1
|
Khasa R, Ogden SC, Wang Y, Mou Z, Metzler AD, Xie X, Dai X, Tang H. A single mutation in the PrM gene of Zika virus determines AXL dependency for infection of human neural cells. J Virol 2025; 99:e0187324. [PMID: 40062839 PMCID: PMC11998517 DOI: 10.1128/jvi.01873-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/13/2025] [Indexed: 04/16/2025] Open
Abstract
Zika virus (ZIKV) is spread by mosquito bites and is unique among known flaviviruses for being able to cause microcephaly. Entry factors for ZIKV are incompletely understood, but phosphatidylserine (PS) receptors, including the TAM (Tyro3, AXL, and Mer) and TIM (T-cell Ig mucin) families, can serve as cofactors for flavivirus entry in a cell type-specific manner. We identify AXL as the top hit in a CRISPR/Cas9 genome-wide screen in human glioblastoma cells and establish a definitive role of AXL, but not TYRO3 or MerTK, for ZIKV infection. Additionally, Spondweni virus also shows AXL dependency, while dengue virus infection is not affected by AXL knockout. Passage of ZIKV in AXL knockout (KO) cells generated a mutant virus capable of infection via AXL-independent mechanisms, and multiple independent selections identified a common mutation, H83R, in the prM coding region of the ZIKV genome. The mutant virus exhibits an increased infectivity rate in AXL KO cells as compared to wild-type ZIKV and is dependent upon the single H83R mutation. The mutant virus' ability to infect cells in an AXL-independent manner is unrelated to interferon signaling antagonism but likely pertains to a change in virus maturation that leads to a structural disturbance of the ZIKV virion. Our study provides evidence for a potential mechanism linking the viral structural proteins and host PS receptor usage during flavivirus infection.IMPORTANCEA major challenge in elucidating the mechanism of Zika virus (ZIKV) pathogenesis is the multitude of cell types it infects with distinct requirements. The role of phosphatidylserine (PS) receptors in ZIKV infection is cell type-specific, and the controversy surrounds their function in flavivirus entry. Here, we establish a definitive requirement of AXL for infection of human glioblastoma cells by both Zika and Spondweni virus. We then identified a single amino acid mutation (H83R) in the prM protein of ZIKV that allowed AXL-independent infection of these cells. The H83R-mediated escape of AXL requirement is independent of interferon (IFN) signaling suppression by AXL; instead, the mutation has the potential to disrupt the virus assembly and virion structure. This study reveals a previously unknown connection between the PS receptor usage and the flavivirus prM gene, which can guide detailed molecular mechanism studies of the interplay between virion assembly and virus entry.
Collapse
Affiliation(s)
- Renu Khasa
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Sarah C. Ogden
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Yuqing Wang
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Zongiun Mou
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Anna D. Metzler
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Xuping Xie
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Xinghong Dai
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
2
|
Huang C, Jiang T, Pan W, Feng T, Zhou X, Wu Q, Ma F, Dai J. Ubiquitination of NS1 Confers Differential Adaptation of Zika Virus in Mammalian Hosts and Mosquito Vectors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408024. [PMID: 39159062 PMCID: PMC11497017 DOI: 10.1002/advs.202408024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Indexed: 08/21/2024]
Abstract
Arboviruses, transmitted by medical arthropods, pose a serious health threat worldwide. During viral infection, Post Translational Modifications (PTMs) are present on both host and viral proteins, regulating multiple processes of the viral lifecycle. In this study, a mammalian E3 ubiquitin ligase WWP2 (WW domain containing E3 ubiquitin ligase 2) is identified, which interacts with the NS1 protein of Zika virus (ZIKV) and mediates K63 and K48 ubiquitination of Lys 265 and Lys 284, respectively. WWP2-mediated NS1 ubiquitination leads to NS1 degradation via the ubiquitin-proteasome pathway, thereby inhibiting ZIKV infection in mammalian hosts. Simultaneously, it is found Su(dx), a protein highly homologous to host WWP2 in mosquitoes, is capable of ubiquitinating NS1 in mosquito cells. Unexpectedly, ubiquitination of NS1 in mosquitoes does not lead to NS1 degradation; instead, it promotes viral infection in mosquitoes. Correspondingly, the NS1 K265R mutant virus is less infectious to mosquitoes than the wild-type (WT) virus. The above results suggest that the ubiquitination of the NS1 protein confers different adaptations of ZIKV to hosts and vectors, and more importantly, this explains why NS1 K265-type strains have become predominantly endemic in nature. This study highlights the potential application in antiviral drug and vaccine development by targeting viral proteins' PTMs.
Collapse
Affiliation(s)
- Chenxiao Huang
- Institutes of Biology and Medical SciencesMOE Key Laboratory of Geriatric Diseases and ImmunologyJiangsu Key Laboratory of Infection and ImmunitySoochow UniversitySuzhou215000China
- Department of Clinical LaboratoryThe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu School of Nanjing Medical UniversitySuzhou215000China
| | - Tao Jiang
- Institutes of Biology and Medical SciencesMOE Key Laboratory of Geriatric Diseases and ImmunologyJiangsu Key Laboratory of Infection and ImmunitySoochow UniversitySuzhou215000China
| | - Wen Pan
- Institutes of Biology and Medical SciencesMOE Key Laboratory of Geriatric Diseases and ImmunologyJiangsu Key Laboratory of Infection and ImmunitySoochow UniversitySuzhou215000China
| | - Tingting Feng
- Institutes of Biology and Medical SciencesMOE Key Laboratory of Geriatric Diseases and ImmunologyJiangsu Key Laboratory of Infection and ImmunitySoochow UniversitySuzhou215000China
| | - Xia Zhou
- School of Biology and Basic Medical ScienceSuzhou Medical College of Soochow UniversitySuzhou215000China
| | - Qihan Wu
- Shanghai‐MOST Key Laboratory of Health and Disease GenomicsNHC Key Lab of Reproduction RegulationShanghai Institute for Biomedical and Pharmaceutical TechnologiesShanghai200000China
| | - Feng Ma
- National Key Laboratory of Immunity and Inflammationand CAMS Key Laboratory of Synthetic Biology Regulatory ElementsSuzhou Institute of Systems MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeSuzhou215123China
| | - Jianfeng Dai
- Institutes of Biology and Medical SciencesMOE Key Laboratory of Geriatric Diseases and ImmunologyJiangsu Key Laboratory of Infection and ImmunitySoochow UniversitySuzhou215000China
| |
Collapse
|
3
|
Göbel S, Kazemi O, Ma J, Jordan I, Sandig V, Paulissen J, Kerstens W, Thibaut HJ, Reichl U, Dallmeier K, Genzel Y. Parallel Multifactorial Process Optimization and Intensification for High-Yield Production of Live YF17D-Vectored Zika Vaccine. Vaccines (Basel) 2024; 12:755. [PMID: 39066393 PMCID: PMC11281342 DOI: 10.3390/vaccines12070755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
The live-attenuated yellow fever 17D strain is a potent vaccine and viral vector. Its manufacture is based on embryonated chicken eggs or adherent Vero cells. Both processes are unsuitable for rapid and scalable supply. Here, we introduce a high-throughput workflow to identify suspension cells that are fit for the high-yield production of live YF17D-based vaccines in an intensified upstream process. The use of an automated parallel ambr15 microbioreactor system for screening and process optimization has led to the identification of two promising cell lines (AGE1.CR.pIX and HEKDyn) and the establishment of optimized production conditions, which have resulted in a >100-fold increase in virus titers compared to the current state of the art using adherent Vero cells. The process can readily be scaled up from the microbioreactor scale (15 mL) to 1 L stirred tank bioreactors. The viruses produced are genetically stable and maintain their favorable safety and immunogenicity profile, as demonstrated by the absence of neurovirulence in suckling BALB/c mice and consistent seroprotection in AG129 mice. In conclusion, the presented workflow allows for the rapid establishment of a robust, scalable, and high-yield process for the production of live-attenuated orthoflavivirus vaccines, which outperforms current standards. The approach described here can serve as a model for the development of scalable processes and the optimization of yields for other virus-based vaccines that face challenges in meeting growing demands.
Collapse
Affiliation(s)
- Sven Göbel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany; (S.G.)
| | - Ozeir Kazemi
- KU Leuven Department of Microbiology, Immunology & Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery (MVVD), 3000 Leuven, Belgium; (K.D.)
| | - Ji Ma
- KU Leuven Department of Microbiology, Immunology & Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery (MVVD), 3000 Leuven, Belgium; (K.D.)
| | | | | | - Jasmine Paulissen
- KU Leuven Department of Microbiology, Immunology & Transplantation, Rega Institute, Translational Platform Virology and Chemotherapy (TPVC), 3000 Leuven, Belgium
| | - Winnie Kerstens
- KU Leuven Department of Microbiology, Immunology & Transplantation, Rega Institute, Translational Platform Virology and Chemotherapy (TPVC), 3000 Leuven, Belgium
| | - Hendrik Jan Thibaut
- KU Leuven Department of Microbiology, Immunology & Transplantation, Rega Institute, Translational Platform Virology and Chemotherapy (TPVC), 3000 Leuven, Belgium
| | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany; (S.G.)
- Bioprocess Engineering, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Kai Dallmeier
- KU Leuven Department of Microbiology, Immunology & Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery (MVVD), 3000 Leuven, Belgium; (K.D.)
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany; (S.G.)
| |
Collapse
|
4
|
Liao KC, Xie X, Sundstrom AKB, Lim XN, Tan KK, Zhang Y, Zou J, Bifani AM, Poh HX, Chen JJ, Ng WC, Lim SY, Ooi EE, Sessions OM, Tay Y, Shi PY, Huber RG, Wan Y. Dengue and Zika RNA-RNA interactomes reveal pro- and anti-viral RNA in human cells. Genome Biol 2023; 24:279. [PMID: 38053173 PMCID: PMC10696742 DOI: 10.1186/s13059-023-03110-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Identifying host factors is key to understanding RNA virus pathogenicity. Besides proteins, RNAs can interact with virus genomes to impact replication. RESULTS Here, we use proximity ligation sequencing to identify virus-host RNA interactions for four strains of Zika virus (ZIKV) and one strain of dengue virus (DENV-1) in human cells. We find hundreds of coding and non-coding RNAs that bind to DENV and ZIKV viruses. Host RNAs tend to bind to single-stranded regions along the virus genomes according to hybridization energetics. Compared to SARS-CoV-2 interactors, ZIKV-interacting host RNAs tend to be downregulated upon virus infection. Knockdown of several short non-coding RNAs, including miR19a-3p, and 7SK RNA results in a decrease in viral replication, suggesting that they act as virus-permissive factors. In addition, the 3'UTR of DYNLT1 mRNA acts as a virus-restrictive factor by binding to the conserved dumbbell region on DENV and ZIKV 3'UTR to decrease virus replication. We also identify a conserved set of host RNAs that interacts with DENV, ZIKV, and SARS-CoV-2, suggesting that these RNAs are broadly important for RNA virus infection. CONCLUSIONS This study demonstrates that host RNAs can impact virus replication in permissive and restrictive ways, expanding our understanding of host factors and RNA-based gene regulation during viral pathogenesis.
