1
|
Seguin C, Marant A, Palacios-Paris S, Bonnard I, Loizeau JL, David E, Rioult D, Cosio C. Unveiling the hidden threat: Molecular, cellular and behavioral effects of dietborne inorganic mercury and methylmercury in Dreissena polymorpha. CHEMOSPHERE 2025; 376:144306. [PMID: 40088694 DOI: 10.1016/j.chemosphere.2025.144306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
Methylmercury (MeHg) bioaccumulation in food webs has been recognized as a significant health risk for over 50 years, yet most studies focus on high concentrations of waterborne inorganic mercury (IHg). This study investigates the effects of dietborne mercury (Hg) exposure at environmentally realistic IHg and MeHg levels on a freshwater food chain. Freshwater mussels, Dreissena polymorpha, were fed with microalgae previously contaminated with 2 and 20 fg IHg or MeHg per cell for 4 d. Filtration behavior, Hg bioaccumulation, histopathology, antioxidant enzyme activity, and gene expression related to defense and energy metabolism were measured across gills, digestive glands, and other soft tissues (rests) for 1, 2, and 4 d. While all microalgae were filtered at the end of feeding, only MeHg exposure led to a reduced filtration at the beginning of feeding. Bioaccumulation factors were higher for MeHg than IHg, particularly in gills. Dietborne MeHg also caused more fibrosis and structural changes in gills than IHg, in line with bioaccumulation. Necrosis, tubular atrophy, and hemocyte infiltration were observed in the digestive gland. Both IHg and MeHg triggered oxidative stress, as evidenced by significant changes in antioxidant enzyme activities and increased lipid peroxidation levels. MeHg exposure significantly upregulated the sod gene in rests and modulated cs and aox genes involved in energy metabolism in gills and digestive gland, depending on exposure duration. The findings aligned with established Hg toxicity targets but demonstrated notable differences in response depending on Hg forms and tissue type, emphasizing the importance of Hg speciation and tissue type in assessing toxicity.
Collapse
Affiliation(s)
- Clarisse Seguin
- Université de Reims Champagne-Ardenne, Université Le Havre Normandie, INERIS, Normandie Univ, UMR-I 02 SEBIO, Reims, France.
| | - Alice Marant
- Université de Reims Champagne-Ardenne, Université Le Havre Normandie, INERIS, Normandie Univ, UMR-I 02 SEBIO, Reims, France.
| | - Séverine Palacios-Paris
- Université de Reims Champagne-Ardenne, Université Le Havre Normandie, INERIS, Normandie Univ, UMR-I 02 SEBIO, Reims, France.
| | - Isabelle Bonnard
- Université de Reims Champagne-Ardenne, Université Le Havre Normandie, INERIS, Normandie Univ, UMR-I 02 SEBIO, Reims, France.
| | - Jean-Luc Loizeau
- Department F.-A. Forel for Environmental and Aquatic Sciences, Institute for Environmental Sciences, University of Geneva, Boulevard Carl-Vogt 66, Geneva 4, 1211, Switzerland.
| | - Elise David
- Université de Reims Champagne-Ardenne, Université Le Havre Normandie, INERIS, Normandie Univ, UMR-I 02 SEBIO, Reims, France.
| | - Damien Rioult
- Université de Reims Champagne-Ardenne, Université Le Havre Normandie, INERIS, Normandie Univ, UMR-I 02 SEBIO, Reims, France; Université de Reims Champagne-Ardenne, URCATech, MOBICYTE, Reims, France.
| | - Claudia Cosio
- Université de Reims Champagne-Ardenne, Université Le Havre Normandie, INERIS, Normandie Univ, UMR-I 02 SEBIO, Reims, France.
| |
Collapse
|
2
|
Hampuwo B, Duenser A, Lahnsteiner F. Effects of elevated temperature on gene expression, energy metabolism, and physiology in brown trout, Salmo trutta. CONSERVATION PHYSIOLOGY 2025; 13:coaf025. [PMID: 40270876 PMCID: PMC12015096 DOI: 10.1093/conphys/coaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/25/2025]
Abstract
Given the imminent threat of global warming and rising water temperatures in Austria, this study investigated the effects of elevated temperature on gene expression, energy reserves, and cellular energy status in brown trout (Salmo trutta), a species particularly sensitive to increasing water temperature. A total of 250 fish were placed in four stream channels under flow-through conditions. Two channels were maintained at 9 °C as controls, while the other two had their temperature gradually increased to 20 °C over seven days and then maintained at 20 °C for 21 days. Sampling was conducted on day 1, after the temperature reached 20 °C, and the last day of high-temperature exposure on day 21. At each sampling point growth, hepatosomatic index and the fat content of the viscera were measured and/or calculated, and liver samples were taken for gene expression and metabolite analyses. Elevated temperature significantly increased the expression of genes related to cellular stress response (hsp70, hsp90 aa1, cat, and casp8) compared to controls. However, there was no significant difference in the expression of genes associated with lipid and carbohydrate metabolism (d5fad and pfkfb4). Furthermore, there was a decrease in energy storage indicated by a decrease in the hepatosomatic index, glycogen, triglycerides and ATP in the liver as well as the fat content of the viscera. Cellular energy status also significantly decreased, as indicated by the calculated adenylate energy charge. Physiologically, this culminated in suppression of growth in the treatment group after 21 days. This study shows that elevated temperature leads to significant trade-offs in brown trout, which may lead to ecological consequences over the long run. These findings offer critical insights into the physiological impacts of elevated temperature that help evaluate the species' acclimation to rising water temperature and inform the development of effective conservation strategies in a warming world.
Collapse
Affiliation(s)
- Buumba Hampuwo
- Federal Agency for Water Management, Institute for Water Ecology, Fisheries and Lake Research, Scharfling 18, A-5310 Mondsee, Austria
- Institute of Hydrobiology and Aquatic Ecosystem Management (IHG) 1180 Wien, Gregor-Mendel-Straße
| | - Anna Duenser
- Federal Agency for Water Management, Institute for Water Ecology, Fisheries and Lake Research, Scharfling 18, A-5310 Mondsee, Austria
| | - Franz Lahnsteiner
- Federal Agency for Water Management, Institute for Water Ecology, Fisheries and Lake Research, Scharfling 18, A-5310 Mondsee, Austria
| |
Collapse
|
3
|
Ramírez
Hernandez MC, Nogueira Bandeira J, Rosero Alpala DA, Pacheco Batista L, Silvestre Araújo MA, das Chagas PSF, Valadao Silva D, Costa de Morais ER. Aquatic Macrophytes in the Remediation of Atrazine in Water: A Study on Herbicide Tolerance and Degradation Using Eichhornia crassipes, Pistia stratiotes, and Salvinia minima. ACS OMEGA 2025; 10:11264-11273. [PMID: 40160780 PMCID: PMC11948152 DOI: 10.1021/acsomega.4c10903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 04/02/2025]
Abstract
Aquatic macrophytes can be used for herbicide remediation provided they exhibit tolerance to the contaminants. This research assessed the remediation potential of Salvinia minima, Echhornia crassipes, and Pistia stratiotes, some common aquatic macrophytes native to Brazil, and their tolerance to atrazine, an herbicide commonly detected in waterbodies. Plants were cultivated under controlled conditions with five atrazine concentrations (0, 2, 20, 200, and 1000 μg L-1) for 15 days. S. minima and E. crassipes tolerated atrazine concentrations equal to or less than 20 μg L-1 and died at 200 and 1000 μg L-1, indicating the herbicide's potential toxicity and its selectivity against sensitive species. P. stratiotes tolerated the herbicide concentration up to 200 μg L-1 and had its growth reduced at 1000 μg L-1. All species demonstrated the ability to reduce atrazine concentrations in water at 20 μg L-1 or lower, E. crassipes being the most efficient, reducing concentrations by 43% and 22% at 2 and 20 μg L-1, respectively. Atrazine levels within Brazilian (2 μg L-1 by CONAMA 2005) and European (0.1 μg L-1 by Directive 2013/33) regulatory limits do not selectively affect these species. Thus, they show potential for use in arazine phytoremediation programs.
