1
|
El Rasafi T, Oukkaroum A, Haddioui A. Improvement of root architecture, Pb, Cu and Zn uptake, translocation and phytoremediation efficiency of barley ( Hordeum vulgare) through the application of biochar and sheep manure. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025:1-14. [PMID: 40340668 DOI: 10.1080/15226514.2025.2498672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Mining soil is considered a serious source of metal contamination worldwide due to its translocation and accumulation in various plant parts, causing severe impacts on plant growth. Results indicated that biochar and manure improved barley root morphology compared to contaminated soil. Moreover, Pb and Cu were highly translocated to shoots. Regarding treatments, manure 10% and 20% increased the Pb accumulation in roots, while animal manure 20% and biochar 2.5% increased its accumulation in shoots. Using manure of 10%, 20%, and biochar 2.5% promoted the accumulation of Zn in roots (bioaccumulation factor: BAFroot≥1). According to the Dickson quality index and tolerance index, barley plants showed a high tolerance for metals in soil. Biochar and manure were effective in reducing the negative effects of metals such as Cd and Pb on barley plants. Moreover, helps to increase the accumulation of Zn and Cu in barley roots and shoots. Our findings provide insight into the potential of biochar and manure to enhance crop production under metal stress, leading to the assurance of food supply and sustainable agriculture under stressful conditions. However, future research is highly needed, focusing on a field scale and testing metals' long-term effects on crop productivity and grain accumulation in contaminated soil.
Collapse
Affiliation(s)
- Taoufik El Rasafi
- Health and Environment Laboratory, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
- Laboratory of Agro-Industrial and Medical Biotechnologies, Faculty of Science and Techniques, University of Sultan Moulay Slimane, Beni Mellal, Morocco
| | - Abdallah Oukkaroum
- AgroBioSciences Department (AgBS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Abdelmajid Haddioui
- Laboratory of Agro-Industrial and Medical Biotechnologies, Faculty of Science and Techniques, University of Sultan Moulay Slimane, Beni Mellal, Morocco
| |
Collapse
|
2
|
Zhao Q, Wang J, Li H, Wang Z, Makar RS, Yao L, Chen Z, Han H. Phosphate-solubilizing bacteria reduce Cd accumulation in spinach by forming P-Ca adhesive films in the roots and altering the structure of soil macroaggregates. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138482. [PMID: 40327941 DOI: 10.1016/j.jhazmat.2025.138482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/14/2025] [Accepted: 05/01/2025] [Indexed: 05/08/2025]
Abstract
Phosphate-solubilizing bacteria are crucial for plant growth promotion and heavy metal remediation in contaminated soils. However, the mechanisms underlying phosphate-solubilizing bacteria-mediated regulation of phosphorus (P) and calcium (Ca) availability and cadmium (Cd) bioavailability reduction remain unclear. This study investigated the effects and mechanisms of phosphate-solubilizing bacteria Kluyvera sp. M8 on P and Ca regulation, soil aggregate structure modification, and Cd uptake inhibition in spinach. Untargeted metabolomics showed that strain M8 secreted substances such as 3-Indolepropionic acid, N1-Acetylspermidine, and uric acid for the release of P and Ca and the immobilization of Cd. Strain M8 facilitated P and Ca enrichment on spinach root surfaces, forming a protective P-Ca film that reduced Cd into the root. Furthermore, it enhanced Cd immobilization in root cell walls and increased macroaggregate proportions in rhizosphere soil. Notably, strain M8 enriched active inorganic P and Ca components within macroaggregates while disrupting CaCO3 structure, promoting insoluble CdCO3 formation, enhancing Cd immobilization and decreasing the concentration of active Cd in the pore water. These findings provide valuable insights for Cd pollution management in agricultural fields and Cd uptake reduction in vegetables.
Collapse
Affiliation(s)
- Qingzhao Zhao
- Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project, Collaborative Innovation Center of Water Security for Water Source Region of Mid-route Project of South-North Water Diversion of Henan Province, Nanyang Normal University, Nanyang 473061, China
| | - Jiexun Wang
- Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project, Collaborative Innovation Center of Water Security for Water Source Region of Mid-route Project of South-North Water Diversion of Henan Province, Nanyang Normal University, Nanyang 473061, China
| | - Haoyuan Li
- Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project, Collaborative Innovation Center of Water Security for Water Source Region of Mid-route Project of South-North Water Diversion of Henan Province, Nanyang Normal University, Nanyang 473061, China
| | - Ziyi Wang
- Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project, Collaborative Innovation Center of Water Security for Water Source Region of Mid-route Project of South-North Water Diversion of Henan Province, Nanyang Normal University, Nanyang 473061, China
| | - Randa S Makar
- Henan International Joint Laboratory of Soil Health and Water Security, Nanyang Normal University, Nanyang 473061, China; Soils and Water Use Department, Agricultural and Biological Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Lunguang Yao
- Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project, Collaborative Innovation Center of Water Security for Water Source Region of Mid-route Project of South-North Water Diversion of Henan Province, Nanyang Normal University, Nanyang 473061, China; Henan International Joint Laboratory of Soil Health and Water Security, Nanyang Normal University, Nanyang 473061, China
| | - Zhaojin Chen
- Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project, Collaborative Innovation Center of Water Security for Water Source Region of Mid-route Project of South-North Water Diversion of Henan Province, Nanyang Normal University, Nanyang 473061, China.
| | - Hui Han
- Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project, Collaborative Innovation Center of Water Security for Water Source Region of Mid-route Project of South-North Water Diversion of Henan Province, Nanyang Normal University, Nanyang 473061, China; Henan International Joint Laboratory of Soil Health and Water Security, Nanyang Normal University, Nanyang 473061, China.
| |
Collapse
|
3
|
Zhang Y, Wei S, Jia J, Zhan J, Zhan L, Robinson BH, Skuza L, Xue J, Dai H, Kou L, Zhang C, Huang K. Screening of chili cultivars with low cadmium accumulation and analysis of their physiological properties of tolerance. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025:1-11. [PMID: 40296429 DOI: 10.1080/15226514.2025.2496412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Chili (Capsicum annuum L.) is a widely eaten condiment that may accumulate the toxic element cadmium (Cd) from environments, thus presenting a human health risk. This experiment aimed to identify cultivars with low Cd-uptake characteristics that could be used to produce safe spicy food in Cd-contaminated soil. Five chili cultivars responses to Cd exposure in soils with 0.18 mg kg-1 (CK), 2.88 mg kg-1 (T1), 7.69 mg kg-1 (T2), 16.72 mg kg-1 (T3), and 33.46 mg kg-1 (T4) in a greenhouse were compared. The results showed that Cd concentration in roots, shoots, and fruits of the cultivar Bolafengxiang was the lowest. Additionally, its biomass was not reduced compared to the CK, and both the enrichment factor (EF) and translocation factor (TF) were all lower than 1. Notably, under soil Cd concentrations of 2.88 mg kg-1, the Cd content in the fruits of Bolafengxiang was 0.07 mg kg-1, which is below the safety standard limit (0.1 mg kg-1) for "Green Food Chili Products." This indicates its potential for low Cd accumulation. The above research indicates that selecting and cultivating low-Cd-accumulating chili cultivars is an effective approach to reduce Cd accumulation in edible parts, thereby ensuring agricultural food safety.
Collapse
Affiliation(s)
- Yating Zhang
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of Biological Resources and Ecological Environment Jointly Built By Qinba Province and Ministry, Shaanxi University of Technology, Hanzhong, China
| | - Shuhe Wei
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Jibao Jia
- Yunnan Key Laboratory for Platform Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Jie Zhan
- Liaoning Vocational College of Medicine, Shenyang, China
| | - Li Zhan
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of Biological Resources and Ecological Environment Jointly Built By Qinba Province and Ministry, Shaanxi University of Technology, Hanzhong, China
| | - Brett H Robinson
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Lidia Skuza
- Institute of Biology, Centre for Molecular Biology and Biotechnology, University of Szczecin, Szczecin, Poland
| | - Jianming Xue
- New Zealand Forest Research Institute (Scion), Christchurch, New Zealand
| | - Huiping Dai
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of Biological Resources and Ecological Environment Jointly Built By Qinba Province and Ministry, Shaanxi University of Technology, Hanzhong, China
| | - Lingjiang Kou
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of Biological Resources and Ecological Environment Jointly Built By Qinba Province and Ministry, Shaanxi University of Technology, Hanzhong, China
| | - Chao Zhang
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of Biological Resources and Ecological Environment Jointly Built By Qinba Province and Ministry, Shaanxi University of Technology, Hanzhong, China
| | - Kaimei Huang
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of Biological Resources and Ecological Environment Jointly Built By Qinba Province and Ministry, Shaanxi University of Technology, Hanzhong, China
| |
Collapse
|
4
|
Jing H, Xue X, Zhang X, Xu X, Tang Y, Wang H, Zheng J, Yang H, Han Y. Metabolomics and microbiome analysis elucidate the detoxification mechanisms of Hemarthria compressa, a low cadmium accumulating plant, in response to cadmium stress. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137226. [PMID: 39827800 DOI: 10.1016/j.jhazmat.2025.137226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Cadmium (Cd) is recognized as one of the most toxic heavy metal in the environment that causes pronounced phytotoxicity. This study investigated the physiological and biochemical responses and detoxification mechanisms of Hemarthria compressa under various concentrations of Cd stress (0, 30, 60, 90, and 270 mg·kg-1). Our research findings indicate that the growth and photosynthetic capacity of H. compressa reach their peak at a Cd concentration of 60 mg·kg-1. At this concentration, the Cd concentration in the shoots of H. compressa is 0.67 mg·kg-1, the total Cd accumulation is 0.25 μg, and the MDA content is 6.25 nmol·g-1, which represents the lowest values among all treatments.Metabolomics analysis reveals that sugar is related to Cd stress resistance, and the levels of organic acids involved in metabolic processes show only minor changes. H. compressa alters the composition of its root exudates by secreting substantial quantities of organic acids (such as citric acid, fumaric acid, and malic acid), sugars (such as trehalose, maltose, and glucose), and fatty acids (such as citraconic acid). These organic acids modulate the pH of the rhizosphere soil and recruit beneficial microorganisms, including Gp6, Sphingoaurantiacus, Devosia, and Neobacillus species, thereby enhancing plant growth and mitigating Cd accumulation.
Collapse
Affiliation(s)
- Hao Jing
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China; Chongqing Key Laboratory of Herbivore Science, Chongqing 402460, China
| | - Xiaoliang Xue
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Xin Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Xianji Xu
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Yuzhou Tang
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Hongji Wang
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China; Chongqing Key Laboratory of Herbivore Science, Chongqing 402460, China
| | - Jiaqi Zheng
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Hongyuan Yang
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Yuzhu Han
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China; Chongqing Key Laboratory of Herbivore Science, Chongqing 402460, China.
| |
Collapse
|
5
|
Luo XF, Yi XT, Wang DZ, Wang JY, Zeng P, Zhou H, Gu JF, Liao BH, Li H. Enhancing Cd and Pb tolerance of Robinia pseudoacacia (black locust) by regulating antioxidant defense system, macroelement uptake and microstructure. TREE PHYSIOLOGY 2025; 45:tpaf015. [PMID: 39893625 DOI: 10.1093/treephys/tpaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/13/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
Woody plants have received considerable attention for the phytoremediation of heavy metal-contaminated soil. This study aimed to investigate the changes in antioxidant enzyme activity, macroelement uptake and microstructure of the woody plant Robinia pseudoacacia (black locust) for the phytoremediation of cadmium (Cd) and lead (Pb) co-contaminated soil based on dynamic sampling. The results show that black locust demonstrates strong tolerance in Cd and Pb co-contaminated soil. After 30-120 days of cultivation, the activities of superoxide dismutase, peroxidase and the macroelement (potassium [K] and calcium [Ca]) content in plant leaves significantly declined in response to Cd and Pb. However, after 160 d of cultivation, the antioxidant enzyme activities, chlorophyll, sulfhydryl and soluble protein contents, as well as Ca and magnesium content in plant leaves were returned to normal levels under the 40 mg kg-1 Cd and 1000 mg kg-1 Pb contaminated soil (CdPb3). Meanwhile, K content in plant leaves under the CdPb3 treatment was significantly (P < 0.05) increased by 68.9% compared with the control. Cadmium and Pb were primarily accumulated in black locust roots. Scanning electron microscope analysis indicated that the sieve tubes in the roots and stems of plant might block the transport of Cd and Pb. Transmission electron microscope analysis indicated that the number and volume of osmiophilic particles in plant leaves were increased and the cell walls were thickened in response to Cd and Pb stress. Path analysis further indicated that the growth of plant was related to macroelements uptake and physiological change (photosynthesis, antioxidant enzyme activity and chelation). Thus, black locust could effectively regulate the antioxidant defense system, macroelement absorption and microstructure to enhance plant tolerance to Cd and Pb stress. Moreover, black locust could maintain the normal urease, acid phosphatase and sucrase activities in the Cd and Pb co-contaminated soil. These findings suggest that black locust could be considered as a useful woody plant for the phytostabilization in Cd- and Pb-contaminated soil.