Collapse
Affiliation(s)
- Kuo-Chieh Liao
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore, 138672, Singapore
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Anna Karin Beatrice Sundstrom
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Xin Ni Lim
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore, 138672, Singapore
| | - Kiat Kee Tan
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore, 138672, Singapore
| | - Yu Zhang
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore, 138672, Singapore
| | - Jing Zou
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Amanda Makha Bifani
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Hui Xian Poh
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore, 138672, Singapore
| | - Jia Jia Chen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Wy Ching Ng
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Su Ying Lim
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore, 138672, Singapore
| | - Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singapore
| | - October M Sessions
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 117549, Singapore
- Department of Pharmacy, National University of Singapore, Singapore, 117559, Singapore
| | - Yvonne Tay
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| | - Roland G Huber
- Biomolecular Function Discovery, Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Matrix #07-01, Singapore, 138671, Singapore.
| | - Yue Wan
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore, 138672, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
5
|
Nazneen F, Thompson EA, Blackwell C, Bai JS, Huang F, Bai F. An effective live-attenuated Zika vaccine candidate with a modified 5' untranslated region. NPJ Vaccines 2023; 8:50. [PMID: 37005424 PMCID: PMC10066991 DOI: 10.1038/s41541-023-00650-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/17/2023] [Indexed: 04/04/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-transmitted flavivirus that has caused devastating congenital Zika syndrome (CZS), including microcephaly, congenital malformation, and fetal demise in human newborns in recent epidemics. ZIKV infection can also cause Guillain-Barré syndrome (GBS) and meningoencephalitis in adults. Despite intensive research in recent years, there are no approved vaccines or antiviral therapeutics against CZS and adult Zika diseases. In this report, we developed a novel live-attenuated ZIKV strain (named Z7) by inserting 50 RNA nucleotides (nt) into the 5' untranslated region (UTR) of a pre-epidemic ZIKV Cambodian strain, FSS13025. We used this particular ZIKV strain as it is attenuated in neurovirulence, immune antagonism, and mosquito infectivity compared with the American epidemic isolates. Our data demonstrate that Z7 replicates efficiently and produces high titers without causing apparent cytopathic effects (CPE) in Vero cells or losing the insert sequence, even after ten passages. Significantly, Z7 induces robust humoral and cellular immune responses that completely prevent viremia after a challenge with a high dose of an American epidemic ZIKV strain PRVABC59 infection in type I interferon (IFN) receptor A deficient (Ifnar1-/-) mice. Moreover, adoptive transfer of plasma collected from Z7 immunized mice protects Ifnar1-/- mice from ZIKV (strain PRVABC59) infection. These results suggest that modifying the ZIKV 5' UTR is a novel strategy to develop live-attenuated vaccine candidates for ZIKV and potentially for other flaviviruses.
Collapse
Affiliation(s)
- Farzana Nazneen
- Cell and Molecular Biology Program, Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - E Ashley Thompson
- Cell and Molecular Biology Program, Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Claire Blackwell
- Cell and Molecular Biology Program, Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Jonathan S Bai
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Faqing Huang
- Chemistry and Biochemistry Program, Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Fengwei Bai
- Cell and Molecular Biology Program, Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA.
| |
Collapse
|
6
|
Jung HG, Cho H, Kim M, Jung H, Bak Y, Lee SY, Seo HY, Son YM, Woo H, Yoon G, Kim SJ, Oh JW. Influence of Zika virus 3'-end sequence and nonstructural protein evolution on the viral replication competence and virulence. Emerg Microbes Infect 2022; 11:2447-2465. [PMID: 36149812 PMCID: PMC9621255 DOI: 10.1080/22221751.2022.2128433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/20/2022] [Indexed: 11/09/2022]
Abstract
Zika virus (ZIKV) has been circulating in human networks over 70 years since its first appearance in Africa, yet little is known about whether the viral 3'-terminal sequence and nonstructural (NS) protein diverged genetically from ancient ZIKV have different effects on viral replication and virulence in currently prevailing Asian lineage ZIKV. Here we show, by a reverse genetics approach using an infectious cDNA clone for a consensus sequence (Con1) of ZIKV, which represents Asian ZIKV strains, and another clone derived from the MR766 strain isolated in Uganda, Africa in 1947, that the 3'-end sequence -UUUCU-3' homogeneously present in MR766 genome and the -GUCU-3' sequence strictly conserved in Asian ZIKV isolates are functionally equivalent in viral replication and gene expression. By gene swapping experiments using the two infectious cDNA clones, we show that the NS1-5 proteins of MR766 enhance replication competence of ZIKV Con1. The Con1, which was less virulent than MR766, acquired severe bilateral hindlimb paralysis when its NS1-5 genes were replaced by the counterparts of MR766 in type I interferon receptor (IFNAR1)-deficient A129 mice. Moreover, MR766 NS5 RNA-dependent RNA polymerase (RdRp) alone also rendered the Con1 virulent, despite there being no difference in RdRp activity between MR766 and Con1 NS5 proteins. By contrast, the Con1 derivatives expressing MR766 Nsps, like Con1, did not develop severe disease in wild-type mice treated with an IFNAR1 blocking antibody. Together, our findings uncover an unprecedented role for ZIKV NS proteins in determining viral pathogenicity in immunocompromised hosts.
Collapse
Affiliation(s)
- Hae-Gwang Jung
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Hee Cho
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Minwoo Kim
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Haewon Jung
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Yeonju Bak
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Se-Young Lee
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Han Young Seo
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Yu-Min Son
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Hawon Woo
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Gone Yoon
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Seong-Jun Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Jong-Won Oh
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| |
Collapse
|
7
|
Wu X, Pan Y, Huang J, Huang S, Wang M, Chen S, Liu M, Zhu D, Zhao X, Wu Y, Yang Q, Zhang S, Ou X, Zhang L, Liu Y, Yu Y, Gao Q, Mao S, Sun D, Tian B, Yin Z, Jing B, Cheng A, Jia R. The substitution at residue 218 of the NS5 protein methyltransferase domain of Tembusu virus impairs viral replication and translation and may triggers RIG-I-like receptor signaling. Poult Sci 2022; 101:102017. [PMID: 35901648 PMCID: PMC9334331 DOI: 10.1016/j.psj.2022.102017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/04/2022] [Accepted: 06/14/2022] [Indexed: 11/28/2022] Open
Abstract
Flavivirus RNA cap-methylation plays an important role in viral infection, proliferation, and escape from innate immunity. The methyltransferase (MTase) of the flavivirus NS5 protein catalyzes viral RNA methylation. The E218 amino acid of the NS5 protein MTase domain is one of the active sites of flavivirus methyltransferase. In flaviviruses, the E218A mutation abolished 2’-O methylation activity and significantly reduced N-7 methylation activity. Tembusu virus (TMUV, genus Flavivirus) was a pathogen that caused neurological symptoms in ducklings and decreased egg production in laying ducks. In this study, we focused on a comprehensive understanding of the effects of the E218A mutation on TMUV characteristics and the host immune response. E218A mutation reduced TMUV replication and proliferation, but did not affect viral adsorption and entry. Based on a TMUV replicon system, we found that the E218A mutation impaired viral translation. In addition, E218A mutant virus might be more readily recognized by RIG-I-like receptors to activate the corresponding antiviral immune signaling than WT virus. Together, our data suggest that the E218A mutation of TMUV MTase domain impairs viral replication and translation and may activates RIG-I-like receptor signaling, ultimately leading to a reduction in viral proliferation.
Collapse
Affiliation(s)
- Xuedong Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China
| | - Yuhong Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China
| | - Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China
| | - Shanzhi Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu City, Sichuan Province, 611130, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu City, Sichuan Province, 611130, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu City, Sichuan Province, 611130, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu City, Sichuan Province, 611130, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu City, Sichuan Province, 611130, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu City, Sichuan Province, 611130, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu City, Sichuan Province, 611130, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu City, Sichuan Province, 611130, China
| | - Xumin Ou
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu City, Sichuan Province, 611130, China
| | - Ling Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China
| | - Yunya Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China
| | - Yanling Yu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China
| | - Qun Gao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China
| | - Sai Mao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China
| | - Di Sun
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China
| | - Bin Tian
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu City, Sichuan Province, 611130, China
| | - Bo Jing
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu City, Sichuan Province, 611130, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu City, Sichuan Province, 611130, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu City, Sichuan Province, 611130, China.
| |
Collapse
|
8
|
Gullo G, Scaglione M, Cucinella G, Riva A, Coldebella D, Cavaliere AF, Signore F, Buzzaccarini G, Spagnol G, Laganà AS, Noventa M, Zaami S. Congenital Zika Syndrome: Genetic Avenues for Diagnosis and Therapy, Possible Management and Long-Term Outcomes. J Clin Med 2022; 11:jcm11051351. [PMID: 35268441 PMCID: PMC8911172 DOI: 10.3390/jcm11051351] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 02/01/2023] Open
Abstract
Zika virus (ZIKV) was discovered in Uganda in 1947 and was originally isolated only in Africa and Asia. After a spike of microcephaly cases in Brazil, research has closely focused on different aspects of congenital ZIKV infection. In this review, we evaluated many aspects of the disease in order to build its natural history, with a focus on the long-term clinical and neuro-radiological outcomes in children. The authors have conducted a wide-ranging search spanning the 2012–2021 period from databases PubMed, PubMed Central, Web of Science, Medline, Scopus. Different sections reflect different points of congenital ZIKV infection syndrome: pathogenesis, prenatal diagnosis, clinical signs, neuroimaging and long-term developmental outcomes. It emerged that pathogenesis has not been fully clarified and that the clinical signs are not only limited to microcephaly. Given the current absence of treatments, we proposed schemes to optimize diagnostic protocols in endemic countries. It is essential to know the key aspects of this disease to guarantee early diagnosis, even in less severe cases, and an adequate management of the main chronic problems. Considering the relatively recent discovery of this congenital infectious syndrome, further studies and updated long-term follow-up are needed to further improve management strategies for this disease.
Collapse
Affiliation(s)
- Giuseppe Gullo
- Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital IVF UNIT, University of Palermo, 90146 Palermo, Italy; (G.G.); (G.C.)
| | - Marco Scaglione
- School of Medicine and Surgery, University of Palermo, 90127 Palermo, Italy;
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy
| | - Gaspare Cucinella
- Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital IVF UNIT, University of Palermo, 90146 Palermo, Italy; (G.G.); (G.C.)
| | - Arianna Riva
- Department of Women’s and Children’s Health, Padova Hospital, 35128 Padova, Italy;
| | - Davide Coldebella
- Department of Women’s and Children’s Health, Gynaecological Clinic, University of Padova, 35128 Padova, Italy; (D.C.); (G.B.); (G.S.); (M.N.)
| | - Anna Franca Cavaliere
- Department of Gynecology and Obstetrics, Santo Stefano Hospital, ULS Toscana Centro, 59100 Rome, Italy;
| | - Fabrizio Signore
- Department of Gynecology and Obstetrics, Sant’Eugenio Hospital, 00144 Rome, Italy;
| | - Giovanni Buzzaccarini
- Department of Women’s and Children’s Health, Gynaecological Clinic, University of Padova, 35128 Padova, Italy; (D.C.); (G.B.); (G.S.); (M.N.)
| | - Giulia Spagnol
- Department of Women’s and Children’s Health, Gynaecological Clinic, University of Padova, 35128 Padova, Italy; (D.C.); (G.B.); (G.S.); (M.N.)
| | - Antonio Simone Laganà
- Department of Obstetrics and Gynecology, “Filippo Del Ponte” Hospital, University of Insubria, 21100 Varese, Italy;
| | - Marco Noventa
- Department of Women’s and Children’s Health, Gynaecological Clinic, University of Padova, 35128 Padova, Italy; (D.C.); (G.B.); (G.S.); (M.N.)
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, “Sapienza” University of Rome, 00161 Rome, Italy
- Correspondence:
| |
Collapse
|
9
|
Wu X, Zhang Y, Wang M, Chen S, Liu M, Zhu D, Zhao X, Wu Y, Yang Q, Zhang S, Huang J, Ou X, Zhang L, Liu Y, Yu Y, Gao Q, Mao S, Sun D, Tian B, Yin Z, Jing B, Cheng A, Jia R. Methyltransferase-Deficient Avian Flaviviruses Are Attenuated Due to Suppression of Viral RNA Translation and Induction of a Higher Innate Immunity. Front Immunol 2021; 12:751688. [PMID: 34691066 PMCID: PMC8526935 DOI: 10.3389/fimmu.2021.751688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
The 5' end of the flavivirus genome contains a type 1 cap structure formed by sequential N-7 and 2'-O methylations by viral methyltransferase (MTase). Cap methylation of flavivirus genome is an essential structural modification to ensure the normal proliferation of the virus. Tembusu virus (TMUV) (genus Flavivirus) is a causative agent of duck egg drop syndrome and has zoonotic potential. Here, we identified the in vitro activity of TMUV MTase and determined the effect of K61-D146-K182-E218 enzymatic tetrad on N-7 and 2'-O methylation. The entire K61-D146-K182-E218 motif is essential for 2'-O MTase activity, whereas N-7 MTase activity requires only D146. To investigate its phenotype, the single point mutation (K61A, D146A, K182A or E218A) was introduced into TMUV replicon (pCMV-Rep-NanoLuc) and TMUV infectious cDNA clone (pACYC-TMUV). K-D-K-E mutations reduced the replication ability of replicon. K61A, K182A and E218A viruses were genetically stable, whereas D146A virus was unstable and reverted to WT virus. Mutant viruses were replication and virulence impaired, showing reduced growth and attenuated cytopathic effects and reduced mortality of duck embryos. Molecular mechanism studies showed that the translation efficiency of mutant viruses was inhibited and a higher host innate immunity was induced. Furthermore, we found that the translation inhibition of MTase-deficient viruses was caused by a defect in N-7 methylation, whereas the absence of 2'-O methylation did not affect viral translation. Taken together, our data validate the debilitating mechanism of MTase-deficient avian flavivirus and reveal an important role for cap-methylation in viral translation, proliferation, and escape from innate immunity.
