1
|
Pinheiro PF, Martins GS, Gonçalves PM, Vasconcelos LC, Dos Santos Bergamin A, Scotá MB, de Resende Santo IS, Pereira UA, Praça-Fontes MM. Synthesis and evaluation of esters obtained from phenols and phenoxyacetic acid with significant phytotoxic and cytogenotoxic activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60023-60040. [PMID: 39365538 DOI: 10.1007/s11356-024-35222-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
There is a growing demand for herbicides that are more effective than conventional ones yet less harmful to ecosystems. In light of this, this study aimed to synthesize esters from phenols and phenoxyacetic acid, using compounds with known phytotoxic potential as starting materials. Phenoxyacetic acid was first synthesized and then utilized in the synthesis of seven esters through Steglich esterification, employing N,N'-dicyclohexylcarboimide and N,N-dimethylpyridin-4-amine in the presence of phenols (thymol, vanillin, eugenol, carvacrol, guaiacol, p-cresol, and β-naphthol), yielding esters 1-7. All synthesized compounds were characterized using mass spectrometry, 1H, and 13C NMR. These compounds were tested for phytotoxicity to evaluate their effects on the germination and root development of Sorghum bicolor and Lactuca sativa seeds, and for the induction of alterations in the mitotic cycle of meristematic cells of L. sativa roots. Esters 1, 3, 4, and 5 exhibited the most significant phytotoxic activity in both L. sativa and S. bicolor. Alterations in the mitotic index and frequency of chromosomal alterations in L. sativa roots revealed the cytotoxic, genotoxic effects, and the aneugenic mode of action of the tested molecules. These findings suggest that these compounds could serve as inspiration for the synthesis of new semi-synthetic herbicides.
Collapse
Affiliation(s)
- Patrícia Fontes Pinheiro
- Department of Chemistry, Federal University of Viçosa, Avenida Peter Henry Rolfs, s/n, Viçosa, MG, 36570-900, Brazil
| | - Geisiele Silva Martins
- Departament of Biology, Federal University of the Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil
| | - Patrícia Martins Gonçalves
- Department of Chemistry and Physics, Federal University of the Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil
| | - Loren Cristina Vasconcelos
- Departament of Biology, Federal University of the Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil
| | - Aline Dos Santos Bergamin
- Departament of Biology, Federal University of the Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil
| | - Mayla Bessa Scotá
- Departament of Biology, Federal University of the Espírito Santo, Avenida Fernando Ferraria 514, Goiabeiras, Vitória, ES, 29075-910, Brazil
| | | | - Ulisses Alves Pereira
- Montes Claros Regional Campus, Institute of Agricultural Sciences, Federal University of Minas Gerais, Avenida Universitária 1000, Bairro Universitário, Montes Claros, MG, 39404-547, Brazil
| | - Milene Miranda Praça-Fontes
- Departament of Biology, Federal University of the Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil.
| |
Collapse
|
2
|
Dutta D, Ray A, Ghosh B, Bahadur M. Assessment of imidacloprid induced genotoxicity in Pethia conchonius (Rosy barb), a common freshwater fish of India. Drug Chem Toxicol 2024; 47:101-114. [PMID: 37326304 DOI: 10.1080/01480545.2023.2222931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/03/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023]
Abstract
Imidacloprid is one of the highly efficient, globally used neonicotinoid groups of insecticides. The indiscriminate use of imidacloprid is contaminating large water bodies affecting not only the target organisms but also non-target organisms including fish. The present study aimed to assess the extent of nuclear DNA damage by imidacloprid in Pethia conchonius a freshwater fish in India using comet and micronucleus assays. The LC50 value of imidacloprid was estimated to be 227.33 mg L-1. Based on the LC50-96 h value, three sub-lethal concentrations of imidacloprid, SLC I -18.94 mg L-1, SLC II -28.41 mg L-1 and SLC III -56.83 mg L-1 were used to detect its genotoxic effect at DNA and cellular level. The imidacloprid exposed fishes exhibited higher DNA damage and nuclear abnormalities (p < 0.05) than the control. The %head DNA, %tail DNA, tail length and the frequency of micronuclei with other nuclear abnormalities like blebbed and notched nuclei were significantly higher than the control in a time and concentration-dependent manner. The DNA damage parameters such as %head DNA (29.107 ± 1.843), %tail DNA (70.893 ± 1.843), tail length (361.431 ± 8.455) micronucleus (1.300 ± 0.019), notched (0.844 ± 0.011) and blebbed (0.811 ± 0.011) nuclei were found to be highest for SLC III (56.83 mg L-1) at 96 h. The findings indicate that IMI is highly genotoxic in fish and other vertebrates leading to mutagenic/clastogenic effects. The study will be helpful in optimization of the imidacloprid use.
Collapse
Affiliation(s)
- Debojit Dutta
- Genetics and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Darjeeling, India
| | - Arpita Ray
- Genetics and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Darjeeling, India
| | - Bappaditya Ghosh
- Genetics and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Darjeeling, India
| | - Min Bahadur
- Genetics and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Darjeeling, India
| |
Collapse
|
3
|
Miranda LA, de Souza VV, Campos RA, de Campos JMS, da Silva Souza T. Phytotoxicity and cytogenotoxicity of pesticide mixtures: analysis of the effects of environmentally relevant concentrations on the aquatic environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112117-112131. [PMID: 37824048 DOI: 10.1007/s11356-023-30100-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/23/2023] [Indexed: 10/13/2023]
Abstract
In this study, we investigate the toxicity of commercial formulations based on glyphosate, 2,4-D, imidacloprid, and iprodione, in isolation and mixed, on Allium cepa. The mixtures consisted of combinations in the lowest (M1), intermediate (M2), and highest concentrations (M3) of each pesticide. We measured physiological (germination rate, germination speed, and radicular length) and cyto-genotoxic (mitotic index and frequency of aberrant cells) parameters. In addition, we analyzed the cell cycle progression and cell death induction by flow cytometry. When applied in isolation, the pesticides changed the parameters evaluated. M1 and M2 inhibited root length and increased the frequency of aberrant cells. Their genotoxic effect was equivalent to that of pesticides applied in isolation. Furthermore, M1 and M2 caused cell death and M2 changed the cell cycle progression. M3 had the greatest deleterious effect on A. cepa. This mixture inhibited root length and promoted an additive or synergistic effect on the mitotic index. In addition, M3 changed all parameters analyzed by flow cytometry. This research clearly demonstrates that the pesticides tested, and their mixtures, may pose a risk to non-target organisms.
Collapse
Affiliation(s)
- Luanna Alves Miranda
- Programa de Pós-Graduação em Genética e Melhoramento, Centro de Ciências Agrárias e Engenharias, Universidade Federal do Espírito Santo, Alto Universitário, S/No, Guararema, Alegre, Espírito Santo, 29500-000, Brazil
| | - Victor Ventura de Souza
- Laboratório de Biologia Celular, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Renata Alice Campos
- Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - José Marcello Salabert de Campos
- Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Tatiana da Silva Souza
- Programa de Pós-Graduação em Genética e Melhoramento, Centro de Ciências Agrárias e Engenharias, Universidade Federal do Espírito Santo, Alto Universitário, S/No, Guararema, Alegre, Espírito Santo, 29500-000, Brazil.
| |
Collapse
|
4
|
Correlation between in vitro toxicity of pesticides and in vivo risk guidelines in support of complex operating site risk management: A meta-analysis. Food Chem Toxicol 2022; 170:113502. [DOI: 10.1016/j.fct.2022.113502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022]
|
5
|
Ajermoun N, Aghris S, Ettadili F, Alaoui OT, Laghrib F, Farahi A, Lahrich S, Bakasse M, Saqrane S, El Mhammedi MA. Phytotoxic effect of the insecticide imidacloprid in Phaseolus vulgaris L. plant and evaluation of its bioaccumulation and translocation by electrochemical methods. ENVIRONMENTAL RESEARCH 2022; 214:113794. [PMID: 35809636 DOI: 10.1016/j.envres.2022.113794] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/26/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The objective of this work is to study the toxicological effect of the imidacloprid (IMD) on common bean plants (Phaseolus vulgaris L) when used at high doses and its quantification by electrochemical method. Common bean plants were exposed to increasing concentrations of IMD and the different plant tissues were subjected to various analyses. The IMD detection in different tissues of the bean plant was performed after extraction on the metallic silver electrode using square wave voltammetry. The analytical and calibration parameters (Slope, correlation coefficient, linear range, detection limit and relative standard deviation) were calculated for the different plant tissues. The effect of different doses (5.0 × 10-3 to 5.0 × 10-2 mol L-1) of IMD was evaluated on germination, seedling (vigour, growth) and photosynthetic pigments in the bean plant. The results indicate that germination rate and seed vigour index reduced significantly (p ≤ 0.05) only in the applied concentrations above the recommended dose. A similar effect of IMD was observed on seedling development in term of roots length, plant length, number of leaves and number of nods. Concerning pigments content, chlorophyll a, b and total chlorophyll maximally decreased by 95.26%, 80.44% and 82.15% respectively at high applied dose. The bioaccumulation and translocation behaviour of IMD in bean plant was investigated, revealing that the IMD can be bioaccumulated in roots and can easily be translocated into stems and leaves.
