1
|
Shahzad M, Bibi A, Khan A, Shahzad A, Xu Z, Maruza TM, Zhang G. Utilization of Antagonistic Interactions Between Micronutrients and Cadmium (Cd) to Alleviate Cd Toxicity and Accumulation in Crops. PLANTS (BASEL, SWITZERLAND) 2025; 14:707. [PMID: 40094627 PMCID: PMC11901666 DOI: 10.3390/plants14050707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 03/19/2025]
Abstract
The presence of cadmium (Cd) in agricultural soils poses a serious risk to crop growth and food safety. Cadmium uptake and transport in plants occur through the various transporters of nutrient ions that have similar physical and chemical properties to Cd, indicating that the genetic manipulation of these transporters and agronomic improvement in the Cd-antagonistic nutrients could be a good approach for reducing Cd uptake and accumulation in crops. In this review, we discuss the interactions between Cd and some micronutrients, including zinc (Zn) and manganese (Mn), focusing on their influence on the expression of genes encoding Cd-related transporters, including ZIP7, NRAMP3, and NRAMP4. Genetic improvements in enhancing the specificity and efficiency of transporters and agronomic improvements in optimizing micronutrient nutrition can inhibit the Cd uptake and transport by these transporters. This comprehensive review provides a deep insight into genetic and agronomic improvement for fighting against Cd contamination and enhancing sustainable agricultural production.
Collapse
Affiliation(s)
- Muhammad Shahzad
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, China; (M.S.); (A.K.); (Z.X.); (T.M.M.)
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ayesha Bibi
- Department of Botany, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan;
| | - Ameer Khan
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, China; (M.S.); (A.K.); (Z.X.); (T.M.M.)
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ali Shahzad
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China;
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Zhengyuan Xu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, China; (M.S.); (A.K.); (Z.X.); (T.M.M.)
- Zhongyuan Institute, Zhejiang University, Zhengzhou 450000, China
| | - Tagarika Munyaradzi Maruza
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, China; (M.S.); (A.K.); (Z.X.); (T.M.M.)
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, China; (M.S.); (A.K.); (Z.X.); (T.M.M.)
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Carvalho MRD, Almeida TAD, Van Opbergen GAZ, Bispo FHA, Botelho L, Lima ABD, Marchiori PER, Guilherme LRG. Arsenic, cadmium, and chromium concentrations in contrasting phosphate fertilizers and their bioaccumulation by crops: Towards a green label? ENVIRONMENTAL RESEARCH 2024; 263:120171. [PMID: 39424034 DOI: 10.1016/j.envres.2024.120171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Potentially toxic elements such as arsenic (As), cadmium (Cd), and chromium (Cr) are severely regulated in fertilizers and deserve continuous investigation. Phosphate-derived Cd has been a stepping-stone toward achieving sustainable and safe worldwide food production, especially after a new regulation aiming for reduced limits of Cd in P fertilizers (EU, 2019/1009). Three pot experiments were conducted to assess the variability of As, Cd, and Cr concentrations - with a particular focus on Cd - from monoammonium phosphates (MAP 1, MAP 2, and MAP 3 from different geographic origins) and their accumulation in limed and unlimed soils, and contrasting crops, representing staple food and significant sources of these elements for humans (i.e., potato, tobacco, and rice). A diverse array of sensitive techniques for trace elements determination were used to reveal the highest level of Cd of MAP 3 (20.71 mg kg-1 MAP), which loaded the highest amounts of this element to the soil matrix and solution, plant shoots, and xylem sap, contrasting with results for MAP 1 (0.87 mg kg-1 MAP), which has almost ten times less Cd than that required for low-Cd labeling of P fertilizers (≤20 mg Cd kg-1 P2O5). MAP 3 also had the highest Cr concentration (139.3 mg kg-1 MAP). Among crops, rice accumulated 16-fold less Cd than potato plants. Liming decreased Cd in tobacco and potato shoots up to 35%. Moreover, reductions of about 20% were also observed for Cd accumulation in tubers and sap. Conversely, Cd from MAP 3 was always much more accumulated in soil solution, achieving up to 20 μg L-1, while values < 5 μg L-1 (i.e., a groundwater limit) were obtained from MAP 1. Our findings may be used as a reference in developing green labels for fertilizers in scenarios where Cd accumulation represents a potential risk for soil and human health.
Collapse
Affiliation(s)
| | | | | | | | - Lívia Botelho
- Soil Science Department, Federal University of Lavras, Lavras, 37203-202, MG, Brazil.
| | | | | | | |
Collapse
|
3
|
Zhang J, Gao F, Xie J, Li J, Wang C, Zhang X, Han K. Zinc oxide nanoparticles reduce cadmium accumulation in hydroponic lettuce (Lactuca sativa L.) by increasing photosynthetic capacity and regulating phenylpropane metabolism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117033. [PMID: 39278000 DOI: 10.1016/j.ecoenv.2024.117033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
Due to the continuous production of industrial wastes and the excessive use of chemical fertilizers and pesticides, severe cadmium (Cd) pollution in soil has occurred globally. This study investigated the impacts of incorporating zinc oxide nanoparticles (ZnONPs) into hydroponically grown lettuce (Lactuca sativa) under cadmium stress conditions, to seek effective methods to minimize Cd buildup in green leafy vegetables. The results showed that 1 mg/L of Cd significantly inhibited lettuce growth, decreasing in leaves (29 %) and roots (33 %) biomass. However, when lettuce was exposed to 2.5 mg/L ZnONPs under cadmium stress, the growth, chlorophyll content, net photosynthetic rate (Pn), stomatal conductance (Gs), actual photochemical efficiency of PSII (φPSII), and activity of key enzymes in photosynthesis were all significantly enhanced. Furthermore, ZnONPs significantly decreased the accumulation of Cd in lettuce leaves (36 %) and roots (13 %). They altered the subcellular distribution and chemical morphology of Cd in lettuce by modifying the composition of cell walls (such as pectin content) and the levels of phenolic compounds, resulting in a reduction of 27 % in Cd translocation from roots to leaves. RNA sequencing yielded 45.9 × 107 and 53.4 × 107 clean reads from plant leaves and roots in control (T0), Cd (T1), Cd+ZnONPs (T2), and ZnONPs (T3) treatment groups respectively, and 3614 and 1873 differentially expressed genes (DEGs) were identified. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis identified photosynthesis, carbon fixation, and phenylpropanoid metabolism as the main causes of ZnONPs-mediated alleviation of Cd stress in lettuce. Specifically, the DEGs identified included 12 associated with photosystem I, 13 with photosystem II and 23 DEGs with the carbon fixation pathway of photosynthesis. Additionally, DEGs related to phenylalanine ammonia-lyase, caffeoyl CoA 3-O-methyltransferase, peroxidase, 4-coumarate-CoA ligase, hydroxycinnamoyl transferase, and cytochrome P450 proteins were also identified. Therefore, further research is recommended to elucidate the molecular mechanisms by which ZnONPs reduce Cd absorption in lettuce through phenolic acid components in the phenylpropanoid metabolism pathway. Overall, treatments with ZnONPs are recommended to effectively reduce Cd accumulation in the edible portion of lettuce.
Collapse
Affiliation(s)
- Jing Zhang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| | - Feng Gao
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China.
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| | - Cheng Wang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| | - Xiaodan Zhang
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| | - Kangning Han
- College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou 730070, China
| |
Collapse
|
4
|
Wang M, Chen X, Hamid Y, Yang X. Evaluating the Response of the Soil Bacterial Community and Lettuce Growth in a Fluorine and Cadmium Co-Contaminated Yellow Soil. TOXICS 2024; 12:459. [PMID: 39058111 PMCID: PMC11280846 DOI: 10.3390/toxics12070459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024]
Abstract
The impact of cadmium (Cd) and fluorine (F) on plant and human health has provoked significant public concern; however, their combined effects on plant and soil bacterial communities have yet to be determined. Here, a pot experiment was conducted to evaluate the effects of exogenous F, Cd, and their combination (FCd) on lettuce growth and soil bacterial communities. The results revealed that F and Cd concentrations in lettuce ranged from 63.69 to 219.45 mg kg-1 and 1.85 to 33.08 mg kg-1, respectively, presenting lower values in shoots than in the roots. Moreover, low contamination levels had no discernable influence on lettuce growth, but showed a synergistic negative on plant biomass when exogenous F and Cd exceeds 300 and 1.0 mg kg-1, respectively. The results of 16S rRNA gene sequencing indicated that the most abundant bacterial community at the phylum level was Proteobacteria, with the relative abundance ranging from 33.42% to 44.10% across all the treatments. The contaminants had little effect on bacterial richness but impacted the structure of bacterial communities. The PCoA showed that compartment and contaminants were the primary contributors to the largest source of community variation, while the VPA indicated that F and Cd synergistically affected the bacterial communities. In turn, lettuce plants could enhance the resistance to the combined stress by increasing the relative abundance of Oxyphotobacteria, Subgroup 6, Thermoleophilia, and TK10 classes in the rhizosphere.
Collapse
Affiliation(s)
- Mei Wang
- School of China Alcoholic Drinks, Luzhou Vocational and Technical College, Luzhou 646000, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiangxiang Chen
- School of China Alcoholic Drinks, Luzhou Vocational and Technical College, Luzhou 646000, China
| | - Yasir Hamid
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoe Yang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Yang Y, Huang Y, Liu Y, Jiao G, Dai H, Liu X, Hughes SS. The migration and transformation mechanism of vanadium in a soil-pore water-maize system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169563. [PMID: 38145672 DOI: 10.1016/j.scitotenv.2023.169563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
The migration mechanism of vanadium (V) in the soil-pore water-maize system has not been revealed. This study conducted pot experiments under artificial control conditions to reveal V's distribution and transport mechanism under different growth stages and V content gradient stress. The V content in the soil pore water gradually increased by an order of magnitude. The V content of pore water in the no-plant group was higher than that in the plant group, indicating that the maize roots absorbed V. The V exists in the form of pentavalent oxygen anions, in which H2VO4- occupies the most significant proportion. With increasing V content, the root area, root number, root length, and tip number decreased significantly. The malondialdehyde content in maize leaves showed an increasing trend, indicating the degree of lipid peroxidation was gradually enhanced. The V content was in the order of root > leaf > stem > fruit and maturity stage > flowering stage > jointing stage, respectively. The transfer coefficient reached a maximum under natural conditions, and increased gradually with the growth. The results of synchrotron radiation X-ray absorption near edge structure (XANES) analysis showed that Fe in maize roots mainly comprised of Fe2O3 and Fe3O4. The Fe in the soil is primarily existed in lepidocrocite and Fe2O3. The μ-XRF analysis showed that V and Fe enriched in the roots with a positive relationship, indicating the synergistic absorption of V and Fe by roots. Part of the Fe2+ reduced V5+ to V4+ or V3+ in the forms of VO2+, V(OH)2+, or V(OH)3 (s), and fixed V at the root. Soil weak acid-soluble fraction V and soil total V were vital factors to maize extraction. This study provides new insights into V biogeochemical behavior and a scientific basis for correctly evaluating its ecological and human health risks.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Yi Huang
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan 610059, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Geosciences, Chengdu University of Technology, Chengdu, Sichuan 610059, China.
| | - Yunhe Liu
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Ganghui Jiao
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Hao Dai
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Xiaowen Liu
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Scott S Hughes
- Department of Geosciences, Idaho State University, Pocatello, ID 83209, USA
| |
Collapse
|
6
|
Moore RET, Ullah I, Dunwell JM, Rehkämper M. Stable Isotope Analyses Reveal Impact of Fe and Zn on Cd Uptake and Translocation by Theobroma cacao. PLANTS (BASEL, SWITZERLAND) 2024; 13:551. [PMID: 38498553 PMCID: PMC10893372 DOI: 10.3390/plants13040551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 03/20/2024]
Abstract
High concentrations of toxic cadmium (Cd) in soils are problematic as the element accumulates in food crops such as rice and cacao. A mitigation strategy to minimise Cd accumulation is to enhance the competitive uptake of plant-essential metals. Theobroma cacao seedlings were grown hydroponically with added Cd. Eight different treatments were used, which included/excluded hydroponic or foliar zinc (Zn) and/or iron (Fe) for the final growth period. Analyses of Cd concentrations and natural stable isotope compositions by multiple collector ICP-MS were conducted. Cadmium uptake and translocation decreased when Fe was removed from the hydroponic solutions, while the application of foliar Zn-EDTA may enhance Cd translocation. No significant differences in isotope fractionation during uptake were found between treatments. Data from all treatments fit a single Cd isotope fractionation model associated with sequestration (seq) of isotopically light Cd in roots and unidirectional mobilisation (mob) of isotopically heavier Cd to the leaves (ε114Cdseq-mob = -0.13‱). This result is in excellent agreement with data from an investigation of 19 genetically diverse cacao clones. The different Cd dynamics exhibited by the clones and seen in response to different Fe availability may be linked to similar physiological processes, such as the regulation of specific transporter proteins.
Collapse
Affiliation(s)
- Rebekah E. T. Moore
- Department of Earth Science and Engineering, Imperial College, London SW7 2BP, UK;
| | - Ihsan Ullah
- School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK; (I.U.); (J.M.D.)
| | - Jim M. Dunwell
- School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK; (I.U.); (J.M.D.)
| | - Mark Rehkämper
- Department of Earth Science and Engineering, Imperial College, London SW7 2BP, UK;
| |
Collapse
|
7
|
Wu H, Tong J, Jiang X, Wang J, Zhang H, Luo Y, Pang J, Shi J. More effective than direct contact: Nano hydroxyapatite pre-treatment regulates the growth and Cd uptake of rice (Oryza sativa L.) seedlings. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132889. [PMID: 37922579 DOI: 10.1016/j.jhazmat.2023.132889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/08/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
Cd contamination in rice urgently needs to be addressed. Nano hydroxyapatite (n-HAP) is an eco-friendly material with excellent Cd fixation ability. However, due to its own high reactivity, innovative application of n-HAP in the treatment of Cd contamination in rice is needed. In this study, we proposed a new application, namely n-HAP pre-treatment, which can effectively reduce Cd accumulation in rice and alleviate Cd stress. The results showed that 80 mg/L n-HAP pre-treatment significantly reduced Cd content in rice shoot by 35.1%. Biochemical and combined transcriptomic-proteomic analysis revealed the possible molecular mechanisms by which n-HAP pre-treatment promoted rice growth and reduced Cd accumulation. (1) n-HAP pre-treatment regulated gibberellin and jasmonic acid synthesis-related pathways, increased gibberellin content and decreased jasmonic acid content in rice root, which promoted rice growth; (2) n-HAP pre-treatment up-regulated gene CATA1 expression and down-regulated gene OsGpx1 expression, which increased rice CAT activity and GSH content; (3) n-HAP pre-treatment up-regulated gene OsZIP1 expression and down-regulated gene OsNramp1 expression, which reduced Cd uptake, increased Cd efflux from rice root cells.