Collapse
Affiliation(s)
- Xuedong Wu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuetian Zhang
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Bo Jing
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
10
|
Yu X, Shan C, Zhu Y, Ma E, Wang J, Wang P, Shi PY, Cheng G. A mutation-mediated evolutionary adaptation of Zika virus in mosquito and mammalian host. Proc Natl Acad Sci U S A 2021; 118:e2113015118. [PMID: 34620704 PMCID: PMC8545446 DOI: 10.1073/pnas.2113015118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2021] [Indexed: 01/18/2023] Open
Abstract
Zika virus (ZIKV) caused millions of infections during its rapid and expansive spread from Asia to the Americas from 2015 to 2017. Here, we compared the infectivity of ZIKV mutants with individual stable substitutions which emerged throughout the Asian ZIKV lineage and were responsible for the explosive outbreaks in the Americas. A threonine (T) to alanine (A) mutation at the 106th residue of the ZIKV capsid (C) protein facilitated the transmission by its mosquito vector, as well as infection in both human cells and immunodeficient mice. A mechanistic study showed that the T106A substitution rendered the C a preferred substrate for the NS2B-NS3 protease, thereby facilitating the maturation of structural proteins and the formation of infectious viral particles. Over a complete "mosquito-mouse-mosquito" cycle, the ZIKV C-T106A mutant showed a higher prevalence of mosquito infection than did the preepidemic strain, thus promoting ZIKV dissemination. Our results support the contribution of this evolutionary adaptation to the occasional widespread reemergence of ZIKV in nature.
Collapse
Affiliation(s)
- Xi Yu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Shenzhen Bay Laboratory, Institute of Infectious Diseases, Shenzhen 518000, China
- Shenzhen Center for Disease Control and Prevention, Institute of Pathogenic Organisms, Shenzhen 518055, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chao Shan
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555
| | - Yibin Zhu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Shenzhen Bay Laboratory, Institute of Infectious Diseases, Shenzhen 518000, China
- Shenzhen Center for Disease Control and Prevention, Institute of Pathogenic Organisms, Shenzhen 518055, China
| | - Enhao Ma
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jinglin Wang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming 650224, China
| | - Penghua Wang
- Department of Immunology, School of Medicine, the University of Connecticut Health Center, Farmington, CT 06030
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China;
- Shenzhen Bay Laboratory, Institute of Infectious Diseases, Shenzhen 518000, China
- Shenzhen Center for Disease Control and Prevention, Institute of Pathogenic Organisms, Shenzhen 518055, China
| |
Collapse
|
11
|
Porier DL, Wilson SN, Auguste DI, Leber A, Coutermarsh-Ott S, Allen IC, Caswell CC, Budnick JA, Bassaganya-Riera J, Hontecillas R, Weger-Lucarelli J, Weaver SC, Auguste AJ. Enemy of My Enemy: A Novel Insect-Specific Flavivirus Offers a Promising Platform for a Zika Virus Vaccine. Vaccines (Basel) 2021; 9:vaccines9101142. [PMID: 34696250 PMCID: PMC8539214 DOI: 10.3390/vaccines9101142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 11/30/2022] Open
Abstract
Vaccination remains critical for viral disease outbreak prevention and control, but conventional vaccine development typically involves trade-offs between safety and immunogenicity. We used a recently discovered insect-specific flavivirus as a vector in order to develop an exceptionally safe, flavivirus vaccine candidate with single-dose efficacy. To evaluate the safety and efficacy of this platform, we created a chimeric Zika virus (ZIKV) vaccine candidate, designated Aripo/Zika virus (ARPV/ZIKV). ZIKV has caused immense economic and public health impacts throughout the Americas and remains a significant public health threat. ARPV/ZIKV vaccination showed exceptional safety due to ARPV/ZIKV’s inherent vertebrate host-restriction. ARPV/ZIKV showed no evidence of replication or translation in vitro and showed no hematological, histological or pathogenic effects in vivo. A single-dose immunization with ARPV/ZIKV induced rapid and robust neutralizing antibody and cellular responses, which offered complete protection against ZIKV-induced morbidity, mortality and in utero transmission in immune-competent and -compromised murine models. Splenocytes derived from vaccinated mice demonstrated significant CD4+ and CD8+ responses and significant cytokine production post-antigen exposure. Altogether, our results further support that chimeric insect-specific flaviviruses are a promising strategy to restrict flavivirus emergence via vaccine development.
Collapse
Affiliation(s)
- Danielle L. Porier
- Department of Entomology, Fralin Life Science Institute, Virginia Tech, Blacksburg, VA 24061, USA; (D.L.P.); (S.N.W.); (D.I.A.)
| | - Sarah N. Wilson
- Department of Entomology, Fralin Life Science Institute, Virginia Tech, Blacksburg, VA 24061, USA; (D.L.P.); (S.N.W.); (D.I.A.)
| | - Dawn I. Auguste
- Department of Entomology, Fralin Life Science Institute, Virginia Tech, Blacksburg, VA 24061, USA; (D.L.P.); (S.N.W.); (D.I.A.)
| | - Andrew Leber
- Nutritional Immunology and Molecular Medicine Laboratory Institute, Blacksburg, VA 24060, USA; (A.L.); (J.B.-R.); (R.H.)
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24060, USA; (S.C.-O.); (I.C.A.); (C.C.C.); (J.A.B.); (J.W.-L.)
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24060, USA; (S.C.-O.); (I.C.A.); (C.C.C.); (J.A.B.); (J.W.-L.)
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Clayton C. Caswell
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24060, USA; (S.C.-O.); (I.C.A.); (C.C.C.); (J.A.B.); (J.W.-L.)
- Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24060, USA
| | - James A. Budnick
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24060, USA; (S.C.-O.); (I.C.A.); (C.C.C.); (J.A.B.); (J.W.-L.)
- Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24060, USA
| | - Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Medicine Laboratory Institute, Blacksburg, VA 24060, USA; (A.L.); (J.B.-R.); (R.H.)
| | - Raquel Hontecillas
- Nutritional Immunology and Molecular Medicine Laboratory Institute, Blacksburg, VA 24060, USA; (A.L.); (J.B.-R.); (R.H.)
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24060, USA; (S.C.-O.); (I.C.A.); (C.C.C.); (J.A.B.); (J.W.-L.)
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Scott C. Weaver
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Albert J. Auguste
- Department of Entomology, Fralin Life Science Institute, Virginia Tech, Blacksburg, VA 24061, USA; (D.L.P.); (S.N.W.); (D.I.A.)
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
- Correspondence:
| |
Collapse
|
12
|
Current Progress in the Development of Zika Virus Vaccines. Vaccines (Basel) 2021; 9:vaccines9091004. [PMID: 34579241 PMCID: PMC8472938 DOI: 10.3390/vaccines9091004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022] Open
Abstract
Zika virus (ZIKV) is an arbovirus first discovered in the Americas. ZIKV infection is insidious based on its mild clinical symptoms observed after infection. In Brazil, after 2015, ZIKV infection broke out on a large scale, and many infected pregnant women gave birth to babies with microcephaly. The teratogenic effects of the virus on the fetus and its effects on nerves and the immune system have attracted great attention. Currently, no specific prophylactics or therapeutics are clinically available to treat ZIKV infection. Development of a safe and effective vaccine is essential to prevent the rise of any potential pandemic. In this review, we summarize the latest research on Zika vaccine development based on different strategies, including DNA vaccines, subunit vaccines, live-attenuated vaccines, virus-vector-based vaccines, inactivated vaccines, virus-like particles (VLPs), mRNA-based vaccines, and others. We anticipate that this review will facilitate further progress toward the development of effective and safe vaccines against ZIKV infection.
Collapse
|
13
|
Zhang JW, Wang H, Liu J, Ma L, Hua RH, Bu ZG. Generation of A Stable GFP-reporter Zika Virus System for High-throughput Screening of Zika Virus Inhibitors. Virol Sin 2021; 36:476-489. [PMID: 33231855 PMCID: PMC8257822 DOI: 10.1007/s12250-020-00316-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/18/2020] [Indexed: 01/15/2023] Open
Abstract
Zika virus (ZIKV) is associated with severe birth defects and Guillain-Barré syndrome and no approved vaccines or specific therapies to combat ZIKV infection are currently available. To accelerate anti-ZIKV therapeutics research, we developed a stable ZIKV GFP-reporter virus system with considerably improved GFP visibility and stability. In this system a BHK-21 cell line expressing DC-SIGNR was established to facilitate the proliferation of GFP-reporter ZIKV. Using this reporter virus system, we established a high-throughput screening assay and screened a selected plant-sourced compounds library for their ability to block ZIKV infection. More than 31 out of 974 tested compounds effectively decreased ZIKV reporter infection. Four selected compounds, homoharringtonine (HHT), bruceine D (BD), dihydroartemisinin (DHA) and digitonin (DGT), were further validated to inhibit wild-type ZIKV infection in cells of BHK-21 and human cell line A549. The FDA-approved chronic myeloid leukemia treatment drug HHT and BD were identified as broad-spectrum flavivirus inhibitors. DHA, another FDA-approved antimalarial drug effectively inhibited ZIKV infection in BHK-21 cells. HHT, BD and DHA inhibited ZIKV infection at a post-entry stage. Digitonin was found to have inhibitory activity in the early stage of viral infection. Our research provides an efficient high-throughput screening assay for ZIKV inhibitors. The active compounds identified in this study represent potential therapies for the treatment of ZIKV infection.
Collapse
Affiliation(s)
- Jing-Wei Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Han Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Jing Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Le Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Rong-Hong Hua
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Zhi-Gao Bu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
- Jiangsu Co-Innovation Centre for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
14
|
Xu P, Gao J, Shan C, Dunn TJ, Xie X, Xia H, Zou J, Thames BH, Sajja A, Yu Y, Freiberg AN, Vasilakis N, Shi PY, Weaver SC, Wu P. Inhibition of innate immune response ameliorates Zika virus-induced neurogenesis deficit in human neural stem cells. PLoS Negl Trop Dis 2021; 15:e0009183. [PMID: 33657175 PMCID: PMC7959377 DOI: 10.1371/journal.pntd.0009183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/15/2021] [Accepted: 01/26/2021] [Indexed: 12/30/2022] Open
Abstract
Global Zika virus (ZIKV) outbreaks and their strong link to microcephaly have raised major public health concerns. ZIKV has been reported to affect the innate immune responses in neural stem/progenitor cells (NS/PCs). However, it is unclear how these immune factors affect neurogenesis. In this study, we used Asian-American lineage ZIKV strain PRVABC59 to infect primary human NS/PCs originally derived from fetal brains. We found that ZIKV overactivated key molecules in the innate immune pathways to impair neurogenesis in a cell stage-dependent manner. Inhibiting the overactivated innate immune responses ameliorated ZIKV-induced neurogenesis reduction. This study thus suggests that orchestrating the host innate immune responses in NS/PCs after ZIKV infection could be promising therapeutic approach to attenuate ZIKV-associated neuropathology.