Collapse
Affiliation(s)
- Xu-Feng Luo
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, No. 498, Shaoshan South Road, Tianxin District, Changsha, Hunan Province 410004, China
- College of Environment and Ecology, No. 1, Nongda Road, Furong District, Hunan Agricultural University, Changsha, Hunan Province 410128, China
| | - Xuan-Tao Yi
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, No. 498, Shaoshan South Road, Tianxin District, Changsha, Hunan Province 410004, China
| | - De-Zheng Wang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, No. 498, Shaoshan South Road, Tianxin District, Changsha, Hunan Province 410004, China
| | - Jiang-Yao Wang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, No. 498, Shaoshan South Road, Tianxin District, Changsha, Hunan Province 410004, China
| | - Peng Zeng
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, No. 498, Shaoshan South Road, Tianxin District, Changsha, Hunan Province 410004, China
- Hunan Engineering and Technology Research Center for Soil Pollution Remediation and Carbon Sequestration, No. 498, Shaoshan South Road, Tianxin District, Changsha, Hunan Province 410004, China
- Yuelushan Laboratory, No. 498, Shaoshan South Road, Tianxin District, Changsha, Hunan Province 410004, China
| | - Hang Zhou
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, No. 498, Shaoshan South Road, Tianxin District, Changsha, Hunan Province 410004, China
- Hunan Engineering and Technology Research Center for Soil Pollution Remediation and Carbon Sequestration, No. 498, Shaoshan South Road, Tianxin District, Changsha, Hunan Province 410004, China
- Yuelushan Laboratory, No. 498, Shaoshan South Road, Tianxin District, Changsha, Hunan Province 410004, China
| | - Jiao-Feng Gu
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, No. 498, Shaoshan South Road, Tianxin District, Changsha, Hunan Province 410004, China
- Hunan Engineering and Technology Research Center for Soil Pollution Remediation and Carbon Sequestration, No. 498, Shaoshan South Road, Tianxin District, Changsha, Hunan Province 410004, China
- Yuelushan Laboratory, No. 498, Shaoshan South Road, Tianxin District, Changsha, Hunan Province 410004, China
| | - Bo-Han Liao
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, No. 498, Shaoshan South Road, Tianxin District, Changsha, Hunan Province 410004, China
- Hunan Engineering and Technology Research Center for Soil Pollution Remediation and Carbon Sequestration, No. 498, Shaoshan South Road, Tianxin District, Changsha, Hunan Province 410004, China
- Yuelushan Laboratory, No. 498, Shaoshan South Road, Tianxin District, Changsha, Hunan Province 410004, China
| | - Hao Li
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, No. 498, Shaoshan South Road, Tianxin District, Changsha, Hunan Province 410004, China
| |
Collapse
|
6
|
Yu S, Wang S, Tang M, Pan S, Wang M. Integrative study of subcellular distribution, chemical forms, and physiological responses for understanding cadmium tolerance in two garden shrubs. JOURNAL OF PLANT PHYSIOLOGY 2025; 306:154419. [PMID: 39864245 DOI: 10.1016/j.jplph.2025.154419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025]
Abstract
Urban ornamental shrubs have significant potential for restoring cadmium (Cd)-contaminated soil. The Cd enrichment characteristics and tolerance mechanisms of Buxus sinica and Ligustrum × vicaryi were investigated through a simulated pot pollution experiment. Specifically, the Cd content and accumulation in different plant tissues, the subcellular distribution and chemical forms of Cd in the roots, and the effects of Cd on the ultrastructure of root cells under various Cd concentrations (0, 25, 50, 100, and 200 mg kg⁻1) were analyzed. The results showed that: (1) As the Cd treatment levels increased, the total biomass of B. sinica gradually decreased, while L. × vicaryi exhibited a stimulation effect at low Cd concentrations but inhibition at high Cd concentrations. (2) The Cd content in different tissues of both shrubs increased with rising Cd levels. The bioconcentration factor (BCF) and translocation factor (TF) indicated that L. × vicaryi has the potential for Cd phytostabilization. (3) Cd in the roots of both shrubs was primarily present in NaCl-extractable form, and was mostly bound to the cell wall. (4) Excessive Cd caused damage to the cellular structure of B. sinica, while the cells of L. × vicaryi maintained normal morphology. (5) In both shrubs, Cd primarily bound to the cell wall through hydroxyl and amino functional groups, as well as soluble sugars. In summary, converting Cd to less active forms, immobilizing Cd in the cell wall, and providing binding sites through functional groups may be crucial resistance mechanisms for both shrubs in response to Cd stress.
Collapse
Affiliation(s)
- Shiyin Yu
- Beijing Forestry University, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China
| | - Shan Wang
- Beijing Forestry University, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China
| | - Min Tang
- Beijing Forestry University, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China
| | - Shuzhen Pan
- Beijing Forestry University, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China
| | - Meixian Wang
- Beijing Forestry University, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China.
| |
Collapse
|
7
|
Chen G, Han B, Nan W, Dong X. Cadmium Tolerance and Detoxification Mechanisms of Lentinula edodes: Physiology, Subcellular Distribution, and Chemical Forms. Microorganisms 2025; 13:62. [PMID: 39858830 PMCID: PMC11767862 DOI: 10.3390/microorganisms13010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/25/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025] Open
Abstract
Lentinula edodes has a strong cadmium-enrichment ability, posing a potential threat to human health. However, the cadmium tolerance and detoxification mechanisms of Lentinula edodes are not understood. We investigated the physiological responses, subcellular distribution, and chemical forms of cadmium in two Lentinula edodes strains (1504 and L130) with contrasting cadmium tolerance. The results showed that appropriate, low-level cadmium promoted mycelial growth, and higher cadmium exposure induced obvious inhibition of mycelial growth by damaging the cell wall and membrane structure and triggering the overproduction of ROS. Antioxidant enzymes played an important role in cadmium detoxification, as well as functional group modulation. Cadmium was predominantly distributed in the cell wall fraction, and NaCl-extractable cadmium was the main chemical form. Enhanced antioxidant enzyme activities, reduced cadmium accumulation, and increased HAc-extractable cadmium with less toxicity promoted stronger cadmium tolerance and detoxification abilities in L130 compared to 1504. Thus, this study provides new insights into cadmium tolerance and detoxification in Lentinula edodes.
Collapse
Affiliation(s)
- Gaigai Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Bowen Han
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Wene Nan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xiaobo Dong
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- Edible Fungi Center, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
8
|
Li Z, Liao Y, Liu M, Liang X, Qin L, Wang J, Zu Y. Signal transducer of IAA related gene expression induces transporters of hyperaccumulator Arabis alpina for Pb accumulation. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 27:771-780. [PMID: 39719930 DOI: 10.1080/15226514.2024.2443575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Lead (Pb) pollution in soil affects growth of plants. Plants' endogenous hormones play an important role in resistance to Pb of plant. In order to explore the hormone-based mechanisms of Pb accumulationin in hyperaccumulator Arabis alpina, a pot experiment was conducted to analyze the contents of endogenous hormones (auxin, gibberellin, abscisic acid, and cytokinin) and related genes expressions, and Pb contents of A. alpina, as well as the transporter (cation exchangers (CAX), heavy metal ATPases (HMA), and ATP-binding cassette (ABC)) concentrations under foliar spraying of indoleacetic acid (IAA). The results showed that the soluble components (vacuoles) Pb contents under 300 mg kg-1 Pb2+ treatment in shoots and roots increased by 238.8% and 896.3%, respectively, compared to 100 mg kg-1 Pb2+ treatment. The content of endogenous hormones in leaves and roots increased under increasing Pb-treatment concentrations. Compared with the control (0 mg kg-1 Pb2+ treatment), the content of auxin in roots and leaves under the 100 mg kg-1 Pb treatment increased by 176.2% and 585.3%, respectively. The auxin content in xylem saps under the 100 and 300 mg kg-1 Pb treatments increased by 283.1% and 100.3%, respectively. The gene expression related to auxin transport was up-regulated. The expression of three genes related to the auxin-repressed 12.5 kDa protein and the auxin-responsive GH3 (Gretchen Hagen 3) family were down-regulated. Under foliar spraying of IAA, the Pb content in leaves increased by 29.81%, and the Pb content in the symplast sap was higher than that without IAA spraying treatment. The concentrations of CAX and HMA in the roots of A. alpina increased by 9.6% and 8.8%, respectively, with foliar spraying treatment with IAA, while the ABC concentration decreased by 21.9%. In general, the transport and accumulation of Pb is related to the IAA content and the gene expression of AaGDCST, a signal transducer for inducing increased concentrations of the transporter CAX and HMA in the roots of A. alpina. Pb transport via the symplast pathway under IAA application. Regarding the Pb hyperaccumulation of A. alpina, gene AaGDCST has the potential to be utilized as a candidate gene.
Collapse
Affiliation(s)
- Zuran Li
- College of Horticulture and Landscape, Yunnan Agriculture University, Kunming, P.R. China
| | - Yumeng Liao
- College of Resources and Environment, Yunnan Agricultural University, Kunming, P.R. China
| | - Mei Liu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, P.R. China
| | - Xinran Liang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, P.R. China
| | - Li Qin
- College of Resources and Environment, Yunnan Agricultural University, Kunming, P.R. China
| | - Jixiu Wang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, P.R. China
| | - Yanqun Zu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, P.R. China
| |
Collapse
|
9
|
Chang X, Li J, Wei S, Ying J, Nevill P, Qi Z, Lu Q, You Z. Integrated comparative transcriptome and weighted gene co-expression network analysis provide valuable insights into the response mechanisms of Alisma orientale to cadmium stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177401. [PMID: 39521082 DOI: 10.1016/j.scitotenv.2024.177401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/03/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Cadmium (Cd) pollution poses a serious challenge to the quality and safe utilization of traditional Chinese medicine plants as well as human health. In this study, seedlings of the medicinal plant species Alisma orientale were subjected to different levels of Cd stress for 7 days to investigate the effects of Cd stress on its growth, physiological response, and transcriptome profiling. The results showed that under different Cd stress levels, the growth of A. orientale displayed an inverted U-shaped dose response curve as low-dose stimulation and high-dose inhibition. Cd was mainly enriched in roots in the high concentration treatment, and Cd content reached maximum under 200-μM Cd stress. Cd stress-induced indicators including H2O2 (14.1-228.8 % in leaves; 29.7-131.7 % in roots) and MDA (22.0-161.1 % in leaves; 30.0-201.1 % in roots) showed different degree of increase, except under 200-μM Cd stress, which had a slight decrease. Antioxidant enzyme system (SOD, POD and CAT) and nonenzymatic substances (SS, SP, total flavonoid and total polyphenols) played a key role to mitigate Cd toxic effects. Transcriptome analysis revealed 26,442 significantly differentially expressed genes, and plant-pathogen interactions and phenylpropanoid biosynthesis were identified as two key pathways. Through WGCNA joint analysis, the transcription factor genes R2R3-MYB (AoMYB12) and WRKY (AoWRKY5 and AoWRKY6) were identified as hub regulators of A. orientale in response to Cd stress. Our study provides experimental data on the effects of Cd stress on A. orientale growth and Cd accumulation in different plant parts, and investigated the transcriptomic and physio-biochemical features, advancing our understanding of the response and detoxification mechanisms of plants under Cd stress.
Collapse
Affiliation(s)
- Xiao Chang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jie Li
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shengnan Wei
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jianan Ying
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Paul Nevill
- Minesite Biodiversity Monitoring with eDNA Research Group, Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Zhechen Qi
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qixiang Lu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Zhengying You
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
10
|
Chen Q, Ou Z, Lv H. Cadmium toxicity in blueberry cultivation and the role of arbuscular mycorrhizal fungi. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117364. [PMID: 39577053 DOI: 10.1016/j.ecoenv.2024.117364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/31/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
Cadmium (Cd) is a toxic heavy metal that interferes with essential metabolic pathways crucial for plant growth, often resulting in toxicity and plant death. Blueberry plants exhibit metabolic adaptations to mitigate the stress caused by elevated Cd levels. In this review, we highlighted the effects of Cd-induced stress on blueberry plants and explored the potential alleviating effects of arbuscular mycorrhizal fungi (AMF). Cd uptake disrupts plant metabolism and impacts primary and secondary metabolites, including anthocyanins, which play a role in defense mechanisms against pathogens. Hence, Cd-induced stress alters anthocyanin levels in blueberry leaves, negatively affecting antioxidant defense mechanisms and hindering growth. Conversely, AMF establishes a symbiotic relationship with blueberry plants, promoting nutrient absorption and enhancing stress tolerance. Understanding the association between Cd stress, anthocyanin responses in blueberries, and AMF-mediated mitigation is crucial for developing integrated strategies to enhance blueberry plant health and improve quality. Employing AMF to remediate metal-related stress represents a significant breakthrough for sustainable crop production in a Cd-contaminated environment.
Collapse
Affiliation(s)
- Qianying Chen
- College of Biological and Food Engineering, Hefei Normal University, Hefei, Anhui 230001, China.
| | - Zulan Ou
- College of Biological and Food Engineering, Hefei Normal University, Hefei, Anhui 230001, China.
| | - Huifang Lv
- College of Biological and Food Engineering, Hefei Normal University, Hefei, Anhui 230001, China.
| |
Collapse
|
11
|
Wang X, Gao G, Hu R, Hu L, Zhang B, Liu Z, Zou Y, Xu K, Wu D. Influence of nitrogen speciation on Cd-induced toxicity in Landoltia punctata. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2127-2136. [PMID: 39016306 DOI: 10.1080/15226514.2024.2377225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Nitrogen (N) plays an important role in plant growth and developmental metabolic processes, research on nitrogen speciation regulating Cd accumulation in duckweed is still limited. In this study, the effects of three nitrogen sources (NH4Cl, Ca(NO3)2 and NH4NO3) on the growth, Cd accumulation, and photosynthetic parameters of Landoltia punctata (L. punctata) were analyzed. The results showed that Cd enrichment in L. punctata was significantly reduced (p < 0.05) with different nitrogen treatments compared to the control (CK). Ammonium nitrogen (NH4-N) is more conducive to the accumulation of Cd in L. punctata than nitrate nitrogen (NO3-N). The sum of the cell wall components and soluble components of Cd in the NH4-N treatment group was greater than that in the NO3-N treatment group. The proportion of FNaCl extracts in the NH4-N treatment group was greater than in the NO3-N treatment group. NO3-N led to a greater reduction in photosynthetic pigment content than NH4-N. Overall, applying different forms of nitrogen can alleviate Cd toxicity in L. punctata, and the detoxification effect of the NH4-N treatment is stronger than that of NO3-N treatment. This study will provide theoretical and practical support for the application of duckweed in Cd phytoremediation even in eutrophic aquatic environments.
Collapse
Affiliation(s)
- Xianglian Wang
- School of Civil and Architectural Engineering, Nanchang Institute of Technology, Nanchang, China
| | - Guiqing Gao
- School of Civil and Architectural Engineering, Nanchang Institute of Technology, Nanchang, China
| | - Ruikang Hu
- School of Civil and Architectural Engineering, Nanchang Institute of Technology, Nanchang, China
| | - Liang Hu
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems and Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, China
| | - Baojun Zhang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Zhanmeng Liu
- School of Civil and Architectural Engineering, Nanchang Institute of Technology, Nanchang, China
| | - Yilong Zou
- School of Civil and Architectural Engineering, Nanchang Institute of Technology, Nanchang, China
| | - Kaiwen Xu
- School of Civil and Architectural Engineering, Nanchang Institute of Technology, Nanchang, China
| | - Daishe Wu
- School of Materials and Chemical Engineering, Pingxiang University, Pingxiang, China
| |
Collapse
|
12
|
Li J, Yang X, Chen M, Zhang L. Enhancing the effect of novel cd mobilization bacteria on phytoremediation and microecology of cadmium contaminated soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 27:287-297. [PMID: 39400042 DOI: 10.1080/15226514.2024.2414911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The efficacy of phytoextraction for remediating heavy-metal contaminated soil depends on the bioavailability of the heavy metals and plant growth. In this study, we employed a synergistic system comprising water-soluble chitosan and the novel Cd mobilization bacteria, Serratia sp. K6 (hereafter K6), to enhance cadmium (Cd) extraction by Lolium perenne L. (ryegrass). The application of chitosan and K6 resulted in an increase in the biomass of ryegrass by 11.81% and Cd accumulation by 73.99% and effective-state Cd by 43.69% and pH decreased by 4.67%, compared to the control group. Microbiome and metabolomics analyses revealed significant alterations in the inter-root microbial ommunity, with rhizobacteria such as Sphingomonas, Nocardioides, and Bacillus likely contributing to enhanced plant growth and Cd accumulation in response to chitosan and K6 addition. Additionally, the contents of various organic acids, amino acids, lipids, and other metabolites exhibited significant changes under different additive treatments, suggesting that ryegrass can regulate its own metabolites to resist Cd stress. This study provides valuable insights into the effects of additives on phytoextraction efficiency and the soil bacterial community, offering a promising approach for phytoremediation of Cd-contaminated soils.