Collapse
Affiliation(s)
- N Ajermoun
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - S Aghris
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - F Ettadili
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - O Tahiri Alaoui
- Moulay Ismail University, Laboratory of Physical Chemistry, Materials and Environment, Sciences and Technologies Faculty, Errachidia, Morocco
| | - F Laghrib
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000 Khouribga, Morocco; Sidi Mohamed Ben Abdellah University, Engineering Laboratory of Organometallic, Molecular Materials, and Environment, Faculty of sciences, Fez, Morocco
| | - A Farahi
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - S Lahrich
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - M Bakasse
- Chouaib Doukkali University, Faculty of Sciences, Laboratory of Organic Bioorganic Chemistry and Environment, El Jadida, Morocco
| | - S Saqrane
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - M A El Mhammedi
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000 Khouribga, Morocco.
| |
Collapse
|
6
|
Aguiar TWDA, Batista JJ, Ferreira SADO, Sampaio MDVL, Pereira DR, Ferreira MRA, Soares LAL, Melo AMMDA, Albuquerque MCPDA, Aires ADL, de Araújo HDA, Coelho LCBB. Effect of Bauhinia monandra Kurz Leaf Preparations on Embryonic Stages and Adult Snails of Biomphalaria glabrata (Say, 1818), Schistosoma mansoni Cercariae and Toxicity in Artemia salina. Molecules 2022; 27:4993. [PMID: 35956946 PMCID: PMC9370106 DOI: 10.3390/molecules27154993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Biomphalaria glabrata snails constitute the main vector of schistosomiasis in Brazil, and Bauhinia monandra Kurz, the leaves of which contain BmoLL lectin with biocidal action, is a plant widely found on continents in which the disease is endemic. This work describes the composition of B. monandra preparations and the effect on embryos and adult snails, their reproduction parameters and hemocytes. We also describe the results of a comet assay after B. glabrata exposure to sublethal concentrations of the preparations. Additionally, the effects of the preparations on S. mansoni cercariae and environmental monitoring with Artemia salina are described. In the chemical evaluation, cinnamic, flavonoid and saponin derivatives were detected in the two preparations assessed, namely the saline extract and the fraction. Both preparations were toxic to embryos in the blastula, gastrula, trochophore, veliger and hippo stages (LC50 of 0.042 and 0.0478; 0.0417 and 0.0419; 0.0897 and 0.1582; 0.3734 and 0.0974; 0.397 and 0.0970 mg/mL, respectively) and to adult snails (LC50 of 6.6 and 0.87 mg/mL, respectively), which were reproductively affected with decreased egg deposition. In blood cell analysis, characteristic cells for apoptosis, micronucleus and binucleation were detected, while for comet analysis, different degrees of nuclear damage were detected. The fraction was able to cause total mortality of the cercariae and did not present environmental toxicity. Therefore, B. monandra preparations are promising in combating schistosomiasis since they can control both the intermediate host and eliminate the infectious agent, besides being safe to the environment.
Collapse
Affiliation(s)
- Thierry Wesley de Albuquerque Aguiar
- Centro de Biociências, Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Avenida Prof. Moraes Rego, Cidade Universitária, n 1235, Recife 50670-420, PE, Brazil
| | - José Josenildo Batista
- Centro de Biociências, Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Avenida Prof. Moraes Rego, Cidade Universitária, n 1235, Recife 50670-420, PE, Brazil
| | - Silvio Assis de Oliveira Ferreira
- Centro de Biociências, Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Avenida Prof. Moraes Rego, Cidade Universitária, n 1235, Recife 50670-420, PE, Brazil
| | - Maíra de Vasconcelos Lima Sampaio
- Centro de Biociências, Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco (UFPE), Avenida Prof. Moraes Rego, Cidade Universitária, n 1235, Recife 50670-420, PE, Brazil
| | - Dewson Rocha Pereira
- Centro de Biociências, Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco (UFPE), Avenida Prof. Moraes Rego, Cidade Universitária, n 1235, Recife 50670-420, PE, Brazil
| | - Magda Rhayanny Assunção Ferreira
- Centro de Ciências da Saúde, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco (UFPE), Avenida Prof. Arthur de Sá, Cidade Universitária, s/n, Recife 50740-521, PE, Brazil
| | - Luiz Alberto Lira Soares
- Centro de Ciências da Saúde, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco (UFPE), Avenida Prof. Arthur de Sá, Cidade Universitária, s/n, Recife 50740-521, PE, Brazil
| | - Ana Maria Mendonça de Albuquerque Melo
- Centro de Biociências, Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco (UFPE), Avenida Prof. Moraes Rego, Cidade Universitária, n 1235, Recife 50670-420, PE, Brazil
| | - Mônica Camelo Pessoa de Azevedo Albuquerque
- Centro de Ciências Médicas—Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco (UFPE), Avenida Prof. Moraes Rego, Cidade Universitária, n 531-611, Recife 50670-901, PE, Brazil
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Avenida Prof. Moraes Rego, Cidade Universitária, n 1235, Recife 50670-901, PE, Brazil
| | - André de Lima Aires
- Centro de Ciências Médicas—Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco (UFPE), Avenida Prof. Moraes Rego, Cidade Universitária, n 531-611, Recife 50670-901, PE, Brazil
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Avenida Prof. Moraes Rego, Cidade Universitária, n 1235, Recife 50670-901, PE, Brazil
| | - Hallysson Douglas Andrade de Araújo
- Centro de Biociências, Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Avenida Prof. Moraes Rego, Cidade Universitária, n 1235, Recife 50670-420, PE, Brazil
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Avenida Prof. Moraes Rego, Cidade Universitária, n 1235, Recife 50670-901, PE, Brazil
| | - Luana Cassandra Breitenbach Barroso Coelho
- Centro de Biociências, Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Avenida Prof. Moraes Rego, Cidade Universitária, n 1235, Recife 50670-420, PE, Brazil
| |
Collapse
|
7
|
Conte FM, Cestonaro LV, Piton YV, Guimarães N, Garcia SC, Dias da Silva D, Arbo MD. Toxicity of pesticides widely applied on soybean cultivation: Synergistic effects of fipronil, glyphosate and imidacloprid in HepG2 cells. Toxicol In Vitro 2022; 84:105446. [PMID: 35850439 DOI: 10.1016/j.tiv.2022.105446] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/14/2022] [Accepted: 07/13/2022] [Indexed: 11/29/2022]
Abstract
The transgenic soy monoculture demands supplementation with pesticides. The aim of this study was to evaluate the individual and mixture effects of fipronil, glyphosate and imidacloprid in human HepG2 cells. Cytotoxicity was evaluated after 48-h incubations through MTT reduction and neutral red uptake assays. Free radicals production, mitochondrial membrane potential, DNA damage, and release of liver enzymes were also evaluated. Data obtained for individual agents were used to compute the additivity expectations for two mixtures of definite composition (one equipotent mixture, based in the EC50 values achieved in the MTT assay; the other one based in the acceptable daily intake of each pesticide), using the models of concentration addition and independent action. The EC50 values for fipronil, glyphosate and imidacloprid were 37.59, 41.13, and 663.66 mg/L, respectively. The mixtures of pesticides elicited significant synergistic effects (p < 0.05), which were greater than the expected by both addictive predictions. Decreased in mitochondrial membrane potential and increased in the transaminases enzymatic activities were observed. As they occur simultaneously, interactions between pesticides, even at non-effective single levels, can reverberate in significant deleterious effects, justifying the need for a more realistic approach in safety evaluations to better predict the effects to human health.
Collapse
Affiliation(s)
- Fernanda Mocellin Conte
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Larissa V Cestonaro
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Yasmin V Piton
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Nicolas Guimarães
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Solange C Garcia
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Diana Dias da Silva
- UCIBIO, REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; TOXRUN-Toxicology Research Unit, Instituto Universitário de Ciências da Saúde, IUCS-CESPU, Gandra, PRD, Portugal; School of Health Sciences, Polytechnic of Leiria (ESSLei-IPL), 2411-901 Leiria, Portugal.
| | - Marcelo Dutra Arbo
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
8
|
Sabová L, Cingeľová Maruščáková I, Koleničová S, Mudroňová D, Holečková B, Sabo R, Sobeková A, Majchrák T, Ratvaj M. The adverse effects of synthetic acaricide tau-fluvalinate (tech.) on winter adult honey bees. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103861. [PMID: 35398274 DOI: 10.1016/j.etap.2022.103861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/29/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Currently several pyrethroids (e.g., flumethrin and tau-fluvalinate) are used in apiculture worldwide as acaricides/miticides. The long half-lives of pyrethroids in synthetic acaricides applied to hive matrices, may adversely affect the health of bee colony. The potentially adverse effects of synthetic acaricide/miticide tau-fluvalinate (tech.) on winter honeybees were assessed in this study (OECD 245 2017). No dose-dependent mortality in in vitro reared winter honeybees was observed after chronic oral 10-day exposure to syrup (50% w/v) spiked with a maximum concentration of 750 μg a.i./kg diet and its 1/10 concentration. The No Observed Effect Concentration is ≥ 750 μg a.i./kg diet. Tau-fluvalinate testing for the sublethal effects on bee immune system showed up-regulated gene expression encoding abaecin, lysozyme, and defensin in both tested groups, however the expression of hymenoptaecin gene was reduced. Moreover, tau-fluvalinate significantly induced levels of DNA damage in exposed bees, which can result in adverse genotoxic effect.
Collapse
Affiliation(s)
- Lucia Sabová
- University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia.
| | | | - Simona Koleničová
- University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia
| | - Dagmar Mudroňová
- University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia
| | - Beata Holečková
- University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia
| | - Rastislav Sabo
- University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia
| | - Anna Sobeková
- University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia
| | - Tomáš Majchrák
- University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia
| | - Marek Ratvaj
- University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia
| |
Collapse
|
9
|
Tariba Lovaković B, Kašuba V, Sekovanić A, Orct T, Jančec A, Pizent A. Effects of Sub-Chronic Exposure to Imidacloprid on Reproductive Organs of Adult Male Rats: Antioxidant State, DNA Damage, and Levels of Essential Elements. Antioxidants (Basel) 2021; 10:1965. [PMID: 34943068 PMCID: PMC8750738 DOI: 10.3390/antiox10121965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 11/24/2022] Open
Abstract
Although considered a good alternative to organophosphate pesticides, there are reports indicating adverse effects of neonicotinoid insecticides on reproduction. Our aim was to assess the effects of exposure to low doses of imidacloprid on antioxidant state, DNA damage, and concentration of essential elements in the testes and epididymis using a rat model. Adult male Wistar rats were orally treated with doses comparable to currently proposed health-based reference values: 0.06 (ADI), 0.80 (10× AOEL), or 2.25 (1/200 LD50) mg/kg b.w./day for 28 consecutive days. Exposure to 2.25 mg/kg b.w./day of imidacloprid resulted in a significantly lower testis weight (1.30 ± 0.17 g compared to 1.63 ± 0.15 g in controls). Treatment with 0.06 mg/kg b.w./day increased the level of reduced glutathione in the epididymis (73%), while the activities of epididymal glutathione peroxidase and superoxide dismutase significantly increased in all treated rats (74-92% and 26-39%, respectively). Exposure to imidacloprid resulted in a low, but significant, level of DNA damage in testicular sperm cells regardless of the concentration applied (<28% compared to the negative control). Higher concentrations of Mo were measured in the testes of rats treated with 0.80 and 2.25 mg/kg b.w./day (72.9 ± 7.9 and 73.9 ± 9.1 mg/g, respectively) compared to the control animals (60.5 ± 7.8 mg/g). Higher concentrations of Na were measured in the testes of rats treated with 2.25 mg/kg b.w./day (1679 ± 82 mg/g compared to 1562 ± 56 mg/g in controls). The fact that such low doses of imidacloprid were able to produce measurable biological effects calls for the further evaluation of this widely used insecticide.