Collapse
Affiliation(s)
- Pei Xu
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Junling Gao
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Chao Shan
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Tiffany J. Dunn
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Hongjie Xia
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jing Zou
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Beatriz H. Thames
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Amulya Sajja
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yongjia Yu
- Department of Radiology and Oncology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Alexander N. Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Scott C. Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Ping Wu
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
15
|
Adam A, Fontes-Garfias CR, Sarathy VV, Liu Y, Luo H, Davis E, Li W, Muruato AE, Wang B, Ahatov R, Mahmoud Y, Shan C, Osman SR, Widen SG, Barrett ADT, Shi PY, Wang T. A genetically stable Zika virus vaccine candidate protects mice against virus infection and vertical transmission. NPJ Vaccines 2021; 6:27. [PMID: 33597526 PMCID: PMC7889622 DOI: 10.1038/s41541-021-00288-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 01/15/2021] [Indexed: 12/20/2022] Open
Abstract
Although live attenuated vaccines (LAVs) have been effective in the control of flavivirus infections, to date they have been excluded from Zika virus (ZIKV) vaccine trials due to safety concerns. We have previously reported two ZIKV mutants, each of which has a single substitution in either envelope (E) glycosylation or nonstructural (NS) 4B P36 and displays a modest reduction in mouse neurovirulence and neuroinvasiveness, respectively. Here, we generated a ZIKV mutant, ZE4B-36, which combines mutations in both E glycosylation and NS4B P36. The ZE4B-36 mutant is stable and attenuated in viral replication. Next-generation sequence analysis showed that the attenuating mutations in the E and NS4B proteins are retained during serial cell culture passages. The mutant exhibits a significant reduction in neuroinvasiveness and neurovirulence and low infectivity in mosquitoes. It induces robust ZIKV-specific memory B cell, antibody, and T cell-mediated immune responses in type I interferon receptor (IFNR) deficient mice. ZIKV-specific T cell immunity remains strong months post-vaccination in wild-type C57BL/6 (B6) mice. Vaccination with ZE4B-36 protects mice from ZIKV-induced diseases and vertical transmission. Our results suggest that combination mutations in E glycosylation and NS4B P36 contribute to a candidate LAV with significantly increased safety but retain strong immunogenicity for prevention and control of ZIKV infection.
Collapse
Affiliation(s)
- Awadalkareem Adam
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Camila R Fontes-Garfias
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Vanessa V Sarathy
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Yang Liu
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Huanle Luo
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Emily Davis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Wenqian Li
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Antonio E Muruato
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Binbin Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Renat Ahatov
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yoseph Mahmoud
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Chao Shan
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Samantha R Osman
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Steven G Widen
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
- Molecular Genomics Core Facility, University of Texas Medical Branch, Galveston, TX, USA
| | - Alan D T Barrett
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Pei-Yong Shi
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
16
|
Hobson-Peters J, Harrison JJ, Watterson D, Hazlewood JE, Vet LJ, Newton ND, Warrilow D, Colmant AMG, Taylor C, Huang B, Piyasena TBH, Chow WK, Setoh YX, Tang B, Nakayama E, Yan K, Amarilla AA, Wheatley S, Moore PR, Finger M, Kurucz N, Modhiran N, Young PR, Khromykh AA, Bielefeldt-Ohmann H, Suhrbier A, Hall RA. A recombinant platform for flavivirus vaccines and diagnostics using chimeras of a new insect-specific virus. Sci Transl Med 2020; 11:11/522/eaax7888. [PMID: 31826984 DOI: 10.1126/scitranslmed.aax7888] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022]
Abstract
Flaviviruses such as dengue, yellow fever, Zika, West Nile, and Japanese encephalitis virus present substantial global health burdens. New vaccines are being sought to address safety and manufacturing issues associated with current live attenuated vaccines. Here, we describe a new insect-specific flavivirus, Binjari virus, which was found to be remarkably tolerant for exchange of its structural protein genes (prME) with those of the aforementioned pathogenic vertebrate-infecting flaviviruses (VIFs). Chimeric BinJ/VIF-prME viruses remained replication defective in vertebrate cells but replicated with high efficiency in mosquito cells. Cryo-electron microscopy and monoclonal antibody binding studies illustrated that the chimeric BinJ/VIF-prME virus particles were structurally and immunologically similar to their parental VIFs. Pilot manufacturing in C6/36 cells suggests that high yields can be reached up to 109.5 cell culture infectious dose/ml or ≈7 mg/liter. BinJ/VIF-prME viruses showed utility in diagnostic (microsphere immunoassays and ELISAs using panels of human and equine sera) and vaccine applications (illustrating protection against Zika virus challenge in murine IFNAR-/- mouse models). BinJ/VIF-prME viruses thus represent a versatile, noninfectious (for vertebrate cells), high-yield technology for generating chimeric flavivirus particles with low biocontainment requirements.
Collapse
Affiliation(s)
- Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia.
| | - Jessica J Harrison
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Jessamine E Hazlewood
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Laura J Vet
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Natalee D Newton
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - David Warrilow
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Agathe M G Colmant
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Carmel Taylor
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Bixing Huang
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Thisun B H Piyasena
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Weng Kong Chow
- Australian Defence Force Malaria and Infectious Disease Institute, Gallipoli Barracks, Queensland, Australia
| | - Yin Xiang Setoh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Bing Tang
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Eri Nakayama
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kexin Yan
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Alberto A Amarilla
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Sarah Wheatley
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Peter R Moore
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Mitchell Finger
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Nina Kurucz
- Centre for Disease Control, Health Protection Division, Northern Territory Department of Health, Darwin, Northern Territory, Australia
| | - Naphak Modhiran
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Paul R Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Alexander A Khromykh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia.,School of Veterinary Science, University of Queensland Gatton Campus, Queensland 4343, Australia
| | - Andreas Suhrbier
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia.,Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
17
|
A Zika virus envelope mutation preceding the 2015 epidemic enhances virulence and fitness for transmission. Proc Natl Acad Sci U S A 2020; 117:20190-20197. [PMID: 32747564 DOI: 10.1073/pnas.2005722117] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Arboviruses maintain high mutation rates due to lack of proofreading ability of their viral polymerases, in some cases facilitating adaptive evolution and emergence. Here we show that, just before its 2013 spread to the Americas, Zika virus (ZIKV) underwent an envelope protein V473M substitution (E-V473M) that increased neurovirulence, maternal-to-fetal transmission, and viremia to facilitate urban transmission. A preepidemic Asian ZIKV strain (FSS13025 isolated in Cambodia in 2010) engineered with the V473M substitution significantly increased neurovirulence in neonatal mice and produced higher viral loads in the placenta and fetal heads in pregnant mice. Conversely, an epidemic ZIKV strain (PRVABC59 isolated in Puerto Rico in 2015) engineered with the inverse M473V substitution reversed the pathogenic phenotypes. Although E-V473M did not affect oral infection of Aedes aegypti mosquitoes, competition experiments in cynomolgus macaques showed that this mutation increased its fitness for viremia generation, suggesting adaptive evolution for human viremia and hence transmission. Mechanistically, the V473M mutation, located at the second transmembrane helix of the E protein, enhances virion morphogenesis. Overall, our study revealed E-V473M as a critical determinant for enhanced ZIKV virulence, intrauterine transmission during pregnancy, and viremia to facilitate urban transmission.
Collapse
|
18
|
Xu P, Shan C, Dunn TJ, Xie X, Xia H, Gao J, Allende Labastida J, Zou J, Villarreal PP, Schlagal CR, Yu Y, Vargas G, Rossi SL, Vasilakis N, Shi PY, Weaver SC, Wu P. Role of microglia in the dissemination of Zika virus from mother to fetal brain. PLoS Negl Trop Dis 2020; 14:e0008413. [PMID: 32628667 PMCID: PMC7365479 DOI: 10.1371/journal.pntd.0008413] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 07/16/2020] [Accepted: 05/22/2020] [Indexed: 12/17/2022] Open
Abstract
Global Zika virus (ZIKV) outbreaks and their link to microcephaly have raised major public health concerns. However, the mechanism of maternal-fetal transmission remains largely unknown. In this study, we determined the role of yolk sac (YS) microglial progenitors in a mouse model of ZIKV vertical transmission. We found that embryonic (E) days 6.5-E8.5 were a critical window for ZIKV infection that resulted in fetal demise and microcephaly, and YS microglial progenitors were susceptible to ZIKV infection. Ablation of YS microglial progenitors significantly reduced the viral load in both the YS and the embryonic brain. Taken together, these results support the hypothesis that YS microglial progenitors serve as “Trojan horses,” contributing to ZIKV fetal brain dissemination and congenital brain defects. ZIKV is more likely to cause fetal demise and brain malformations when the mother is infected at an early stage of pregnancy, which is the critical time window when a special type of immune cells called microglia appear in the YS and migrate to the fetal brain. YS-derived microglia are susceptible to ZIKV infection and can act as “Trojan horses” to bring ZIKV from the mother to the fetal brain.
Collapse
Affiliation(s)
- Pei Xu
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Chao Shan
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Tiffany J. Dunn
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Hongjie Xia
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Junling Gao
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Javier Allende Labastida
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jing Zou
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Paula P. Villarreal
- Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Caitlin R. Schlagal
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yongjia Yu
- Department of Radiology and Oncology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Gracie Vargas
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Shannan L. Rossi
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nikolaos Vasilakis
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Scott C. Weaver
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail: (SCW); (PW)
| | - Ping Wu
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail: (SCW); (PW)
| |
Collapse
|
19
|
Using Next Generation Sequencing to Study the Genetic Diversity of Candidate Live Attenuated Zika Vaccines. Vaccines (Basel) 2020; 8:vaccines8020161. [PMID: 32260110 PMCID: PMC7349499 DOI: 10.3390/vaccines8020161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-transmitted positive-sense RNA virus in the family Flaviviridae. Candidate live-attenuated vaccine (LAV) viruses with engineered deletions in the 3’ untranslated region (UTR) provide immunity and protection in animal models of ZIKV infection, and phenotypic studies show that LAVs retain protective abilities following in vitro passage. The present study investigated the genetic diversity of wild-type (WT) parent ZIKV and its candidate LAVs using next generation sequencing analysis of five sequential in vitro passages. The results show that genomic entropy of WT ZIKV steadily increases during in vitro passage, whereas that of LAVs also increased by passage number five but was variable throughout passaging. Additionally, clusters of single nucleotide variants (SNVs) were found to be present in the pre-membrane/membrane (prM), envelope (E), nonstructural protein NS1 (NS1), and other nonstructural protein genes, depending on the specific deletion, whereas in the parent WT ZIKV, they are more abundant in prM and NS1. Ultimately, both the parental WT and LAV derivatives increase in genetic diversity, with evidence of adaptation following passage.
Collapse
|
20
|
Shan C, Xie X, Luo H, Muruato AE, Liu Y, Wakamiya M, La JH, Chung JM, Weaver SC, Wang T, Shi PY. Maternal vaccination and protective immunity against Zika virus vertical transmission. Nat Commun 2019; 10:5677. [PMID: 31831806 PMCID: PMC6908683 DOI: 10.1038/s41467-019-13589-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/14/2019] [Indexed: 01/07/2023] Open
Abstract
An important goal of the Zika virus (ZIKV) vaccine is to prevent a congenital syndrome in fetuses of pregnant women, but studies directly evaluating maternal vaccination for ZIKV are lacking. Here we report maternal vaccination using a live-attenuated ZIKV vaccine (3'UTR-∆10-LAV) in a pregnant mouse model. Maternal immunization with 3'UTR-∆10-LAV does not cause any adverse effects on pregnancy, fetal development, or offspring behavior. One maternal immunization fully protects dams against ZIKV infection and in utero transmission. Although neutralizing antibody alone is sufficient to prevent in utero transmission, a higher neutralizing titer is required to protect pregnant mice against in utero transmission than that required to protect non-pregnant mice against viral infection. The immunized dams transfer maternal antibodies to pups, which protect neonates against ZIKV infection. Notably, pregnancy weakens maternal T cell response to 3'UTR-∆10-LAV vaccination. Our results suggest that, besides vaccinating non-pregnant individuals, 3'UTR-∆10-LAV may also be considered for maternal vaccination.
