1
|
Lien JC, Hsu SY, Chueh FS, Ma YS, Chu YL, Chou YC, Lai KC, Chen JC, Huang YP, Wu RSC. Newly Synthesized PW06 Induced Cell Apoptosis in Human Glioblastoma Multiforme GBM 8401 Cells Through Caspase- and Mitochondria-Dependent Pathways. J Biochem Mol Toxicol 2025; 39:e70264. [PMID: 40258141 DOI: 10.1002/jbt.70264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/08/2025] [Accepted: 04/04/2025] [Indexed: 04/23/2025]
Abstract
Glioblastoma multiforme (GBM) is the most common, aggressive, and dangerous lethal tumor in the brain, which develops in adults. Currently, the efficiency of chemotherapy treatment for GBM patients is still unsatisfactory. PW06 was synthesized by Dr. Lien's laboratory (China Medical University, Taichung, Taiwan), and it was demonstrated to induce cancer cell apoptosis in human pancreatic carcinoma MIA PaCa-2 cells. However, the anti-cancer activities of PW06 on human GBM cancer cells are not reported. Thus, herein, PW06 was investigated on the anticancer activity on human glioblastoma multiforme GBM 8401 cells. Both PI exclusion and Annexin V/PI double staining methods were conducted for investing cell viability and apoptosis in GBM 8401 cells, respectively; they were analyzed with flow cytometer assay. Results showed that PW06 decreased total viable cell number with the process of cell apoptosis in GBM 8401 cells. Both productions of reactive oxygen species (ROS) and Ca2+, affect mitochondria membrane potential (ΔΨm) levels, and activities of caspase-3, -8, and -9 in GBM 8401 cells after exposure with PW06 were assayed by flow cytometer. Results showed that PW06 promoted ROS production and Ca2+ release from ER but lowered the levels of ΔΨm, and it also induced higher activities in caspase-3, -8, and -9 in GBM 8401 cells. Evaluation of protein expressions associated with apoptosis in GBM 8401 cells after being incubated with PW06 were conducted by Western blot analysis. Results show that PW06 increased GADD153, BiP, ATF-6α, ATF-6β, eIF2α, eIF2αpSer51, CHOP, and caspase-4, and they are associated with ER stress-associated protein expression. However, it induced higher pro-apoptotic proteins (Bax and Bad) expression and inhibited anti-apoptotic proteins (Bcl-2, Bcl-xl, and Mcl-1) expression, even promoting higher cleaved caspase-8, -9, and -3 protein expression and increased EndoG and AIF in GBM 8401 cells. Collectively, it may suggest PW06 exits anti-GBM activity to process cell apoptosis in the human GBM 8401 cells in vitro.
Collapse
Affiliation(s)
- Jin-Cherng Lien
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Sheng-Yao Hsu
- Department of Ophthalmology, Kaohsiung Show Chwan Memorial Hospital, Tainan, Taiwan
- Department of Optometry, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Fu-Shin Chueh
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Yi-Shih Ma
- School of Chinese Medicine for Post-Baccalaureate, College of Medicine, I-Shou University, Kaohsiung, Taiwan
- Department of Chinese Medicine, E-Da Cancer Hospital, Kaohsiung, Taiwan
| | - Yung-Lin Chu
- Department of Food Science, College of Agriculture, National Pingtung University of Science Technology, Pingtung, Taiwan
| | - Yu-Cheng Chou
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Kuang-Chi Lai
- Department of Surgery, School of Medicine, China Medical University, Taichung, Taiwan
| | - Jaw-Chyun Chen
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua, Taiwan
| | - Yi-Ping Huang
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Rick Sai-Chuen Wu
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan
- Department of Anesthesiology, China Medical University, Taichung, Taiwan
| |
Collapse
|
2
|
Mussulini BHM, Maruszczak KK, Draczkowski P, Borrero-Landazabal MA, Ayyamperumal S, Wnorowski A, Wasilewski M, Chacinska A. MIA40 suppresses cell death induced by apoptosis-inducing factor 1. EMBO Rep 2025; 26:1835-1862. [PMID: 40055465 PMCID: PMC11976965 DOI: 10.1038/s44319-025-00406-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/08/2025] [Accepted: 01/24/2025] [Indexed: 04/09/2025] Open
Abstract
Mitochondria harbor respiratory complexes that perform oxidative phosphorylation. Complex I is the first enzyme of the respiratory chain that oxidizes NADH. A dysfunction in complex I can result in higher cellular levels of NADH, which in turn strengthens the interaction between apoptosis-inducing factor 1 (AIFM1) and Mitochondrial intermembrane space import and assembly protein 40 (MIA40) in the mitochondrial intermembrane space. We investigated whether MIA40 modulates the activity of AIFM1 upon increased NADH/NAD+ balance. We found that in model cells characterized by an increase in NADH the AIFM1-MIA40 interaction is strengthened and these cells demonstrate resistance to AIFM1-induced cell death. Either silencing of MIA40, rescue of complex I, or depletion of NADH through the expression of yeast NADH-ubiquinone oxidoreductase-2 sensitized NDUFA13-KO cells to AIFM1-induced cell death. These findings indicate that the complex of MIA40 and AIFM1 suppresses AIFM1-induced cell death in a NADH-dependent manner. This study identifies an effector complex involved in regulating the programmed cell death that accommodates the metabolic changes in the cell and provides a molecular explanation for AIFM1-mediated chemoresistance of cancer cells.
Collapse
Affiliation(s)
- Ben Hur Marins Mussulini
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
- IMol Polish Academy of Sciences, Warsaw, Poland
| | | | - Piotr Draczkowski
- National Bioinformatics Infrastructure Sweden, SciLifeLab, Solna, Sweden
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Lublin, Poland
| | | | | | - Artur Wnorowski
- Department of Biopharmacy, Medical University of Lublin, Lublin, Poland
| | - Michal Wasilewski
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
- IMol Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Chacinska
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland.
- IMol Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
3
|
Zhou M, Liu S, Wang Y, Zhang B, Zhu M, Wang JE, Rajaram V, Fang Y, Luo W, Wang Y. AIF3 splicing variant elicits mitochondrial malfunction via the concurrent dysregulation of electron transport chain and glutathione-redox homeostasis. Nat Commun 2025; 16:1804. [PMID: 39979311 PMCID: PMC11842818 DOI: 10.1038/s41467-025-57081-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
Genetic mutations in apoptosis-inducing factor (AIF) have a strong association with mitochondrial disorders; however, little is known about the aberrant splicing variants in affected patients and how these variants contribute to mitochondrial dysfunction and brain development defects. We identified pathologic AIF3/AIF3-like splicing variants in postmortem brain tissues of pediatric individuals with mitochondrial disorders. Mutations in AIFM1 exon-2/3 increase splicing risks. AIF3-splicing disrupts mitochondrial complexes, membrane potential, and respiration, causing brain development defects. Mechanistically, AIF is a mammalian NAD(P)H dehydrogenase and possesses glutathione reductase activity controlling respiratory chain functions and glutathione regeneration. Conversely, AIF3, lacking these activities, disassembles mitochondrial complexes, increases ROS generation, and simultaneously hinders antioxidant defense. Expression of NADH dehydrogenase NDI1 restores mitochondrial functions partially and protects neurons in AIF3-splicing mice. Our findings unveil an underrated role of AIF as a mammalian mitochondrial complex-I alternative NAD(P)H dehydrogenase and provide insights into pathologic AIF-variants in mitochondrial disorders and brain development.
Collapse
Affiliation(s)
- Mi Zhou
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Shuiqiao Liu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yanan Wang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Bo Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ming Zhu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jennifer E Wang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Veena Rajaram
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yisheng Fang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Weibo Luo
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yingfei Wang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
- Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
4
|
Belenichev I, Popazova O, Bukhtiyarova N, Ryzhenko V, Pavlov S, Suprun E, Oksenych V, Kamyshnyi O. Targeting Mitochondrial Dysfunction in Cerebral Ischemia: Advances in Pharmacological Interventions. Antioxidants (Basel) 2025; 14:108. [PMID: 39857442 PMCID: PMC11760872 DOI: 10.3390/antiox14010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
The study of mitochondrial dysfunction has become increasingly pivotal in elucidating the pathophysiology of various cerebral pathologies, particularly neurodegenerative disorders. Mitochondria are essential for cellular energy metabolism, regulation of reactive oxygen species (ROS), calcium homeostasis, and the execution of apoptotic processes. Disruptions in mitochondrial function, driven by factors such as oxidative stress, excitotoxicity, and altered ion balance, lead to neuronal death and contribute to cognitive impairments in several brain diseases. Mitochondrial dysfunction can arise from genetic mutations, ischemic events, hypoxia, and other environmental factors. This article highlights the critical role of mitochondrial dysfunction in the progression of neurodegenerative diseases and discusses the need for targeted therapeutic strategies to attenuate cellular damage, restore mitochondrial function, and enhance neuroprotection.
Collapse
Affiliation(s)
- Igor Belenichev
- Department of Pharmacology and Medical Formulation with Course of Normal Physiology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine;
| | - Olena Popazova
- Department of Histology, Cytology and Embryology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Nina Bukhtiyarova
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Victor Ryzhenko
- Department of Medical and Pharmaceutical Informatics and Advanced Technologies, Zaporizhzhia State Medical University, 69000 Zaporizhzhia, Ukraine
| | - Sergii Pavlov
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Elina Suprun
- The State Institute of Neurology, Psychiatry and Narcology of the National Academy of Medical Sciences of Ukraine, 46 Academician Pavlov Street, 61076 Kharkov, Ukraine
| | | | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology and Immunology, I. Horbachevsky Ternopil State Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
5
|
Chang X, Li D, Guo Y, Sheng X, Wang X, Xing K, Xiao L, Lv X, Long C, Qi X. α-Linolenic acid promotes testosterone synthesis by improving mitochondrial function in primary rooster Leydig cells. Theriogenology 2025; 232:9-19. [PMID: 39504870 DOI: 10.1016/j.theriogenology.2024.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024]
Abstract
The present study aimed to investigate the direct effects of α-Linolenic acid (ALA) on the in vitro production of testosterone and the expression of key enzymes and proteins related to steroidogenesis in Leydig cells of roosters. METHODS Purified primary Leydig cells isolated from 65-week-old roosters were purified and treated with different concentrations of ALA treatments: (0 μm/L [control], solvent control group (DMSO), 20 μM/L, 40 μM/L, and 80 μM/L) and cell counting-8 (CCK-8) for cell viability assay, Enzyme-linked immunosorbent assay (ELISA) kit for the determination of testosterone in cell supernatants, quantitative (real-time) PCR, and analysis of activities of antioxidants catalase (CAT), superoxide dismutase (SOD) and malondialdehyde (MDA), evaluation of mitochondrial membrane potential, pro- and anti-apoptotic proteins/genes Bcl-2, Bcl-2-associated X protein (Bax), apoptosis-inducing factor (AIF) were done respectively. RESULTS Our results showed that ALA significantly increased testosterone secretion in primary rooster Leydig cells (P < 0.05), and 40 μM/L is the optimal dose. Leydig cells supplemented with ALA (20, 40, 80 μM) increased the expression of key enzymes and proteins 3β-hydroxysteroid dehydrogenase (3β-HSD), steroidogenic acute regulatory protein (StAR), cholesterol side-chain cleavage enzyme (P450scc) concerning steroidogenesis, enhanced antioxidant capability, improved mitochondrial biogenesis, and markedly improved the mitochondrial membrane potential (P < 0.05). Furthermore, the expression of the apoptosis-suppressive gene Bcl-2 was significantly increased, but Bax and AIF expression was decreased in the ALA group compared to that in the control group (P < 0.05). CONCLUSION ALA promoted testosterone production, enhanced steroidogenic enzyme expression, improved mitochondrial function, and antioxidant capacity, and reduced apoptosis in primary rooster Leydig cells, with 40 μM/L identified as the optimal concentration.
Collapse
Affiliation(s)
- Xuerui Chang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Danyang Li
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Yong Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xihui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Kai Xing
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Longfei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xueze Lv
- Department of Livestock and Poultry Products Testing, Beijing General Station of Animal Husbandry, Beijing, 100107, China
| | - Cheng Long
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| | - Xiaolong Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
6
|
Liang Z, Liu W, Cao M, Cui J, Lan J, Ding Y, Zhang T, Yang Z. Epigenetic regulation-mediated disorders in dopamine transporter endocytosis: A novel mechanism for the pathogenesis of Parkinson's disease. Theranostics 2025; 15:2250-2278. [PMID: 39990232 PMCID: PMC11840736 DOI: 10.7150/thno.107436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 12/30/2024] [Indexed: 02/25/2025] Open
Abstract
Mechanisms such as DNA methylation, histone modifications, and non-coding RNA regulation may impact the endocytosis of dopamine transporter (DAT) by influencing processes like neuronal survival, thereby contributing to the initiation and progression of Parkinson's Disease (PD). Some small molecule inhibitors or natural bioactive compounds have the potential to modulate epigenetic processes, thereby reversing induced pluripotent stem cells (iPSCs) reprogramming and abnormal differentiation, offering potential therapeutic effects for PD. Although no specific DNA modification enzyme directly regulates DAT endocytosis, enzymes such as DNA methyltransferases (DNMTs) may indirectly influence DAT endocytosis by regulating the expression of genes associated with this process. DNA modifications impact DAT endocytosis by modulating key signaling pathways, including the (protein kinase C) PKC and D2 receptor (D2R) pathways. Key enzymes involved in RNA modifications that influence DAT endocytosis include m6A methyltransferases and other related enzymes. This regulation impacts the synthesis and function of proteins involved in DAT endocytosis, thereby indirectly affecting the process itself. RNA modifications regulate DAT endocytosis through various indirect pathways, as well as histone modifications. Key enzymes influence the expression of genes associated with DAT endocytosis by modulating the chromatin's accessibility and compaction state. These enzymes control the expression of proteins involved in regulating endocytosis, promoting endosome formation, and facilitating recycling processes. Through the modulation exerted by these enzymes, the speed of DAT endocytosis and recycling patterns are indirectly regulated, establishing a crucial epigenetic control point for the regulation of neurotransmitter transport. Based on this understanding, we anticipate that targeting these processes could lead to favorable therapeutic effects for early PD pathogenesis.