Collapse
Affiliation(s)
- Blanka Tariba Lovaković
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10000 Zagreb, Croatia; (B.T.L.); (A.S.); (T.O.); (A.J.)
| | - Vilena Kašuba
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10000 Zagreb, Croatia;
| | - Ankica Sekovanić
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10000 Zagreb, Croatia; (B.T.L.); (A.S.); (T.O.); (A.J.)
| | - Tatjana Orct
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10000 Zagreb, Croatia; (B.T.L.); (A.S.); (T.O.); (A.J.)
| | - Antonija Jančec
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10000 Zagreb, Croatia; (B.T.L.); (A.S.); (T.O.); (A.J.)
| | - Alica Pizent
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10000 Zagreb, Croatia; (B.T.L.); (A.S.); (T.O.); (A.J.)
| |
Collapse
|
10
|
Guimarães ARDJS, Bizerra PFV, Miranda CA, Mingatto FE. Effects of imidacloprid on viability and increase of reactive oxygen and nitrogen species in HepG2 cell line. Toxicol Mech Methods 2021; 32:204-212. [PMID: 34635006 DOI: 10.1080/15376516.2021.1992553] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Imidacloprid (IMD) is a neonicotinoid insecticide used in large quantities worldwide in both veterinary and agronomic applications. Several studies have shown adverse effects of IMD on non-target organisms, with the liver being identified as the main affected organ. This study aimed to evaluate the effects of IMD on human hepatoblastoma (HepG2) cells. HepG2 were exposed to IMD (0.25-2.0 mM) for 24 and 48 h. IMD treatment resulted in cytotoxicity in the HepG2, inhibiting cell proliferation in a dose- and time-dependent manner, starting at concentrations of 0.5 mM (24 h) and 0.25 mM (48 h), and reducing cell viability from 0.5 mM onwards (24 and 48 h). IMD significantly decreased the mitochondrial membrane potential at both time points investigated (2.0 mM), and also induced damage to the cell membrane, demonstrated by significant dose and time-dependent increases in lactate dehydrogenase (LDH) release from concentrations of 1.0 mM (24 h) and 0.5 mM (48 h) upwards. IMD treatment also increased the production of reactive oxygen and nitrogen species (ROS/RNS) at rates above 50% following 0.5 mM (24 h) or 0.25 mM (48 h) concentrations, and caused a significant decrease in reduced/oxidized glutathione ratio (GSH/GSSG), indicating oxidative stress. Furthermore, the antioxidant dithiothreitol, which reacts with ROS/RNS and acts as a thiol reducing agent, inhibited the cytotoxic effect of IMD. In addition, the metabolite IMD-olefin was more toxic than IMD. Our results indicate that IMD induces cytotoxicity in HepG2 cells and that this effect may be associated with an increase in the generation of ROS/RNS.
Collapse
Affiliation(s)
| | - Paulo Francisco Veiga Bizerra
- Department of Animal Science, College of Agricultural and Technological Sciences, São Paulo State University (UNESP), Dracena, Brazil.,Department of Biochemistry, Maringá State University (UEM), Maringá, Brazil
| | - Camila Araújo Miranda
- Department of Animal Science, College of Agricultural and Technological Sciences, São Paulo State University (UNESP), Dracena, Brazil
| | - Fábio Erminio Mingatto
- Department of Animal Science, College of Agricultural and Technological Sciences, São Paulo State University (UNESP), Dracena, Brazil
| |
Collapse
|
11
|
Farag MR, Khalil SR, Zaglool AW, Hendam BM, Moustafa AA, Cocco R, Di Cerbo A, Alagawany M. Thiacloprid Induced Developmental Neurotoxicity via ROS-Oxidative Injury and Inflammation in Chicken Embryo: The Possible Attenuating Role of Chicoric and Rosmarinic Acids. BIOLOGY 2021; 10:biology10111100. [PMID: 34827094 PMCID: PMC8614723 DOI: 10.3390/biology10111100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/15/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022]
Abstract
Simple Summary The current study was designed to evaluate the negative impact of thiacloprid (TH) on the brain tissue of developing chicken embryo models and to evaluate the modulatory effects of chicoric (CA) and rosmarinic (RA) acids. The eggs were injected in ovo with different doses of TH (0.1, 1, 10, and 100 μg/egg). TH significantly increased the oxidative damage in the brain of exposed embryos in a dose-dependent manner (p < 0.001). TH significantly elevated the oxidative stress markers; protein carbonyl, malondialdehyde (MDA) content, and DNA damage (p < 0.001). Myeloperoxidase (MPO) activity and NO significantly increased with overexpression of the pro-inflammatory cytokines (IFN-γ; interferon gamma, TNF-α; tumor necrosis factor alpha, and IL-1β; interleukin-1 beta), stress-related and apoptotic genes (NF-KB, Caspase-3) in the brain tissue on both a biochemical and molecular levels (p < 0.05), while downregulating the expression of antiapoptotic Bcl-2. Co-treatment of CA and RA with TH markedly decreased the insecticide-induced toxicity with a prominent synergistic effect (p < 0.05). In conclusion, TH is suggested to be a possible neurotoxic to embryos of vertebrates and possibly humans. The study also revealed the antioxidant, anti-inflammatory, genoprotective, and antiapoptotic properties of CA and RA against TH toxicity. Abstract Insecticides are widely employed in agriculture to control pests and as major factors for enhancing crop productivity. Thiacloprid (TH) is one of the most-used insecticides worldwide. In this study, the negative impact of TH on the brain tissue of developing chicken embryo models and the modulatory effect of chicoric (CA) and rosmarinic (RA) acids were investigated. The eggs were injected in ovo with different doses of TH (0.1, 1, 10, and 100 μg/egg). TH significantly increased the oxidative damage in the brain of exposed embryos in a dose-dependent manner (p < 0.05). TH significantly elevated the oxidative stress markers; protein carbonyl, malondialdehyde content, and DNA damage (p < 0.05). Myeloperoxidase activity and nitric oxide significantly increased with overexpression of the pro-inflammatory cytokines (interferon gamma, tumor necrosis factor alpha, and interleukin-1 beta) and stress-related and apoptotic genes (NF-KB, Caspase-3) in the brain tissue on both biochemical and molecular levels (p < 0.05), while downregulating the expression of antiapoptotic Bcl-2. Co-treatment of CA and RA with TH markedly decreased the insecticide-induced toxicity with a prominent synergistic effect (p < 0.05). In conclusion, TH is suggested to be a possible neurotoxic to embryos of vertebrates including human. The study also revealed the antioxidant, anti-inflammatory, genoprotective, and antiapoptotic property of CA and RA against TH toxicity.
Collapse
Affiliation(s)
- Mayada R. Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig 44519, Egypt;
- Correspondence: (M.R.F.); (A.D.C.); (M.A.)
| | - Samah R. Khalil
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig 44519, Egypt;
| | - Asmaa W. Zaglool
- Animal Wealth Development Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Basma M. Hendam
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Amr A. Moustafa
- Biochemistry Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Raffaella Cocco
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, 07100 Sassari, Italy;
| | - Alessandro Di Cerbo
- School of Bioscience and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
- Correspondence: (M.R.F.); (A.D.C.); (M.A.)
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
- Correspondence: (M.R.F.); (A.D.C.); (M.A.)
| |
Collapse
|
12
|
Biochemical Effects of Two Pesticides in Three Different Temperature Scenarios on the Diatom Thalassiosira weissflogii. Processes (Basel) 2021. [DOI: 10.3390/pr9071247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The exponential increase of the human population demands the overuse of fertilizers and pesticides in agriculture practices to suppress food production needs. The excessive use of these chemicals (fertilizers and pesticides) can comport deleterious effects to the ecosystems, including aquatic systems and communities. Oxyfluorfen is a fluorine-based herbicide, and its application has increased, since it is seen as an alternative to control glyphosate-resistant weeds. Copper sulfate is an inorganic pesticide based on copper which is being used in several chemical formulations, and it is the second main constituent of fungicides. Besides the known effects of such products in organisms, climatic changes pose an additional issue, being a main concern among scientists and politicians worldwide, since these alterations may worsen ecosystems’ and organisms’ sensitivity to stress conditions, such as the exposure to pollutants. Thalassiosira weissflogii (Grunow) G. A. Fryxell & Hasle, 1977 plays an important role in aquatic food webs as a primary producer and an essential food source to zooplankton. Thus, alterations on the diatom’s abundance and nutritional value may lead to consequences along the trophic chain. However, few studies have evaluated the biochemical impacts of oxyfluorfen and copper sulfate exposure on diatoms. This study intends to (1) evaluate the effects on the growth rate of both contaminants on T. weissfloggi at three temperatures, considering the actual scenario of climatic changes, and (2) assess biochemical changes on the diatom when exposed to the chemicals at different temperatures. To achieve these aims, the marine diatom was exposed to the two chemicals individually at different temperatures. The results showed an increase in the growth rate with increasing temperatures. Oxyfluorfen exhibited higher toxicity than copper sulfate. At the biochemical level, the microalgae were greatly affected when exposed to oxyfluorfen at 20 °C and 25 °C and when exposed to copper sulfate at 15 °C. Moreover, a general increase was observed for the polysaccharide content along the copper sulfate and oxyfluorfen concentrations. Therefore, the contaminants show the ability to interfere with the diatom growth and the nutritive value, with their effects dependent on the temperature.