Collapse
Affiliation(s)
- María Carolina Ramírez
Hernandez
- Department
of Agronomic and Forest Sciences, Federal
University of the Semiarid-UFERSA, AV. Francisco Mota, 572 - Pres. Costa E Silva, RN, Mossoró, 59625-900 Rio Grande do Norte, Brazil
| | - Jesley Nogueira Bandeira
- Department
of Agronomic and Forest Sciences, Federal
University of the Semiarid-UFERSA, AV. Francisco Mota, 572 - Pres. Costa E Silva, RN, Mossoró, 59625-900 Rio Grande do Norte, Brazil
| | - Deisy Alexandra Rosero Alpala
- Department
of Agronomic and Forest Sciences, Federal
University of the Semiarid-UFERSA, AV. Francisco Mota, 572 - Pres. Costa E Silva, RN, Mossoró, 59625-900 Rio Grande do Norte, Brazil
| | - Lucrecia Pacheco Batista
- Department
of Agronomic and Forest Sciences, Federal
University of the Semiarid-UFERSA, AV. Francisco Mota, 572 - Pres. Costa E Silva, RN, Mossoró, 59625-900 Rio Grande do Norte, Brazil
| | - Mayara Alana Silvestre Araújo
- Department
of Agronomic and Forest Sciences, Federal
University of the Semiarid-UFERSA, AV. Francisco Mota, 572 - Pres. Costa E Silva, RN, Mossoró, 59625-900 Rio Grande do Norte, Brazil
| | - Paulo Sergio Fernandes das Chagas
- Department
of Agronomic and Forest Sciences, Federal
University of the Semiarid-UFERSA, AV. Francisco Mota, 572 - Pres. Costa E Silva, RN, Mossoró, 59625-900 Rio Grande do Norte, Brazil
| | - Daniel Valadao Silva
- Department
of Agronomic and Forest Sciences, Federal
University of the Semiarid-UFERSA, AV. Francisco Mota, 572 - Pres. Costa E Silva, RN, Mossoró, 59625-900 Rio Grande do Norte, Brazil
| | - Elis Regina Costa de Morais
- Engineering
Center, Federal University of the Semiarid-UFERSA, AV. Francisco Mota, 572 - Pres.
Costa E Silva, RN, Mossoró, 59625-900 Rio Grande do Norte, Brazil
| |
Collapse
|
4
|
Giannessi J, Meucci V, Intorre L, Cuccaro A, Freitas R, De Marchi L, Monni G, Baratti M, C P. Combined effects of fluoroquinolone antibiotic enrofloxacin and rising sea temperatures on the health of the Mediterranean mussel (Mytilus galloprovincialis): Exploring physiological, biochemical, and energetic balance dynamics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125500. [PMID: 39689832 DOI: 10.1016/j.envpol.2024.125500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/19/2024]
Abstract
Human activity exposes organisms in marine ecosystems to numerous stressors, including rising seawater temperatures and antibiotic contamination. The present study investigated the impacts of environmentally relevant concentrations of the fluoroquinolone (FQ) antibiotic enrofloxacin (ENR), specifically 5 and 500 ng/L, in Mytilus galloprovincialis under ambient (20 °C) and predicted warming (25 °C) conditions after 14 days of exposure, followed by a 14-day recovery period in the absence of ENR. The chemical analyses revealed significant variability in bioaccumulation in mussel tissues. Physiological assessments showed decreased respiration and filtration rates post-exposure, with temperature-dependent recovery dynamics. Biochemical parameters indicated an increased metabolic capacity and energy reserves at higher temperatures, with a significant increase in energy expenditure. Notably, ENR induced significant DNA single-strand breaks in mussel gills and digestive glands, with temperature influencing DNA repair mechanisms. The combination of ENR and elevated temperatures exhibited additive or even synergistic effects on certain physiological and biochemical parameters, indicating a higher risk when these stressors act together. The Indipendent Action model (IA) results highlighted that the majority of observed effects in combined stressors were consistent with predicted values, with notable synergistic interactions in energy reserves and antagonistic responses in metabolic and physiological functions. These findings suggest that both stressors, acting alone and especially in combination, may pose a risk to marine bivalves such as mussels. Further research is needed to assess the impacts of FQs and ocean warming on ecosystem stability and non-target organisms.
Collapse
Affiliation(s)
- J Giannessi
- Department of Veterinary Sciences, Università di Pisa, Via Livornese (lato monte), Pisa, San Piero a Grado, 56122, Italy
| | - V Meucci
- Department of Veterinary Sciences, Università di Pisa, Via Livornese (lato monte), Pisa, San Piero a Grado, 56122, Italy
| | - L Intorre
- Department of Veterinary Sciences, Università di Pisa, Via Livornese (lato monte), Pisa, San Piero a Grado, 56122, Italy
| | - A Cuccaro
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - R Freitas
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - L De Marchi
- Department of Veterinary Sciences, Università di Pisa, Via Livornese (lato monte), Pisa, San Piero a Grado, 56122, Italy
| | - G Monni
- Department of Veterinary Sciences, Università di Pisa, Via Livornese (lato monte), Pisa, San Piero a Grado, 56122, Italy
| | - M Baratti
- Institute of Biosciences and Bioresources, IBBR-CNR, Via Madonna del Piano 10, Firenze, Sesto Fiorentino, 50019, Italy
| | - Pretti C
- Department of Veterinary Sciences, Università di Pisa, Via Livornese (lato monte), Pisa, San Piero a Grado, 56122, Italy; Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), Viale N. Sauro 4, Livorno, 57128, Italy.
| |
Collapse
|
5
|
Castro MS, Guimarães PS, Barbosa FG, Schneck F, Martins CDMG. Impacts of warming and acidification on pesticide toxicity in continental aquatic environments: A scientometric and systematic map. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125384. [PMID: 39586451 DOI: 10.1016/j.envpol.2024.125384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/11/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Carbon dioxide emissions are altering aquatic ecosystems by causing water acidification and temperature increases, and these environments are also facing pesticide contamination. We present a scientometric and systematic map of these impacts in continental aquatic environments, aiming to provide an overview of research investigating the effects of temperature and acidification on pesticide toxicity. Our findings reveal a significant increase in research output on this topic, especially over the past seven years, with the United States leading due to high pesticide use and rigorous environmental monitoring. International collaborations remain low. High-impact journal publications underscore the importance of this topic. The primary focus is on temperature-pesticide interactions, highlighting the need for studies on pesticide-acidification interactions driven by climate change. The most studied class of pesticides is insecticides, particularly chlorpyrifos. Animals such as fish and crustaceans are the most frequently used organisms in ecotoxicological tests, indicating the need for broader assessments of impacts on other aquatic groups. Synergistic effects in interactions were prevalent, stressing the importance of an integrated approach in considering the interplay between temperature, pH, and pesticides. The information presented in this study directs and encourages studies in areas that have not yet addressed this topic.
Collapse
Affiliation(s)
- Muryllo Santos Castro
- Programa de Pós-graduação em Biologia de Ambientes Aquáticos Continentais, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, 96203-900, Brazil.
| | - Pablo Santos Guimarães
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália Km 8, Rio Grande, RS, 96203-900, Brazil
| | - Fabiana Gonçalves Barbosa
- MBA em Ciência de Dados, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Av. Trabalhador São-Carlense, 400, São Carlos, SP, 13566-590, Brazil
| | - Fabiana Schneck
- Programa de Pós-graduação em Biologia de Ambientes Aquáticos Continentais, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, 96203-900, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália Km 8, Rio Grande, RS, 96203-900, Brazil
| | - Camila De Martinez Gaspar Martins
- Programa de Pós-graduação em Biologia de Ambientes Aquáticos Continentais, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, 96203-900, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália Km 8, Rio Grande, RS, 96203-900, Brazil
| |
Collapse
|
6
|
Lee CY, Acuña S, Hammock BG, Smith AG, Hassrick JL, Teh S. Influence of an impacted estuary on the reproduction of an endangered endemic fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178123. [PMID: 39806728 DOI: 10.1016/j.scitotenv.2024.178123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/19/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025]
Abstract
Health and nutrition of individuals are tied to reproductive success, which determines population viability. Environmental variability and anthropogenic effects can affect the health and nutrition of a species leading to reproductive repercussions which can hinder recovery of endangered populations. Indices of health and nutrition were examined for an imperiled species, delta smelt, Hypomesus transpacificus, in relation to their reproductive status to evaluate the effects of hydrologic conditions in the San Francisco Estuary and Sacramento-San Joaquin Delta. Adult delta smelt were collected by the Fall Midwater Trawl and Spring Kodiak Trawl during monthly monitoring surveys run by the California Department of Fish and Wildlife from 2011 to 2018 spanning from the head of the Carquinez strait to the Sacramento Deep Water Ship Channel. The hydrologic conditions during this period ranged from high precipitation (2011 and 2017) to drought (2012-2016). Drought, via indirect effects from contaminant concentrations and food availability, is hypothesized to influence the health and reproductive success of delta smelt. Each individual was examined for size (length, weight, and condition factor), health (gill and liver pathology/indices), nutritional (RNA/DNA and liver glycogen depletion estimated histologically), and reproductive indicators (gonadosomatic indices [GSI], oocyte developmental stage, clutch size, oocyte size, and oocyte weight). Fork length and condition factor both had strong, positive correlations with reproduction. Glycogen depletion was correlated with higher oocyte mass, oocyte area and GSI, indicating females low in liver glycogen had higher reproductive metrics. Gill and liver lesion severity, which often increases with contaminant exposure, were negatively associated with oocyte area and GSI. Delta smelt in Suisun Marsh and Cache Slough had the longest fork length and highest condition factor measures. Delta smelt in Cache Slough had the highest reproductive metrics and proportion of post-spawned females and late-stage oocytes. Drought did not appear to influence reproduction but reduced population size.