Collapse
Affiliation(s)
- Hanxin Wu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Jianhao Tong
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaohan Jiang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Jing Wang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Haonan Zhang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Yating Luo
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Jingli Pang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Mao J, Hu G, Deng W, Zhao M, Li J. Industrial wastewater treatment using floating wetlands: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5043-5070. [PMID: 38150162 DOI: 10.1007/s11356-023-31507-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/08/2023] [Indexed: 12/28/2023]
Abstract
Industrial wastewater generated from various production processes is often associated with elevated pollutant concentrations and environmental hazards, necessitating efficient treatment. Floating wetlands (FWs) have emerged as a promising and eco-friendly solution for industrial wastewater treatment, with numerous successful field applications. This article comprehensively reviews the removal mechanisms and treatment performance in the use of FWs for the treatment of diverse industrial wastewaters. Our findings highlight that the performance of FWs relies on proper plant selection, design, aeration, season and temperature, plants harvesting and disposal, and maintenance. Well-designed FWs demonstrate remarkable effectiveness in removing organic matter (COD and BOD), suspended solids, nutrients, and heavy metals from industrial wastewater. This effectiveness is attributed to the intricate physical and metabolic interactions between plants and microbial communities within FWs. A significant portion of the reported applications of FWs revolve around the treatment of textile and oily wastewater. In particular, the application reports of FWs are mainly concentrated in temperate developing countries, where FWs can serve as a feasible and cost-effective industrial wastewater treatment technology, replacing high-cost traditional technologies. Furthermore, our analysis reveals that the treatment efficiency of FWs can be significantly enhanced through strategies like bacterial inoculation, aeration, and co-plantation of specific plant species. These techniques offer promising directions for further research. To advance the field, we recommend future research efforts focus on developing novel floating materials, optimizing the selection and combination of plants and microorganisms, exploring flexible disposal methods for harvested biomass, and designing multi-functional FW systems.
Collapse
Affiliation(s)
- Jianliang Mao
- School of Engineering, Environmental Engineering Program, University of Northern British Columbia (UNBC), 3333 University Way, Prince George, British Columbia, V2N 4Z9, Canada
| | - Guangji Hu
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Wei Deng
- School of Engineering, Environmental Engineering Program, University of Northern British Columbia (UNBC), 3333 University Way, Prince George, British Columbia, V2N 4Z9, Canada
| | - Min Zhao
- School of Life and Environmental Sciences, Wenzhou University (WZU), Wenzhou, 325035, Zhejiang Province, China
- WZU-UNBC Joint Research Institute of Ecology and Environment, Wenzhou University (WZU), Wenzhou, 325035, Zhejiang Province, China
| | - Jianbing Li
- School of Engineering, Environmental Engineering Program, University of Northern British Columbia (UNBC), 3333 University Way, Prince George, British Columbia, V2N 4Z9, Canada.
- WZU-UNBC Joint Research Institute of Ecology and Environment, Wenzhou University (WZU), Wenzhou, 325035, Zhejiang Province, China.
| |
Collapse
|
9
|
Li C, Li G, Wang Y, Wang J, Liu H, Gao W, Qin S, Sui F, Fu H, Zhao P. Supplementing two wheat genotypes with ZnSO 4 and ZnO nanoparticles showed differential mitigation of Cd phytotoxicity by reducing Cd absorption, preserving root cellular ultrastructure, and regulating metal-transporter gene expression. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108199. [PMID: 38100890 DOI: 10.1016/j.plaphy.2023.108199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/12/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023]
Abstract
Cadmium (Cd) contamination is a serious challenge in agricultural soils worldwide, resulting in Cd entering the food chain mainly through plant-based food and threatening human health. Minimizing Cd bioaccumulation in wheat is an important way to prevent Cd hazards to humans. Hydroponic and pot experiments were conducted to comprehensively evaluate the effects of zinc sulfate (ZnSO4) and zinc oxide nanoparticles (nZnO) on Cd uptake, translocation, subcellular distribution, cellular ultrastructure, and gene expression in two wheat genotypes that differ in grain Zn accumulation. Results showed that high-dose nZnO significantly reduced root Cd concentration (52.44%∼56.85%) in two wheats, in contrast to ZnSO4. The S216 exhibited higher tolerance to Cd compared to Z797. Importantly, Zn supplementation enhanced Cd sequestration into vacuoles and binding to cell walls, which conferred stability to ultracellular structures and photosynthetic apparatus. Down-regulation of influx transporter (TaHMA2 and TaLCT1) and up-regulation of efflux transporters (TaTM20 and TaHMA3) in Z797 might contribute to Zn-dependent alleviation of Cd toxicity and enhance its Cd tolerance. Down-regulation of ZIP transporters (TaZIP3, -5, and -7) might contribute to an increase in root Zn concentration and inhibit Cd absorption. Additionally, soil Zn provided an effective strategy for the reduction of grain Cd concentrations in both wheats, with a reduction of 26%∼32% (high ZnSO4) and 11%∼67% (high nZnO), respectively. Collectively, these findings provide new insights and perspectives on the mechanisms of Cd mitigation in wheats with different Zn fertilizers and demonstrate that the effect of nZnO in mitigating Cd stress is greater than that of ZnSO4 fertilizers.
Collapse
Affiliation(s)
- Chang Li
- College of Resources and Environmental, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou, 450046, China
| | - Guangxin Li
- College of Resources and Environmental, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou, 450046, China
| | - Yun Wang
- College of Resources and Environmental, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou, 450046, China
| | - Jun Wang
- College of Resources and Environmental, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou, 450046, China
| | - Hongen Liu
- College of Resources and Environmental, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou, 450046, China
| | - Wei Gao
- College of Resources and Environmental, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou, 450046, China
| | - Shiyu Qin
- College of Resources and Environmental, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou, 450046, China
| | - Fuqing Sui
- College of Resources and Environmental, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou, 450046, China
| | - Haichao Fu
- College of Resources and Environmental, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou, 450046, China
| | - Peng Zhao
- College of Resources and Environmental, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou, 450046, China.
| |
Collapse
|
10
|
Timilsina A, Adhikari K, Chen H. Foliar application of green synthesized ZnO nanoparticles reduced Cd content in shoot of lettuce. CHEMOSPHERE 2023; 338:139589. [PMID: 37478984 DOI: 10.1016/j.chemosphere.2023.139589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/03/2023] [Accepted: 07/19/2023] [Indexed: 07/23/2023]
Abstract
Though Zinc (Zn) supplementation can mitigate root-based Cadmium (Cd) uptake in plants, the impact of foliar-applied Zinc Oxide nanoparticles (ZnO NPs) on this process remains under-explored. This study investigates the influence of foliar-applied ZnO NPs on the growth of lettuce and its Cd uptake in Cd-contaminated soil in greenhouse setting. Green synthesized ZnO (G-ZnO) NPs (10 and 100 mg/L) using sweet potato leaf extracts were used, and compared with commercially available ZnO (C-ZnO) NPs (100 mg/L) for their efficacy. Scanning electron microscopy and Fourier-transform infrared spectroscopy were used for G-ZnO NPs characterization. Shoot dry weight, antioxidant activity, and chlorophyll content were all negatively affected by Cd but positively affected by ZnO NPs application. ZnO NPs application resulted in a notable reduction in lettuce Cd uptake, with the highest reduction (43%) observed at 100 mg/L G-ZnO NPs. In the lettuce shoot, Zn and Cd concentration showed a significant inverse correlation (R2 = 0.79-0.9, P < 0.05). This study offers insights into the impact of chemical and green synthesized ZnO NPs on enhancing crop growth under stress conditions, and their role in modulating Cd uptake in plants, indicating potential implications for sustainable agricultural practices.
Collapse
Affiliation(s)
- Anil Timilsina
- Department of Agriculture, University of Arkansas at Pine Bluff, AR, 71601, United States
| | - Kaushik Adhikari
- Department of Agriculture, University of Arkansas at Pine Bluff, AR, 71601, United States
| | - Hao Chen
- Department of Agriculture, University of Arkansas at Pine Bluff, AR, 71601, United States.
| |
Collapse
|
11
|
Zakrzewska M, Rzepa G, Musialowski M, Goszcz A, Stasiuk R, Debiec-Andrzejewska K. Reduction of bioavailability and phytotoxicity effect of cadmium in soil by microbial-induced carbonate precipitation using metabolites of ureolytic bacterium Ochrobactrum sp. POC9. FRONTIERS IN PLANT SCIENCE 2023; 14:1109467. [PMID: 37416890 PMCID: PMC10321601 DOI: 10.3389/fpls.2023.1109467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 05/26/2023] [Indexed: 07/08/2023]
Abstract
The application of ureolytic bacteria for bioremediation of soil contaminated with heavy metals, including cadmium (Cd), allows for the efficient immobilization of heavy metals by precipitation or coprecipitation with carbonates. Microbially-induced carbonate precipitation process may be useful also in the case of the cultivation of crop plants in various agricultural soils with trace but legally permissible Cd concentrations, which may be still uptaken by plants. This study aimed to investigate the influence of soil supplementation with metabolites containing carbonates (MCC) produced by the ureolytic bacterium Ochrobactrum sp. POC9 on the Cd mobility in the soil as well as on the Cd uptake efficiency and general condition of crop plants (Petroselinum crispum). In the frame of the conducted studies (i) carbonate productivity of the POC9 strain, (ii) the efficiency of Cd immobilization in soil supplemented with MCC, (iii) crystallization of cadmium carbonate in the soil enriched with MCC, (iv) the effect of MCC on the physico-chemical and microbiological properties of soil, and (v) the effect of changes in soil properties on the morphology, growth rate, and Cd-uptake efficiency of crop plants were investigated. The experiments were conducted in soil contaminated with a low concentration of Cd to simulate the natural environmental conditions. Soil supplementation with MCC significantly reduced the bioavailability of Cd in soil with regard to control variants by about 27-65% (depending on the volume of MCC) and reduced the Cd uptake by plants by about 86% and 74% in shoots and roots, respectively. Furthermore, due to the decrease in soil toxicity and improvement of soil nutrition with other metabolites produced during the urea degradation (MCC), some microbiological properties of soil (quantity and activity of soil microorganisms), as well as the general condition of plants, were also significantly improved. Soil supplementation with MCC enabled efficient Cd stabilization and significantly reduced its toxicity for soil microbiota and plants. Thus, MCC produced by POC9 strain may be used not only as an effective Cd immobilizer in soil but also as a microbe and plant stimulators.
Collapse
Affiliation(s)
- Marta Zakrzewska
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Grzegorz Rzepa
- Department of Mineralogy, Petrography and Geochemistry, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Krakow, Poland
| | - Marcin Musialowski
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Aleksandra Goszcz
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Department of Ecotoxicology, Institute of Environmental Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Robert Stasiuk
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Klaudia Debiec-Andrzejewska
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
12
|
Liu H, Zhang Y, Wang H, Zhang B, He Y, Wang H, Zhu Y, Holm PE, Shi Y. Comparing cadmium uptake kinetics, xylem translocation, chemical forms, and subcellular distribution of two tobacco (Nicotiana tabacum L.) cultivars. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114738. [PMID: 36905848 DOI: 10.1016/j.ecoenv.2023.114738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Tobacco (Nicotiana tabacum L.) is a potential phytoremediator that can reduce soil cadmium (Cd) contamination. Pot and hydroponic experiments were conducted to investigate the difference in absorption kinetics, translocation patterns, accumulation capacity, and extraction amounts between two leading tobacco cultivars in China. We studied the chemical forms and subcellular distribution of Cd in the plants to understand the diversity of the detoxification mechanism of the cultivars. The concentration-dependent kinetics of Cd accumulation in leaves, stems, roots, and xylem sap for cultivars Zhongyan 100 (ZY100) and K326, fitted well with the Michaelis-Menten equation. K326 exhibited high biomass, Cd tolerance, Cd translocation, and phytoextraction abilities. The acetic acid, sodium chloride, and water-extractable fractions accounted for > 90% of Cd in all ZY100 tissues but only in K326 roots and stems. Moreover, the acetic acid and NaCl fractions were the predominant storage forms, while the water fraction was the transport form. The ethanol fraction also contributed significantly to Cd storage in K326 leaves. As the Cd treatment increased, more NaCl and water fractions were found in K326 leaves, while only NaCl fractions increased in ZY100 leaves. For subcellular distribution, > 93% Cd proportions were primarily stored in both cultivars' soluble or cell wall fraction. The proportion of Cd in the cell wall fraction of ZY100 roots was less than that of K326, while that proportion in the soluble fraction in ZY100 leaves was higher than in K326 leaves. These findings demonstrate that Cd accumulation patterns, detoxification, and storage strategies differ between the cultivars, providing a deeper understanding of Cd tolerance and accumulation mechanism in tobacco plants. It also guides the screening of germplasm resources or gene modification to improve the Cd phytoextraction efficiency of tobacco.