Collapse
|
13
|
Baysal M, Atlı-Eklioğlu Ö. Comparison of the toxicity of pure compounds and commercial formulations of imidacloprid and acetamiprid on HT-29 cells: Single and mixture exposure. Food Chem Toxicol 2021; 155:112430. [PMID: 34289392 DOI: 10.1016/j.fct.2021.112430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/28/2021] [Accepted: 07/17/2021] [Indexed: 01/06/2023]
Abstract
Neonicotinoids, which are widely used worldwide, including in Turkey, are an insecticide group that are synthetic derivatives of nicotine. Recently, they have attracted attention due to their toxic effects on non-target organisms, especially bees. Numerous studies have shown that neonicotinoids have been found in detectable levels in the environment and cause various undesirable effects on living organisms, including humans and other mammals. In this study, the possible toxic effects of imidacloprid and acetamiprid, commonly used neonicotinoids, are investigated by their pure forms and commercial formulations on HT-29 cells with individual and combined exposures. According to our results, imidacloprid and acetamiprid induced cytotoxicity by caspase-mediated apoptosis, mitochondrial membrane depolarization, DNA damage, and oxidative stress under these experimental conditions. It is worth mentioning low doses of DNA damage, mixture exposure causes toxic effects at lower concentrations than individual exposure, and formulation groups are at the forefront of toxicity formation, though this varies depending on the parameters.
Collapse
Affiliation(s)
- Merve Baysal
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey
| | - Özlem Atlı-Eklioğlu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey.
| |
Collapse
|
14
|
Bianchi J, Cavicchioli R, Kubota LT, Carrilho E, de Sousa CP, Freitas Anibal FD. Antigenotoxic potential of the fermentation broth produced by Paenibacillus polymyxa RNC-D in vitro. Future Microbiol 2021; 16:471-485. [PMID: 33960819 DOI: 10.2217/fmb-2020-0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Evaluate the chemopreventive potential of the extract from P. polymyxa RNC-D. Methods: Concentrations of P. polymyxa RNC-D extract were tested in HepG2/C3A cells to assess their genotoxic (comet assay), mutagenic (micronucleus test) and antigenotoxic potential (comet assay) in vitro. Results: 400 and 40 μg/ml concentrations induced DNA lesions, whereas the 4 μg/ml induced a desmutagenic effect. Complementary tests indicated that the extract minimized the formation of reactive oxygen species induced by methyl methanesulfonate and normalized the loss of membrane potential. The quantification of cytokines indicated that TNF-α was immunostimulated by the extract. However, when administered in conjunction with the methyl methanesulfonate, the extract blocked the TNF-α release. Conclusion: The fermentation broth from P. polymyxa RNC-D showed an antigenotoxic effect, and thus the potential to be used as chemopreventive compound.
Collapse
Affiliation(s)
- Jaqueline Bianchi
- Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos (UFSCar), São Carlos, 13565-905, SP, Brazil
| | - Rafael Cavicchioli
- Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos (UFSCar), São Carlos, 13565-905, SP, Brazil
| | - Lauro T Kubota
- Instituto de Química, Universidade Estadual de Campinas (UNICAMP), Campinas, 13083-970, SP, Brazil.,Instituto de Química de São Carlos, Universidade de São Paulo (USP), São Carlos, 13566-590, SP, Brazil
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo (USP), São Carlos, 13566-590, SP, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica - INCTBio, Campinas, 13083-970, SP, Brazil
| | - Cristina P de Sousa
- Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos (UFSCar), São Carlos, 13565-905, SP, Brazil
| | - Fernanda de Freitas Anibal
- Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos (UFSCar), São Carlos, 13565-905, SP, Brazil.,Instituto de Química de São Carlos, Universidade de São Paulo (USP), São Carlos, 13566-590, SP, Brazil
| |
Collapse
|
15
|
Katić A, Kašuba V, Kopjar N, Lovaković BT, Marjanović Čermak AM, Mendaš G, Micek V, Milić M, Pavičić I, Pizent A, Žunec S, Želježić D. Effects of low-level imidacloprid oral exposure on cholinesterase activity, oxidative stress responses, and primary DNA damage in the blood and brain of male Wistar rats. Chem Biol Interact 2021; 338:109287. [PMID: 33129804 DOI: 10.1016/j.cbi.2020.109287] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/11/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Imidacloprid is a neonicotinoid insecticide that acts selectively as an agonist on insect nicotinic acetylcholine receptors. It is used for crop protection worldwide, as well as for non-agricultural uses. Imidacloprid systemic accumulation in food is an important source of imidacloprid exposure. Due to the undisputable need for investigations of imidacloprid toxicity in non-target species, we evaluated the effects of a 28-day oral exposure to low doses of imidacloprid (0.06 mg/kg b. w./day, 0.8 mg/kg b. w./day and 2.25 mg/kg b. w./day) on cholinesterase activity, oxidative stress responses and primary DNA damage in the blood and brain tissue of male Wistar rats. Exposure to imidacloprid did not cause significant changes in total cholinesterase, acetylcholinesterase and butyrylcholinesterase activities in plasma and brain tissue. Reactive oxygen species levels and lipid peroxidation increased significantly in the plasma of rats treated with the lowest dose of imidacloprid. Activities of glutathione-peroxidase in plasma and brain and superoxide dismutase in erythrocytes increased significantly at the highest applied dose. High performance liquid chromatography with UV diode array detector revealed the presence of imidacloprid in the plasma of all the treated animals and in the brain of the animals treated with the two higher doses. The alkaline comet assay results showed significant peripheral blood leukocyte damage at the lowest dose of imidacloprid and dose-dependent brain cell DNA damage. Oral 28-day exposure to low doses of imidacloprid in rats resulted in detectable levels of imidacloprid in plasma and brain tissue that directly induced DNA damage, particularly in brain tissue, with slight changes in plasma oxidative stress parameters.
Collapse
Affiliation(s)
- Anja Katić
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia.
| | - Vilena Kašuba
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Nevenka Kopjar
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Blanka Tariba Lovaković
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Ana Marija Marjanović Čermak
- Radiation Dosimetry and Radiobiology Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Gordana Mendaš
- Biochemistry and Organic Analytical Chemistry Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Vedran Micek
- Animal Breeding Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Ivan Pavičić
- Radiation Dosimetry and Radiobiology Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Alica Pizent
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Suzana Žunec
- Toxicology Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Davor Želježić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| |
Collapse
|
16
|
Giorio C, Safer A, Sánchez-Bayo F, Tapparo A, Lentola A, Girolami V, van Lexmond MB, Bonmatin JM. An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 1: new molecules, metabolism, fate, and transport. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11716-11748. [PMID: 29105037 PMCID: PMC7920890 DOI: 10.1007/s11356-017-0394-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 10/02/2017] [Indexed: 05/04/2023]
Abstract
With the exponential number of published data on neonicotinoids and fipronil during the last decade, an updated review of literature has been conducted in three parts. The present part focuses on gaps of knowledge that have been addressed after publication of the Worldwide Integrated Assessment (WIA) on systemic insecticides in 2015. More specifically, new data on the mode of action and metabolism of neonicotinoids and fipronil, and their toxicity to invertebrates and vertebrates, were obtained. We included the newly detected synergistic effects and/or interactions of these systemic insecticides with other insecticides, fungicides, herbicides, adjuvants, honeybee viruses, and parasites of honeybees. New studies have also investigated the contamination of all environmental compartments (air and dust, soil, water, sediments, and plants) as well as bees and apicultural products, food and beverages, and the exposure of invertebrates and vertebrates to such contaminants. Finally, we review new publications on remediation of neonicotinoids and fipronil, especially in water systems. Conclusions of the previous WIA in 2015 are reinforced; neonicotinoids and fipronil represent a major threat worldwide for biodiversity, ecosystems, and all the services the latter provide.
Collapse
Affiliation(s)
- Chiara Giorio
- Laboratoire Chimie de l'Environnement, Centre National de la Recherche Scientifique (CNRS) and Aix Marseille University, Marseille, France
| | - Anton Safer
- Institute of Public Health, Ruprecht-Karls-University, INF324, 69120, Heidelberg, Germany
| | - Francisco Sánchez-Bayo
- School of Life and Environmental Sciences, The University of Sydney, 1 Central Avenue, Eveleigh, NSW, 2015, Australia
| | - Andrea Tapparo
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, 35131, Padua, Italy
| | - Andrea Lentola
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, 35131, Padua, Italy
| | - Vincenzo Girolami
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, 35131, Padua, Italy
| | | | - Jean-Marc Bonmatin
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique (CNRS), Rue Charles Sadron, 45071, Orléans, France.
| |
Collapse
|
17
|
Wahyuni EA, Lin HD, Lu CW, Kao CM, Chen SC. The cytotoxicity and genotoxicity of single and combined fenthion and terbufos treatments in human liver cells and zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143597. [PMID: 33221015 DOI: 10.1016/j.scitotenv.2020.143597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/25/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
The mechanism of genotoxicity of the individual and combined pesticides of terbufos and fenthion were evaluated using HepG2 cells and zebrafish embryos. We determined genotoxicity by neutral comet assay and phosphorylation of H2AX (γH2AX), which indicated that cells treated with terbufos and/or fenthion caused DNA double-strand breaks (DSBs). The combination of these pesticides at the equimolar concentration (40 μM) exhibited less toxicity, genotoxicity, and did not impact DNA homologous recombination (HR) repair activity compare to terbufos or fenthion alone treatment. In HepG2 cells, terbufos, fenthion and their combination decreased only Xrcc2 expression (one of DNA HR repair genes). Moreover, the combined pesticides decreased Xrcc6 expression (one of DNA non-homologous end joining (NHEJ) repair genes). In addition, only terbufos or fenthion decreased XRCC2 protein expression, while Ku70 was impacted in all of the treated cells irrespective of up or down regulation. In zebrafish embryos, only fenthion impaired HR genes (Rad51 and Rad18) expression at 24 h. After 48 h exposure to pesticides, the combined pesticides elevated HR genes (Rad51 and Xrcc2) expression while terbufos or fenthion inhibited the expression of these four genes (Rad51, Rad18, Xrcc2, Xrcc6). In addition, the hatching rate of zebrafish embryos with fenthion or the combined pesticide at 72 hpf was significantly impaired. Collectively, terbufos and/or fenthion in combining caused DSBs in HepG2 cells and zebrafish embryos. Moreover, the specific mechanism of combined pesticide both HepG2 and zebrafish embryos revealed antagonism interaction.