Collapse
Affiliation(s)
- Jiapeng Li
- College of Resources and Environment, Qingdao Agricultural University Qingdao, P.R. China
| | - Xiaoqian Yang
- College of Resources and Environment, Qingdao Agricultural University Qingdao, P.R. China
| | - Mengxin Chen
- College of Resources and Environment, Qingdao Agricultural University Qingdao, P.R. China
| | - Lei Zhang
- College of Resources and Environment, Qingdao Agricultural University Qingdao, P.R. China
| |
Collapse
|
13
|
Zheng H, Yuan C, Bu T, Liu Q, Li J, Wang F, Zhang Y, He L, Gao J. SSA4 Mediates Cd Tolerance via Activation of the Cis Element of VHS1 in Yeast and Enhances Cd Tolerance in Chinese Cabbage. Int J Mol Sci 2024; 25:11026. [PMID: 39456809 PMCID: PMC11507436 DOI: 10.3390/ijms252011026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Identifying key genes involved in Cadmium (Cd) response pathways in plants and developing low-Cd-accumulating cultivars may be the most effective and eco-friendly strategy to tackle the problem of Cd pollution in crops. In our previous study, Stressseventy subfamily A 4 (SSA4) was identified to be associated with Cd tolerance in yeast. Here, we investigated the mechanism of SSA4 in regulating Cd tolerance in yeast. ScSSA4 binds to POre Membrane 34 (POM34), a key component of nuclear pore complex (NPC), and translocates from the cytoplasm to the nucleus, where it regulates the expression of its downstream gene, Viable in a Hal3 Sit4 background 1 (VHS1), resulting in reduced Cd accumulation in yeast cells. Additionally, we identified a Chinese cabbage SSA4 gene, BrSSA4c, which could enhance the Cd tolerance in Chinese cabbage. This study offers new insights into the regulatory mechanisms of Cd tolerance in yeast, a model organism, and paves the way for the genetic enhancement of Cd tolerance in Chinese cabbage.
Collapse
Affiliation(s)
- Han Zheng
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.Z.); (J.L.); (F.W.); (Y.Z.)
| | - Chao Yuan
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China;
| | - Tong Bu
- College of Life Science, Shandong Normal University, Jinan 250100, China; (T.B.); (Q.L.)
| | - Qun Liu
- College of Life Science, Shandong Normal University, Jinan 250100, China; (T.B.); (Q.L.)
| | - Jingjuan Li
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.Z.); (J.L.); (F.W.); (Y.Z.)
| | - Fengde Wang
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.Z.); (J.L.); (F.W.); (Y.Z.)
| | - Yihui Zhang
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.Z.); (J.L.); (F.W.); (Y.Z.)
| | - Lilong He
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.Z.); (J.L.); (F.W.); (Y.Z.)
| | - Jianwei Gao
- Shandong Key Laboratory of Bulk Open-Field Vegetable Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.Z.); (J.L.); (F.W.); (Y.Z.)
- College of Life Science, Shandong Normal University, Jinan 250100, China; (T.B.); (Q.L.)
| |
Collapse
|
14
|
Ran T, Cao G, Xiao L, Li Y, Xia R, Zhao X, Qin Y, Wu P, Tian S. Effects of cadmium stress on the growth and physiological characteristics of sweet potato. BMC PLANT BIOLOGY 2024; 24:850. [PMID: 39256706 PMCID: PMC11386356 DOI: 10.1186/s12870-024-05551-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024]
Abstract
This study evaluated the responses of sweet potatoes to Cadmium (Cd) stress through pot experiments to theoretically substantiate their comprehensive applications in Cd-polluted agricultural land. The experiments included a CK treatment and three Cd stress treatments with 3, 30, and 150 mg/kg concentrations, respectively. We analyzed specified indicators of sweet potato at different growth periods, such as the individual plant growth, photosynthesis, antioxidant capacity, and carbohydrate Cd accumulation distribution. On this basis, the characteristics of the plant carbon metabolism in response to Cd stress throughout the growth cycle were explored. The results showed that T2 and T3 treatments inhibited the vine growth, leaf area expansion, stem diameter elongation, and tuberous root growth of sweet potato; notably, T3 treatment significantly increased the number of sweet potato branches. Under Cd stress, the synthesis of chlorophyll in sweet potato was significantly suppressed, and the Rubisco activity experienced significant reductions. With the increasing Cd concentration, the function of PS II was also affected. The soluble sugar content underwent no significant change in low Cd concentration treatments. In contrast, it decreased significantly under high Cd concentrations. Additionally, the tuberous root starch content decreased significantly with the increase in Cd concentration. Throughout the plant growth, the activity levels of catalase, peroxidase, and superoxide dismutase increased significantly in T2 and T3 treatments. By comparison, the superoxide dismutase activity in T1 treatment was significantly lower than that of CK. With the increasing application of Cd, its accumulation accordingly increased in various sweet potato organs. The the highest bioconcentration factor was detected in absorbing roots, while the tuberous roots had a lower bioconcentration factor and Cd accumulation. Moreover, the transfer factor from stem to petiole was the highest of the potato organs. These results demonstrated that sweet potatoes had a high Cd tolerance and a restoration potential for Cd-contaminated farmland.
Collapse
Affiliation(s)
- Tengfei Ran
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Guofan Cao
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Lili Xiao
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Yongpeng Li
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Ru Xia
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Xueting Zhao
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Yun Qin
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Peng Wu
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Shanjun Tian
- College of Agriculture, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Guiyang, 550025, China.
- Key Laboratory of Functional Agriculture of Guizhou Provincial Higher Education Institutions, Guiyang, 550025, China.
| |
Collapse
|
15
|
Li L, Chen Q, Cui S, Ishfaq M, Zhou L, Zhou X, Liu Y, Peng Y, Yu Y, Wu W. Exogenous Application of Amino Acids Alleviates Toxicity in Two Chinese Cabbage Cultivars by Modulating Cadmium Distribution and Reducing Its Translocation. Int J Mol Sci 2024; 25:8478. [PMID: 39126047 PMCID: PMC11313598 DOI: 10.3390/ijms25158478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Plants communicate underground by secreting multiple amino acids (AAs) through their roots, triggering defense mechanisms against cadmium (Cd) stress. However, the specific roles of the individual AAs in Cd translocation and detoxification remain unclear. This study investigated how exogenous AAs influence Cd movement from the roots to the shoots in Cd-resistant and Cd-sensitive Chinese cabbage cultivars (Jingcui 60 and 16-7 cultivars). The results showed that methionine (Met) and cysteine (Cys) reduced Cd concentrations in the shoots of Jingcui 60 by approximately 44% and 52%, and in 16-7 by approximately 43% and 32%, respectively, compared to plants treated with Cd alone. However, threonine (Thr) and aspartic acid (Asp) did not show similar effects. Subcellular Cd distribution analysis revealed that AA supplementation increased Cd uptake in the roots, with Jingcui 60 preferentially storing more Cd in the cell wall, whereas the 16-7 cultivar exhibited higher Cd concentrations in the organelles. Moreover, Met and Cys promoted the formation of Cd-phosphate in the roots of Jingcui 60 and Cd-oxalate in the 16-7 cultivar, respectively. Further analysis showed that exogenous Cys inhibited Cd transport to the xylem by downregulating the expression of HMA2 in the roots of both cultivars, and HMA4 in the 16-7 cultivar. These findings provide insights into the influence of exogenous AAs on Cd partitioning and detoxification in Chinese cabbage plants.
Collapse
Affiliation(s)
- Longcheng Li
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China;
| | - Qing Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Q.C.); (S.C.); (L.Z.); (X.Z.); (Y.L.)
| | - Shihao Cui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Q.C.); (S.C.); (L.Z.); (X.Z.); (Y.L.)
| | - Muhammad Ishfaq
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China;
| | - Lin Zhou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Q.C.); (S.C.); (L.Z.); (X.Z.); (Y.L.)
| | - Xue Zhou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Q.C.); (S.C.); (L.Z.); (X.Z.); (Y.L.)
| | - Yanli Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Q.C.); (S.C.); (L.Z.); (X.Z.); (Y.L.)
| | - Yutao Peng
- School of Agriculture, Sun Yat-sen University, Shenzhen 523758, China;
| | - Yifa Yu
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China;
| | - Wenliang Wu
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
16
|
Gong J, Wang C, Wang J, Yang Y, Kong X, Liu J, Tang M, Lou H, Wen Z, Yang S, Yi Y. Integrative study of transcriptome and microbiome to reveal the response of Rhododendron decorum to cadmium stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116536. [PMID: 38833983 DOI: 10.1016/j.ecoenv.2024.116536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/06/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
The anomalies of cadmium (Cd) in karst region pose a severe threat to plant growth and development. In this study, the responses of Rhododendron decorum to Cd stress were investigated at physiological, molecular, and endophytic microbial levels, and the potential correlation among these responses was assessed. The Cd stress impeded R. decorum growth and led to an increase in malondialdehyde (MDA) and hydrogen peroxide (H2O2) levels, as well as enhanced superoxide dismutase (SOD) and catalase (CAT) activities. Meanwhile, Cd stress increased the Cd (up to 80 times compared to the control), sodium (Na), aluminum (Al), and zinc (Zn) contents, while decreased the magnesium (Mg) and manganese (Mn) contents in R. decorum leaves. Transcriptome suggested that Cd significantly regulated the pathways including "protein repair", "hormone-mediated signaling pathway", and "ATP-binding cassette (ABC) transporters". Additionally, q-PCR analysis showed that Cd stress significantly up-regulated the expressions of ABCB19-like and pleiotropic drug resistance, while down-regulated the expressions of indole-3-acetic acid-amido synthetase and cytokinin dehydrogenase. The Cd stress influenced the composition of endophytic microbial communities in R. decorum leaves and enhanced the interspecific bacterial associations. Furthermore, the bacterial genera Achromobacter, Aureimonas and fungal genus Vishniacozyma exhibited a high degree of connectivity with other nodes in networks constructed by the metal element contents, differentially expressed genes (DEGs), and microbial communities, respectively. These findings provide a comprehensive insight into the response of R. decorum to Cd-induced stress, which might facilitate the breeding of the Cd-tolerant R. decorum.
Collapse
Affiliation(s)
- Jiyi Gong
- College of Water Sciences, Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, Beijing Normal University, Beijing 100875, China; Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang, Guizhou 550025, China
| | - Chao Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Jianfeng Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yang Yang
- Gansu Yasheng Agricultural Research Institute Co., Ltd., Lanzhou 730010, China
| | - Xin Kong
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang, Guizhou 550025, China
| | - Jie Liu
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang, Guizhou 550025, China
| | - Ming Tang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang, Guizhou 550025, China
| | - Hezhen Lou
- College of Water Sciences, Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, Beijing Normal University, Beijing 100875, China
| | - Zhirui Wen
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang, Guizhou 550025, China
| | - Shengtian Yang
- College of Water Sciences, Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, Beijing Normal University, Beijing 100875, China.
| | - Yin Yi
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
17
|
Yang H, Zhao J, Yin X, Ding K, Gao X, Cai Y, Pan Y, Jiang B, Liu Q, Jia Y. Mitigating Ni and Cu ecotoxicity in the ecological restoration material and ornamental Primula forbesii Franch. with exogenous 24-epibrassinolide and melatonin. Sci Rep 2024; 14:16067. [PMID: 38992206 PMCID: PMC11239942 DOI: 10.1038/s41598-024-67093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
Nickel (Ni) and copper (Cu) contamination have become major threats to plant survival worldwide. 24-epibrassinolide (24-EBR) and melatonin (MT) have emerged as valuable treatments to alleviate heavy metal-induced phytotoxicity. However, plants have not fully demonstrated the potential mechanisms by which these two hormones act under Ni and Cu stress. Herein, this study investigated the impact of individual and combined application of 24-EBR and MT on the growth and physiological traits of Primula forbesii Franch. subjected to stress (200 μmol L-1 Ni and Cu). The experiments compared the effects of different mitigation treatments on heavy metal (HM) stress and the scientific basis and practical reference for using these exogenous substances to improve HM resistance of P. forbesii in polluted environments. Nickel and Cu stress significantly hindered leaf photosynthesis and nutrient uptake, reducing plant growth and gas exchange. However, 24-EBR, MT, and 24-EBR + MT treatments alleviated the growth inhibition caused by Ni and Cu stress, improved the growth indexes of P. forbesii, and increased the gas exchange parameters. Exogenous MT effectively alleviated Ni stress, and 24-EBR + MT significantly alleviated the toxic effects of Cu stress. Unlike HM stress, MT and 24-EBR + MT activated the antioxidant enzyme activity (by increasing superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)), significantly reduced reactive oxygen species (ROS) accumulation, and regulated ascorbate and glutathione cycle (AsA-GSH) efficiency. Besides, the treatments enhanced the ability of P. forbesii to accumulate HMs, shielding plants from harm. These findings conclusively illustrate the capability of 24-EBR and MT to significantly bolster the tolerance of P. forbesii to Ni and Cu stress.
Collapse
Affiliation(s)
- Hongchen Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jian Zhao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiancai Yin
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Keying Ding
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xinhui Gao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuxin Cai
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuanzhi Pan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Beibei Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qinglin Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yin Jia
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
18
|
Anwar A, Yuan C, Cui B, Wang L, He L, Gao J. BrMYB116 transcription factor enhances Cd stress tolerance by activating FIT3 in yeast and Chinese cabbage. FRONTIERS IN PLANT SCIENCE 2024; 15:1388924. [PMID: 38911977 PMCID: PMC11190832 DOI: 10.3389/fpls.2024.1388924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/07/2024] [Indexed: 06/25/2024]
Abstract
Cd (cadmium) is a highly toxic heavy metal pollutant often present in soil and detrimentally impacting the production and quality of horticultural crops. Cd affects various physiological and biochemical processes in plants, including chlorophyll synthesis, photosynthesis, mineral uptake and accumulation, and hormonal imbalance, leading to cell death. The MYB family of transcription factors plays a significant role in plant response to environmental influences. However, the role of MYB116 in abiotic stress tolerance remains unclear. In this study, we reported that Chinese cabbage transcription factor BrMYB116 enhanced Cd stress tolerance in yeast. The expression level of BrMYB116 was increased by Cd stress in Chinese cabbage. Additionally, yeast cells overexpressing BrMYB116 showed improved Cd stress tolerance and reduced Cd accumulation. Moreover, we found that BrMYB116 interacted with facilitator of iron transport (FIT3) to enhance Cd stress tolerance. ChIP-qPCR results showed that ScFIT3 was activated through specific binding to its promoter. Additionally, the overexpression of ScFIT3 induced Cd stress tolerance and reduced Cd accumulation in yeast and Chinese cabbage. These results suggest new avenues for plant genomic modification to mitigate Cd toxicity and enhance the safety of vegetable production.
