1
|
Santos D, Cabecinha E, Luzio A, Bellas J, Monteiro SM. Long-term effects of individual and combined exposure to microplastics and copper in zebrafish hypothalamic-pituitary-gonadal axis - A multi-biomarker evaluation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 378:124770. [PMID: 40037251 DOI: 10.1016/j.jenvman.2025.124770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/24/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
Microplastics (MPs) pollution and metal contamination are two prominent environmental stressors with multifaceted implications for aquatic life and ecosystem health. However, the underlying toxicological mechanisms of MPs and metals co-exposure on fish reproduction processes are largely unknown. In this study, zebrafish (Danio rerio) were exposed to MPs (2 mg/L), copper (25 μg/L, Cu25), and their mixture (Cu25 + MPs), for 30 days. The oxidative stress response, along with the expression profile of the hypothalamic-pituitary-gonadal (HPG) axis-related genes in the brain and gonad of zebrafish, were evaluated. The findings demonstrated that exposure to MPs and Cu affects the antioxidant system of zebrafish brain and gonads, inhibiting GPx in individuals exposed to MPs, Cu25, and their mixture. The gene expression analysis revealed dysregulation of the HPG axis-related genes. Specifically, the androgen receptor (ar), estrogen receptor 1 (esr1), follicle-stimulating hormone (fsh), and gonadotropin-releasing hormone 2 (gnrh2) were upregulated in the brain, whereas the genes esr2a, ar, cytochrome P450 family 11 subfamily A member 1 (cyp11a) and cyp19a were upregulated in the gonads. Both the biochemical and gene expression results showed that the brain and gonads were differently affected by MPs and Cu with the effects varying with fish gender. Furthermore, the mixture exposure affected the brain the most, and the individual pollutants affected the gonads the most. Overall, this study highlights that MPs, alone or combined with Cu, adversely affect the HPG axis of zebrafish, posing a potential threat to the reproduction of fish populations.
Collapse
Affiliation(s)
- Dércia Santos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, and Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal.
| | - Edna Cabecinha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, and Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Ana Luzio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, and Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Juan Bellas
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, IEO-CSIC, Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Sandra M Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, and Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| |
Collapse
|
2
|
Bitschinski D, Warsneski A, Rutkoski CF, Gonçalves GHP, Giasson LOM, Hasckel RP, Israel NG, da Silva EB, de Albuquerque CAC, Lã L, Alves TC, de Campos Guerreiro F, de Almeida EA. Exposure to pesticides used in rice farming (bentazone, chlorantraniliprole and tebuconazole) affects biochemical biomarkers and hepatic histopathological parameters of hammertoad tadpoles (Boana faber). Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109960. [PMID: 38885749 DOI: 10.1016/j.cbpc.2024.109960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/22/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Pesticides used in rice cultivation can cause negative health effects to non-target organisms representative of natural biodiversity. In this context, the present study aimed to investigate the occurrence of pesticides in surface waters from a river that flows in the middle of a rice farming-dominated area. We were also interested in evaluate biochemical and histological effects caused by exposure (16 d) to the lower and higher concentrations of the main found herbicide (bentazone, BTZ), insecticide (chlorantraniliprole, CTP) and fungicide (tebuconazole, TBZ), isolated or mixed, in Boana faber tadpoles. No significant differences were observed in the development of the animals. Tadpoles exposed to the herbicide BTZ showed higher hepatic levels of malondialdehyde (MDA). In animals exposed to CTP, MDA levels were lower than controls. Animals exposed to the fungicide TBZ showed higher hepatic activity of glutathione S-transferase and carboxylesterase (CbE), as well as higher levels of carbonyl proteins and MDA. Animals exposed to Mix showed higher activity in CbE and glucose-6-phosphate dehydrogenase activity in the liver, as well as higher levels of MDA. In the brain and muscle of tadpoles exposed to Mix, acetylcholinesterase activity was higher. Histological changes were also observed in pesticide-exposed animals, such as increased occurrence of melanomacrophages, inflammatory infiltrates and congestion. Our data evidences the contamination of natural aquatic environments by rice pesticides, and the adverse effects of main ones in B. faber tadpoles, which suggests the contribution of pesticides derived from rice cultivation to the degradation of local biodiversity health.
Collapse
Affiliation(s)
- Daiane Bitschinski
- Centro de Estudos em Toxicologia Aquática, Departamento de Ciências Naturais, Fundação Universidade Regional de Blumenau, Av. Antônio da Veiga 140, Itoupava Seca 89030-903, Blumenau, Santa Catarina, Brazil
| | - Aline Warsneski
- Centro de Estudos em Toxicologia Aquática, Departamento de Ciências Naturais, Fundação Universidade Regional de Blumenau, Av. Antônio da Veiga 140, Itoupava Seca 89030-903, Blumenau, Santa Catarina, Brazil
| | - Camila Fatima Rutkoski
- Centro de Estudos em Toxicologia Aquática, Departamento de Ciências Naturais, Fundação Universidade Regional de Blumenau, Av. Antônio da Veiga 140, Itoupava Seca 89030-903, Blumenau, Santa Catarina, Brazil
| | - Gustavo Henrique Pereira Gonçalves
- Centro de Estudos em Toxicologia Aquática, Departamento de Ciências Naturais, Fundação Universidade Regional de Blumenau, Av. Antônio da Veiga 140, Itoupava Seca 89030-903, Blumenau, Santa Catarina, Brazil
| | - Luís Olímpio Menta Giasson
- Centro de Estudos em Toxicologia Aquática, Departamento de Ciências Naturais, Fundação Universidade Regional de Blumenau, Av. Antônio da Veiga 140, Itoupava Seca 89030-903, Blumenau, Santa Catarina, Brazil
| | - Rony Paolin Hasckel
- Centro de Estudos em Toxicologia Aquática, Departamento de Ciências Naturais, Fundação Universidade Regional de Blumenau, Av. Antônio da Veiga 140, Itoupava Seca 89030-903, Blumenau, Santa Catarina, Brazil
| | - Nicole Grasmuk Israel
- Centro de Estudos em Toxicologia Aquática, Departamento de Ciências Naturais, Fundação Universidade Regional de Blumenau, Av. Antônio da Veiga 140, Itoupava Seca 89030-903, Blumenau, Santa Catarina, Brazil
| | - Elizia Barbosa da Silva
- Centro de Estudos em Toxicologia Aquática, Departamento de Ciências Naturais, Fundação Universidade Regional de Blumenau, Av. Antônio da Veiga 140, Itoupava Seca 89030-903, Blumenau, Santa Catarina, Brazil
| | - Claudia Almeida Coelho de Albuquerque
- Centro de Estudos em Toxicologia Aquática, Departamento de Ciências Naturais, Fundação Universidade Regional de Blumenau, Av. Antônio da Veiga 140, Itoupava Seca 89030-903, Blumenau, Santa Catarina, Brazil
| | - Luíza Lã
- Centro de Estudos em Toxicologia Aquática, Departamento de Ciências Naturais, Fundação Universidade Regional de Blumenau, Av. Antônio da Veiga 140, Itoupava Seca 89030-903, Blumenau, Santa Catarina, Brazil
| | - Thiago Caique Alves
- Centro de Estudos em Toxicologia Aquática, Departamento de Ciências Naturais, Fundação Universidade Regional de Blumenau, Av. Antônio da Veiga 140, Itoupava Seca 89030-903, Blumenau, Santa Catarina, Brazil
| | - Fernando de Campos Guerreiro
- Centro de Estudos em Toxicologia Aquática, Departamento de Ciências Naturais, Fundação Universidade Regional de Blumenau, Av. Antônio da Veiga 140, Itoupava Seca 89030-903, Blumenau, Santa Catarina, Brazil
| | - Eduardo Alves de Almeida
- Centro de Estudos em Toxicologia Aquática, Departamento de Ciências Naturais, Fundação Universidade Regional de Blumenau, Av. Antônio da Veiga 140, Itoupava Seca 89030-903, Blumenau, Santa Catarina, Brazil.