Collapse
Affiliation(s)
- Calvin Y Lee
- ICF, 980 9th Street, Suite 1200, Sacramento, CA 95814, USA.
| | - Shawn Acuña
- Metropolitan Water District of Southern California, 1121 L St, Sacramento, CA 95814, USA
| | - Bruce G Hammock
- Aquatic Health Program, UC Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - April G Smith
- ICF, 980 9th Street, Suite 1200, Sacramento, CA 95814, USA
| | | | - Swee Teh
- Aquatic Health Program, UC Davis, 1 Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
7
|
Bai X, Zhang L, Liang H, Huang D, Ren M, Mi H. Dietary γ-Aminobutyric Acid Promotes Growth and Immune System Performance and Improves Erythropoiesis and Angiogenesis in Gibel Carp ( Carassius auratus gibelio). Animals (Basel) 2025; 15:125. [PMID: 39858125 PMCID: PMC11758609 DOI: 10.3390/ani15020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
This experiment aimed to investigate the effect of dietary supplementation of γ-aminobutyric acid (GABA) on the growth performance, immune response, and oxygen-transport-related factors of Gibel carp (Carassius auratus gibelio). An eight-week culturing experiment was designed with five experimental diets, with the actual GABA content being 368 mg/kg (G1, control group), 449 mg/kg (G2), 527 mg/kg (G3), 602 mg/kg (G4), and 675 mg/kg (G5). The results showed that the level of 527 mg/kg (G3) of GABA significantly increased the specific growth rate (SGR), weight gain rate (WGR), and final body weight (FBW) of Gibel carp, while the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol (TC), and glucose (GLU) were also increased significantly. In addition, 527 mg/kg (G3) and 602 mg/kg (G4) of GABA significantly increased the total antioxidant capacity (T-AOC). The mRNA expression of tnf-α, tgf-β, and il-10 was significantly increased at the level of 449 mg/kg (G2). In terms of oxygen-carrying capacity, the mRNA expression of epo, tf, tfr1, ho-1, and vegf was markedly increased at the level of 449 mg/kg (G2). In conclusion, dietary GABA supplementation can boost growth performance, enhance the immune system, and increase oxygen-carrying capacity in Gibel carp.
Collapse
Affiliation(s)
- Xinlan Bai
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Lu Zhang
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic, Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China
| | - Hualiang Liang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China;
| | - Dongyu Huang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China;
| | - Mingchun Ren
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China;
| | - Haifeng Mi
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic, Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China
| |
Collapse
|
8
|
Rachna, Singh MP, Goswami S, Singh UK. Pesticide pollution: toxicity, sources and advanced remediation approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64385-64418. [PMID: 39541023 DOI: 10.1007/s11356-024-35502-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The Food and Agricultural Organization of the United Nations (FAO) estimates that food production must rise by 70% to meet the demands of an additional 2.3 billion people by 2050. This forecast underscores the persistent reliance on pesticides, making it essential to assess their toxicity and develop effective remediation strategies. Given the widespread utilisation of pesticides, it requires an urgent need to evaluate their toxicity and explore feasible remediation approaches for their removal. Hence, this review provides an overview of the latest information on the presence, distribution, sources, fate, and trends of pesticides in global environmental matrices, emphasizing the ecological and health risks posed by pesticide pollution. Currently, the dominant remediation techniques encompass physical, chemical, and biological methods, yet studies focusing on advanced remediation techniques remain limited. This review critically evaluates both newer and traditional approaches to pesticide removal, offering a descriptive and analytical comparison of various methods. The selection of the appropriate treatment method depends largely on the nature of the pesticide and the effectiveness of the chosen technique. In many cases, technologies such as membrane bioreactors and the fenton process could be integrated with biological technologies to enhance performance and overcome limitations. The study concludes that a hybrid approach combining various remediation strategies offers the most effective and sustainable solution for pesticide removal. Finally, the review underscores the need for further scientific investigation into the most viable technologies while discussing the challenges and prospects of developing safe, reliable, cost-effective, and eco-friendly methods for removing pesticides from the environment.
Collapse
Affiliation(s)
- Rachna
- Department of Environmental Science, Central University of South Bihar, Gaya, Bihar, India
| | - Mohan Prasad Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj, 211002, Uttar Pradesh, India
| | - Shreerup Goswami
- Department of Geology, Utkal University, Vani Vihar, Bhubaneswar, 751004, Odisha, India
| | - Umesh Kumar Singh
- Department of Environmental Science, Central University of South Bihar, Gaya, Bihar, India.
- Centre of Environmental Studies, University of Allahabad, Prayagraj, 211002, Uttar Pradesh, India.
| |
Collapse
|
9
|
Sayed AEDH, Hamed M, El-Aal MA, Naguib M, Saad E, Soliman HAM. Climate Change Induce the Toxicity of Black Sand Nanoparticles on Catfish (Clarias gariepinus) Using Hemato-Hepatological Biomarkers. BIONANOSCIENCE 2024; 14:5080-5093. [DOI: 10.1007/s12668-024-01549-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2024] [Indexed: 12/09/2024]
|
10
|
Bouly L, Jacquin L, Chapeau F, Bonmatin JM, Cousseau M, Hagimont A, Laffaille P, Lalot B, Lemarié A, Pasquet C, Huc L, Jean S. Fluopyram SDHI pesticide alters fish physiology and behaviour despite low in vitro effects on mitochondria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117400. [PMID: 39612682 DOI: 10.1016/j.ecoenv.2024.117400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
Pollution from pesticides is an increasing concern for human health and biodiversity conservation. However, there is lack of knowledge about some emerging molecules such as SDHI fungicides (succinate dehydrogenase inhibitors) that are widely used but potentially highly toxic for vertebrates. Boscalid, fluopyram, and bixafen are 3 frequent SDHI molecules commonly detected in surface waters, which may pose risks to aquatic species. This study aimed to (1) test the in vitro effects of SDHI on mitochondrial activities (inhibition of succinate dehydrogenase SDH, also named respiratory chain complex II) and (2) assess the in vivo effects of sublethal SDHI concentrations on fish physiology and behaviour over 96 hours of exposure, using Carassius auratus fish as a model species. Results show that bixafen and boscalid inhibited complex II activities in vitro as expected (bixafen > boscalid), while fluopyram had no in vitro effects. In contrast, in vivo studies showed that fluopyram strongly altered fish behaviour (enhanced activity, social and feeding behaviours), likely explained by reduced AChE enzymatic activity. In addition, fluopyram increased muscle lipid content, suggesting metabolic disruption. These findings raise serious concern about the toxic effects of SDHI pesticides, especially fluopyram, although its underpinning molecular mechanisms remain to be explored. We thus encourage further research on the long-term impacts of SDHI pesticides to improve existing regulation and prevent adverse effects on wildlife.