Collapse
Affiliation(s)
- Ali Anwar
- Institute of Vegetables, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Shandong Academy of Agricultural Sciences, Jinan, China
- College of Horticulture, South China Agriculture University, Guangzhou, China
| | - Chao Yuan
- Institute of Vegetables, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education; School of Life Science, Shandong University, Qingdao, China
| | - Bing Cui
- Institute of Vegetables, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lixia Wang
- Institute of Vegetables, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lilong He
- Institute of Vegetables, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jianwei Gao
- Institute of Vegetables, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
19
|
Li S, Li H, Wang J, Lu S, Liu Z, Jia H, Wei T, Guo J. The response of physiological and xylem anatomical traits under cadmium stress in Pinus thunbergii seedlings. TREE PHYSIOLOGY 2024; 44:tpae046. [PMID: 38676919 DOI: 10.1093/treephys/tpae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/28/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
Studying the response of physiological and xylem anatomical traits under cadmium stress is helpful to understand plants' response to heavy metal stress. Here, seedlings of Pinus thunbergii Parl. were treated with 50, 100 and 150 mg kg-1 Cd2+ for 28 days. Cadmium and nonstructural carbohydrate content of leaves, stems and roots, root Cd2+ flux, cadmium distribution pattern in stem xylem and phloem, stem xylem hydraulic traits, cell wall component fractions of stems and roots, phytohormonal content such as abscisic acid, gibberellic acid 3, molecule -indole-3-acetic acid, and jasmonic acid from both leaves and roots, as well as xylem anatomical traits from both stems and roots were measured. Root Cd2+ flux increased from 50 to 100 mmol L-1 Cd2+ stress, however it decreased at 150 mmol L-1 Cd2+. Cellulose and hemicellulose in leaves, stems and roots did not change significantly under cadmium stress, while pectin decreased significantly. The nonstructural carbohydrate content of both leaves and stems showed significant changes under cadmium stress while the root nonstructural carbohydrate content was not affected. In both leaves and roots, the abscisic acid content significantly increased under cadmium stress, while the gibberellic acid 3, indole-3-acetic acid and jasmonic acid methylester content significantly decreased. Both xylem specific hydraulic conductivity and xylem water potential decreased with cadmium stress, however tracheid diameter and double wall thickness of the stems and roots were not affected. High cadmium intensity was found in both the stem xylem and phloem in all cadmium stressed treatments. Our study highlighted the in situ observation of cadmium distribution in both the xylem and phloem, and demonstrated the instant response of physiological traits such as xylem water potential, xylem specific hydraulic conductivity, root Cd2+ flux, nonstructural carbohydrate content, as well as phytohormonal content under cadmium stress, and the less affected traits such as xylem anatomical traits, cellulose and hemicellulose.
Collapse
Affiliation(s)
- Shan Li
- Department of Environmental Science and Ecology, School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an Weiyang University Park, Weiyang District, Xi'an, Shaanxi Province, 710021, P.R. China
| | - Huan Li
- Department of Environmental Science and Ecology, School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an Weiyang University Park, Weiyang District, Xi'an, Shaanxi Province, 710021, P.R. China
| | - Jing Wang
- Department of Environmental Science and Ecology, School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an Weiyang University Park, Weiyang District, Xi'an, Shaanxi Province, 710021, P.R. China
| | - Sen Lu
- Department of Environmental Science and Ecology, School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an Weiyang University Park, Weiyang District, Xi'an, Shaanxi Province, 710021, P.R. China
| | - Zepeng Liu
- Department of Environmental Science and Ecology, School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an Weiyang University Park, Weiyang District, Xi'an, Shaanxi Province, 710021, P.R. China
| | - Honglei Jia
- Department of Environmental Science and Ecology, School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an Weiyang University Park, Weiyang District, Xi'an, Shaanxi Province, 710021, P.R. China
| | - Ting Wei
- Department of Environmental Science and Ecology, School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an Weiyang University Park, Weiyang District, Xi'an, Shaanxi Province, 710021, P.R. China
| | - Junkang Guo
- Department of Environmental Science and Ecology, School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an Weiyang University Park, Weiyang District, Xi'an, Shaanxi Province, 710021, P.R. China
| |
Collapse
|
20
|
Li Y, Chen X, Dong Y, Wei S, Zeng M, Jiao R. Response strategies of slash pine (Pinus elliottii) to cadmium stress and the gain effects of inoculation with Herbaspirillum sp. YTG72 in alleviating phytotoxicity and enhancing accumulation of cadmium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31590-31604. [PMID: 38639905 DOI: 10.1007/s11356-024-33353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Phytoremediation using fast-growing woody plants assisted by plant growth-promoting bacteria (PGPB) on cadmium (Cd)-contaminated sites is considered a promising technique; however, its remediation efficiency is still affected by multiple factors. In this study, the mining areas' soil conditions were simulated with different Cd addition levels (0, 3, 6, 9 mg kg-1) in order to investigate the response strategy to Cd stress of fast-growing economic tree species, slash pine (Pinus elliottii), and the effects of inoculation with the PGPB strain Herbaspirillum sp. YTG72 on the physiological activity and Cd accumulation of plants. The main results showed that there were significant (p < 0.05) increases in contents of chlorophyll and nutrient elements (P, K, Ca, and Mg) at low Cd addition level (3 mg kg-1) compared to non-Cd addition treatment. When the additive amount of Cd increased, the growth of plants was severely inhibited and the content of proline was increased, as well as Cd in plants. Besides, the ratios of K:P, Ca:P, and Mg:P in plants were negatively correlated with the contents of Cd in plants and soils. Inoculation of P. elliottii with the PGPB strain Herbaspirillum sp. YTG72 improved the physiological functions of the plants under Cd stress and activated the antioxidant system, reduced the accumulation of proline, and decreased the ratios of K:P, Ca:P, and Mg:P in plant. More importantly, planting P. elliottii in Cd-contaminated soil could significantly (p < 0.05) reduce the Cd content in the rhizosphere soil, and furthermore, inoculation treatment could promote the reduction of soil Cd content and increased the accumulation of Cd by root. The results of the present study emphasized the Cd response mechanism of P. elliottii based on multifaceted regulation, as well as the feasibility of strain Herbaspirillum sp. YTG72 assisted P. elliottii for the remediation on Cd-contaminated sites.
Collapse
Affiliation(s)
- Yanglong Li
- State Key Laboratory of Efficient Production of Forest Resources, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xiangteng Chen
- State Key Laboratory of Efficient Production of Forest Resources, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yuhong Dong
- State Key Laboratory of Efficient Production of Forest Resources, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Chinese Academy of Forestry, Beijing, 100091, China
| | - Shumeng Wei
- State Key Laboratory of Efficient Production of Forest Resources, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Chinese Academy of Forestry, Beijing, 100091, China
| | - Mansheng Zeng
- Experimental Center of Subtropical Forestry, Chinese Academy of Forestry, Fenyi, 336600, China
| | - Ruzhen Jiao
- State Key Laboratory of Efficient Production of Forest Resources, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
21
|
Matayoshi CL, Jiménez Guaman OM, Esteso ML, Pavoni M, Arán M, Pena LB, Gallego SM. Cadmium and copper-induced metabolic and proteomic changes in the root tip during early maize growth. Biometals 2024; 37:405-419. [PMID: 37987956 DOI: 10.1007/s10534-023-00557-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023]
Abstract
In this study, the metabolic adjustments performed by maize (Zea mays L.) seminal roots exposed to 25 µM Cd2+ or 25 µM Cu2+ at pre-emergence are compared, focusing on the proteomic changes after metal exposure. Root width was increased, and root length was decreased after 72 h of metal treatment. Both metals induced H2O2 accumulation and lipid peroxidation in the root tip. These changes were accompanied by increases in lipoxygenase activity and 4-hydroxy-2-nonenal content. NMR spectroscopy revealed that the abundance of 38 water-soluble metabolites was significantly modified by Cd and Cu exposure; this set of metabolites comprised carboxylic acids, amino acids, carbohydrates, and unidentified phenolic compounds. Linoleic acid content significantly decreased in Cu-treated samples. The total amount of proteins detected in maize root apexes was 2,171. Gene ontology enrichment analysis of the differentially accumulated proteins was performed to detect pathways probably affected by metal additions. Both metals altered redox homeostasis, up-regulated oxylipins biosynthetic process, and shifted metabolism towards the oxidative pentose-phosphate in the root apexes. However, the methionine salvage pathway appears as a key metabolic module only under Cd stress. The integrative analysis carried out in this study suggests that most molecular features behind the reprogramming of maize root tips to cope with cadmium and copper toxicity are common, but some are not.
Collapse
Affiliation(s)
- Carolina Lucila Matayoshi
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1º Piso, C1113AAD, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Odalis Maholi Jiménez Guaman
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1º Piso, C1113AAD, Buenos Aires, Argentina
| | - Marcos Leopoldo Esteso
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1º Piso, C1113AAD, Buenos Aires, Argentina
| | - Micaela Pavoni
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1º Piso, C1113AAD, Buenos Aires, Argentina
| | - Martín Arán
- Laboratorio de Resonancia Magnética Nuclear, Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Liliana Beatriz Pena
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1º Piso, C1113AAD, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Susana Mabel Gallego
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1º Piso, C1113AAD, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
22
|
Zhang K, Liu F, Zhang H, Duan Y, Luo J, Sun X, Wang M, Ye D, Wang M, Zhu Z, Li D. Trends in phytoremediation of heavy metals-contaminated soils: A Web of science and CiteSpace bibliometric analysis. CHEMOSPHERE 2024; 352:141293. [PMID: 38280645 DOI: 10.1016/j.chemosphere.2024.141293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Heavy metals pollution in soils is an urgent environmental issue worldwide. Phytoremediation is a green and eco-friendly way of remediating heavy metals. However, a systematic overview of this field is limited, and little is known about future development trends. Therefore, we used CiteSpace software to conduct bibliometric and visual analyses of published literature in the field of phytoremediation of heavy metals in soils from the Web of Science core collection and identified research hotspots and development trends in this field. Researchers are paying increased attention to phytoremediation of heavy metals in soils, especially environmental researchers. A total of 121 countries or regions, 3790 institutions, 4091 funded organisations and 15,482 authors have participated in research in this area. China, India, and Pakistan are the largest contributors. There has been extensive cooperation between countries, institutions, and authors worldwide, but there is a lack of cooperation among top authors. 'Calcareous soil', 'Co-contaminated soil' and 'Metal availability' are the most intensively investigated topics. 'EDTA', 'Plant growth-promoting Rhizobacteria', 'Photosynthesis', 'Biochar' and 'Phytoextraction' are research hotspots in this field. In addition, more and more researchers are beginning to pay attention to research on co-contaminated soil, metal availability, chelating agents, and microbial-assisted phytoremediation. In summary, bibliometric, and visual analyses in the field of phytoremediation of heavy metals in soils identifies probable directions for future research and provides a resource through which to better understand this rapidly advancing subject.
Collapse
Affiliation(s)
- Kailu Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Fan Liu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Haixiang Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Yali Duan
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Jialiang Luo
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Xiaoyan Sun
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Meng Wang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Dandan Ye
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Miaomiao Wang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Zhiqiang Zhu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.
| | - Dong Li
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.
| |
Collapse
|
23
|
Singh PK, Yadav JS, Kumar I, Kumar U, Sharma RK. Screening of mustard cultivars for phytoremediation of heavy metals contamination in wastewater irrigated soil systems. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:321. [PMID: 38418671 DOI: 10.1007/s10661-024-12506-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
The mustard (Brassica juncea L.) plant is a well-known and widely accepted hyper-accumulator of heavy metals. The genetic makeup of mustard's cultivars may significantly impact their phytoremediation capabilities. The present study aimed to investigate the growth performance, yield attributes, and heavy metal accumulation potential of B. juncea cv. Varuna, NRCHB 101, RH 749, Giriraj, and Kranti, cultivated in soil irrigated with wastewater (EPS) and bore-well water (MPS). EPS contributed more Cr, Cd, Cu, Zn, and Ni to tested mustard cultivars than the MPS. EPS reduced morphological, biochemical, physiological, and yield attributes of tested mustard cultivars significantly (p < 0.05) than the MPS. Among the tested cultivars of mustard plants, Varuna had the highest heavy metal load with the lowest harvest index (35.8 and 0.21, respectively). Whereas NRCHB 101 showed the lowest heavy metal load with the highest harvest index (26.9 and 0.43, respectively). The present study suggests that B. juncea cv. Varuna and NRCHB 101 could be used for the phytoextraction of heavy metals and reducing their contamination in food chain, respectively in wastewater irrigated areas of peri-urban India. The outcomes of the present study can also be utilized to develop a management strategy for sustainable agriculture in heavy metal polluted areas resulting from long-term wastewater irrigation.
Collapse
Affiliation(s)
- Prince Kumar Singh
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, -221005, Varanasi, India
| | - Jay Shankar Yadav
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, -221005, Varanasi, India
| | - Indrajeet Kumar
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, -221005, Varanasi, India
| | - Umesh Kumar
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, -221005, Varanasi, India
| | - Rajesh Kumar Sharma
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, -221005, Varanasi, India.
| |
Collapse
|
24
|
Parera V, Pérez-Chaca MV, Gallardo LV, Gatica-Aguilar CV, Parera CA, Feresin GE. Adesmia pinifolia, a Native High-Andean Species, as a Potential Candidate for Phytoremediation of Cd and Hg. PLANTS (BASEL, SWITZERLAND) 2024; 13:464. [PMID: 38498429 PMCID: PMC10891624 DOI: 10.3390/plants13040464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 03/20/2024]
Abstract
This study highlights Adesmia pinifolia, a native high-Andean species, as a potential candidate for the phytoremediation of soils contaminated with Cd and Hg. In this work, a semi-hydronic assay with different doses of Cd (3, 4.5, and 6 mg L-1) and Hg (0.8, 1.2, and 1.6 mg L-1) was analysed to evaluate the establishment of plants, antioxidant defence systems, oxidative stress, and the ability to accumulate heavy metals. The results indicate high survival rates (>80%); however, Cd significantly reduced shoot and root biomass, while Hg increased root biomass with the 1.6 mg L-1 treatment. Cd and Hg tend to accumulate more in roots (2534.24 µg/g and 596.4 µg g-1, respectively) compared to shoots (398.53 µg g-1 and 140.8 µg g-1, respectively). A significant decrease in the bioconcentration factor of Cd and Hg in roots was observed as metal levels increased, reaching the maximum value at 3 mg L-1 (805.59 ± 54.38) and 0.8 mg L-1 (804.54 ± 38.09). The translocation factor, <1 for both metals, suggests that translocation from roots to shoots is limited. An overproduction of reactive oxygen species (ROS) was observed, causing lipid peroxidation and oxidative damage to plant membranes. Tolerance strategies against subsequent toxicity indicate that enhanced glutathione reductase (GR) activity and glutathione (GSH) accumulation modulate Cd and Hg accumulation, toxicity, and tolerance.