Collapse
Affiliation(s)
- Ziqi Liang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Wanqing Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Mian Cao
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, 169857, Singapore; Department of Physiology, National University of Singapore, Singapore, 169857, Singapore
| | - Jiajun Cui
- Department of Biochemistry, College of Medicine, Yichun University, Yichun, Jiangxi 336000, China
| | - Jinshuai Lan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Zizhao Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, 169857, Singapore; Department of Physiology, National University of Singapore, Singapore, 169857, Singapore
- Department of General Surgery, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| |
Collapse
|
7
|
Vasquez A, Schimmenti LA, Demirel N, Rabatin AE, Fischer CR, Pinto MV, Boesch RP, Selcen D. Novel AIFM1 Variant in 2 Siblings With Sensorineural Hearing Loss and Cerebellar Ataxia. Neurol Genet 2024; 10:e200216. [PMID: 39601015 PMCID: PMC11595327 DOI: 10.1212/nxg.0000000000200216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/30/2024] [Indexed: 11/29/2024]
Abstract
Objectives Apoptosis-inducing factor mitochondria-associated 1 (AIFM1) gene encodes a mitochondrial flavoprotein that mediates caspase-independent programmed cell death. We report a novel AIFM1 variant in 2 siblings with early-onset hearing loss and progressive cerebellar ataxia. Methods We evaluated the clinical features, brain MRI scans, EMG studies, and whole genome sequencing (WGS). Results Sibling A is a 19-year-old man with auditory neuropathy at age 15 years, who subsequently developed optic atrophy, progressive gait and limb ataxia, peripheral neuropathy, and ambulation with cane by age 17 years. Brain MRI was normal. Sibling B is a 13-year-old boy with auditory neuropathy diagnosed at 7 and gait instability at 13, with rapid development of peripheral neuropathy, cerebellar ataxia, muscle weakness and atrophy needing wheelchair for mobility, and neuromuscular respiratory failure requiring noninvasive ventilation. Brain MRI showed mild cerebellar atrophy. Initial EMGs showed axonal neuropathy in both and diffuse chronic and active anterior horn cell disorder later in Sibling B. WGS revealed an X-linked, maternally inherited novel AIFM1 variant (c.1299C>G p. Ile433Met). Discussion AIFM1 variants should be considered in patients with hereditary cerebellar ataxia and auditory neuropathy. We highlight a novel AIFM1 variant and its phenotypic intrafamilial variability expanding the knowledge of the genetic spectrum of AIFM1-related diseases.
Collapse
Affiliation(s)
- Alejandra Vasquez
- From the Department of Neurology (A.V., M.V.P., D.S.); Department of Clinical Genomics (L.A.S.); Division of Pediatric Pulmonology (N.D., R.P.B.), Department of Pediatrics and Adolescent Medicine; Division of Pediatric Rehabilitation Medicine, Department of Physical Medicine and Rehabilitation (A.E.R.); and Department of Pediatrics and Adolescent Medicine (C.R.F.), Mayo Clinic
| | - Lisa A Schimmenti
- From the Department of Neurology (A.V., M.V.P., D.S.); Department of Clinical Genomics (L.A.S.); Division of Pediatric Pulmonology (N.D., R.P.B.), Department of Pediatrics and Adolescent Medicine; Division of Pediatric Rehabilitation Medicine, Department of Physical Medicine and Rehabilitation (A.E.R.); and Department of Pediatrics and Adolescent Medicine (C.R.F.), Mayo Clinic
| | - Nadir Demirel
- From the Department of Neurology (A.V., M.V.P., D.S.); Department of Clinical Genomics (L.A.S.); Division of Pediatric Pulmonology (N.D., R.P.B.), Department of Pediatrics and Adolescent Medicine; Division of Pediatric Rehabilitation Medicine, Department of Physical Medicine and Rehabilitation (A.E.R.); and Department of Pediatrics and Adolescent Medicine (C.R.F.), Mayo Clinic
| | - Amy E Rabatin
- From the Department of Neurology (A.V., M.V.P., D.S.); Department of Clinical Genomics (L.A.S.); Division of Pediatric Pulmonology (N.D., R.P.B.), Department of Pediatrics and Adolescent Medicine; Division of Pediatric Rehabilitation Medicine, Department of Physical Medicine and Rehabilitation (A.E.R.); and Department of Pediatrics and Adolescent Medicine (C.R.F.), Mayo Clinic
| | - Callie R Fischer
- From the Department of Neurology (A.V., M.V.P., D.S.); Department of Clinical Genomics (L.A.S.); Division of Pediatric Pulmonology (N.D., R.P.B.), Department of Pediatrics and Adolescent Medicine; Division of Pediatric Rehabilitation Medicine, Department of Physical Medicine and Rehabilitation (A.E.R.); and Department of Pediatrics and Adolescent Medicine (C.R.F.), Mayo Clinic
| | - Marcus V Pinto
- From the Department of Neurology (A.V., M.V.P., D.S.); Department of Clinical Genomics (L.A.S.); Division of Pediatric Pulmonology (N.D., R.P.B.), Department of Pediatrics and Adolescent Medicine; Division of Pediatric Rehabilitation Medicine, Department of Physical Medicine and Rehabilitation (A.E.R.); and Department of Pediatrics and Adolescent Medicine (C.R.F.), Mayo Clinic
| | - Richard Paul Boesch
- From the Department of Neurology (A.V., M.V.P., D.S.); Department of Clinical Genomics (L.A.S.); Division of Pediatric Pulmonology (N.D., R.P.B.), Department of Pediatrics and Adolescent Medicine; Division of Pediatric Rehabilitation Medicine, Department of Physical Medicine and Rehabilitation (A.E.R.); and Department of Pediatrics and Adolescent Medicine (C.R.F.), Mayo Clinic
| | - Duygu Selcen
- From the Department of Neurology (A.V., M.V.P., D.S.); Department of Clinical Genomics (L.A.S.); Division of Pediatric Pulmonology (N.D., R.P.B.), Department of Pediatrics and Adolescent Medicine; Division of Pediatric Rehabilitation Medicine, Department of Physical Medicine and Rehabilitation (A.E.R.); and Department of Pediatrics and Adolescent Medicine (C.R.F.), Mayo Clinic
| |
Collapse
|
8
|
Wischhof L, Mathew AJ, Bonaguro L, Beyer M, Ehninger D, Nicotera P, Bano D. Mitochondrial complex I inhibition enhances astrocyte responsiveness to pro-inflammatory stimuli. Sci Rep 2024; 14:27182. [PMID: 39516523 PMCID: PMC11549212 DOI: 10.1038/s41598-024-78434-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Inhibition of the mitochondrial oxidative phosphorylation (OXPHOS) system can lead to metabolic disorders and neurodegenerative diseases. In primary mitochondrial disorders, reactive astrocytes often accompany neuronal degeneration and may contribute to neurotoxic inflammatory cascades that elicit brain lesions. The influence of mitochondria to astrocyte reactivity as well as the underlying molecular mechanisms remain elusive. Here we report that mitochondrial Complex I dysfunction promotes neural progenitor cell differentiation into astrocytes that are more responsive to neuroinflammatory stimuli. We show that the SWItch/Sucrose Non-Fermentable (SWI/SNF/BAF) chromatin remodeling complex takes part in the epigenetic regulation of astrocyte responsiveness, since its pharmacological inhibition abrogates the expression of inflammatory genes. Furthermore, we demonstrate that Complex I deficient human iPSC-derived astrocytes negatively influence neuronal physiology upon cytokine stimulation. Together, our data describe the SWI/SNF/BAF complex as a sensor of altered mitochondrial OXPHOS and a downstream epigenetic regulator of astrocyte-mediated neuroinflammation.
Collapse
Affiliation(s)
- Lena Wischhof
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Gebäude 99, 53127, Bonn, Germany
| | - Amal John Mathew
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Gebäude 99, 53127, Bonn, Germany
| | - Lorenzo Bonaguro
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Gebäude 99, 53127, Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE and University of Bonn and West German Genome Center, Bonn, Germany
- Genomics and Immunoregulation, LIMES Institute, University of Bonn, Bonn, Germany
| | - Marc Beyer
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Gebäude 99, 53127, Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE and University of Bonn and West German Genome Center, Bonn, Germany
| | - Dan Ehninger
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Gebäude 99, 53127, Bonn, Germany
| | - Pierluigi Nicotera
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Gebäude 99, 53127, Bonn, Germany
| | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Gebäude 99, 53127, Bonn, Germany.
| |
Collapse
|
9
|
Li S, Redweik G, Lin JLJ, Chen YN, Yuan HS, Xue D. Probing the importance of AIF interaction with endonuclease G in mitochondrial inheritance and neurodegeneration. Cell Discov 2024; 10:107. [PMID: 39438436 PMCID: PMC11496498 DOI: 10.1038/s41421-024-00736-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024] Open
Affiliation(s)
- Shanshan Li
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Graham Redweik
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Jason L J Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, China
| | - Yi-Ning Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, China
| | - Hanna S Yuan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, China
| | - Ding Xue
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
10
|
Yang L, Guttman L, Dawson VL, Dawson TM. Parthanatos: Mechanisms, modulation, and therapeutic prospects in neurodegenerative disease and stroke. Biochem Pharmacol 2024; 228:116174. [PMID: 38552851 PMCID: PMC11410548 DOI: 10.1016/j.bcp.2024.116174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Parthanatos is a cell death signaling pathway that has emerged as a compelling target for pharmaceutical intervention. It plays a pivotal role in the neuron loss and neuroinflammation that occurs in Parkinson's Disease (PD), Alzheimer's Disease (AD), Huntington's Disease (HD), Amyotrophic Lateral Sclerosis (ALS), and stroke. There are currently no treatments available to humans to prevent cell death in any of these diseases. This review provides an in-depth examination of the current understanding of the Parthanatos mechanism, with a particular focus on its implications in neuroinflammation and various diseases discussed herein. Furthermore, we thoroughly review potential intervention targets within the Parthanatos pathway. We dissect recent progress in inhibitory strategies, complimented by a detailed structural analysis of key Parthanatos executioners, PARP-1, AIF, and MIF, along with an assessment of their established inhibitors. We hope to introduce a new perspective on the feasibility of targeting components within the Parthanatos pathway, emphasizing its potential to bring about transformative outcomes in therapeutic interventions. By delineating therapeutic opportunities and known targets, we seek to emphasize the imperative of blocking Parthanatos as a precursor to developing disease-modifying treatments. This comprehensive exploration aims to catalyze a paradigm shift in our understanding of potential neurodegenerative disease therapeutics, advocating for the pursuit of effective interventions centered around Parthanatos inhibition.
Collapse
Affiliation(s)
- Liu Yang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lauren Guttman
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
11
|
Liang R, Wang W, Gao W, Li S, Lu P, Chen J, Ding X, Ma P, Yuan H, Lun Y, Guo J, Wang Z, Mei H, Lu L. Calcitriol alleviates noise-induced hearing loss by regulating the ATF3/DUSP1 signalling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116906. [PMID: 39182283 DOI: 10.1016/j.ecoenv.2024.116906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Calcitriol (Cal) is the most active metabolite of vitamin D and has antioxidant and anti-inflammatory properties. The aim of this study was to investigate the role of Cal in noise-induced hearing loss (NIHL) to further elucidate the mechanism of noise-induced oxidative stress in the mouse cochlea. METHODS C57BL/6 J mice were given six intraperitoneal injections of Cal (500 ng/kg/d). After 14 days of noise exposure, auditory brainstem response (ABR) thresholds, and the cochlear outer hair cell loss rate were analysed to evaluate auditory function. Real-time fluorescence quantitative PCR, immunofluorescence and western blotting were performed in vitro after the treatment of cochlear explants with 100 µM tert-butyl hydroperoxide (TBHP) for 2.5 h and HEI-OC1 cells with 250 µM TBHP for 1.5 h. RESULTS In vivo experiments confirmed that Cal pretreatment mitigated NIHL and outer hair cell death. The in vitro results demonstrated that Cal significantly reduced TBHP-induced cochlear auditory nerve fibre degradation and spiral ganglion neuron damage. Moreover, treatment with Cal inhibited the expression of oxidative stress-related factors (3-NT and 4-HNE) and DNA damage-related factors (γ-H2A.X) and attenuated TBHP-induced apoptosis in cochlear explants and HEI-OC1 cells. A total of 1479 upregulated genes and 1443 downregulated genes were screened in cochlear tissue 1 h after noise exposure. The level of transcription factor 3 (ATF3) was significantly elevated in HEI-OC1 cells after TBHP stimulation. Gene Transcription Regulation Database (GTRD)and Cistrome database analyses revealed that the downstream target gene of ATF3 is dual specificity phosphatase 1 (DUSP1). Cistrome DB Toolkit database results showed that the transcription factor of DUSP1 was ATF3. In addition, the ChIP-PCR results indicated that ATF3 might be a direct transcription factor of DUSP1. CONCLUSION The results of our study suggest that Cal attenuates NIHL and inhibits noise-induced apoptosis by regulating the ATF3/DUSP1 signalling pathway.
Collapse
Affiliation(s)
- Rui Liang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Weilong Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Gao
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Siyu Li
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Peiheng Lu
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jiawei Chen
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xuerui Ding
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Pengwei Ma
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hao Yuan
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yuqiang Lun
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jianing Guo
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zi Wang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hongkai Mei
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lianjun Lu
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
12
|
Lu H, Xu L, Steriopoulos J, McLeod P, Huang X, Min J, Peng T, Jevnikar AM, Zhang ZX. An acidic pH environment converts necroptosis to apoptosis. Biochem Biophys Res Commun 2024; 725:150215. [PMID: 38870845 DOI: 10.1016/j.bbrc.2024.150215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 05/24/2024] [Accepted: 06/02/2024] [Indexed: 06/15/2024]
Abstract
Cardiac ischemia results in anaerobic metabolism and lactic acid accumulation and with time, intracellular and extracellular acidosis. Ischemia and subsequent reperfusion injury (IRI) lead to various forms of programmed cell death. Necroptosis is a major form of programmed necrosis that worsens cardiac function directly and also promotes inflammation by the release of cellular contents. Potential effects of increasing acidosis on programmed cell death and their specific components have not been well studied. While apoptosis is caspase-dependent, in contrast, necroptosis is mediated by the receptor-interacting protein kinases 1 and 3 (RIPK1/3). In our study, we observed that at physiological pH = 7.4, caspase-8 inhibition did not prevent TNFα-induced cell death in mouse cardiac vascular endothelial cells (MVECs) but promoted necroptotic cell death. As expected, necroptosis was blocked by RIPK1 inhibition. However, at pH = 6.5, TNFα induced an apoptosis-like pattern which was inhibited by caspase-8 inhibition. Interestingly phosphorylation of necroptotic molecules RIPK1, RIPK3, and mixed lineage kinase domain-like protein (MLKL) was enhanced in an acidic pH environment. However, RIPK3 and MLKL phosphorylation was self-limited which may have limited their participation in necroptosis. In addition, an acidic pH promoted apoptosis-inducing factor (AIF) cleavage and nuclear translocation. AIF RNA silencing inhibited cell death, supporting the role of AIF in this cell death. In summary, our study demonstrated that the pH of the micro-environment during inflammation can bias cell death pathways by altering the function of necroptosis-related molecules and promoting AIF-mediated cell death. Further insights into the mechanisms by which an acidic cellular micro-environment influences these and perhaps other forms of regulated cell death, may lead to therapeutic strategies to attenuate IRI.
