1
|
Geyer PE, Hornburg D, Pernemalm M, Hauck SM, Palaniappan KK, Albrecht V, Dagley LF, Moritz RL, Yu X, Edfors F, Vandenbrouck Y, Mueller-Reif JB, Sun Z, Brun V, Ahadi S, Omenn GS, Deutsch EW, Schwenk JM. The Circulating Proteome─Technological Developments, Current Challenges, and Future Trends. J Proteome Res 2024; 23:5279-5295. [PMID: 39479990 PMCID: PMC11629384 DOI: 10.1021/acs.jproteome.4c00586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 11/02/2024]
Abstract
Recent improvements in proteomics technologies have fundamentally altered our capacities to characterize human biology. There is an ever-growing interest in using these novel methods for studying the circulating proteome, as blood offers an accessible window into human health. However, every methodological innovation and analytical progress calls for reassessing our existing approaches and routines to ensure that the new data will add value to the greater biomedical research community and avoid previous errors. As representatives of HUPO's Human Plasma Proteome Project (HPPP), we present our 2024 survey of the current progress in our community, including the latest build of the Human Plasma Proteome PeptideAtlas that now comprises 4608 proteins detected in 113 data sets. We then discuss the updates of established proteomics methods, emerging technologies, and investigations of proteoforms, protein networks, extracellualr vesicles, circulating antibodies and microsamples. Finally, we provide a prospective view of using the current and emerging proteomics tools in studies of circulating proteins.
Collapse
Affiliation(s)
- Philipp E. Geyer
- Department
of Proteomics and Signal Transduction, Max
Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Daniel Hornburg
- Seer,
Inc., Redwood City, California 94065, United States
- Bruker
Scientific, San Jose, California 95134, United States
| | - Maria Pernemalm
- Department
of Oncology and Pathology/Science for Life Laboratory, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Stefanie M. Hauck
- Metabolomics
and Proteomics Core, Helmholtz Zentrum München
GmbH, German Research Center for Environmental Health, 85764 Oberschleissheim,
Munich, Germany
| | | | - Vincent Albrecht
- Department
of Proteomics and Signal Transduction, Max
Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Laura F. Dagley
- The
Walter and Eliza Hall Institute for Medical Research, Parkville, VIC 3052, Australia
- Department
of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Robert L. Moritz
- Institute
for Systems Biology, Seattle, Washington 98109, United States
| | - Xiaobo Yu
- State
Key Laboratory of Medical Proteomics, Beijing
Proteome Research Center, National Center for Protein Sciences-Beijing
(PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Fredrik Edfors
- Science
for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 17121 Solna, Sweden
| | | | - Johannes B. Mueller-Reif
- Department
of Proteomics and Signal Transduction, Max
Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Zhi Sun
- Institute
for Systems Biology, Seattle, Washington 98109, United States
| | - Virginie Brun
- Université Grenoble
Alpes, CEA, Leti, Clinatec, Inserm UA13
BGE, CNRS FR2048, Grenoble, France
| | - Sara Ahadi
- Alkahest, Inc., Suite
D San Carlos, California 94070, United States
| | - Gilbert S. Omenn
- Institute
for Systems Biology, Seattle, Washington 98109, United States
- Departments
of Computational Medicine & Bioinformatics, Internal Medicine,
Human Genetics and Environmental Health, University of Michigan, Ann Arbor, Michigan 48109-2218, United States
| | - Eric W. Deutsch
- Institute
for Systems Biology, Seattle, Washington 98109, United States
| | - Jochen M. Schwenk
- Science
for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 17121 Solna, Sweden
| |
Collapse
|
2
|
Bugrova AE, Strelnikova PA, Kononikhin AS, Zakharova NV, Diyachkova EO, Brzhozovskiy AG, Indeykina MI, Kurochkin IN, Averyanov AV, Nikolaev EN. Targeted MRM-analysis of plasma proteins in frozen whole blood samples from patients with COVID-19: a retrospective study. Clin Chem Lab Med 2024:cclm-2024-0800. [PMID: 39321553 DOI: 10.1515/cclm-2024-0800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 08/30/2024] [Indexed: 09/27/2024]
Abstract
OBJECTIVES The COVID-19 pandemic has exposed a number of key challenges that need to be urgently addressed. Mass spectrometric studies of blood plasma proteomics provide a deep understanding of the relationship between the severe course of infection and activation of specific pathophysiological pathways. Analysis of plasma proteins in whole blood may also be relevant for the pandemic as it requires minimal sample preparation. METHODS The frozen whole blood samples were used to analyze 203 plasma proteins using multiple reaction monitoring (MRM) mass spectrometry and stable isotope-labeled peptide standards (SIS). A total of 131 samples (FRCC, Russia) from patients with mild (n=41), moderate (n=39) and severe (n=19) COVID-19 infection and healthy controls (n=32) were analyzed. RESULTS Levels of 94 proteins were quantified and compared. Significant differences between all of the groups were revealed for 44 proteins. Changes in the levels of 61 reproducible COVID-19 markers (SERPINA3, SERPING1, ORM1, HRG, LBP, APOA1, AHSG, AFM, ITIH2, etc.) were consistent with studies performed with serum/plasma samples. The best-performing classifier built with 10 proteins achieved the best combination of ROC-AUC (0.97-0.98) and accuracy (0.90-0.93) metrics and distinguished patients from controls, as well as patients by severity. CONCLUSIONS Here, for the first time, frozen whole blood samples were used for proteomic analysis and assessment of the status of patients with COVID-19. The results obtained with frozen whole blood samples are consistent with those from plasma and serum.