Collapse
Affiliation(s)
- Victoria Parera
- Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan, Av. Libertador General San Martin 1109 Oeste, San Juan 5400, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Cuidad Autónoma de Buenos Aires (CABA) C1425FQB, Argentina;
| | - M. Verónica Pérez-Chaca
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis. Ejército de los Andes 950, San Luis 5700, Argentina; (M.V.P.-C.); (L.V.G.)
| | - Laura V. Gallardo
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis. Ejército de los Andes 950, San Luis 5700, Argentina; (M.V.P.-C.); (L.V.G.)
| | - Camila V. Gatica-Aguilar
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Cuidad Autónoma de Buenos Aires (CABA) C1425FQB, Argentina;
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis. Ejército de los Andes 950, San Luis 5700, Argentina; (M.V.P.-C.); (L.V.G.)
| | - Carlos A. Parera
- Instituto Nacional de Tecnología Agropecuaria (INTA), Avenida Rivadavia 1439, Cuidad Autónoma de Buenos Aires (CABA) C1033AAE, Argentina;
| | - Gabriela E. Feresin
- Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan, Av. Libertador General San Martin 1109 Oeste, San Juan 5400, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Cuidad Autónoma de Buenos Aires (CABA) C1425FQB, Argentina;
| |
Collapse
|
25
|
Nawaz M, Saleem MH, Khalid MR, Ali B, Fahad S. Nitric oxide reduces cadmium uptake in wheat (Triticum aestivum L.) by modulating growth, mineral uptake, yield attributes, and antioxidant profile. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:9844-9856. [PMID: 38200196 DOI: 10.1007/s11356-024-31875-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Wheat (Triticum aestivum L.) is among the plants that are at risk from cadmium (Cd), a hazardous heavy metal that can be fatal due to its rapid absorption and high mobility. Being taken up from the soil and moving to the shoots and roots of edible plants, it enters the food chain and poses a health concern to people worldwide. A strategically important cereal crop, wheat has a demonstrated role in human health systems, particularly in poor nations. In this study, we describe the effects of nitric oxide (NO) on the growth, nutrition, and physiological functions of commercially cultivated wheat cvs. Galaxy 2013 and Akbar 2019 under Cd stress. Four-week-old plants were subjected to Cd (0.5 mM) stress, and after 2 weeks of Cd toxicity, foliar application of nitric oxide (100 and 150 μM) was carried out. As evident from excessive antioxidant production, Cd toxicity increased reactive oxygen species (ROS) level like H2O2 and significantly (p ≤ 0.001) decreased nutrient acquisition, growth, and yield attributes of plants under experiment. The severity of the effect varied between cultivars under investigation. A minimum accumulation of MDA (44%) and H2O2 (55%) was found in the cv. Akbar 2019 under Cd stress, whilst cv. Galaxy 2013 showed the highest accumulation of the oxidative stress indicators malondialdehyde content (MDA) (48%) and H2O2 (60%). Reduced and oxidized glutathione contents were also increased under Cd-induced toxicity. The application of NO resulted in a significant improvement of 22, 25, 25, and 30% in shoot fresh weight, root fresh weight, shoot dry weight, and root dry weight, respectively. Additionally, there was an increased uptake of Ca+2 (16%), K+1 (5%), chlorophyll a (46%), b (32%), a/b ratio (41%), and carotenoid (28%). When compared with Cd-stressed plants, yield parameters like 100 grain weight, number of tillers plant-1, and grain yield plant-1 improved by 14, 17, and 33%, respectively, under NO application. We concluded from the results of this study that NO treatments increased plant development by lowering oxidative stress and limiting Cd uptake. It is inferred from the results of this study that wheat production with reduced heavy metal uptake may be facilitated using NO due to its cytoprotective properties and its interaction with ROS.
Collapse
Affiliation(s)
- Muhammad Nawaz
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Hamza Saleem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Muhammad Rehan Khalid
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, 28 23200, Pakistan.
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
26
|
Li L, Wu W, Lin H, Zhou L, Zhang D, Ishfaq M, Zhong Y, Li B, Peng Y, Wu X, Yu Y, Li X, Chen Q. Amino acid application inhibits root-to-shoot cadmium translocation in Chinese cabbage by modulating pectin methyl-esterification. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108401. [PMID: 38301327 DOI: 10.1016/j.plaphy.2024.108401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/07/2024] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
The exogenous application of amino acids (AAs) generally alleviates cadmium (Cd) toxicity in plants by altering their subcellular distribution. However, the physiological mechanisms underlying AA-mediated cell wall (CW) sequestration of Cd in Chinese cabbage remain unclear. Using two genotypes of Chinses cabbage, Jingcui 60 (Cd-tolerant) and 16-7 (Cd-sensitive), we characterized the root structure, subcellular distribution of Cd, CW component, and related gene expression under the Cd stress. Cysteine (Cys) supplementation led to a reduction in the Cd concentration in the shoots of Jingcui 60 and 16-7 by 65.09 % and 64.03 %, respectively. Addition of Cys alleviated leaf chlorosis in both cultivars by increasing Cd chelation in the root CW and reducing its distribution in the cytoplasm and organelles. We further demonstrated that Cys supplementation mediated the downregulation of PMEI1 expression and improving the activity of pectin methyl-esterase (PME) by 17.98 % and 25.52 % in both cultivars, respectively, compared to the Cd treatment, resulting in an approximate 12.00 %-14.70 % increase in Cd retention in pectin. In contrast, threonine (Thr) application did not significantly alter Cd distribution in the shoots of either cultivar. Taken together, our results suggest that Cys application reduces Cd root-to-shoot translocation by increasing Cd sequestration in the root CW through the downregulation of pectin methyl-esterification.
Collapse
Affiliation(s)
- Longcheng Li
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenliang Wu
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Huiru Lin
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, 100193, Beijing, China
| | - Lin Zhou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Donghan Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Muhammad Ishfaq
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, 100193, Beijing, China
| | - Yanting Zhong
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, 100193, Beijing, China
| | - Bingcheng Li
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, China
| | - Yutao Peng
- School of Agriculture, Sun Yat-sen University, Shenzhen, Guangdong, 523758, China
| | - Xiuwen Wu
- College of Resources and Environmental Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yifa Yu
- Nanning Harworld Biological Technology, Inc, China
| | - Xuexian Li
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, 100193, Beijing, China
| | - Qing Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
27
|
He S, Niu Y, Xing L, Liang Z, Song X, Ding M, Huang W. Research progress of the detection and analysis methods of heavy metals in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1310328. [PMID: 38362447 PMCID: PMC10867983 DOI: 10.3389/fpls.2024.1310328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024]
Abstract
Heavy metal (HM)-induced stress can lead to the enrichment of HMs in plants thereby threatening people's lives and health via the food chain. For this reason, there is an urgent need for some reliable and practical techniques to detect and analyze the absorption, distribution, accumulation, chemical form, and transport of HMs in plants for reducing or regulating HM content. Not only does it help to explore the mechanism of plant HM response, but it also holds significant importance for cultivating plants with low levels of HMs. Even though this field has garnered significant attention recently, only minority researchers have systematically summarized the different methods of analysis. This paper outlines the detection and analysis techniques applied in recent years for determining HM concentration in plants, such as inductively coupled plasma mass spectrometry (ICP-MS), atomic absorption spectrometry (AAS), atomic fluorescence spectrometry (AFS), X-ray absorption spectroscopy (XAS), X-ray fluorescence spectrometry (XRF), laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), non-invasive micro-test technology (NMT) and omics and molecular biology approaches. They can detect the chemical forms, spatial distribution, uptake and transport of HMs in plants. For this paper, the principles behind these techniques are clarified, their advantages and disadvantages are highlighted, their applications are explored, and guidance for selecting the appropriate methods to study HMs in plants is provided for later research. It is also expected to promote the innovation and development of HM-detection technologies and offer ideas for future research concerning HM accumulation in plants.
Collapse
Affiliation(s)
- Shuang He
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yuting Niu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Lu Xing
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zongsuo Liang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiaomei Song
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
- Key Laboratory of “Taibaiqiyao” Research and Applications, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Meihai Ding
- Management Department, Xi’an Ande Pharmaceutical Co; Ltd., Xi’an, China
| | - Wenli Huang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
- Key Laboratory of “Taibaiqiyao” Research and Applications, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
28
|
Luo XF, Liu MY, Tian ZX, Xiao Y, Zeng P, Han ZY, Zhou H, Gu JF, Liao BH. Physiological tolerance of black locust (Robinia pseudoacacia L.) and changes of rhizospheric bacterial communities in response to Cd and Pb in the contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2987-3003. [PMID: 38079046 DOI: 10.1007/s11356-023-31260-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/22/2023] [Indexed: 01/18/2024]
Abstract
Woody plants possess great potential for phytoremediation of heavy metal-contaminated soil. A pot trial was conducted to study growth, physiological response, and Cd and Pb uptake and distribution in black locust (Robinia pseudoacacia L.), as well as the rhizosphere bacterial communities in Cd and Pb co-contaminated soil. The results showed that R. pseudoacacia L. had strong physiological regulation ability in response to Cd and Pb stress in contaminated soil. The total chlorophyll, malondialdehyde (MDA), soluble protein, and sulfhydryl contents, as well as antioxidant enzymes (superoxide dismutase, peroxidase, catalase) activities in R. pseudoacacia L. leaves under the 40 mg·kg-1 Cd and 1000 mg·kg-1 Pb co-contaminated soil were slightly altered. Cd uptake in R. pseudoacacia L. roots and stems increased, while the Pb content in the shoots of R. pseudoacacia L. under the combined Cd and Pb treatments decreased in relative to that in the single Pb treatments. The bacterial α-diversity indices (e.g., Sobs, Shannon, Simpson, Ace, and Chao) of R. pseudoacacia L. rhizosphere soil under Cd and Pb stress were changed slightly relative to the CK treatment. However, Cd and Pb stress could significantly (p < 0.05) alter the rhizosphere soil microbial communities. According to heat map and LEfSe (Linear discriminant analysis Effect Size) analysis, Bacillus, Sphingomonas, Terrabacter, Roseiflexaceae, Paenibacillus, and Myxococcaceae at the genus level were notably (p < 0.05) accumulated in the Cd- and/or Pb-contaminated soil. Furthermore, the MDA content was notably (p < 0.05) negatively correlated with the relative abundances of Isosphaeraceae, Gaiellales, and Gemmatimonas. The total biomass of R. pseudoacacia L. was positively (p < 0.05) correlated with the relative abundances of Xanthobacteraceae and Vicinamibacreraceae. Network analysis showed that Cd and Pb combined stress might enhance the modularization of bacterial networks in the R. pseudoacacia L. rhizosphere soil. Thus, the assembly of the soil bacterial communities in R. pseudoacacia L. rhizosphere may improve the tolerance of plants in response to Cd and/or Pb stress.
Collapse
Affiliation(s)
- Xu-Feng Luo
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Meng-Yu Liu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Zi-Xi Tian
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yue Xiao
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Peng Zeng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
- Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Zi-Yu Han
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Hang Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
- Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jiao-Feng Gu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
- Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Bo-Han Liao
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
- Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| |
Collapse
|
29
|
Zhou T, Xing Q, Sun J, Wang P, Zhu J, Liu Z. The mechanism of KpMIPS gene significantly improves resistance of Koelreuteria paniculata to heavy metal cadmium in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167219. [PMID: 37734601 DOI: 10.1016/j.scitotenv.2023.167219] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/28/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Cadmium (Cd) pollution in soil is an important factor endangering plant growth and harming human health through food chains. Koelreuteria paniculata is an important woody plant for ecological restoration of Cd-contaminated soils. In this study, KpMIPS gene of K. paniculata was cloned, and the expressed protein (60 kDa) had 1-phosphate synthase activity. The results showed that KpMIPS significantly promoted root development of K. paniculata and Arabidopsis thaliana, reduced damage to the roots of Arabidopsis thaliana caused by Cd, and decreased transfer of Cd to the aboveground parts of K. paniculata and Arabidopsis thaliana . In the K. paniculata plants overexpressing KpMIPS integrity of the root cells was maintained and the content of pectin and phytic acid was significantly increased. Overexpression of KpMIPS increased the Cd accumulation in the roots and decreased the Cd content in the stems and leaves. Clearly, KpMIPS could regulate the contents of pectin and phytic acid in K. paniculata, thereby passivating Cd2+ and enriching it in the root cell wall, reducing the transfer of free Cd2+ to other parts of K. paniculata, and providing a positive regulatory effect on the Cd resistance of K. paniculata. The results of the study provide a technical introduction for the selection and genetic improvement of target genes regulating heavy metal resistance of plants in phytoremediation technology.
Collapse
Affiliation(s)
- Tao Zhou
- College of Life Science and Technology, Central South University of Forestry and Technology, No. 498, South Shaoshan Road, Changsha 410004, Hunan Province, China
| | - Qinqin Xing
- College of Life Science and Technology, Central South University of Forestry and Technology, No. 498, South Shaoshan Road, Changsha 410004, Hunan Province, China
| | - Jikang Sun
- College of Life Science and Technology, Central South University of Forestry and Technology, No. 498, South Shaoshan Road, Changsha 410004, Hunan Province, China
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, No. 498, South Shaoshan Road, Changsha 410004, Hunan Province, China.
| | - Jian Zhu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, No. 498, South Shaoshan Road, Changsha 410004, Hunan Province, China.
| | - Zhiming Liu
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, United States of America
| |
Collapse
|
30
|
Luo J, Cao M, Deng Y, He Y, Feng S. Effects of magnetic field on cd subcellular distribution and chemical speciation in Noccaea caerulescens. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115835. [PMID: 38100850 DOI: 10.1016/j.ecoenv.2023.115835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/21/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Implementing an external magnetic field of suitable strength has been reported to increase Cd uptake by Noccaea caerulescence. However, only a few mechanisms promoting this efficiency have been reported. A series of culture experiments was conducted to explore how Cd subcellular distribution and speciation vary within the tissue of N. caerulescens when subjected to external magnetic fields of different intensities. Without a magnetic field, over 80% of the Cd was deposited in the cell wall and cytoplasm, indicating that cell wall retention and cytoplasm isolation are significant mechanisms for the detoxification of Cd. An external magnetic field (120 mT) increased the Cd concentrations deposited in the cytoplasm and water-soluble inorganic Cd in the roots, increasing the cell wall-bound Cd and undissolved Cd phosphate in the shoots. Meanwhile, the magnetic field increased carbonic anhydrase activity in plant shoots, except at 400 mT. These results indicated that an external field can elevate the Cd decontamination capacity of N. caerulescens by changing the subcellular compartmentalization and speciation of Cd in different tissues.