Collapse
Affiliation(s)
- Haiwei Liu
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs; Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yan Zhang
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs; Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Haiyun Wang
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs; Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Biao Zhang
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs; Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yuan He
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs; Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Haohao Wang
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs; Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yingying Zhu
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs; Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Peter E Holm
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark; Sino-Danish Center for Education and Research (SDC), Denmark
| | - Yi Shi
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs; Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
13
|
ShangGuan X, Qi Y, Wang A, Ren Y, Wang Y, Xiao T, Shen Z, Wang Q, Xia Y. OsGLP participates in the regulation of lignin synthesis and deposition in rice against copper and cadmium toxicity. FRONTIERS IN PLANT SCIENCE 2023; 13:1078113. [PMID: 36714698 PMCID: PMC9878301 DOI: 10.3389/fpls.2022.1078113] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/19/2022] [Indexed: 05/26/2023]
Abstract
Copper (Cu) and cadmium (Cd) are common heavy metal pollutants. When Cd and excessive Cu accumulate in plants, plant growth is reduced. Our previous study showed that Germin-like proteins (GLPs), which exist in tandem on chromosomes, are a class of soluble glycoproteins that respond to Cu stress. In this study, hydroponic cultures were carried out to investigate the effect of GLP on Cd and Cu tolerance and accumulation in rice. The results showed that knockout of a single OsGLP8-2 gene or ten OsGLP genes (OsGLP8-2 to OsGLP8-11) resulted in a similar sensitivity to Cd and Cu toxicity. When subjected to Cu and Cd stress, the glp8-2 and glp8-(2-11) mutants displayed a more sensitive phenotype based on the plant height, root length, and dry biomass of the rice seedlings. Correspondingly, Cu and Cd concentrations in the glp8-2 and glp8-(2-11) mutants were significantly higher than those in the wild-type (WT) and OsGLP8-2-overexpressing line. However, Cu and Cd accumulation in the cell wall was the opposite. Furthermore, we determined lignin accumulation. The overexpressing-OsGLP8-2 line had a higher lignin accumulation in the shoot and root cell walls than those of the WT, glp8-2, and glp8-(2-11). The expression of lignin synthesis genes in the OsGLP8-2-overexpressing line was significantly higher than that in the WT, glp8-2, and glp8-(2-11). The SOD activity of OsGLP8-2, Diaminobe-nzidine (DAB), propidium iodide (PI) staining, and Malondialdehyde (MDA) content determination suggested that OsGLP8-2 is involved in heavy metal-induced antioxidant defense in rice. Our findings clearly suggest that OsGLPs participate in responses to heavy metal stress by lignin deposition and antioxidant defense capacity in rice, and OsGLP8-2 may play a major role in the tandem repeat gene clusters of chromosome 8 under heavy metal stress conditions.
Collapse
Affiliation(s)
- Xiangchao ShangGuan
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, China
| | - Ying Qi
- College of Agronomy, Yunnan Research Center of Urban Agricultural Engineering and Technology, Kunming University, Kunming, China
| | - Aiguo Wang
- Key Laboratory of Ecological Environment and Tobacco Quality in Tobacco Industry, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, China
| | - Yingnan Ren
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, China
| | - Yu Wang
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, China
| | - Tengwei Xiao
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, China
| | - Zhenguo Shen
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, China
| | - Qi Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yan Xia
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
14
|
Wang M, Chen Z, Chen D, Liu L, Hamid Y, Zhang S, Shan A, Kang KJ, Feng Y, Yang X. Combined cadmium and fluorine inhibit lettuce growth through reducing root elongation, photosynthesis, and nutrient absorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:91255-91267. [PMID: 35882734 DOI: 10.1007/s11356-022-22195-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) and fluorine (F) often coexist in environment and are toxic to organisms; however, their combined effects on plants are still not well documented. In this study, the co-effects of Cd and F on germination, biomass, photosynthesis, and nutrients uptake of lettuce were carried out in hydroponic culture. The results showed that the seed germination and seedling biomass decreased with an increase in Cd and F supplementation. The root morphology verified these effects as excess combined Cd and F diminished the root tips and surface area of lettuce, while single Cd and F inhibited the growth by decreasing root length and average diameter, respectively. These effects were also consistence with a reduction in photosynthesis which was mainly regulated by reducing the quantum yield of PS II, electron transport activity, stomatal conductance, intercellular CO2 concentration, and transpiration rate in response to the pollutants. Moreover, when lettuce exposed to Cd and F stress, the accumulation of several essential elements in shoot decreased. In a sum, the synergistic negative effects of Cd and F on the seed germination and seedling growth of lettuce were observed, and these might be owed to nutrient absorption and translocation in the plant. These findings aid in understanding the harmful effects and specific mechanisms of action of Cd and F on plants.
Collapse
Affiliation(s)
- Mei Wang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Zijingang Campus, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Zhiqin Chen
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Zijingang Campus, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Dan Chen
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Zijingang Campus, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Lei Liu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Zijingang Campus, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Yasir Hamid
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Zijingang Campus, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Shijun Zhang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Zijingang Campus, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Anqi Shan
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Zijingang Campus, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Kyong Ju Kang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Zijingang Campus, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Ying Feng
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Zijingang Campus, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Xiaoe Yang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Zijingang Campus, Yuhangtang Road 866, Hangzhou, 310058, China.
| |
Collapse
|
15
|
Imran M, Khan AL, Mun BG, Bilal S, Shaffique S, Kwon EH, Kang SM, Yun BW, Lee IJ. Melatonin and nitric oxide: Dual players inhibiting hazardous metal toxicity in soybean plants via molecular and antioxidant signaling cascades. CHEMOSPHERE 2022; 308:136575. [PMID: 36155020 DOI: 10.1016/j.chemosphere.2022.136575] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Melatonin (MT), a ubiquitous signaling molecule, is known to improve plant growth. Its regulatory function alongside nitric oxide (NO) is known to induce heavy metal (Cd and Pb) stress tolerance, although the underlying mechanisms remain unknown. Here, we observed that the combined application of MT and NO remarkably enhanced plant biomass by reducing oxidative stress. Both MT and NO minimized metal toxicity by significantly lowering the levels of endogenous abscisic acid and jasmonic acid via downregulating NCED3 and upregulating catabolic genes (CYP707A1 and CYP707A2). MT/NO-induced mitigation of Cd and Pb stress was associated with increased endo-melatonin and variable endo-S-nitrosothiol levels caused by enhanced expression of gmNR and gmGSNOR mRNAs. Remarkably, the combined application of MT/NO reduced soil Cd and Pb mobilization by increasing the uptake of Ca2+ and K+ and increasing the exudation of organic acids into the rhizosphere. These results correlated with the upregulation of MTF-1 and WARKY27 during metal translocation. MT/NO regulates the MAPK and CDPK cascades to promote plant cell survival and Ca2+ signaling, thereby imparting resistance to heavy metal toxicity. In conclusion, MT/NO modulates the stress-resistance machinery to mitigate Cd and Pb toxicity by regulating the activation of antioxidant and molecular transcription factors.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Abdul Latif Khan
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, TX 77479, USA
| | - Bong-Gyu Mun
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Saqib Bilal
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Shifa Shaffique
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Eun-Hae Kwon
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Byung-Wook Yun
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
16
|
Mandzhieva S, Chaplygin V, Chernikova N, Fedorenko A, Voloshina M, Minkina T, Rajput VD, Elinson M, Wong MH. Responses of Spring Barley to Zn- and Cd-Induced Stress: Morphometric Analysis and Cytotoxicity Assay. PLANTS (BASEL, SWITZERLAND) 2022; 11:3332. [PMID: 36501371 PMCID: PMC9738000 DOI: 10.3390/plants11233332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Heavy metals such as cadmium (Cd) and zinc (Zn) could be dangerous and pollute the environment due to their high migration ability, robust bioavailability, and acute toxicity to soil biota and plants. Considering the above characteristics of these elements, the study's aim was to explore the individual and combined impact of Cd and Zn contamination of Haplic Chernozem on growing two-row spring barley (Hordeum vulgare L.). The accumulation and distribution of Cd and Zn in various parts of H. vulgare have also been studied, which showed that Cd accumulation by H. vulgare occurred more intensely than that by Zn up to eight times. Cadmium and Zn suppress plant growth up to two times, more effect was noted by the combined impact of Cd and Zn. The study of plant morphological characteristics revealed that growth suppression and structural changes in the root and leaf tissues increased in proportion to Cd and Zn concentrations. Detailed analysis of the localizations of Zn and Cd in various organelles of H. vulgare cells was performed. Heavy metals change the ultrastructure of prominent energy-producing organelles in leaf cells, especially chloroplasts and mitochondria. Overall, the current findings offer insights into phytotoxicity induced by Cd and Zn individual application as well as in combination with the H. vulgare plant. Zinc showed protective effects against high doses of Cd under the combined application. These antagonistic interactions reduce their accessibility to H. vulgare. The present work can be useful in restricting the entry of these elements into the food chain and preventing creating a threat to human health.
Collapse
Affiliation(s)
- Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Victor Chaplygin
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Natalia Chernikova
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Aleksey Fedorenko
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Marina Voloshina
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Maria Elinson
- Department of Biology, Bashkir State University, 450076 Ufa, Russia
| | - Ming Hung Wong
- Consortium on Health, Environment, Education and Research (CHEER), The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Hong Kong, China
| |
Collapse
|
17
|
Rashid MH, Rahman MM, Naidu R. Zinc Biofortification through Basal Zinc Supply Reduces Grain Cadmium in Mung Beans: Metal Partitioning and Health Risks Assessment. TOXICS 2022; 10:689. [PMID: 36422897 PMCID: PMC9692611 DOI: 10.3390/toxics10110689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Grain zinc (Zn) biofortification with less cadmium (Cd) accumulation is of paramount importance from human health and environmental point of view. A pot experiment was carried out to determine the influence of Zn and Cd on their accumulations in Mung bean tissues (Vigna radiata) in two contrast soil types (Dermosol and Tenosol). The soil types with added Zn and Cd exerted a significant effect on translocation and accumulation of metals in different tissues. The accumulation of Zn and Cd was higher for Tenosol than that for Dermosol. At control, the concentration of Cd followed a pattern, e.g., root > stem > petiole > pod > leaflet > grain for both soils. A basal Zn supply (5 mg kg−1) increased the grain Zn concentration to a significant amount (up to 67%). It also reduced Cd accumulation in tissues, including grains (up to 34%). No non-carcinogenic effect was observed for either the children or the adults as the EDI and PTDI values were below the safety limit; however, the ILCR values exceeded the safety limit, indicating the possibility of some carcinogenic effects. Added Zn helped to reduce the carcinogenic and non-carcinogenic health risks on humans.
Collapse
Affiliation(s)
- Md Harunur Rashid
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
- Bangladesh Agricultural Research Institute (BARI), Gazipur 1701, Bangladesh
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
- Department of General Educational Development, Faculty of Science & Information Technology, Daffodil International University, Dhaka 1207, Bangladesh
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
18
|
Gao F, Li J, Zhang J, Li N, Tang C, Bakpa EP, Xie J. Genome-wide identification of the ZIP gene family in lettuce (Lactuca sativa L.) and expression analysis under different element stress. PLoS One 2022; 17:e0274319. [PMID: 36170262 PMCID: PMC9518877 DOI: 10.1371/journal.pone.0274319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/26/2022] [Indexed: 11/19/2022] Open
Abstract
The ZIP protein (ZRT, the IRT-like protein) is an important metal transporter that transports Zn, Fe, and other divalent metal ions in plants. In this study, we identified 20 ZIP genes in lettuce (Lactuca sativa L.). We used bioinformatics methods and renamed them according to their E value in hmmsearch. We also analyzed their gene structure, chromosomal location, constructed a phylogenetic tree, conserved motifs, performed synonymous analysis and responses to abiotic stresses. The results show that these LsZIP genes have 3-11 exons and were distributed unequally on 8 of the 9 chromosomes in lettuce. Based on phylogenetic analyses, the LsZIP gene family can be divided into three subfamilies, and the LsZIP genes within the same subfamily shared similar gene structure. The LsZIP genes contain 12 Motifs, of which Motif1 to Motif8 are widely distributed in group Ⅰ. Furthermore, the LsZIP gene contains numerous hormones and anti-stress response elements. Real-time quantitative PCR demonstrated that most LsZIP genes is up-regulated under the elemental stress in this experiment, indicating that they are positively regulated. But different elemental stressors can induce the expression of LsZIP gene to varying degrees. The LsZIP genes also change in response to different elemental stresses. The present study serves as a basic foundation for future functional studies on the lettuce ZIP family.
Collapse
Affiliation(s)
- Feng Gao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Nenghui Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Chaonan Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | | | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
19
|
Shi L, Guo Z, Liu S, Xiao X, Peng C, Feng W, Ran H, Zeng P. Effects of combined soil amendments on Cd accumulation, translocation and food safety in rice: a field study in southern China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:2451-2463. [PMID: 34282515 DOI: 10.1007/s10653-021-01033-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Excessive Cd content and high Cd/Zn ratio in rice grains threaten human health. To study the reduction effects of combined soil amendments on Cd content and Cd/Zn ratio in rice planting in soils with different Cd contamination levels, we conducted field trials in three regions of Hunan province, China. Six field treatments were designed in each study area, including control (CK), lime alone (L), lime combined with sepiolite (LS), phosphate fertilizer (LP), organic fertilizer (LO) and phosphate fertilizer + organic fertilizer (LPO). The application of the combined amendments reduced the Cd content in rice grains to less than the Food Health Standard of China (0.2 mg/kg) and the Cd/Zn ratio to less than the safety threshold of 0.015. The average reduction rates of grain Cd content under the combined treatments among the three regions increased with the increase in Cd content in the soil. Meanwhile, the amendments also decreased the soil available Cd and Zn concentration significantly. The LO had the highest efficiency on decreasing Cd content in rice grains among these amendments, which is ranged from 44.6% to 52.8% in the three regions compared with CK. Similarly, high reduction rates of Cd/Zn ratio were found in the LO treatment, with an average value of 57.3% among the three regions. The grain Cd contents and Cd/Zn ratios were significantly correlated with the soil available Cd concentrations, plant uptake factor and the straw to rice grain translocation factor (TFgs) (P < 0.05). The results indicated that the combined soil amendments, especially lime combined with organic fertilizer, would be an effective way to control Cd content in rice.