Collapse
Affiliation(s)
- Anna E Bugrova
- 366033 Skolkovo Institute of Science and Technology , Moscow, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Science, Moscow, Russia
| | - Polina A Strelnikova
- 366033 Skolkovo Institute of Science and Technology , Moscow, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Science, Moscow, Russia
| | - Alexey S Kononikhin
- 366033 Skolkovo Institute of Science and Technology , Moscow, Russia
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Natalia V Zakharova
- Emanuel Institute of Biochemical Physics, Russian Academy of Science, Moscow, Russia
| | - Elizaveta O Diyachkova
- Pulmonology Scientific and Research Institute, Federal Medical and Biological Agency, Moscow, Russia
| | | | - Maria I Indeykina
- Emanuel Institute of Biochemical Physics, Russian Academy of Science, Moscow, Russia
| | - Ilya N Kurochkin
- Emanuel Institute of Biochemical Physics, Russian Academy of Science, Moscow, Russia
- Department of Chemical Enzymology of the Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander V Averyanov
- Pulmonology Scientific and Research Institute, Federal Medical and Biological Agency, Moscow, Russia
| | - Evgeny N Nikolaev
- 366033 Skolkovo Institute of Science and Technology , Moscow, Russia
| |
Collapse
|
3
|
Ramesh P, Nisar M, Neha, Ammankallu S, Babu S, Nandakumar R, Abhinand CS, Prasad TSK, Codi JAK, Raju R. Delineating protein biomarkers for gastric cancers: A catalogue of mass spectrometry-based markers and assessment of their suitability for targeted proteomics applications. J Proteomics 2024; 306:105262. [PMID: 39047941 DOI: 10.1016/j.jprot.2024.105262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Gastric cancer (GC) is a global health concern. To facilitate improved management of GCs, protein biomarkers have been identified through mass spectrometry-based proteomics platforms. In order to exhibit clinical utility of such data, we congregated over 6800 differentially regulated proteins in GCs from proteomics studies and recorded the mass spectrometry platforms, association of the protein with infectious agents, protein identifiers, sample size and clinical characters of samples used with details on validation. Development of targeted proteomics methods is the cornerstone for pursuing these markers into clinical utility. Therefore, we developed Protein Biomarker Matrix for Gastric Cancer (PBMGC), a simple catalogue of robustness of each protein. This analysis yielded the identification of robust tissue, serum, and urine diagnostic and prognostic protein biomarker panels which can be further tested for their clinical utility. We also ascertained proteotypic tryptic peptides of 5631 proteins suitable for developing multiple reaction monitoring (MRM) assays. Extensive characterization of these peptides was carried out to record peptide ions, mass/charge and enhanced specific peptide features. With the vision of catering to proteomics researchers, the data generated through this analysis has been catalogued at Gastric Cancer Proteomics DataBase (GCPDB) (https://ciods.in/gcpdb/). Users can browse and download the data and improve GCPDB by submitting recently published data. SIGNIFICANCE: Mass spectrometry-based proteomics platforms have accumulated substantial data on proteins differentially regulated in gastric cancer (GC) clinical samples. The utility of such data in clinical applications is limited by search for suitable biomarker panels for assessment of GCs. We assembled over 6800 differentially regulated proteins in GCs from proteomics studies and recorded the corresponding details including mass spectrometry platforms, status on the association of the protein with infectious agents, protein identifiers from different databases, sample size and clinical characters of samples used in test and control conditions along with details on their validation. Towards the vision of utilizing these markers in clinical assays, Protein Biomarker Matrix for Gastric Cancer (PBMGC) was developed and clinically relevant multi-protein panels were identified. We also demonstrated identification and characterization of tryptic proteotypic tryptic peptides of 5631 proteins biomarkers of GCs which are suitable for development of MRM assays in a SCIEX QTRAP instrument. Aimed to caterproteomics researchers, the data generated through this analysis has been catalogued at Gastric Cancer Proteomics DataBase (GCPDB) (https://ciods.in/gcpdb/). The users can browse and download details on different markers and improve GCPDB by submitting recently published data. Such an analysis could lay a cornerstone for building more such resources or conduct such analysis in different clinical conditions to uptake and develop targeted proteomics as the method of choice for clinical applications.
Collapse
Affiliation(s)
- Poornima Ramesh
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.
| | - Mahammad Nisar
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India.
| | - Neha
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India.
| | - Shruthi Ammankallu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.
| | - Sreeranjini Babu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.
| | - Revathy Nandakumar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.
| | - Chandran S Abhinand
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.
| | | | - Jalaluddin Akbar Kandel Codi
- Department of Surgical Oncology, Yenepoya Medical College, Yenepoya (Deemed to be University), Mangalore 575018, India.
| | - Rajesh Raju
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India; Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India.
| |
Collapse
|
4
|
Alexovič M, Bondarchuk T, Uličná C, Sabo J. Blood proteomics of COVID-19 infection: An update. Clin Chim Acta 2024; 562:119881. [PMID: 39033952 DOI: 10.1016/j.cca.2024.119881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Despite significant progress in understanding SARS-CoV-2 and its impact, a deeper comprehension of the molecular changes in the host following infection is still lacking. Proteomic analysis of COVID-19 infected patients can provide valuable data about the events and mechanisms related to the initial, progression, and terminal stages of the disease. Such information can lead to better prevention, treatment, and convalescence strategies. In this review, we discuss blood proteomic studies based on mass spectrometry in COVID-19 patients. The analysis focuses on various blood components including plasma, platelets, serum, red blood cells, and peripheral blood mononuclear cells. Scientific papers published since 2022 are covered, with approaches categorised based on whether they use in-gel, in-solution, or on-beads/on-filter digestion modes. Additionally, candidate protein biomarkers related to COVID-19 are surveyed and discussed.
Collapse
Affiliation(s)
- Michal Alexovič
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P.J. Šafárik in Košice, 04011, Košice, Slovakia.
| | - Tetiana Bondarchuk
- Institute of Molecular Biology and Genetics of NAS of Ukraine, 03143, Kyiv, Ukraine
| | - Csilla Uličná
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P.J. Šafárik in Košice, 04011, Košice, Slovakia; University Library, University of Prešov, 08001, Prešov, Slovakia
| | - Ján Sabo
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P.J. Šafárik in Košice, 04011, Košice, Slovakia
| |
Collapse
|
5
|
D’Amato M, Grignano MA, Iadarola P, Rampino T, Gregorini M, Viglio S. The Impact of Serum/Plasma Proteomics on SARS-CoV-2 Diagnosis and Prognosis. Int J Mol Sci 2024; 25:8633. [PMID: 39201322 PMCID: PMC11354567 DOI: 10.3390/ijms25168633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
While COVID-19's urgency has diminished since its emergence in late 2019, it remains a significant public health challenge. Recent research reveals that the molecular intricacies of this virus are far more complex than initially understood, with numerous post-translational modifications leading to diverse proteoforms and viral particle heterogeneity. Mass spectrometry-based proteomics of patient serum/plasma emerges as a promising complementary approach to traditional diagnostic methods, offering insights into SARS-CoV-2 protein dynamics and enhancing understanding of the disease and its long-term consequences. This article highlights key findings from three years of pandemic-era proteomics research. It delves into biomarker discovery, diagnostic advancements, and drug development efforts aimed at monitoring COVID-19 onset and progression and exploring treatment options. Additionally, it examines global protein abundance and post-translational modification profiling to elucidate signaling pathway alterations and protein-protein interactions during infection. Finally, it explores the potential of emerging multi-omics analytic strategies in combatting SARS-CoV-2.