Collapse
Affiliation(s)
- Jie Luo
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Min Cao
- University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Yuping Deng
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Yue He
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Siyao Feng
- College of Resources and Environment, Yangtze University, Wuhan, China.
| |
Collapse
|
31
|
Hosseinniaee S, Jafari M, Tavili A, Zare S, Cappai G. Chelate facilitated phytoextraction of Pb, Cd, and Zn from a lead-zinc mine contaminated soil by three accumulator plants. Sci Rep 2023; 13:21185. [PMID: 38040787 PMCID: PMC10692180 DOI: 10.1038/s41598-023-48666-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/29/2023] [Indexed: 12/03/2023] Open
Abstract
This study aims to evaluate the enhancement of phytoextraction of heavy metals (Pb, Cd, and Zn) by species Marrubium cuneatum, Stipa arabica, and Verbascum speciosum, through EDTA amendment. Assisted phytoextraction pot experiments were performed at different EDTA dosages (0, 1, 3, and 5 mmol kg-1 soil). The DTPA-extractable metal content increased in the presence of EDTA, followed by their contents in the tissues of all three studied species. Resulting from oxidative stress, the activity of antioxidant enzymes such as glutathione peroxidase (GPX), superoxide dismutase (SOD), and catalase (CAT) increased when the chelating agent was added. EDTA in higher doses partially decreased chlorophyll concentration, and 5 mmol kg-1 of that reduced the biomass of the studied species. The bioconcentration factor (BCF) for Cd was notably high in all studied plants and considerably elevated for Zn and Pb with the addition of EDTA in M. cuneatum and S. arabica (BCF > 1), whilst an accumulation factor greater than one (AF > 1) was found for Cd in all species and for Pb in the case of S. arabica. In general, the results demonstrated that EDTA can be an effective amendment for phytoextraction of Cd, Zn, and Pb by M. cuneatum, V. speciosum and S. arabica in contaminated soils.
Collapse
Affiliation(s)
- Sadegh Hosseinniaee
- Department of Reclamation of Arid and Mountainous Regions, Natural Resources Faculty, University of Tehran, Karaj, Iran.
| | - Mohammad Jafari
- Department of Reclamation of Arid and Mountainous Regions, Natural Resources Faculty, University of Tehran, Karaj, Iran.
| | - Ali Tavili
- Department of Reclamation of Arid and Mountainous Regions, Natural Resources Faculty, University of Tehran, Karaj, Iran
| | - Salman Zare
- Department of Reclamation of Arid and Mountainous Regions, Natural Resources Faculty, University of Tehran, Karaj, Iran
| | - Giovanna Cappai
- Department of Civil-Environmental Engineering and Architecture, University of Cagliari, Monserrato, Italy
| |
Collapse
|
32
|
Li Y, Zhang Y, Chen X, Liu Y, Li S, Liu H, Xu H. Enhanced cadmium phytoextraction efficiency of ryegrass (Lolium perenne L.) by porous media immobilized Enterobacter sp. TY-1. CHEMOSPHERE 2023; 337:139409. [PMID: 37406938 DOI: 10.1016/j.chemosphere.2023.139409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/06/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Although studies on immobilized microorganisms have been conducted, their performance remains unclear for enhancing plants to remediate cadmium (Cd)-contaminated soil. In this study, a Cd-resistant strain TY-1 with good plant growth promotion traits was immobilized by biochar (BC) or oyster shell (OS) power to strengthen ryegrass to remediate Cd-contaminated soil. SEM-EDS combined with FTIR showed that TY-1 could tolerate Cd toxicity by surface precipitation, and functional groups such as hydroxyl and carbonyl groups might be involved. In the biocomposite treatments, soil pH increased, and the activity of fertility-related enzymes such as dehydrogenase increased by 109.01%-128.01%. The relative abundance of genus Saccharimonadales decreased from 7.97% to 3.35% in BS-TY and 2.61% in OS-TY, respectively. Thus, a suitable environment for ryegrass growth was created. The fresh weight, dry weight, plant height and Cd accumulation of ryegrass in TY treatment increased by 122.92%, 114.81%, 42.08% and 8.05%, respectively, compared to the control. Cd concentration in ryegrass was further increased in BC-TY and OS-TY by 24.14% and 40.23%, respectively. The improvement in soil microcosm and plant biomass forms an ongoing virtuous cycle, demonstrating that using carrier materials to improve the efficiency of microbial-assisted phytoremediation is realistic and feasible.
Collapse
Affiliation(s)
- Yongyun Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Yumei Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Xianghan Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Yikai Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Shiyao Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Huakang Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu, 610065, Sichuan, PR China.
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu, 610065, Sichuan, PR China.
| |
Collapse
|
33
|
Yan D, Xue S, Zhang Z, Xu G, Zhang Y, Shi Y, Xing M, Zhang W. Physiological Changes and Antioxidative Mechanisms of Alternanthera philoxeroides in Phytoremediation of Cadmium. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2023; 1:90-101. [PMID: 39473585 PMCID: PMC11503678 DOI: 10.1021/envhealth.3c00009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 03/29/2025]
Abstract
This study evaluated the physiological characteristics (e.g., growth parameters, chlorophyll content, metabolites and antioxidative enzymes activity) of Alternanthera philoxeroides (A. philoxeroides), as a hyperaccumulator plant, during the phytoremediation of cadmium (Cd) from water. After cultivating A. philoxeroides in a Cd-containing medium for 30 days, the growth rate was inhibited by up to 33.5% as the exposed Cd concentration increased to 0.80 mmol·L-1. Cd exposure interfered with the photosynthesis of A. philoxeroides and caused oxidative stress as indicated by the rise of malondialdehyde (MDA) and H2O2, which increased by 8 times and 3 times compared to the control group. Moreover, high exposure concentrations of Cd also reduced the activities of multiple antioxidants (e.g., GSH and AsA), indicating the inhibition of Cd on the plant's ability to mitigate oxidative damage. Finally, the fluorescent patterns of the rhizosphere dissolved organic matter (rDOM) revealed three major components (humic, fulvic substances and protein-like substances) well correlated with the changes in antioxidant activities. Partial least-squares discriminant analysis (PLS-DA) visualized the difference in the activity of the antioxidative enzymes between different groups. The study unravelled deep insights into the potential mechanisms of tolerance and resistance of A. philoxeroides for phytoremediation of Cd pollution.
Collapse
Affiliation(s)
- Dajiang Yan
- School
of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Shan Xue
- John
A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Martin Luther King Blvd., Newark, New Jersey 07102, USA
| | - Zhibin Zhang
- School
of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Guodong Xu
- School
of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Yanhao Zhang
- School
of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Yanfeng Shi
- School
of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Menglong Xing
- Shandong
Remedy Environmental Technology Company, Jinan 250101, China
| | - Wen Zhang
- John
A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Martin Luther King Blvd., Newark, New Jersey 07102, USA
| |
Collapse
|
34
|
Galvis DA, Jaimes-Suárez YY, Rojas Molina J, Ruiz R, Carvalho FEL. Cadmium up Taking and Allocation in Wood Species Associated to Cacao Agroforestry Systems and Its Potential Role for Phytoextraction. PLANTS (BASEL, SWITZERLAND) 2023; 12:2930. [PMID: 37631142 PMCID: PMC10459764 DOI: 10.3390/plants12162930] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
Trees in cacao Agroforestry systems (AFS) may present a high potential for cadmium (Cd) phytoextraction, helping to reduce Cd in cacao (Theobroma cacao L.) plants grown in contaminated soils. To assess this potential, four forest fine-woody species commonly found in cacao high-productive sites in Colombia (Tabebuia rosea, Terminalia superba, Albizia guachapele, and Cariniana pyriformis) were exposed to contrasting CdCl2 contamination levels (0, 6, and 12 ppm) on a hydroponic medium. Growth dynamics, tolerance index (TI), and Cd concentration and allocation in leaves, stems, and roots were evaluated for up to 90 days after initial exposure. T. superba, A. guachapele, and C. pyriformis were classified as moderately tolerant (TI > 0.6), and T. rosea was considered a sensitive species (TI < 0.35) under 12 ppm Cd contamination. Despite showing a high stem Cd concentration, C. pyriformis also showed the lowest relative growth rate. Among the evaluated forest species, A. guachapele exhibited the highest Cd accumulation capacity per plant (2.02 mg plant-1) but also exhibited a higher Cd allocation to leaves (4%) and a strong decrease in leaf and stem dry mass after 90 days of exposure (~75% and 50% respectively, compared to control treatments). Taking together all the favorable features exhibited by T. superba as compared to other CAFS tree species and recognized phytoextractor tree species in the literature, such as Cd hyperaccumulation, high tolerance index, low Cd concentration in leaves, and high Cd allocation to the stem (harvestable as wood), this species is considered to have a high potential for cadmium phytoextraction in cocoa agroforestry systems.
Collapse
Affiliation(s)
- Donald A. Galvis
- Centro de Investigación La Suiza, Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Rionegro 250047, Santander, Colombia
- Facultad de Ciencias Básicas, Universidad de Córdoba, Montería 230002, Córdoba, Colombia
| | - Yeirme Y. Jaimes-Suárez
- Centro de Investigación La Suiza, Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Rionegro 250047, Santander, Colombia
| | - Jairo Rojas Molina
- Centro de Investigación La Suiza, Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Rionegro 250047, Santander, Colombia
| | - Rosalba Ruiz
- Facultad de Ciencias Básicas, Universidad de Córdoba, Montería 230002, Córdoba, Colombia
| | - Fabricio Eulalio Leite Carvalho
- Centro de Investigación La Suiza, Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Rionegro 250047, Santander, Colombia
| |
Collapse
|
35
|
Jia Y, Yin X, Zhao J, Pan Y, Jiang B, Liu Q, Li Y, Li Z. Effects of 24-Epibrassinolide, melatonin and their combined effect on cadmium tolerance in Primula forbesii Franch. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115217. [PMID: 37406607 DOI: 10.1016/j.ecoenv.2023.115217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/13/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
This study aimed to investigate the interaction between 24-Epibrassinolide (EBR) and melatonin (MT) and their effects on cadmium (Cd)-stressed Primula forbesii Franch. P. forbesii seedlings were hydroponically acclimatized at 6-7 weeks, then treated with Cd (200 μmol L-1), 24-EBR (0.1 μmol L-1), and MT (100 μmol L-1) after two weeks. Cd stress significantly reduced crown width, shoot, root length, shoot fresh weight, and fresh and dry root weights. Herein, 24-EBR, MT, and 24-EBR+MT treatments attenuated the growth inhibition caused by Cd stress and improved the morphology, growth indexes, and ornamental characteristics of P. forbesii under Cd stress. 24-EBR had the best effect by effectively alleviating Cd stress and promoting plant growth and development. 24-EBR significantly increased all growth parameters compared to Cd treatment. In addition, 24-EBR significantly improved the gas exchange parameters, activities of antioxidant enzymes, and the cycle efficiency of AsA-GSH. Furthermore, 24-EBR increased the activities of ascorbate peroxidase (APX), glutathione reductase (GR), dehydroascorbate reductase (DHAR), and monodehydroascorbate reductase (MDHAR) by 127.29%, 61.31%, 61.22%, and 51.04%, respectively, compared with the Cd treatment. Therefore, 24-EBR removed the reactive oxygen species produced by stress, thus protecting plants against stress damage. These results indicate that 24-EBR can effectively enhance the tolerance of P. forbesii to Cd stress.
Collapse
Affiliation(s)
- Yin Jia
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xiancai Yin
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Zhao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanzhi Pan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Beibei Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qinglin Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yifeng Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhuolin Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
36
|
Wu S, Yang Y, Qin Y, Deng X, Zhang Q, Zou D, Zeng Q. Cichorium intybus L. is a potential Cd-accumulator for phytoremediation of agricultural soil with strong tolerance and detoxification to Cd. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131182. [PMID: 36921417 DOI: 10.1016/j.jhazmat.2023.131182] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/15/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Identifying suitable plants for phytoremediation of Cd (cadmium) contaminated agricultural soil is critical. In this study, whether chicory (Cichorium intybus L.) qualified as an ideal accumulator for phytoremediation was investigated. The hydroponic and pot experiments showed that Cd concentration in chicory leaves exceeded 100 mg kg-1 (BCF >1, TF >1) with 40 mg kg-1 Cd in pot; No significant effects on chicory growth, leaf protein and physiological and biochemical aspects when treated with ≤ 20 μM or 40 mg kg-1 Cd, because chicory could relieve Cd toxicity by increasing activities of photoprotection mechanisms, the reactive oxygen species scavenging system and concentrations of functional groups in plant tissues. In field experiment, 16.2 and 26.6 t ha-1 of chicory leaves was harvested in winter and summer, respectively. The highest Cd concentration in leaves was close to 25.0 mg kg-1 (BCF >1, TF >1) from the acid soil with 0.980 mg kg-1 Cd. Over 320 g ha-1 Cd was extracted from soil by harvesting chicory leaves both in winter and summer, with 9.24% and 12.9% of theoretical phytoremediation efficiency. Therefore, chicory can be as an ideal Cd-accumulator for phytoremediation of slight-to-moderate Cd-contaminated agricultural soil in any season.
Collapse
Affiliation(s)
- Shuangjun Wu
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, China
| | - Yang Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, China.
| | - Yongbo Qin
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, China
| | - Xiao Deng
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, China
| | - Qiuguo Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, China
| | - Dongsheng Zou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, China
| | - Qingru Zeng
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, China
| |
Collapse
|
37
|
Xue W, Zhang X, Zhang C, Wang C, Huang Y, Liu Z. Mitigating the toxicity of reactive oxygen species induced by cadmium via restoring citrate valve and improving the stability of enzyme structure in rice. CHEMOSPHERE 2023; 327:138511. [PMID: 36972869 DOI: 10.1016/j.chemosphere.2023.138511] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/13/2023] [Accepted: 03/24/2023] [Indexed: 06/18/2023]
Abstract
The mechanism of reactive oxygen species (ROS) burst in rice cells induced by cadmium (Cd) stress remains poorly understood. The present study shows that the burst of superoxide anions (O2·-) and hydrogen peroxide (H2O2) in roots and shoots led by Cd stress was attributed to the disturbance of citrate (CA) valve and the damage of antioxidant enzyme structure in the rice seedlings. Cd accumulation in cells altered the molecular structure of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) through attacking glutamate (Glu) and other residues, leading to the significant reduction of their activities in clearing O2·- and decomposing H2O2. Citrate supplementation obviously increased the activity of antioxidant enzymes and decreased ∼20-30% of O2·- and H2O2 contents in roots and shoots. Meanwhile, the synthesis of metabolites/ligands such as CA, α-ketoglutarate (α-KG) and Glu as well as the activities of related enzymes in CA valve were remarkably improved. The activities of antioxidant enzymes were protected by CA through forming stable hydrogen-bonds between CA and antioxidant enzymes, and forming the stable chelates between ligands and Cd. These findings indicate that exogenous CA mitigated the toxicity of ROS under Cd stress by the ways of restoring CA valve function to reduce the production of ROS, and improving the stability of enzyme structure to enhance antioxidant enzymes activity.