Collapse
Affiliation(s)
- Lucie Bouly
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France.
| | - Lisa Jacquin
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
| | - Florian Chapeau
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
| | - Jean-Marc Bonmatin
- Centre National de La Recherche Scientifique (CNRS), Centre de Biophysique Moléculaire, Orléans 45071, France
| | - Myriam Cousseau
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
| | - Aurianne Hagimont
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Pascal Laffaille
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
| | - Bénédicte Lalot
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
| | - Anthony Lemarié
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Camille Pasquet
- Centre National de La Recherche Scientifique (CNRS), Centre de Biophysique Moléculaire, Orléans 45071, France
| | - Laurence Huc
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes 35000, France; Laboratoire Interdisciplinaire Sciences Innovations Sociétés (LISIS), INRAE/CNRS/Université Gustave Eiffel, Marne-La-Vallée 77454, France
| | - Séverine Jean
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
| |
Collapse
|
11
|
Martyniuk V, Matskiv T, Yunko K, Khoma V, Gnatyshyna L, Faggio C, Stoliar O. Reductive stress and cytotoxicity in the swollen river mussel (Unio tumidus) exposed to microplastics and salinomycin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123724. [PMID: 38462197 DOI: 10.1016/j.envpol.2024.123724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Multistress effects lead to unpredicted consequences in aquatic ecotoxicology and are extremely concerning. The goal of this study was to trace how specific effects of the antibiotic salinomycin (Sal) and microplastics (MP) on the bivalve molluscs are manifested in the combined environmentally relevant exposures. Unio tumidus specimens were treated with Sal (0.6 μg L-1), MP (1 mg L-1, 2 μm size), and both at 18 °C (Mix) and 25 °C (MixT) for 14 days. The redox stress and apoptotic enzyme responses and the balance of Zn/Cu in the digestive gland were analyzed. The shared signs of stress included a decrease in NAD+/NADH and Zn/Cu ratios and lysosomal integrity and an increase in Zn-metallothioneins and cholinesterase levels. MP caused a decrease in the glutathione (GSH) concentration and redox state, total antioxidant capacity, and Zn levels. MP and Mix induced coordinated apoptotic/autophagy activities, increasing caspase-3 and cathepsin D (CtD) total and extralysosomal levels. Sal activated caspase-3 only and increased by five times Cu level in the tissue. Due to the discriminant analysis, the cumulative effect was evident in the combined exposure at 18 °C. However, under heating, the levels of NAD+, NADH, GSH, GSH/GSSG and metallothionein-related thiols were decreased, and coordination of the cytosolic and lysosomal death stimuli was distorted, confirming that heating and pollution could exert unexpected synergistic effects on aquatic life.
Collapse
Affiliation(s)
- Viktoria Martyniuk
- Department of Chemistry and Methods of Its Teaching, Ternopil Volodymyr Hnatiuk National Pedagogical University, Kryvonosa Str 2, Ternopil, 46027, Ukraine.
| | - Tetiana Matskiv
- Department of Chemistry and Methods of Its Teaching, Ternopil Volodymyr Hnatiuk National Pedagogical University, Kryvonosa Str 2, Ternopil, 46027, Ukraine; Department of General Chemistry, I. Horbachevsky Ternopil National Medical University, Maidan Voli, 1, Ternopil, 46001, Ukraine.
| | - Kateryna Yunko
- Department of Chemistry and Methods of Its Teaching, Ternopil Volodymyr Hnatiuk National Pedagogical University, Kryvonosa Str 2, Ternopil, 46027, Ukraine.
| | - Vira Khoma
- Department of Research of Materials, Substances and Products, Ternopil Scientific Research Forensic Center of the Ministry of Internal Affairs of Ukraine, St. Budny, 48, Ternopil, 46020, Ukraine.
| | - Lesya Gnatyshyna
- Department of General Chemistry, I. Horbachevsky Ternopil National Medical University, Maidan Voli, 1, Ternopil, 46001, Ukraine.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, S. Agata, Messina, 31-98166, Italy; Department of Eco-sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| | - Oksana Stoliar
- Department of Chemistry and Methods of Its Teaching, Ternopil Volodymyr Hnatiuk National Pedagogical University, Kryvonosa Str 2, Ternopil, 46027, Ukraine; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, S. Agata, Messina, 31-98166, Italy.
| |
Collapse
|
12
|
Achiorno C, Minardi G. Glyphosate-environmental variables interaction: How does it affect the parasite Chordodes nobilii? CHEMOSPHERE 2024; 358:142219. [PMID: 38704040 DOI: 10.1016/j.chemosphere.2024.142219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
The worldwide used herbicide Glyphosate can interact with environmental variables, but there is limited information on the influence of environmental stressors on its toxicity. Environmental changes could modify glyphosate effects on non-target organisms, including parasites such as gordiids. The freshwater microscopic larvae of the gordiid Chordodes nobilii are sensitive to several pollutants and environmental variables, but their combined effect has not been evaluated yet. The aim of this study was to evaluate the impact of temperature, pH and exposure time on the toxicity of Glyphosate to C. nobilii larvae. A protocol was followed to evaluate the infectivity of larvae treated with factorial combinations of concentration (0 and 0.067 mg/L), exposure time (24 and 48 h), temperature (18, 23 and 28 °C), and pH (7, 8 and 9). The reference values were 23 °C, pH 8 and 48 h. The interaction effect on the infectivity of gordiid larvae was assessed post-exposure using Aedes aegyptii larvae as host. Results were evaluated using GLMM, which does not require data transformation. The modeling results revealed three highly significant triple interactions. Glyphosate toxicity varied depending on the combination of variables, with a decrease being observed after 24 h-exposure at pH 7 and 23 °C. Glyphosate and 28 °C combination led to slightly reduced infectivity compared to temperature alone. This study is the first to report the combined effects of glyphosate, temperature, pH and time on a freshwater animal. It demonstrates that a specific combination of factors determines the effect of glyphosate on a non-target organism. The potential use of C. nobilli as a bioindicator is discussed. In the context of global warming and considering that the behavioral manipulation of terrestrial hosts by gordiids can shape community structure and the energy flow through food webs, our results raise concerns about possible negative effects of climate change on host-parasite dynamics.
Collapse
Affiliation(s)
- Cecilia Achiorno
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE), Universidad Nacional de La Plata (CCT La Plata CONICET-UNLP), La Plata, 1900, Buenos Aires, Argentina.
| | - Graciela Minardi
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE), Universidad Nacional de La Plata (CCT La Plata CONICET-UNLP), La Plata, 1900, Buenos Aires, Argentina
| |
Collapse
|
13
|
Fathy RF. Divergent perspectives on the synergistic impacts of thermal-chemical stress on aquatic biota within the framework of climate change scenarios. CHEMOSPHERE 2024; 355:141810. [PMID: 38554872 DOI: 10.1016/j.chemosphere.2024.141810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Climate change, including global warming, leads to rising temperatures in aquatic ecosystems, which is one of the numerous repercussions it brings. Furthermore, water warming can indirectly impact aquatic organisms by modifying the toxicity levels of pollutants. Nevertheless, numerous studies have explored the potential impacts of chemical stress on aquatic biota, but little is known about how such chemicals and toxins interact with climate change factors, especially elevated temperatures. As such, this review paper focuses on exploring the potential effects of thermochemical stress on a wide sector of aquatic organisms, including aquatic vertebrates and invertebrates, in various aquatic ecosystems (freshwater and marine systems). Herein, the objective of this study is to explore the most up-to-date the impact of water warming (without chemical stress) and thermochemical stress on various biochemical and physiological processes in aquatic fauna and how this greatly affects biodiversity and sustainability. Therefore, there is a growing need to understand and evaluate this synergistic mechanism and its potential hazardous impacts. However, we need further investigations and scientific reports to address this serious environmental issue in order to confront anthropogenic pollutants regarding climate change and chemical pollution risks in the near future and subsequently find sustainable solutions for them.
Collapse
Affiliation(s)
- Ragaa F Fathy
- Hydrobiology Department, Veterinary Research Institute, National Research Centre (NRC), 33 El-Buhouth St, 12622 Dokki, Giza, Egypt.
| |
Collapse
|
14
|
de Souza SS, Bruce KHR, da Costa JC, Pereira D, da Silva GS, Val AL. Effects of climate change and mixtures of pesticides on the Amazonian fish Colossoma macropomum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171379. [PMID: 38431165 DOI: 10.1016/j.scitotenv.2024.171379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Several studies highlighted the complexity of mixing pesticides present in Amazonian aquatic environments today. There is evidence that indicates that ongoing climate change can alter the pattern of pesticide use, increasing the concentration and frequency of pesticide applications. It is known that the combination of thermal and chemical stress can induce interactive effects in aquatic biota, which accentuates cell and molecular damage. However, considering that the effects of climate change go beyond the increase in temperature the objective of this study was to evaluate the effect of climate change scenarios proposed by 6 th IPCC report and a mixture of pesticides on the tambaqui (Colossoma macropomum). The hypothesis of this study is that the negative effects will be accentuated by the combination of an extreme climate changes scenario and a mixture of pesticides. To test the hypothesis, juvenile tambaqui were exposed to a combination of four pesticides (chlorpyrifos, malathion, carbendazim and atrazine) in two scenarios, one that simulates current environmental conditions and another that predicted the environmental scenario for the year 2100. Fish were subjected to the experimental conditions for 96 h. At the end of the experiment, samples of blood, gills, liver, brain, and muscle were obtained for hematological, genotoxic, biochemical, and histopathological analyses. The results demonstrate that environmentally realistic concentrations of pesticides, when mixed, can alter the biochemical responses of tambaqui. The extreme scenario promotes hematological adjustments, but impairs branchial antioxidant enzymes. There is an interaction between the mixture of pesticides and the extreme scenario, accentuating liver tissue damage, which demonstrates that even increased activity of antioxidant and biotransformation enzymes were not sufficient to prevent liver damage.