Collapse
Affiliation(s)
- Maura D’Amato
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (M.D.); (S.V.)
| | - Maria Antonietta Grignano
- Unit of Nephrology, Dialysis and Transplantation, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (M.A.G.); (T.R.); (M.G.)
| | - Paolo Iadarola
- Department of Biology and Biotechnologies “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Teresa Rampino
- Unit of Nephrology, Dialysis and Transplantation, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (M.A.G.); (T.R.); (M.G.)
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Marilena Gregorini
- Unit of Nephrology, Dialysis and Transplantation, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (M.A.G.); (T.R.); (M.G.)
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Simona Viglio
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (M.D.); (S.V.)
- Lung Transplantation Unit, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| |
Collapse
|
6
|
Viode A, Smolen KK, van Zalm P, Stevenson D, Jha M, Parker K, Levy O, Steen JA, Steen H. Longitudinal plasma proteomic analysis of 1117 hospitalized patients with COVID-19 identifies features associated with severity and outcomes. SCIENCE ADVANCES 2024; 10:eadl5762. [PMID: 38787940 PMCID: PMC11122669 DOI: 10.1126/sciadv.adl5762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/18/2024] [Indexed: 05/26/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is characterized by highly heterogeneous manifestations ranging from asymptomatic cases to death for still incompletely understood reasons. As part of the IMmunoPhenotyping Assessment in a COVID-19 Cohort study, we mapped the plasma proteomes of 1117 hospitalized patients with COVID-19 from 15 hospitals across the United States. Up to six samples were collected within ~28 days of hospitalization resulting in one of the largest COVID-19 plasma proteomics cohorts with 2934 samples. Using perchloric acid to deplete the most abundant plasma proteins allowed for detecting 2910 proteins. Our findings show that increased levels of neutrophil extracellular trap and heart damage markers are associated with fatal outcomes. Our analysis also identified prognostic biomarkers for worsening severity and death. Our comprehensive longitudinal plasma proteomics study, involving 1117 participants and 2934 samples, allowed for testing the generalizability of the findings of many previous COVID-19 plasma proteomics studies using much smaller cohorts.
Collapse
Affiliation(s)
- Arthur Viode
- Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kinga K. Smolen
- Harvard Medical School, Boston, MA, USA
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, USA
| | - Patrick van Zalm
- Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Neuropsychology and Psychopharmacology, EURON, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - David Stevenson
- Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
| | - Meenakshi Jha
- Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
| | - Kenneth Parker
- Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
| | - IMPACC Network‡
- Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, USA
- Department of Neuropsychology and Psychopharmacology, EURON, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Broad Institute of MIT & Harvard, Cambridge, MA, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Neurobiology Program, Boston Children's Hospital, Boston, MA, USA
| | - Ofer Levy
- Harvard Medical School, Boston, MA, USA
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, USA
- Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - Judith A. Steen
- Harvard Medical School, Boston, MA, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Neurobiology Program, Boston Children's Hospital, Boston, MA, USA
| | - Hanno Steen
- Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, USA
- Neurobiology Program, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
7
|
Rosario-Rodríguez LJ, Cantres-Rosario YM, Carrasquillo-Carrión K, Rosa-Díaz A, Rodríguez-De Jesús AE, Rivera-Nieves V, Tosado-Rodríguez EL, Méndez LB, Roche-Lima A, Bertrán J, Meléndez LM. Plasma Proteins Associated with COVID-19 Severity in Puerto Rico. Int J Mol Sci 2024; 25:5426. [PMID: 38791465 PMCID: PMC11121485 DOI: 10.3390/ijms25105426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Viral strains, age, and host factors are associated with variable immune responses against SARS-CoV-2 and disease severity. Puerto Ricans have a genetic mixture of races: European, African, and Native American. We hypothesized that unique host proteins/pathways are associated with COVID-19 disease severity in Puerto Rico. Following IRB approval, a total of 95 unvaccinated men and women aged 21-71 years old were recruited in Puerto Rico from 2020-2021. Plasma samples were collected from COVID-19-positive subjects (n = 39) and COVID-19-negative individuals (n = 56) during acute disease. COVID-19-positive individuals were stratified based on symptomatology as follows: mild (n = 18), moderate (n = 13), and severe (n = 8). Quantitative proteomics was performed in plasma samples using tandem mass tag (TMT) labeling. Labeled peptides were subjected to LC/MS/MS and analyzed by Proteome Discoverer (version 2.5), Limma software (version 3.41.15), and Ingenuity Pathways Analysis (IPA, version 22.0.2). Cytokines were quantified using a human cytokine array. Proteomics analyses of severely affected COVID-19-positive individuals revealed 58 differentially expressed proteins. Cadherin-13, which participates in synaptogenesis, was downregulated in severe patients and validated by ELISA. Cytokine immunoassay showed that TNF-α levels decreased with disease severity. This study uncovers potential host predictors of COVID-19 severity and new avenues for treatment in Puerto Ricans.
Collapse
Affiliation(s)
- Lester J. Rosario-Rodríguez
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico;
| | - Yadira M. Cantres-Rosario
- Translational Proteomics Center, Research Capacity Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico; (Y.M.C.-R.); (A.E.R.-D.J.)
| | - Kelvin Carrasquillo-Carrión
- Integrated Informatics, Research Capacity Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico; (K.C.-C.); (E.L.T.-R.); (A.R.-L.)
| | - Alexandra Rosa-Díaz
- Interdisciplinary Studies, Natural Sciences, University of Puerto Rico, Río Piedras Campus, San Juan 00925, Puerto Rico; (A.R.-D.); (V.R.-N.)
| | - Ana E. Rodríguez-De Jesús
- Translational Proteomics Center, Research Capacity Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico; (Y.M.C.-R.); (A.E.R.-D.J.)
| | - Verónica Rivera-Nieves
- Interdisciplinary Studies, Natural Sciences, University of Puerto Rico, Río Piedras Campus, San Juan 00925, Puerto Rico; (A.R.-D.); (V.R.-N.)
| | - Eduardo L. Tosado-Rodríguez
- Integrated Informatics, Research Capacity Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico; (K.C.-C.); (E.L.T.-R.); (A.R.-L.)
| | - Loyda B. Méndez
- Department of Science & Technology, Ana G. Mendez University, Carolina 00928, Puerto Rico;
| | - Abiel Roche-Lima
- Integrated Informatics, Research Capacity Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico; (K.C.-C.); (E.L.T.-R.); (A.R.-L.)
| | - Jorge Bertrán
- Infectious Diseases, Auxilio Mutuo Hospital, San Juan 00919, Puerto Rico;
| | - Loyda M. Meléndez
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico;
- Translational Proteomics Center, Research Capacity Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico; (Y.M.C.-R.); (A.E.R.-D.J.)