Collapse
Affiliation(s)
- Haitao Lu
- Matthew Mailing Centre for Translational Transplantation Studies. Lawson Health Research Institute, London, Canada; Department of Pathology, Western University, London, Canada
| | - Laura Xu
- Matthew Mailing Centre for Translational Transplantation Studies. Lawson Health Research Institute, London, Canada; Department of Pathology, Western University, London, Canada
| | - Julia Steriopoulos
- Matthew Mailing Centre for Translational Transplantation Studies. Lawson Health Research Institute, London, Canada; Department of Pathology, Western University, London, Canada
| | - Patrick McLeod
- Matthew Mailing Centre for Translational Transplantation Studies. Lawson Health Research Institute, London, Canada; Multi-Organ Transplant Program, London Health Sciences Centre. London, Canada
| | - Xuyan Huang
- Matthew Mailing Centre for Translational Transplantation Studies. Lawson Health Research Institute, London, Canada
| | - Jeffery Min
- Matthew Mailing Centre for Translational Transplantation Studies. Lawson Health Research Institute, London, Canada
| | - Tianging Peng
- Department of Pathology, Western University, London, Canada; Division of Nephrology, Department of Medicine, Western University. London, Canada
| | - Anthony M Jevnikar
- Matthew Mailing Centre for Translational Transplantation Studies. Lawson Health Research Institute, London, Canada; Multi-Organ Transplant Program, London Health Sciences Centre. London, Canada; Division of Nephrology, Department of Medicine, Western University. London, Canada
| | - Zhu-Xu Zhang
- Matthew Mailing Centre for Translational Transplantation Studies. Lawson Health Research Institute, London, Canada; Department of Pathology, Western University, London, Canada; Multi-Organ Transplant Program, London Health Sciences Centre. London, Canada; Division of Nephrology, Department of Medicine, Western University. London, Canada.
| |
Collapse
|
13
|
Li YC, Fu JT, Tzeng SF. Exposure to lipid mixture induces intracellular lipid droplet formation and impairs mitochondrial functions in astrocytes. Neurochem Int 2024; 178:105792. [PMID: 38880230 DOI: 10.1016/j.neuint.2024.105792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Astrocytes, the predominant glial cells in the central nervous system (CNS), play diverse roles including metabolic support for neurons, provision of neurotrophic factors, facilitation of synaptic neurotransmitter uptake, regulation of ion balance, and involvement in synaptic formation. The accumulation of lipids has been noted in various neurological conditions, yet the response of astrocytes to lipid-rich environments remains unclear. In this study, primary astrocytes isolated from the neonatal rat cortex were exposed to a lipid mixture (LM) comprising cholesterol and various fatty acids to explore their reaction. Our results showed that astrocyte viability remained unchanged following 24 h of 5% or 10% LM treatment. However, exposure to LM for 96 h resulted in reduced cell viability. In addition, LM treatment led to the accumulation of lipid droplets (LDs) in astrocytes, with LD size increasing over prolonged exposure periods. Following 24 h of LM treatment and then 48 h in fresh medium, a significant reduction in intracellular LD size was observed in cultures treated with 5% LM, while no change occurred in cultures exposed to 10% LM. Yet, exposure to 10% LM for 24 h significantly increased the expression of the cholesterol efflux regulatory protein/ATP-binding cassette transporter (ABCA1) gene, responsible for intracellular cholesterol efflux, resulting in reduced cholesterol content within astrocytes. Moreover, LM exposure led to decreased mitochondrial membrane potential (MMP) and increased levels of mature apoptosis-inducing factor (AIF). The smaller LDs were observed to co-localize with microtubule-associated protein 1A/1 B light chain 3 B (LC3) and lysosomal-associated membrane protein-1 (LAMP-1) in LM-treated astrocytes, coinciding with lysosomal acidification. These results indicate that the continuous buildup of LDs in astrocytes residing in lipid-enriched environments may be attributed to disruptions caused by LM in mitochondrial and lysosomal functions. Such disruptions could potentially impede the supportive role of astrocytes in neuronal function.
Collapse
Affiliation(s)
- Yi-Chen Li
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Jing-Ting Fu
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Shun-Fen Tzeng
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
14
|
Brosey CA, Link TM, Shen R, Moiani D, Burnett K, Hura GL, Jones DE, Tainer JA. Chemical screening by time-resolved X-ray scattering to discover allosteric probes. Nat Chem Biol 2024; 20:1199-1209. [PMID: 38671223 PMCID: PMC11358040 DOI: 10.1038/s41589-024-01609-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 03/20/2024] [Indexed: 04/28/2024]
Abstract
Drug discovery relies on efficient identification of small-molecule leads and their interactions with macromolecular targets. However, understanding how chemotypes impact mechanistically important conformational states often remains secondary among high-throughput discovery methods. Here, we present a conformational discovery pipeline integrating time-resolved, high-throughput small-angle X-ray scattering (TR-HT-SAXS) and classic fragment screening applied to allosteric states of the mitochondrial import oxidoreductase apoptosis-inducing factor (AIF). By monitoring oxidized and X-ray-reduced AIF states, TR-HT-SAXS leverages structure and kinetics to generate a multidimensional screening dataset that identifies fragment chemotypes allosterically stimulating AIF dimerization. Fragment-induced dimerization rates, quantified with time-resolved SAXS similarity analysis (kVR), capture structure-activity relationships (SAR) across the top-ranked 4-aminoquinoline chemotype. Crystallized AIF-aminoquinoline complexes validate TR-SAXS-guided SAR, supporting this conformational chemotype for optimization. AIF-aminoquinoline structures and mutational analysis reveal active site F482 as an underappreciated allosteric stabilizer of AIF dimerization. This conformational discovery pipeline illustrates TR-HT-SAXS as an effective technology for targeting chemical leads to important macromolecular states.
Collapse
Affiliation(s)
- Chris A Brosey
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Todd M Link
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Runze Shen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Davide Moiani
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathryn Burnett
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Greg L Hura
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Darin E Jones
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
15
|
Guo P, Wang TJ, Wang S, Peng X, Kim DH, Liu Y. Arabidopsis Histone Variant H2A.X Functions in the DNA Damage-Coupling Abscisic Acid Signaling Pathway. Int J Mol Sci 2024; 25:8940. [PMID: 39201623 PMCID: PMC11354415 DOI: 10.3390/ijms25168940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Environmental variations initiate chromatin modifications, leading to the exchange of histone subunits or the repositioning of nucleosomes. The phosphorylated histone variant H2A.X (γH2A.X) is recognized for the formation of foci that serve as established markers of DNA double-strand breaks (DSBs). Nevertheless, the precise roles of H2A.X in the cellular response to genotoxic stress and the impact of the plant hormone abscisic acid (ABA) remain incompletely understood. In this investigation, we implemented CRISPR/Cas9 technology to produce loss-of-function mutants of AtHTA3 and AtHTA5 in Arabidopsis. The phenotypes of the athta3 and athta5 single mutants were nearly identical to those of the wild-type Col-0. Nevertheless, the athta3 athta5 double mutants exhibited aberrant embryonic development, increased sensitivity to DNA damage, and higher sensitivity to ABA. The RT-qPCR analysis indicates that AtHTA3 and AtHTA5 negatively regulate the expression of AtABI3, a fundamental regulator in the ABA signaling pathway. Subsequent investigation demonstrated that AtABI3 participates in the genotoxic stress response by influencing the expression of DNA damage response genes, such as AtBRCA1, AtRAD51, and AtWEE1. Our research offers new insights into the role of H2A.X in the genotoxic and ABA responses of Arabidopsis.
Collapse
Affiliation(s)
- Peng Guo
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (P.G.); (T.-J.W.); (S.W.); (X.P.)
| | - Tian-Jing Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (P.G.); (T.-J.W.); (S.W.); (X.P.)
| | - Shuang Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (P.G.); (T.-J.W.); (S.W.); (X.P.)
| | - Xiaoyuan Peng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (P.G.); (T.-J.W.); (S.W.); (X.P.)
| | - Dae Heon Kim
- Department of Biomedical Science, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; (P.G.); (T.-J.W.); (S.W.); (X.P.)
| |
Collapse
|
16
|
Yin X, Zeng D, Liao Y, Tang C, Li Y. The Function of H2A Histone Variants and Their Roles in Diseases. Biomolecules 2024; 14:993. [PMID: 39199381 PMCID: PMC11352661 DOI: 10.3390/biom14080993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Epigenetic regulation, which is characterized by reversible and heritable genetic alterations without changing DNA sequences, has recently been increasingly studied in diseases. Histone variant regulation is an essential component of epigenetic regulation. The substitution of canonical histones by histone variants profoundly alters the local chromatin structure and modulates DNA accessibility to regulatory factors, thereby exerting a pivotal influence on gene regulation and DNA damage repair. Histone H2A variants, mainly including H2A.Z, H2A.B, macroH2A, and H2A.X, are the most abundant identified variants among all histone variants with the greatest sequence diversity. Harboring varied chromatin occupancy and structures, histone H2A variants perform distinct functions in gene transcription and DNA damage repair. They are implicated in multiple pathophysiological mechanisms and the emergence of different illnesses. Cancer, embryonic development abnormalities, neurological diseases, metabolic diseases, and heart diseases have all been linked to histone H2A variant alterations. This review focuses on the functions of H2A histone variants in mammals, including H2A.Z, H2A.B, macroH2A, and H2A.X, and their current roles in various diseases.
Collapse
Affiliation(s)
- Xuemin Yin
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Dong Zeng
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Yingjun Liao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Chengyuan Tang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Ying Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| |
Collapse
|
17
|
Wan H, Chen H, Liu J, Yang B, Zhang Y, Bai Y, Chen X, Wang J, Liu T, Zhang Y, Hua Q. PARP1 inhibition prevents oxidative stress in age-related hearing loss via PAR-Ca 2+-AIF axis in cochlear strial marginal cells. Free Radic Biol Med 2024; 220:222-235. [PMID: 38735540 DOI: 10.1016/j.freeradbiomed.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Studies have highlighted oxidative damage in the inner ear as a critical pathological basis for sensorineural hearing loss, especially the presbycusis. Poly(ADP-ribose) polymerase-1 (PARP1) activation responds to oxidative stress-induced DNA damage with pro-repair and pro-death effects resembling two sides of the same coin. PARP1-related cell death, known as parthanatos, whose underlying mechanisms are attractive research hotspots but remain to be clarified. In this study, we observed that aged rats showed stria vascularis degeneration and oxidative damage, and PARP1-dependent cell death was prominent in age-related cochlear disorganization and dysfunction. Based on oxidative stress model of primary cultured stria marginal cells (MCs), we revealed that upregulated PARP1 and PAR (Poly(ADP-ribose)) polymers are responsible for MCs oxidative death with high mitochondrial permeability transition pore (mPTP) opening and mitochondrial membrane potential (MMP) collapse, while inhibition of PARP1 ameliorated the adverse outcomes. Importantly, the PARylation of apoptosis-inducing factor (AIF) is essential for its conformational change and translocation, which subsequently causes DNA break and cell death. Concretely, the interaction of PAR and truncated AIF (tAIF) is the mainstream in the parthanatos pathway. We also found that the effects of AIF cleavage and release were achieved through calpain activity and mPTP opening, both of which could be regulated by PARP1 via mediation of mitochondria Ca2+ concentration. In conclusion, the PAR-Ca2+-tAIF signaling pathway in parthanatos contributes to the oxidative stress damage observed in MCs. Targeting PAR-Ca2+-tAIF might be a potential therapeutic strategy for the early intervention of presbycusis and other oxidative stress-associated sensorineural deafness.
Collapse
Affiliation(s)
- Huanzhi Wan
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan, 430060, Hubei Province, China; The First Clinical School of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Huidong Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan, 430060, Hubei Province, China; The First Clinical School of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Jingchun Liu
- The First Clinical School of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Bingqian Yang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan, 430060, Hubei Province, China; The First Clinical School of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Yunlong Zhang
- Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan, 430060, Hubei Province, China; The First Clinical School of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Yutong Bai
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan, 430060, Hubei Province, China; The First Clinical School of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Xiaoying Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan, 430060, Hubei Province, China; The First Clinical School of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Jie Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan, 430060, Hubei Province, China; The First Clinical School of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Tianyi Liu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan, 430060, Hubei Province, China.
| | - Yuanyuan Zhang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan, 430060, Hubei Province, China.
| | - Qingquan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China; Research Institute of Otolaryngology-Head and Neck Surgery, Wuhan University, Wuhan, 430060, Hubei Province, China.
| |
Collapse
|
18
|
Goel D, Kumar S. Advancements in unravelling the fundamental function of the ATAD3 protein in multicellular organisms. Adv Biol Regul 2024; 93:101041. [PMID: 38909398 DOI: 10.1016/j.jbior.2024.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
ATPase family AAA domain containing protein 3, commonly known as ATAD3 is a versatile mitochondrial protein that is involved in a large number of pathways. ATAD3 is a transmembrane protein that spans both the inner mitochondrial membrane and outer mitochondrial membrane. It, therefore, functions as a connecting link between the mitochondrial lumen and endoplasmic reticulum facilitating their cross-talk. ATAD3 contains an N-terminal domain which is amphipathic in nature and is inserted into the membranous space of the mitochondria, while the C-terminal domain is present towards the lumen of the mitochondria and contains the ATPase domain. ATAD3 is known to be involved in mitochondrial biogenesis, cholesterol transport, hormone synthesis, apoptosis and several other pathways. It has also been implicated to be involved in cancer and many neurological disorders making it an interesting target for extensive studies. This review aims to provide an updated comprehensive account of the role of ATAD3 in the mitochondria especially in lipid transport, mitochondrial-endoplasmic reticulum interactions, cancer and inhibition of mitophagy.
Collapse
Affiliation(s)
- Divya Goel
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sudhir Kumar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
19
|
Schiefer JL, Wergen NM, Grieb G, Bagheri M, Seyhan H, Badra M, Kopp M, Fuchs PC, Windolf J, Suschek CV. Experimental evidence for Parthanatos-like mode of cell death of heat-damaged human skin fibroblasts in a cell culture-based in vitro burn model. Burns 2024; 50:1562-1577. [PMID: 38570249 DOI: 10.1016/j.burns.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 03/06/2024] [Accepted: 03/10/2024] [Indexed: 04/05/2024]
Abstract
The cellular mechanisms of burn conversion of heat damaged tissue are center of many studies. Even if the molecular mechanisms of heat-induced cell death are controversially discussed in the current literature, it is widely accepted that caspase-mediated apoptosis plays a central role. In the current study we wanted to develop further information on the nature of the mechanism of heat-induced cell death of fibroblasts in vitro. We found that heating of human fibroblast cultures (a 10 s rise from 37 °C to 67 °C followed by a 13 s cool down to 37 °C) resulted in the death of about 50% of the cells. However, the increase in cell death started with a delay, about one hour after exposure to heat, and reached the maximum after about five hours. The lack of clear evidence for an active involvement of effector caspase in the observed cell death mechanism and the lack of observation of the occurrence of hypodiploid nuclei contradict heat-induced cell death by caspase-mediated apoptosis. Moreover, a dominant heat-induced increase in PARP1 protein expression, which correlated with a time-delayed ATP synthesis inhibition, appearance of double-strand breaks and secondary necrosis, indicate a different type of cell death than apoptosis. Indeed, increased translocation of Apoptosis Inducing Factor (AIF) and Macrophage Migration Inhibitory Factor (MIF) into cell nuclei, which correlates with the mentioned enhanced PARP1 protein expression, indicate PARP1-induced, AIF-mediated and MIF-activated cell death. With regard to the molecular actors involved, the cellular processes and temporal sequences, the mode of cell death observed in our model is very similar to the cell death mechanism via Parthanatos described in the literature.