Collapse
Affiliation(s)
- Lei Shi
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
- School of Environment and Biologcal Engineering, Henan University of Engineering, Zhengzhou, 451191, China
| | - Zhaohui Guo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Shuaixia Liu
- School of Environment and Biologcal Engineering, Henan University of Engineering, Zhengzhou, 451191, China
| | - Xiyuan Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Chi Peng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| | - Wenli Feng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Hongzhen Ran
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Peng Zeng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| |
Collapse
|
20
|
Wang X, Gong F, Duan H, He C, Yang Z. Pieces of evidence of enhanced cellulose biosynthesis in the low-Cd cultivar and high expression level of transportation genes in the high-Cd cultivar of Lactuca sativa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:42913-42928. [PMID: 35092588 DOI: 10.1007/s11356-022-18882-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
To investigate the molecular mechanism of Cd-accumulating difference between Lactuca sativa cultivars, full-length transcriptome comparison, as well as biochemical validation, have been conducted between Cd pollution-safe cultivar (Cd-PSC, cv. LYDL) and high-Cd-accumulating cultivar (cv. HXDWQ). The full-length transcriptome of L. sativa cultivars was achieved for the first time. The results showed high Cd compartmentalization in the cell wall of cv. LYDL was ascribed to the enhanced cell wall biosynthesis under Cd stress, which was consistent with the high cellular debris Cd level (32.10-43.58%). The expression levels of transporter genes in cv. HXDWQ were about 1.19 to 1.21-fold higher than those in cv. LYDL, which was in accordance with the high ratio of easy migrative Cd chemical forms (68.59-81.98%), indicating the high Cd accumulation in the shoot of cv. HXDWQ was ascribed to the higher transportation capacity in cv. HXDWQ. Moreover, the Cd-induced endoplasmic reticulum (ER) stress was associated with the higher Cd detoxification and tolerance in cv. HXDWQ rather than in cv. LYDL. The study provides new insights into the Cd-induced transcriptomic difference between L. sativa cultivars and further contributes to the molecular breeding of L. sativa Cd-PSC.
Collapse
Affiliation(s)
- Xuesong Wang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, China
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), 510070, Guangzhou, China
| | - Feiyue Gong
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Huixia Duan
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Chuntao He
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, China.
- School of Agriculture, Sun Yat-Sen University, 510275, Guangzhou, China.
| | - Zhongyi Yang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, China.
| |
Collapse
|
21
|
Natasha N, Shahid M, Bibi I, Iqbal J, Khalid S, Murtaza B, Bakhat HF, Farooq ABU, Amjad M, Hammad HM, Niazi NK, Arshad M. Zinc in soil-plant-human system: A data-analysis review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152024. [PMID: 34871690 DOI: 10.1016/j.scitotenv.2021.152024] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 05/27/2023]
Abstract
Zinc (Zn) plays an important role in the physiology and biochemistry of plants due to its established essentiality and toxicity for living beings at certain Zn concentration i.e., deficient or toxic over the optimum range. Being a vital cofactor of important enzymes, Zn participates in plant metabolic processes therefore, alters the biophysicochemical processes mediated by Zn-related enzymes/proteins. Excess Zn can provoke oxidative damage by enhancing the levels of reactive radicals. Hence, it is imperative to monitor Zn levels and associated biophysicochemical roles, essential or toxic, in the soil-plant interactions. This data-analysis review has critically summarized the recent literature of (i) Zn mobility/phytoavailability in soil (ii) molecular understanding of Zn phytouptake, (iii) uptake and distribution in the plants, (iv) essential roles in plants, (v) phyto-deficiency and phytotoxicity, (vi) detoxification processes to scavenge Zn phytotoxicity inside plants, and (vii) associated health hazards. The review especially compares the essential, deficient and toxic roles of Zn in biophysicochemical and detoxification processes inside the plants. To conclude, this review recommends some Zn-related research perspectives. Overall, this review reveals a thorough representation of Zn bio-geo-physicochemical interactions in soil-plant system using recent data.
Collapse
Affiliation(s)
- Natasha Natasha
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari 61100, Pakistan
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari 61100, Pakistan.
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - Sana Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari 61100, Pakistan
| | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari 61100, Pakistan
| | - Hafiz Faiq Bakhat
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari 61100, Pakistan
| | - Abu Bakr Umer Farooq
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari 61100, Pakistan
| | - Muhammad Amjad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari 61100, Pakistan
| | - Hafiz Mohkum Hammad
- Department of Agronomy, Muhammad Nawaz Shreef University of Agriculture, Multan 66000, Pakistan
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Muhammad Arshad
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan
| |
Collapse
|
22
|
Guan H, Dong L, Zhang Y, Bai S, Yan L. GLDA and EDTA assisted phytoremediation potential of Sedum hybridum 'Immergrunchen' for Cd and Pb contaminated soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 24:1395-1404. [PMID: 35166632 DOI: 10.1080/15226514.2022.2031865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Exogenous application of chelants is a common way to enhance the phytoextraction of heavy metals. A pot experiment was conducted to investigate the influences of cadmium (Cd), lead (Pb), Cd and Pb, L-glutamic acid N, N-diacetic acid (GLDA) and ethylene diamine tetraacetate (EDTA) on the growth, Cd and Pb accumulation of Sedum hybridum 'Immergrunchen'. The results showed that Sedum hybridum 'Immergrunchen' had a high tolerance to Pb treatment, followed by Cd-Pb treatment. The plant was sensitive to Cd stress. EDTA treatment was more harmful to plant growth than that of GLDA treatment. The optimal Cd concentration of shoot and root reached 27.6 mg·kg-1 and 32.6 mg·kg-1, 757 mg·kg-1 and 1,025 mg·kg-1for Pb accumulation at 100-1,500 mg·kg-1. The maximum Cd and Pb phytoextraction from 3 mmol·kg-1 GLDA treatment were 1.40 and 1.73 times as much as that of the control, 1.21 and 1.02 times under 6 mmol·kg-1 EDTA treatment. Therefore, the enhanced phytoremediation of GLDA to Cd and Pb co-contaminated soil was better than that of EDTA. GLDA-assisted phytoextraction of Cd and Pb by Sedum hybridum 'Immergrunchen' can be considered as a promising way to phytoremediate Cd and Pb co-contaminated soil.
Collapse
Affiliation(s)
- Haiyan Guan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Chinese Academy of Forestry, Beijing, China
| | - Li Dong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Chinese Academy of Forestry, Beijing, China
| | - Yan Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Chinese Academy of Forestry, Beijing, China
| | - Shubing Bai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Chinese Academy of Forestry, Beijing, China
| | - Li Yan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
23
|
Tang T, Kang W, Shen M, Chen L, Zhao X, Wang Y, Xu S, Ming A, Feng T, Deng H, Zheng S. Accumulation Mechanism and Risk Assessment of Artemisia selengensis Seedling In Vitro with the Hydroponic Culture under Cadmium Pressure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031183. [PMID: 35162204 PMCID: PMC8834386 DOI: 10.3390/ijerph19031183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/11/2022]
Abstract
Artemisia selengensis is a perennial herb of the Compositae with therapeutic and economic value in China. The cadmium (Cd) accumulation mechanism and healthy risk evaluation of A. selengensis were investigated in this study. Tissue culture seedlings were obtained by plant tissue culture in vitro, and the effect of Cd stress (Cd concentration of 0.5, 1, 5, 10, 25, 50 and 100 μM) on A. selengensis was studied under hydroponic conditions. The results showed that low-Cd (0.5–1 μM) stress caused a rare effect on the growth of A. selengensis seedlings, which regularly grew below the 10 μM Cd treatment concentration. The biomass growth rate of the 0.5, 1, and 5 μM treatment groups reached 105.8%, 96.6%, and 84.8% after 40 days of cultivation, respectively. In addition, when the concentration of Cd was greater than 10 μM, the plant growth was obviously inhibited, i.e., chlorosis of leaves, blackening roots, destroyed cell ultrastructure, and increased malondialdehyde (MDA) content. The root could be the main location of metal uptake, 57.8–70.8% of the Cd was concentrated in the root after 40 days of cultivation. Furthermore, the root cell wall was involved in the fixation of 49–71% Cd by subcellular extraction, and the involvement of the participating functional groups of the cell wall, such as -COOH, -OH, and -NH2, in metal uptake was assessed by FTIR analysis. Target hazard quotient (THQ) was used to assess the health risk of A. selengensis, and it was found that the edible part had no health risk only under low-Cd stress (0.5 to 1 μM) and short-term treatment (less than 20 days).
Collapse
Affiliation(s)
- Tao Tang
- School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430080, China; (T.T.); (L.C.); (T.F.)
- Hubei Provincial Key Laboratory of Mining Area Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China; (M.S.); (X.Z.); (Y.W.); (H.D.); (S.Z.)
| | - Wei Kang
- Hubei Provincial Key Laboratory of Mining Area Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China; (M.S.); (X.Z.); (Y.W.); (H.D.); (S.Z.)
- College of Environmental Engineering, Wuhan Textile University, Wuhan 430200, China
- Correspondence: ; Tel.: +86-15072077233
| | - Mi Shen
- Hubei Provincial Key Laboratory of Mining Area Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China; (M.S.); (X.Z.); (Y.W.); (H.D.); (S.Z.)
| | - Lin Chen
- School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430080, China; (T.T.); (L.C.); (T.F.)
- Hubei Provincial Key Laboratory of Mining Area Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China; (M.S.); (X.Z.); (Y.W.); (H.D.); (S.Z.)
| | - Xude Zhao
- Hubei Provincial Key Laboratory of Mining Area Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China; (M.S.); (X.Z.); (Y.W.); (H.D.); (S.Z.)
| | - Yongkui Wang
- Hubei Provincial Key Laboratory of Mining Area Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China; (M.S.); (X.Z.); (Y.W.); (H.D.); (S.Z.)
| | - Shunwen Xu
- Huangshi Vegetable Industry Development Center, Huangshi 435003, China; (S.X.); (A.M.)
| | - Anhuai Ming
- Huangshi Vegetable Industry Development Center, Huangshi 435003, China; (S.X.); (A.M.)
| | - Tao Feng
- School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430080, China; (T.T.); (L.C.); (T.F.)
| | - Haiyan Deng
- Hubei Provincial Key Laboratory of Mining Area Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China; (M.S.); (X.Z.); (Y.W.); (H.D.); (S.Z.)
| | - Shuqi Zheng
- Hubei Provincial Key Laboratory of Mining Area Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi 435003, China; (M.S.); (X.Z.); (Y.W.); (H.D.); (S.Z.)
| |
Collapse
|
24
|
Adil MF, Sehar S, Chen S, Lwalaba JLW, Jilani G, Chen ZH, Shamsi IH. Stress signaling convergence and nutrient crosstalk determine zinc-mediated amelioration against cadmium toxicity in rice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113128. [PMID: 34979311 DOI: 10.1016/j.ecoenv.2021.113128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/15/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
Consumption of rice (Oryza sativa L.) is one of the major pathways for heavy metal bioaccumulation in humans over time. Understanding the molecular responses of rice to heavy metal contamination in agriculture is useful for eco-toxicological assessment of cadmium (Cd) and its interaction with zinc (Zn). In certain crops, the impacts of Cd stress or Zn nutrition on the biophysical chemistry and gene expression have been widely investigated, but their molecular interactions at transcriptomic level, particularly in rice roots, are still elusive. Here, hydroponic investigations were carried out with two rice genotypes (Yinni-801 and Heizhan-43), varying in Cd contents in plant tissues to determine their transcriptomic responses upon Cd15 (15 µM) and Cd15+Zn50 (50 µM) treatments. High throughput RNA-sequencing analysis confirmed that 496 and 2407 DEGs were significantly affected by Cd15 and Cd15+Zn50, respectively, among which 1016 DEGs were commonly induced in both genotypes. Multitude of DEGs fell under the category of protein kinases, such as calmodulin (CaM) and calcineurin B-like protein-interacting protein kinases (CBL), indicating a dynamic shift in hormonal signal transduction and Ca2+ involvement with the onset of treatments. Both genotypes expressed a mutual regulation of transcription factors (TFs) such as WRKY, MYB, NAM, AP2, bHLH and ZFP families under both treatments, whereas genes econding ABC transporters (ABCs), high affinity K+ transporters (HAKs) and Glutathione-S-transferases (GSTs), were highly up-regulated under Cd15+Zn50 in both genotypes. Zinc addition triggered more signaling cascades and detoxification related genes in regulation of immunity along with the suppression of Cd-induced DEGs and restriction of Cd uptake. Conclusively, the effective integration of breeding techniques with candidate genes identified in this study as well as economically and technologically viable methods, such as Zn nutrient management, could pave the way for selecting cultivars with promising agronomic qualities and reduced Cd for sustainable rice production.
Collapse
Affiliation(s)
- Muhammad Faheem Adil
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Shafaque Sehar
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Si Chen
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Jonas Lwalaba Wa Lwalaba
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Ghulam Jilani
- Institute of Soil Science, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia; Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Imran Haider Shamsi
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
25
|
Lu X, Zhang D, Ugurlu A, Chen Y, Proshad R. Bioaccumulation of Cadmium in Nicotiana tabacum L. (Tobacco) Characterized by Soil Properties: A Case Study in the Sichuan Basin, China. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1900215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Xu Lu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dan Zhang
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
| | - Aysenur Ugurlu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yulan Chen
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
| | - Ram Proshad
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
26
|
Xiao Y, Dai MX, Zhang GQ, Yang ZX, He YM, Zhan FD. Effects of the Dark Septate Endophyte (DSE) Exophiala pisciphila on the Growth of Root Cell Wall Polysaccharides and the Cadmium Content of Zea mays L. under Cadmium Stress. J Fungi (Basel) 2021; 7:jof7121035. [PMID: 34947018 PMCID: PMC8708371 DOI: 10.3390/jof7121035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
This paper aims to investigate the mechanism by which dark septate endophytes (DSEs) enhance cadmium (Cd) tolerance in there host plants. Maize (Zea mays L.) was inoculated with a DSE, Exophiala pisciphila, under Cd stress at different concentrations (0, 5, 10, and 20 mg·kg−1). The results show that, under 20 mg/kg Cd stress, DSE significantly increased maize biomass and plant height, indicating that DSE colonization can be utilized to increase the Cd tolerance of host plants. More Cd was retained in DSE-inoculated roots, especially that fixed in the root cell wall (RCW). The capability of DSE to induce a higher Cd holding capacity in the RCW is caused by modulation of the total sugar and uronic acid of DSE-colonized RCW, mainly the pectin and hemicellulose fractions. The fourier-transform spectroscopy analysis results show that carboxyl, hydroxyl, and acidic groups are involved in Cd retention in the DSE-inoculated RCW. The promotion of the growth of maize and improvement in its tolerance to Cd due to DSEs are related to restriction of the translocation of Cd from roots to shoots; resistance of Cd uptake Cd inside cells; and the increase in RCW-integrated Cd through modulating RCW polysaccharide components.