| |
Collapse
|
8
|
Kurgan N, Kjærgaard Larsen J, Deshmukh AS. Harnessing the power of proteomics in precision diabetes medicine. Diabetologia 2024; 67:783-797. [PMID: 38345659 DOI: 10.1007/s00125-024-06097-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/20/2023] [Indexed: 03/21/2024]
Abstract
Precision diabetes medicine (PDM) aims to reduce errors in prevention programmes, diagnosis thresholds, prognosis prediction and treatment strategies. However, its advancement and implementation are difficult due to the heterogeneity of complex molecular processes and environmental exposures that influence an individual's disease trajectory. To address this challenge, it is imperative to develop robust screening methods for all areas of PDM. Innovative proteomic technologies, alongside genomics, have proven effective in precision cancer medicine and are showing promise in diabetes research for potential translation. This narrative review highlights how proteomics is well-positioned to help improve PDM. Specifically, a critical assessment of widely adopted affinity-based proteomic technologies in large-scale clinical studies and evidence of the benefits and feasibility of using MS-based plasma proteomics is presented. We also present a case for the use of proteomics to identify predictive protein panels for type 2 diabetes subtyping and the development of clinical prediction models for prevention, diagnosis, prognosis and treatment strategies. Lastly, we discuss the importance of plasma and tissue proteomics and its integration with genomics (proteogenomics) for identifying unique type 2 diabetes intra- and inter-subtype aetiology. We conclude with a call for action formed on advancing proteomics technologies, benchmarking their performance and standardisation across sites, with an emphasis on data sharing and the inclusion of diverse ancestries in large cohort studies. These efforts should foster collaboration with key stakeholders and align with ongoing academic programmes such as the Precision Medicine in Diabetes Initiative consortium.
Collapse
Affiliation(s)
- Nigel Kurgan
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jeppe Kjærgaard Larsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Atul S Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Arutyunov GP, Tarlovskaya EI, Polyakov DS, Batluk TI, Arutyunov AG. Predicting outcomes of the acute phase of COVID-19. High sensitive prognostic model, based on the results of the international registry "analysis of chronic non-infectious diseases dynamics after COVID-19 infection in adult patients" (ACTIV). Heliyon 2024; 10:e28892. [PMID: 38596083 PMCID: PMC11002283 DOI: 10.1016/j.heliyon.2024.e28892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
The aim of this study is to investigate the course of the acute period of COVID-19 and devise a prognostic scale for patients hospitalized. Materials and methods The ACTIV registry encompassed both male and female patients aged 18 years and above, who were diagnosed with COVID-19 and subsequently hospitalized. Between June 2020 and March 2021, a total of 9364 patients were enrolled across 26 medical centers in seven countries. Data collected during the patients' hospital stay were subjected to multivariate analysis within the R computational environment. A predictive mathematical model, utilizing the "Random Forest" machine learning algorithm, was established to assess the risk of reaching the endpoint (defined as in-hospital death from any cause). This model was constructed using a training subsample (70% of patients), and subsequently tested using a control subsample (30% of patients). Results Out of the 9364 hospitalized COVID-19 patients, 545 (5.8%) died. Multivariate analysis resulted in the selection of eleven variables for the final model: minimum oxygen saturation, glomerular filtration rate, age, hemoglobin level, lymphocyte percentage, white blood cell count, platelet count, aspartate aminotransferase, glucose, heart rate, and respiratory rate. Receiver operating characteristic analysis yielded an area under the curve of 89.2%, a sensitivity of 86.2%, and a specificity of 76.0%. Utilizing the final model, a predictive equation and nomogram (termed the ACTIV scale) were devised for estimating in-hospital mortality amongst COVID-19 patients. Conclusion The ACTIV scale provides a valuable tool for practicing clinicians to predict the risk of in-hospital death in patients hospitalized with COVID-19.
Collapse
Affiliation(s)
- Gregory P. Arutyunov
- Eurasian Association of Internal Medicine, Moscow, Russia
- Department of Propaedeutics of Internal Diseases (Pediatric School), Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ekaterina I. Tarlovskaya
- Eurasian Association of Internal Medicine, Moscow, Russia
- Department of Therapy and Cardiology, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Dmitry S. Polyakov
- Department of Therapy and Cardiology, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | | | - Alexander G. Arutyunov
- Eurasian Association of Internal Medicine, Moscow, Russia
- Department of Cardiology and Internal Medicine, National Institute of Health named after Academician S. Avdalbekyan, Yerevan, Armenia
| |
Collapse
|
10
|
Drevinek P, Flisiak R, Nemes R, Nogales Crespo KA, Tomasiewicz K. The Role and Value of Professional Rapid Testing of Acute Respiratory Infections (ARIs) in Europe: A Special Focus on the Czech Republic, Poland, and Romania. Diagnostics (Basel) 2024; 14:631. [PMID: 38535051 PMCID: PMC10969707 DOI: 10.3390/diagnostics14060631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 01/03/2025] Open
Abstract
This review aims to explore the role of professional diagnostic rapid testing of acute respiratory infections (ARIs), especially COVID-19 and influenza, ensuring proper disease management and treatment in Europe, and particularly in Czech Republic, Poland, and Romania. The paper was constructed based on a review of scientific evidence and national and international policies and recommendations, as well as a process of validation by four experts. The development of new testing technologies, treatment options, and increased awareness of the negative multidimensional impact of ARI profiles transformed differential diagnosis into a tangible and desirable reality. This review covers the following topics: (1) the multidimensional impact of ARIs, (2) ARI rapid diagnostic testing platforms and their value, (3) the policy landscape, (4) challenges and barriers to implementation, and (5) a set of recommendations illustrating a path forward. The findings indicate that rapid diagnostic testing, including at the point of care (POC), can have a positive impact on case management, antimicrobial and antibiotic stewardship, epidemiological surveillance, and decision making. Integrating this strategy will require the commitment of governments and the international and academic communities, especially as we identified room for improvement in the access and expansion of POC rapid testing in the focus countries and the inclusion of rapid testing in relevant policies.