Collapse
Affiliation(s)
- Chao Shan
- 0000 0001 1547 9964grid.176731.5Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, Texas USA ,0000000119573309grid.9227.eWuhan National Biosafety Laboratory, Mega-Science Center for Bio-Safety Research, Chinese Academy of Sciences, Wuhan, Hubei China
| | - Xuping Xie
- 0000 0001 1547 9964grid.176731.5Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, Texas USA
| | - Huanle Luo
- 0000 0001 1547 9964grid.176731.5Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas USA
| | - Antonio E. Muruato
- 0000 0001 1547 9964grid.176731.5Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas USA
| | - Yang Liu
- 0000 0001 1547 9964grid.176731.5Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, Texas USA
| | - Maki Wakamiya
- 0000 0001 1547 9964grid.176731.5Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, Texas USA
| | - Jun-Ho La
- 0000 0001 1547 9964grid.176731.5Department of Neuroscience, Cell Biology, & Anatomy, University of Texas Medical Branch, Galveston, Texas USA
| | - Jin Mo Chung
- 0000 0001 1547 9964grid.176731.5Department of Neuroscience, Cell Biology, & Anatomy, University of Texas Medical Branch, Galveston, Texas USA
| | - Scott C. Weaver
- 0000 0001 1547 9964grid.176731.5Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas USA ,0000 0001 1547 9964grid.176731.5Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, Texas USA ,0000 0001 1547 9964grid.176731.5Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas USA ,0000 0001 1547 9964grid.176731.5Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas USA ,0000 0001 1547 9964grid.176731.5Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas USA ,0000 0001 1547 9964grid.176731.5Center for Biodefense & Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas USA ,0000 0001 1547 9964grid.176731.5World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, Texas USA
| | - Tian Wang
- 0000 0001 1547 9964grid.176731.5Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas USA ,0000 0001 1547 9964grid.176731.5Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas USA ,0000 0001 1547 9964grid.176731.5Department of Pathology, University of Texas Medical Branch, Galveston, Texas USA
| | - Pei-Yong Shi
- 0000 0001 1547 9964grid.176731.5Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, Texas USA ,0000 0001 1547 9964grid.176731.5Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, Texas USA ,0000 0001 1547 9964grid.176731.5Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas USA ,0000 0001 1547 9964grid.176731.5Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas USA ,0000 0001 1547 9964grid.176731.5Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas USA ,0000 0001 1547 9964grid.176731.5Department of Pathology, University of Texas Medical Branch, Galveston, Texas USA ,0000 0001 1547 9964grid.176731.5Department of Phamarcology & Toxicology, University of Texas Medical Branch, Galveston, Texas USA
| |
Collapse
|
21
|
Collins ND, Widen SG, Li L, Swetnam DM, Shi PY, Tesh RB, Sarathy VV. Inter- and intra-lineage genetic diversity of wild-type Zika viruses reveals both common and distinctive nucleotide variants and clusters of genomic diversity. Emerg Microbes Infect 2019; 8:1126-1138. [PMID: 31355708 PMCID: PMC6711133 DOI: 10.1080/22221751.2019.1645572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Zika virus (ZIKV) strains belong to the East African, West African, and Asian/American phylogenetic lineages. RNA viruses, like ZIKV, exist as populations of genetically-related sequences whose heterogeneity may impact viral fitness, evolution, and virulence. Genetic diversity of representative ZIKVs from each lineage was examined using next generation sequencing (NGS) paired with downstream entropy and single nucleotide variant (SNV) analysis. Comparisons showed that inter-lineage diversity was statistically supported, while intra-lineage diversity. Intra-lineage diversity was significant for East but not West Africa strains. Furthermore, intra-lineage diversity for the Asian/American lineage was not supported for human serum isolates; however, a placenta isolate differed significantly. Relative in the pre-membrane/membrane (prM/M) gene of several ZIKV strains. Additionally, the East African lineage contained a greater number of synonymous SNVs, while a greater number of non-synonymous SNVs were identified for American strains. Further, inter-lineage SNVs were dispersed throughout the genome, whereas intra-lineage non-synonymous SNVs for Asian/American strains clustered within prM/M and NS1 gene. This comprehensive analysis of ZIKV genetic diversity provides a repository of SNV positions across lineages. We posit that increased non-synonymous SNV populations and increased relative genetic diversity of the prM/M and NS1 proteins provides more evidence for their role in ZIKV virulence and fitness.
Collapse
Affiliation(s)
- Natalie D Collins
- a Department of Microbiology and Immunology, University of Texas Medical Branch , Galveston , USA
| | - Steven G Widen
- b Department of Biochemistry and Molecular Biology, University of Texas Medical Branch , Galveston , USA
| | - Li Li
- c Department of Pathology, University of Texas Medical Branch , Galveston , USA
| | - Daniele M Swetnam
- d Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine at University of California , Davis , USA
| | - Pei-Yong Shi
- b Department of Biochemistry and Molecular Biology, University of Texas Medical Branch , Galveston , USA
| | - Robert B Tesh
- c Department of Pathology, University of Texas Medical Branch , Galveston , USA
| | - Vanessa V Sarathy
- c Department of Pathology, University of Texas Medical Branch , Galveston , USA.,e Sealy Institute for Vaccine Sciences, Institute for Human Infections and Immunity, University of Texas Medical Branch , Galveston , USA
| |
Collapse
|
22
|
Abstract
The flavivirus virion consists of an envelope outer layer, formed by envelope (E) and membrane (M) proteins on a lipid bilayer, and an internal core, formed by capsid (C) protein and genomic RNA. The molecular mechanism of flavivirus assembly is not well understood. Here, we show that Zika virus (ZIKV) NS2A protein recruits genomic RNA, the structural protein prM/E complex, and the NS2B/NS3 protease complex to the virion assembly site and orchestrates virus morphogenesis. Coimmunoprecipitation analysis showed that ZIKV NS2A binds to prM, E, NS2B, and NS3 (but not C, NS4B, or NS5) in a viral RNA-independent manner, whereas prM/E complex does not interact with NS2B/NS3 complex. Remarkably, a single-amino-acid mutation (E103A) of NS2A impairs its binding to prM/E and NS2B/NS3 and abolishes virus production, demonstrating the indispensable role of NS2A/prM/E and NS2A/NS2B/NS3 interactions in virion assembly. In addition, RNA-protein pulldown analysis identified a stem-loop RNA from the 3' untranslated region (UTR) of the viral genome as an "RNA recruitment signal" for ZIKV assembly. The 3' UTR RNA binds to a cytoplasmic loop of NS2A protein. Mutations of two positively charged residues (R96A and R102A) from the cytoplasmic loop reduce NS2A binding to viral RNA, leading to a complete loss of virion assembly. Collectively, our results support a virion assembly model in which NS2A recruits viral NS2B/NS3 protease and structural C-prM-E polyprotein to the virion assembly site; once the C-prM-E polyprotein has been processed, NS2A presents viral RNA to the structural proteins for virion assembly.IMPORTANCE ZIKV is a recently emerged mosquito-borne flavivirus that can cause devastating congenital Zika syndrome in pregnant women and Guillain-Barré syndrome in adults. The molecular mechanism of ZIKV virion assembly is largely unknown. Here, we report that ZIKV NS2A plays a central role in recruiting viral RNA, structural protein prM/E, and viral NS2B/NS3 protease to the virion assembly site and orchestrating virion morphogenesis. One mutation that impairs these interactions does not significantly affect viral RNA replication but selectively abolishes virion assembly, demonstrating the specific role of these interactions in virus morphogenesis. We also show that the 3' UTR of ZIKV RNA may serve as a "recruitment signal" through binding to NS2A to enter the virion assembly site. Following a coordinated cleavage of C-prM-E at the virion assembly site, NS2A may present the viral RNA to C protein for nucleocapsid formation followed by envelopment with prM/E proteins. The results have provided new insights into flavivirus virion assembly.
Collapse
|
23
|
Muruato AE, Shan C, Fontes-Garfias CR, Liu Y, Cao Z, Gao Q, Weaver SC, Shi PY. Genetic stability of live-attenuated Zika vaccine candidates. Antiviral Res 2019; 171:104596. [PMID: 31493417 DOI: 10.1016/j.antiviral.2019.104596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 12/28/2022]
Abstract
Zika virus (ZIKV) has drawn global attention as the etiologic agent of Zika Congenital Syndrome in babies born to infected pregnant women. To prevent future ZIKV outbreaks and protect persons at risk for severe disease, we developed two live-attenuated vaccine (LAV) candidates containing 10- or 20-nucleotide deletions in the 3'UTR of the viral genome (Δ10 and Δ20). After a single-dose immunization, both Δ10 and Δ20 LAVs protected mice and non-human primates against ZIKV infection. Here, we characterized the stability, safety, and efficacy of the LAVs after continuously culturing them on manufacture Vero cells for ten rounds. Whole genome sequencing showed that passage 10 (P10) LAVs retained the engineered Δ10 and Δ20 deletions; one to four additional mutations emerged at different regions of the genome. In A129 mice, the P10 LAVs exhibited viremia higher than the un-passaged LAVs, but lower than wild-type ZIKV; unlike wild-type ZIKV-infected mice, none of the P10 LAV-infected mice developed disease or death, demonstrating that the P10 LAVs remained attenuated. Mice immunized with a single dose of the P10 LAVs developed robust neutralizing antibody titers (1/1,000 to 1/10,000) and were protected against epidemic ZIKV challenge. The P10 LAVs did not exhibit increased neurovirulence. Intracranial inoculation of one-day-old CD1 pups with 103 focus-forming units of the P10 Δ10 and Δ20 LAVs resulted in 100% and ≥80% survival, respectively. Furthermore, the P10 LAVs remained incompetent in infecting Aedes aegypti mosquitoes after intrathoracic microinjection. Our results support the phenotypic stability and further development of these promising LAVs for ZIKV.
Collapse
Affiliation(s)
- Antonio E Muruato
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX, USA; Institute for Translational Science, University of Texas Medical Branch, Galveston, TX, USA
| | - Chao Shan
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Camila R Fontes-Garfias
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yang Liu
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Zengguo Cao
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Qiang Gao
- Sinovac Bioteck Co., Ltd., Beijing, China
| | - Scott C Weaver
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX, USA; Institute for Translational Science, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Pei-Yong Shi
- Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX, USA; Institute for Translational Science, University of Texas Medical Branch, Galveston, TX, USA; Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
24
|
Mazeaud C, Freppel W, Chatel-Chaix L. The Multiples Fates of the Flavivirus RNA Genome During Pathogenesis. Front Genet 2018. [PMID: 30564270 DOI: 10.3389/fgene.2018.00595/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Abstract
The Flavivirus genus comprises many viruses (including dengue, Zika, West Nile and yellow fever viruses) which constitute important public health concerns worldwide. For several of these pathogens, neither antivirals nor vaccines are currently available. In addition to this unmet medical need, flaviviruses are of particular interest since they constitute an excellent model for the study of spatiotemporal regulation of RNA metabolism. Indeed, with no DNA intermediate or nuclear step, the flaviviral life cycle entirely relies on the cytoplasmic fate of a single RNA species, namely the genomic viral RNA (vRNA) which contains all the genetic information necessary for optimal viral replication. From a single open reading frame, the vRNA encodes a polyprotein which is processed to generate the mature viral proteins. In addition to coding for the viral polyprotein, the vRNA serves as a template for RNA synthesis and is also selectively packaged into newly assembled viral particles. Notably, vRNA translation, replication and encapsidation must be tightly coordinated in time and space via a fine-tuned equilibrium as these processes cannot occur simultaneously and hence, are mutually exclusive. As such, these dynamic processes involve several vRNA secondary and tertiary structures as well as RNA modifications. Finally, the vRNA can be detected as a foreign molecule by cytosolic sensors which trigger upon activation antiviral signaling pathways and the production of antiviral factors such as interferons and interferon-stimulated genes. However, to create an environment favorable to infection, flaviviruses have evolved mechanisms to dampen these antiviral processes, notably through the production of a specific vRNA degradation product termed subgenomic flavivirus RNA (sfRNA). In this review, we discuss the current understanding of the fates of flavivirus vRNA and how this is regulated at the molecular level to achieve an optimal replication within infected cells.
Collapse
Affiliation(s)
- Clément Mazeaud
- Institut National de la Recherche Scientifique, Centre INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - Wesley Freppel
- Institut National de la Recherche Scientifique, Centre INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - Laurent Chatel-Chaix
- Institut National de la Recherche Scientifique, Centre INRS-Institut Armand-Frappier, Laval, QC, Canada
| |
Collapse
|
25
|
Mazeaud C, Freppel W, Chatel-Chaix L. The Multiples Fates of the Flavivirus RNA Genome During Pathogenesis. Front Genet 2018; 9:595. [PMID: 30564270 PMCID: PMC6288177 DOI: 10.3389/fgene.2018.00595] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/15/2018] [Indexed: 12/11/2022] Open
Abstract
The Flavivirus genus comprises many viruses (including dengue, Zika, West Nile and yellow fever viruses) which constitute important public health concerns worldwide. For several of these pathogens, neither antivirals nor vaccines are currently available. In addition to this unmet medical need, flaviviruses are of particular interest since they constitute an excellent model for the study of spatiotemporal regulation of RNA metabolism. Indeed, with no DNA intermediate or nuclear step, the flaviviral life cycle entirely relies on the cytoplasmic fate of a single RNA species, namely the genomic viral RNA (vRNA) which contains all the genetic information necessary for optimal viral replication. From a single open reading frame, the vRNA encodes a polyprotein which is processed to generate the mature viral proteins. In addition to coding for the viral polyprotein, the vRNA serves as a template for RNA synthesis and is also selectively packaged into newly assembled viral particles. Notably, vRNA translation, replication and encapsidation must be tightly coordinated in time and space via a fine-tuned equilibrium as these processes cannot occur simultaneously and hence, are mutually exclusive. As such, these dynamic processes involve several vRNA secondary and tertiary structures as well as RNA modifications. Finally, the vRNA can be detected as a foreign molecule by cytosolic sensors which trigger upon activation antiviral signaling pathways and the production of antiviral factors such as interferons and interferon-stimulated genes. However, to create an environment favorable to infection, flaviviruses have evolved mechanisms to dampen these antiviral processes, notably through the production of a specific vRNA degradation product termed subgenomic flavivirus RNA (sfRNA). In this review, we discuss the current understanding of the fates of flavivirus vRNA and how this is regulated at the molecular level to achieve an optimal replication within infected cells.