Collapse
|
27
|
Wu J, Li R, Lu Y, Bai Z. Sustainable management of cadmium-contaminated soils as affected by exogenous application of nutrients: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113081. [PMID: 34171783 DOI: 10.1016/j.jenvman.2021.113081] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) pollution in arable land is of great concern as it impairs plant growth and further threats human health via food-chain. Exogenous supplementation of nutrients is an environmentally-friendly, cost-effective, convenient and feasible strategy for regulating Cd uptake, transport and accumulation in plants. To sustain Cd-contaminated soils management, on the one hand, a low level of the Cd-contaminated soil is expected to cultivate crops with decreased Cd accumulation as affected by exogenous nutrients application, on another hand, a high level of the Cd-contaminated soil is suggested to cultivate phytoextraction plants with increased Cd accumulation as affected by exogenous nutrients application. Nevertheless, effects of nutrients on Cd accumulation in plants are still ambiguous. Thus, data of Cd accumulation in shoots of plants as affected by exogenous application of nutrients were collected from previously published articles between 2005 and 2021 in the present study. According to the data, exogenous supply of calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn) and silicon (Si) to a larger extent decrease Cd amounts in shoots of plants. By contrast, exogenous nitrogen (N), and deficient Ca, Mg and Fe supply have a great possibility to increase Cd amounts in shoots of plants. Although exogenous application of phosphorus (P), sulfur (S), potassium (K), zinc (Zn) and selenium (Se) have a great opportunity to increase biomass, they show different effects on Cd concentrations. As a result, the odds are even for increasing and decreasing Cd amounts in shoots of plants. Taken together, exogenous application of Ca, Mg, Fe, Mn and Si might decrease Cd accumulation in plants that are recommended for crops production. Exogenous N and deficient Ca, Mg and Fe supply might increase Cd accumulation in plants that are recommended for phytoextraction plants. Exogenous application of P, S, K, Zn and Se have half a chance to increase or decrease Cd accumulation in plants. Therefore, dosages, forms and species should be taken into account when exogenous P, S, K, Zn and Se are added.
Collapse
Affiliation(s)
- Jiawen Wu
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, China.
| | - Ruijuan Li
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Yuan Lu
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Zhenqing Bai
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, China
| |
Collapse
|
28
|
Rabêlo FHS, Gaziola SA, Rossi ML, Silveira NM, Wójcik M, Bajguz A, Piotrowska-Niczyporuk A, Lavres J, Linhares FS, Azevedo RA, Vangronsveld J, Alleoni LRF. Unraveling the mechanisms controlling Cd accumulation and Cd-tolerance in Brachiaria decumbens and Panicum maximum under summer and winter weather conditions. PHYSIOLOGIA PLANTARUM 2021; 173:20-44. [PMID: 32602985 DOI: 10.1111/ppl.13160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 05/04/2023]
Abstract
We evaluated the mechanisms that control Cd accumulation and distribution, and the mechanisms that protect the photosynthetic apparatus of Brachiaria decumbens Stapf. cv. Basilisk and Panicum maximum Jacq. cv. Massai from Cd-induced oxidative stress, as well as the effects of simulated summer or winter conditions on these mechanisms. Both grasses were grown in unpolluted and Cd-polluted Oxisol (0.63 and 3.6 mg Cd kg-1 soil, respectively) at summer and winter conditions. Grasses grown in the Cd-polluted Oxisol presented higher Cd concentration in their tissues in the winter conditions, but the shoot biomass production of both grasses was not affected by the experimental conditions. Cadmium was more accumulated in the root apoplast than the root symplast, contributing to increase the diameter and cell layers of the cambial region of both grasses. Roots of B. decumbens were more susceptible to disturbed nutrients uptake and nitrogen metabolism than roots of P. maximum. Both grasses translocated high amounts of Cd to their shoots resulting in oxidative stress. Oxidative stress in the leaves of both grasses was higher in summer than winter, but only in P. maximum superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities were increased. However, CO2 assimilation was not affected due to the protection provided by reduced glutathione (GSH) and phytochelatins (PCs) that were more synthesized in shoots than roots. In summary, the root apoplast was not sufficiently effective to prevent Cd translocation from roots to shoot, but GSH and PCs provided good protection for the photosynthetic apparatus of both grasses.
Collapse
Affiliation(s)
- Flávio Henrique Silveira Rabêlo
- College of Agriculture Luiz de Queiroz, University of São Paulo, Piracicaba, Brazil
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | | | - Monica Lanzoni Rossi
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | - Małgorzata Wójcik
- Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Andrzej Bajguz
- Faculty of Biology and Chemistry, University of Bialystok, Białystok, Poland
| | | | - José Lavres
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | | | - Jaco Vangronsveld
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | | |
Collapse
|
29
|
Zuo S, Hu S, Rao J, Dong Q, Wang Z. Zinc promotes cadmium leaf excretion and translocation in tall fescue (Festuca arundinacea). CHEMOSPHERE 2021; 276:130186. [PMID: 33725620 DOI: 10.1016/j.chemosphere.2021.130186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Phytoexcretion is a novel strategy to remediate cadmium (Cd) pollution by leaf excretion in tall fescue (Festuca arundinacea), which involves the processes of Cd leaf excretion, root-to-leaf translocation, and root uptake. A hydroponic experiment was designed to investigate a series of 11 zinc (Zn) concentrations on Cd leaf excretion in tall fescue under 75 μM Cd stress. The results showed that the promotions of Zn on Cd leaf excretion, root-to-leaf translocation, and leaf accumulation were concentration-dependent in tall fescue. Zn treatments at 90 and 135 μM resulted in the highest Cd leaf excretion with 118.1 and 123.6 mg/kg of Cd excretion amount and 27.0 and 26.6% of excretion ratio, which were 2.6 and 2.7 fold of the control (15 μM of Zn), respectively. Cd leaf excretion was decreased when Zn treatments reached 180 μM, which could be toxic to plants as indicated by the decline of plant biomass. Zn also promoted leaf Cd accumulation and Cd translocation from roots to leaves and reached the highest at 90 and 180 μM respectively. Root Cd accumulation decreased with the increase of Zn concentrations, but the total plant Cd uptake did not decrease significantly until Zn concentration reached 90 μM. Our results indicate that 90 μM of Zn treatment can be served as the threshold to promote Cd leaf excretion and improve the efficiency of Cd phytoexcretion in tall fescue.
Collapse
Affiliation(s)
- ShaoFan Zuo
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, PR China
| | - Shuai Hu
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, PR China
| | - JinLiang Rao
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, PR China
| | - Qin Dong
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, PR China
| | - ZhaoLong Wang
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, PR China.
| |
Collapse
|
30
|
Wang YM, Liu Q, Li M, Yuan XY, Uchimiya M, Wang SW, Zhang ZY, Ji T, Wang Y, Zhao YY. Rhizospheric pore-water content predicts the biochar-attenuated accumulation, translocation, and toxicity of cadmium to lettuce. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111675. [PMID: 33396007 DOI: 10.1016/j.ecoenv.2020.111675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/25/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Metal bioavailability controls its behaviors in soil-plant system, especially involved in biochar amendment. This study compared a rhizospheric pore-water extraction against a BCR sequential extraction method to understand cadmium (Cd) bioavailability in two typical Chinese soils. Soils were spiked with five levels of Cd (CdCl2) and remediated with 3% corn-straw derived biochar. After 60 days of lettuce growth, Cd accumulation and enzyme activities in tissues were analyzed. Results showed that biochar increased soil properties (pH, CEC and SOM) compared to un-amended soils, but decreased contents of bioavailable Cd in soil pore-water (Cdpore-water) and BCR extracted Cd (CdFi+Fii). Contents of Cdpore-water were lower in yellow-brown soils than that in red soils. Pearson analysis showed that bioavailable Cd is negatively correlated with soil pH and CEC (p < 0.05). Cd accumulation in lettuce roots and leaves both were decreased by biochar addition, and the established linear equations proved that soil Cdpore-water is the best predictor for Cd accumulation in lettuce roots (r2 = 0.964) and in leaves (r2 = 0.953), followed by CdFi+Fii. Transfer factor (TF) values of Cd from roots to leaves were lower than 1, and slightly better correlated with soil Cdpore-water (r = -0.674, p < 0.01) than CdFi+Fii (r = -0.615, p < 0.01). Aggregated boosted tree (ABT) analyses indicated that soil properties together with Cdpore-water contribute more than 50% to root enzyme activities. Collectively, soil Cdpore-water is a promising predictor of Cd bioavailability, accumulation and toxicity in soil-plant system with biochar addition.
Collapse
Affiliation(s)
- Yi-Min Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Qing Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Ming Li
- Nanjing Institute of Environmental Science, Ministry of Environmental Protection of China, Nanjing 210042, PR China.
| | - Xu-Yin Yuan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Minori Uchimiya
- USDA-ARS Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124, United States
| | - Shao-Wei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Zhi-Yuan Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Tao Ji
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Ying Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yu-Yan Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
31
|
Adrees M, Khan ZS, Hafeez M, Rizwan M, Hussain K, Asrar M, Alyemeni MN, Wijaya L, Ali S. Foliar exposure of zinc oxide nanoparticles improved the growth of wheat (Triticum aestivum L.) and decreased cadmium concentration in grains under simultaneous Cd and water deficient stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111627. [PMID: 33396147 DOI: 10.1016/j.ecoenv.2020.111627] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 05/21/2023]
Abstract
A pot study was conducted to explore the effectiveness of zinc oxide nanoparticles (ZnO NPs) foliar exposure on growth and development of wheat, zinc (Zn) and cadmium (Cd) uptake in Cd-contaminated soil under various moisture conditions. Four different levels (0, 25, 50, 100 mg/L) of these NPs were foliar-applied at different time periods during the growth of wheat. Two soil moisture regimes (70% and 35% of water holding capacity) were maintained from 6 weeks of germination till plant harvesting. The results revealed that the growth of wheat increased with ZnO NPs treatments. The best results were found in 100 mg/L ZnO NPs under normal moisture level. The lowest Cd and highest Zn concentrations were also examined when 100 mg/L NPs were applied without water deficit stress. In grain, Cd concentrations decreased by 26%, 81% and 87% in normal moisture while in water deficit conditions, the Cd concentrations decreased by 35%, 66% and 81% compared to control treatment when ZnO NPs were used at 25, 50 and 100 mg/L. The foliar exposure of ZnO NPs boosted up the leaf chlorophyll contents and also decreased the oxidative stress and enhanced the leaf superoxide dismutase and peroxidase activities than the control. It can be suggested that foliar use of ZnO NPs might be an efficient way for increasing wheat growth and yield with maximum Zn and minimum Cd contents under drought stress while decreasing the chances of NPs movement to other environmental compartment which may be possible in soil applied NPs.
Collapse
Affiliation(s)
- Muhammad Adrees
- Department of Environmental Sciences and Engineering, Government College University, 38000 Faisalabad, Pakistan.
| | - Zahra Saeed Khan
- Department of Environmental Sciences and Engineering, Government College University, 38000 Faisalabad, Pakistan
| | - Muhammad Hafeez
- Department of Physics, University of Management & Technology, Johar Town, Lahore, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, 38000 Faisalabad, Pakistan
| | - Khalid Hussain
- Biochemistry Section, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Muhammad Asrar
- Department of Zoology, Government College University Faisalabad, 38000, Pakistan
| | - Mohammed Nasser Alyemeni
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Leonard Wijaya
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, 38000 Faisalabad, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
32
|
Waheed S, Ahmad R, Irshad M, Khan SA, Mahmood Q, Shahzad M. Ca 2SiO 4 chemigation reduces cadmium localization in the subcellular leaf fractions of spinach (Spinacia oleracea L.) under cadmium stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111230. [PMID: 32898815 DOI: 10.1016/j.ecoenv.2020.111230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
Heavy metal like cadmium (Cd) is inessential and highly toxic and is posing serious environmental problems for agriculture worldwide. Presence of Cd gives rise to several physiological and structural disorders that leads to reduction in growth and performance of agricultural plants. Evidence related to subcellular distribution and accumulation of Cd is still enigmatic. Experiment was conducted using hydroponic culture to examine the subcellular accumulation of Cd in Spinacia oleracea L. leaves under Cd stress (50 μM and 100 μM); moreover, the Cd toxicity alleviation using 5 mM silicon (Si) was investigated. Our findings suggest that fresh and dry biomass, shoot and root length, leaf area and length of leaf declined when exposed to Cd stress (50 μM and 100 μM); however, an increase was noticed when Cd treated plants were supplied with Si (5 mM). The content of Ca2+, Mg2+ and Fe2+ in apoplastic washing fluid and symplasm were found to be lower in plants treated with alone Cd, when compared to control. Higher Cd2+:Ca2+, Cd2+:Fe2+ and Cd2+:Mg2+ ratios were detected under cadmium stress in both apoplast and symplast of leaves which were lowered by the addition of 5 mM Si. The novelty of the current study is the detection of increased apoplastic and symplastic Cd concentration in aerial part (i.e., spinach leaves) under alone Cd treatment which was considerably reduced when supplied with Si. Moreover, a noticeable increase in spinach growth and beneficial ionic concentrations suggest that Si can ameliorate the Cd stress in crop plants.