| |
Collapse
|
3
|
Hook SE, Smith RA, Waltham N, Warne MSJ. Pesticides in the Great Barrier Reef catchment area: Plausible risks to fish populations. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1256-1279. [PMID: 37994614 DOI: 10.1002/ieam.4864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
Waterways that drain the Great Barrier Reef catchment area (GBRCA) transport pollutants to marine habitats, provide a critical corridor between freshwater and marine habitats for migratory fish species, and are of high socioecological value. Some of these waterways contain concentrations of pesticide active ingredients (PAIs) that exceed Australian ecotoxicity threshold values (ETVs) for ecosystem protection. In this article, we use a "pathway to harm" model with five key criteria to assess whether the available information supports the hypothesis that PAIs are or could have harmful effects on fish and arthropod populations. Strong evidence of the first three criteria and circumstantial weaker evidence of the fourth and fifth criteria are presented. Specifically, we demonstrate that exceedances of Australian and New Zealand ETVs for ecosystem protection are widespread in the GBRCA, that the PAI contaminated water occurs (spatially and temporally) in important habitats for fisheries, and that there are clear direct and indirect mechanisms by which PAIs could cause harmful effects. The evidence of individuals and populations of fish and arthropods being adversely affected species is more circumstantial but consistent with PAIs causing harmful effects in the freshwater ecosystems of Great Barrier Reef waterways. We advocate strengthening the links between PAI concentrations and fish health because of the cultural values placed on the freshwater ecosystems by relevant stakeholders and Traditional Owners, with the aim that stronger links between elevated PAI concentrations and changes in recreationally and culturally important fish species will inspire improvements in water quality. Integr Environ Assess Manag 2024;20:1256-1279. © 2023 Commonwealth of Australia and The Commonwealth Scientific and Industrial Research Organisation. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | - Rachael A Smith
- Office of the Great Barrier Reef, Queensland, Department of Environment and Science, Brisbane, Queensland, Australia
| | - Nathan Waltham
- Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER), College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Michael St J Warne
- Reef Catchments Science Partnership, School of Earth and Environmental Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
- Water Quality and Investigations, Department of Environment and Science, Brisbane, Queensland, Australia
- Centre for Agroecology, Water and Resilience, Coventry University, West Midlands, UK
| |
Collapse
|
4
|
Piazza CE, Mattos JJ, Lima D, Siebert MN, Zacchi FL, Dos Reis ÍMM, Ferrari FL, Balsanelli E, Toledo-Silva G, de Souza EM, Bainy ACD. Hepatic transcriptome, transcriptional effects and antioxidant responses in Poecilia vivipara exposed to sanitary sewage. MARINE POLLUTION BULLETIN 2024; 203:116426. [PMID: 38692005 DOI: 10.1016/j.marpolbul.2024.116426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/05/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Aquatic environments are subject to threats from multiple human activities, particularly through the release of untreated sanitary sewage into the coastal environments. These effluents contain a large group of natural or synthetic compounds referred to as emerging contaminants. Monitoring the types and quantities of toxic substances in the environment, especially complex mixtures, is an exhausting and challenging task. Integrative effect-based tools, such as biomarkers, are recommended for environmental quality monitoring programs. In this study, fish Poecilia vivipara were exposed for 24 and 96 h to raw untreated sewage diluted 33 % (v/v) in order to identify hepatic genes to be used as molecular biomarkers. Through a de novo hepatic transcriptome assembly, using Illumina MiSeq, 54,285 sequences were assembled creating a reference transcriptome for this guppy species. Transcripts involved in biotransformation systems, antioxidant defenses, ABC transporters, nuclear and xenobiotic receptors were identified and evaluated by qPCR. Sanitary sewage induced transcriptional changes in AhR, PXR, CYP2K1, CYP3A30, NQO1, UGT1A1, GSTa3, GSTmu, ST1C1, SOD, ABCC1 and SOX9 genes from liver of fish, particularly after 96 h of exposure. Changes in hepatic enzyme activities were also observed. The enzymes showed differences in fish exposed to both periods, while in the gills there was a prevalence of significant results after 96 h. The observed differences were associated to gender and/or to sewage exposure. The obtained results support the use of P. vivipara as sentinel and model organism for ecotoxicological studies and evidence the importance of understanding the differential responses associated to gender.