Collapse
Affiliation(s)
- Pavel Drevinek
- Department of Medical Microbiology, Second Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic;
- Czech Society for Medical Microbiology, Czech Medical Association of J.E. Purkyne, 142 20 Prague, Czech Republic
| | - Robert Flisiak
- Department of Infectious Diseases and Hepatology, Medical University of Bialystok, 15-540 Białystok, Poland;
- Polish Association of Epidemiologists and Infectiologists, 15-540 Białystok, Poland;
| | - Roxana Nemes
- Department of Preclinical Disciplines, Faculty of Medicine, Titu Maiorescu University, 040441 Bucharest, Romania;
- Romanian Society of Pneumonology, 050159 Bucharest, Romania
| | | | - Krzysztof Tomasiewicz
- Polish Association of Epidemiologists and Infectiologists, 15-540 Białystok, Poland;
- Department and Clinic of Infectious Diseases and Hepatology SPSK-1, Medical University of Lublin, 20-081 Lublin, Poland
| |
Collapse
|
11
|
Michaud SA, Pětrošová H, Sinclair NJ, Kinnear AL, Jackson AM, McGuire JC, Hardie DB, Bhowmick P, Ganguly M, Flenniken AM, Nutter LMJ, McKerlie C, Smith D, Mohammed Y, Schibli D, Sickmann A, Borchers CH. Multiple reaction monitoring assays for large-scale quantitation of proteins from 20 mouse organs and tissues. Commun Biol 2024; 7:6. [PMID: 38168632 PMCID: PMC10762018 DOI: 10.1038/s42003-023-05687-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Mouse is the mammalian model of choice to study human health and disease due to its size, ease of breeding and the natural occurrence of conditions mimicking human pathology. Here we design and validate multiple reaction monitoring mass spectrometry (MRM-MS) assays for quantitation of 2118 unique proteins in 20 murine tissues and organs. We provide open access to technical aspects of these assays to enable their implementation in other laboratories, and demonstrate their suitability for proteomic profiling in mice by measuring normal protein abundances in tissues from three mouse strains: C57BL/6NCrl, NOD/SCID, and BALB/cAnNCrl. Sex- and strain-specific differences in protein abundances are identified and described, and the measured values are freely accessible via our MouseQuaPro database: http://mousequapro.proteincentre.com . Together, this large library of quantitative MRM-MS assays established in mice and the measured baseline protein abundances represent an important resource for research involving mouse models.
Collapse
Affiliation(s)
- Sarah A Michaud
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada.
| | - Helena Pětrošová
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Nicholas J Sinclair
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Andrea L Kinnear
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Angela M Jackson
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Jamie C McGuire
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Darryl B Hardie
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Pallab Bhowmick
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Milan Ganguly
- The Center for Phenogenomics, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | - Ann M Flenniken
- The Center for Phenogenomics, Toronto, ON, Canada
- Sinai Health Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Lauryl M J Nutter
- The Center for Phenogenomics, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | | | - Derek Smith
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Yassene Mohammed
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, 44139, Germany
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - David Schibli
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria, BC, Canada
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, 44139, Germany
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada.
- Gerald Bronfman Department of Oncology, Jewish General Hospital, Montreal, QC, Canada.
- Department of Experimental Medicine, McGill University, Montreal, QC, Canada.
- Department of Pathology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
12
|
Burnap SA, Ortega-Prieto AM, Jimenez-Guardeño JM, Ali H, Takov K, Fish M, Shankar-Hari M, Giacca M, Malim MH, Mayr M. Cross-Linking Mass Spectrometry Uncovers Interactions Between High-Density Lipoproteins and the SARS-CoV-2 Spike Glycoprotein. Mol Cell Proteomics 2023; 22:100600. [PMID: 37343697 PMCID: PMC10279469 DOI: 10.1016/j.mcpro.2023.100600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023] Open
Abstract
High-density lipoprotein (HDL) levels are reduced in patients with coronavirus disease 2019 (COVID-19), and the extent of this reduction is associated with poor clinical outcomes. While lipoproteins are known to play a key role during the life cycle of the hepatitis C virus, their influence on coronavirus (CoV) infections is poorly understood. In this study, we utilize cross-linking mass spectrometry (XL-MS) to determine circulating protein interactors of the severe acute respiratory syndrome (SARS)-CoV-2 spike glycoprotein. XL-MS of plasma isolated from patients with COVID-19 uncovered HDL protein interaction networks, dominated by acute-phase serum amyloid proteins, whereby serum amyloid A2 was shown to bind to apolipoprotein (Apo) D. XL-MS on isolated HDL confirmed ApoD to interact with SARS-CoV-2 spike but not SARS-CoV-1 spike. Other direct interactions of SARS-CoV-2 spike upon HDL included ApoA1 and ApoC3. The interaction between ApoD and spike was further validated in cells using immunoprecipitation-MS, which uncovered a novel interaction between both ApoD and spike with membrane-associated progesterone receptor component 1. Mechanistically, XL-MS coupled with data-driven structural modeling determined that ApoD may interact within the receptor-binding domain of the spike. However, ApoD overexpression in multiple cell-based assays had no effect upon viral replication or infectivity. Thus, SARS-CoV-2 spike can bind to apolipoproteins on HDL, but these interactions do not appear to alter infectivity.
Collapse
Affiliation(s)
- Sean A Burnap
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK; The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, UK; King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK.
| | - Ana Maria Ortega-Prieto
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Jose M Jimenez-Guardeño
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Hashim Ali
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK; Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Kaloyan Takov
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Matthew Fish
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK; Department of Intensive Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Manu Shankar-Hari
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh, UK; Royal Infirmary of Edinburgh, NHS Lothian, Edinburgh, UK
| | - Mauro Giacca
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Michael H Malim
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Manuel Mayr
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK.
| |
Collapse
|
13
|
Vernardis SI, Demichev V, Lemke O, Grüning NM, Messner C, White M, Pietzner M, Peluso A, Collet TH, Henning E, Gille C, Campbell A, Hayward C, Porteous DJ, Marioni RE, Mülleder M, Zelezniak A, Wareham NJ, Langenberg C, Farooqi IS, Ralser M. The Impact of Acute Nutritional Interventions on the Plasma Proteome. J Clin Endocrinol Metab 2023; 108:2087-2098. [PMID: 36658456 PMCID: PMC10348471 DOI: 10.1210/clinem/dgad031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
CONTEXT Humans respond profoundly to changes in diet, while nutrition and environment have a great impact on population health. It is therefore important to deeply characterize the human nutritional responses. OBJECTIVE Endocrine parameters and the metabolome of human plasma are rapidly responding to acute nutritional interventions such as caloric restriction or a glucose challenge. It is less well understood whether the plasma proteome would be equally dynamic, and whether it could be a source of corresponding biomarkers. METHODS We used high-throughput mass spectrometry to determine changes in the plasma proteome of i) 10 healthy, young, male individuals in response to 2 days of acute caloric restriction followed by refeeding; ii) 200 individuals of the Ely epidemiological study before and after a glucose tolerance test at 4 time points (0, 30, 60, 120 minutes); and iii) 200 random individuals from the Generation Scotland study. We compared the proteomic changes detected with metabolome data and endocrine parameters. RESULTS Both caloric restriction and the glucose challenge substantially impacted the plasma proteome. Proteins responded across individuals or in an individual-specific manner. We identified nutrient-responsive plasma proteins that correlate with changes in the metabolome, as well as with endocrine parameters. In particular, our study highlights the role of apolipoprotein C1 (APOC1), a small, understudied apolipoprotein that was affected by caloric restriction and dominated the response to glucose consumption and differed in abundance between individuals with and without type 2 diabetes. CONCLUSION Our study identifies APOC1 as a dominant nutritional responder in humans and highlights the interdependency of acute nutritional response proteins and the endocrine system.