Collapse
Affiliation(s)
- Jennifer Lynn Schiefer
- Department of Plastic Surgery, Hand Surgery, Burn Center, Merheim Hospital Cologne, University of Witten/Herdecke, Köln, Germany.
| | - Niklas M Wergen
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Gerrit Grieb
- Department of Plastic Surgery and Hand Surgery, Burn Center, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Mahsa Bagheri
- Department of Plastic Surgery, Hand Surgery, Burn Center, Merheim Hospital Cologne, University of Witten/Herdecke, Köln, Germany
| | - Harun Seyhan
- Department of Plastic Surgery, Hand Surgery, Burn Center, Merheim Hospital Cologne, University of Witten/Herdecke, Köln, Germany
| | - Maria Badra
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Marco Kopp
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Paul C Fuchs
- Department of Plastic Surgery, Hand Surgery, Burn Center, Merheim Hospital Cologne, University of Witten/Herdecke, Köln, Germany
| | - Joachim Windolf
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Christoph V Suschek
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| |
Collapse
|
20
|
Wang X, Meng F, Mao J. Progress of natural sesquiterpenoids in the treatment of hepatocellular carcinoma. Front Oncol 2024; 14:1445222. [PMID: 39081717 PMCID: PMC11286475 DOI: 10.3389/fonc.2024.1445222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Hepatocellular carcinoma is one of the common malignant tumors of digestive tract, which seriously threatens the life of patients due to its high incidence rate, strong invasion, metastasis, and prognosis. At present, the main methods for preventing and treating HCC include medication, surgery, and intervention, but patients frequently encounter with specific adverse reactions or side effects. Many Traditional Chinese medicine can improve liver function, reduce liver cancer recurrence and have unique advantages in the treatment of HCC because of their acting mode of multi-target, multi-pathway, multi-component, and multi-level. Sesquiterpenoids, a class of natural products which are widely present in nature and exhibit good anti-tumor activity, and many of them possess good potential for the treatment of HCC. This article reviewed the anti-tumor activities, natural resources, pharmacological mechanism of natural sesquiterpenoids against HCC, providing the theoretical basis for the prevention and treatment of HCC and a comprehensive understanding of their potential for development of new clinical drugs.
Collapse
Affiliation(s)
- Xiaodong Wang
- Department of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Fancheng Meng
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Jingxin Mao
- Department of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| |
Collapse
|
21
|
Cwerman-Thibault H, Malko-Baverel V, Le Guilloux G, Ratcliffe E, Mouri D, Torres-Cuevas I, Millán I, Saubaméa B, Mignon V, Boespflug-Tanguy O, Gressens P, Corral-Debrinski M. Neuroglobin overexpression in cerebellar neurons of Harlequin mice improves mitochondrial homeostasis and reduces ataxic behavior. Mol Ther 2024; 32:2150-2175. [PMID: 38796706 PMCID: PMC11286817 DOI: 10.1016/j.ymthe.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/22/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024] Open
Abstract
Neuroglobin, a member of the globin superfamily, is abundant in the brain, retina, and cerebellum of mammals and localizes to mitochondria. The protein exhibits neuroprotective capacities by participating in electron transfer, oxygen supply, and protecting against oxidative stress. Our objective was to determine whether neuroglobin overexpression can be used to treat neurological disorders. We chose Harlequin mice, which harbor a retroviral insertion in the first intron of the apoptosis-inducing factor gene resulting in the depletion of the corresponding protein essential for mitochondrial biogenesis. Consequently, Harlequin mice display degeneration of the cerebellum and suffer from progressive blindness and ataxia. Cerebellar ataxia begins in Harlequin mice at the age of 4 months and is characterized by neuronal cell disappearance, bioenergetics failure, and motor and cognitive impairments, which aggravated with aging. Mice aged 2 months received adeno-associated viral vectors harboring the coding sequence of neuroglobin or apoptosis-inducing factor in both cerebellar hemispheres. Six months later, Harlequin mice exhibited substantial improvements in motor and cognitive skills; probably linked to the preservation of respiratory chain function, Purkinje cell numbers and connectivity. Thus, without sharing functional properties with apoptosis-inducing factor, neuroglobin was efficient in reducing ataxia in Harlequin mice.
Collapse
Affiliation(s)
- Hélène Cwerman-Thibault
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France
| | - Vassilissa Malko-Baverel
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France
| | - Gwendoline Le Guilloux
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France
| | - Edward Ratcliffe
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France
| | - Djmila Mouri
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France
| | - Isabel Torres-Cuevas
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France; Neonatal Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Ivan Millán
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France; Neonatal Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Bruno Saubaméa
- Université Paris Cité, Platform of Cellular and Molecular Imaging (PICMO), US25 Inserm, UAR3612 CNRS, 75006 Paris, France; Université Paris Cité, Optimisation Thérapeutique en Neuropsychopharmacologie, UMR-S 1144 Inserm, 75006 Paris, France
| | - Virginie Mignon
- Université Paris Cité, Platform of Cellular and Molecular Imaging (PICMO), US25 Inserm, UAR3612 CNRS, 75006 Paris, France
| | - Odile Boespflug-Tanguy
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France; Service de Neurologie et Maladies métaboliques, CHU Paris - Hôpital Robert Debré, F-75019 Paris, France
| | - Pierre Gressens
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France
| | - Marisol Corral-Debrinski
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, F-75019 Paris, France.
| |
Collapse
|
22
|
Chen C, Demirkhanyan L, Gondi CS. The Multifaceted Role of miR-21 in Pancreatic Cancers. Cells 2024; 13:948. [PMID: 38891080 PMCID: PMC11172074 DOI: 10.3390/cells13110948] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
With the lack of specific signs and symptoms, pancreatic ductal adenocarcinoma (PDAC) is often diagnosed at late metastatic stages, resulting in poor survival outcomes. Among various biomarkers, microRNA-21 (miR-21), a small non-coding RNA, is highly expressed in PDAC. By inhibiting regulatory proteins at the 3' untranslated regions (UTR), miR-21 holds significant roles in PDAC cell proliferation, epithelial-mesenchymal transition, angiogenesis, as well as cancer invasion, metastasis, and resistance therapy. We conducted a systematic search across major databases for articles on miR-21 and pancreatic cancer mainly published within the last decade, focusing on their diagnostic, prognostic, therapeutic, and biological roles. This rigorous approach ensured a comprehensive review of miR-21's multifaceted role in pancreatic cancers. In this review, we explore the current understandings and future directions regarding the regulation, diagnostic, prognostic, and therapeutic potential of targeting miR-21 in PDAC. This exhaustive review discusses the involvement of miR-21 in proliferation, epithelial-mesenchymal transition (EMT), apoptosis modulation, angiogenesis, and its role in therapy resistance. Also discussed in the review is the interplay between various molecular pathways that contribute to tumor progression, with specific reference to pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Clare Chen
- Department of Internal Medicine, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
| | - Lusine Demirkhanyan
- Department of Internal Medicine, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
- Departments of Internal Medicine and Surgery, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
| | - Christopher S. Gondi
- Department of Internal Medicine, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
- Departments of Internal Medicine and Surgery, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
- Departments of Internal Medicine, Surgery, and Health Science Education and Pathology, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
- Health Care Engineering Systems Center, The Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
23
|
Zheng N, Wang X, Zhang Y, Hua J, Zhu B, Zhou Y, Xu Z, Luo L, Han J, Yang L, Zhou B. Mechanistic Insights into 1,2-bis(2,4,6-tribromophenoxy)ethane-Induced Male Reproductive Toxicity in Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8251-8263. [PMID: 38695612 DOI: 10.1021/acs.est.4c00849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
The novel brominated flame retardant, 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), has increasingly been detected in environmental and biota samples. However, limited information is available regarding its toxicity, especially at environmentally relevant concentrations. In the present study, adult male zebrafish were exposed to varying concentrations of BTBPE (0, 0.01, 0.1, 1, and 10 μg/L) for 28 days. The results demonstrated underperformance in mating behavior and reproductive success of male zebrafish when paired with unexposed females. Additionally, a decline in sperm quality was confirmed in BTBPE-exposed male zebrafish, characterized by decreased total motility, decreased progressive motility, and increased morphological malformations. To elucidate the underlying mechanism, an integrated proteomic and phosphoproteomic analysis was performed, revealing a predominant impact on mitochondrial functions at the protein level and a universal response across different cellular compartments at the phosphorylation level. Ultrastructural damage, increased expression of apoptosis-inducing factor, and disordered respiratory chain confirmed the involvement of mitochondrial impairment in zebrafish testes. These findings not only provide valuable insights for future evaluations of the potential risks posed by BTBPE and similar chemicals but also underscore the need for further research into the impact of mitochondrial dysfunction on reproductive health.
Collapse
Affiliation(s)
- Na Zheng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaochen Wang
- Ecology and Environment Monitoring and Scientific Research Center, Ecology and Environment Administration of Yangtze River Basin, Ministry of Ecology and Environment, Wuhan 430010, China
| | - Yindan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianghuan Hua
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Biran Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yuxi Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhixiang Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Lijun Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
24
|
Shi T, Chen Z, Li J, Wang H, Wang Q. AIF translocation into nucleus caused by Aifm1 R450Q mutation: generation and characterization of a mouse model for AUNX1. Hum Mol Genet 2024; 33:905-918. [PMID: 38449065 PMCID: PMC11070138 DOI: 10.1093/hmg/ddae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/30/2023] [Accepted: 01/05/2024] [Indexed: 03/08/2024] Open
Abstract
Mutations in AIFM1, encoding for apoptosis-inducing factor (AIF), cause AUNX1, an X-linked neurologic disorder with late-onset auditory neuropathy (AN) and peripheral neuropathy. Despite significant research on AIF, there are limited animal models with the disrupted AIFM1 representing the corresponding phenotype of human AUNX1, characterized by late-onset hearing loss and impaired auditory pathways. Here, we generated an Aifm1 p.R450Q knock-in mouse model (KI) based on the human AIFM1 p.R451Q mutation. Hemizygote KI male mice exhibited progressive hearing loss from P30 onward, with greater severity at P60 and stabilization until P210. Additionally, muscle atrophy was observed at P210. These phenotypic changes were accompanied by a gradual reduction in the number of spiral ganglion neuron cells (SGNs) at P30 and ribbons at P60, which coincided with the translocation of AIF into the nucleus starting from P21 and P30, respectively. The SGNs of KI mice at P210 displayed loss of cytomembrane integrity, abnormal nuclear morphology, and dendritic and axonal demyelination. Furthermore, the inner hair cells and myelin sheath displayed abnormal mitochondrial morphology, while fibroblasts from KI mice showed impaired mitochondrial function. In conclusion, we successfully generated a mouse model recapitulating AUNX1. Our findings indicate that disruption of Aifm1 induced the nuclear translocation of AIF, resulting in the impairment in the auditory pathway.
Collapse
Affiliation(s)
- Tao Shi
- Senior Department of Otolaryngology-Head and Neck Surgery, the Sixth Medical Center of PLA General Hospital, Medical School of Chinese PLA, 6 Fucheng Road, Beijing 100048, P. R. China
- National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, 6 Fucheng Road, Beijing 100048, P. R. China
| | - Ziyi Chen
- Senior Department of Otolaryngology-Head and Neck Surgery, the Sixth Medical Center of PLA General Hospital, Medical School of Chinese PLA, 6 Fucheng Road, Beijing 100048, P. R. China
- National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, 6 Fucheng Road, Beijing 100048, P. R. China
| | - Jin Li
- Senior Department of Otolaryngology-Head and Neck Surgery, the Sixth Medical Center of PLA General Hospital, Medical School of Chinese PLA, 6 Fucheng Road, Beijing 100048, P. R. China
- National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, 6 Fucheng Road, Beijing 100048, P. R. China
| | - Hongyang Wang
- Senior Department of Otolaryngology-Head and Neck Surgery, the Sixth Medical Center of PLA General Hospital, Medical School of Chinese PLA, 6 Fucheng Road, Beijing 100048, P. R. China
- National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, 6 Fucheng Road, Beijing 100048, P. R. China
| | - Qiuju Wang
- Senior Department of Otolaryngology-Head and Neck Surgery, the Sixth Medical Center of PLA General Hospital, Medical School of Chinese PLA, 6 Fucheng Road, Beijing 100048, P. R. China
- National Clinical Research Center for Otolaryngologic Diseases, Chinese PLA General Hospital, 6 Fucheng Road, Beijing 100048, P. R. China
| |
Collapse
|
25
|
Fagnani E, Cocomazzi P, Pellegrino S, Tedeschi G, Scalvini FG, Cossu F, Da Vela S, Aliverti A, Mastrangelo E, Milani M. CHCHD4 binding affects the active site of apoptosis inducing factor (AIF): Structural determinants for allosteric regulation. Structure 2024; 32:594-602.e4. [PMID: 38460521 DOI: 10.1016/j.str.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/08/2024] [Accepted: 02/13/2024] [Indexed: 03/11/2024]
Abstract
Apoptosis-inducing factor (AIF), which is confined to mitochondria of normal healthy cells, is the first identified caspase-independent cell death effector. Moreover, AIF is required for the optimal functioning of the respiratory chain machinery. Recent findings have revealed that AIF fulfills its pro-survival function by interacting with CHCHD4, a soluble mitochondrial protein which promotes the entrance and the oxidative folding of different proteins in the inner membrane space. Here, we report the crystal structure of the ternary complex involving the N-terminal 27-mer peptide of CHCHD4, NAD+, and AIF harboring its FAD (flavin adenine dinucleotide) prosthetic group in oxidized form. Combining this information with biophysical and biochemical data on the CHCHD4/AIF complex, we provide a detailed structural description of the interaction between the two proteins, validated by both chemical cross-linking mass spectrometry analysis and site-directed mutagenesis.
Collapse
Affiliation(s)
- Elisa Fagnani
- Biophysics Institute, CNR-IBF, Via Corti 12, 20133 Milan, Italy; Department of Bioscience, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Paolo Cocomazzi
- Biophysics Institute, CNR-IBF, Via Corti 12, 20133 Milan, Italy; Department of Bioscience, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Sara Pellegrino
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Gabriella Tedeschi
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy; Cimaina, Università degli Studi di Milano, Milan, Italy
| | - Francesca Grassi Scalvini
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - Federica Cossu
- Biophysics Institute, CNR-IBF, Via Corti 12, 20133 Milan, Italy; Department of Bioscience, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Stefano Da Vela
- Hochschule Bremerhaven, Karlstadt 8, 27568 Bremerhaven, Germany
| | - Alessandro Aliverti
- Department of Bioscience, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy.
| | - Eloise Mastrangelo
- Biophysics Institute, CNR-IBF, Via Corti 12, 20133 Milan, Italy; Department of Bioscience, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy.
| | - Mario Milani
- Biophysics Institute, CNR-IBF, Via Corti 12, 20133 Milan, Italy; Department of Bioscience, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy.
| |
Collapse
|
26
|
Li C, Wang Z, Ren M, Ren S, Wu G, Wang L. Synaptic vesicle protein 2A mitigates parthanatos via apoptosis-inducing factor in a rat model of pharmacoresistant epilepsy. CNS Neurosci Ther 2024; 30:e14778. [PMID: 38801174 PMCID: PMC11129553 DOI: 10.1111/cns.14778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
AIMS Synaptic vesicle protein 2A (SV2A) is a unique therapeutic target for pharmacoresistant epilepsy (PRE). As seizure-induced neuronal programmed death, parthanatos was rarely reported in PRE. Apoptosis-inducing factor (AIF), which has been implicated in parthanatos, shares a common cytoprotective function with SV2A. We aimed to investigate whether parthanatos participates in PRE and is mitigated by SV2A via AIF. METHODS An intraperitoneal injection of lithium chloride-pilocarpine was used to establish an epileptic rat model, and phenytoin and phenobarbital sodium were utilized to select PRE and pharmacosensitive rats. The expression of SV2A was manipulated via lentivirus delivery into the hippocampus. Video surveillance was used to assess epileptic ethology. Biochemical tests were employed to test hippocampal tissues following a successful SV2A infection. Molecular dynamic calculations were used to simulate the interaction between SV2A and AIF. RESULTS Parthanatos core index, PARP1, PAR, nuclear AIF and MIF, γ-H2AX, and TUNEL staining were all increased in PRE. SV2A is bound to AIF to form a stable complex, successfully inhibiting AIF and MIF nuclear translocation and parthanatos and consequently mitigating spontaneous recurrent seizures in PRE. Moreover, parthanatos deteriorated after the SV2A reduction. SIGNIFICANCE SV2A protected hippocampal neurons and mitigated epileptic seizures by inhibiting parthanatos via binding to AIF in PRE.