Collapse
Affiliation(s)
- Clément Mazeaud
- Institut National de la Recherche Scientifique, Centre INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - Wesley Freppel
- Institut National de la Recherche Scientifique, Centre INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - Laurent Chatel-Chaix
- Institut National de la Recherche Scientifique, Centre INRS-Institut Armand-Frappier, Laval, QC, Canada
| |
Collapse
|
26
|
Pena LJ, Miranda Guarines K, Duarte Silva AJ, Sales Leal LR, Mendes Félix D, Silva A, de Oliveira SA, Junqueira Ayres CF, Júnior AS, de Freitas AC. In vitro and in vivo models for studying Zika virus biology. J Gen Virol 2018; 99:1529-1550. [DOI: 10.1099/jgv.0.001153] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Lindomar José Pena
- 1Department of Virology, Aggeu Magalhaes Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Klarissa Miranda Guarines
- 1Department of Virology, Aggeu Magalhaes Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Anna Jéssica Duarte Silva
- 2Department of Genetics, Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Center of Biological Sciences, Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | - Lígia Rosa Sales Leal
- 2Department of Genetics, Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Center of Biological Sciences, Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | - Daniele Mendes Félix
- 1Department of Virology, Aggeu Magalhaes Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Adalúcia Silva
- 1Department of Virology, Aggeu Magalhaes Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Sheilla Andrade de Oliveira
- 3Department of Immunology, Aggeu Magalhaes Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | | | - Abelardo Silva Júnior
- 5Department of Veterinary Medicine, Federal University of Viçosa (UFV), Viçosa, Minas Gerais, Brazil
| | - Antonio Carlos de Freitas
- 2Department of Genetics, Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Center of Biological Sciences, Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
| |
Collapse
|
27
|
Garg H, Mehmetoglu-Gurbuz T, Joshi A. Recent Advances in Zika Virus Vaccines. Viruses 2018; 10:v10110631. [PMID: 30441757 PMCID: PMC6267279 DOI: 10.3390/v10110631] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/08/2018] [Accepted: 11/11/2018] [Indexed: 01/07/2023] Open
Abstract
The recent outbreaks of Zika virus (ZIKV) infections and associated microcephaly in newborns has resulted in an unprecedented effort by researchers to target this virus. Significant advances have been made in developing vaccine candidates, treatment strategies and diagnostic assays in a relatively short period of time. Being a preventable disease, the first line of defense against ZIKV would be to vaccinate the highly susceptible target population, especially pregnant women. Along those lines, several vaccine candidates including purified inactivated virus (PIV), live attenuated virus (LAV), virus like particles (VLP), DNA, modified RNA, viral vectors and subunit vaccines have been in the pipeline with several advancing to clinical trials. As the primary objective of Zika vaccination is the prevention of vertical transmission of the virus to the unborn fetus, the safety and efficacy requirements for this vaccine remain unique when compared to other diseases. This review will discuss these recent advances in the field of Zika vaccine development.
Collapse
Affiliation(s)
- Himanshu Garg
- Center of Emphasis in Infectious Diseases, Department of Biomedical Science, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA.
| | - Tugba Mehmetoglu-Gurbuz
- Center of Emphasis in Infectious Diseases, Department of Biomedical Science, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA.
| | - Anjali Joshi
- Center of Emphasis in Infectious Diseases, Department of Biomedical Science, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA.
| |
Collapse
|
28
|
Ávila-Pérez G, Nogales A, Martín V, Almazán F, Martínez-Sobrido L. Reverse Genetic Approaches for the Generation of Recombinant Zika Virus. Viruses 2018; 10:E597. [PMID: 30384426 PMCID: PMC6266887 DOI: 10.3390/v10110597] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 10/26/2018] [Accepted: 10/28/2018] [Indexed: 02/06/2023] Open
Abstract
Zika virus (ZIKV) is an emergent mosquito-borne member of the Flaviviridae family that was responsible for a recent epidemic in the Americas. ZIKV has been associated with severe clinical complications, including neurological disorder such as Guillain-Barré syndrome in adults and severe fetal abnormalities and microcephaly in newborn infants. Given the significance of these clinical manifestations, the development of tools and reagents to study the pathogenesis of ZIKV and to develop new therapeutic options are urgently needed. In this respect, the implementation of reverse genetic techniques has allowed the direct manipulation of the viral genome to generate recombinant (r)ZIKVs, which have provided investigators with powerful systems to answer important questions about the biology of ZIKV, including virus-host interactions, the mechanism of transmission and pathogenesis or the function of viral proteins. In this review, we will summarize the different reverse genetic strategies that have been implemented, to date, for the generation of rZIKVs and the applications of these platforms for the development of replicon systems or reporter-expressing viruses.
Collapse
Affiliation(s)
- Ginés Ávila-Pérez
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | - Verónica Martín
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 3 Darwin street, 28049 Madrid, Spain.
| | - Fernando Almazán
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 3 Darwin street, 28049 Madrid, Spain.
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
29
|
Xie X, Kum DB, Xia H, Luo H, Shan C, Zou J, Muruato AE, Medeiros DBA, Nunes BTD, Dallmeier K, Rossi SL, Weaver SC, Neyts J, Wang T, Vasconcelos PFC, Shi PY. A Single-Dose Live-Attenuated Zika Virus Vaccine with Controlled Infection Rounds that Protects against Vertical Transmission. Cell Host Microbe 2018; 24:487-499.e5. [PMID: 30308155 PMCID: PMC6188708 DOI: 10.1016/j.chom.2018.09.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/23/2018] [Accepted: 08/27/2018] [Indexed: 01/07/2023]
Abstract
Zika virus (ZIKV) infection of the mother during pregnancy causes devastating Zika congenital syndrome in the offspring. A ZIKV vaccine with optimal safety and immunogenicity for use in pregnant women is critically needed. Toward this goal, we have developed a single-dose live-attenuated vaccine candidate that infects cells with controlled, limited infection rounds. The vaccine contains a 9-amino-acid deletion in the viral capsid protein and replicates to titers of > 106 focus-forming units (FFU)/mL in cells expressing the full-length capsid protein. Immunization of A129 mice with one dose (105 FFU) did not produce viremia, but elicited protective immunity that completely prevented viremia, morbidity, and mortality after challenge with an epidemic ZIKV strain (106 PFU). A single-dose vaccination also fully prevented infection of pregnant mice and maternal-to-fetal transmission. Intracranial injection of the vaccine (104 FFU) to 1-day-old mice did not cause any disease or death, underscoring the safety of this vaccine candidate.
Collapse
Affiliation(s)
- Xuping Xie
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
| | - Dieudonné B Kum
- KU Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Laboratory of Virology and Chemoth, University of Leuven, Leuven, Belgium
| | - Hongjie Xia
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Huanle Luo
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Chao Shan
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jing Zou
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Antonio E Muruato
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Daniele B A Medeiros
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA; Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Pará State, Brazil
| | - Bruno T D Nunes
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA; Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Pará State, Brazil
| | - Kai Dallmeier
- KU Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Laboratory of Virology and Chemoth, University of Leuven, Leuven, Belgium
| | - Shannan L Rossi
- Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX, USA; Department of Pathology and Center for Biodefense & Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Scott C Weaver
- Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX, USA; Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA; Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA; Department of Pathology and Center for Biodefense & Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Johan Neyts
- KU Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Laboratory of Virology and Chemoth, University of Leuven, Leuven, Belgium
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA; Department of Pathology and Center for Biodefense & Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Pedro F C Vasconcelos
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Pará State, Brazil; Department of Pathology, Pará State University, Belém, Brazil
| | - Pei-Yong Shi
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
30
|
Zou J, Xie X, Luo H, Shan C, Muruato AE, Weaver SC, Wang T, Shi PY. A single-dose plasmid-launched live-attenuated Zika vaccine induces protective immunity. EBioMedicine 2018; 36:92-102. [PMID: 30201444 PMCID: PMC6197676 DOI: 10.1016/j.ebiom.2018.08.056] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/29/2018] [Accepted: 08/29/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Vaccines are the most effective means to fight and eradicate infectious diseases. Live-attenuated vaccines (LAV) usually have the advantages of single dose, rapid onset of immunity, and durable protection. DNA vaccines have the advantages of chemical stability, ease of production, and no cold chain requirement. The ability to combine the strengths of LAV and DNA vaccines may transform future vaccine development by eliminating cold chain and cell culture with the potential for adventitious agents. METHODS A DNA-launched LAV was developed for ZIKV virus (ZIKV), a pathogen that recently caused a global public health emergency. The cDNA copy of a ZIKV LAV genome was engineered into a DNA plasmid. The DNA-LAV plasmid was delivered into mice using a clinically proven device TriGrid™ to launch the replication of LAV. FINDINGS A single-dose immunization as low as 0.5 μg of DNA-LAV plasmid conferred 100% seroconversion in A129 mice. All seroconverted mice developed sterilizing immunity, as indicated by no detectable infectious viruses and no increase of neutralizing antibody titers after ZIKV challenge. The immunization also elicited robust T cell responses. In pregnant mice, the DNA-LAV vaccination fully protected against ZIKV-induced disease and maternal-to-fetal transmission. High levels of neutralizing activities were detected in fetal serum, indicating maternal-to-fetal humoral transfer. In male mice, a single-dose vaccination completely prevented testis infection, injury, and oligospermia. INTERPRETATION The remarkable simplicity and potency of ZIKV DNA-LAV warrant further development of this vaccine candidate. The DNA-LAV approach may serve as a universal vaccine platform for other plus-sense RNA viruses. FUND: National Institute of Health, Kleberg Foundation, Centers for Disease Control and Prevention, University of Texas Medical Branch.
Collapse
Affiliation(s)
- Jing Zou
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Xuping Xie
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Huanle Luo
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Chao Shan
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Antonio E. Muruato
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA,Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Scott C. Weaver
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA,Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX, USA,Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA,Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA,Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA,Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA,Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Pei-Yong Shi
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA,Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX, USA,Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA,Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA,Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA,Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.,Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, USA,Corresponding author at: Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
31
|
Münster M, Płaszczyca A, Cortese M, Neufeldt CJ, Goellner S, Long G, Bartenschlager R. A Reverse Genetics System for Zika Virus Based on a Simple Molecular Cloning Strategy. Viruses 2018; 10:v10070368. [PMID: 30002313 PMCID: PMC6071187 DOI: 10.3390/v10070368] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022] Open
Abstract
The Zika virus (ZIKV) has recently attracted major research interest as infection was unexpectedly associated with neurological manifestations in developing foetuses and with Guillain-Barré syndrome in infected adults. Understanding the underlying molecular mechanisms requires reverse genetic systems, which allow manipulation of infectious cDNA clones at will. In the case of flaviviruses, to which ZIKV belongs, several reports have indicated that the construction of full-length cDNA clones is difficult due to toxicity during plasmid amplification in Escherichia coli. Toxicity of flaviviral cDNAs has been linked to the activity of cryptic prokaryotic promoters within the region encoding the structural proteins leading to spurious transcription and expression of toxic viral proteins. Here, we employ an approach based on in silico prediction and mutational silencing of putative promoters to generate full-length cDNA clones of the historical MR766 strain and the contemporary French Polynesian strain H/PF/2013 of ZIKV. While for both strains construction of full-length cDNA clones has failed in the past, we show that our approach generates cDNA clones that are stable on single bacterial plasmids and give rise to infectious viruses with properties similar to those generated by other more complex assembly strategies. Further, we generate luciferase and fluorescent reporter viruses as well as sub-genomic replicons that are fully functional and suitable for various research and drug screening applications. Taken together, this study confirms that in silico prediction and silencing of cryptic prokaryotic promoters is an efficient strategy to generate full-length cDNA clones of flaviviruses and reports novel tools that will facilitate research on ZIKV biology and development of antiviral strategies.
