, with an emphasis on the fibroblast growth factor 21 and protein phosphatase 2A signals and autophagy in diabetes. Diets deficient in methionine may be a useful nutritional strategy in patients with diabetes.
Collapse
Affiliation(s)
- Jie Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China.,Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, PR, China
| | - Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product, Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shuai Chen
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, PR, China
| | - Yuying Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, PR, China
| | - Hui Han
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, PR, China
| | - Jing Gao
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, PR, China
| | - Gang Liu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Xin Wu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, PR, China
| | - Tiejun Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, PR, China
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China.,Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, PR, China
| |
Collapse
|
45
|
Gurel-Gokmen B, Ipekci H, Oktay S, Alev B, Ustundag UV, Ak E, Akakın D, Sener G, Emekli-Alturfan E, Yarat A, Tunali-Akbay T. Melatonin improves hyperglycemia induced damages in rat brain. Diabetes Metab Res Rev 2018; 34:e3060. [PMID: 30098300 DOI: 10.1002/dmrr.3060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/14/2018] [Accepted: 07/30/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Diabetes mellitus is an endocrine disorder which is characterized by the development of resistance to the cellular activity of insulin or inadequate insulin production. It leads to hyperglycemia, prolonged inflammation, and oxidative stress. Oxidative stress is assumed to play an important role in the development of diabetic complications. Melatonin is the hormone that interacts with insulin in diabetes. Therefore, in this study, the effects of melatonin treatment with or without insulin were examined in diabetic rat brain. METHODS Rats were divided into five groups as control, diabetes, diabetes + insulin, diabetes + melatonin, and diabetes + melatonin + insulin. Experimental diabetes was induced by streptozotocin (60 mg/kg, i.p.). Twelve weeks after diabetes induction, rats were decapitated. Malondialdehyde, glutathione, sialic acid and nitric oxide levels, superoxide dismutase, catalase, glutathione-S-transferase, myeloperoxidase, and tissue factor activities were determined in brain tissue. RESULTS Melatonin alone showed its antioxidant effect by increasing brain glutathione level, superoxide dismutase, catalase, and glutathione-S-transferase activities and decreasing malondialdehyde level in experimental diabetes. Although insulin did not have a significant effect on glutathione and glutathione-S-transferase, its effects on lipid peroxidation, superoxide dismutase, and catalase were similar to melatonin; insulin also decreased myolopeoxidase activity and increased tissue factor activity. Combined melatonin and insulin treatment mimicked the effects of insulin. CONCLUSION Addition of melatonin to the insulin treatment did not change the effects of insulin, but the detailed role of melatonin alone in the treatment of diabetes merits further experimental and clinical investigation.
Collapse
Affiliation(s)
- Begum Gurel-Gokmen
- Basic Medical Sciences, Biochemistry, Marmara University, Faculty of Dentistry, Istanbul, Turkey
| | - Hazal Ipekci
- Basic Medical Sciences, Biochemistry, Marmara University, Faculty of Dentistry, Istanbul, Turkey
| | - Sehkar Oktay
- Basic Medical Sciences, Biochemistry, Marmara University, Faculty of Dentistry, Istanbul, Turkey
| | - Burcın Alev
- Basic Medical Sciences, Biochemistry, Marmara University, Faculty of Dentistry, Istanbul, Turkey
| | - Unsal Velı Ustundag
- Basic Medical Sciences, Biochemistry, Marmara University, Faculty of Dentistry, Istanbul, Turkey
| | - Esın Ak
- Basic Medical Sciences, Histology and Embryology, Marmara University, Faculty of Dentistry, Istanbul, Turkey
| | - Dılek Akakın
- Basic Medical Sciences, Histology and Embryology, Marmara University, Faculty of Medicine, Istanbul, Turkey
| | - Goksel Sener
- Pharmacology, Marmara University, Faculty of Pharmacy, Istanbul, Turkey
| | - Ebru Emekli-Alturfan
- Basic Medical Sciences, Biochemistry, Marmara University, Faculty of Dentistry, Istanbul, Turkey
| | - Aysen Yarat
- Basic Medical Sciences, Biochemistry, Marmara University, Faculty of Dentistry, Istanbul, Turkey
| | - Tugba Tunali-Akbay
- Basic Medical Sciences, Biochemistry, Marmara University, Faculty of Dentistry, Istanbul, Turkey
| |
Collapse
|
46
|
Montalbano G, Mania M, Abbate F, Navarra M, Guerrera MC, Laura R, Vega JA, Levanti M, Germanà A. Melatonin treatment suppresses appetite genes and improves adipose tissue plasticity in diet-induced obese zebrafish. Endocrine 2018; 62:381-393. [PMID: 29926348 DOI: 10.1007/s12020-018-1653-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/12/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE Overweight and obesity are important risk factors for diabetes, cardiovascular diseases, and premature death in modern society. Recently, numerous natural and synthetic compounds have been tested in diet-induced obese animal models, to counteract obesity. Melatonin is a circadian hormone, produced by pineal gland and extra-pineal sources, involved in processes which have in common a rhythmic expression. In teleost, it can control energy balance by activating or inhibiting appetite-related peptides. The study aims at testing effects of melatonin administration to control-fed and overfed zebrafish, in terms of expression levels of orexigenic (Ghrelin, orexin, NPY) and anorexigenic (leptin, POMC) genes expression and morphometry of visceral and subcutaneous fat depots. METHODS Adult male zebrafish (n = 56) were divided into four dietary groups: control, overfed, control + melatonin, overfed + melatonin. The treatment lasted 5 weeks and BMI levels of every fish were measured each week. After this period fishes were sacrificed; morphological and morphometric studies have been carried out on histological sections of adipose tissue and adipocytes. Moreover, whole zebrafish brain and intestine were used for qRT-PCR. RESULTS Our results demonstrate that melatonin supplementation may have an effect in mobilizing fat stores, in increasing basal metabolism and thus in preventing further excess fat accumulation. Melatonin stimulates the anorexigenic and inhibit the orexigenic signals. CONCLUSIONS It seems that adequate melatonin treatment exerts anti-obesity protective effects, also in a diet-induced obesity zebrafish model, that might be the result of the restoration of many factors: the final endpoint reached is weight loss and stabilization of weight gain.