Collapse
Affiliation(s)
- Weijie Xue
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Xin Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Changbo Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Changrong Wang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yongchun Huang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Zhongqi Liu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| |
Collapse
|
38
|
Shen S, Li Y, Chen M, Huang J, Liu F, Xie S, Kong L, Pan Y. Reduced cadmium toxicity in rapeseed via alteration of root properties and accelerated plant growth by a nitrogen-fixing bacterium. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131040. [PMID: 36821906 DOI: 10.1016/j.jhazmat.2023.131040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Cd accumulation in crops has become a global environmental problem because it endangers human health. Screening for microorganisms that can reduce Cd accumulation in crops is a possible measure to address this issue. However, success has been limited, and most previous work did not involve bacteria. In the present study, a strain of N-fixing bacteria (Burkholderia spp.) that exhibits high levels of Cd tolerance was screened. The ability of this bacterium to reduce Cd in rapeseed was then assessed in sterile hydroponic and open soil culture systems. In the hydroponic system, the Burkholderia inoculum promoted Cd fixation in rapeseed roots and thus reduced Cd enrichment in aboveground edible tissues (leaves). The mechanisms were related to increased activity of pectin methylesterase in root cell walls, and the transformation of the chemical form of root Cd from "active" (NaCl-extracted) to "inert" (HCl-extracted and residual Cd) states. Additionally, Burkholderia accelerated plant growth, thus shortening the period in which the plant is available for Cd absorption. In the soil culture system, Burkholderia also reduced Cd enrichment in rapeseed leaves in the presence of other microorganisms. Thus, the bacterial strain shows potential for broad application for reducing the accumulation of Cd in crops.
Collapse
Affiliation(s)
- Shili Shen
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, Yunnan, China; Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, Yunnan, China; School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, Yunnan, China
| | - Yinghan Li
- School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, Yunnan, China
| | - Mingbiao Chen
- School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, Yunnan, China; Instititue of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming 650091, China
| | - Juan Huang
- Instititue of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming 650091, China
| | - Feng Liu
- Wuzhou Agricultural Products Quality and Safety Comprehensive Testing Center, Wuzhou 543000, Guangxi, China
| | - Shijie Xie
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, Yunnan, China; School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, Yunnan, China; Instititue of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming 650091, China
| | - Liping Kong
- Instititue of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming 650091, China
| | - Ying Pan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, Yunnan, China; School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, Yunnan, China.
| |
Collapse
|
39
|
Priya AK, Muruganandam M, Ali SS, Kornaros M. Clean-Up of Heavy Metals from Contaminated Soil by Phytoremediation: A Multidisciplinary and Eco-Friendly Approach. TOXICS 2023; 11:toxics11050422. [PMID: 37235237 DOI: 10.3390/toxics11050422] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
Pollution from heavy metals is one of the significant environmental concerns facing the world today. Human activities, such as mining, farming, and manufacturing plant operations, can allow them access to the environment. Heavy metals polluting soil can harm crops, change the food chain, and endanger human health. Thus, the overarching goal for humans and the environment should be the avoidance of soil contamination by heavy metals. Heavy metals persistently present in the soil can be absorbed by plant tissues, enter the biosphere, and accumulate in the trophic levels of the food chain. The removal of heavy metals from contaminated soil can be accomplished using various physical, synthetic, and natural remediation techniques (both in situ and ex situ). The most controllable (affordable and eco-friendly) method among these is phytoremediation. The removal of heavy metal defilements can be accomplished using phytoremediation techniques, including phytoextraction, phytovolatilization, phytostabilization, and phytofiltration. The bioavailability of heavy metals in soil and the biomass of plants are the two main factors affecting how effectively phytoremediation works. The focus in phytoremediation and phytomining is on new metal hyperaccumulators with high efficiency. Subsequently, this study comprehensively examines different frameworks and biotechnological techniques available for eliminating heavy metals according to environmental guidelines, underscoring the difficulties and limitations of phytoremediation and its potential application in the clean-up of other harmful pollutants. Additionally, we share in-depth experience of safe removing the plants used in phytoremediation-a factor frequently overlooked when choosing plants to remove heavy metals in contaminated conditions.
Collapse
Affiliation(s)
- A K Priya
- Department of Chemical Engineering, KPR Institute of Engineering and Technology, Coimbatore 641407, India
- Project Prioritization, Monitoring & Evaluation and Knowledge Management Unit, ICAR-Indian Institute of Soil & Water Conservation (ICAR-IISWC), Dehradun 248195, India
| | - Muthiah Muruganandam
- Project Prioritization, Monitoring & Evaluation and Knowledge Management Unit, ICAR-Indian Institute of Soil & Water Conservation (ICAR-IISWC), Dehradun 248195, India
| | - Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Michael Kornaros
- Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus-Rio, 26504 Patras, Greece
| |
Collapse
|
40
|
Jia Y, Yin X, Zhao J, Pan Y, Jiang B, Liu Q, Li Y. Differential physiological responses and tolerance to potentially toxic elements in Primula forbesii Franch. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:67200-67216. [PMID: 37106307 DOI: 10.1007/s11356-023-27259-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 04/23/2023] [Indexed: 05/25/2023]
Abstract
Environmental pollution caused by potentially toxic elements (PTEs) has become a global problem that endangers environmental sustainability due to industrial, agricultural, and urban pollution. Primula forbesii Franch. (a synonym of Primula filipes G. Watt.) is a biennial flower native to China with excellent stress resistance and ornamental value. In this study, we examined the phenotypic traits, growth indexes, and physiological properties of P. forbesii in response to five representative PTEs (Cd, Ni, Cr(III), Cu, and Zn) under hydroponic culture conditions. High concentrations of Zn and Cr had little effect on the growth and physiological properties of P. forbesii, indicating that the species has strong tolerance to Zn and Cr stress. Alternatively, high concentrations of Cd, Ni, and Cu seriously affected plant growth and development, resulting in leaf chlorosis and even death, and therefore may have a serious negative impact on the growth of P. forbesii. However, activity levels of some antioxidant enzymes and osmotic regulatory substances remained high, indicating that P. forbesii resisted PTE stress by regulating physiological and biochemical metabolism to a certain extent. Furthermore, principal component analysis and membership function were used to comprehensively evaluate P. forbesii resistance to PTEs. These analyses revealed that P. forbesii exhibits distinct sensitivities and physiological responses to different PTEs and suggested that the resistance to five PTEs in decreasing order is Zn > Cr > Cd > Cu > Ni. These results provide a theoretical basis for the future application of P. forbesii in environments with PTE pollution and may expand its practical utilization.
Collapse
Affiliation(s)
- Yin Jia
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xiancai Yin
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jian Zhao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuanzhi Pan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Beibei Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qinglin Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yifeng Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
41
|
Song J, Li Y, Tang H, Qiu C, Lei L, Wang M, Xu H. Application potential of Vaccinium ashei R. for cadmium migration retention in the mining area soil. CHEMOSPHERE 2023; 324:138346. [PMID: 36893865 DOI: 10.1016/j.chemosphere.2023.138346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Despite numerous reports on phytoremediation of heavy metals contaminated soil, there are few reports on plant retention of heavy metals in the mining area slope. This study was the first of its kind to explore the cadmium (Cd) retention capacity of the blueberry (Vaccinium ashei Reade). Firstly, we investigated the stress response of blueberry to different soil Cd concentrations (1, 5, 10, 15, 20 mg/kg) to assess its potential for phytoremediation by pot experiments. The results showed that the blueberry biomass exposed to 10 and 15 mg/kg Cd was significantly increased compared with the control (1 mg/kg Cd); the blueberry crown increased by 0.40% and 0.34% in 10 and 15 mg/kg Cd-contaminated soil, respectively, compared with control; the blueberry heigh did not even change significantly in each treatment group; the total chlorophyll content, peroxidase and catalase activity of blueberry were enhanced in 5-20 mg/kg Cd treatments. Furthermore, the Cd contents of blueberry in the root, stem and leaf increased significantly as the Cd concentration of soil increased. We found that more Cd accumulated in blueberry root: the bioaccumulation concentration factor was root > stem > leaf for all groups; the residual-Cd (Cd speciation) in soil increased by 3.83%-411.11% in blueberry-planted versus unplanted groups; blueberry improved the Cd-contaminated soil micro-ecological environment including soil organic matter, available K and P, as well as microbial communities. Then, to investigate the effect of blueberry cultivation on Cd migration, we developed a bioretention model and revealed that soil Cd transport along the model slope was significantly weakened by blueberry cultivation, especially at the bottom of the model. In a word, this research suggests a promising method for the phytoremediation of Cd-contaminated soil and the reduction of Cd migration in mining areas.
Collapse
Affiliation(s)
- Jianjincang Song
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Yongyun Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Hao Tang
- Ecological Protection and Development Research Institute of Aba Tibetan and Qiang Autonomous Prefecture, Aba, 623000, Sichuan, PR China
| | - Chengshu Qiu
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu, 61130, Sichuan, PR China
| | - Ling Lei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Maolin Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China.
| |
Collapse
|
42
|
Chen S, Zhang G, Liang X, Wang L, Li Z, He Y, Li B, Zhan F. A Dark Septate Endophyte Improves Cadmium Tolerance of Maize by Modifying Root Morphology and Promoting Cadmium Binding to the Cell Wall and Phosphate. J Fungi (Basel) 2023; 9:jof9050531. [PMID: 37233243 DOI: 10.3390/jof9050531] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Dark septate endophytes (DSEs) can improve the performance of host plants grown in heavy metal-polluted soils, but the mechanism is still unclear. A sand culture experiment was performed to investigate the effects of a DSE strain (Exophiala pisciphila) on maize growth, root morphology, and cadmium (Cd) uptake under Cd stress at different concentrations (0, 5, 10, and 20 mg·kg-1). The results indicated that the DSE significantly improved the Cd tolerance of maize, causing increases in biomass, plant height, and root morphology (length, tips, branch, and crossing number); enhancing the Cd retention in roots with a decrease in the transfer coefficient of Cd in maize plants; and increasing the Cd proportion in the cell wall by 16.0-25.6%. In addition, DSE significantly changed the chemical forms of Cd in maize roots, resulting in decreases in the proportions of pectates and protein-integrated Cd by 15.6-32.4%, but an increase in the proportion of insoluble phosphate Cd by 33.3-83.3%. The correlation analysis revealed a significantly positive relationship between the root morphology and the proportions of insoluble phosphate Cd and Cd in the cell wall. Therefore, the DSE improved the Cd tolerance of plants both by modifying root morphology, and by promoting Cd binding to the cell walls and forming an insoluble phosphate Cd of lower activity. These results of this study provide comprehensive evidence for the mechanisms by which DSE colonization enhances Cd tolerance in maize in root morphology with Cd subcellular distribution and chemical forms.
Collapse
Affiliation(s)
- Si Chen
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Guangqun Zhang
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Xinran Liang
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Lei Wang
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Zuran Li
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China
| | - Yongmei He
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Bo Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Fangdong Zhan
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
43
|
Du L, Zhang M, Qi L, Liu S, Ren T, Tan Q, Chen Y. Physiological and biochemical response of P. fortunei to Mn exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:52646-52657. [PMID: 36843165 DOI: 10.1007/s11356-023-25311-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Fast-growing woody plants with metal tolerance are considered as potential candidates for phytoremediation. P. fortunei is widely distributed in China. Herein, the Mn tolerance ability and physiological and biochemical response of P. fortunei to Mn were explored in this study. Results showed that a low concentration of Mn exposure was favorable for the growth of P. fortunei, while it was inhibited in high Mn exposure. P. fortunei showed high tolerance to Mn (10 mmol/L). The microstructure of P. fortunei organs revealed that the Mn tolerance of P. fortunei was related to the compartmentalization of the cell wall. The subcellular distribution of Mn in P. fortunei showed that Mn was mainly stored in the cell wall fraction (39%-90%). Under Mn exposure, the proportion of pectate and protein-integrated Mn increased by 5%-29% in P. fortunei. The changes of function groups (-CH3 and -COOH) in P. fortunei might be related to the reduction of Mn toxicity in plant cells in the way of chelation. Additionally, P. fortunei leaves resisted Mn toxicity by increasing the activities of CAT and SOD under low Mn concentration exposure, but it might be destroyed under excessive Mn concentration exposure. P. fortunei might be used as a candidate plant for low concentration Mn tailing restoration.
Collapse
Affiliation(s)
- Lu Du
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Mengying Zhang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Lingyao Qi
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Senwei Liu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Tao Ren
- Management Bureau of Miluojiang National Wetland Park, Yueyang, 414400, China
| | - Qing Tan
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yonghua Chen
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| |
Collapse
|
44
|
Kumar A, Kumari N, Singh A, Kumar D, Yadav DK, Varshney A, Sharma N. The Effect of Cadmium Tolerant Plant Growth Promoting Rhizobacteria on Plant Growth Promotion and Phytoremediation: A Review. Curr Microbiol 2023; 80:153. [PMID: 36988722 DOI: 10.1007/s00284-023-03267-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/11/2023] [Indexed: 03/30/2023]
Abstract
Cadmium (Cd) is a heavy metal of considerable toxicity with destructive impacts on plants, microbes and environments. Its toxicity is due to mishandling and manual hazards in plants and is primarily observed within the soil to cause decline of plants and microbial activity inside the rhizosphere. Cadmium accumulation in crops and the probability of Cd entering the food chain are grave for public health in the worldwide. Cadmium toxicity leads to depletion in seed germination, initial seedling growth, plant biomass, chlorosis, necrosis, hindrance of photosynthetic machinery and other physiological and biological activities in plants. Cadmium triggers the reactive oxygen species (ROS) that influences gene mutation and DNA damage that affects the cell cycle and cell division. Cd toxicity altered the levels of phenolic compounds, carbohydrates, glycine betaine, proline and organic acids in crops. Under stress conditions, the plant growth promoting rhizobacteria (PGPR) have various properties such as enzymatic activities, plant growth hormones production, phosphate solubilization, siderophores production and chelating agents that help the plants tolerate against Cd stress and also increase phenolic compound levels and osmolytes. Hence, this review highlights the crucial role of cadmium tolerant PGPR for crop production, declining metal phytoavailability and enhancing morphological and physiological boundaries of plants under stress conditions. It could be an environment friendly and cost effective technology under sustainable crop production.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Genetics and Plant Breeding (Plant Biotechnology), Institute of Agricultural Sciences, Rajiv Gandhi South Campus, Banaras Hindu University, Mirzapur, Uttar Pradesh, 231001, India.