Collapse
Affiliation(s)
- Maximilian Münster
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Centre for Integrative Infectious Disease Research, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany.
| | - Anna Płaszczyca
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Centre for Integrative Infectious Disease Research, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany.
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Centre for Integrative Infectious Disease Research, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany.
| | - Christopher John Neufeldt
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Centre for Integrative Infectious Disease Research, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany.
| | - Sarah Goellner
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Centre for Integrative Infectious Disease Research, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany.
| | - Gang Long
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Centre for Integrative Infectious Disease Research, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany.
- German Center for Infection Research, Heidelberg Partner Site, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany.
| |
Collapse
|
32
|
Fontes-Garfias CR, Shan C, Luo H, Muruato AE, Medeiros DBA, Mays E, Xie X, Zou J, Roundy CM, Wakamiya M, Rossi SL, Wang T, Weaver SC, Shi PY. Functional Analysis of Glycosylation of Zika Virus Envelope Protein. Cell Rep 2018; 21:1180-1190. [PMID: 29091758 DOI: 10.1016/j.celrep.2017.10.016] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/29/2017] [Accepted: 10/04/2017] [Indexed: 02/08/2023] Open
Abstract
Zika virus (ZIKV) infection causes devastating congenital abnormities and Guillain-Barré syndrome. The ZIKV envelope (E) protein is responsible for viral entry and represents a major determinant for viral pathogenesis. Like other flaviviruses, the ZIKV E protein is glycosylated at amino acid N154. To study the function of E glycosylation, we generated a recombinant N154Q ZIKV that lacks the E glycosylation and analyzed the mutant virus in mammalian and mosquito hosts. In mouse models, the mutant was attenuated, as evidenced by lower viremia, decreased weight loss, and no mortality; however, knockout of E glycosylation did not significantly affect neurovirulence. Mice immunized with the mutant virus developed a robust neutralizing antibody response and were completely protected from wild-type ZIKV challenge. In mosquitoes, the mutant virus exhibited diminished oral infectivity for the Aedes aegypti vector. Collectively, the results demonstrate that E glycosylation is critical for ZIKV infection of mammalian and mosquito hosts.
Collapse
Affiliation(s)
- Camila R Fontes-Garfias
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Chao Shan
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Huanle Luo
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Antonio E Muruato
- Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX, USA; Institute for Translational Science, University of Texas Medical Branch, Galveston, TX, USA
| | - Daniele B A Medeiros
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA; Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Pará State, Brazil
| | - Elizabeth Mays
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Xuping Xie
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jing Zou
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Christopher M Roundy
- Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX, USA; Institute for Translational Science, University of Texas Medical Branch, Galveston, TX, USA
| | - Maki Wakamiya
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Shannan L Rossi
- Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX, USA; Department of Pathology and Center for Biodefense & Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA; Department of Pathology and Center for Biodefense & Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, USA
| | - Scott C Weaver
- Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX, USA; Institute for Translational Science, University of Texas Medical Branch, Galveston, TX, USA; Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Pei-Yong Shi
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
33
|
Wang R, Liao X, Fan D, Wang L, Song J, Feng K, Li M, Wang P, Chen H, An J. Maternal immunization with a DNA vaccine candidate elicits specific passive protection against post-natal Zika virus infection in immunocompetent BALB/c mice. Vaccine 2018; 36:3522-3532. [PMID: 29753607 DOI: 10.1016/j.vaccine.2018.04.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 04/15/2018] [Accepted: 04/17/2018] [Indexed: 11/16/2022]
Abstract
Zika virus (ZIKV) infection is closely associated in the fetus with microcephaly and in the adults with Guillain-Barré syndrome and even male infertility. It is an urgent international priority to develop a safe and effective vaccine that offers protection to both women of childbearing age and their children. In this study, female immunocompetent BALB/c mice were immunized with a DNA-based vaccine candidate, pVAX1-ZME, expressing the prM/E protein of ZIKV, and the immunogenicity for maternal mice and the post-natal protection for suckling mice were evaluated. It was found that administration with three doses of 50 μg pVAX1-ZME via in vivo electroporation induced robust ZIKV-specific cellular and long-term humoral immune responses with high and sustained neutralizing activity in adult mice. Moreover, using a maternal immunization protocol, neutralizing antibodies provided specific passive protection against ZIKV infection in neonatal mice and effectively inhibited the growth delay. This vaccine candidate is expected to be further evaluated in higher animals, and maternal vaccination shows great promise for protecting both women of childbearing age and their offspring against post-natal ZIKV infection. The vaccinated mothers and ZIKV-challenged pups provide key insight into Zika vaccine evaluation in an available fully immunocompetent animal model.
Collapse
Affiliation(s)
- Ran Wang
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Chinese Capital Medical University, Beijing 100069, PR China
| | - Xianzheng Liao
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Chinese Capital Medical University, Beijing 100069, PR China
| | - Dongying Fan
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Chinese Capital Medical University, Beijing 100069, PR China
| | - Lei Wang
- Faculty of Pathogenic Biology and Immunology, Department of Basic Medical Sciences, Cangzhou Medical College, Cangzhou 061001, Hebei Province, PR China
| | - Ji Song
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Chinese Capital Medical University, Beijing 100069, PR China
| | - Kaihao Feng
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Chinese Capital Medical University, Beijing 100069, PR China
| | - Mingyuan Li
- HKU Pasteur Research Pole, School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, PR China
| | - Peigang Wang
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Chinese Capital Medical University, Beijing 100069, PR China
| | - Hui Chen
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Chinese Capital Medical University, Beijing 100069, PR China.
| | - Jing An
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Chinese Capital Medical University, Beijing 100069, PR China; Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing 100069, PR China.
| |
Collapse
|
34
|
Adams Waldorf KM, Nelson BR, Stencel-Baerenwald JE, Studholme C, Kapur RP, Armistead B, Walker CL, Merillat S, Vornhagen J, Tisoncik-Go J, Baldessari A, Coleman M, Dighe MK, Shaw DW, Roby JA, Santana-Ufret V, Boldenow E, Li J, Gao X, Davis MA, Swanstrom JA, Jensen K, Widman DG, Baric RS, Medwid JT, Hanley KA, Ogle J, Gough GM, Lee W, English C, Durning WM, Thiel J, Gatenby C, Dewey EC, Fairgrieve MR, Hodge RD, Grant RF, Kuller L, Dobyns WB, Hevner RF, Gale M, Rajagopal L. Congenital Zika virus infection as a silent pathology with loss of neurogenic output in the fetal brain. Nat Med 2018; 24:368-374. [PMID: 29400709 PMCID: PMC5839998 DOI: 10.1038/nm.4485] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 01/05/2018] [Indexed: 12/13/2022]
Abstract
Zika virus (ZIKV) is a flavivirus with teratogenic effects on fetal brain, but the spectrum of ZIKV-induced brain injury is unknown, particularly when ultrasound imaging is normal. In a pregnant pigtail macaque (Macaca nemestrina) model of ZIKV infection, we demonstrate that ZIKV-induced injury to fetal brain is substantial, even in the absence of microcephaly, and may be challenging to detect in a clinical setting. A common and subtle injury pattern was identified, including (i) periventricular T2-hyperintense foci and loss of fetal noncortical brain volume, (ii) injury to the ependymal epithelium with underlying gliosis and (iii) loss of late fetal neuronal progenitor cells in the subventricular zone (temporal cortex) and subgranular zone (dentate gyrus, hippocampus) with dysmorphic granule neuron patterning. Attenuation of fetal neurogenic output demonstrates potentially considerable teratogenic effects of congenital ZIKV infection even without microcephaly. Our findings suggest that all children exposed to ZIKV in utero should receive long-term monitoring for neurocognitive deficits, regardless of head size at birth.
Collapse
Affiliation(s)
- Kristina M. Adams Waldorf
- Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington, United States of America
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Sahlgrenska Academy, Gothenburg University, Sweden
| | - Branden R. Nelson
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Jennifer E. Stencel-Baerenwald
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, United States of America
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Colin Studholme
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
- Department of Radiology, University of Washington, Seattle, Washington, United States of America
| | - Raj P. Kapur
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- Department of Pathology, Seattle Children’s Hospital, Seattle, Washington, United States of America
| | - Blair Armistead
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Christie L. Walker
- Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Sean Merillat
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Jay Vornhagen
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Jennifer Tisoncik-Go
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, United States of America
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Audrey Baldessari
- Washington National Primate Research Center, Seattle, Washington, United States of America
| | - Michelle Coleman
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Manjiri K. Dighe
- Department of Radiology, University of Washington, Seattle, Washington, United States of America
| | - Dennis W.W. Shaw
- Department of Radiology, University of Washington, Seattle, Washington, United States of America
- Department of Radiology, Seattle Children’s Hospital, Seattle, Washington, United States of America
| | - Justin A. Roby
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, United States of America
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Veronica Santana-Ufret
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Erica Boldenow
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Junwei Li
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Xiaohu Gao
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Michael A. Davis
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, United States of America
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Jesica A. Swanstrom
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kara Jensen
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Douglas G. Widman
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Joseph T. Medwid
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Kathryn A. Hanley
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Jason Ogle
- Washington National Primate Research Center, Seattle, Washington, United States of America
| | - G. Michael Gough
- Washington National Primate Research Center, Seattle, Washington, United States of America
| | - Wonsok Lee
- Washington National Primate Research Center, Seattle, Washington, United States of America
| | - Chris English
- Washington National Primate Research Center, Seattle, Washington, United States of America
| | - W. McIntyre Durning
- Washington National Primate Research Center, Seattle, Washington, United States of America
| | - Jeff Thiel
- Department of Radiology, University of Washington, Seattle, Washington, United States of America
| | - Chris Gatenby
- Department of Radiology, University of Washington, Seattle, Washington, United States of America
| | - Elyse C. Dewey
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, United States of America
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Marian R. Fairgrieve
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, United States of America
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | | | - Richard F. Grant
- Washington National Primate Research Center, Seattle, Washington, United States of America
| | - LaRene Kuller
- Washington National Primate Research Center, Seattle, Washington, United States of America
| | - William B. Dobyns
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Robert F. Hevner
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Lakshmi Rajagopal
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| |
Collapse
|
35
|
Xia H, Luo H, Shan C, Muruato AE, Nunes BTD, Medeiros DBA, Zou J, Xie X, Giraldo MI, Vasconcelos PFC, Weaver SC, Wang T, Rajsbaum R, Shi PY. An evolutionary NS1 mutation enhances Zika virus evasion of host interferon induction. Nat Commun 2018; 9:414. [PMID: 29379028 PMCID: PMC5788864 DOI: 10.1038/s41467-017-02816-2] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/29/2017] [Indexed: 12/12/2022] Open
Abstract
Virus-host interactions determine an infection outcome. The Asian lineage of Zika virus (ZIKV), responsible for the recent epidemics, has fixed a mutation in the NS1 gene after 2012 that enhances mosquito infection. Here we report that the same mutation confers NS1 to inhibit interferon-β induction. This mutation enables NS1 binding to TBK1 and reduces TBK1 phosphorylation. Engineering the mutation into a pre-epidemic ZIKV strain debilitates the virus for interferon-β induction; reversing the mutation in an epidemic ZIKV strain invigorates the virus for interferon-β induction; these mutational effects are lost in IRF3-knockout cells. Additionally, ZIKV NS2A, NS2B, NS4A, NS4B, and NS5 can also suppress interferon-β production through targeting distinct components of the RIG-I pathway; however, for these proteins, no antagonistic difference is observed among various ZIKV strains. Our results support the mechanism that ZIKV has accumulated mutation(s) that increases the ability to evade immune response and potentiates infection and epidemics.