Collapse
Affiliation(s)
- Shumail Waheed
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Rafiq Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Muhammad Irshad
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Sabaz Ali Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Qaisar Mahmood
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Muhammad Shahzad
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan.
| |
Collapse
|
33
|
Zhang H, Xu Z, Guo K, Huo Y, He G, Sun H, Guan Y, Xu N, Yang W, Sun G. Toxic effects of heavy metal Cd and Zn on chlorophyll, carotenoid metabolism and photosynthetic function in tobacco leaves revealed by physiological and proteomics analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110856. [PMID: 32629202 DOI: 10.1016/j.ecoenv.2020.110856] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 05/18/2023]
Abstract
To explore the mechanisms underlying the action of the heavy metals Cd and Zn on the photosynthetic function of plant leaves, the effects of 100 μmol L-1 Cd and 200 μmol L-1 Zn stress (the exposure concentrations of Cd and Zn in the culture medium were 2.24 mg kg-1 and 5.36 mg kg-1) on the chlorophyll and carotenoid contents as well as the photosynthetic function of tobacco leaves (Long Jiang 911) were studied. The key proteins in these physiological processes were quantitatively analyzed using a TMT-based proteomics approach. Cd stress was found to inhibit the expression of key enzymes during chlorophyll synthesis in leaves, resulting in a decrease of the Chl content. However, Zn stress did not significantly influence the chlorophyll content. Leaves adapted to Zn stress by upregulating CAO expression and increase the Chl b content. Although the Car content in leaves did not significantly change under either Cd or Zn stress, the expressions of ZE and VDE during Car metabolism decreased significantly under Cd stress. This was accompanied by damages to the xanthophyll cycle and the NPQ-dependent energy dissipation mechanism. In contrast, under Zn stress, leaves adapted to Zn stress by increasing the expression of VDE, thus improving NPQ. Under Cd stress, the expressions of three sets of proteins were significantly down-regulated, including PSII donor-side proteins (PPD3, PPD6, OEE1, OEE2-1, OEE2-2, OEE2-3, and OEE3-2), receptor-side proteins (D1, D2, CP43, CP47, Cyt b559α, Cyt b559β, PsbL, PsbQ, PsbR, Psb27-H1, and Psb28), and core proteins of the PSI reaction center (psaA, psaB, psaC, psaD, psaE-A, PsaE-B, psaF, psaG, psaH-1, psaK, psaL, psaN, and psaOL). In comparison, only eight of the above proteins (PPD6, OEE3-2, PsbL, PsbQ, Psb27-H1, psaL, and psaOL) were significantly down-regulated by Zn stress. Under Cd stress, both the donor side and the receptor side of PSII were damaged, and PSII and PSI experienced severe photoinhibition. However, Zn stress did not decrease either PSII or PSI activities in tobacco leaves. In addition, the expression of electron transport-related proteins (cytb6/f complex, PC, Fd, and FNR), ATPase subunits, Rubisco subunits, and RCA decreased significantly in leaves under Cd stress. However, no significant changes were observed in any of these proteins under Zn stress. Although Cd stress was found to up-regulate the expressions of PGRL1A and PGRL1B and induce an increase of PGR5/PGRL1-CEF in tobacco leaves, NDH-CEF was significantly inhibited. Under Zn stress, the expressions of ndhH and PGRL1A in leaves were significantly up-regulated, but there were no significant changes in either NDH-CEF or PGR5/PGRL-CEF. Under Cd stress, the expressions of proteins related to Fd-dependent nitrogen metabolism and reactive oxygen species (ROS) scavenging processes (e.g., FTR, Fd-NiR, and Fd-GOGAT) were significantly down-regulated in leaves. However, no significant changes of any of the above proteins were identified under Zn stress. In summary, Cd stress could inhibit the synthesis of chlorophyll in tobacco leaves, significantly down-regulate the expressions of photosynthesis-related proteins or subunits, and suppress both the xanthophyll cycle and NDH-CEF process. The expressions of proteins related to the Fd-dependent nitrogen metabolism and ROS scavenging were also significantly down-regulated, which blocked the photosynthetic electron transport, thus resulting in severe photoinhibition of both PSII and PSI. However, Zn stress had little effect on the photosynthetic function of tobacco leaves.
Collapse
Affiliation(s)
- Huihui Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Zisong Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Kaiwen Guo
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yuze Huo
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Guoqiang He
- Mudanjiang Tobacco Science Research Institute, Mudanjiang, Heilongjiang, China
| | - Hongwei Sun
- Mudanjiang Tobacco Science Research Institute, Mudanjiang, Heilongjiang, China
| | - Yupeng Guan
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Nan Xu
- Natural Resources and Ecology Institute, Heilongjiang Sciences Academy, Harbin, Heilongjiang, China
| | - Wei Yang
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China.
| | - Guangyu Sun
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China.
| |
Collapse
|
34
|
He C, Zhao Y, Wang F, Oh K, Zhao Z, Wu C, Zhang X, Chen X, Liu X. Phytoremediation of soil heavy metals (Cd and Zn) by castor seedlings: Tolerance, accumulation and subcellular distribution. CHEMOSPHERE 2020; 252:126471. [PMID: 32220713 DOI: 10.1016/j.chemosphere.2020.126471] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 06/10/2023]
Abstract
Cd and Zn pollution was observed to often occur simultaneously in soils. However, previous studies focused on single heavy metal instead of Cd and Zn combined pollution. Castor (Ricinus communis) is considered to have great potential for contaminated soil remediation. The resistance of castor seedlings to heavy metals and the mechanism behind it remain unknown. In this study, the tolerance and accumulation ability of castor seedlings to Cd and Zn were investigated, and the accumulation mechanism involving the subcellular distribution in different tissues was further explored. The results on biomass and chlorophyll revealed that castor seedlings have good tolerance to the pollution with 0-5 mg/kg Cd and 380 mg/kg Zn, while not to the heavy pollution with 25 mg/kg Cd and 380 mg/kg Zn. The maximum accumulation concentrations of Cd and Zn, 175.3 mg Cd/kg and 386.8 mg/kg Zn, appeared in castor seedling root instead of stem and leaf, indicating that root played a significant part in accumulating Zn and Cd. The relative low dosage of Cd (0-5 mg/kg) promoted the accumulation of Zn in the subcellular component, while high dosage (25 mg/kg) inhibited the accumulation of Zn. In subcellular accumulation and distribution of castor seedlings, Cd (27.1%-69.4%) and Zn (39.6%-66.6%) in the cell wall was the highest. With the increase of Cd addition, the accumulation of Cd increased in cell wall while decreased in organelle and soluble fraction. Hydroxyl, amino, amides and carboxyl functional groups on cell wall might provided the main binding sites for Cd and Zn.
Collapse
Affiliation(s)
- Chiquan He
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Yanping Zhao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Feifei Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China.
| | - Kokyo Oh
- Center for Environmental Science in Saitama, 914 Kamitanadare, Kisai, Saitama, 347-0115, Japan
| | - Zhenzhen Zhao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Changlu Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Xinying Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Xueping Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Xiaoyan Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| |
Collapse
|
35
|
Gao J, Zhao T, Tsang DCW, Zhao N, Wei H, Feng M, Liu K, Zhang W, Qiu R. Effects of Zn in sludge-derived biochar on Cd immobilization and biological uptake by lettuce. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136721. [PMID: 31978776 DOI: 10.1016/j.scitotenv.2020.136721] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Considering the high Zn content of municipal sewage sludge and its competition with Cd during plant uptake due to their similar properties, the presence of Zn in sludge-derived biochar (SDBC) may affect Cd immobilization and uptake by plants. To confirm this, SDBC samples with different Zn contents were prepared and characterized. Their Cd immobilization behavior was studied by conducting batch sorption experiments, and their effects on Cd uptake by lettuce were explored by conducting hydroponic experiments. The results reveal that some Zn contained in the sewage sludge was transformed into ZnO during pyrolysis. The Brunauer-Emmett-Teller (BET) surface area of the SDBC samples containing 2324 mg kg-1 Zn (BC-2324) was 18.3 m2 g-1, which was 132% larger than that of the samples containing 1438 mg kg-1 Zn (BC-1438). The SDBC samples containing 1901 mg kg-1 (BC-1901) exhibited the highest Langmuir sorption capacity of 3476 mg kg-1, which is 115% higher than that of SB-1438. Furthermore, the lettuce remedied with SB-1901 exhibited 44% more biomass; lower peroxidase, catalase, and malondialdehyde activity; and 18.4% less Cd in the leaves of the lettuce than the lettuce remedied with BC-1438, suggesting the potential benefits of using Zn-rich SDBC for soil amendment.
Collapse
Affiliation(s)
- Jia Gao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Tuokun Zhao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Nan Zhao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Hang Wei
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Mingyu Feng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Kunyuan Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Weihua Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Guangzhou 510275, China; Shenzhen Research Institute, Sun Yat-sen University, Shenzhen 518057, China.
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Guangzhou 510275, China
| |
Collapse
|
36
|
Piacentini D, Corpas FJ, D'Angeli S, Altamura MM, Falasca G. Cadmium and arsenic-induced-stress differentially modulates Arabidopsis root architecture, peroxisome distribution, enzymatic activities and their nitric oxide content. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 148:312-323. [PMID: 32000108 DOI: 10.1016/j.plaphy.2020.01.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/18/2019] [Accepted: 01/17/2020] [Indexed: 05/21/2023]
Abstract
In plant cells, cadmium (Cd) and arsenic (As) exert toxicity mainly by inducing oxidative stress through an imbalance between the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), and their detoxification. Nitric oxide (NO) is a RNS acting as signalling molecule coordinating plant development and stress responses, but also as oxidative stress inducer, depending on its cellular concentration. Peroxisomes are versatile organelles involved in plant metabolism and signalling, with a role in cellular redox balance thanks to their antioxidant enzymes, and their RNS (mainly NO) and ROS. This study analysed Cd or As effects on peroxisomes, and NO production and distribution in the root system, including primary root (PR) and lateral roots (LRs). Arabidopsis thaliana wild-type and transgenic plants enabling peroxisomes to be visualized in vivo, through the expression of the 35S-cyan fluorescent protein fused to the peroxisomal targeting signal1 (PTS1) were used. Peroxisomal enzymatic activities including the antioxidant catalase, the H2O2-generating glycolate oxidase, and the hydroxypyruvate reductase, and root system morphology were also evaluated under Cd/As exposure. Results showed that Cd and As differently modulate these activities, however, catalase activity was inhibited by both. Moreover, Arabidopsis root system was altered, with the pollutants differently affecting PR growth, but similarly enhancing LR formation. Only in the PR apex, and not in LR one, Cd more than As caused significant changes in peroxisome distribution, size, and in peroxisomal NO content. By contrast, neither pollutant caused significant changes in peroxisomes size and peroxisomal NO content in the LR apex.
Collapse
Affiliation(s)
- D Piacentini
- Department of Environmental Biology, "Sapienza" University of Rome, Italy
| | - F J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/Profesor Albareda 1, E-18008, Granada, Spain
| | - S D'Angeli
- Department of Environmental Biology, "Sapienza" University of Rome, Italy
| | - M M Altamura
- Department of Environmental Biology, "Sapienza" University of Rome, Italy.
| | - G Falasca
- Department of Environmental Biology, "Sapienza" University of Rome, Italy.
| |
Collapse
|
37
|
Ju C, Zhang H, Wu R, Dong S, Yao S, Wang F, Cao D, Xu S, Fang H, Yu Y. Upward translocation of acetochlor and atrazine in wheat plants depends on their distribution in roots. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135636. [PMID: 31771841 DOI: 10.1016/j.scitotenv.2019.135636] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Residual acetochlor and atrazine in soils, resulting from their extensive application to maize plants, may affect product safety of the ultimate wheat crop. To determine the potential uptake and accumulation of acetochlor and atrazine by wheat plants, the uptake mechanism, translocation, and subcellular distribution of these two herbicides were studied through hydroponic experiments (10 mg L-1). The results indicated that acetochlor can be taken up through the apoplastic pathway and can accumulate in wheat roots with little upward translocation. However, atrazine could be taken up by roots through the symplastic pathway and subsequently transported to the stems and leaves. Little upward translocation of acetochlor in wheat plants was due to its preferential distribution into root organelles with higher lipid contents. Conversely, the low bioconcentration of atrazine in root organelles and cell walls after uptake led to its easy upward translocation. Uptake of acetochlor and atrazine by wheat roots and the distribution of atrazine to the stems and leaves were predicted well by using the partition-limited model. The obtained results indicated that residual atrazine in soil may be taken up by wheat roots and acropetally translocated, thereby posing a threat to product safety of wheat.
Collapse
Affiliation(s)
- Chao Ju
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, China; The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310029, China; The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Hongchao Zhang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, China; The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Ruilin Wu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, China; The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310029, China
| | - Suxia Dong
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, China; The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Shijie Yao
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, China; The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Feiyan Wang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, China; The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310029, China
| | - Duantao Cao
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, China; The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310029, China
| | - Shiji Xu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, China; The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, China; The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310029, China; The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, China; The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310029, China; The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China.
| |
Collapse
|
38
|
de Melo Farnezi MM, de Barros Silva E, Lopes dos Santos L, Christofaro Silva A, Grazziotti PH, Taline Prochnow J, Marinho Pereira I, da Costa Ilhéu Fontan I. Potential of Grasses in Phytolith Production in Soils Contaminated with Cadmium. PLANTS 2020; 9:plants9010109. [PMID: 31952246 PMCID: PMC7020210 DOI: 10.3390/plants9010109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/01/2020] [Accepted: 01/13/2020] [Indexed: 11/16/2022]
Abstract
Cadmium (Cd) is a very toxic heavy metal occurring in places with anthropogenic activities, making it one of the most important environmental pollutants. Phytoremediation plants are used for recovery of metal-contaminated soils by their ability to absorb and tolerate high concentrations of heavy metals. This paper aims to evaluate the potential of grasses in phytolith production in soils contaminated with Cd. The experiments, separated by soil types (Typic Quartzipsamment, Xanthic Hapludox and Rhodic Hapludox), were conducted in a completely randomized design with a distribution of treatments in a 3 × 4 factorial scheme with three replications. The factors were three grasses (Urochloa decumbens, Urochloa brizantha andMegathyrsus maximus) and four concentrations of Cd applied in soils (0, 2, 4 and 12 mg kg−1). Grass growth decreased and increased Cd concentration in shoots of grasses with the increased Cd rates in soils. The toxic effect of Cd resulted in production and Cd occlusion in phytoliths produced in shoots of the grasses. Grasses showed potential for phytolith production, independent of soil type, providing phytoextraction of Cd in phytoliths. Megathyrsus maximus was the grass with the highest tolerance to Cd, evidenced by higher production and Cd capture in phytoliths for the evaluated soils. Phytolith production by grasses in Cd-contaminated soils is related to genetic and physiological differences of the evaluated grasses and Cd availability in soils.
Collapse
Affiliation(s)
- Múcio Mágno de Melo Farnezi
- Federal University of the Jequitinhonha and Mucuri Valley (UFVJM), Campus JK, Diamantina 39.100-000, Minas Gerais, Brazil; (M.M.d.M.F.); (L.L.d.S.); (A.C.S.); (P.H.G.); (J.T.P.); (I.M.P.)
| | - Enilson de Barros Silva
- Federal University of the Jequitinhonha and Mucuri Valley (UFVJM), Campus JK, Diamantina 39.100-000, Minas Gerais, Brazil; (M.M.d.M.F.); (L.L.d.S.); (A.C.S.); (P.H.G.); (J.T.P.); (I.M.P.)