Collapse
Affiliation(s)
- Clei Endrigo Piazza
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Jacó Joaquim Mattos
- Aquaculture Pathology Research, NEPAQ, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Daína Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Marília Nardelli Siebert
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Flávia Lucena Zacchi
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Ísis Mayna Martins Dos Reis
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Fernanda Luiza Ferrari
- Bioinformatics Laboratory, Cell Biology, Embriology and Genetics Department, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Eduardo Balsanelli
- Department of Biochemistry, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Guilherme Toledo-Silva
- Bioinformatics Laboratory, Cell Biology, Embriology and Genetics Department, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | | | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil.
| |
Collapse
|
5
|
Rahman MU, Ullah MW, Shah JA, Sethupathy S, Bilal H, Abdikakharovich SA, Khan AU, Khan KA, Elboughdiri N, Zhu D. Harnessing the power of bacterial laccases for xenobiotic degradation in water: A 10-year overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170498. [PMID: 38307266 DOI: 10.1016/j.scitotenv.2024.170498] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/10/2023] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Industrialization and population growth are leading to the production of significant amounts of sewage containing hazardous xenobiotic compounds. These compounds pose a threat to human and animal health, as well as the overall ecosystem. To combat this issue, chemical, physical, and biological techniques have been used to remove these contaminants from water bodies affected by human activity. Biotechnological methods have proven effective in utilizing microorganisms and enzymes, particularly laccases, to address this problem. Laccases possess versatile enzymatic characteristics and have shown promise in degrading different xenobiotic compounds found in municipal, industrial, and medical wastewater. Both free enzymes and crude enzyme extracts have demonstrated success in the biotransformation of these compounds. Despite these advancements, the widespread use of laccases for bioremediation and wastewater treatment faces challenges due to the complex composition, high salt concentration, and extreme pH often present in contaminated media. These factors negatively impact protein stability, recovery, and recycling processes, hindering their large-scale application. These issues can be addressed by focusing on large-scale production, resolving operation problems, and utilizing cutting-edge genetic and protein engineering techniques. Additionally, finding novel sources of laccases, understanding their biochemical properties, enhancing their catalytic activity and thermostability, and improving their production processes are crucial steps towards overcoming these limitations. By doing so, enzyme-based biological degradation processes can be improved, resulting in more efficient removal of xenobiotics from water systems. This review summarizes the latest research on bacterial laccases over the past decade. It covers the advancements in identifying their structures, characterizing their biochemical properties, exploring their modes of action, and discovering their potential applications in the biotransformation and bioremediation of xenobiotic pollutants commonly present in water sources.
Collapse
Affiliation(s)
- Mujeeb Ur Rahman
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Junaid Ali Shah
- College of Life Sciences, Jilin University, Changchun 130012, PR China; Fergana Medical Institute of Public Health Uzbekistan, Fergana 150110, Uzbekistan
| | - Sivasamy Sethupathy
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Hazart Bilal
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, PR China
| | | | - Afaq Ullah Khan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Khalid Ali Khan
- Applied College, Mahala Campus and the Unit of Bee Research and Honey Production/Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, Ha'il 81441, Saudi Arabia; Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, Gabes 6029, Tunisia
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
6
|
Ibor OR, Nnadozie P, Ogarekpe DM, Idogho O, Anyanti J, Aizobu D, Onyezobi C, Chukwuka AV, Adeogun AO, Arukwe A. Public health implications of endocrine disrupting chemicals in drinking water and aquatic food resources in Nigeria: A state-of-the-science review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159835. [PMID: 36334666 DOI: 10.1016/j.scitotenv.2022.159835] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
This state-of-the-science review is aimed at identifying the sources, occurrence, and concentrations of EDCs, including potential public health risks associated with drinking water and aquatic food resources from Nigerian inland waters. A total of 6024 articles from scientific databases (PubMed, Scopus, Web of science, ScienceDirect, Google Scholar, and African Journals Online) were identified, out of which, 103 eligible articles were selected for this study. Eleven (11) classes of EDCs (OCPs, PCBs, PBDEs, PAHs, BPA, OTs, PEs, PCs, PPCPs, sterols and n-alkanes) were identified from drinking waters, river sediments and aquatic food species from Nigerian rivers, showing that OCPs were the most studied and reported EDCs. Analytical methods used were HPLC, LC-MS/MS, GC-FID, GC-ECD and GC-MS with all EDCs identified to originate from anthropogenic sources. Carcinogenic, mutagenic, and teratogenic effects were the highest (54.4 %) toxicological effects identified, while reproductive/endocrine disruptive effects (15.2 %) and obesogenic effects (4.3 %) were the least identified toxicological effects. The targeted hazard quotient (THQ) and cancer risk (CR) were generally highest in children, compared to the adult populations, indicating age-specific toxicity. PEs produced the highest THQ (330.3) and CR (1.2) for all the EDCs in drinking water for the children population, suggesting enhanced vulnerability of this population group, compared to the adult population. Due to associated public health, wildlife and environmental risk of EDCs and their increasing concentrations in drinking water and food fish species from Nigerian inland waters, there is an urgent need for focused and strategic interventions, sensitization and policy formulation/implementation towards public health and aquatic food safety in Nigeria.
Collapse
Affiliation(s)
- Oju R Ibor
- Department of Zoology and Environmental Biology, University of Calabar, Calabar, Nigeria.
| | | | - Dinah M Ogarekpe
- Center for Disaster Risk Management, Department of Geography and Environmental Management, University of Port Harcourt, Nigeria
| | | | | | | | | | - Azubuike V Chukwuka
- National Environmental Standards Regulations and Enforcement Agency (NESREA), Nigeria
| | | | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, N-7491 Trondheim, Norway.
| |
Collapse
|
7
|
Nasirin C, Najm MAA, Chen TC, Dhamija A, Lionardo A, Bokov DO, Shahbazi Naserabad S. The protective effects of quercetin on the physiological responses in malathion-exposed common carp, Cyprinus carpio. Trop Anim Health Prod 2022; 55:22. [PMID: 36547736 DOI: 10.1007/s11250-022-03429-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/09/2022] [Indexed: 12/24/2022]
Abstract
This study aimed to evaluate the protective effects of quercetin on the biochemical parameters, immunity, and growth performance in malathion-exposed common carp, Cyprinus carpio. The methods six experimental groups, including the control group, fish exposed to concentrations of 1.04 and 2.08 mg/l malathion, fish supplemented with quercetin (200 mg/kg diet), and fish treated with quercetin + malathion for 21 days, were considered for the experiment. After the feeding period, in results the activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione S-transferase (GST) were significantly decreased in the hepatocyte, while malondialdehyde (MDA) content increased in response to malathion. Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities and glucose, cortisol, and urea levels significantly increased after exposure to malathion. Exposure of fish to malathion-induced decreases in protease, lysozyme, and alternative complement (ACH50) activities and total immunoglobulin (total Ig) in the mucosa. Changes in other parameters were different depending on malathion concentrations. The supplementation of fish with quercetin had no ameliorating effect on the malathion-related alternations of mucosal lysozyme and protease activities. However, quercetin ameliorated the depressing effects of malathion on biochemical and immunological parameters. Changes in the growth performance and hematological parameters indicated the toxic effect of malathion. In conclusion, quercetin could efficiently reduce the toxic effects of malathion on the biochemical, immune, and hematological parameters of the common carp.