- School of Life Science and Technology, IIMT University, Ganga Nagar, Meerut, Uttar Pradesh, 250001, India.
| | - Neha Kumari
- Department of Genetics and Plant Breeding (Plant Biotechnology), Institute of Agricultural Sciences, Rajiv Gandhi South Campus, Banaras Hindu University, Mirzapur, Uttar Pradesh, 231001, India
| | - Anjali Singh
- Department of Genetics and Plant Breeding (Plant Biotechnology), Institute of Agricultural Sciences, Rajiv Gandhi South Campus, Banaras Hindu University, Mirzapur, Uttar Pradesh, 231001, India
| | - Deepak Kumar
- Department of Genetics and Plant Breeding (Plant Biotechnology), Institute of Agricultural Sciences, Rajiv Gandhi South Campus, Banaras Hindu University, Mirzapur, Uttar Pradesh, 231001, India
| | - Dhirendra Kumar Yadav
- Department of Genetics and Plant Breeding (Plant Biotechnology), Institute of Agricultural Sciences, Rajiv Gandhi South Campus, Banaras Hindu University, Mirzapur, Uttar Pradesh, 231001, India
| | - Ashi Varshney
- Department of Genetics and Plant Breeding (Plant Biotechnology), Institute of Agricultural Sciences, Rajiv Gandhi South Campus, Banaras Hindu University, Mirzapur, Uttar Pradesh, 231001, India
| | - Navneet Sharma
- School of Life Science and Technology, IIMT University, Ganga Nagar, Meerut, Uttar Pradesh, 250001, India
| |
Collapse
|
45
|
Ogunkunle CO, Balogun GY, Olatunji OA, Han Z, Adeleye AS, Awe AA, Fatoba PO. Foliar application of nanoceria attenuated cadmium stress in okra (Abelmoschus esculentus L.). JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130567. [PMID: 37055974 DOI: 10.1016/j.jhazmat.2022.130567] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 06/19/2023]
Abstract
Foliar application of nanoparticles (NPs) as a means for ameliorating abiotic stress is increasingly employed in crop production. In this study, the potential of CeO2-NPs as stress suppressants for cadmium (Cd)-stressed okra (Abelmoschus esculentus) plants was investigated, using two cycles of foliar application of CeO2-NPs at 200, 400, and 600 mg/l. Compared to untreated stressed plants, Cd-stressed plants treated with CeO2-NPs presented higher pigments (chlorophyll a and carotenoids). In contrast, foliar applications did not alter Cd root uptake and leaf bioaccumulation. Foliar CeO2-NPs application modulated stress enzymes (APX, SOD, and GPx) in both roots and leaves of Cd-stressed plants, and led to decreases in Cd toxicity in plant's tissues. In addition, foliar application of CeO2-NPs in Cd-stressed okra plants decreased fruit Cd contents, and improved fruit mineral elements and bioactive compounds. The infrared spectroscopic analysis of fruit tissues showed that foliar-applied CeO2-NPs treatments did not induce chemical changes but induced conformational changes in fruit macromolecules. Additionally, CeO2-NPs applications did not alter the eating quality indicator (Mg/K ratio) of okra fruits. Conclusively, the present study demonstrated that foliar application of CeO2-NPs has the potential to ameliorate Cd toxicity in tissues and improve fruits of okra plants.
Collapse
Affiliation(s)
- C O Ogunkunle
- Environmental Botany unit, Department of Plant Biology, University of Ilorin, Ilorin, Nigeria.
| | - G Y Balogun
- Environmental Botany unit, Department of Plant Biology, University of Ilorin, Ilorin, Nigeria
| | - O A Olatunji
- Department of Plant Biology, Faculty of Basic and Applied Sciences, Osun State University, Osogbo, Nigeria
| | - Z Han
- Department of Civil and Environmental Engineering, University of California, Irvine, 92697-2175 CA, USA
| | - A S Adeleye
- Department of Civil and Environmental Engineering, University of California, Irvine, 92697-2175 CA, USA
| | - A A Awe
- Department of Conservation and Marine Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - P O Fatoba
- Environmental Botany unit, Department of Plant Biology, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
46
|
Cui T, Wang Y, Niu K, Dong W, Zhang R, Ma H. Auxin alleviates cadmium toxicity by increasing vacuolar compartmentalization and decreasing long-distance translocation of cadmium in Poa pratensis. JOURNAL OF PLANT PHYSIOLOGY 2023; 282:153919. [PMID: 36706576 DOI: 10.1016/j.jplph.2023.153919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/10/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Kentucky bluegrass (Poa pratensis L.) hyperaccumulates cadmium (Cd) and exhibits a hypertolerance. Thus, it has potential for the phytoremediation of Cd-containing soil. Auxin signaling is involved in the response to Cd stress. However, the mechanisms of auxin-mediated detoxification and Cd translocation in plants remain unclear. This study aimed to investigate the effects of exogenous application of indole-3-acetic acid (IAA) on the Cd translocation, subcellular Cd distribution, chemical forms of Cd, and transcriptional regulation of Kentucky bluegrass. The results showed that the exogenous application of IAA increased the amount of organelle-bound Cd and vacuole-compartmentalized Cd in root cells, reduced the Cd concentration in the leaf tissues (epidermis, mesophyll, and vascular bundle) and root tissues (rhizodermis and cortex) but increased in the stele, and alleviate Cd-induced leaf chlorosis and growth inhibition. The expression of genes associated with Cd transporters (ABCs, ZIPs, NASs, OPTs, and YSLs), phosphatases, oxalate decarboxylases and lignin biosynthesis were significantly regulated by exogenous IAA under Cd stress. A positive regulation of phosphatases and oxalate decarboxylases genes related to an increase in phosphate- and oxalate-bound Cd, as well as a decrease in pectate- and protein-bound Cd and inorganic Cd, thereby contributing to a decrease in Cd phytotoxicity. The significant regulation of Cd transporters associated with decreasing the long-distance translocation of Cd, and the activation of lignin biosynthesis may contribute to the development of root endodermal barriers and increase the deposition of undissolved Cd phosphates and oxalate-bound Cd in the stele. These results revealed the important role of auxin in Cd detoxification and translocation in Kentucky bluegrass and they provide a theoretical basis for the phytoremediation of Cd-containing soil.
Collapse
Affiliation(s)
- Ting Cui
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Yong Wang
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Kuiju Niu
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Wenke Dong
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Ran Zhang
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Huiling Ma
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China.
| |
Collapse
|
47
|
Ou C, Cheng W, Wang Z, Yao X, Yang S. Exogenous melatonin enhances Cd stress tolerance in Platycladus orientalis seedlings by improving mineral nutrient uptake and oxidative stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114619. [PMID: 36753967 DOI: 10.1016/j.ecoenv.2023.114619] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/16/2023] [Accepted: 02/05/2023] [Indexed: 05/26/2023]
Abstract
The development of agriculture and industry has led to a gradual increase in the levels of cadmium (Cd) in the soil, which, due to its high mobility in soil, makes Cd deposition in plants a serious threat to the health of animals and humans. The important role of melatonin (MT) in regulating plant growth and adaptation to environmental stress has become a pertinent research topic, but the mechanisms of action of MT in Cd-stressed Platycladus orientalis seedlings are unclear. Here, we investigated the mitigation mechanism of exogenous MT application on P. orientalis seedlings under Cd stress. Cd stress significantly inhibited the growth of P. orientalis seedlings by disrupting photosynthetic pigments, mineral balance, osmotic balance, and oxidative balance. In contrast, the application of exogenous MT significantly increased the growth parameters of P. orientalis seedlings, reduced Cd accumulation and transfer in the seedlings, increased the content of iron, manganese, zinc, copper, chlorophyll, soluble protein, soluble sugar, and proline, reduced the content of glutathione, increased the activities of superoxide dismutase and peroxidase, and significantly enhanced the expression of antioxidant-related genes (POD, GST, and APX). It also effectively reduced the content of hydrogen peroxide and malondialdehyde to inhibit the production of reactive oxygen species, thus alleviating Cd-induced oxidative stress. In addition, MT significantly upregulated the expression of the ethanol dehydrogenase (ADH) gene, which is effective in removing the acetaldehyde produced by anaerobic respiration in seedlings under stress, thereby reducing the toxic effects on P. orientalis. The results showed that exogenous MT enhanced the tolerance of P. orientalis seedlings to Cd stress by regulating photosynthesis, mineral balance, osmotic balance, and the antioxidant system and that the optimal concentration of MT was 200 μmol·L-1.
Collapse
Affiliation(s)
- Chun Ou
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine, School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Wenhui Cheng
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine, School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Zelu Wang
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine, School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Xiamei Yao
- School of Architecture and Urban Planning, Anhui Jianzhu University, Hefei, Anhui 230601, China.
| | - Shengmei Yang
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine, School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| |
Collapse
|
48
|
Zheng MM, Feng D, Liu HJ, Yang GL. Subcellular distribution, chemical forms of cadmium and rhizosphere microbial community in the process of cadmium hyperaccumulation in duckweed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160389. [PMID: 36423841 DOI: 10.1016/j.scitotenv.2022.160389] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/07/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Duckweed is a newly reported Cd hyperaccumulator that grow rapidly; however, little is known about its tolerance and detoxification mechanisms. In this study, we investigated the tissue, subcellular, and chemical form distribution of the Cd in duckweed and studied the influences of Cd on duckweed growth, ultrastructure, and rhizosphere microbial community. The results showed that Cd could negatively affect the growth of duckweed and shorten the root length. More Cd accumulated in the roots than in the leaves, and Cd was transferred from the roots to the leaves with time. During 12-24 h, Cd mainly existed in the cell wall fraction (2.05 %-95.52 %) and the organelle fraction (5.03 %-97.80 %), followed the soluble fraction (0.14 %-16.98 %). Over time, the proportion of Cd in the organelles increased (46.64 %-92.83 %), exceeding that in the cell wall (6.79 %-66.23 %), which indicated that duckweed detoxification mechanism may be related to the retention of cell wall and vacuole. The main chemical form of Cd was the NaCl-extracted state (30.15 %-88.66 %), which was integrated with pectate and protein. With increasing stress concentration and time, the proportion of the HCl-extracted state and HAc-extracted state increased, and they were low-toxic Cd oxalate and Cd phosphate, respectively. Cd damaged the ultrastructure of cells such as chloroplasts and mitochondria and inhibited the diversity of microbial communities in the duckweed rhizosphere; however, the dominant populations that could tolerate heavy metals increased. It was speculated that duckweed distributed Cd in a less toxic chemical form in a less active location, mainly through retention in the root cell wall and sequestration in the leaf vacuoles, and is dynamically adjusted. The rhizosphere microbial communities tolerate heavy metals may also be one of the mechanisms by which duckweed can tolerate Cd. This study revealed the mechanism of duckweed tolerance and detoxification of Cd at the molecular level and provides a theoretical basis for further development of duckweed.
Collapse
Affiliation(s)
- Meng-Meng Zheng
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), CollaborativeInnovation Center forMountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Dan Feng
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), CollaborativeInnovation Center forMountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Hui-Jiao Liu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), CollaborativeInnovation Center forMountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Gui-Li Yang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), CollaborativeInnovation Center forMountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China; Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou Province, China.
| |
Collapse
|
49
|
Wu J, Qian C, Liu Z, Zhong X. Phytoremediation potential of hybrid Pennisetum in cadmium-contaminated soil and its physiological responses to cadmium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26208-26217. [PMID: 36355236 DOI: 10.1007/s11356-022-23848-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) contamination in soil is a global problem. Recently, phytoremediation with plants, possessing high biomass and moderate Cd enrichment ability, has received excessive attention as a cost-effective method for Cd remediation from the soil. In this study, the plant growth, physiological responses, Cd concentration, accumulation, and distribution of the C4 grass hybrid Pennisetum (HP) were studied in different levels of Cd-contaminated soil in a pot experiment. Furthermore, a field trial was also conducted to accurately assess its practical phytoremediation potential in natural Cd-contaminated fallow filed. The results showed that HP possessed effective antioxidant enzymes to scavenge ROS and strong physiological coordination in response to Cd stress. The HP had a considerable Cd enrichment ability, and the maximal Cd uptake of 1.08 mg plant-1 was achieved at 60 mg kg-1 Cd in the pot. The maximal concentration of Cd in the aboveground parts and roots of HP were 49.33 mg kg-1 and 103.33 mg kg-1, respectively, when soil Cd was 70 mg kg-1 in the pot. The bioconcentration factor (BCF) of Cd in the aboveground parts was less than 1, while the BCF in the root was greater than 1, and the translocation factor (TF) was less than 0.5 in all Cd treatment groups. A total of 46.89-65.46% absorbed Cd stored in the aboveground parts in the pot. The Cd concentration in roots of HP was significantly higher compared to those in leaves and stems, and all BCFs were greater than 1.5 in a lightly Cd-contaminated field (0.35 mg kg-1). Furthermore, HP had high aboveground dry biomass up to 54.63 t ha-1 and accumulated 16.13 g ha-1 Cd in its aboveground parts in the field, which was accounted for about 91.54% of the total Cd extracted by the plant. The soil Cd concentration was reduced by 60.00% after planting HP. Our results suggest that HP is a potential phytoextractor for Cd in lightly Cd-contaminated soil as well as a phytostabilizer under strong Cd stress in the pot.
Collapse
Affiliation(s)
- Juanzi Wu
- National Forage Breeding Innovation Base (JAAS), Nanjing, People's Republic of China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Chen Qian
- National Forage Breeding Innovation Base (JAAS), Nanjing, People's Republic of China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
- Key Laboratory for Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Nanjing, People's Republic of China
| | - Zhiwei Liu
- National Forage Breeding Innovation Base (JAAS), Nanjing, People's Republic of China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
- Key Laboratory for Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Nanjing, People's Republic of China
| | - Xiaoxian Zhong
- National Forage Breeding Innovation Base (JAAS), Nanjing, People's Republic of China.
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China.
- Key Laboratory for Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Nanjing, People's Republic of China.
| |
Collapse
|
50
|
Hashmat S, Tanwir K, Abbas S, Shahid M, Javed MT. Acinetobacter schindleri SR-5-1 decipher morpho-physio-biochemical and nutritional improvements to Pisum sativum L. and Linum usitatissimum L. maintained under wastewater/cadmium stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:24672-24686. [PMID: 36346519 DOI: 10.1007/s11356-022-23920-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Metal retention in wastewater fertigated crops poses a potential hazard to food chain. Current work demonstrates the bioremediation and growth-promoting potential of Acinetobacter schindleri SR-5-1 by using nitrogen-fixing (pea) and non-nitrogen fixing (linseed) plants under cadmium (Cd) and wastewater irrigation regimes. Both plants were grown at 250 or 500 CdCl2 and 75 or 100% wastewater, each separately with and without A. schindleri SR-5-1 inoculation. The results revealed that Cd and wastewater significantly decreased growth, biomass, antioxidants, and nutrient acquisition through increased malondialdehyde, H2O2, and Cd accumulation. However, application of A. schindleri SR-5-1 significantly promoted morpho-physio-biochemical attributes while diminishing MDA and H2O2 under applied Cd and wastewater stress levels in both pea and linseed. Further, PGPR inoculation positively influenced pea and linseed seedlings through a substantial decline in Cd accumulation in roots/shoots and retained the optimal level of essential nutrients. It was inferred that both pea and linseed, with A. schindleri SR-5-1 application, exhibited higher growth and metabolism under Cd and wastewater stress but substantial tolerance was acquired under wastewater stress. Studied plants exhibited tolerance in order of 75% WW ≥ 250 µM Cd ≥ 100%WW ≥ 500 µM Cd treatment under A. schindleri inoculation. Current findings revealed the potential of A. schindleri to be exploited both for bioremediation and bio-fertilization under Cd, and wastewater-polluted regimes to reduce metal contamination of edible plants. It was suggested that with inoculation of A. schindleri SR-5-1, 75% WW dilution can be applied for irrigation of both nitrogen-fixing and non-nitrogen-fixing crops.
Collapse
Affiliation(s)
- Sherjeel Hashmat
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Kashif Tanwir
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Saghir Abbas
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Tariq Javed
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan.
| |
Collapse
|