- Correspondence:
| | - Lauana Lopes dos Santos
- Federal University of the Jequitinhonha and Mucuri Valley (UFVJM), Campus JK, Diamantina 39.100-000, Minas Gerais, Brazil; (M.M.d.M.F.); (L.L.d.S.); (A.C.S.); (P.H.G.); (J.T.P.); (I.M.P.)
| | - Alexandre Christofaro Silva
- Federal University of the Jequitinhonha and Mucuri Valley (UFVJM), Campus JK, Diamantina 39.100-000, Minas Gerais, Brazil; (M.M.d.M.F.); (L.L.d.S.); (A.C.S.); (P.H.G.); (J.T.P.); (I.M.P.)
| | - Paulo Henrique Grazziotti
- Federal University of the Jequitinhonha and Mucuri Valley (UFVJM), Campus JK, Diamantina 39.100-000, Minas Gerais, Brazil; (M.M.d.M.F.); (L.L.d.S.); (A.C.S.); (P.H.G.); (J.T.P.); (I.M.P.)
| | - Jeissica Taline Prochnow
- Federal University of the Jequitinhonha and Mucuri Valley (UFVJM), Campus JK, Diamantina 39.100-000, Minas Gerais, Brazil; (M.M.d.M.F.); (L.L.d.S.); (A.C.S.); (P.H.G.); (J.T.P.); (I.M.P.)
| | - Israel Marinho Pereira
- Federal University of the Jequitinhonha and Mucuri Valley (UFVJM), Campus JK, Diamantina 39.100-000, Minas Gerais, Brazil; (M.M.d.M.F.); (L.L.d.S.); (A.C.S.); (P.H.G.); (J.T.P.); (I.M.P.)
| | - Ivan da Costa Ilhéu Fontan
- Federal Institute of Minas Gerais - Campus São João Evangelista, Av. Primeiro de Junho, 1043, Centro, São João Evangelista 39.705-000, Minas Gerais, Brazil;
| |
Collapse
|
39
|
Mossa AW, Young SD, Crout NMJ. Zinc uptake and phyto-toxicity: Comparing intensity- and capacity-based drivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134314. [PMID: 31678875 DOI: 10.1016/j.scitotenv.2019.134314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Metal bioavailability and phytotoxicity may be exaggerated when derived from studies based on amending soils with soluble metal salts. It is therefore important to evaluate soil tests for their consistency in estimating plant uptake and phytotoxicity in both field-contaminated and freshly-spiked soils. This study aimed to compare the effects of zinc (Zn) on plant growth in soils (i) recently spiked with soluble Zn and (ii) historically amended with biosolids. The objective was to reconcile methods for determining bioavailability in both cases by testing a range of 'quantity-based' and 'intensity-based' assays. Soils with a range of Zn concentrations, from an arable farm used for biosolids disposal for over a century, were further amended with Zn added in solution, and were incubated for one month prior to planting with barley seeds in a glasshouse pot trial. The majority (67-90%) of the added Zn remained isotopically exchangeable after 60 days. Zinc in the solution phase of a soil suspension was present mainly as free Zn2+ ions. Cadmium bioaccumulation factors were inversely proportional to Zn concentration in the soil solution confirming that greater Zn availability suppressed Cd uptake by plants. Measurements of soil Zn 'quantities' (total, EDTA-extractable and isotopically exchangeable) and 'intensity' (solution concentration and free ion activity) were correlated with Zn uptake and toxicity by barley plants. Correlations using Zn intensity were much stronger than those using quantity-based measurements. The free Zn2+ ion activity appears to be a consistent driver for plant uptake and phytotoxic response for both metal-spiked soils and historically contaminated soils. Surprisingly, soil Zn accumulation of up to 100 times the current regulations for normal arable land only produced a mild toxic response suggesting that constituents in biosolids (e.g. organic matter and phosphates) strongly restrict metal bioavailability.
Collapse
Affiliation(s)
- Abdul-Wahab Mossa
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK
| | - Scott D Young
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK.
| | - Neil M J Crout
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK
| |
Collapse
|
40
|
Zhang W, Yue S, Song J, Xun M, Han M, Yang H. MhNRAMP1 From Malus hupehensis Exacerbates Cell Death by Accelerating Cd Uptake in Tobacco and Apple Calli. FRONTIERS IN PLANT SCIENCE 2020; 11:957. [PMID: 32733509 PMCID: PMC7358555 DOI: 10.3389/fpls.2020.00957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/10/2020] [Indexed: 05/14/2023]
Abstract
Excessive cadmium (Cd) damages plants by causing cell death. The present study discusses the function of natural resistance-associated macrophage protein (NRAMP) on cell death caused by Cd in Malus hupehensis. MhNRAMP1 was isolated from M. hupehensis roots, and its protein was located in the cell membrane as a transmembrane protein characterized by hydrophobicity. MhNRAMP1 expression in the roots was induced by Cd stress and calcium (Ca) deficiency. MhNRAMP1 overexpression increased Cd concentration in yeasts and enhanced their sensitivity to Cd. Phenotypic comparisons of plants under Cd stress revealed that the growth of transgenic tobacco and apple calli overexpressing MhNRAMP1 was worse than that of the wild type (WT). The Cd2+ influx of transgenic tobacco roots and apple calli was higher, and the recovery time of the Cd2+ influx to a stable state in transgenic apple calli was longer than that of the WT. Cd accumulation and the percentage of apoptotic cells in transgenic lines were higher. Correspondingly, the caspase-1-like and vacuolar processing enzyme (VPE) activities and MdVPEγ expression were higher in transgenic apple calli, but the expression levels of genes that inhibit cell death were lower than those in the WT under Cd stress. Moreover, the Cd translocation from the roots to leaves was increased after MhNRAMP1 overexpression, but the Cd translocation from the leaves to seeds was not affected. These results suggest that MhNRMAP1 exacerbated Cd-induced cell death, which was accomplished by mediating Cd2+ uptake and accumulation, as well as stimulating VPE.
Collapse
Affiliation(s)
- Weiwei Zhang
- *Correspondence: Weiwei Zhang, ; Hongqiang Yang,
| | | | | | | | | | | |
Collapse
|
41
|
Zhou Z, Zhang B, Liu H, Liang X, Ma W, Shi Z, Yang S. Zinc effects on cadmium toxicity in two wheat varieties (Triticum aestivum L.) differing in grain cadmium accumulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109562. [PMID: 31437726 DOI: 10.1016/j.ecoenv.2019.109562] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/07/2019] [Accepted: 08/11/2019] [Indexed: 05/27/2023]
Abstract
Presence of cadmium (Cd) in food poses serious risks to human health. Understanding the effects of zinc (Zn) on Cd absorption by crops could help provide a theoretical basis for the treatment with Zn on contaminated soils. In this study, two wheat varieties, differing in grain-Cd accumulation ability (L979, a Cd low-accumulation variety, and H27, a high-accumulation variety) were selected to investigate the effect of Zn addition on Cd toxicity. Cd was applied to nutrient solutions at 0 and 10 μM, and added Zn were 0, 50 and 100 μM. Zn supplements alleviated decreases in biomass induced by Cd toxicity for both varieties, and both varieties had different reduced concentrations of Cd in their shoots. Application of 50 μM Zn to H27 resulted in a 17% decrease in Cd concentrations. When treated with 100 μM Zn, only L979 showed a reduction in Cd concentration. The higher proportion of Cd in the soluble fraction was found in L979. In addition, ion-selective scanning at the root-surface indicated that Zn supplements reduced net root Cd2+ flux by 55% for L979, and 69% for H27. These mitigating effects of Zn in both varieties involved mechanisms related to photosynthesis, root growth, and antioxidant production. Additionally, both Zn available in the medium and absorbed in plant tissue causes antagonistic effects on Cd absorption for wheat. It seemed that vacuolar compartmentation could contribute Cd detoxification especially for low accumulation variety.
Collapse
Affiliation(s)
- Zhen Zhou
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Biao Zhang
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China.
| | - Haitao Liu
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Xiaodong Liang
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Wenlian Ma
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Zhenya Shi
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Suqin Yang
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, PR China.
| |
Collapse
|
42
|
Cai Y, Xu W, Wang M, Chen W, Li X, Li Y, Cai Y. Mechanisms and uncertainties of Zn supply on regulating rice Cd uptake. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:959-965. [PMID: 31351304 DOI: 10.1016/j.envpol.2019.07.077] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 05/27/2023]
Abstract
Application of Zinc (Zn) is considered an effective measure to reduce Cadmium (Cd) uptake and toxicity in Cd-contaminated soils for many plant species. However, interaction between Zn and Cd in rice plant is complex and uncertain. In this study, four indica rice cultivars were selected to evaluate the effect of Zn exposure in an EGTA-buffered nutrient solution under varying Zn activities and a field level of Cd activity to characterize the interaction between Zn and Cd in rice. Severe depression in shoots' biomass, tiller number, and SPAD (Soil and Plant Analyzer Development) value were found at both Zn deficiency and Zn phytotoxicity levels among four tested rice cultivars. There existed a strong antagonism interaction between Zn and Cd in both shoot and root from Zn deficiency to Zn phytotoxicity. The reduction of Cd accumulation in roots and shoots could be explained by the competition between Zn and Cd as well as the dilution effect of increasing biomass. The conflicting effect of Zn supply on Cd uptake may be attributed to the increasing transfer ratio of Cd from root to shoot with the increasing Zn2+ activities and the strong depression of Fe and Mn in shoots with the increasing Zn2+ activities as well as the variation of genotypes. Balance between Zn and Cd should be considered in field application.
Collapse
Affiliation(s)
- Yimin Cai
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weibiao Xu
- Jiangxi Super-rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Laboratory for Rice, Nanchang, 330200, China
| | - Meie Wang
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Weiping Chen
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Xuzhi Li
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Yonghui Li
- Jiangxi Super-rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Laboratory for Rice, Nanchang, 330200, China
| | - Yaohui Cai
- Jiangxi Super-rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Laboratory for Rice, Nanchang, 330200, China
| |
Collapse
|
43
|
McBride MB, Zhou Y. Cadmium and zinc bioaccumulation by Phytolacca americana from hydroponic media and contaminated soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:1215-1224. [PMID: 31099251 DOI: 10.1080/15226514.2019.1612849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hydroponic, greenhouse and field experiments were conducted to explore the potential of pokeweed (Phytolacca americana L.) to accumulate Zn and Cd from nutrient solutions and contaminated soils. The hydroponic results confirmed that this native species is a strong Zn and Cd bioaccumulator that does not experience severe phytotoxicity until quite high root and shoot concentrations, approaching 4000 and 1600 mg kg-1 of Zn, and 1500 and 500 mg kg-1 of Cd, respectively. These high Zn and Cd concentrations were accompanied by increased sulfur and lower manganese in both shoots and roots. However, in field and greenhouse trials with soils historically contaminated by a number of heavy metals including Zn and Cd, concentrations of Zn and Cd in shoots of P. americana reached concentrations less than 30% and 10%, respectively, of those achieved with hydroponics. The main constraint to phytoremediation of soils by P. americana was the low concentrations of Zn and Cd in soil solution. Pretreatment of the metal-contaminated soil by oxalic acid increased soluble Cd and Zn but failed to increase plant uptake of either metal, a possible result of higher solubility of competing metal ions (Cu, Mn) or low bioavailability of Cd and Zn-oxalate complexes.
Collapse
Affiliation(s)
- Murray B McBride
- Section of Soil and Crop Sciences, Cornell University , Ithaca , NY , USA
| | - Yuting Zhou
- International Joint Research Center for Persistent Toxic Substances, College of Environmental and Resource Sciences, Zhejiang University , Hangzhou , China
| |
Collapse
|
44
|
Abid R, Manzoor M, De Oliveira LM, da Silva E, Rathinasabapathi B, Rensing C, Mahmood S, Liu X, Ma LQ. Interactive effects of As, Cd and Zn on their uptake and oxidative stress in As-hyperaccumulator Pteris vittata. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:756-762. [PMID: 30851585 DOI: 10.1016/j.envpol.2019.02.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/16/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
The effects of arsenic (As), cadmium (Cd) and zinc (Zn) on each other's uptake and oxidative stress in As-hyperaccumulator Pteris vittata were investigated. P. vittata plants were exposed to 50 μM As, Cd and/or Zn for 15 d in 0.2-strength Hoagland solution. When applied alone, P. vittata accumulated 185 mg kg-1 As, 164 mg kg-1 Cd and 327 mg kg-1 Zn in the fronds. While Cd and Zn did not impact each other's uptake, As affected Cd and Zn uptake. Whereas As decreased Zn uptake, Zn affected As speciation in P. vittata fronds, with more arsenate (AsV) than arsenite (AsIII) being present. At 50 μM As, 75 μM Zn increased As accumulation in P. vittata fronds by 10 folds to 2363 mg kg-1 compared to 50 μM Zn. Although AsV was the predominant As species in all tissues, Cd enhanced AsIII levels in the fronds but increased AsV in the roots. Co-exposure of Cd + Zn elevated oxidative stress basing on thiobarbituric acid reactive substances, H2O2 content, Evans blue dye uptake, membrane injury index and reactive oxygen species (ROS) relative to single metal. By lowering Cd and Zn concentrations in P. vittata fronds, As reduced the associated stress comparative to Cd or Zn treatment. The results enhance our understanding of the mechanisms underlying the interactions between As, Cd and Zn in As-hyperaccumulator P. vittata.