Collapse
Affiliation(s)
- Eva Ari Wahyuni
- Department of Life Sciences, National Central University, Jhongli, Taiwan; Department of Natural Science Education, University of Trunojoyo Madura, East Java, Indonesia
| | - Heng-Dao Lin
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Che-Wei Lu
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Chih Ming Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Jhongli, Taiwan.
| |
Collapse
|
18
|
Alias C, Feretti D, Benassi L, Abbà A, Gelatti U, Sorlini S, Zerbini I, Piovani G. The release of contaminants from steel slags and natural aggregates: Evaluation of toxicity and genotoxicity. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:66-77. [PMID: 32926468 DOI: 10.1002/em.22407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Steel slags (SS) are the major waste produced by iron and steel industry. Slags may be reused as recycled materials, instead of natural aggregates (NA), to reduce the final disposal in a landfill and the exploitation of raw materials. However, the reuse of SS may generate a potential release of toxic compounds for the environment and humans. The purpose of this study was to evaluate the toxicity and genotoxicity of SS, in comparison with NA, by using an integrated chemical-biological approach to enable their safe reuse in engineering applications. Leaching solutions from samples were obtained by using short-term leaching tests (CEN EN 12457-2, 2004) usually adopted for the evaluation of waste recovery and final disposal. Chemical analyses of leachates were performed according to the Italian legislation on waste recovery (Ministerial Decree 186/2006). The leaching solutions were assayed by using toxicity test on Daphnia magna. Moreover, mutagenicity/genotoxicity tests on Salmonella typhimurium, Allium cepa, and human leucocytes and fibroblasts were carried out. The releases of pollutants from all samples were within the limits of the Italian legislation for waste recovery. Despite the effects that SS and NA could have on different cells, in terms of toxicity and genotoxicity, globally, SS do not seem to be any more hazardous than NA. This ecotoxicological assessment, never studied before, is important for promoting further studies that may support the decision-making process regarding the use of such types of materials.
Collapse
Affiliation(s)
- Carlotta Alias
- B+LabNet Environmental Sustainability Laboratory, University of Brescia, Brescia, Italy
| | - Donatella Feretti
- B+LabNet Environmental Sustainability Laboratory, University of Brescia, Brescia, Italy
- Medical and Surgical Specialties, Radiological Sciences, and Public Health Department, University of Brescia, Brescia, Italy
| | - Laura Benassi
- B+LabNet Environmental Sustainability Laboratory, University of Brescia, Brescia, Italy
| | - Alessandro Abbà
- B+LabNet Environmental Sustainability Laboratory, University of Brescia, Brescia, Italy
- Civil, Environmental, Architectural Engineering and Mathematics Department, University of Brescia, Brescia, Italy
| | - Umberto Gelatti
- B+LabNet Environmental Sustainability Laboratory, University of Brescia, Brescia, Italy
- Medical and Surgical Specialties, Radiological Sciences, and Public Health Department, University of Brescia, Brescia, Italy
| | - Sabrina Sorlini
- B+LabNet Environmental Sustainability Laboratory, University of Brescia, Brescia, Italy
- Civil, Environmental, Architectural Engineering and Mathematics Department, University of Brescia, Brescia, Italy
| | - Ilaria Zerbini
- B+LabNet Environmental Sustainability Laboratory, University of Brescia, Brescia, Italy
- Medical and Surgical Specialties, Radiological Sciences, and Public Health Department, University of Brescia, Brescia, Italy
| | - Giovanna Piovani
- B+LabNet Environmental Sustainability Laboratory, University of Brescia, Brescia, Italy
- Molecular and Translational Medicine Department, University of Brescia, Brescia, Italy
| |
Collapse
|
19
|
Zhao GP, Yang FW, Li JW, Xing HZ, Ren FZ, Pang GF, Li YX. Toxicities of Neonicotinoid-Containing Pesticide Mixtures on Nontarget Organisms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1884-1893. [PMID: 32936472 DOI: 10.1002/etc.4842] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/02/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Neonicotinoids are a widely used class of pesticides. Co-exposure to neonicotinoids and other classes of pesticides can exert potentiating or synergistic effects, and these mixtures have been detected in human bodily fluids. The present review summarizes studies into the effects of neonicotinoid-containing pesticide mixtures on humans and other nontarget organisms. Exposure to these mixtures has been reported to result in reproductive and hormonal toxicity, genotoxicity, neurotoxicity, hepatotoxicity, and immunotoxicity in vertebrates. Mortality of pollinators and toxicity in other organisms has also been reported. The underlying mechanism of pesticide mixture toxicity may be associated with impairment of cytochrome 450 enzymes, which are involved in metabolizing pesticides. However, a comprehensive explanation of the adverse effects of neonicotinoid-containing pesticide mixtures is still required so that effective prevention and control measures can be formulated. Environ Toxicol Chem 2020;39:1884-1893. © 2020 SETAC.
Collapse
Affiliation(s)
- Guo-Ping Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Fang-Wei Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jin-Wang Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Han-Zhu Xing
- School of Food Science and Engineering, Qilu University of Technology, Jinan, China
| | - Fa-Zheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, and Beijing Laboratory of Food Quality and Safety, China Agricultural University, Beijing, China
| | - Guo-Fang Pang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Yi-Xuan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Ilyushina NA, Egorova OV, Masaltsev GV, Averianova NS, Revazova YA, Rakitskii VN, Goumenou M, Vardavas A, Stivaktakis P, Tsatsakis A. Genotoxicity of mixture of imidacloprid, imazalil and tebuconazole. Toxicol Rep 2020; 7:1090-1094. [PMID: 32953461 PMCID: PMC7484519 DOI: 10.1016/j.toxrep.2020.08.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/26/2020] [Accepted: 08/11/2020] [Indexed: 11/24/2022] Open
Abstract
Genotoxicity of the mixture of generic pesticides imidacloprid + imazalil + tebuconazole in a ratio of 14.0/1.7/1.0 by weight was assessed using Ames test (Salmonella typhimurium) and micronucleus test in vivo on mammalian bone marrow erythrocytes (CD-1 mice) supporting the data creation for the Real Life Risk Simulation (RLRS) approach. This pesticides' combination is used in the commercial formulation for seed treatment in advance of or immediately before sowing. Tested pesticides' technical grade active ingredients (TGAIs) showed no evidence of genotoxicity upon separate treatments. In combination, the three pesticides demonstrated negative results in the Ames test but induced a statistically significant, dose-depended increase in MN-PCEs in mice bone marrow at doses lower than those used separately. The observed effect may be mediated by the synergistic action of the tested TGAIs, their metabolites or impurities.
Collapse
Affiliation(s)
- Nataliya A. Ilyushina
- The Federal Budgetary Establishment of Science “Federal Scientific Center of Hygiene named after F. F. Erisman” of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 2 Semashko street, Mytishchi, Moscow Region, 141014, Russian Federation
| | - Olga V. Egorova
- The Federal Budgetary Establishment of Science “Federal Scientific Center of Hygiene named after F. F. Erisman” of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 2 Semashko street, Mytishchi, Moscow Region, 141014, Russian Federation
| | - Gleb V. Masaltsev
- The Federal Budgetary Establishment of Science “Federal Scientific Center of Hygiene named after F. F. Erisman” of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 2 Semashko street, Mytishchi, Moscow Region, 141014, Russian Federation
| | - Nataliya S. Averianova
- The Federal Budgetary Establishment of Science “Federal Scientific Center of Hygiene named after F. F. Erisman” of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 2 Semashko street, Mytishchi, Moscow Region, 141014, Russian Federation
| | - Yulia A. Revazova
- The Federal Budgetary Establishment of Science “Federal Scientific Center of Hygiene named after F. F. Erisman” of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 2 Semashko street, Mytishchi, Moscow Region, 141014, Russian Federation
| | - Valerii N. Rakitskii
- The Federal Budgetary Establishment of Science “Federal Scientific Center of Hygiene named after F. F. Erisman” of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 2 Semashko street, Mytishchi, Moscow Region, 141014, Russian Federation
| | - Marina Goumenou
- Centre of Toxicology Science & Research, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Alexander Vardavas
- Centre of Toxicology Science & Research, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Polychronis Stivaktakis
- Centre of Toxicology Science & Research, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Aristidis Tsatsakis
- Centre of Toxicology Science & Research, Medical School, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
21
|
Fioresi VS, de Cássia Ribeiro Vieira B, de Campos JMS, da Silva Souza T. Cytogenotoxic activity of the pesticides imidacloprid and iprodione on Allium cepa root meristem. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28066-28076. [PMID: 32405953 DOI: 10.1007/s11356-020-09201-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Effects of imidacloprid and iprodione, isolated and in mixture, were assessed by using seed germination and root growth test, flow cytometry, and chromosomal aberrations test on Allium cepa root meristem. The highest concentrations of imidacloprid, including field concentration, increased the frequency of sub-G1 particles, decreased the frequency of nuclei in G2/M, increased the coefficient of variation of G1 (CVG1) and the frequency of aberrant cells, and inhibited the mitotic index culminating in the reduction in root length. All doses of iprodione also presented cytogenotoxic action. The highest concentration of the fungicide affected the growth of A. cepa roots. In response to exposure to pesticide mixtures, the cell cycle of A. cepa was blocked in the G1 phase. The mixtures with low doses of the pesticides significantly decreased the mitotic index, and as a consequence, the genotoxicity was reduced. In the mixtures with the highest doses of the agrochemicals, the blockage of the cell cycle was insufficient for damage repair, resulting in a significant increase of chromosomal aberrations. The results suggest caution in the use of pesticides doses that induce cytological abnormalities in non-target organisms.