Collapse
Affiliation(s)
- Chen Li
- School of Clinical MedicineGuizhou Medical UniversityGuiyangGuizhouChina
| | - Ziqi Wang
- School of Clinical MedicineGuizhou Medical UniversityGuiyangGuizhouChina
| | - Mianmian Ren
- School of Clinical MedicineGuizhou Medical UniversityGuiyangGuizhouChina
| | - Siying Ren
- The Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Guofeng Wu
- The Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Likun Wang
- The Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| |
Collapse
|
27
|
Su L, Xu J, Lu C, Gao K, Hu Y, Xue C, Yan X. Nano-flow cytometry unveils mitochondrial permeability transition process and multi-pathway cell death induction for cancer therapy. Cell Death Discov 2024; 10:176. [PMID: 38622121 PMCID: PMC11018844 DOI: 10.1038/s41420-024-01947-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024] Open
Abstract
Mitochondrial permeability transition (mPT)-mediated mitochondrial dysfunction plays a pivotal role in various human diseases. However, the intricate details of its mechanisms and the sequence of events remain elusive, primarily due to the interference caused by Bax/Bak-induced mitochondrial outer membrane permeabilization (MOMP). To address these, we have developed a methodology that utilizes nano-flow cytometry (nFCM) to quantitatively analyze the opening of mitochondrial permeability transition pore (mPTP), dissipation of mitochondrial membrane potential ( Δ Ψm), release of cytochrome c (Cyt c), and other molecular alternations of isolated mitochondria in response to mPT induction at the single-mitochondrion level. It was identified that betulinic acid (BetA) and antimycin A can directly induce mitochondrial dysfunction through mPT-mediated mechanisms, while cisplatin and staurosporine cannot. In addition, the nFCM analysis also revealed that BetA primarily induces mPTP opening through a reduction in Bcl-2 and Bcl-xL protein levels, along with an elevation in ROS content. Employing dose and time-dependent strategies of BetA, for the first time, we experimentally verified the sequential occurrence of mPTP opening and Δ Ψm depolarization prior to the release of Cyt c during mPT-mediated mitochondrial dysfunction. Notably, our study uncovers a simultaneous release of cell-death-associated factors, including Cyt c, AIF, PNPT1, and mtDNA during mPT, implying the initiation of multiple cell death pathways. Intriguingly, BetA induces caspase-independent cell death, even in the absence of Bax/Bak, thereby overcoming drug resistance. The presented findings offer new insights into mPT-mediated mitochondrial dysfunction using nFCM, emphasizing the potential for targeting such dysfunction in innovative cancer therapies and interventions.
Collapse
Affiliation(s)
- Liyun Su
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Jingyi Xu
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Cheng Lu
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Kaimin Gao
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Yunyun Hu
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Chengfeng Xue
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Xiaomei Yan
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, People's Republic of China.
| |
Collapse
|
28
|
Riegel G, Orvain C, Recberlik S, Spaety ME, Poschet G, Venkatasamy A, Yamamoto M, Nomura S, Tsukamoto T, Masson M, Gross I, Le Lagadec R, Mellitzer G, Gaiddon C. The unfolded protein response-glutathione metabolism axis: A novel target of a cycloruthenated complexes bypassing tumor resistance mechanisms. Cancer Lett 2024; 585:216671. [PMID: 38290658 DOI: 10.1016/j.canlet.2024.216671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/22/2023] [Accepted: 01/20/2024] [Indexed: 02/01/2024]
Abstract
Platinum-based drugs remain the reference treatment for gastric cancer (GC). However, the frequency of resistance, due to mutations in TP53 or alterations in the energy and redox metabolisms, impairs the efficacy of current treatments, highlighting the need for alternative therapeutic options. Here, we show that a cycloruthenated compound targeting the redox metabolism, RDC11, induces higher cytotoxicity than oxaliplatin in GC cells and is more potent in reducing tumor growth in vivo. Detailed investigations into the mode of action of RDC11 indicated that it targets the glutathione (GSH) metabolism, which is an important drug resistance mechanism. We demonstrate that cycloruthenated complexes regulate the expression of enzymes of the transsulfuration pathway via the Unfolded Protein Response (UPR) and its effector ATF4. Furthermore, RDC11 induces the expression of SLC7A11 encoding for the cystine/glutamate antiporter xCT. These effects lead to a lower cellular GSH content and elevated oxygen reactive species production, causing the activation of a caspase-independent apoptosis. Altogether, this study provides the first evidence that cycloruthenated complexes target the GSH metabolism, neutralizing thereby a major resistance mechanism towards platinum-based chemotherapies and anticancer immune response.
Collapse
Affiliation(s)
- Gilles Riegel
- University of Strasbourg, INSERM UMR_S 1113, "Streinth" Laboratory, Strasbourg, France
| | - Christophe Orvain
- University of Strasbourg, INSERM UMR_S 1113, "Streinth" Laboratory, Strasbourg, France; INSERM, UMR 1260, CRBS, Regenerative Nanomedicine, "HERIIT" Laboratory, University of Strasbourg, Strasbourg, France
| | - Sevda Recberlik
- University of Strasbourg, INSERM UMR_S 1113, "Streinth" Laboratory, Strasbourg, France; INSERM, UMR 1260, CRBS, Regenerative Nanomedicine, "HERIIT" Laboratory, University of Strasbourg, Strasbourg, France
| | - Marie-Elodie Spaety
- University of Strasbourg, INSERM UMR_S 1113, "Streinth" Laboratory, Strasbourg, France
| | - Gernot Poschet
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - Aina Venkatasamy
- University of Strasbourg, INSERM UMR_S 1113, "Streinth" Laboratory, Strasbourg, France; IHU-Strasbourg, Institute of Image-Guided Surgery, Strasbourg, France
| | - Masami Yamamoto
- Department of Laboratory of Physiological Pathology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Sachiyo Nomura
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsyua Tsukamoto
- Department of Diagnostic Pathology, Graduate School of Medicine, Fujita Health University, Toyoake, Japan
| | - Murielle Masson
- University of Strasbourg, INSERM UMR_S 1113, "Streinth" Laboratory, Strasbourg, France; University of Strasbourg, CNRS BSC-UMR 7242, Ecole Supérieure de Biotechnologie, Illkirch, France
| | - Isabelle Gross
- University of Strasbourg, INSERM UMR_S 1113, "SMART" Laboratory, Strasbourg, France; INSERM, UMR 1260, CRBS, Regenerative Nanomedicine, "HERIIT" Laboratory, University of Strasbourg, Strasbourg, France
| | - Ronan Le Lagadec
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Georg Mellitzer
- University of Strasbourg, INSERM UMR_S 1113, "Streinth" Laboratory, Strasbourg, France; INSERM, UMR 1260, CRBS, Regenerative Nanomedicine, "HERIIT" Laboratory, University of Strasbourg, Strasbourg, France.
| | - Christian Gaiddon
- University of Strasbourg, INSERM UMR_S 1113, "Streinth" Laboratory, Strasbourg, France.
| |
Collapse
|
29
|
Li W, Wang J, Li J, Liu P, Fei F, Liu B, Li J. The effect of astaxanthin on the alkalinity stress resistance of Exopalaemon carinicauda. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170415. [PMID: 38278276 DOI: 10.1016/j.scitotenv.2024.170415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Astaxanthin (Axn), a feed additive, can improve growth performance and enhance the environmental stress tolerance of shrimp at all growth stages. High carbonate alkalinity is considered a major stressor that affects the survival, growth, and reproduction of aquatic animals in saline-alkaline waters. In this study, a combined analysis of physiology, transcriptomics, and metabolomics was performed to explore the effected mechanism of Axn on Exopalaemon carinicauda (E. carinicauda) under alkalinity stress. The results revealed that dietary Axn can inhibit oxidative stress damage caused by alkalinity stress and maintain the normal cell structure and mitochondrial membrane potential. Transcriptomic data indicated that differentially expressed genes (DEGs) under alkalinity stress and those under alkalinity stress after Axn feeding were associated with apoptosis. The metabolic data suggested that alkalinity stress has adverse effects on ammonia metabolism, unsaturated fatty acid metabolism, and TCA cycle, and dietary Axn can improve the metabolic processes in E. carinicauda. In addition, transcriptomics and metabolomics analyses showed that Axn could help maintain the cytoskeletal structure and inhibit apoptosis under alkalinity stress; a TUNEL assay further confirmed these effects. Lastly, metabolic responses to alkalinity stress included changes in multiple amino acids and unsaturated fatty acids, and pathways related to energy metabolism were downregulated in the hepatopancreas of E. carinicauda under alkalinity stress. Collectively, all these results provide new insights into the molecular mechanisms underlying alkalinity stress tolerance in E. carinicauda after Axn feeding.
Collapse
Affiliation(s)
- Wenyang Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Jiajia Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| | - Jitao Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| | - Ping Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Fan Fei
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Baoliang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Jian Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China.
| |
Collapse
|
30
|
Fuller SA, Abernathy JW, Sankappa NM, Beck BH, Rawles SD, Green BW, Rosentrater KA, McEntire ME, Huskey G, Webster CD. Hepatic transcriptome analyses of juvenile white bass ( Morone chrysops) when fed diets where fish meal is partially or totally replaced by alternative protein sources. Front Physiol 2024; 14:1308690. [PMID: 38288350 PMCID: PMC10822904 DOI: 10.3389/fphys.2023.1308690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/26/2023] [Indexed: 01/31/2024] Open
Abstract
White bass (Morone chrysops) are a popular sportfish throughout the southern United States, and one parent of the commercially-successful hybrid striped bass (M. chrysops ♂ x M. saxatilis ♀). Currently, white bass are cultured using diets formulated for other carnivorous fish, such as largemouth bass (Micropterus salmoides) or hybrid striped bass and contain a significant percentage of marine fish meal. Since there are no studies regarding the utilization of alternative proteins in this species, we evaluated the global gene expression of white bass fed diets in which fish meal was partially or totally replaced by various combinations of soybean meal, poultry by-product meal, canola meal, soy protein concentrate, wheat gluten, or a commercial protein blend (Pro-Cision™). Six isonitrogenous (40% protein), isolipidic (11%), and isocaloric (17.1 kJ/g) diets were formulated to meet the known nutrient and energy requirements of largemouth bass and hybrid striped bass using nutrient availability data for most of the dietary ingredients. One of the test diets consisted exclusively of plant protein sources. Juvenile white bass (40.2 g initial weight) were stocked into a flow-through aquaculture system (three tanks/diet; 10 fish/tank) and fed the test diets twice daily to satiation for 60 days. RNA sequencing and bioinformatic analyses revealed significant differentially expressed genes between all test diets when compared to fish meal control. A total of 1,260 differentially expressed genes were identified, with major ontology relating to cell cycle and metabolic processes as well as immune gene functions. This data will be useful as a resource for future refinements to moronid diet formulation, as marine fish meal becomes limiting and plant ingredients are increasingly added as a reliable protein source.
Collapse
Affiliation(s)
- S. Adam Fuller
- USDA-ARS Harry K. Dupree Stuttgart National Aquaculture Research Center (HKDSNARC), Stuttgart, AR, United States
| | - Jason W. Abernathy
- USDA-ARS Aquatic Animal Health Research Unit (AAHRU), Auburn, AL, United States
| | - Nithin Muliya Sankappa
- USDA-ARS Aquatic Animal Health Research Unit (AAHRU), Auburn, AL, United States
- Oak Ridge Institute for Science and Education (ORISE), ARS Research Participation Program, Oak Ridge, TN, United States
| | - Benjamin H. Beck
- USDA-ARS Aquatic Animal Health Research Unit (AAHRU), Auburn, AL, United States
| | - Steven D. Rawles
- USDA-ARS Harry K. Dupree Stuttgart National Aquaculture Research Center (HKDSNARC), Stuttgart, AR, United States
| | - Bartholomew W. Green
- USDA-ARS Harry K. Dupree Stuttgart National Aquaculture Research Center (HKDSNARC), Stuttgart, AR, United States
| | - Kurt A. Rosentrater
- Iowa State University, Agricultural and Biosystems Engineering, Ames, IA, United States
| | - Matthew E. McEntire
- USDA-ARS Harry K. Dupree Stuttgart National Aquaculture Research Center (HKDSNARC), Stuttgart, AR, United States
| | - George Huskey
- USDA-ARS Harry K. Dupree Stuttgart National Aquaculture Research Center (HKDSNARC), Stuttgart, AR, United States
| | - Carl D. Webster
- USDA-ARS Harry K. Dupree Stuttgart National Aquaculture Research Center (HKDSNARC), Stuttgart, AR, United States
| |
Collapse
|
31
|
Pijuan J, Sevrioukova IF, García-Campos Ó, Hernaez M, Gort L, Gómez-Chiari M, Jou C, Candela-Cantó S, Rumiá J, Artuch R, Palau F, Hoenicka J, Ortigoza-Escobar JD. A Novel AIFM1-Related Disorder Phenotype Treated with Deep Brain Stimulation. Mov Disord 2024; 39:215-217. [PMID: 37787095 DOI: 10.1002/mds.29616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/09/2023] [Accepted: 09/11/2023] [Indexed: 10/04/2023] Open
Affiliation(s)
- Jordi Pijuan
- Laboratory of Neurogenetics and Molecular Medicine-IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Irina F Sevrioukova
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Óscar García-Campos
- Department of Pediatric Neurology, Hospital General Universitario de Toledo, Toledo, Spain
| | - Mar Hernaez
- Laboratory of Neurogenetics and Molecular Medicine-IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Laura Gort
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, CDB, Hospital Clínic de Barcelona, IDIBAPS, CIBERER, Barcelona, Spain
| | - Marta Gómez-Chiari
- Department of Radiology, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Cristina Jou
- Pathology Department, Institut de Recerca Sant Joan de Déu, CIBERER, Barcelona, Spain
| | | | - Jordi Rumiá
- Department of Neurosurgery, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Neurosurgery, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Rafael Artuch
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Francesc Palau
- Laboratory of Neurogenetics and Molecular Medicine-IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Department of Genetic and Molecular Medicine, IPER, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
- Division of Pediatrics, University of Barcelona School of Medicine and Health Sciences, Barcelona, Spain
- European Reference Network for Rare Malformation Syndromes, Intellectual and Other Neurodevelopmental Disorders, (ERN-ITHACA), Barcelona, Spain
| | - Janet Hoenicka
- Laboratory of Neurogenetics and Molecular Medicine-IPER, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Dario Ortigoza-Escobar
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Movement Disorders Unit, Pediatric Neurology Department, Institut de Recerca, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
- European Reference Network for Rare Neurological Diseases (ERN-RND), Barcelona, Spain
| |
Collapse
|
32
|
Keshavan N, Minczuk M, Viscomi C, Rahman S. Gene therapy for mitochondrial disorders. J Inherit Metab Dis 2024; 47:145-175. [PMID: 38171948 DOI: 10.1002/jimd.12699] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/30/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024]
Abstract
In this review, we detail the current state of application of gene therapy to primary mitochondrial disorders (PMDs). Recombinant adeno-associated virus-based (rAAV) gene replacement approaches for nuclear gene disorders have been undertaken successfully in more than ten preclinical mouse models of PMDs which has been made possible by the development of novel rAAV technologies that achieve more efficient organ targeting. So far, however, the greatest progress has been made for Leber Hereditary Optic Neuropathy, for which phase 3 clinical trials of lenadogene nolparvovec demonstrated efficacy and good tolerability. Other methods of treating mitochondrial DNA (mtDNA) disorders have also had traction, including refinements to nucleases that degrade mtDNA molecules with pathogenic variants, including transcription activator-like effector nucleases, zinc-finger nucleases, and meganucleases (mitoARCUS). rAAV-based approaches have been used successfully to deliver these nucleases in vivo in mice. Exciting developments in CRISPR-Cas9 gene editing technology have achieved in vivo gene editing in mouse models of PMDs due to nuclear gene defects and new CRISPR-free gene editing approaches have shown great potential for therapeutic application in mtDNA disorders. We conclude the review by discussing the challenges of translating gene therapy in patients both from the point of view of achieving adequate organ transduction as well as clinical trial design.