Collapse
Affiliation(s)
- Samara Silva de Souza
- Laboratory of Ecophysiology and Molecular Evolution, National Institute for Amazonian Research (INPA), Manaus, AM, Brazil.
| | - Kerem Hapuque Rodrigues Bruce
- Laboratory of Ecophysiology and Molecular Evolution, National Institute for Amazonian Research (INPA), Manaus, AM, Brazil
| | - Jaqueline Custódio da Costa
- Laboratory of Ecophysiology and Molecular Evolution, National Institute for Amazonian Research (INPA), Manaus, AM, Brazil
| | - Desyree Pereira
- Department of Morphology, Institute of Biological Science (ICB), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
| | - Grazyelle Sebrenski da Silva
- Department of Morphology, Institute of Biological Science (ICB), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
| | - Adalberto Luis Val
- Laboratory of Ecophysiology and Molecular Evolution, National Institute for Amazonian Research (INPA), Manaus, AM, Brazil
| |
Collapse
|
15
|
Gordillo L, Quiroga L, Ray M, Sanabria E. Changes in thermal sensitivity of Rhinella arenarum tadpoles (Anura: Bufonidae) exposed to sublethal concentrations of different pesticide fractions (Lorsban® 75WG). J Therm Biol 2024; 120:103816. [PMID: 38428105 DOI: 10.1016/j.jtherbio.2024.103816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 03/03/2024]
Abstract
The intensive use of agrochemicals and the rapid increase of global temperatures have modified the thermal conditions of aquatic environments, thus increasing amphibians' vulnerability to global warming and positioning them at great risk. Commercial formulations of chlorpyrifos (COM) are the pesticides most widely used in agricultural activities, with a high toxic potential on amphibians. However, little is known about the separate effects of the active ingredient (CPF) and adjuvants (AD). We studied the thermal sensitivity at different concentrations and pesticide fractions in Rhinella arenarum tadpoles, on thermal tolerance limits (CTmax = Critical thermal maximum and CTmin = Critical thermal minimum), swimming speed (Ss), Optimum temperature (Top), and Thermal breadth 50 (B50). Our results demonstrate that the pesticide active ingredient, the adjuvants, and the commercial formulation of chlorpyrifos differentially impair the thermal sensitivity of R. arenarum tadpoles. The pesticide fractions affected the heat and the cold tolerance (CTmax and CTmin), depending on the concentrations they were exposed to. The locomotor performance (Ss, Top, and B50) of tadpoles also varied among fractions, treatments, and environmental temperatures. In the context of climate change, the outcomes presented are particularly relevant, as mean temperatures are increasing at unprecedented rates, which suggests that tadpoles inhabiting warming and polluted ponds are currently experiencing deleterious conditions. Considering that larval stages of amphibians are the most susceptible to changing environmental conditions and the alarming predictions about environmental temperatures in the future, it is likely that the synergism between high temperatures and pesticide exposure raise the threat of population deletions in the coming years.
Collapse
Affiliation(s)
- Luciana Gordillo
- Instituto de Ciencias Básicas, Facultad de Filosofía Humanidades y Artes, Universidad Nacional de San Juan. Av. Ignacio de la Roza 230 (Oeste), (5400), San Juan, Argentina; CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
| | - Lorena Quiroga
- Instituto de Ciencias Básicas, Facultad de Filosofía Humanidades y Artes, Universidad Nacional de San Juan. Av. Ignacio de la Roza 230 (Oeste), (5400), San Juan, Argentina; CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
| | - Maribel Ray
- Instituto de Ciencias Básicas, Facultad de Filosofía Humanidades y Artes, Universidad Nacional de San Juan. Av. Ignacio de la Roza 230 (Oeste), (5400), San Juan, Argentina.
| | - Eduardo Sanabria
- Instituto de Ciencias Básicas, Facultad de Filosofía Humanidades y Artes, Universidad Nacional de San Juan. Av. Ignacio de la Roza 230 (Oeste), (5400), San Juan, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo. Padre Jorge Contreras 1300. (M5502JMA), Mendoza, Argentina; CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
| |
Collapse
|
16
|
Wang Y, Shen J, Li X, Lang H, Zhang L, Fang H, Yu Y. Higher temperature and daily fluctuations aggravate clothianidin toxicity towards Limnodrilus hoffmeisteri. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166655. [PMID: 37647951 DOI: 10.1016/j.scitotenv.2023.166655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
In nature, aquatic organisms may suffer from chemical pollution, together with thermal stress resulted from global warming. However, limited information is available on the combined effects of pesticide with climate change on aquatic organisms. In this study, the acute toxicity of clothianidin to Limnodrilus hoffmeisteri as well as its effect on the induction of oxidative stress under both constant temperature and daily temperature fluctuation (DTF) regimes was investigated. Results showed that clothianidin exhibited the minimal toxicity to L. hoffmeisteri at 25 °C, which was magnified by both increased or decreased temperatures and 10 °C DTF. At different temperatures (15 °C, 25 °C and 35 °C), clothianidin exposure led to the elevated reactive oxygen species (ROS) levels and activated the antioxidant enzymes to resist against the oxidative stress. However, the antioxidant response induced by clothianidin was overwhelmed at high temperature as evidenced by decreased glutathione (GSH) content. Significant elevation of catalase (CAT) and peroxidase (POD) activities but depletion of GSH was also observed in worms treated with clothianidin under DTF after 24 h. The results indicated that high temperature and DTF could aggravate the clothianidin-induced oxidative stress. Moreover, the critical thermal maximum (CTmax) of the worms decreased with the increasing clothianidin concentrations, suggesting that exposure to clothianidin could reduce the heat tolerance of L. hoffmeisteri. Our work highlights the crucial importance to integrate temperature changes into risk assessment of pesticides under global warming.
Collapse
Affiliation(s)
- Yingnan Wang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiatao Shen
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xin Li
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hongbin Lang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Luqing Zhang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
17
|
Gendron AD, Lacaze É, Taranu ZE, Gouge R, Larbi-Youcef Y, Houde M, André C, Gagné F, Triffault-Bouchet G, Giroux I. The Comet Assay, a Sensitive Biomarker of Water Quality Improvement Following Adoption of Beneficial Agricultural Practices? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2201-2214. [PMID: 37417785 DOI: 10.1002/etc.5711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/15/2023] [Accepted: 07/06/2023] [Indexed: 07/08/2023]
Abstract
Numerous actions have been undertaken by farmers to attenuate the impact of agricultural activities on aquatic ecosystems. The identification of biomarkers that respond quickly to water quality improvement could facilitate the assessment of adopted alternative practices and help maintain mobilization among stakeholders. We evaluated the potential of the comet assay, a biomarker of genotoxic effects, using a freshwater mussel, Elliptio complanata, as a model animal. The frequency of DNA damage was assessed in hemocytes of mussels collected from a pristine habitat and caged for 8 weeks in the Pot au Beurre River, a tributary of the fluvial Lake St.-Pierre (Quebec, Canada) impacted by agricultural activities. We found that the level of DNA damage naturally induced in mussel hemocytes was low and showed very limited variations over time. Compared with these baseline levels and to laboratory controls, we observed a doubling in DNA alterations in mussels exposed to agricultural runoff in the third branch of the Pot au Beurre River. The genotoxic response was significantly lower in mussels caged in the first branch of the Pot au Beurre River, where longer stretches of shoreline have been restored as buffer strips. Glyphosate, mesotrione, imazethapyr, and metolachlor were the main discriminant pesticides between these two branches. Metolachlor was found in sufficient concentrations to induce DNA damage, but it is more likely that the observed genotoxicity was the result of a "cocktail effect," that is, the cumulative contribution of coexisting genotoxicants including the above-mentioned herbicides and ingredients in their formulation. Our findings suggest that the comet assay is a sensitive tool for the early detection of changes in water toxicity following the adoption of agricultural beneficial practices. Environ Toxicol Chem 2023;42:2201-2214. © 2023 Crown copyright and The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article is published with the permission of the Controller of HMSO and the King's Printer for Scotland.