Collapse
Affiliation(s)
- Vinicius Sartori Fioresi
- Departamento de Biologia, Centro de Ciências Exatas, Naturais e da Saúde (CCENS), Universidade Federal do Espírito Santo, Alto Universitário s/n, Caixa Postal 16, Alegre, ES, 29500-000, Brasil
| | | | | | - Tatiana da Silva Souza
- Departamento de Biologia, Centro de Ciências Exatas, Naturais e da Saúde (CCENS), Universidade Federal do Espírito Santo, Alto Universitário s/n, Caixa Postal 16, Alegre, ES, 29500-000, Brasil.
| |
Collapse
|
22
|
Thompson DA, Lehmler HJ, Kolpin DW, Hladik ML, Vargo JD, Schilling KE, LeFevre GH, Peeples TL, Poch MC, LaDuca LE, Cwiertny DM, Field RW. A critical review on the potential impacts of neonicotinoid insecticide use: current knowledge of environmental fate, toxicity, and implications for human health. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1315-1346. [PMID: 32267911 PMCID: PMC11755762 DOI: 10.1039/c9em00586b] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Neonicotinoid insecticides are widely used in both urban and agricultural settings around the world. Historically, neonicotinoid insecticides have been viewed as ideal replacements for more toxic compounds, like organophosphates, due in part to their perceived limited potential to affect the environment and human health. This critical review investigates the environmental fate and toxicity of neonicotinoids and their metabolites and the potential risks associated with exposure. Neonicotinoids are found to be ubiquitous in the environment, drinking water, and food, with low-level exposure commonly documented below acceptable daily intake standards. Available toxicological data from animal studies indicate possible genotoxicity, cytotoxicity, impaired immune function, and reduced growth and reproductive success at low concentrations, while limited data from ecological or cross-sectional epidemiological studies have identified acute and chronic health effects ranging from acute respiratory, cardiovascular, and neurological symptoms to oxidative genetic damage and birth defects. Due to the heavy use of neonicotinoids and potential for cumulative chronic exposure, these insecticides represent novel risks and necessitate further study to fully understand their risks to humans.
Collapse
Affiliation(s)
- Darrin A Thompson
- University of Iowa, College of Public Health, Iowa City, IA, USA. and University of Iowa, Center for Health Effects of Environmental Contamination, Iowa City, IA, USA
| | | | - Dana W Kolpin
- U.S. Geological Survey, Central Midwest Water Science Center, Iowa City, IA, USA
| | - Michelle L Hladik
- U.S. Geological Survey, California Water Science Center, Sacramento, CA, USA
| | - John D Vargo
- State Hygienic Laboratory at the University of Iowa, Iowa City, IA, USA
| | | | - Gregory H LeFevre
- University of Iowa, Department of Civil & Environmental Engineering, Iowa City, IA, USA
| | - Tonya L Peeples
- Department of Chemical Engineering, University Park, PA, USA
| | - Matthew C Poch
- University of Iowa, College of Public Health, Iowa City, IA, USA.
| | - Lauren E LaDuca
- University of Iowa, College of Public Health, Iowa City, IA, USA.
| | - David M Cwiertny
- University of Iowa, Center for Health Effects of Environmental Contamination, Iowa City, IA, USA and University of Iowa, Department of Civil & Environmental Engineering, Iowa City, IA, USA
| | - R William Field
- University of Iowa, College of Public Health, Iowa City, IA, USA.
| |
Collapse
|
23
|
Schwarzbacherová V, Wnuk M, Deregowska A, Holečková B, Lewinska A. In vitro exposure to thiacloprid-based insecticide formulation promotes oxidative stress, apoptosis and genetic instability in bovine lymphocytes. Toxicol In Vitro 2019; 61:104654. [PMID: 31533058 DOI: 10.1016/j.tiv.2019.104654] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 11/16/2022]
Abstract
A proprietary thiacloprid-based neonicotinoid insecticide formulation is widely used in agriculture to protect vegetables and fruit against various pests. However, its effect on animal cells has not been fully elucidated. In this study, bovine peripheral lymphocytes were incubated with different concentrations of this formulation (10; 30; 60; 120 and 240 μg.mL-1) for 4 h to address the potential cytotoxic and genotoxic effects of the insecticide. Insecticide formulation treatment resulted in decreased cell viability and proliferation, p53-mediated cell cycle arrest at the G0/G1 phase, and apoptosis induction accompanied by elevated levels of mitochondrial superoxide and protein carbonylation. Oxidant-based DNA damage and DNA damage response (DDR) were also observed, namely the formation of micronuclei, DNA double-strand breaks and slightly elevated recruitment of p53 binding protein (53BP1) foci. Our results contribute to the elucidation of insecticide effects on animal lymphocyte cultures after short-term exposure. Due to increased application of neonicotinoids worldwide, resulting in both higher yields and adverse effects on non-target animals and humans, further in vivo and in vitro experiments should be performed to confirm their cytotoxic and genotoxic activities during short-term exposure.
Collapse
Affiliation(s)
- Viera Schwarzbacherová
- Institute of Genetics, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovak Republic.
| | - Maciej Wnuk
- Department of Genetics, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Anna Deregowska
- Department of Genetics, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Beáta Holečková
- Institute of Genetics, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovak Republic
| | - Anna Lewinska
- Department of Cell Biochemistry, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| |
Collapse
|
24
|
de Morais CR, Pereira BB, Almeida Sousa PC, Vieira Santos VS, Campos CF, Carvalho SM, Spanó MA, de Rezende AAA, Bonetti AM. Evaluation of the genotoxicity of neurotoxic insecticides using the micronucleus test in Tradescantia pallida. CHEMOSPHERE 2019; 227:371-380. [PMID: 30999177 DOI: 10.1016/j.chemosphere.2019.04.073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Neonicotinoids and phenylpyrazoles are classes of neurotoxic insecticides which are able to bind at different ligand sites of neural receptors, leading to the deregulation of insect neural activity and hence resulting in death. The misuse or indiscriminate use of these chemicals is directly associated with several toxicological effects in biota and at different trophic levels. Based on this premise, the aim of the present study was to evaluate and compare the genotoxic capacity of different concentrations of thiamethoxam (TMX), acetamiprid (ACP), imidacloprid (IMI) and fipronil (FP) through the Micronucleus Test in Tradescantia pallida (Trad-MCN). After acclimatization (24 h), T. pallida stems were treated with stablished concentrations of TMX, ACP, IMI and FP for 8 h. Then, the stems of the model organism were submitted to a recovery phase (24 h). The young inflorescences were harvested and fixed in Carnoy solution and, after 24 h, were conserved in ethanol 70% until the analyzes. The obtained anthers were macerated on slides for microscopy, stained with acetic carmine dye and covered with coverslips before analysis by light microscopy. Considering the insecticides, the micronuclei (MN) frequency in plants treated at concentrations of 0.2 and 0.4 g L-1 for TMX, 0.2; 0.4 and 0.8 g L-1 for ACP, 0.1; 0.2; 0.4; 0.8 and 1.6 g L-1 for IMI and 0.2; 0.4; 0.8 and 1.6 g L-1 for FP differed statistically (p < 0.05, Tukey) from the MN frequency of the negative control. All chemicals evaluated revealed genotoxic activity in T. pallida at the highest concentrations.
Collapse
Affiliation(s)
- Cássio Resende de Morais
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil; Department of Cell Biology, Carmelitana Mário Palmério Foundation, 38500-000, Monte Carmelo, Minas Gerais, Brazil
| | - Boscolli Barbosa Pereira
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil; Institute of Geography, Federal University of Uberlândia, Campus Santa Mônica, 38400-902, Uberlândia, Minas Gerais, Brazil.
| | | | - Vanessa Santana Vieira Santos
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil
| | - Carlos Fernando Campos
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil
| | - Stephan Malfitano Carvalho
- Department of Entomology, Federal University of Lavras, PO Box 3037, 37 200-000, Lavras, Minas Gerais, Brazil
| | - Mário Antônio Spanó
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil
| | - Alexandre Azenha Alves de Rezende
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil; Institute of Exact and Natural Sciences of Pontal, Federal University of Uberlândia, Campus Pontal, Ituiutaba, Minas Gerais, 38304-402, Brazil
| | - Ana Maria Bonetti
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, 38900-402, Uberlândia, Minas Gerais, Brazil
| |
Collapse
|
25
|
Alvim TT, Martinez CBDR. Genotoxic and oxidative damage in the freshwater teleost Prochilodus lineatus exposed to the insecticides lambda-cyhalothrin and imidacloprid alone and in combination. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 842:85-93. [DOI: 10.1016/j.mrgentox.2018.11.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/23/2018] [Accepted: 11/28/2018] [Indexed: 01/22/2023]
|
26
|
de Vasconcelos Lima M, de Siqueira WN, Silva HAMF, de Melo Lima Filho J, de França EJ, de Albuquerque Melo AMM. Cytotoxic and genotoxic effect of oxyfluorfen on hemocytes of Biomphalaria glabrata. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:3350-3356. [PMID: 30506409 DOI: 10.1007/s11356-018-3848-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/25/2018] [Indexed: 06/09/2023]
Abstract
Chemicals released from anthropogenic activities such as industry and agriculture often end up in aquatic ecosystems. These substances can cause serious damage to these ecosystems, thus threatening the conservation of biodiversity. Among these substances are pesticides, such as oxyfluorfen, a herbicide used for the control of grasses and weeds. Considering its widespread use, it is important to investigate the possible toxicity of this compound to aquatic organisms, especially invertebrates. Hence, the use of biological systems able to detect such effects is of great importance. The mollusk Biomphalaria glabrata has been shown to be useful as an environmental indicator to assess the potential ecological effects of physical and chemical stressors in freshwater environments. The present study sought to detect mutagenic changes in hemocytes of B. glabrata exposed to oxyfluorfen. To perform these tests, this study used ten animals per group, exposed acutely (48 h) and chronically (15 days) to oxyfluorfen. The herbicide concentrations were 0.125, 0.25, and 0.5 mg/L. The results showed that oxyfluorfen induced significant frequencies of micronuclei, binucleated cells, and apoptosis in hemocytes of mollusks when compared to the control group. Unlike chronic exposure, acute exposure was dose-dependent. The present study's results demonstrate the cytotoxic and genotoxic effects of oxyfluorfen on hemocytes of B. glabrata.