Collapse
Affiliation(s)
- Nandaki Keshavan
- UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Hospital, London, UK
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Carlo Viscomi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Shamima Rahman
- UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Hospital, London, UK
| |
Collapse
|
33
|
Verma P, Chauhan A, Thakur R, Lata K, Sharma A, Chattopadhyay K, Mukhopadhaya A. Vibrio parahaemolyticus thermostable direct haemolysin induces non-classical programmed cell death despite caspase activation. Mol Microbiol 2023; 120:845-873. [PMID: 37818865 DOI: 10.1111/mmi.15180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/02/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Thermostable direct haemolysin (TDH) is the key virulence factor secreted by the human gastroenteric bacterial pathogen Vibrio parahaemolyticus. TDH is a membrane-damaging pore-forming toxin. It evokes potent cytotoxicity, the mechanism of which still remains under-explored. Here, we have elucidated the mechanistic details of cell death response elicited by TDH. Employing Caco-2 intestinal epithelial cells and THP-1 monocytic cells, we show that TDH induces some of the hallmark features of apoptosis-like programmed cell death. TDH triggers caspase-3 and 7 activations in the THP-1 cells, while caspase-7 activation is observed in the Caco-2 cells. Interestingly, TDH appears to induce caspase-independent cell death. Higher XIAP level and lower Smac/Diablo level upon TDH intoxication provide plausible explanation for the functional inability of caspases in the THP-1 cells, in particular. Further exploration reveals that mitochondria play a central role in the TDH-induced cell death. TDH triggers mitochondrial damage, resulting in the release of AIF and endonuclease G, responsible for the execution of caspase-independent cell death. Among the other critical mediators of cell death, ROS is found to play an important role in the THP-1 cells, while PARP-1 appears to play a critical role in the Caco-2 cells. Altogether, our work provides critical new insights into the mechanism of cell death induction by TDH, showing a common central theme of non-classical programmed cell death. Our study also unravels the interplay of crucial molecules in the underlying signalling processes. Our findings add valuable insights into the role of TDH in the context of the host-pathogen interaction processes.
Collapse
Affiliation(s)
- Pratima Verma
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Aakanksha Chauhan
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Reena Thakur
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Kusum Lata
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Arpita Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Kausik Chattopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Arunika Mukhopadhaya
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| |
Collapse
|
34
|
Lorente L, Martín MM, Ortiz-López R, González-Rivero AF, Gómez-Bernal F, Jiménez A, Pérez-Cejas A. Parthanatos type programmed cell death and septic patient mortality. Med Intensiva 2023; 47:691-696. [PMID: 37268496 DOI: 10.1016/j.medine.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/29/2023] [Indexed: 06/04/2023]
Abstract
OBJECTIVE Parthanatos is a form of programmed cell death mediated by apoptosis-inducing factor (AIF). However, there are not data on parthanatos in septic patients. The objective of the current study was to explore whether parthanatos is associated with mortality of septic patients. DESIGN Observational and prospective study. SETTING Three Spanish Intensive Care Units during 2017. PATIENTS Patients with sepsis according to Sepsis-3 Consensus criteria. INTERVENTIONS Serum AIF concentrations were determined at moment of sepsis diagnosis. MAIN VARIABLE OF INTEREST Mortality at 30 days. RESULTS There were included 195 septic patients, and non-surviving (n=72) had serum AIF levels (p<0.001), lactic acid (p<0.001) and APACHE-II (p<0.001) that surviving (n=123). Multiple logistic regression analysis showed that patients with serum AIF levels>55.6ng/mL had higher mortality risk (OR=3.290; 95% CI=1.551-6.979; p=0.002) controlling for age, SOFA and lactic acid. CONCLUSIONS Parthanatos is associated with mortality of septic patients.
Collapse
Affiliation(s)
- Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, Tenerife, Spain.
| | - María M Martín
- Intensive Care Unit, Hospital Universitario Nuestra Señora Candelaria, Santa Cruz Tenerife, Spain
| | - Raquel Ortiz-López
- Intensive Care Unit, Hospital Universitario de La Palma, Breña Alta, La Palma, Spain
| | | | - Fuensanta Gómez-Bernal
- Laboratory Department, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | | | - Antonia Pérez-Cejas
- Laboratory Department, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| |
Collapse
|
35
|
Zhao Y, Lin Y, Wang B, Liu F, Zhao D, Wang W, Ren H, Wang J, Xu Z, Yan C, Ji K. A Missense Variant in AIFM1 Caused Mitochondrial Dysfunction and Intolerance to Riboflavin Deficiency. Neuromolecular Med 2023; 25:489-500. [PMID: 37603145 DOI: 10.1007/s12017-023-08750-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/09/2023] [Indexed: 08/22/2023]
Abstract
AIFM1 is a mitochondrial flavoprotein involved in caspase-independent cell death and regulation of respiratory chain complex biogenesis. Mutations in the AIFM1 gene have been associated with multiple clinical phenotypes, but the effectiveness of riboflavin treatment remains controversial. Furthermore, few studies explored the reasons underlying this controversy. We reported a 7-year-old boy with ataxia, sensorimotor neuropathy and muscle weakness. Genetic and histopathological analyses were conducted, along with assessments of mitochondrial function and apoptosis level induced by staurosporine. Riboflavin deficiency and supplementation experiments were performed using fibroblasts. A missense c.1019T > C (p. Met340Thr) variant of AIFM1 was detected in the proband, which caused reduced expression of AIFM1 protein and mitochondrial dysfunction as evidenced by downregulation of mitochondrial complex subunits, respiratory deficiency and collapse of ΔΨm. The proportion of apoptotic cells in mutant fibroblasts was lower than controls after induction of apoptosis. Riboflavin deficiency resulted in decreased AIFM1 protein levels, while supplementation with high concentrations of riboflavin partially increased AIFM1 protein levels in variant fibroblasts. In addition, mitochondrial respiratory function of mutant fibroblasts was partly improved after riboflavin supplementation. Our study elucidated the pathogenicity of the AIFM1 c.1019T > C variant and revealed mutant fibroblasts was intolerant to riboflavin deficiency. Riboflavin supplementation is helpful in maintaining the level of AIFM1 protein and mitochondrial respiratory function. Early riboflavin treatment may serve as a valuable attempt for patients with AIFM1 variant.
Collapse
Affiliation(s)
- Ying Zhao
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Yan Lin
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Bin Wang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Fuchen Liu
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
- Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Shandong University, Qingdao, Shandong, China
- Brain Science Research Institute, Shandong University, Jinan, Shandong, China
| | - Dandan Zhao
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
- Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Shandong University, Qingdao, Shandong, China
- Brain Science Research Institute, Shandong University, Jinan, Shandong, China
| | - Wei Wang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Hong Ren
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jiayin Wang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Zhihong Xu
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
| | - Chuanzhu Yan
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China
- Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Shandong University, Qingdao, Shandong, China
- Brain Science Research Institute, Shandong University, Jinan, Shandong, China
| | - Kunqian Ji
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong, China.
- Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Shandong University, Qingdao, Shandong, China.
- Brain Science Research Institute, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
36
|
Roda E, De Luca F, Priori EC, Ratto D, Pinelli S, Corradini E, Mozzoni P, Poli D, Mazzini G, Bottone MG, Gatti AM, Marti M, Locatelli CA, Rossi P, Bottai D. The Designer Drug αPHP Affected Cell Proliferation and Triggered Deathly Mechanisms in Murine Neural Stem/Progenitor Cells. BIOLOGY 2023; 12:1225. [PMID: 37759624 PMCID: PMC10525791 DOI: 10.3390/biology12091225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/08/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
Increasing reports of neurological and psychiatric outcomes due to psychostimulant synthetic cathinones (SCs) have recently raised public concern. However, the understanding of neurotoxic mechanisms is still lacking, particularly for the under-investigated αPHP, one of the major MDPV derivatives. In particular, its effects on neural stem/progenitor cell cultures (NSPCs) are still unexplored. Therefore, in the current in vitro study, the effects of increasing αPHP concentrations (25-2000 μM), on cell viability/proliferation, morphology/ultrastructure, genotoxicity and cell death pathways, have been evaluated after exposure in murine NSPCs, using a battery of complementary techniques, i.e., MTT and clonogenic assay, flow cytometry, immunocytochemistry, TEM, and patch clamp. We revealed that αPHP was able to induce a dose-dependent significant decrease of the viability, proliferation and clonal capability of the NSPCs, paralleled by the resting membrane potential depolarization and apoptotic/autophagic/necroptotic pathway activation. Moreover, ultrastructural alterations were clearly observed. Overall, our current findings demonstrate that αPHP, damaging NSPCs and the morpho-functional fundamental units of adult neurogenic niches may affect neurogenesis, possibly triggering long-lasting, irreversible CNS damage. The present investigation could pave the way for a broadened understanding of SCs toxicology, needed to establish an appropriate treatment for NPS and the potential consequences for public health.
Collapse
Affiliation(s)
- Elisa Roda
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy (C.A.L.)
| | - Fabrizio De Luca
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (F.D.L.); (P.R.)
| | - Erica Cecilia Priori
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (F.D.L.); (P.R.)
| | - Daniela Ratto
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (F.D.L.); (P.R.)
| | - Silvana Pinelli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Emilia Corradini
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Paola Mozzoni
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Diana Poli
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Via Fontana Candida, 1, 00078 Monte Porzio Catone, Italy
| | - Giuliano Mazzini
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (F.D.L.); (P.R.)
- Institute of Molecular Genetics—CNR (National Research Council), 27100 Pavia, Italy
| | - Maria Grazia Bottone
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (F.D.L.); (P.R.)
| | - Anna Maria Gatti
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy (C.A.L.)
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy;
- Collaborative Centre for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, 44121 Ferrara, Italy
| | - Carlo Alessandro Locatelli
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy (C.A.L.)
| | - Paola Rossi
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (F.D.L.); (P.R.)
| | - Daniele Bottai
- Department of Pharmaceutical Sciences, Section of Pharmacology and Biosciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy;
| |
Collapse
|
37
|
González-Arzola K, Díaz-Quintana A. Mitochondrial Factors in the Cell Nucleus. Int J Mol Sci 2023; 24:13656. [PMID: 37686461 PMCID: PMC10563088 DOI: 10.3390/ijms241713656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
The origin of eukaryotic organisms involved the integration of mitochondria into the ancestor cell, with a massive gene transfer from the original proteobacterium to the host nucleus. Thus, mitochondrial performance relies on a mosaic of nuclear gene products from a variety of genomes. The concerted regulation of their synthesis is necessary for metabolic housekeeping and stress response. This governance involves crosstalk between mitochondrial, cytoplasmic, and nuclear factors. While anterograde and retrograde regulation preserve mitochondrial homeostasis, the mitochondria can modulate a wide set of nuclear genes in response to an extensive variety of conditions, whose response mechanisms often merge. In this review, we summarise how mitochondrial metabolites and proteins-encoded either in the nucleus or in the organelle-target the cell nucleus and exert different actions modulating gene expression and the chromatin state, or even causing DNA fragmentation in response to common stress conditions, such as hypoxia, oxidative stress, unfolded protein stress, and DNA damage.
Collapse
Affiliation(s)
- Katiuska González-Arzola
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Consejo Superior de Investigaciones Científicas—Universidad de Sevilla—Universidad Pablo de Olavide, 41092 Seville, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain
| | - Antonio Díaz-Quintana
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain
- Instituto de Investigaciones Químicas—cicCartuja, Universidad de Sevilla—C.S.I.C, 41092 Seville, Spain
| |
Collapse
|
38
|
Zou B, Jia F, Ji L, Li X, Dai R. Effects of mitochondria on postmortem meat quality: characteristic, isolation, energy metabolism, apoptosis and oxygen consumption. Crit Rev Food Sci Nutr 2023; 64:11239-11262. [PMID: 37452658 DOI: 10.1080/10408398.2023.2235435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Meat quality holds significant importance for both consumers and meat producers. Various factors influence meat quality, and among them, mitochondria play a crucial role. Recent studies have indicated that mitochondria can sustain their functions and viability for a certain duration in postmortem muscles. Consequently, mitochondria have an impact on oxygen consumption, energy metabolism, and apoptotic processes, which in turn affect myoglobin levels, oxidative stress, meat tenderness, fat oxidation, and protein oxidation. Ultimately, these factors influence the color, tenderness, and flavor of meat. However, there is a dearth of comprehensive summaries addressing the effects of mitochondria on postmortem muscle physiology and meat quality. Therefore, this review aims to describe the characteristics of muscle mitochondria and their potential influence on muscle. Additionally, a suitable method for isolating mitochondria is presented. Lastly, the review emphasizes the regulation of oxygen consumption, energy metabolism, and apoptosis by postmortem muscle mitochondria, and provides an overview of relevant research and recent advancements. The ultimate objective of this review is to elucidate the underlying mechanisms through which mitochondria impact meat quality.