Collapse
Affiliation(s)
- Spyros I Vernardis
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, NW1 1HT, UK
| | - Vadim Demichev
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Oliver Lemke
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Nana-Maria Grüning
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Christoph Messner
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, NW1 1HT, UK
| | - Matt White
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, NW1 1HT, UK
| | - Maik Pietzner
- MRC Epidemiology Unit, University of Cambridge, Cambridge, CB2 0SL, UK
- Computational Medicine, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Alina Peluso
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, NW1 1HT, UK
| | - Tinh-Hai Collet
- Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
- Service of Endocrinology, Diabetology, Nutrition and Therapeutic Education, Department of Medicine, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Elana Henning
- Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Christoph Gille
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Michael Mülleder
- Core Facility High Throughput Mass Spectrometry, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Aleksej Zelezniak
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, NW1 1HT, UK
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius SE-412 96, Lithuania
- Randall Centre for Cell & Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, SE1 1UL London, UK
| | | | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge, Cambridge, CB2 0SL, UK
- Computational Medicine, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Precision Healthcare University Research Institute, Queen Mary University of London, London, E1 1HH, UK
| | - I Sadaf Farooqi
- Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Markus Ralser
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, NW1 1HT, UK
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
14
|
Sweet DR, Freeman ML, Zidar DA. Immunohematologic Biomarkers in COVID-19: Insights into Pathogenesis, Prognosis, and Prevention. Pathog Immun 2023; 8:17-50. [PMID: 37427016 PMCID: PMC10324469 DOI: 10.20411/pai.v8i1.572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/24/2023] [Indexed: 07/11/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has had profound effects on the health of individuals and on healthcare systems worldwide. While healthcare workers on the frontlines have fought to quell multiple waves of infection, the efforts of the larger research community have changed the arch of this pandemic as well. This review will focus on biomarker discovery and other efforts to identify features that predict outcomes, and in so doing, identify possible effector and passenger mechanisms of adverse outcomes. Identifying measurable soluble factors, cell-types, and clinical parameters that predict a patient's disease course will have a legacy for the study of immunologic responses, especially stimuli, which induce an overactive, yet ineffectual immune system. As prognostic biomarkers were identified, some have served to represent pathways of therapeutic interest in clinical trials. The pandemic conditions have created urgency for accelerated target identification and validation. Collectively, these COVID-19 studies of biomarkers, disease outcomes, and therapeutic efficacy have revealed that immunologic systems and responses to stimuli are more heterogeneous than previously assumed. Understanding the genetic and acquired features that mediate divergent immunologic outcomes in response to this global exposure is ongoing and will ultimately improve our preparedness for future pandemics, as well as impact preventive approaches to other immunologic diseases.
Collapse
Affiliation(s)
- David R. Sweet
- Case Western Reserve University School of Medicine, Cleveland, OH
| | - Michael L. Freeman
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, Cleveland, OH
| | - David A. Zidar
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH
- Cardiology Section, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
15
|
Scheibenbogen C, Bellmann-Strobl JT, Heindrich C, Wittke K, Stein E, Franke C, Prüss H, Preßler H, Machule ML, Audebert H, Finke C, Zimmermann HG, Sawitzki B, Meisel C, Toelle M, Krueger A, Aschenbrenner AC, Schultze JL, Beyer MD, Ralser M, Mülleder M, Sander LE, Konietschke F, Paul F, Stojanov S, Bruckert L, Hedderich DM, Knolle F, Riemekasten G, Vehreschild MJGT, Cornely OA, Behrends U, Burock S. Fighting Post-COVID and ME/CFS - development of curative therapies. Front Med (Lausanne) 2023; 10:1194754. [PMID: 37396922 PMCID: PMC10309204 DOI: 10.3389/fmed.2023.1194754] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
The sequela of COVID-19 include a broad spectrum of symptoms that fall under the umbrella term post-COVID-19 condition or syndrome (PCS). Immune dysregulation, autoimmunity, endothelial dysfunction, viral persistence, and viral reactivation have been identified as potential mechanisms. However, there is heterogeneity in expression of biomarkers, and it is unknown yet whether these distinguish different clinical subgroups of PCS. There is an overlap of symptoms and pathomechanisms of PCS with postinfectious myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). No curative therapies are available for ME/CFS or PCS. The mechanisms identified so far provide targets for therapeutic interventions. To accelerate the development of therapies, we propose evaluating drugs targeting different mechanisms in clinical trial networks using harmonized diagnostic and outcome criteria and subgrouping patients based on a thorough clinical profiling including a comprehensive diagnostic and biomarker phenotyping.