Collapse
Affiliation(s)
- Rafia Abid
- Institute of Environmental Remediation and Human Health, Southwest Forestry University, Kunming, 650224, China; Soil and Water Science Department, University of Florida, Gainesville, FL, 32611, USA; Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Maria Manzoor
- Soil and Water Science Department, University of Florida, Gainesville, FL, 32611, USA; Institute of Environmental Sciences and Engineering, National University of Science and Technology, Islamabad, Pakistan
| | - Letuzia M De Oliveira
- Soil and Water Science Department, University of Florida, Gainesville, FL, 32611, USA
| | - Evandro da Silva
- Institute of Environmental Remediation and Human Health, Southwest Forestry University, Kunming, 650224, China; Soil and Water Science Department, University of Florida, Gainesville, FL, 32611, USA
| | - Bala Rathinasabapathi
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Christopher Rensing
- Institute of Environmental Remediation and Human Health, Southwest Forestry University, Kunming, 650224, China; Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Seema Mahmood
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Xue Liu
- Institute of Environmental Remediation and Human Health, Southwest Forestry University, Kunming, 650224, China.
| | - Lena Q Ma
- Institute of Environmental Remediation and Human Health, Southwest Forestry University, Kunming, 650224, China; Soil and Water Science Department, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
45
|
Lavres J, Silveira Rabêlo FH, Capaldi FR, Dos Reis AR, Rosssi ML, Franco MR, Azevedo RA, Abreu-Junior CH, de Lima Nogueira N. Investigation into the relationship among Cd bioaccumulation, nutrient composition, ultrastructural changes and antioxidative metabolism in lettuce genotypes under Cd stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:578-589. [PMID: 30576893 DOI: 10.1016/j.ecoenv.2018.12.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/03/2018] [Accepted: 12/11/2018] [Indexed: 05/11/2023]
Abstract
Lettuce (Lactuca sativa L.) is known to have high cadmium (Cd) concentrations in its shoots, which makes it necessary to protect against Cd toxicity. Understanding Cd-induced physiological responses in lettuce plants can contribute to the definition of useful strategies to decrease Cd uptake. This study aimed to gain new insights into Cd-induced stress by measuring Cd bioaccumulation, nutrient composition, anatomical and ultrastructural changes, and antioxidative metabolism in three lettuce genotypes characterized as having different degrees of Cd tolerance (Vanda = low, Lidia = medium and Stela = high). Plants were grown hydroponically with Cd concentrations of 0.0 and 0.1 or 0.5 μmol L-1, for 30 days. Cadmium uptake in the lettuce genotypes assayed is controlled by the root/shoot ratio, higher root/shoot ratios allowing greater Cd uptake. The Fe and Ni content increased in shoots of the genotype Lidia, which could be associated with a decrease in oxidative stress in chloroplasts due to superoxide dismutase (SOD) isozyme activity. Cadmium-induced oxidative stress is associated with de-structuring of the phloem and xylem in roots, and starch grain and plastoglobule accumulation in chloroplasts. Lettuce genotypes that presented higher SOD and ascorbate peroxidase (APX) activity presented better preserved anatomical structures. These results suggest that genotypes with less efficient antioxidant defence in the roots tend to take up more Cd, increasing root-to-shoot Cd translocation.
Collapse
Affiliation(s)
- José Lavres
- Centre for Nuclear Energy in Agriculture, University of Sao Paulo, 13416-000 Piracicaba, Brazil.
| | | | - Flávia Regina Capaldi
- Luiz de Queiroz College of Agriculture, University of Sao Paulo, 13418-900 Piracicaba, Brazil
| | | | - Monica Lanzoni Rosssi
- Centre for Nuclear Energy in Agriculture, University of Sao Paulo, 13416-000 Piracicaba, Brazil
| | - Mônica Regina Franco
- Luiz de Queiroz College of Agriculture, University of Sao Paulo, 13418-900 Piracicaba, Brazil
| | - Ricardo Antunes Azevedo
- Luiz de Queiroz College of Agriculture, University of Sao Paulo, 13418-900 Piracicaba, Brazil
| | | | - Neusa de Lima Nogueira
- Centre for Nuclear Energy in Agriculture, University of Sao Paulo, 13416-000 Piracicaba, Brazil
| |
Collapse
|
46
|
Chen B, Tan S, Zeng Q, Wang A, Zheng H. Soil nutrient heterogeneity affects the accumulation and transfer of cadmium in Bermuda grass (Cynodon dactylon (L.) pers.). CHEMOSPHERE 2019; 221:342-348. [PMID: 30641375 DOI: 10.1016/j.chemosphere.2019.01.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/03/2019] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
There have been no studies demonstrating the correlation between soil nutrient heterogeneity and cadmium (Cd) absorption of Bermudagrass. In this study, a pot experiment was carried out to study the correlation between them. The purpose is to find soil nutrient factors which are conducive to improving the Cd absorption and translocation. The eighth group had the largest total number of surviving plants, the highest Fv/Fo value (3.24) and the best growth characteristics. The fifth group had the lowest total number of surviving plants, Fv/Fo (2.47) and the worst growth. The Cd content of the fifth group (36.11 mg kg-1) was close to the eighth group (35.72 mg kg-1), but the two groups had significant differences in plant height, stem node length and stem node number (P < 0.05). The eighth group showed the highest contents of nitrate nitrogen (NO3--N), available potassium and urease activity. The fifth group showed the lowest NO3--N content, but the highest ammonium nitrogen (NH4+-N) and available phosphorus content. There was significant difference of the Cd bioconcentration factors (BCF) and translocation factor (TCF) between the fifth and the eighth group although they had the similar total soil Cd content (P < 0.05). The fifth group had the highest BCF and TCF. RDA analysis indicated the BCF and TCF were positively correlated with soil NH4+-N and available phosphorus and negatively correlated with soil NO3--N. The results demonstrated that soil NH4+-N and available phosphorus were important soil ecological factors to enhance Cd absorption and translocation of bermudagrass.
Collapse
Affiliation(s)
- Bin Chen
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Shuduan Tan
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| | - Qingru Zeng
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Andong Wang
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Huabin Zheng
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
47
|
Zorrig W, Cornu JY, Maisonneuve B, Rouached A, Sarrobert C, Shahzad Z, Abdelly C, Davidian JC, Berthomieu P. Genetic analysis of cadmium accumulation in lettuce (Lactuca sativa). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 136:67-75. [PMID: 30658286 DOI: 10.1016/j.plaphy.2019.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 05/01/2023]
Abstract
This work characterized mechanisms controlling cadmium (Cd) tolerance and accumulation in lettuce at both the physiological and genetic levels. These traits were evaluated in 18 Lactuca accessions representing a large genetic diversity. Cd tolerance and accumulation in roots and shoots as well as Cd translocation from roots to the shoot varied independently, and with a significant range of variation. Analyses of F1 progenies of crosses between cultivars with contrasted phenotypes showed that high tolerance to Cd, low Cd accumulation and low Cd root-shoot translocation were recessive traits. Results of analyses of F2 progenies of different crosses suggest that root Cd concentration and root-shoot Cd translocation were under a complex genetic determinism involving at least two loci. This work thus revealed that limiting both Cd accumulation and Cd root-shoot translocation in lettuce is possible and depends on recessive loci. Differences in the ability to accumulate Cd in roots in the long term could not be linked to differences in short-term 109Cd uptake into, or efflux from, roots. In contrast, the cultivar with the highest root-shoot Cd translocation was the same in the long term and in the short term, which suggests that this trait relies on processes that are implemented quickly (i.e. in less than three days) after the start of Cd exposure.
Collapse
Affiliation(s)
- Walid Zorrig
- BPMP, Montpellier SupAgro, CNRS, INRA, Université de Montpellier, France; Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cédria, BP 901, Hammam-Lif 2050, Tunisie
| | - Jean-Yves Cornu
- ISPA, Bordeaux Sciences Agro, INRA, 33140, Villenave d'Ornon, France.
| | - Brigitte Maisonneuve
- INRA, UR Génétique et Amélioration des Fruits et Légumes, 1052 Domaine St Maurice, BP 94, 84143, Montfavet Cédex, France
| | - Aïda Rouached
- BPMP, Montpellier SupAgro, CNRS, INRA, Université de Montpellier, France
| | - Catherine Sarrobert
- Groupe de Recherches Appliquées en Phytotechnologie, DEVM, CEN Cadarache, 13108, St Paul les Durance, France
| | - Zaigham Shahzad
- BPMP, Montpellier SupAgro, CNRS, INRA, Université de Montpellier, France
| | - Chedly Abdelly
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cédria, BP 901, Hammam-Lif 2050, Tunisie
| | | | - Pierre Berthomieu
- BPMP, Montpellier SupAgro, CNRS, INRA, Université de Montpellier, France
| |
Collapse
|
48
|
Rizwan M, Ali S, Rehman MZU, Maqbool A. A critical review on the effects of zinc at toxic levels of cadmium in plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:6279-6289. [PMID: 30635881 DOI: 10.1007/s11356-019-04174-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/04/2019] [Indexed: 05/08/2023]
Abstract
Increasing cadmium (Cd) pollution in agricultural soils has raised serious concerns worldwide. Several exogenous substances can be used to mitigate the toxic effects of Cd in plants. Zinc (Zn) is one of the essential plant micronutrients and is involved in several physiological functions in plants. Zn may alleviate Cd toxicity in plants owing to the chemical similarity of Zn with Cd. Published reports demonstrated that Zn can alleviate toxic effects of Cd in plants by increasing plant growth, regulating Cd uptake, increasing photosynthesis, and reducing oxidative stress. Literature demonstrated that the role of Zn on Cd accumulation by plants is very controversial and depends upon several factors including concentrations of Cd and Zn in the medium, exposure duration, plant species and genotypes, and growth conditions. This review highlights the role of Zn in reducing Cd toxicity in plants and provides new insight that proper level of Zn in plants may enhance plant resistance to excess Cd.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan
| | - Muhammad Zia Ur Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Arosha Maqbool
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan
| |
Collapse
|
49
|
Zhang W, Song J, Yue S, Duan K, Yang H. MhMAPK4 from Malus hupehensis Rehd. decreases cell death in tobacco roots by controlling Cd 2+ uptake. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 168:230-240. [PMID: 30388541 DOI: 10.1016/j.ecoenv.2018.09.126] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/13/2018] [Accepted: 09/29/2018] [Indexed: 05/23/2023]
Abstract
Cadmium (Cd) induces cell death in plant roots. Mitogen-activated protein kinase (MAPK) plays a role in the regulation of cell death induced by Cd in plant roots. In this study, MhMAPK4 was isolated from the roots of Malus hupehensis. Subcellular localization showed that the MhMAPK4 protein was located in the cell membrane and cytoplasm and is a transmembrane protein that is characterized by hydrophily. The expression of MhMAPK4 in the roots of M. hupehensis was up-regulated by Cd sulfate and Cd chloride. Phenotypic comparison under Cd stress showed that the growth of wild-type (WT) tobacco was lower than the transgenic lines overexpressing MhMAPK4. The fresh weight and the root length of WT also was lower than that of the transgenic tobacco. The net Cd2+ influx in the tobacco roots was decreased by the overexpression of MhMAPK4, as was root Cd accumulation. The recovery time of the Cd2+ influx to stable state in the transgenic tobacco was also shorter than the WT. The expression of iron-regulated transporter 1 (NtIRT1) and natural resistance associated macrophage protein 5 (NtNRAMP5) was relatively low in the transgenic lines under Cd stress. Cell death and apoptosis in the tobacco roots was reduced following the overexpression of MhMAPK4. The activity of vacuolar processing enzyme (VPE) and the transcript level of VPE in the transgenic tobacco was lower than that of WT under Cd stress. In addition, the electrolyte leakage and malondialdehyde and hydrogen peroxide contents in the transgenic tobacco were lower than those of WT, whereas the antioxidant enzyme activity and expression were higher. These results suggest that MhMAPK4 regulates Cd accumulation by mediating Cd2+ uptake by the roots, and controls Cd-caused cell death by adjusting VPE activity.
Collapse
Affiliation(s)
- Weiwei Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, State Key Laboratory of Crop Biology, 61 Daizong street, Tai'an, Shandong 271018, PR China.
| | - Jianfei Song
- College of Horticulture Science and Engineering, Shandong Agricultural University, State Key Laboratory of Crop Biology, 61 Daizong street, Tai'an, Shandong 271018, PR China.
| | - Songqing Yue
- College of Horticulture Science and Engineering, Shandong Agricultural University, State Key Laboratory of Crop Biology, 61 Daizong street, Tai'an, Shandong 271018, PR China.
| | - Kaixuan Duan
- College of Horticulture Science and Engineering, Shandong Agricultural University, State Key Laboratory of Crop Biology, 61 Daizong street, Tai'an, Shandong 271018, PR China.
| | - Hongqiang Yang
- College of Horticulture Science and Engineering, Shandong Agricultural University, State Key Laboratory of Crop Biology, 61 Daizong street, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
50
|
Shan S, Guo Z, Lei P, Cheng W, Wu M, Fu Z, Wu S, Du D, Wu L. Impacts of a Compound Amendment on Cd Immobilization, Enzyme Activities and Crop Uptake in Acidic Cd-Contaminated Paddy Soils. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 101:243-249. [PMID: 29947914 DOI: 10.1007/s00128-018-2379-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
This study assessed the effectiveness of limestone-montmorillonite-rapeseed residue-Si fertilizer compound amendment on the bioavailability and crop uptake of cadmium (Cd) and enzyme activities in acidic paddy soils. Applying the compound amendment at ratios of 1%-3% increased soil pH by 0.1-1.9 units, decreased leaching ratios of soil Cd 4.0%-22%, and decreased exchangeable and carbonated Cd 42%-55% and 27%-49%, respectively. Organic matter-bound Cd increased 47%-62% (p < 0.05). Cadmium concentrations decreased in the roots, culms, leaves, and grains of rice grown in the Cd-contaminated soils by 37%-81%, 18%-73%, 29%-64% and 27%-63%, respectively, (p < 0.05). Catalase and urease activities increased 2.5%-63% and 3.9%-36%, (p < 0.05), respectively. Applying this compound amendment may significantly mitigate soil acidification and decrease the bioavailability and crop uptake of Cd in acidic Cd-contaminated paddy soils.
Collapse
Affiliation(s)
- Shiping Shan
- Hunan Institute of Microbiology, Changsha, 410009, Hunan, China
- Hunan Engineering Research Center of Safe and Efficient Utilization of Heavy Metal Contaminated Arable Land, Changsha, 410083, Hunan, China
| | - Zhaohui Guo
- Hunan Institute of Microbiology, Changsha, 410009, Hunan, China.
- Hunan Engineering Research Center of Safe and Efficient Utilization of Heavy Metal Contaminated Arable Land, Changsha, 410083, Hunan, China.
| | - Ping Lei
- Hunan Institute of Microbiology, Changsha, 410009, Hunan, China
| | - Wei Cheng
- Hunan Institute of Microbiology, Changsha, 410009, Hunan, China
| | - Minxi Wu
- Hunan Institute of Microbiology, Changsha, 410009, Hunan, China
| | - Zujiao Fu
- Hunan Institute of Microbiology, Changsha, 410009, Hunan, China
| | - Shandong Wu
- Hunan Institute of Microbiology, Changsha, 410009, Hunan, China
| | - Dongxia Du
- Hunan Institute of Microbiology, Changsha, 410009, Hunan, China
| | - Liyang Wu
- Hunan Institute of Microbiology, Changsha, 410009, Hunan, China
| |
Collapse
|