Collapse
Affiliation(s)
- Andrée D Gendron
- Aquatic Contaminants Research Division, Department of Environment and Climate Change, Montreal, Quebec, Canada
| | - Émilie Lacaze
- Aquatic Contaminants Research Division, Department of Environment and Climate Change, Montreal, Quebec, Canada
| | - Zofia E Taranu
- Aquatic Contaminants Research Division, Department of Environment and Climate Change, Montreal, Quebec, Canada
| | - Rebecca Gouge
- Compliance Promotion and Marine Programs, Environmental Protection Operations, Department of Environment and Climate Change, Montreal, Quebec, Canada
| | - Yasmina Larbi-Youcef
- Direction Aménagement du Territoire et Développement Régional, Fédération de l'Union des producteurs agricoles de la Montérégie, Saint-Hyacinthe, Quebec, Canada
| | - Magali Houde
- Aquatic Contaminants Research Division, Department of Environment and Climate Change, Montreal, Quebec, Canada
| | - Chantale André
- Aquatic Contaminants Research Division, Department of Environment and Climate Change, Montreal, Quebec, Canada
| | - François Gagné
- Aquatic Contaminants Research Division, Department of Environment and Climate Change, Montreal, Quebec, Canada
| | - Gaëlle Triffault-Bouchet
- Division Écotoxicologie et Évaluation du risque, Centre d'expertise en analyse environnementale du Québec, Ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs, Québec, Quebec, Canada
| | - Isabelle Giroux
- Direction générale du suivi de l'état de l'environnement, Ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs, Québec, Quebec, Canada
| |
Collapse
|
18
|
Wang M, Hou J, Deng R. Co-exposure of environmental contaminants with unfavorable temperature or humidity/moisture: Joint hazards and underlying mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115432. [PMID: 37660530 DOI: 10.1016/j.ecoenv.2023.115432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
In the context of global climate change, organisms in their natural habitats usually suffer from unfavorable climatic conditions together with environmental pollution. Temperature and humidity (or moisture) are two central climatic factors, while their relationships with the toxicity of contaminants are not well understood. This review provides a synthesis of existing knowledge on important interactions between contaminant toxicity and climatic conditions of unfavorable temperature, soil moisture, and air humidity. Both high temperature and low moisture can extensively pose severe combined hazards with organic pollutants, heavy metal ions, nanoparticles, or microplastics. There is more information on the combined effects on animalia than on other kingdoms. Prevalent mechanisms underlying their joint effects include the increased bioavailability and bioaccumulation of contaminants, modified biotransformation of contaminants, enhanced induction of oxidative stress, accelerated energy consumption, interference with cell membranes, and depletion of bodily fluids. However, the interactions of contaminants with low temperature or high humidity/moisture, particularly on plants and microorganisms, are relatively vague and need to be further revealed. This work emphasizes that the co-exposure of chemical and physical stressors results in detrimental effects generally greater than those caused by either stressor. It is necessary to take this into consideration in the ecological risk assessment of both environmental contamination and climate change.
Collapse
Affiliation(s)
- Mingpu Wang
- School of Civil Engineering, Chongqing University, Chongqing 400045, China
| | - Jie Hou
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Rui Deng
- School of Civil Engineering, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
19
|
Noor MI, Rahman MS. Roundup® disrupts tissue architecture, attenuates Na +/K +-ATPase expression, and induces protein oxidation/nitration, cellular apoptosis, and antioxidant enzyme expressions in the gills of goldfish, Carassius auratus. Comp Biochem Physiol C Toxicol Pharmacol 2023; 272:109710. [PMID: 37532112 DOI: 10.1016/j.cbpc.2023.109710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/14/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Extensive agricultural activities to feed the growing population are one major driving force behind aquatic pollution. Different types of pesticides are used in farmlands to increase crop production and wash up into water bodies. Glyphosate-based herbicide Roundup® is one of the most used pesticides in the United States; however, its effects on teleost species are still poorly understood. This study focused on the effects of environmentally relevant concentrations of Roundup exposure (low- and high-dose: 0.5 and 5 μg/L for 2-week) on Na+/K+-ATPase (NKA, a biomarker for sodium‑potassium ion pump efficacy), cytochrome P450-1A (CYP1A, a monooxygenase enzyme), 2,4-dinitrophenyl protein (DNP, a biomarker for protein oxidation), 3-nitrotyrosine protein (NTP, a biomarker for protein nitration), superoxidase dismutase (SOD, an antioxidant enzyme), catalase (CAT, an antioxidant enzyme) expressions, and cellular apoptosis in the gills of goldfish. Histopathological and in situ TUNEL analyses showed widespread tissue damage, including lamellar fusion, loss of gill architecture, club shape of primary lamellae, mucous formation, and distortion in the epithelium layer, as well as apoptotic nuclei in gills. Immunohistochemical and qRT-PCR analyses provided insights into the expressions of molecular indicators in gills. Fish exposed to Roundup exhibited a significant (P < 0.05) downregulation of NKA expression in gills. Additionally, we observed upregulation of CYP1A, DNP, NTP, SOD, and CAT expressions in the gills of goldfish. Overall, our results suggest that exposure to Roundup causes disruption of gill architecture, induces protein oxidation/nitration and cellular apoptosis, and alters prooxidant-antioxidant homeostasis in tissues, which may lead to reduced fitness and survivability of teleost species.
Collapse
Affiliation(s)
- Md Imran Noor
- Biochemistry and Molecular Biology Program, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Md Saydur Rahman
- Biochemistry and Molecular Biology Program, University of Texas Rio Grande Valley, Brownsville, TX, USA; School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA; School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA.
| |
Collapse
|
20
|
Grunst ML, Grunst AS, Grémillet D, Fort J. Combined threats of climate change and contaminant exposure through the lens of bioenergetics. GLOBAL CHANGE BIOLOGY 2023; 29:5139-5168. [PMID: 37381110 DOI: 10.1111/gcb.16822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/17/2023] [Indexed: 06/30/2023]
Abstract
Organisms face energetic challenges of climate change in combination with suites of natural and anthropogenic stressors. In particular, chemical contaminant exposure has neurotoxic, endocrine-disrupting, and behavioral effects which may additively or interactively combine with challenges associated with climate change. We used a literature review across animal taxa and contaminant classes, but focused on Arctic endotherms and contaminants important in Arctic ecosystems, to demonstrate potential for interactive effects across five bioenergetic domains: (1) energy supply, (2) energy demand, (3) energy storage, (4) energy allocation tradeoffs, and (5) energy management strategies; and involving four climate change-sensitive environmental stressors: changes in resource availability, temperature, predation risk, and parasitism. Identified examples included relatively equal numbers of synergistic and antagonistic interactions. Synergies are often suggested to be particularly problematic, since they magnify biological effects. However, we emphasize that antagonistic effects on bioenergetic traits can be equally problematic, since they can reflect dampening of beneficial responses and result in negative synergistic effects on fitness. Our review also highlights that empirical demonstrations remain limited, especially in endotherms. Elucidating the nature of climate change-by-contaminant interactive effects on bioenergetic traits will build toward determining overall outcomes for energy balance and fitness. Progressing to determine critical species, life stages, and target areas in which transformative effects arise will aid in forecasting broad-scale bioenergetic outcomes under global change scenarios.