Collapse
Affiliation(s)
| | - Mazin A A Najm
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Tzu-Chia Chen
- CAIC, Dhurakij Pundit University, Bangkok, Thailand.
| | | | | | - Dmitry O Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., Bldg. 2, Moscow, 119991, Russian Federation.,Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky Pr, Moscow, 109240, Russian Federation
| | | |
Collapse
|
8
|
Miglani R, Parveen N, Kumar A, Ansari MA, Khanna S, Rawat G, Panda AK, Bisht SS, Upadhyay J, Ansari MN. Degradation of Xenobiotic Pollutants: An Environmentally Sustainable Approach. Metabolites 2022; 12:818. [PMID: 36144222 PMCID: PMC9505297 DOI: 10.3390/metabo12090818] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
The ability of microorganisms to detoxify xenobiotic compounds allows them to thrive in a toxic environment using carbon, phosphorus, sulfur, and nitrogen from the available sources. Biotransformation is the most effective and useful metabolic process to degrade xenobiotic compounds. Microorganisms have an exceptional ability due to particular genes, enzymes, and degradative mechanisms. Microorganisms such as bacteria and fungi have unique properties that enable them to partially or completely metabolize the xenobiotic substances in various ecosystems.There are many cutting-edge approaches available to understand the molecular mechanism of degradative processes and pathways to decontaminate or change the core structure of xenobiotics in nature. These methods examine microorganisms, their metabolic machinery, novel proteins, and catabolic genes. This article addresses recent advances and current trends to characterize the catabolic genes, enzymes and the techniques involved in combating the threat of xenobiotic compounds using an eco-friendly approach.
Collapse
Affiliation(s)
- Rashi Miglani
- Department of Zoology, D.S.B Campus, Kumaun University, Nainital 263002, Uttarakhand, India
| | - Nagma Parveen
- Department of Zoology, D.S.B Campus, Kumaun University, Nainital 263002, Uttarakhand, India
| | - Ankit Kumar
- Department of Pharmaceutical Sciences, Sir J. C Bose Technical Campus, Bhimtal, Nainital 263136, Uttarakhand, India
| | - Mohd. Arif Ansari
- Department of Forestry and Environmental Science, D.S.B Campus, Kumaun University, Nainital 263002, Uttarakhand, India
| | - Soumya Khanna
- Department of Anatomy, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Gaurav Rawat
- Department of Zoology, D.S.B Campus, Kumaun University, Nainital 263002, Uttarakhand, India
| | - Amrita Kumari Panda
- Department of Biotechnology, Sant Gahira Guru University, Ambikapur 497001, Chhattisgarh, India
| | - Satpal Singh Bisht
- Department of Zoology, D.S.B Campus, Kumaun University, Nainital 263002, Uttarakhand, India
| | - Jyoti Upadhyay
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Energy Acre Campus Bidholi, Dehradun 248007, Uttarakhand, India
| | - Mohd Nazam Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
9
|
Santana MS, Domingues de Melo G, Sandrini-Neto L, Di Domenico M, Prodocimo MM. A meta-analytic review of fish antioxidant defense and biotransformation systems following pesticide exposure. CHEMOSPHERE 2022; 291:132730. [PMID: 34743868 DOI: 10.1016/j.chemosphere.2021.132730] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Pesticides reach aquatic ecosystems and interact with various targets in cells of fish and other living organisms. Toxicity originates during the metabolization process, which may produce toxic metabolites or reactive oxygen species (ROS). Ethoxyresorufin-O-deethylase (EROD), glutathione S-transferase (GST), catalase (CAT), superoxide dismutase (SOD) activities, and levels of reduced glutathione (GSH) indicate toxicants interacted with drug-metabolizing and antioxidant systems, i.e., they are biomarkers of biotransformation and oxidative stress. We meta-analytically quantified the impact of pesticides on the mean response and variability of these biomarkers. Our goals were to verify (i) the overall effect of pesticides on oxidative stress and biotransformation, and how each biomarker respond to exposure; (ii) how the life stage of fish (juvenile and adult) influence biomarkers variability and mean activity; (iii) to what extent fish sex (male, female or mixed-sex groups) modify pesticides toxicity; (iv) how different classes of pesticides, and the combination of their concentration and time of exposure, affect each biomarker. Overall, pesticides induced oxidative stress and the biotransformation system. Regardless of life stage, EROD mean activity increased significantly. In exposed juveniles, CAT and GST variability decreased and increased, respectively. CAT mean activity was higher in females, while EROD and GST activities increased in males after pesticide exposure. Organophosphorus (OPs) and organochlorine insecticides, along with imidazole and triazole fungicides, affected biomarkers the most, however the combined effect of concentration and time of exposure of OPs was not detected. Notably, imidazoles and triazoles classes increased EROD by more than 100%. Additionally, we identified research gaps, such as the lack of effect estimates of relevant pesticides on EROD (e.g., pyrethroids and neonicotinoids) and the small number of studies evaluating GSH on female fish. Future researchers may use these gaps as a guide towards enhanced experimental designs and, consequently, a better understanding of pesticide toxic effects on fish.