Collapse
Affiliation(s)
- Maíra de Vasconcelos Lima
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-420, Brazil
- Serviço de Monitoração Ambiental, Centro Regional de Ciências Nucleares do Nordeste, Recife, Pernambuco, 50740-545, Brazil
- Laboratório de Radiobiologia, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rêgo, s/n, Recife, PE, 50780-901, Brazil
| | - Williams Nascimento de Siqueira
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-420, Brazil.
- Serviço de Monitoração Ambiental, Centro Regional de Ciências Nucleares do Nordeste, Recife, Pernambuco, 50740-545, Brazil.
- Laboratório de Radiobiologia, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rêgo, s/n, Recife, PE, 50780-901, Brazil.
| | - Hianna Arely Milca Fagundes Silva
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-420, Brazil
- Laboratório de Radiobiologia, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rêgo, s/n, Recife, PE, 50780-901, Brazil
| | - José de Melo Lima Filho
- Grupo de Dosimetria Numérica, Instituto Federal de Educação Ciência e Tecnologia de Pernambuco, Recife, Pernambuco, 50740-540, Brazil
| | - Elvis Joacir de França
- Serviço de Monitoração Ambiental, Centro Regional de Ciências Nucleares do Nordeste, Recife, Pernambuco, 50740-545, Brazil
| | - Ana Maria Mendonça de Albuquerque Melo
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-420, Brazil
- Laboratório de Radiobiologia, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rêgo, s/n, Recife, PE, 50780-901, Brazil
| |
Collapse
|
27
|
Mesak C, de Campos RP, de Melo MA, de Oliveira Mendes B, Malafaia G. Behavioral response and dynamics of Eisenia fetida hemocytes exposed to environmentally relevant concentration of sulfentrazone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:30728-30736. [PMID: 30220066 DOI: 10.1007/s11356-018-3175-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
Although the toxicity of the pesticide sulfentrazone in some aquatic organisms is known, its effects on edaphic organisms such as earthworms remain completely unknown. Thus, we aimed at evaluating the behavior and immune response of Eisenia fetida exposed to sulfentrazone at environmentally relevant concentrations (EC). E. fetida representatives exposed to this contaminant (for 48 h) were divided in the following groups: environmental concentration (EC1x: 318 ng sulfentrazone/g of dry weight soil) and EC100x (concentration 100 times higher than in EC1x). Based on the avoidance test results, earthworms responded to this pesticide and proved the toxicity of sulfentrazone. The observed immune response induction was expressed by increased granulocytes presenting phagocytic vacuoles and agglomerations/encapsulations, mainly in animals belonging to groups EC1x and EC100x. However, the reduced frequency of plasmocytes in these animals' hemolymphs suggested that the phagocytic immune response was not efficient to assure 100% survival. Our study is the first to report sulfentrazone toxicity in an edaphic organism, at environmental concentration.
Collapse
Affiliation(s)
- Carlos Mesak
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Raphael Pires de Campos
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Marcela Amaral de Melo
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Bruna de Oliveira Mendes
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Guilherme Malafaia
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil.
- Laboratório de Pesquisas Biológicas, Instituto Federal Goiano - Campus Urutaí, Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, 75790-000, Brazil.
| |
Collapse
|
28
|
Želježić D, Žunec S, Bjeliš M, Benković V, Mladinić M, Lovaković Tariba B, Pavičić I, Marjanović Čermak AM, Kašuba V, Milić M, Pizent A, Lucić Vrdoljak A, Kopjar N. Effects of the chloro-s-triazine herbicide terbuthylazine on DNA integrity in human and mouse cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:19065-19081. [PMID: 29721798 DOI: 10.1007/s11356-018-2046-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
Terbuthylazine belongs to the chloro-s-triazine group of herbicides and acts primarily as a photosynthesis inhibitor. The mechanisms of action related to its exposure, relevant both in animals and humans, are still insufficiently investigated. This comprehensive study focused on the outcomes of terbuthylazine exposure at cell level in vitro, and a mice model in vivo. Experiments in vitro were conducted on whole human peripheral blood, isolated lymphocytes, and HepG2 cells exposed for 4 h to terbuthylazine at 8.00, 0.80, and 0.58 ng/mL, which is comparable with current reference values set by the European Commission in 2011. Terbuthylazine cytotoxicity was evaluated using dual fluorescent staining with ethidium bromide and acridine orange on lymphocytes, and CCK-8 colorimetric assay on HepG2 cells. The levels of DNA damage were measured using alkaline and hOGG1-modified comet assays. The potency of terbuthlyazine regarding induction of oxidative stress in vitro was studied using a battery of standard oxidative stress biomarkers. The in vivo experiment was conducted on Swiss albino mice exposed to terbuthlyazine in the form of an active substance and its formulated commercial product Radazin TZ-50 at a daily dose of 0.0035 mg/kg bw for 14 days. Following exposure, the DNA damage levels in leukocytes, bone marrow, liver, and kidney cells of the treated mice were measured using an alkaline comet assay. In vitro results suggested low terbuthylazine cytotoxicity in non-target cells. The highest tested concentration (8.00 ng/mL) reduced lymphocyte viability by 15%, mostly due to apoptosis, while cytotoxic effects in HepG2 cells at the same concentration were negligible. Acute in vitro exposure of human lymphocytes and HepG2 cells to terbuthylazine resulted in low-level DNA instability, as detected by the alkaline comet assay. Further characterization of the mechanisms behind the DNA damage obtained using the hOGG1-modified comet assay indicated that oxidative DNA damage did not prevail in the overall damage. This was further confirmed by the measured levels of oxidative stress markers, which were mostly comparable to control. Results obtained in mice indicate that both the active substance and formulated commercial product of terbuthylazine produced DNA instability in all of the studied cell types. We found that DNA in liver and kidney cells was more prone to direct toxic effects of the parent compound and its metabolites than DNA in leukocytes and bone marrow cells. The overall findings suggest the formation of reactive terbuthylazine metabolites capable of inducing DNA cross-links, which hinder DNA migration. These effects were most pronounced in liver cells in vivo and HepG2 cells in vitro. To provide a more accurate explanation of the observed effects, additional research is needed. Nevertheless, the present study provides evidence that terbuthylazine at concentrations comparable with current reference values possesses toxicological risk because it caused low-level DNA instability, both at cellular and animal organism level, which should be further established in forthcoming studies.
Collapse
Affiliation(s)
- Davor Želježić
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Suzana Žunec
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Marija Bjeliš
- Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Vesna Benković
- Faculty of Science, University of Zagreb, Zagreb, Croatia
| | | | - Blanka Lovaković Tariba
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Ivan Pavičić
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | | | - Vilena Kašuba
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Mirta Milić
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Alica Pizent
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Ana Lucić Vrdoljak
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Nevenka Kopjar
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia.
| |
Collapse
|
29
|
Zeljezic D, Vinkovic B, Kasuba V, Kopjar N, Milic M, Mladinic M. The effect of insecticides chlorpyrifos, α-cypermethrin and imidacloprid on primary DNA damage, TP 53 and c-Myc structural integrity by comet-FISH assay. CHEMOSPHERE 2017; 182:332-338. [PMID: 28505574 DOI: 10.1016/j.chemosphere.2017.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 05/25/2023]
Abstract
In parallel with the continuous use of conventional insecticides, introduction of more environmentally friendly substances continues to grow in modern agriculture. In the present study, we evaluated chlorpyrifos, and imidacloprid and α-cypermethrin as two representatives of green insecticides for their genotoxic activity. We conducted a 14-day treatment in extended human lymphocytes cultures using real life exposure relevant concentrations. An alkaline comet assay was used to detect primary DNA damage. Simultaneously, the effect on the specific action towards the TP 53 and c-Myc genes in terms of fragmentation and copy number were determined. Both genes are responsible for cell cycle regulation; thus playing an active role in carcinogenesis. Contrary to what was expected, imidacloprid showed the highest genotoxicity potential, irrespective of the fact that none of the insecticides induced a significant level of primary DNA damage at all tested concentrations. Similar, no significant effect towards the TP 53 and c-Myc gene was recorded. The present study indicates that low level use of chlorpyrifos as a conventional insecticide and imidacloprid and α-cypermethrin as green insecticides does not pose a risk to DNA in general, nor to the TP 53 and c-Myc gene structural integrity.
Collapse
Affiliation(s)
- Davor Zeljezic
- Institute for Medical Research and Occupational Health, Ksaverska 2, Zagreb, Croatia.
| | - Benjamin Vinkovic
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovacica 1, Zagreb, Croatia
| | - Vilena Kasuba
- Institute for Medical Research and Occupational Health, Ksaverska 2, Zagreb, Croatia
| | - Nevenka Kopjar
- Institute for Medical Research and Occupational Health, Ksaverska 2, Zagreb, Croatia
| | - Mirta Milic
- Institute for Medical Research and Occupational Health, Ksaverska 2, Zagreb, Croatia
| | - Marin Mladinic
- Institute for Medical Research and Occupational Health, Ksaverska 2, Zagreb, Croatia
| |
Collapse
|
30
|
Silveira GL, Lima MGF, Reis GBD, Palmieri MJ, Andrade-Vieria LF. Toxic effects of environmental pollutants: Comparative investigation using Allium cepa L. and Lactuca sativa L. CHEMOSPHERE 2017; 178:359-367. [PMID: 28340458 DOI: 10.1016/j.chemosphere.2017.03.048] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/13/2017] [Accepted: 03/11/2017] [Indexed: 06/06/2023]
Abstract
Studies that help understand the mechanisms of action of environmental pollutants are extremely important in environmental toxicology. In this context, assays using plants as models stand out for their simplicity and low performance cost. Among the plants used for this purpose, Allium cepa L. is the model most commonly applied for cytogenotoxic tests, while Lactuca sativa L., already widely used in phytotoxic investigations, has been gaining prominence in cytotoxic analyses. The present study aimed to compare the responses of A. cepa and L. sativa via macroscopic (root growth) and microscopic analyses (cell cycle and DNA fragmentation via TdT-mediated deoxy-uracil nick and labeling (TUNEL) and comet assays) after exposure of their roots to environmental pollutants with known cytogenotoxic mechanisms. Both species presented sensitive and efficient response to the applied tests after exposure to the DNA-alkylating agent Methyl Methanesulfonate (MMS), the heavy metal Cadmium, the aluminum industry waste Spent Potliner (SPL) and the herbicide Atrazine. However, they differed regarding the responses to the evaluated endpoints. Overall, A. cepa was more efficient in detecting clastogenic changes, arising from DNA breakage, while L. sativa rather detected aneugenic alterations, related to chromosome segregation in mitosis. In the tests applied to verify DNA fragmentation (comet and TUNEL assays), A. cepa presented higher sensitivity. In conclusion, both models are efficient to evaluate toxicological risks of environmental pollutants.