Collapse
Affiliation(s)
- G Montalbano
- Department of Veterinary Sciences, University of Messina, Polo Universitario SS. Annunziata, Messina, 98168, Italy.
- Zebrafish Neuromorphology Lab, University of Messina, Polo Universitario SS. Annunziata, Messina, 98168, Italy.
| | - M Mania
- Department of Veterinary Sciences, University of Messina, Polo Universitario SS. Annunziata, Messina, 98168, Italy
| | - F Abbate
- Department of Veterinary Sciences, University of Messina, Polo Universitario SS. Annunziata, Messina, 98168, Italy
- Zebrafish Neuromorphology Lab, University of Messina, Polo Universitario SS. Annunziata, Messina, 98168, Italy
| | - M Navarra
- Department of Drug Sciences and products for Health, University of Messina, Polo Universitario SS. Annunziata, Messina, 98168, Italy
| | - M C Guerrera
- Department of Veterinary Sciences, University of Messina, Polo Universitario SS. Annunziata, Messina, 98168, Italy
- Zebrafish Neuromorphology Lab, University of Messina, Polo Universitario SS. Annunziata, Messina, 98168, Italy
| | - R Laura
- Department of Veterinary Sciences, University of Messina, Polo Universitario SS. Annunziata, Messina, 98168, Italy
| | - J A Vega
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, España, 33006, Spain
- Facultad de Ciencias de la Salud, 5 Poniente 1670, Universidad Autónoma de Chile, Talca, Chile
| | - M Levanti
- Department of Veterinary Sciences, University of Messina, Polo Universitario SS. Annunziata, Messina, 98168, Italy
- Zebrafish Neuromorphology Lab, University of Messina, Polo Universitario SS. Annunziata, Messina, 98168, Italy
| | - A Germanà
- Department of Veterinary Sciences, University of Messina, Polo Universitario SS. Annunziata, Messina, 98168, Italy
- Zebrafish Neuromorphology Lab, University of Messina, Polo Universitario SS. Annunziata, Messina, 98168, Italy
| |
Collapse
|
47
|
Strohmaier S, Devore EE, Zhang Y, Schernhammer ES. A Review of Data of Findings on Night Shift Work and the Development of DM and CVD Events: a Synthesis of the Proposed Molecular Mechanisms. Curr Diab Rep 2018; 18:132. [PMID: 30343445 PMCID: PMC6209035 DOI: 10.1007/s11892-018-1102-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Night shift work has become highly prevalent in our 24/7 societies, with up to 18% of the US work force working alternate shift schedules. However, studies indicate that there may be adverse health effects of chronic night work across diverse populations. These effects are likely due to misalignment of the circadian system with work schedules, mediated by the system's primary marker melatonin as well as other downstream molecules. RECENT FINDINGS Melatonin has multiple biologic actions that are relevant to cardiometabolic disease, including modulation of oxidative stress, inflammation, and (via the melatonin receptor) vasoconstriction. Behavioral traits, such as chronotype and meal timing, have recently been shown to interact with the effects of night work on cardiometabolic health. Together with recent findings suggesting a role for circadian genes in cardiometabolic risk, the interactions of night shift work and behavioral traits are likely to facilitate novel treatment and prevention approaches for cardiovascular disease and type 2 diabetes, incorporating aspects of clock and timing.