Collapse
Affiliation(s)
- Manuela S Santana
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná, CEP 81.531-980, Curitiba, Paraná, Brazil; Laboratório de Ecologia Marinha. Centro de Estudos do Mar, Universidade Federal do Paraná, CEP 83255-976, Pontal do Paraná, Paraná, Brazil.
| | - Gabriel Domingues de Melo
- Programa de Pós-graduação em Sistemas Costeiros e Oceânicos, Centro de Estudos do Mar, Universidade Federal do Paraná, CEP 83255-976, Pontal do Paraná, Paraná, Brazil
| | - Leonardo Sandrini-Neto
- Laboratório de Ecologia Marinha. Centro de Estudos do Mar, Universidade Federal do Paraná, CEP 83255-976, Pontal do Paraná, Paraná, Brazil
| | - Maikon Di Domenico
- Laboratório de Ecologia Marinha. Centro de Estudos do Mar, Universidade Federal do Paraná, CEP 83255-976, Pontal do Paraná, Paraná, Brazil
| | - Maritana Mela Prodocimo
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná, CEP 81.531-980, Curitiba, Paraná, Brazil
| |
Collapse
|
10
|
Saha S, Chukwuka AV, Mukherjee D, Dhara K, Pal P, Saha NC. Physiological (haematological, growth and endocrine) and biochemical biomarker responses in air-breathing catfish, Clarias batrachus under long-term Captan® pesticide exposures. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 90:103815. [PMID: 35065295 DOI: 10.1016/j.etap.2022.103815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
The sub-lethal toxicity of Captan® on selected haematological (Hemoglobin, Haematocrit, Mean Corpuscular Hemoglobin) growth (Condition factor, Hepatosomatic Index, Specific Growth Rate), biochemical (serum glucose, protein), and endocrine parameters (growth hormone, T3 and T4) in Clarias batrachus was examined under chronic exposures. Captan® was administered at predetermined exposure concentrations (0.53 and 1.06 mg/L) and monitored on days 15, 30, and 45 of the experimental periods. The experimental groups showed significantly lower values (p < 0.05) of haemoglobin content, hematocrit, MCH in Captan® exposed fish compared to control. Serum protein, k-factor and SGR were significantly lower in exposed fish. Endocrine responses (T3 and T4) emerged as the most sensitive biomarker category, depicting modulated responses between sub-chronic exposure at day-15 and chronic responses at day-45. In general, biomarker depictions indicate that Captan® exposures are capable of inducing stress-specific effects at the biochemical and physiological levels negatively impacting the overall health and longevity of such animals.
Collapse
Affiliation(s)
- Shubhajit Saha
- Department of Zoology, Sundarban Hazi Desarat College, Pathankhali, South 24 Parganas, 743611 West Bengal, India
| | - Azubuike V Chukwuka
- National Environmental Standards and Regulations Enforcement Agency (NESREA), Osogbo, Osun State, Nigeria.
| | - Dip Mukherjee
- Department of Zool ogy, S.B.S. Government College, Hili, Mera Aptair, Balurghat, Dakshin Dinajpur 733126, West Bengal, India
| | - Kishore Dhara
- Freshwater Fisheries Research & Training Centre, Directorate of Fisheries, Kulia, Kalyani, Nadia 741235, West Bengal, India
| | - Prasenjit Pal
- College of Fisheries, Central Agricultural University (I), Lembucherra, Tripura 799210, India
| | - Nimai Chandra Saha
- Fishery and Ecotoxicology Research Laboratory, Department of Zoology, University of Burdwan, Purba Barddhaman, West Bengal, India.
| |
Collapse
|
11
|
Elsheikh AM, M Roshdy T, Hassan SA, A Hussein M, M Fayed A. Resveratrol: A Potential Protector Against Benzo[a]pyrene- Induced Lung Toxicity. Pak J Biol Sci 2022; 25:78-89. [PMID: 35001578 DOI: 10.3923/pjbs.2022.78.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
<b>Background and Objective:</b> Benzo[a]pyrene (B[a]P), a major component of lipophilic pollutants then can be translated to diffluent substances. The aim of t he present article was to investigate protective activity of resveratrol against lung toxicity induced by B[a]P. Material and Methods: Male Sprague-Dawley rats were randomly assigned to 6 groups (6 animals/group): 3 negative control groups, control positive, B[a]P (20 mg kg<sup></sup><sup>1</sup> b.wt., resveratrol (50 mg kg<sup></sup><sup>1</sup> b.wt.)-B[a]P and vitamin C (1 g kg<sup></sup><sup>1</sup> b.wt.)-B[a]P groups. <b>Results:</b> The daily oral administration of the resveratrol (50 mg kg<sup></sup><sup>1</sup> b.wt.) and vitamin C (1 g kg<sup></sup><sup>1</sup> b.wt.) for 30 days to rats treated with B[a]P (20 mg kg<sup></sup><sup>1</sup> b.wt.) resulted in a significant improve plasma cholesterol, triglyceride and HDL-C as well as serum TNF-α, TBARS, IL-2,IL-6, haptoglobin, histamine, IgA, Ig E,Ig G and Ig M in B[a]P treated rats. On the other hand oral administration of resveratrol elevated the SOD, GPx and GR gene expression in lung rats treated with B[a]P. Furthermore, resveratrol and vitamin C nearly normalized these effects in lung histoarchitecture. <b>Conclusion:</b> The obtained biochemical, molecular biology and histological results of this study proved the lung protective activity of resveratrol against B[a]P induced lung toxicity in rats.
Collapse
|
12
|
Jambor T, Knížatová N, Lukáč N. Men´s reproductive alterations caused by bisphenol A and its analogues: a review. Physiol Res 2021. [DOI: 10.33549//physiolres.934742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Male reproductive functions are an important area affecting men´s overall health and well-being. However, during the last years, there has been observed increasing incidence of male reproductive issues. The radical growth has been recorded parallelly with a massive expanse of industrialization and agricultural chemigation. Many groups of experts have begun to identify several potential factors and substances that may have adverse effects on men´s reproductive health. Since then, xenobiotics have become a major concern of many scientific studies. There is evidence that most of them have multigenerational and transgenerational effects on reproductive health, which is a serious problem for our population. Bisphenol A could be considered as one of the most studied endocrine disruptors. Until now, several negative effects of bisphenol A were associated with reduced weight testes, histological alterations, impairment spermatogenesis, and steroidogenesis as well as with testes or prostate cancer. Due to convincing evidence, bisphenol A has been started to replace by its analogues such as bisphenol B, S, F, in order to eliminate and suppress the risk of exposure to bisphenol A. However, it seems that a lack of toxicological analyses allows using of these hazardous substances in daily life. Their harmful effect was confirmed by the animal in vitro and in vivo models, while the epidemiological studies monitoring the impact of bisphenol analogues on men's reproductive health are markedly limited. This review provides information about the effects of bisphenol on reproductive health in men. At the same time, it is focused on physiological aspects of sperm viability, steroid hormone secretion, sperm motility, or testes histology in relation to bisphenols exposure.