Collapse
Affiliation(s)
- Carmen Scheibenbogen
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Judith Theresia Bellmann-Strobl
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Cornelia Heindrich
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Kirsten Wittke
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Elisa Stein
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Christiana Franke
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Harald Prüss
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Berlin, Germany
| | - Hannah Preßler
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Marie-Luise Machule
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Heinrich Audebert
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Carsten Finke
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Hanna Gwendolyn Zimmermann
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Birgit Sawitzki
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Center of Immunomics, Berlin, Germany
| | - Christian Meisel
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Department of Immunology, Labor Berlin - Charité Vivantes GmbH, Berlin, Germany
| | - Markus Toelle
- Department of Nephrology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Anne Krueger
- Department of Nephrology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Anna C. Aschenbrenner
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Joachim L. Schultze
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE and University of Bonn, Bonn, Germany
- Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Marc D. Beyer
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE and University of Bonn, Bonn, Germany
| | - Markus Ralser
- Institute of Biochemistry, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Michael Mülleder
- Institute of Biochemistry, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leif Erik Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Frank Konietschke
- Institute of Biochemistry, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Silvia Stojanov
- Childrens’ Hospital, School of Medicine, Technical University of Munich, Munich, Germany
| | - Lisa Bruckert
- Clinical Trial Office, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Dennis M. Hedderich
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Franziska Knolle
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Gabriela Riemekasten
- Department of Rheumatology, University Medical Center Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - Maria J. G. T. Vehreschild
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Oliver A. Cornely
- Department of Internal Medicine, University Hospital Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Germany
- University of Cologne, Faculty of Medicine, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Uta Behrends
- Childrens’ Hospital, School of Medicine, Technical University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
- AGV Research Unit Gene Vectors, Helmholtz Center Munich (HMGU), Munich, Germany
| | - Susen Burock
- Clinical Trial Office, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
16
|
Messner CB, Demichev V, Wang Z, Hartl J, Kustatscher G, Mülleder M, Ralser M. Mass spectrometry-based high-throughput proteomics and its role in biomedical studies and systems biology. Proteomics 2023; 23:e2200013. [PMID: 36349817 DOI: 10.1002/pmic.202200013] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022]
Abstract
There are multiple reasons why the next generation of biological and medical studies require increasing numbers of samples. Biological systems are dynamic, and the effect of a perturbation depends on the genetic background and environment. As a consequence, many conditions need to be considered to reach generalizable conclusions. Moreover, human population and clinical studies only reach sufficient statistical power if conducted at scale and with precise measurement methods. Finally, many proteins remain without sufficient functional annotations, because they have not been systematically studied under a broad range of conditions. In this review, we discuss the latest technical developments in mass spectrometry (MS)-based proteomics that facilitate large-scale studies by fast and efficient chromatography, fast scanning mass spectrometers, data-independent acquisition (DIA), and new software. We further highlight recent studies which demonstrate how high-throughput (HT) proteomics can be applied to capture biological diversity, to annotate gene functions or to generate predictive and prognostic models for human diseases.
Collapse
Affiliation(s)
- Christoph B Messner
- Precision Proteomics Center, Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Vadim Demichev
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ziyue Wang
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Hartl
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Georg Kustatscher
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh, Scotland, UK
| | - Michael Mülleder
- Core Facility High Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Ralser
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Hartl J, Kurth F, Kappert K, Horst D, Mülleder M, Hartmann G, Ralser M. Quantitative protein biomarker panels: a path to improved clinical practice through proteomics. EMBO Mol Med 2023; 15:e16061. [PMID: 36939029 PMCID: PMC10086577 DOI: 10.15252/emmm.202216061] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/17/2023] [Indexed: 03/21/2023] Open
Abstract
The utilisation of protein biomarker panels, rather than individual protein biomarkers, offers a more comprehensive representation of human physiology. It thus has the potential to improve diagnosis, prognosis and the differentiation of responders from nonresponders in the context of precision medicine. Although several proteomic techniques exist for measuring biomarker panels, the integration of proteomics into clinical practice has been limited. In this Commentary, we highlight the significance of quantitative protein biomarker panels in clinical medicine and outline the challenges that must be addressed in order to identify the most promising panels and implement them in clinical routines to realise their medical potential. Furthermore, we argue that the absolute quantification of protein panels through targeted mass spectrometric assays remains the most promising technology for translating proteomics into routine clinical applications due to its high flexibility, low sample costs, independence from affinity reagents and low entry barriers for its integration into existing laboratory workflows.
Collapse
Affiliation(s)
- Johannes Hartl
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Florian Kurth
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kai Kappert
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - David Horst
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Mülleder
- Core Facility-High Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, Universitätsklinikum Bonn, Bonn, Germany
| | - Markus Ralser
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Nuffield Department of Medicine, The Wellcome Centre for Human Genetics, Oxford, UK.,Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
18
|
Wang Z, Tober‐Lau P, Farztdinov V, Lemke O, Schwecke T, Steinbrecher S, Muenzner J, Kriedemann H, Sander LE, Hartl J, Mülleder M, Ralser M, Kurth F. The human host response to monkeypox infection: a proteomic case series study. EMBO Mol Med 2022; 14:e16643. [PMID: 36169042 PMCID: PMC9641420 DOI: 10.15252/emmm.202216643] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022] Open
Abstract
The rapid rise of monkeypox (MPX) cases outside previously endemic areas prompts for a better understanding of the disease. We studied the plasma proteome of a group of MPX patients with a similar infection history and clinical manifestation typical for the current outbreak. We report that MPX in this case series is associated with a strong plasma proteomic response among nutritional and acute phase response proteins. Moreover, we report a correlation between plasma proteins and disease severity. Contrasting the MPX host response with that of COVID-19, we find a range of similarities, but also important differences. For instance, CFHR1 is induced in COVID-19, but suppressed in MPX, reflecting the different roles of the complement system in the two infectious diseases. Of note, the spatial overlap in response proteins suggested that a COVID-19 biomarker panel assay could be repurposed for MPX. Applying a targeted protein panel assay provided encouraging results and distinguished MPX cases from healthy controls. Hence, our results provide a first proteomic characterization of the MPX human host response and encourage further research on protein-panel assays in emerging infectious diseases.