Collapse
Affiliation(s)
- Hongjie Xia
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Huanle Luo
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Chao Shan
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Antonio E Muruato
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Bruno T D Nunes
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Pará State, Brazil
| | - Daniele B A Medeiros
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Pará State, Brazil
| | - Jing Zou
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Xuping Xie
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Maria Isabel Giraldo
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Pedro F C Vasconcelos
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Pará State, Brazil
- Department of Pathology, Pará State University, Belém, Brazil
| | - Scott C Weaver
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Institute for Translational Science, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Ricardo Rajsbaum
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Pei-Yong Shi
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Institute for Translational Science, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Phamarcology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
36
|
Characterization of large and small-plaque variants in the Zika virus clinical isolate ZIKV/Hu/S36/Chiba/2016. Sci Rep 2017; 7:16160. [PMID: 29170504 PMCID: PMC5701032 DOI: 10.1038/s41598-017-16475-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/13/2017] [Indexed: 12/22/2022] Open
Abstract
An Asian/American lineage Zika virus (ZIKV) strain ZIKV/Hu/S36/Chiba/2016 formed 2 types in plaque size, large and small. Genomic analysis of the plaque-forming clones obtained from the isolate indicated that the clones forming small plaques commonly had an adenine nucleotide at position 796 (230Gln in the amino acid sequence), while clones forming large plaques had a guanine nucleotide (230Arg) at the same position, suggesting that this position was associated with the difference in plaque size. Growth kinetics of a large-plaque clone was faster than that of a small-plaque clone in Vero cells. Recombinant ZIKV G796A/rZIKV-MR766, which carries a missense G796A mutation, was produced using an infectious molecular clone of the ZIKV MR766 strain rZIKV-MR766/pMW119-CMVP. The plaque size of the G796A mutant was significantly smaller than that of the parental strain. The G796A mutation clearly reduced the growth rate of the parental virus in Vero cells. Furthermore, the G796A mutation also decreased the virulence of the MR766 strain in IFNAR1 knockout mice. These results indicate that the amino acid variation at position 230 in the viral polyprotein, which is located in the M protein sequence, is a molecular determinant for plaque morphology, growth property, and virulence in mice of ZIKV.
Collapse
|
37
|
Characterization of cis-Acting RNA Elements of Zika Virus by Using a Self-Splicing Ribozyme-Dependent Infectious Clone. J Virol 2017; 91:JVI.00484-17. [PMID: 28814522 DOI: 10.1128/jvi.00484-17] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 07/27/2017] [Indexed: 12/13/2022] Open
Abstract
Zika virus (ZIKV) has caused significant outbreaks and epidemics in the Americas recently, raising global concern due to its ability to cause microcephaly and other neurological complications. A stable and efficient infectious clone of ZIKV is urgently needed. However, the instability and toxicity of flavivirus cDNA clones in Escherichia coli hosts has hindered the development of ZIKV infectious clones. Here, using a novel self-splicing ribozyme-based strategy, we generated a stable infectious cDNA clone of a contemporary ZIKV strain imported from Venezuela to China in 2016. The constructed clone contained a modified version of the group II self-splicing intron P.li.LSUI2 near the junction between the E and NS1 genes, which were removed from the RNA transcripts by an easy-to-establish in vitro splicing reaction. Transfection of the spliced RNAs into BHK-21 cells led to the production of infectious progeny virus that resembled the parental virus. Finally, potential cis-acting RNA elements in ZIKV genomic RNA were identified based on this novel reverse genetics system, and the critical role of 5'-SLA promoter and 5'-3' cyclization sequences were characterized by a combination of different assays. Our results provide another stable and reliable reverse genetics system for ZIKV that will help study ZIKV infection and pathogenesis, and the novel self-splicing intron-based strategy could be further expanded for the construction of infectious clones from other emerging and reemerging flaviviruses.IMPORTANCE The ongoing Zika virus (ZIKV) outbreaks have drawn global concern due to the unexpected causal link to fetus microcephaly and other severe neurological complications. The infectious cDNA clones of ZIKV are critical for the research community to study the virus, understand the disease, and inform vaccine design and antiviral screening. A panel of existing technologies have been utilized to develop ZIKV infectious clones. Here, we successfully generated a stable infectious clone of a 2016 ZIKV strain using a novel self-splicing ribozyme-based technology that abolished the potential toxicity of ZIKV cDNA clones to the E. coli host. Moreover, two crucial cis-acting replication elements (5'-SLA and 5'-CS) of ZIKV were first identified using this novel reverse genetics system. This novel self-splicing ribozyme-based reverse genetics platform will be widely utilized in future ZIKV studies and provide insight for the development of infectious clones of other emerging viruses.
Collapse
|
38
|
Aliota MT, Bassit L, Bradrick SS, Cox B, Garcia-Blanco MA, Gavegnano C, Friedrich TC, Golos TG, Griffin DE, Haddow AD, Kallas EG, Kitron U, Lecuit M, Magnani DM, Marrs C, Mercer N, McSweegan E, Ng LFP, O'Connor DH, Osorio JE, Ribeiro GS, Ricciardi M, Rossi SL, Saade G, Schinazi RF, Schott-Lerner GO, Shan C, Shi PY, Watkins DI, Vasilakis N, Weaver SC. Zika in the Americas, year 2: What have we learned? What gaps remain? A report from the Global Virus Network. Antiviral Res 2017; 144:223-246. [PMID: 28595824 PMCID: PMC5920658 DOI: 10.1016/j.antiviral.2017.06.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/01/2017] [Indexed: 12/25/2022]
Abstract
In response to the outbreak of Zika virus (ZIKV) infection in the Western Hemisphere and the recognition of a causal association with fetal malformations, the Global Virus Network (GVN) assembled an international taskforce of virologists to promote basic research, recommend public health measures and encourage the rapid development of vaccines, antiviral therapies and new diagnostic tests. In this article, taskforce members and other experts review what has been learned about ZIKV-induced disease in humans, its modes of transmission and the cause and nature of associated congenital manifestations. After describing the make-up of the taskforce, we summarize the emergence of ZIKV in the Americas, Africa and Asia, its spread by mosquitoes, and current control measures. We then review the spectrum of primary ZIKV-induced disease in adults and children, sites of persistent infection and sexual transmission, then examine what has been learned about maternal-fetal transmission and the congenital Zika syndrome, including knowledge obtained from studies in laboratory animals. Subsequent sections focus on vaccine development, antiviral therapeutics and new diagnostic tests. After reviewing current understanding of the mechanisms of emergence of Zika virus, we consider the likely future of the pandemic.
Collapse
Affiliation(s)
- Matthew T Aliota
- Department of Pathobiological Sciences, University of Wisconsin-Madison, USA
| | - Leda Bassit
- Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Shelton S Bradrick
- Department of Biochemistry and Molecular Biology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Bryan Cox
- Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Mariano A Garcia-Blanco
- Department of Biochemistry and Molecular Biology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Christina Gavegnano
- Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Thomas C Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, USA; Wisconsin National Primate Research Center, University of Wisconsin-Madison, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, USA; Department of Comparative Biosciences, University of Wisconsin-Madison, USA; Department of Obstetrics and Gynecology, University of Wisconsin-Madison, USA
| | - Diane E Griffin
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA; W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Andrew D Haddow
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA; Virology Division, United States Army Medical Research Institute of Infectious Diseases, Ft. Detrick, MD, 21702, USA
| | - Esper G Kallas
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA; Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, Brazil
| | - Uriel Kitron
- Department of Environmental Sciences, Emory University, Atlanta, GA, USA
| | - Marc Lecuit
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA; Institut Pasteur, Biology of Infection Unit and INSERM Unit 1117, France; Paris Descartes University, Sorbonne Paris Cité, Division of Infectious Diseases and Tropical Medicine, Necker- Enfants Malades University Hospital, Institut Imagine, Paris, France
| | - Diogo M Magnani
- Department of Pathology, University of Miami, Miami, FL, USA
| | - Caroline Marrs
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Natalia Mercer
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA
| | | | - Lisa F P Ng
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA; Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - David H O'Connor
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, USA
| | - Jorge E Osorio
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA; Department of Pathobiological Sciences, University of Wisconsin-Madison, USA
| | - Guilherme S Ribeiro
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz and Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | | | - Shannan L Rossi
- Department of Microbiology & Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - George Saade
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Raymond F Schinazi
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA; Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Geraldine O Schott-Lerner
- Department of Biochemistry and Molecular Biology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Chao Shan
- Department of Biochemistry and Molecular Biology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - David I Watkins
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA; Department of Pathology, University of Miami, Miami, FL, USA
| | - Nikos Vasilakis
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Scott C Weaver
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA; Department of Microbiology & Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
39
|
Richner JM, Jagger BW, Shan C, Fontes CR, Dowd KA, Cao B, Himansu S, Caine EA, Nunes BT, Medeiros DB, Muruato AE, Foreman BM, Luo H, Wang T, Barrett AD, Weaver SC, Vasconcelos PF, Rossi SL, Ciaramella G, Mysorekar IU, Pierson TC, Shi PY, Diamond MS. Vaccine Mediated Protection Against Zika Virus-Induced Congenital Disease. Cell 2017; 170:273-283.e12. [PMID: 28708997 PMCID: PMC5546158 DOI: 10.1016/j.cell.2017.06.040] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/19/2017] [Accepted: 06/26/2017] [Indexed: 12/11/2022]
Abstract
The emergence of Zika virus (ZIKV) and its association with congenital malformations has prompted the rapid development of vaccines. Although efficacy with multiple viral vaccine platforms has been established in animals, no study has addressed protection during pregnancy. We tested in mice two vaccine platforms, a lipid nanoparticle-encapsulated modified mRNA vaccine encoding ZIKV prM and E genes and a live-attenuated ZIKV strain encoding an NS1 protein without glycosylation, for their ability to protect against transmission to the fetus. Vaccinated dams challenged with a heterologous ZIKV strain at embryo day 6 (E6) and evaluated at E13 showed markedly diminished levels of viral RNA in maternal, placental, and fetal tissues, which resulted in protection against placental damage and fetal demise. As modified mRNA and live-attenuated vaccine platforms can restrict in utero transmission of ZIKV in mice, their further development in humans to prevent congenital ZIKV syndrome is warranted.
Collapse
Affiliation(s)
- Justin M. Richner
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brett W. Jagger
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chao Shan
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Camila R. Fontes
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kimberly A. Dowd
- Viral Pathogenesis Section, National Institutes of Health, Bethesda, MD 20892 USA
| | - Bin Cao
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sunny Himansu
- Valera LLC, a Moderna Venture, 500 Technology Square, Cambridge, MA, 02139, USA
| | - Elizabeth A. Caine
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bruno T.D. Nunes
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Pará State, Brazil
| | - Daniele B.A. Medeiros
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Pará State, Brazil
| | - Antonio E. Muruato
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Bryant M. Foreman
- Viral Pathogenesis Section, National Institutes of Health, Bethesda, MD 20892 USA
| | - Huanle Luo
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Tian Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alan D. Barrett
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Scott C. Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Pedro F.C. Vasconcelos
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Pará State, Brazil
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA, Department of Pathology, Pará State University, Belém, Brazil
| | - Shannan L. Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Giuseppe Ciaramella
- Valera LLC, a Moderna Venture, 500 Technology Square, Cambridge, MA, 02139, USA
| | - Indira U. Mysorekar
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA, Department of Pathology, Pará State University, Belém, Brazil
| | - Theodore C. Pierson
- Viral Pathogenesis Section, National Institutes of Health, Bethesda, MD 20892 USA
| | - Pei-Yong Shi
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Translational Science, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA, Department of Pathology, Pará State University, Belém, Brazil
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
40
|
McArthur MA. Zika Virus: Recent Advances towards the Development of Vaccines and Therapeutics. Viruses 2017; 9:v9060143. [PMID: 28608813 PMCID: PMC5490820 DOI: 10.3390/v9060143] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/02/2017] [Accepted: 06/08/2017] [Indexed: 12/11/2022] Open
Abstract
Zika is a rapidly emerging public health threat. Although clinical infection is frequently mild, significant neurological manifestations have been demonstrated in infants born to Zika virus (ZIKV) infected mothers. Due to the substantial ramifications of intrauterine infection, effective counter-measures are urgently needed. In order to develop effective anti-ZIKV vaccines and therapeutics, improved animal models and a better understanding of immunological correlates of protection against ZIKV are required. This review will summarize what is currently known about ZIKV, the clinical manifestations and epidemiology of Zika as well as, the development of animal models to study ZIKV infection, host immune responses against ZIKV, and the current state of development of vaccines and therapeutics against ZIKV.
Collapse
Affiliation(s)
- Monica A McArthur
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|