Collapse
Affiliation(s)
- T Jambor
- BioFood Centre, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Slovak Republic.
| | | | | |
Collapse
|
13
|
Chronic Effects of Diazinon® Exposures Using Integrated Biomarker Responses in Freshwater Walking Catfish, Clarias batrachus. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112210902] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diazinon exposures have been linked to the onset of toxic pathways and adverse outcomes in aquatic species, but the ecological implications on model species are not widely emphasized. The objective of this study was to determine how the organophosphate pesticide diazinon affected hematological (hemoglobin, total red blood count, total white blood count, and mean corpuscular hemoglobin), growth (condition factor, hepatosomatic index, specific growth rate), biochemical (total serum glucose, total serum protein), and endocrine (growth hormone, tri-iodothyronine, and thyroxine) parameters in Clarias batrachus after chronic exposure. Diazinon was administered at predefined exposure doses (0.64 and 1.28 mg/L) and monitored at 15, 30, and 45 days into the investigation. Observation for most biomarkers revealed patterns of decreasing values with increasing toxicant concentration and exposure duration. Correlation analysis highlighted a significant inverse relationship between variables (mean corpuscular hemoglobin, condition factor, specific growth rate, tri-iodothyronine, thyroxine, and total serum protein) and elevated chronic diazinon exposure concentrations. The integrated indices (IBR and BRI) indexes were used to provide visual and understandable depictions of toxicity effects and emphasized the relativity of biomarkers in terms of sensitivity and magnitude or severity of responses under graded toxicant exposures. The significant damage reflected by evaluated parameters in diazinon exposure groups compared to control portends risks to the health of local fish populations, including Clarias batrachus in aquatic systems adjacent to agrarian landscapes.
Collapse
|
14
|
Allah A Fawzy M, Allah A Mohamed M, Rashad RR, Elgendy YA, Abdelazeem HE, Rabea MZ, Andraws ME, Abdo Sewera AM, Ali AM, T Hafez M, Emara AA, A Hussein M. MP-SeNPs; A Promising Cytokines Suppressor in Benzo[a]pyrene-Induced Mammal Tissue Injury in Rats. Pak J Biol Sci 2021; 24:895-904. [PMID: 34486357 DOI: 10.3923/pjbs.2021.895.904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
<b>Background and Objective:</b> <i>Moringa peregrina</i> (family Moringaceae) is a common flowering plant found in the Arabian Peninsula, Horn of Africa and Southern Sinai, Egypt. The purpose of this study was to investigate the protective activity of MP-SeNPs against BaP-induced mammal tissue injury in rats. <b>Materials and Methods:</b> MP-SeNPs were prepared and characterized in terms of particle size and zeta potential. Furthermore, the IC<sub>50</sub> of MP-SeNPs against the Mcf7 breast carcinoma cell line and LD<sub>50</sub> was evaluated. Adult albino rats weighing approximately 187±10 g was used to assess the lung protective activity of MP-SeNPs (28.7 and 71.75 mg kg<sup>1</sup> b.wt.) against BaP-induced mammal tissue injury in rats. <b>Results:</b> The mean particle size of MP-SeNPs was 134.69±8.24 nm with negative zeta potential of +26.04 with the observed shapes of nano particle was spherical. Also, IC<sub>50</sub> of MP-SeNPs against Mcf7 breast carcinoma cell line = 89.57 μg mL<sup>1</sup> and LD<sub>50</sub> equals and 1435 mg kg<sup>1</sup> b.wt., respectively. The daily oral administration of MP-SeNPs at concentrations of 28.7 and 71.75 mg kg<sup>1</sup> b.wt. for 30 days to rats treated with BaP (20 mg kg<sup>1</sup> b.wt.) resulted in a significant improvement of IL-2, IL-6 and IL-10. Oral administration of MP-SeNPs, on the other hand, increased the levels of SOD, GPx, TNF-α, iNOs and GSH as well as decreased the level of MDA in mammal tissue of BaP-treated rats. Furthermore, MP-SeNPs almost normalized these effects in mammal tissue histoarchitecture and MRI examination. <b>Conclusion:</b> The biochemical, histological and MRI findings incurrent study demonstrated that MP-SeNPs have protective activity against BaP-induced mammal tissue injury in rats.
Collapse
|
15
|
Guerreiro ADS, Monteiro JS, Medeiros ID, Sandrini JZ. First evidence of transcriptional modulation by chlorothalonil in mussels Perna perna. CHEMOSPHERE 2020; 255:126947. [PMID: 32388261 DOI: 10.1016/j.chemosphere.2020.126947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Gills are considered a key player in organism defenses against environmental pollutants. Since it is the major site of uptake of waterborne chemicals, the modulation of important cellular defenses is expected in this tissue. Chlorothalonil, a fungicide presented in herbicides and antifouling paints, might be responsible for toxicity in marine biota. In this context, mussels were exposed to 0.1 μgL-1 and 10 μgL-1 of chlorothalonil for 24 h and 96 h. Genes from biotransformation and antioxidant defense pathways were investigated. Overall, we report, for the first time, an increase in the transcripts of the AhR-like, SULT1A1-like, CYP1A2-like, GSTO-like, MGST-like and SOD-like genes in the gills of the brown mussel Perna perna. This up-regulation was observed mostly after 96 h of exposure to chlorothalonil. Those results reinforce the important role of gills in xenobiotic metabolism and suggest the involvement of the mentioned genes in the detoxification of the compound. Throughout biotransformation and antioxidant defenses pathway, mussels exposed to chlorothalonil are activating mechanisms of defense against this contaminant.
Collapse
Affiliation(s)
- Amanda da Silveira Guerreiro
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, ICB, Universidade Federal do Rio Grande - FURG, 96203-900, Rio Grande, RS, Brazil.