Collapse
Affiliation(s)
- Ziyue Wang
- Department of BiochemistryCharité – Universitätsmedizin BerlinBerlinGermany
| | - Pinkus Tober‐Lau
- Department of Infectious Diseases and Respiratory MedicineCharité – Universitätsmedizin BerlinBerlinGermany
| | - Vadim Farztdinov
- Core Facility High Throughput Mass SpectrometryCharité – Universitätsmedizin BerlinBerlinGermany
| | - Oliver Lemke
- Department of BiochemistryCharité – Universitätsmedizin BerlinBerlinGermany
| | - Torsten Schwecke
- Department of BiochemistryCharité – Universitätsmedizin BerlinBerlinGermany
| | - Sarah Steinbrecher
- Department of Infectious Diseases and Respiratory MedicineCharité – Universitätsmedizin BerlinBerlinGermany
| | - Julia Muenzner
- Department of BiochemistryCharité – Universitätsmedizin BerlinBerlinGermany
| | - Helene Kriedemann
- Department of Infectious Diseases and Respiratory MedicineCharité – Universitätsmedizin BerlinBerlinGermany
| | - Leif Erik Sander
- Department of Infectious Diseases and Respiratory MedicineCharité – Universitätsmedizin BerlinBerlinGermany
- Berlin Institute of HealthBerlinGermany
| | - Johannes Hartl
- Department of BiochemistryCharité – Universitätsmedizin BerlinBerlinGermany
| | - Michael Mülleder
- Core Facility High Throughput Mass SpectrometryCharité – Universitätsmedizin BerlinBerlinGermany
| | - Markus Ralser
- Department of BiochemistryCharité – Universitätsmedizin BerlinBerlinGermany
- Berlin Institute of HealthBerlinGermany
- The Wellcome Centre for Human Genetics, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Florian Kurth
- Department of Infectious Diseases and Respiratory MedicineCharité – Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
19
|
Tierney AL, Alali WM, Scott T, Rees-Unwin KS, Clark SJ, Unwin RD. Levels of soluble complement regulators predict severity of COVID-19 symptoms. Front Immunol 2022; 13:1032331. [PMID: 36330526 PMCID: PMC9624227 DOI: 10.3389/fimmu.2022.1032331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/26/2022] [Indexed: 12/15/2022] Open
Abstract
The SARS-CoV-2 virus continues to cause significant morbidity and mortality worldwide from COVID-19. One of the major challenges of patient management is the broad range of symptoms observed. While the majority of individuals experience relatively mild disease, a significant minority of patients require hospitalisation, with COVID-19 still proving fatal for some. As such, there remains a desperate need to better understand what drives this severe disease, both in terms of the underlying biology, but also to potentially predict at diagnosis which patients are likely to require further interventions, thus enabling better outcomes for both patients and healthcare systems. Several lines of evidence have pointed to dysregulation of the complement cascade as a major factor in severe COVID-19 outcomes. How this is underpinned mechanistically is not known. Here, we have focussed on the role of the soluble complement regulators Complement Factor H (FH), its splice variant Factor H-like 1 (FHL-1) and five Factor H-Related proteins (FHR1-5). Using a targeted mass spectrometry approach, we quantified these proteins in a cohort of 188 plasma samples from controls and SARS-CoV-2 patients taken at diagnosis. This analysis revealed significant elevations in all FHR proteins, but not FH, in patients with more severe disease, particularly FHR2 and FHR5 (FHR2: 1.97-fold, p<0.0001; FHR5: 2.4-fold, p<0.0001). Furthermore, for a subset of 77 SARS-CoV-2 +ve patients we also analysed time course samples taken approximately 28 days post-diagnosis. Here, we see complement regulator levels drop in all individuals with asymptomatic or mild disease, but regulators remain high in those with more severe outcomes, with elevations in FHR2 over baseline levels in this group. These data support the hypothesis that elevation of circulating levels of the FHR family of proteins could predict disease severity in COVID-19 patients, and that the duration of elevation (or lack of immune activation resolution) may be partly responsible for driving poor outcomes in COVID-19.
Collapse
Affiliation(s)
- Anna L. Tierney
- Division of Cardiovascular Sciences, School of Medicine, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Stoller Biomarker Discovery Centre and Division of Cancer Sciences, School of Medicine, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Wajd Mohammed Alali
- Stoller Biomarker Discovery Centre and Division of Cancer Sciences, School of Medicine, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Thomas Scott
- Stoller Biomarker Discovery Centre and Division of Cancer Sciences, School of Medicine, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Karen S. Rees-Unwin
- Stoller Biomarker Discovery Centre and Division of Cancer Sciences, School of Medicine, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | | | - Simon J. Clark
- Institute for Opthalmic Research is based at Eberhard Karls University of Tubingen, Tubingen, BW, Germany
- University Eye Clinic, Eberhard Karls University of Tubingen, Tubingen, BW, Germany
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
| | - Richard D. Unwin
- Stoller Biomarker Discovery Centre and Division of Cancer Sciences, School of Medicine, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
- *Correspondence: Richard D. Unwin,
| |
Collapse
|
20
|
Richard VR, Gaither C, Popp R, Chaplygina D, Brzhozovskiy A, Kononikhin A, Mohammed Y, Zahedi RP, Nikolaev EN, Borchers CH. Early Prediction of COVID-19 Patient Survival by Targeted Plasma Multi-Omics and Machine Learning. Mol Cell Proteomics 2022; 21:100277. [PMID: 35931319 PMCID: PMC9345792 DOI: 10.1016/j.mcpro.2022.100277] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 07/05/2022] [Accepted: 07/27/2022] [Indexed: 01/18/2023] Open
Abstract
The recent surge of coronavirus disease 2019 (COVID-19) hospitalizations severely challenges healthcare systems around the globe and has increased the demand for reliable tests predictive of disease severity and mortality. Using multiplexed targeted mass spectrometry assays on a robust triple quadrupole MS setup which is available in many clinical laboratories, we determined the precise concentrations of hundreds of proteins and metabolites in plasma from hospitalized COVID-19 patients. We observed a clear distinction between COVID-19 patients and controls and, strikingly, a significant difference between survivors and nonsurvivors. With increasing length of hospitalization, the survivors' samples showed a trend toward normal concentrations, indicating a potential sensitive readout of treatment success. Building a machine learning multi-omic model that considers the concentrations of 10 proteins and five metabolites, we could predict patient survival with 92% accuracy (area under the receiver operating characteristic curve: 0.97) on the day of hospitalization. Hence, our standardized assays represent a unique opportunity for the early stratification of hospitalized COVID-19 patients.
Collapse
Key Words
- acd, acid citrate dextrose
- acn, acetonitrile
- auc, area under the receiver operating characteristic curve
- bqc19, biobanque quebecoise de la covid-19
- bsa, bovine serum albumin covid-19
- cptac, clinical proteomic tumor analysis consortium
- dtt, dithiothreitol
- fa, formic acid
- fdr, false discovery rate
- icu, intensive care unit
- lc/mrm-ms, liquid chromatography/multiple reaction monitoring mass spectrometry
- lc-ms, liquid chromatography-mass spectrometry
- lloq, lower limit of quantitation
- lysopc, lysophosphatidylcholine
- maldi, matrix-assisted laser desorption ionization
- meoh, methanol
- ms, mass spectrometry
- pbs, phosphatase buffered saline
- pcr, polymerase chain reaction
- pitc, phenylisothiocyanate
- qc, quality control
- rp-uhplc, reversed phase ultrahigh performance liquid chromatography
- sis, stable-isotope-labeled internal standard
- spe, solid-phase extraction
- svm, support vector machine
- trishcl, tris (hydroxymethyl) aminomethane hydrochloride
- uniprot, the universal protein resource
Collapse
Affiliation(s)
- Vincent R Richard
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
| | | | | | - Daria Chaplygina
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Alexander Brzhozovskiy
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Alexey Kononikhin
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Yassene Mohammed
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands; Genome BC Proteomics Centre, University of Victoria, Victoria, Canada
| | - René P Zahedi
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada; Manitoba Centre for Proteomics & Systems Biology, John Buhler Research Centre, University of Manitoba, Winnipeg, Canada; Department of Internal Medicine, University of Manitoba, Winnipeg, Canada
| | - Evgeny N Nikolaev
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada; Gerald Bronfman Department of Oncology, Division of Experimental Medicine, Lady Davis Institute for Medical Research, McGill University, Montreal, Canada; Department of Pathology, McGill University, Montreal, Canada.
| |
Collapse
|