Collapse
Affiliation(s)
- Bo Zou
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Fei Jia
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Lin Ji
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Xingmin Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Ruitong Dai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| |
Collapse
|
39
|
Zhu Y, Zhou X, Zhu A, Xiong S, Xie J, Bai Z. Advances in exercise to alleviate sarcopenia in older adults by improving mitochondrial dysfunction. Front Physiol 2023; 14:1196426. [PMID: 37476691 PMCID: PMC10355810 DOI: 10.3389/fphys.2023.1196426] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023] Open
Abstract
Sarcopenia is a chronic degenerative disease affecting primarily older adults. A growing aging population is gradually increasing the number of patients suffering from sarcopenia, placing increasing financial pressure on patients' families and society in general. There is a strong link between mitochondrial dysfunction and sarcopenia pathogenesis. As a result, treating sarcopenia by improving mitochondrial dysfunction is an effective strategy. Numerous studies have demonstrated that exercise has a positive effect on mitochondrial dysfunction when treating sarcopenia. Exercise promotes mitochondrial biogenesis and mitochondrial fusion/division to add new mitochondria or improve dysfunctional mitochondria while maintaining mitochondrial calcium homeostasis, mitochondrial antioxidant defense system, and mitochondrial autophagy to promote normal mitochondrial function. Furthermore, exercise can reduce mitochondrial damage caused by aging by inhibiting mitochondrial oxidative stress, mitochondrial DNA damage, and mitochondrial apoptosis. Exercise effectiveness depends on several factors, including exercise duration, exercise intensity, and exercise form. Therefore, Moderate-intensity exercise over 4 weeks potentially mitigates sarcopenia in older adults by ameliorating mitochondrial dysfunction. HIIT has demonstrated potential as a viable approach to addressing sarcopenia in aged rats. However, further investigation is required to validate its efficacy in treating sarcopenia in older adults.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhenmin Bai
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| |
Collapse
|
40
|
Yarreiphang H, Vidyadhara DJ, Nambisan AK, Raju TR, Sagar BKC, Alladi PA. Apoptotic Factors and Mitochondrial Complexes Assist Determination of Strain-Specific Susceptibility of Mice to Parkinsonian Neurotoxin MPTP. Mol Neurobiol 2023:10.1007/s12035-023-03372-1. [PMID: 37162724 DOI: 10.1007/s12035-023-03372-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/28/2023] [Indexed: 05/11/2023]
Abstract
Identification of genetic mutations in Parkinson's disease (PD) promulgates the genetic nature of disease susceptibility. Resilience-associated genes being unknown till date, the normal genetic makeup of an individual may be determinative too. Our earlier studies comparing the substantia nigra (SN) and striatum of C57BL/6J, CD-1 mice, and their F1-crossbreds demonstrated the neuroprotective role of admixing against the neurotoxin MPTP. Furthermore, the differences in levels of mitochondrial fission/fusion proteins in the SN of parent strains imply effects on mitochondrial biogenesis. Our present investigations suggest that the baseline levels of apoptotic factors Bcl-2, Bax, and AIF differ across the three strains and are differentially altered in SN following MPTP administration. The reduction in complex-I levels exclusively in MPTP-injected C57BL/6J reiterates mitochondrial involvement in PD pathogenesis. The MPTP-induced increase in complex-IV, in the nigra of both parent strains, may be compensatory in nature. The ultrastructural evaluation showed fairly preserved mitochondria in the dopaminergic neurons of CD-1 and F1-crossbreds. However, in CD-1, the endoplasmic reticulum demonstrated distinct luminal enlargement, bordering onto ballooning, suggesting proteinopathy as a possible initial trigger.The increase in α-synuclein in the pars reticulata of crossbreds suggests a supportive role for this output nucleus in compensating for the lost function of pars compacta. Alternatively, since α-synuclein over-expression occurs in different brain regions in PD, the α-synuclein increase here may suggest a similar pathogenic outcome. Further understanding is required to resolve this biological contraption. Nevertheless, admixing reduces the risk to MPTP by favoring anti-apoptotic consequences. Similar neuroprotection may be envisaged in the admixed populace of Anglo-Indians.
Collapse
Affiliation(s)
- Haorei Yarreiphang
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, India
- Present address: Zoology Department, Hansraj College, University of Delhi, Delhi, 110007, India
| | - D J Vidyadhara
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, India
- Present address: Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Anand Krishnan Nambisan
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, India
| | - Trichur R Raju
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, India
| | - B K Chandrashekar Sagar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Phalguni Anand Alladi
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, India.
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India.
| |
Collapse
|
41
|
Yang H, Shi X, Kolar EA, Clay EM, Xia S, Pei Z, Watkins PA. VERY LONG-CHAIN ACYL-CoA SYNTHETASE-3 (ACSVL3) PROMOTES THE MALIGNANT GROWTH BEHAVIOR OF U87 GLIOMA CELLS VIA CHANGES IN CELL CYCLE WITHOUT AFFECTING APOPTOSIS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539403. [PMID: 37205435 PMCID: PMC10187290 DOI: 10.1101/2023.05.04.539403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Decreasing the expression of very long-chain acyl-CoA synthetase 3 (ACSVL3) in U87MG glioblastoma cells by either RNA interference or genomic knockout (KO) significantly decreased their growth rate in culture, as well as their ability to form rapidly growing tumors in mice. U87-KO cells grew at a 9-fold slower rate than U87MG cells. When injected subcutaneously in nude mice, the tumor initiation frequency of U87-KO cells was 70% of that of U87MG cells, and the average growth rate of tumors that did form was decreased by 9-fold. Two hypotheses to explain the decreased growth rate of KO cells were investigated. Lack of ACSVL3 could reduce cell growth either by increasing apoptosis, or via effects on the cell cycle. We examined intrinsic, extrinsic, and caspase-independent apoptosis pathways; none were affected by lack of ACSVL3. However, significant differences in the cell cycle were seen in KO cells, suggesting arrest in S-phase. Levels of cyclin-dependent kinases 1, 2, and 4 were elevated in U87-KO cells, as were regulatory proteins p21 and p53 that promote cell cycle arrest. In contrast, lack of ACSVL3 reduced the level of the inhibitory regulatory protein p27. γ-H2AX, a marker of DNA double strand breaks, was elevated in U87-KO cells, while pH3, a mitotic index marker, was reduced. Previously reported alterations in sphingolipid metabolism in ACSVL3-depleted U87 cells may explain the effect of KO on cell cycle. These studies reinforce the notion that ACSVL3 is a promising therapeutic target in glioblastoma.
Collapse
Affiliation(s)
- Haiyan Yang
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD
| | - Xiaohai Shi
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD
| | | | - Emily M. Clay
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD
| | - Shuli Xia
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Zhengtong Pei
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Paul A. Watkins
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
42
|
Lee Y, Cho S, Park K, Kim T, Kim J, Ryu DY, Hong J. Potential lifetime effects caused by cellular uptake of nanoplastics: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121668. [PMID: 37087090 DOI: 10.1016/j.envpol.2023.121668] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Plastics have been used for about 100 years, and daily-use products composed of plastics are now prevalent. As a result, humans are very easily exposed to the plastic particles generated from the daily-use plastics. However, studies on cellular uptake of nanoplastics in "human cells" have only recently begun to attract attention. In previous studies, definitions of nanoplastics and microplastics were vague, but recently, they have been considered to be different and are being studied separately. However, nanoplastics, unlike plastic particles of other sizes such as macro- and microplastics, can be absorbed by human cells, and thus can cause various risks such as cytotoxicity, inflammation, oxidative stress, and even diseases such as cancer82, 83. and diabetes (Fan et al., 2022; Wang et al., 2023). Thus, in this review, we defined microplastics and nanoplastics to be different and described the potential risks of nanoplastics to human caused by cellular uptake according to their diverse factors. In addition, during and following plastic product usage a substantial number of fragments of different sizes can be generated, including nanoplastics. Fragmentation of microplastics into nanoplastics may also occur during ingestion and inhalation, which can potentially cause long-term hazards to human health. However, there are still few in vivo studies conducted on the health effect of nanoplastics ingestion and inhalation.
Collapse
Affiliation(s)
- Yoojin Lee
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Seongeun Cho
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kyungtae Park
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Taihyun Kim
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jiyu Kim
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Du-Yeol Ryu
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jinkee Hong
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
43
|
Di Fusco D, Di Grazia A, Di Maggio G, Segreto MT, Iannucci A, Maresca C, De Stefano A, Sica G, Stolfi C, Monteleone G, Monteleone I. A novel tumour enhancer function of Insulin-like growth factor II mRNA-binding protein 3 in colorectal cancer. Cell Death Dis 2023; 14:243. [PMID: 37024466 PMCID: PMC10079693 DOI: 10.1038/s41419-023-05772-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 04/08/2023]
Abstract
CRC cells evolve a variety of strategies to limit or circumvent apoptosis cell death. RNA binding proteins (RBPs) regulate many of the molecular mechanisms that underlie the development of cancer. The insulin-like growth factor II mRNA-binding proteins (IMP) family are oncofoetal RBPs, consisting of IMP1, IMP2 and IMP3, which have an important role in RNA metabolism. IMP3 is highly expressed in colorectal cancer (CRC) tissue, where its expression often correlates with poor prognosis. However, the role of IMP3 in CRC is not fully understood. IMP3 expression was analysed using a public database and by Western blotting and immunohistochemistry in human colon samples derived from patients with sporadic CRC and healthy subjects. To address whether IMP3 controls cancer cell survival, we analysed cell death pathways in in vitro and in vivo experiments after IMP3 downregulation by siRNA or an antisense oligonucleotide. IMP3 was highly expressed in CRC samples compared to normal control tissues. The knockdown of IMP3 enhanced a caspase-independent cell death in CRC cell lines. Furthermore, the treatment of CRC cells with IMP3 siRNA did not alter the expression of GSDMD, GPX-4 and the activated form of RIP3, three key molecules that govern pyroptosis, ferroptosis and necroptosis, respectively. Abrogation of IMP3 in CRC significantly reduced Bcl-2 and Bcl-xL mRNA and was associated with an altered mitochondrial membrane potential that allowed the nuclear migration of the apoptosis-inducing factor (AIF). Moreover, specific immunoprecipitation experiments on CRC human cell lines indicated that IMP3 binds Bcl-2 and Bcl-xL mRNA, suggesting that IMP3 acts as a regulator of the intrinsic apoptotic pathway through the surveillance of anti-apoptotic Bcl mRNA metabolism. Finally, we showed that IMP3 block inhibited the growth of CRC cell lines in vivo after transplantation into immunodeficient mice. Altogether, these data support a novel role for IMP3 in controlling the intrinsic caspase-independent apoptotic pathway in CRC.
Collapse
Affiliation(s)
- Davide Di Fusco
- Department of Systems Medicine, University of 'Tor Vergata', Rome, Italy
| | - Antonio Di Grazia
- Department of Systems Medicine, University of 'Tor Vergata', Rome, Italy
| | - Giulia Di Maggio
- Department of Systems Medicine, University of 'Tor Vergata', Rome, Italy
| | | | - Andrea Iannucci
- Department of Biomedicine and Prevention, University of 'Tor Vergata', Rome, Italy
| | - Claudia Maresca
- Department of Systems Medicine, University of 'Tor Vergata', Rome, Italy
| | | | - Giuseppe Sica
- Department of Surgery, University of 'Tor Vergata', Rome, Italy
| | - Carmine Stolfi
- Department of Systems Medicine, University of 'Tor Vergata', Rome, Italy
| | | | - Ivan Monteleone
- Department of Biomedicine and Prevention, University of 'Tor Vergata', Rome, Italy.
| |
Collapse
|
44
|
Jiang X, Li G, Zhu B, Zang J, Lan T, Jiang R, Wang B. p20BAP31 induces cell apoptosis via both AIF caspase-independent and the ROS/JNK mitochondrial pathway in colorectal cancer. Cell Mol Biol Lett 2023; 28:25. [PMID: 36977989 PMCID: PMC10052827 DOI: 10.1186/s11658-023-00434-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
Abstract
Background
During cell apoptosis, the C-terminus of BAP31 is cleaved by caspase-8 and generates p20BAP31, which has been shown to induce an apoptotic pathway between the endoplasmic reticulum (ER) and mitochondria. However, the underlying mechanisms of p20BAP31 in cell apoptosis remains unclear.
Methods
We compared the effects of p20BAP31 on cell apoptosis in six cell lines and selected the most sensitive cells. Functional experiments were conducted, including Cell Counting Kit 8 (CCK-8), reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) assay. Then, cell cycle and apoptosis were investigated by flow cytometry and verified by immunoblotting. Next, NOX inhibitors (ML171 and apocynin), ROS scavenger (NAC), JNK inhibitor (SP600125), and caspase inhibitor (Z-VAD-FMK) were used to further investigate the underlying mechanisms of p20BAP31 on cell apoptosis. Finally, apoptosis-inducing factor (AIF) translocation from the mitochondria to the nuclei was verified by immunoblotting and immunofluorescence assay.
Results
We found that overexpression of p20BAP31 indeed induced apoptosis and had a much greater sensitivity in HCT116 cells. Furthermore, the overexpression of p20BAP31 inhibited cell proliferation by causing S phase arrest. Further study revealed that p20BAP31 reduced MMP, with a significant increase in ROS levels, accompanied by the activation of the MAPK signaling pathway. Importantly, the mechanistic investigation indicated that p20BAP31 induces mitochondrial-dependent apoptosis by activating the ROS/JNK signaling pathway and induces caspase-independent apoptosis by promoting the nuclear translocation of AIF.
Conclusions
p20BAP31 induced cell apoptosis via both the ROS/JNK mitochondrial pathway and AIF caspase-independent pathway. Compared with antitumor drugs that are susceptible to drug resistance, p20BAP31 has unique advantages for tumor therapy.
Collapse
|
45
|
Shi S, Luo H, Ji Y, Ouyang H, Wang Z, Wang X, Hu R, Wang L, Wang Y, Xia J, Cheng B, Bao B, Li X, Liao G, Xu B. Repurposing Dihydroartemisinin to Combat Oral Squamous Cell Carcinoma, Associated with Mitochondrial Dysfunction and Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9595201. [PMID: 37273554 PMCID: PMC10239307 DOI: 10.1155/2023/9595201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 08/15/2023]
Abstract
Oral squamous cell carcinoma (OSCC), with aggressive locoregional invasion, has a high rate of early recurrences and poor prognosis. Dihydroartemisinin (DHA), as a derivative of artemisinin, has been found to exert potent antitumor activity. Recent studies reported that DHA suppresses OSCC cell growth and viability through the regulation of reactive oxygen species (ROS) production and mitochondrial calcium uniporter. However, the mechanism underlying the action of DHA on OSCCs remains elusive. In the study, we observed that 159 genes were remarkably misregulated in primary OSCC tumors associated with DHA-inhibited pathways, supporting that OSCCs are susceptible to DHA treatment. Herein, our study showed that DHA exhibited promising effects to suppress OSCC cell growth and survival, and single-cell colony formation. Interestingly, the combination of DHA and cisplatin (CDDP) significantly reduced the toxicity of CDDP treatment alone on human normal oral cells (NOK). Moreover, DHA remarkably impaired mitochondrial structure and function, and triggered DNA damage and ROS generation, and activation of mitophagy. In addition, DHA induced leakage of cytochrome C and apoptosis-inducing factor (AIF) from mitochondria, elevated Bax/cleaved-caspase 3 expression levels and compromised Bcl2 protein expression. In the OSCC tumor-xenograft mice model, DHA remarkably suppressed tumor growth and induced apoptosis of OSCCs in vivo. Intriguingly, a selective mitophagy inhibitor Mdivi-1 could significantly reinforce the anticancer activity of DHA treatment. DHA and Mdivi-1 can synergistically suppress OSCC cell proliferation and survival. These data uncover a previously unappreciated contribution of the mitochondria-associated pathway to the antitumor activity of DHA on OSCCs. Our study shed light on a new aspect of a DHA-based therapeutic strategy to combat OSCC tumors.