| | - Jhonatas Sirino Monteiro
- Programa de Pós-Graduação em Bioinformática. Instituto de Química, Departamento de Bioquímica. Universidade de São Paulo - USP, 05508-000, São Paulo, SP, Brazil
| | - Igor Dias Medeiros
- Instituto do Mar, IMar, Universidade Federal de São Paulo - UNIFESP, Campus Baixada Santista, 11070-100, Santos, SP, Brazil
| | - Juliana Zomer Sandrini
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, ICB, Universidade Federal do Rio Grande - FURG, 96203-900, Rio Grande, RS, Brazil
| |
Collapse
|
16
|
Ibor OR, Eni G, Andem AB, Bassey IU, Arong GA, Asor J, Regoli F, Arukwe A. Biotransformation and oxidative stress responses in relation to tissue contaminant burden in Clarias gariepinus exposed to simulated leachate from a solid waste dumpsite in Calabar, Nigeria. CHEMOSPHERE 2020; 253:126630. [PMID: 32278189 DOI: 10.1016/j.chemosphere.2020.126630] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
In this study, we have investigated biotransformation and oxidative stress responses in relation to tissue contaminant burden in the African sharptooth catfish (Clarias gariepinus) exposed to simulated leachate from a solid waste dumpsite in Calabar, Nigeria. Fish were exposed to simulated leachate, diluted to 0:0 (negative control), 1:10, 1:50, 1:100 and phenanthrene (a PAH: 50 μg/L used as a positive control) for 3, 7 and 14 days. Hepatic transcripts for cat, sod1, gpx1, gr, gst, cyp1a, cyp2d3, and cyp27 were analyzed by real-time PCR, while enzymatic assays for ethoxyresorufin O-deethylase (EROD), buthoxyresorufin O-deethylase (BROD), methoxyresorufin O-deethylase (MROD), pentoxyresorufin O-deethylase (PROD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST), uridine diphospho-glucuronosyltransferase (UDPGT) and lipid peroxidase (LPO) were measured using standard methods. In addition, protein expression for CYP1A, CYP3A and metallotheionin (MT) were measured by immunoblotting. Fish muscle samples were analyzed for selected group of contaminants after 14 days exposure showing significantly high uptake of heavy metals (Cd, Hg and Pb), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), chlorophenols, organochlorine (OC) and organophosphate pesticides in exposed fish. We observed significant concentration- and time-specific increases in biotransformation and oxidative stress responses at transcript and functional (enzyme and protein) levels, that paralleled tissue contaminants bioaccumulation patterns, after exposure to the simulated leachates. Our results highlighted the potential environmental, wildlife and public health consequences from improper solid waste disposal. In addition, it also provides a scientific basis for local sensitization and inform legislative decisions and policy formulation towards sustainable environmental management of solid wastes in Nigeria and other developing countries.
Collapse
Affiliation(s)
- Oju R Ibor
- Department of Zoology and Environmental Biology, University of Calabar, Calabar, Nigeria; Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, N-7491, Trondheim, Norway
| | - George Eni
- Department of Zoology and Environmental Biology, University of Calabar, Calabar, Nigeria
| | - Andem B Andem
- Department of Zoology and Environmental Biology, University of Calabar, Calabar, Nigeria
| | - Ini U Bassey
- Department of Microbiology, University of Calabar, Calabar, Nigeria
| | - Gabriel A Arong
- Department of Zoology and Environmental Biology, University of Calabar, Calabar, Nigeria.
| | - Joe Asor
- Department of Zoology and Environmental Biology, University of Calabar, Calabar, Nigeria
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, N-7491, Trondheim, Norway.
| |
Collapse
|
17
|
Savassi LA, Paschoalini AL, Arantes FP, Rizzo E, Bazzoli N. Heavy metal contamination in a highly consumed Brazilian fish: immunohistochemical and histopathological assessments. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:542. [PMID: 32712724 DOI: 10.1007/s10661-020-08515-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Due to industrial, rural, and domestic waste disposal, heavy metals such as cadmium (Cd), chromium (Cr), lead (Pb), zinc (Zn), copper (Cu), and iron (Fe) continually infiltrate aquatic environments. These pollutants do not degrade naturally and, thus, have a high capacity for bioaccumulation in tissues and organs. The present study uses histological and immunohistochemical analyses to evaluate the contamination status of Salminus franciscanus, a large and economically important fish. Levels of Cd, Cr, Pb, Zn, Cu, and Fe were evaluated by atomic absorption spectrometry in the liver and muscle of fish sampled from two tributaries of the upper São Francisco River Basin, Brazil: the Abaeté and Paraopeba Rivers. In addition, histopathological alterations and expressions of three environmental biomarkers were assessed: metallothionein (MT), heat shock protein-70 (HSP70), and cytochrome P450-1A (CYP1A). The results show that fish from the Paraopeba River are unsuitable for human consumption, with several metals being detected above the safe limits established by the World Health Organization. Histopathological alterations in the liver and spleen were also significantly more frequent in fish from the Paraopeba River than in those from the Abaeté River (P < 0.05). Significant differences in the expressions of environmental biomarkers were observed between the rivers. Fish from the Abaeté River presented significantly higher values of the gonadosomatic index (GSI) and lower levels of metal contamination in the liver and muscle.
Collapse
Affiliation(s)
- Lourenço Almeida Savassi
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Alessandro Loureiro Paschoalini
- Programa de Pós-Graduação em Biologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, PUC Minas, Belo Horizonte, Minas Gerais, 30535-610, Brazil
| | - Fabio Pereira Arantes
- Programa de Pós-Graduação em Biologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, PUC Minas, Belo Horizonte, Minas Gerais, 30535-610, Brazil
| | - Elizete Rizzo
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Nilo Bazzoli
- Programa de Pós-Graduação em Biologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, PUC Minas, Belo Horizonte, Minas Gerais, 30535-610, Brazil.
| |
Collapse
|
18
|
Mennillo E, Adeogun AO, Arukwe A. Quality screening of the Lagos lagoon sediment by assessing the cytotoxicity and toxicological responses of rat hepatoma H4IIE and fish PLHC-1 cell-lines using different extraction approaches. ENVIRONMENTAL RESEARCH 2020; 182:108986. [PMID: 31812937 DOI: 10.1016/j.envres.2019.108986] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
In this study, sediment samples from Makoko and Ikorodu sites of the Lagos lagoon (Nigeria) were screened for toxicological responses on mammalian and fish cell lines using different extraction methods. Rat hepatoma H4IIE and fish PLHC-1 cell-lines were exposed to serial dilutions of the elutriate, polar and non-polar extracts. We evaluated exposed cells for cytotoxicity and aryl hydrocarbon receptor (AhR)-mediated toxicity. Cells exposed to polar and water extracts from Makoko and Ikorodu showed viability percentage of >80% at 48 h. On the other hand, exposure to the non-polar extracts exhibited cell viability of 50-60% at all tested dilutions. For both cell lines, a significant concentration-dependent induction of cyp1a mRNA was observed after exposure to the different extracts from both sites. Interestingly, the extracts affected functional enzymes differently for both cell lines. For H4IIE cells, while EROD activity paralleled cyp1a mRNA expression patterns, MROD showed significant concentration-specific reduction in cells exposed to polar and water extracts. On the contrary, while the MROD activity paralleled cyp1a mRNA, EROD activity was significantly inhibited in PLHC-1 cells exposed to water-, polar and non-polar extracts from both sites. These observations paralleled sediments PAH contamination burden from the study sites as revealed by co-relation analysis. In conclusion, although the different extracts did not exert high cytotoxic effects (except the non-polar) at the tested concentrations, they significantly modulated phase I biotransformation responses, showing that the studied sediments contain complex chemical mixture in the different extracts, with potential for overt physiological and general health consequences.