Collapse
Affiliation(s)
- Melissa L Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - Andrea S Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - David Grémillet
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Percy FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| |
Collapse
|
21
|
Chowdhury A, Rahman MS. Molecular and biochemical biomarkers in the American oyster Crassostrea virginica exposed to herbicide Roundup® at high temperature. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:94757-94778. [PMID: 37540412 DOI: 10.1007/s11356-023-28862-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/14/2023] [Indexed: 08/05/2023]
Abstract
Aquatic organisms are frequently exposed to various environmental stressors. Thus, the effects of high temperatures and herbicides on aquatic organisms are a major subject of interest. In this study, we studied the effects of short-term exposure (1 week) to Roundup®, a glyphosate-based herbicide (concentrations: 0.5 and 5 µg/L), on the morphology of gills, digestive glands, and connective tissues, and the expression of heat shock protein-70 (HSP70, a chaperone protein), cytochrome P450 (CYP450, a biomarker of environmental contaminants), dinitrophenyl protein (DNP, a biomarker of protein oxidation), nitrotyrosine protein (NTP, a biomarker of protein nitration), antioxidant enzymes such as superoxidase dismutase (SOD) and catalase (CAT) in tissues of American oyster, Crassostrea virginica (Gmelin, 1791) maintained at high temperature (30 °C). Histological analyses showed an increase in mucous production in the gills and digestive glands, and in hemocyte aggregation in the connective tissues as well as a structural change of lumen in the digestive glands of oysters exposed to Roundup. Immunohistochemical and quantitative RT-PCR analyses showed significant (P < 0.05) increases in HSP70, CYP450, DNP, NTP, CAT, and SOD mRNA and protein expressions in the tissues of oysters exposed to Roundup. Taken together, these results suggest that exposure to Roundup at high temperature induces overproduction of reactive oxygen species/reactive nitrogen species which in turn leads to altered prooxidant-antioxidant activity in oyster tissues. Moreover, our results provide new information on protein oxidation/nitration and antioxidant-dependent mechanisms for HSP70 and CYP450 regulations in oysters exposed to Roundup at high temperature.
Collapse
Affiliation(s)
- Afsana Chowdhury
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Md Saydur Rahman
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA.
- School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, 1 West University Blvd, TX, 78520, Brownsville, USA.
| |
Collapse
|
22
|
Gnocchi KG, Boldrini-França J, Passos LS, Gomes AS, Coppo GC, Pereira TM, Chippari-Gomes AR. Multiple biomarkers response of Astyanax lacustris (Teleostei: Characidae) exposed to manganese and temperature increase. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104124. [PMID: 37044292 DOI: 10.1016/j.etap.2023.104124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/12/2022] [Accepted: 04/08/2023] [Indexed: 06/15/2023]
Abstract
The present study aimed to evaluate the toxicity of Mn (6.65 mg/L) at different exposure times (96 h, 7, 14, and 21 days) and evaluate its possible toxic effects on the fish Astyanax lacustris through multi-biomarkers and the maximum critical temperature (CT Max). The results show an increase in the Mn accumulation (liver and gills) with increasing exposure time. The glutathione S-transferase (GST) activity showed differences in the group exposed to Mn for 96 h compared to the group exposed for 21 days. The acetylcholinesterase (AChE) activity increased in the fish exposed for 7 days compared to the control group. On the other hand, no genotoxic changes were observed. The CT Max showed that the loss of equilibrium of 50% of the fish occurs at a temperature of 39ºC, with and without the Mn presence. Furthermore, the catalase gene expression (oxidative stress) did not show alterations.
Collapse
Affiliation(s)
- Karla Giavarini Gnocchi
- Laboratory of Applied Ichthyology, Vila Velha University, Rua José Dantas de Melo, 29102-770 Vila Velha, Brazil
| | - Johara Boldrini-França
- Laboratory of Applied Ichthyology, Vila Velha University, Rua José Dantas de Melo, 29102-770 Vila Velha, Brazil
| | - Larissa Souza Passos
- Laboratory of Applied Ichthyology, Vila Velha University, Rua José Dantas de Melo, 29102-770 Vila Velha, Brazil; Center for Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário, 13416-000 Piracicaba, Brazil.
| | - Aline Silva Gomes
- Laboratory of Applied Ichthyology, Vila Velha University, Rua José Dantas de Melo, 29102-770 Vila Velha, Brazil
| | - Gabriel Carvalho Coppo
- Laboratory of Applied Ichthyology, Vila Velha University, Rua José Dantas de Melo, 29102-770 Vila Velha, Brazil; Benthic Ecology Group, Department of Oceanography, Federal University of Espírito Santo, Av. Fernando Ferrari, 29055-460 Vitória, Brazil
| | - Tatiana Miura Pereira
- Laboratory of Applied Ichthyology, Vila Velha University, Rua José Dantas de Melo, 29102-770 Vila Velha, Brazil
| | | |
Collapse
|
23
|
Pham K, Ho L, D'Incal CP, De Cock A, Berghe WV, Goethals P. Epigenetic analytical approaches in ecotoxicological aquatic research. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121737. [PMID: 37121302 DOI: 10.1016/j.envpol.2023.121737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/15/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Environmental epigenetics has become a key research focus in global climate change studies and environmental pollutant investigations impacting aquatic ecosystems. Specifically, triggered by environmental stress conditions, intergenerational DNA methylation changes contribute to biological adaptive responses and survival of organisms to increase their tolerance towards these conditions. To critically review epigenetic analytical approaches in ecotoxicological aquatic research, we evaluated 78 publications reported over the past five years (2016-2021) that applied these methods to investigate the responses of aquatic organisms to environmental changes and pollution. The results show that DNA methylation appears to be the most robust epigenetic regulatory mark studied in aquatic animals. As such, multiple DNA methylation analysis methods have been developed in aquatic organisms, including enzyme restriction digestion-based and methyl-specific immunoprecipitation methods, and bisulfite (in)dependent sequencing strategies. In contrast, only a handful of aquatic studies, i.e. about 15%, have been focusing on histone variants and post-translational modifications due to the lack of species-specific affinity based immunological reagents, such as specific antibodies for chromatin immunoprecipitation applications. Similarly, ncRNA regulation remains as the least popular method used in the field of environmental epigenetics. Insights into the opportunities and challenges of the DNA methylation and histone variant analysis methods as well as decreasing costs of next generation sequencing approaches suggest that large-scale epigenetic environmental studies in model and non-model organisms will soon become available in the near future. Moreover, antibody-dependent and independent methods, such as mass spectrometry-based methods, can be used as an alternative epigenetic approach to characterize global changes of chromatin histone modifications in future aquatic research. Finally, a systematic guide for DNA methylation and histone variant methods is offered for ecotoxicological aquatic researchers to select the most relevant epigenetic analytical approach in their research.
Collapse
Affiliation(s)
- Kim Pham
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Ghent 9000, Belgium.
| | - Long Ho
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Claudio Peter D'Incal
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| | - Andrée De Cock
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Wim Vanden Berghe
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| | - Peter Goethals
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| |
Collapse
|
24
|
Huang L, Zhang W, Tong D, Lu L, Zhou W, Tian D, Liu G, Shi W. Triclosan and triclocarban weaken the olfactory capacity of goldfish by constraining odorant recognition, disrupting olfactory signal transduction, and disturbing olfactory information processing. WATER RESEARCH 2023; 233:119736. [PMID: 36801581 DOI: 10.1016/j.watres.2023.119736] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Recently, increased production and consumption of disinfectants such as triclosan (TCS) and triclocarban (TCC) have led to massive pollution of the environment, which draws global concern over the potential risk to aquatic organisms. However, the olfactory toxicity of disinfectants in fish remains elusive to date. In the present study, the impact of TCS and TCC on the olfactory capacity of goldfish was assessed by neurophysiological and behavioral approaches. As shown by the reduced distribution shifts toward amino acid stimuli and hampered electro-olfactogram responses, our results demonstrated that TCS/TCC treatment would cause deterioration of the olfactory ability of goldfish. Our further analysis found that TCS/TCC exposure suppressed the expression of olfactory G protein-coupled receptors in the olfactory epithelium, restricted the transformation of odorant stimulation into electrical responses by disturbing the cAMP signaling pathway and ion transportation, and induced apoptosis and inflammation in the olfactory bulb. In conclusion, our results demonstrated that an environmentally realistic level of TCS/TCC would weaken the olfactory capacity of goldfish by constraining odorant recognition efficiency, disrupting olfactory signal generation and transduction, and disturbing olfactory information processing.