Collapse
Affiliation(s)
- S. Strohmaier
- 0000 0000 9259 8492grid.22937.3dDepartment of Epidemiology, Center for Public Health, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
- 000000041936754Xgrid.38142.3cChanning Division of Network Medicine, Harvard Medical School, Boston, MA USA
| | - E. E. Devore
- 000000041936754Xgrid.38142.3cChanning Division of Network Medicine, Harvard Medical School, Boston, MA USA
| | - Y. Zhang
- 000000041936754Xgrid.38142.3cChanning Division of Network Medicine, Harvard Medical School, Boston, MA USA
| | - E. S. Schernhammer
- 0000 0000 9259 8492grid.22937.3dDepartment of Epidemiology, Center for Public Health, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
- 000000041936754Xgrid.38142.3cChanning Division of Network Medicine, Harvard Medical School, Boston, MA USA
- 000000041936754Xgrid.38142.3cDepartment of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA
| |
Collapse
|
48
|
Bazyar H, Gholinezhad H, Moradi L, Salehi P, Abadi F, Ravanbakhsh M, Zare Javid A. The effects of melatonin supplementation in adjunct with non-surgical periodontal therapy on periodontal status, serum melatonin and inflammatory markers in type 2 diabetes mellitus patients with chronic periodontitis: a double-blind, placebo-controlled trial. Inflammopharmacology 2018; 27:67-76. [PMID: 30328031 DOI: 10.1007/s10787-018-0539-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/06/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Diabetes mellitus (DM) and periodontitis are two common chronic diseases with bidirectional relationship. Oxidative stress plays a key role in the pathogenesis of these two diseases. The aim of this study was to investigate the effects of melatonin supplementation in adjunct with non-surgical periodontal therapy on periodontal status, serum melatonin and inflammatory markers in type 2 DM patients with chronic periodontitis (CP). MATERIALS AND METHODS In this double-blind clinical trial study, 50 type 2 DM patients with CP were randomly allocated to the intervention and control groups. The intervention and control groups received either 6 mg melatonin or placebo (2 tablets) once a day. Serum levels of melatonin, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), hs-C-reactive protein (hs-CRP), clinical attachment loss (CAL), pocket depth (PD), bleeding on probing (BOP) and plaque index were evaluated in all subjects pre- and post-intervention. RESULTS Melatonin supplementation significantly increased the mean serum levels of melatonin after intervention. The mean changes of melatonin were significantly higher in intervention group compared with control group. IL-6 and hs-CRP levels were significantly (p = 0.008 and p = 0.017, respectively) reduced in the intervention group. The mean changes of IL-6 were significantly lower in the intervention group compared with the control group (p = 0.04). In the intervention group, PD and CAL were significantly decreased after intervention (p < 0.001). There were significant differences in the mean change of PD and CAL between the intervention and control groups after intervention (p < 0.001). CONCLUSIONS Melatonin supplementation in adjunct with non-surgical periodontal therapy might improve inflammatory and periodontal status in T2DM with CP.
Collapse
Affiliation(s)
- Hadi Bazyar
- Student Research Committee, Department of Nutrition, Faculty of Paramedical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hassan Gholinezhad
- Student Research Committee, Department of Nutrition, Faculty of Paramedical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Leila Moradi
- Health Research Institute, Diabetes Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Parvin Salehi
- Department of Periodontology, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Faezeh Abadi
- Department of Medical Surgical Nursing, Nursing and Midwifery School, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Maryam Ravanbakhsh
- Student Research Committee, Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Zare Javid
- Nutrition and Metabolic Diseases Research Center & Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
49
|
Metallic Nanoantioxidants as Potential Therapeutics for Type 2 Diabetes: A Hypothetical Background and Translational Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3407375. [PMID: 30050652 PMCID: PMC6040303 DOI: 10.1155/2018/3407375] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/04/2018] [Accepted: 05/20/2018] [Indexed: 02/06/2023]
Abstract
Hyperglycemia-induced overproduction of reactive oxygen species (ROS) is an important contributor to type 2 diabetes (T2D) pathogenesis. The conventional antioxidant therapy, however, proved to be ineffective for its treatment. This may likely be due to limited absorption profiles and low bioavailability of orally administered antioxidants. Therefore, novel antioxidant agents that may be delivered to specific target organs are actively developed now. Metallic nanoparticles (NPs), nanosized materials with a dimension of 1–100 nm, appear very promising for the treatment of T2D due to their tuned physicochemical properties and ability to modulate the level of oxidative stress. An excessive generation of ROS is considered to be the most common negative outcome related to the application of NPs. Several nanomaterials, however, were shown to exhibit enzyme-like antioxidant properties in animal models. Such NPs are commonly referred to as “nanoantioxidants.” Since NPs can provide specifically targeted or localized therapy, their use is a promising therapeutic option in addition to conventional therapy for T2D. NP-based therapies should certainly be used with caution given their potential toxicity and risk of adverse health outcomes. However, despite these challenges, NP-based therapeutic approaches have a great clinical potential and further translational studies are needed to confirm their safety and efficacy.
Collapse
|
50
|
Huang X, Li LD, Lyu GM, Shen BY, Han YF, Shi JL, Teng JL, Feng L, Si SY, Wu JH, Liu YJ, Sun LD, Yan CH. Chitosan-coated cerium oxide nanocubes accelerate cutaneous wound healing by curtailing persistent inflammation. Inorg Chem Front 2018. [DOI: 10.1039/c7qi00707h] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chitosan-coated ceria nanocubes accelerate cutaneous wound healing by curtailing persistent inflammation with powerful anti-inflammation and anti-oxidation properties.
Collapse
|