Collapse
Affiliation(s)
- Elvira Mennillo
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Veterinary Sciences, University of Pisa, San Piero a Grado (PI), 56122, Italy
| | - Aina O Adeogun
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Zoology, University of Ibadan, Nigeria
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| |
Collapse
|
19
|
Gornati R, Maisano M, Pirrone C, Cappello T, Rossi F, Borgese M, Giannetto A, Cappello S, Mancini G, Bernardini G, Fasulo S. Mesocosm System to Evaluate BF-MBR Efficacy in Mitigating Oily Wastewater Discharges: an Integrated Study on Mytilus galloprovincialis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:773-790. [PMID: 31655935 DOI: 10.1007/s10126-019-09923-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
This work presents the results of recovery efficacy of the system "BioFilm Membrane BioReactor" (BF-MBR), in the treatment of oily contaminated seawaters. To this aim, we proposed a multidisciplinary approach that integrates traditional chemical-physical measures together with the assessment on biological sentinel Mytilus galloprovincialis, maintained in a medium-scale artificial system named mesocosm. The setup included: (1) a mesocosm consisting of uncontaminated seawater; (2) a mesocosm composed of an untreated oily wastewater discharge; and (3) a mesocosm receiving the same oily wastewater previously treated by a BF-MBR pilot scale plant. The multidisciplinary approach that included traditional chemical measures on mesocosms together with the evaluation of morphological organization, mRNA expression of those genes involved in cellular stress response, immunohistochemistry and metabolomic analysis on mussel tissues, was able to provide a robust and holistic evidence of how the proposed treatment is able to reduce the overall impact of oily wastewater discharges on the marine ecosystem.
Collapse
Affiliation(s)
- Rosalba Gornati
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100, Varese, Italy.
| | - Maria Maisano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via Ferdinando d'Alcontres, 31, 98166, Messina, Italy.
| | - Cristina Pirrone
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100, Varese, Italy
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via Ferdinando d'Alcontres, 31, 98166, Messina, Italy
| | - Federica Rossi
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100, Varese, Italy
| | - Marina Borgese
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100, Varese, Italy
| | - Alessia Giannetto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via Ferdinando d'Alcontres, 31, 98166, Messina, Italy
| | - Simone Cappello
- Institute for Coastal Marine Environment, National Research Center, Via San Raineri 86, 98122, Messina, Italy
| | - Giuseppe Mancini
- Electric, Electronics and Computer Engineering Department, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Giovanni Bernardini
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100, Varese, Italy
| | - Salvatore Fasulo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via Ferdinando d'Alcontres, 31, 98166, Messina, Italy
| |
Collapse
|
20
|
Interactions of oxidative DNA damage and CYP1A gene expression with the liver enzymes in Klunzinger's mullet exposed to benzo[ a]pyrene. Toxicol Rep 2019; 6:1097-1103. [PMID: 31720230 PMCID: PMC6839019 DOI: 10.1016/j.toxrep.2019.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/30/2022] Open
Abstract
Benzo[a]pyrene (B[a]P) is an important contaminant whose liver biotransformation is dependent on the species, the route of exposure and the concentration. The goal of this study was to assess the interactions of oxidative DNA damage and CYP1A gene expression with the liver enzymes in Klunzinger’s mullet (Liza klunzingeri) exposed to benzo[a]pyrene. Sublethal doses of B[a]P (5, 10 and 50 mg/kg) were intraperitoneally administered to the fish for 14 days. The alterations in antioxidant enzymes’ activity (SOD, CAT, and GPX), hepatic enzymes’ activity (ALT, AST and ALP), DNA damage (measured by comet assay and cellProfiler software) and CYP1A gene expression in the fish liver were studied on the 1st, 3rd, 7th and 14th days. The determination of these parameters in the liver showed that most of these parameters significantly increased mostly in a time-dependent manner. Multiple regression analysis showed that DNA damage and CYP1A gene expression had positive correlations with the liver enzymes in this fish species intraperitoneally exposed to these concentrations. Moreover, these interactions indicated that theses parameters are sensitive biomarkers for the exposure to B[a]P in Klunzinger's mullet. However, other possible factors and B[a]P metabolites should be considered in future studies for better elucidating the biotransformation mechanisms and introducing better biomarkers of B[a]P.
Collapse
|
21
|
Franco ME, Lavado R. Applicability of in vitro methods in evaluating the biotransformation of polycyclic aromatic hydrocarbons (PAHs) in fish: Advances and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:685-695. [PMID: 30939321 DOI: 10.1016/j.scitotenv.2019.03.394] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 05/24/2023]
Abstract
The biotransformation of polycyclic aromatic hydrocarbons (PAHs) and the biochemical mechanisms involved in such process continue to be intensively studied in the fields of environmental science and toxicology. The investigation of PAH biotransformation in fish is fundamental to understand how piscine species cope with PAH exposure, as these compounds are ubiquitous in aquatic ecosystems and impact different levels of biological organization. New approaches are continuously developed in the field of ecotoxicology, allowing live animal testing to be combined with and, in some cases, replaced with novel in vitro systems. Many in vitro techniques have been developed and effectively applied in the investigation of the biochemical pathways driving the biotransformation of PAH in fish. In vitro experimentation has been fundamental in the advancement of not only understanding PAH-mediated toxicity, but also in highlighting suitable cell-based models for such investigations. Therefore, the present review highlights the value and applicability of in vitro systems for PAH biotransformation studies, and provides up-to-date information on the use of in vitro fish models in the evaluation of PAH biotransformation, common biomarkers, and challenges encountered when developing and applying such systems.
Collapse
Affiliation(s)
- Marco E Franco
- Department of Environmental Science, Baylor University, Waco, TX 76706, USA.
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX 76706, USA
| |
Collapse
|