Collapse
Affiliation(s)
| | | | - Gabriela Barreto Dos Reis
- Doctor in Genetics and Plant Breeding at Federal University of Lavras (UFLA), 37.200-000, Lavras, MG, Brazil
| | - Marcel José Palmieri
- Doctor in Genetics and Plant Breeding at Federal University of Lavras (UFLA), 37.200-000, Lavras, MG, Brazil
| | | |
Collapse
|
31
|
Iturburu FG, Zömisch M, Panzeri AM, Crupkin AC, Contardo-Jara V, Pflugmacher S, Menone ML. Uptake, distribution in different tissues, and genotoxicity of imidacloprid in the freshwater fish Australoheros facetus. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:699-708. [PMID: 27490959 DOI: 10.1002/etc.3574] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/07/2016] [Accepted: 08/02/2016] [Indexed: 05/20/2023]
Abstract
The neonicotinoid imidacloprid is under re-evaluation by regulatory agencies because of the poor current information available regarding its potential effects. One of the goals of the present study was to determine imidacloprid uptake and distribution in the freshwater fish Australoheros facetus experimentally exposed for 24 h and 48 h to 100 μg/L, 300 μg/L, and 2500 μg/L. The toxicity of imidacloprid to fish reported in the literature is in the milligrams per liter or gram per liter range, but sublethal effects at micrograms per liter in some groups other than fish have been described. Another goal of the present study was to evaluate imidacloprid's potential genotoxicity and to compare it between the individual compound and a commercial formulation. Concentrations of imidacloprid were measured in water, brain, muscle, gills, gut, liver, and blood by liquid chromatography-tandem mass spectrometry. Imidacloprid was detected in all the tissues tested. Concentrations were higher after 48 h than after 24 h in liver, gills, gut, and muscle, whereas in brain and blood they were similar at both exposure times. Although there was no accumulation, only uptake, of imidacloprid, genotoxicity was observed. In fish exposed to IMIDA NOVA 35® , increased micronucleus frequency at 100 µg/L and 1000 µg/L was detected, whereas in the imidacloprid active ingredient bioassay it increased only at 1000 µg/L imidacloprid. The present findings warn of the possible consequences that fish living in freshwater ecosystems can suffer. Environ Toxicol Chem 2017;36:699-708. © 2016 SETAC.
Collapse
Affiliation(s)
- Fernando G Iturburu
- Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMYC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, Buenos Aires, Argentina
| | - Markus Zömisch
- Ecological Impact Research and Ecotoxicology, Institute of Ecology, Technische Universität Berlin, Berlin, Germany
| | - Ana M Panzeri
- Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMYC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, Buenos Aires, Argentina
| | - Andrea C Crupkin
- Laboratorio de Ecotoxicología, Universidad Nacional de Mar del Plata, Buenos Aires, Argentina
| | - Valeska Contardo-Jara
- Ecological Impact Research and Ecotoxicology, Institute of Ecology, Technische Universität Berlin, Berlin, Germany
| | - Stephan Pflugmacher
- Ecological Impact Research and Ecotoxicology, Institute of Ecology, Technische Universität Berlin, Berlin, Germany
| | - Mirta L Menone
- Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMYC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
32
|
Želježić D, Mladinić M, Žunec S, Lucić Vrdoljak A, Kašuba V, Tariba B, Živković T, Marjanović AM, Pavičić I, Milić M, Rozgaj R, Kopjar N. Cytotoxic, genotoxic and biochemical markers of insecticide toxicity evaluated in human peripheral blood lymphocytes and an HepG2 cell line. Food Chem Toxicol 2016; 96:90-106. [DOI: 10.1016/j.fct.2016.07.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 07/27/2016] [Accepted: 07/29/2016] [Indexed: 10/21/2022]
|
33
|
Soares Neto JL, de Carli RF, Kotzal QSG, Latroni FB, Lehmann M, Dias JF, de Souza CT, Niekraszewicz LAB, da Silva FR, da Silva J, Dihl RR. Surface Water Impacted by Rural Activities Induces Genetic Toxicity Related to Recombinagenic Events in Vivo. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:E827. [PMID: 27537904 PMCID: PMC4997513 DOI: 10.3390/ijerph13080827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/28/2016] [Accepted: 07/28/2016] [Indexed: 01/23/2023]
Abstract
This investigation assessed the interaction of surface water samples with DNA to quantitatively and qualitatively characterize their mutagenic and/or recombinagenic activity. Samples were obtained at three different sites along the Tocantins River (Tocantins State, Brazil). The area has withstood the impact mainly of rural activities, which release different chemical compounds in the environment. The Drosophila melanogaster Somatic Mutation and Recombination Test (SMART) was performed in standard (ST) and high bioactivation (HB) crosses. SMART is useful for the detection of mutational and recombinational events induced by genotoxins of direct and indirect action. Results demonstrated that samples collected in both seasons were able to induce increments on the mutant spot frequencies in the larvae of the HB cross. Genotoxicity was related to a massive recombinagenic activity. The positive responses ascribed to only the HB cross means that it is linked to pro-genotoxins requiring metabolic activation. The SMART wing test in Drosophila melanogaster was shown to be highly sensitive to detect genotoxic agents present in the aquatic environment impacted by agriculture.
Collapse
Affiliation(s)
- José Lopes Soares Neto
- Laboratory of Genetic Toxicity (TOXIGEN), Post-Graduation Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas 92425-900, Brazil.
| | - Raíne Fogliati de Carli
- Laboratory of Genetic Toxicity (TOXIGEN), Post-Graduation Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas 92425-900, Brazil.
| | - Queila Susana Gambim Kotzal
- Laboratory of Genetic Toxicity (TOXIGEN), Post-Graduation Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas 92425-900, Brazil.
| | - Francine Bolico Latroni
- Laboratory of Genetic Toxicity (TOXIGEN), Post-Graduation Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas 92425-900, Brazil.
| | - Mauricio Lehmann
- Laboratory of Genetic Toxicity (TOXIGEN), Post-Graduation Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas 92425-900, Brazil.
| | - Johnny Ferraz Dias
- Ion Implantation Laboratory, Institute of Physics, UFRGS, Porto Alegre 91501-970, Brazil.
| | | | | | - Fernanda Rabaioli da Silva
- Ion Implantation Laboratory, Institute of Physics, UFRGS, Porto Alegre 91501-970, Brazil.
- UniLaSalle, Canoas 92010-000, Brazil.
- Laboratory of Genetic Toxicology, Post-Graduation Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas 92425-900, Brazil.
| | - Juliana da Silva
- Laboratory of Genetic Toxicology, Post-Graduation Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas 92425-900, Brazil.
| | - Rafael Rodrigues Dihl
- Laboratory of Genetic Toxicity (TOXIGEN), Post-Graduation Program in Molecular and Cellular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas 92425-900, Brazil.
| |
Collapse
|
34
|
Ren J, Li G, Zhao W, Lin L, Ye T. Norcantharidin combined with ABT-737 for hepatocellular carcinoma: Therapeutic effects and molecular mechanisms. World J Gastroenterol 2016; 22:3962-3968. [PMID: 27099439 PMCID: PMC4823246 DOI: 10.3748/wjg.v22.i15.3962] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 12/30/2015] [Accepted: 01/18/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the therapeutic effect of norcantharidin (NCTD) combined with ABT-737 on hepatocellular carcinoma cells and the molecular mechanism.
METHODS: Two hepatocellular carcinoma (HCC) cell lines, HepG2 and SMMC-7721, were selected. ABT-737 and NCTD were allocated into groups to be used alone or in combination. HepG2 and SMMC-7721 cells were cultured in vitro. Liver cancer cells in the logarithmic phase of growth were vaccinated and cultured to the cell wall stage; these cells were treated for 48 h with different concentrations of NCTD, or ABT-737, or NCTD combined with ABT-737. The cell proliferation inhibition rate was detected by methyl thiazolyl tetrazolium. The expression of Mcl in HCC cells was detected by Western Blotting, and the cells in each group after treatment had apoptosis detected by flow cytometry. The proliferation inhibition rate, the expression of Mcl-1 in cells and the apoptosis inducing effect of treatment were observed in each group, and the effect of NCTD on ABT-737 in the treatment of HCC and its mechanism of action were analyzed.
RESULTS: As the concentration of NCTD increased, the cell proliferation inhibition rate gradually decreased; and the treatment effect of ABT-737 1-3 μm combined with NCTD on cell proliferation inhibition was stronger than that of ABT-737 alone. The difference was statistically significant (P < 0.05). In observing the expression of Mcl-1 in cells after the treatment of different concentrations of NCTD, this was partially inhibited after treatment with NCTD 15 μm, and the expression of Mcl-1 was almost undetectable after treatment with NCTD 30 μm and 60 μm. The effect on inducing apoptosis with the treatment of ABT-737 or NCTD alone for 48 h was lower than that of the control group. The difference was not statistically significant (P > 0.05). The effect on inducing apoptosis in HepG2 and SMMC-7721 cells with the treatment of ABT-737 combined with NCTD for 48 h was greater than that of ABT-737 or NCTD alone. The difference was statistically significant (P < 0.05).
CONCLUSION: NCTD combined with ABT-737 has a positive role in the treatment of HCC, and it has great value in clinical research.
Collapse
|