Collapse
Affiliation(s)
- Shanwei Shi
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Hospital of Stomatology, Department of Oral and Maxillofacial Surgery, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Huigen Luo
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yuna Ji
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Huiya Ouyang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zheng Wang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xinchen Wang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Renjie Hu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Lihong Wang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yun Wang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Juan Xia
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Bin Cheng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Baicheng Bao
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xin Li
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Guiqing Liao
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Hospital of Stomatology, Department of Oral and Maxillofacial Surgery, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Baoshan Xu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
46
|
Gonzalez-Morena JM, Escudeiro-Lopes S, Ferreira-Mendes JM, Jakoube P, Cutano V, Vinaixa-Forner J, Kralova Viziova P, Hartmanova A, Sedlacek R, Machado S, Malcekova B, Keckesova Z. LACTB induces cancer cell death through the activation of the intrinsic caspase-independent pathway in breast cancer. Apoptosis 2023; 28:186-198. [PMID: 36282364 PMCID: PMC9950249 DOI: 10.1007/s10495-022-01775-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND LACTB was recently identified as a mitochondrial tumour suppressor that negatively affects cancer cell proliferation by inducing cell death and/or differentiation, depending on the cell type and tissue. However, the detailed mechanism underlying the LACTB-induced cancer cell death is largely unknown. METHODS We used cell-based, either in 2D or 3D conditions, and in vivo experiments to understand the LACTB mechanisms. In this regard, protein array followed by an enrichment analysis, cell proliferation assays using different compounds, western blot analysis, flow cytometry and immunofluorescence were performed. Differences between quantitative variables following normal distribution were valuated using Student t test for paired or no-paired samples according to the experiment. For in vivo experiments differences in tumour growth were analyzed by 2-way ANOVA. RESULTS We show, that LACTB expression leads to cell cycle arrest in G1 phase and increase of DNA oxidation that leads to activation of intrinsic caspase-independent cell death pathway. This is achieved by an increase of mitochondrial reactive oxygen species since early time points of LACTB induction. CONCLUSION Our work provides a deeper mechanistic insight into LACTB-mediated cancer-cell death and shows the dynamics of the cellular responses a particular tumor suppressive stimulus might evoke under different genetic landscapes.
Collapse
Affiliation(s)
- Juan M Gonzalez-Morena
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Sara Escudeiro-Lopes
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | | | - Pavel Jakoube
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Valentina Cutano
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Judith Vinaixa-Forner
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Petra Kralova Viziova
- The Czech Center for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Andrea Hartmanova
- The Czech Center for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Radislav Sedlacek
- The Czech Center for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Susana Machado
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Beata Malcekova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Keckesova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
47
|
The natural product dehydrocurvularin induces apoptosis of gastric cancer cells by activating PARP-1 and caspase-3. Apoptosis 2023; 28:525-538. [PMID: 36652130 DOI: 10.1007/s10495-023-01811-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2023] [Indexed: 01/19/2023]
Abstract
The natural product dehydrocurvularin (DSE2) is a fungal-derived macrolide with potent anticancer activity, but the mechanism is still unclear. We found that DSE2 effectively inhibited the growth of gastric cancer cells and induced the apoptosis by activating Poly(ADP-ribose) polymerase 1 (PARP-1) and caspase-3. Pharmacological inhibition and genetic knockdown with PARP-1 or caspase-3 suppressed DSE2-induced apoptosis. PARP-1 was previously reported to be cleaved into fragments during apoptosis. However, PARP-1 was barely cleaved in DSE2-induced apoptosis. DSE2 induced PARP-1 activation as indicated by rapid depletion of NAD+ and the concomitant formation of poly(ADP-ribosylated) proteins (PARs). Interestingly, the PARP-1 inhibitor (Olaparib) attenuated the cytotoxicity of DSE2. Moreover, the combination of Olaparib and Z-DEVD-FMK (caspase-3 inhibitor) further reduced the cytotoxicity. It has been shown that PARP-1 activation triggers cytoplasm-nucleus translocation of apoptosis-inducing factor (AIF). Caspase-3 inhibitors inhibited PARP-1 activation and suppressed PARP-1-induced AIF nuclear translocation. These results indicated that DSE2-induced caspase-3 activation may occur before PARP-1 activation. The ROS inhibitor, N-acetyl-cysteine, significantly inhibited the activation of caspase-3 and PARP-1, indicating that ROS overproduction contributed to DSE2-induced apoptosis. Using an in vivo approach, we further found that DSE2 significantly inhibited gastric tumor growth and promoted translocation of AIF to the nucleus. In conclusion, DSE2 induces gastric cell apoptosis by activating caspase-3 and PARP-1, and shows potent antitumor activity against human gastric carcinoma in vitro and in vivo.
Collapse
|
48
|
Zhou W, Ji L, Liu X, Tu D, Shi N, Yangqu W, Chen S, Gao P, Zhu H, Ruan C. AIFM1, negatively regulated by miR-145-5p, aggravates hypoxia-induced cardiomyocyte injury. Biomed J 2022; 45:870-882. [PMID: 34863964 PMCID: PMC9795367 DOI: 10.1016/j.bj.2021.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/06/2021] [Accepted: 11/25/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Hypoxia-induced apoptosis is linked to the pathogenesis of myocardial infarction. The role of apoptosis-inducing factor mitochondria associated 1 (AIFM1) in cardiomyocyte injury remains unclear. This study was aimed at probing into the role and the underlying regulatory mechanism of AIFM1 in myocardial injury. METHODS H9c2 cardiomyocytes and C57BL/6 mice were used for myocardial hypoxic/ischemic injury and myocardial infarction animal models. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to evaluate the expression levels of AIFM1 mRNA and miR-145-5p. Western blot was used for examining the expression levels of AIFM1, caspase-3, cleaved caspase-3, p-53, and γ-H2AX. Cell viability was examined by cell counting kit-8 (CCK-8) assay and BrdU assay. Interaction between AIFM1 and miR-145-5p was determined by bioinformatics analysis, qRT-PCR, Western blot, and dual-luciferase reporter assay. RESULTS AIFM1 expression was markedly highly elevated, while miR-145-5p expression was significantly down-regulated in the myocardial infarction animal model and H9c2 cells under hypoxia. Augmentation of AIFM1 led to a dramatic decrease of cell viability, accompanied by an increase of the secretion of the inflammatory cytokines IL-1β, TNF-α, IL-6, and the expression of cleaved caspase-3. Furthermore, AIFM1 was identified as a target of miR-145-5p. In addition, miR-145-5p/AIFM1 axis regulated the expression of p53. CONCLUSION AIFM1 may exacerbate myocardial ischemic injury by promoting inflammation and the injury of cardiomyocytes, and its up-regulation may be partly due to the down-regulation of miR-145-5p.
Collapse
Affiliation(s)
- Wugang Zhou
- Department of Emergency, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Department of Intensive Care Unit, Shigatse People's Hospital, Shigatse, Tibet Autonomous Region, China
| | - Lv Ji
- Department of Intensive Care Unit, Shigatse People's Hospital, Shigatse, Tibet Autonomous Region, China
| | - Xuqin Liu
- Department of Intensive Care Unit, Shigatse People's Hospital, Shigatse, Tibet Autonomous Region, China
| | - Dan Tu
- Department of Intensive Care Unit, Shigatse People's Hospital, Shigatse, Tibet Autonomous Region, China
| | - Ningning Shi
- Department of Intensive Care Unit, Shigatse People's Hospital, Shigatse, Tibet Autonomous Region, China
| | - Wangmu Yangqu
- Department of Intensive Care Unit, Shigatse People's Hospital, Shigatse, Tibet Autonomous Region, China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China,Brain Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Pingjin Gao
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong Zhu
- Clinical Medical School, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Corresponding author. Clinical Medical School, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Room 401, Building 1, Jinzun Rd. 115, Pudong Dist., Shanghai 200125, China.
| | - Chengchao Ruan
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China,Corresponding author. Department of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin 2nd Rd. 197, Shanghai 200024, China.
| |
Collapse
|
49
|
La Barbera L, Nobili A, Cauzzi E, Paoletti I, Federici M, Saba L, Giacomet C, Marino R, Krashia P, Melone M, Keller F, Mercuri NB, Viscomi MT, Conti F, D’Amelio M. Upregulation of Ca 2+-binding proteins contributes to VTA dopamine neuron survival in the early phases of Alzheimer's disease in Tg2576 mice. Mol Neurodegener 2022; 17:76. [PMID: 36434727 PMCID: PMC9700939 DOI: 10.1186/s13024-022-00580-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Recent clinical and experimental studies have highlighted the involvement of Ventral Tegmental Area (VTA) dopamine (DA) neurons for the early pathogenesis of Alzheimer's Disease (AD). We have previously described a progressive and selective degeneration of these neurons in the Tg2576 mouse model of AD, long before amyloid-beta plaque formation. The degenerative process in DA neurons is associated with an autophagy flux impairment, whose rescue can prevent neuronal loss. Impairments in autophagy can be the basis for accumulation of damaged mitochondria, leading to disturbance in calcium (Ca2+) homeostasis, and to functional and structural deterioration of DA neurons. METHODS In Tg2576 mice, we performed amperometric recordings of DA levels and analysis of dopaminergic fibers in the Nucleus Accumbens - a major component of the ventral striatum precociously affected in AD patients - together with retrograde tracing, to identify the most vulnerable DA neuron subpopulations in the VTA. Then, we focused on these neurons to analyze mitochondrial integrity and Apoptosis-inducing factor (AIF) localization by electron and confocal microscopy, respectively. Stereological cell count was also used to evaluate degeneration of DA neuron subpopulations containing the Ca2+-binding proteins Calbindin-D28K and Calretinin. The expression levels for these proteins were analyzed by western blot and confocal microscopy. Lastly, using electrophysiology and microfluorometry we analyzed VTA DA neuron intrinsic properties and cytosolic free Ca2+ levels. RESULTS We found a progressive degeneration of mesolimbic DA neurons projecting to the ventral striatum, located in the paranigral nucleus and parabrachial pigmented subnucleus of the VTA. At the onset of degeneration (3 months of age), the vulnerable DA neurons in the Tg2576 accumulate damaged mitochondria, while AIF translocates from the mitochondria to the nucleus. Although we describe an age-dependent loss of the DA neurons expressing Calbindin-D28K or Calretinin, we observed that the remaining cells upregulate the levels of Ca2+-binding proteins, and the free cytosolic levels of Ca2+ in these neurons are significantly decreased. Coherently, TUNEL-stained Tg2576 DA neurons express lower levels of Calbindin-D28K when compared with non-apoptotic cells. CONCLUSION Overall, our results suggest that the overexpression of Ca2+-binding proteins in VTA DA neurons might be an attempt of cells to survive by increasing their ability to buffer free Ca2+. Exploring strategies to overexpress Ca2+-binding proteins could be fundamental to reduce neuronal suffering and improve cognitive and non-cognitive functions in AD.
Collapse
Affiliation(s)
- Livia La Barbera
- grid.9657.d0000 0004 1757 5329Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy ,grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | - Annalisa Nobili
- grid.9657.d0000 0004 1757 5329Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy ,grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | - Emma Cauzzi
- grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy ,grid.6530.00000 0001 2300 0941Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ilaria Paoletti
- grid.9657.d0000 0004 1757 5329Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Mauro Federici
- grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | - Luana Saba
- grid.9657.d0000 0004 1757 5329Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy ,grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | - Cecilia Giacomet
- grid.6530.00000 0001 2300 0941Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ramona Marino
- grid.9657.d0000 0004 1757 5329Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Paraskevi Krashia
- grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy ,grid.9657.d0000 0004 1757 5329Department of Sciences and Technologies for Humans and Environment, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Marcello Melone
- grid.7010.60000 0001 1017 3210Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche (UNIVPM), 60020 Ancona, Italy ,Center for Neurobiology of Aging, IRCCS Istituto Nazionale Ricovero e Cura Anziani (INRCA), 60020 Ancona, Italy
| | - Flavio Keller
- grid.9657.d0000 0004 1757 5329Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Nicola Biagio Mercuri
- grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy ,grid.6530.00000 0001 2300 0941Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Maria Teresa Viscomi
- grid.8142.f0000 0001 0941 3192Department of Life Science and Public Health; Section of Histology and Embryology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy ,grid.414603.4Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy
| | - Fiorenzo Conti
- grid.7010.60000 0001 1017 3210Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche (UNIVPM), 60020 Ancona, Italy ,Center for Neurobiology of Aging, IRCCS Istituto Nazionale Ricovero e Cura Anziani (INRCA), 60020 Ancona, Italy ,grid.7010.60000 0001 1017 3210Foundation for Molecular Medicine, Università Politecnica delle Marche, 60020 Ancona, Italy
| | - Marcello D’Amelio
- grid.9657.d0000 0004 1757 5329Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy ,grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| |
Collapse
|
50
|
Zhang Y, Duan C, Wu S, Ma J, Liu Y, Li W, Wang T, Yang L, Cheng K, Zhuang R. Knockout of IL-6 mitigates cold water-immersion restraint stress-induced intestinal epithelial injury and apoptosis. Front Immunol 2022; 13:936689. [PMID: 36505466 PMCID: PMC9732082 DOI: 10.3389/fimmu.2022.936689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Background Interleukin-6 (IL-6) is essential for maintaining intestinal epithelial homeostasis. Although cold water-immersion restraint (CWIR) stress is commonly used to induce in vivo gastric injury, it also affects intestinal epithelial permeability. Although IL-6 is increased in response to acute physiological and psychological stress, its exact effects on the pathophysiology of the intestinal epithelium in response to acute CWIR stress remain unknown. Methods We used IL-6 knockout (KO) mice with acute CWIR modeling to investigate the effect of IL-6 deficiency on intestinal epithelial morphology and pathological damage using histological staining assays under the acute stress. We detected jejunal epithelial apoptosis using TUNEL and standard molecular experiments. Results CWIR caused intestinal epithelial damage, which was alleviated by the absence of IL-6, as evidenced by morphological changes and goblet cell and intestinal permeability alteration. IL-6 KO also reduced CWIR-mediated inflammatory levels and improved stress defense. Meanwhile, IL-6 deficiency decreased the intestinal epithelial apoptosis induced by CWIR administration. This IL-6 KO-led effect depended more on mitochondrial AIF signaling rather than the traditional caspase pathway. Conclusion As a result, we concluded that acute CWIR-induced severe intestinal damage and jejunal epithelium apoptosis could be alleviated by IL-6 deficiency, implying a protective effect of IL-6 deficiency on the intestines under acute stress. The findings shed new light on treating CWIR-induced intestinal disorders by inhibiting IL-6 signaling.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Chujun Duan
- Department of Immunology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Shuwen Wu
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Jingchang Ma
- Department of Immunology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yongming Liu
- Orthopedic Department of Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Wenpeng Li
- Orthopedic Department of Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Tingting Wang
- Department of Immunology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Lu Yang
- Department of Immunology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Kun Cheng
- Department of Immunology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Ran Zhuang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, Shaanxi, China,Department of Immunology, Fourth Military Medical University, Xi’an, Shaanxi, China,*Correspondence: Ran Zhuang,
| |
Collapse
|