Collapse
Affiliation(s)
- Lin Huang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P R China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P R China
| | - Difei Tong
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P R China
| | - Lingzheng Lu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P R China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P R China
| | - Dandan Tian
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P R China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P R China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P R China.
| |
Collapse
|
25
|
Malathion alters the transcription of target genes of the tumour suppressor tp53 and cancerous processes in Colossoma macropomum: Mechanisms of DNA damage response, oxidative stress and apoptosis. Chem Biol Interact 2023; 374:110405. [PMID: 36796534 DOI: 10.1016/j.cbi.2023.110405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Different classes of pesticides such as fungicides, herbicides, and insecticides, can induce differential expression of genes that are involved in tumorigenesis events in fish, including the expression of tumor suppressor tp53. The degree and duration of the stressful condition is decisive in defining which tp53-dependent pathway will be activated. Herein we evaluate the target genes expression that participates in the regulation pathway of the tumor suppressor tp53 and in the cancerous processes in tambaqui after exposure to malathion. Our hypothesis is that malathion promotes a gene response that is differentially regulated over time, with positive regulation of tp53 target genes related to the apoptotic pathway and a negative regulation of genes that promote antioxidant responses. The fish were exposed to a sublethal concentration of the insecticide for 6 and 48 h. Liver samples were used to analyze the expression of 11 genes using real-time PCR. Overall, the malathion promoted over time increases in tp53 expression and differential expression of tp53 related genes. The exposure resulted in the activation of damage response related genes, caused a positive expression of atm/atr genes. The pro-apoptotic gene bax was up-regulated and the anti-apoptotic bcl2 was down-regulated. Increased expression of mdm2 and sesn1 in the first hours of exposure and no effect on the antioxidant genes sod2 and gpx1 were also observed. We also witnessed an increase in the expression of the hif-1α gene, with no effect on ras proto-oncogene. The extension of this stressful condition accentuated tp53 transcription, and minimized the levels of mdm2, sens1 and bax; however, it down regulated the levels of bcl2 and the bcl2/bax ratio, which indicates the maintenance of the apoptotic response to the detriment of an antioxidant response.
Collapse
|
26
|
Lacy B, Rivera M, Flores L, Rahman MS. Combined effects of high temperature and pesticide mixture exposure on free-swimming behaviors and hepatic cytochrome P450 1A expression in goldfish, Carassius auratus. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:144-165. [PMID: 36756740 DOI: 10.1080/15287394.2023.2174463] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The synergy between multiple compounds and other stressors, including heat, creates volatility and greater unpredictability than standard single-chemical toxicity testing, especially in the case of pesticides and metabolites which might contain several noxious ingredients resulting in adverse ecological effects. To address this, the aim of this study was to examine the dose- and time-dependent effects of low- and high-dose pesticide mixture (metalachlor, linuron, isoproturon, tebucanazole, aclonifen, atrazine, pendimethalin, azinphos-methyl) and heat stress co-exposure (22°C control/32°C treatment for 4-week) on free-swimming behaviors and cumulative actionless time (CAT) of goldfish. Behavioral analysis showed a dose- and time-dependent decrease in distance swam, as well as a subsequent increase in CAT. Vertical and horizontal spatial behavioral use were affected under heat and pesticides co-exposure conditions. In 3- and 4-week(s) exposure groups, horizontal spatial behavioral use demonstrated elevated time spent in the lower third of the aquarium. Similarly, during 3- and 4-week(s) exposure (32°C control and 32°C high doses) vertical spatial behavioral use was found to increase time spent in the outermost edges of the aquarium. In all treatment groups, the final condition factor (KM) showed significant attenuation when compared to the initial KM. However, there was an unclear relationship between heat/pesticide co-exposure and growth most notably in 32°C high-dose groups. In addition, the expression of hepatic cytochrome P450 1A mRNA was significantly higher in pesticide-exposed groups. Taken together, data demonstrated that co-exposure with low- or high-dose pesticide mixture and heat stress significantly impacted natural swimming patterns, which over time might result in the broader population and ecological effects.
Collapse
Affiliation(s)
- Brittney Lacy
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Michelle Rivera
- Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Leinady Flores
- Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Md Saydur Rahman
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
- Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX, USA
| |
Collapse
|
27
|
Lebrun JD, El Kouch S, Guenne A, Tournebize J. Screening potential toxicity of currently used herbicides in the freshwater amphipod Gammarus fossarum based on multi-level biomarker responses to field-realistic exposures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:120985. [PMID: 36592881 DOI: 10.1016/j.envpol.2022.120985] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/16/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Herbicides are widely used to control weeds and maximize crop growth. Because of agricultural runoff, these chemicals are potentially hazardous to aquatic wildlife. However, their ecotoxicity and resulting disturbance in individual performance remain scarcely documented in freshwater crustaceans. This study aimed to screen the potential toxicity of currently used herbicides in the ecosystem engineer Gammarus fossarum using multi-level biomarkers. In microcosms, gammarids were exposed for 72 h to 12 herbicides individually (quinmerac, mesotrione, bentazone, isoproturon, chlortoluron, metazachlor, chloridazone, diflufenican, flufenacet, aclonifen, prosulfocarb and metolachlor) at a field-realistic concentration (i.e. 10 μg/L). The sublethal effects were assessed by monitoring several biochemical, physiological and behavioural traits. In exposed gammarids, alterations in behavioural activities were observed, i.e. increased locomotion and respiration as a general trend. Moreover, biochemical biomarkers suggested herbicide-dependent disruptions in moulting, antioxidant responses and cell integrity. Integrating multi-metric variations through statistical analyses allowed us to identify herbicide clusters likely to trigger common sets of biological responses. Depressed antioxidant defence at the cell level and impaired respiration at the individual level were the predominant toxic effects of herbicides, related to their hydrophobic feature. Furthermore, establishing relationships between sublethal alterations in gammarids and acute lethality or chronic toxicity values defined for regulatory purposes supports the relevance of these alterations as early warnings of toxicity. Our findings demonstrate that currently used herbicides have unexpected toxicological effects in a non-target wild animal, with possible long-term alterations in population dynamics and associated ecological functions, which constitute promising diagnostic tools for risk assessment in agricultural areas.
Collapse
Affiliation(s)
- Jérémie D Lebrun
- University of Paris-Saclay, INRAE, UR HYCAR - Artemhys, 92761 Antony, France.
| | - Sabry El Kouch
- University of Paris-Saclay, INRAE, UR HYCAR - Artemhys, 92761 Antony, France
| | - Angéline Guenne
- University of Paris-Saclay, INRAE, UR PROSE - Pôle Chimie, 92761 Antony, France
| | - Julien Tournebize
- University of Paris-Saclay, INRAE, UR HYCAR - Artemhys, 92761 Antony, France
| |
Collapse
|
28
|
Martyniuk V, Khoma V, Matskiv T, Yunko K, Gnatyshyna L, Stoliar O, Faggio C. Combined effect of microplastic, salinomycin and heating on Unio tumidus. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104068. [PMID: 36680920 DOI: 10.1016/j.etap.2023.104068] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/06/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Microplastic (MP) and heating (T) suspected to modulate biological effects of aquatic contaminants. Salinomycin (Sal) is veterinary antibiotic and anticancer agent. The goal of this study was to examine the multistress effect of MP, Sal and T on the bioindicator bivalve mollusc. The Unio tumidus were treated with MP (1 mg L-1), Sal (0.6 µg L-1), their combination under 18° C (Mix) and 25° C (MixT) for 14 days. The digestive glands were analyzed. MP and Sal did not cause changes of Mn- and Cu,Zn-SOD, lipid peroxidation and Cyp-450-depended EROD levels, whereas catalase, GST and protein carbonyls (Sal-group) increased compared to control. In the Mix-group, enzymes, particularly EROD and GST (by 34% and 115% respectively) were up-regulated. However, in the MixT-group, they were corresponding to control or lesser (EROD, catalase). Our findings emphasize the need to take into account multistress interactions in the MP environmental risk assessment.
Collapse
Affiliation(s)
- Viktoria Martyniuk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027 Ternopil, Ukraine.
| | - Vira Khoma
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027 Ternopil, Ukraine.
| | - Tetiana Matskiv
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027 Ternopil, Ukraine; I. Ya. Horbachevsky Ternopil National Medical University, Maidan Voli 1, 46001 Ternopil, Ukraine.
| | - Kateryna Yunko
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027 Ternopil, Ukraine.
| | - Lesya Gnatyshyna
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027 Ternopil, Ukraine; I. Ya. Horbachevsky Ternopil National Medical University, Maidan Voli 1, 46001 Ternopil, Ukraine.
| | - Oksana Stoliar
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027 Ternopil, Ukraine.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 S Agata -Messina, Italy.
| |
Collapse
|
29
|
de Souza CM, Massi KG, Rodgher S. Meta-analysis reveals negative responses of freshwater organisms to the interactive effects of pesticides and warming. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
30
|
Moreira RA, Cordero-de-Castro A, Polo-Castellano C, Pinto TJS, Dias MA, Montagner CC, Espíndola ELG, Araújo CVM, Blasco J. Avoidance responses by Danio rerio reveal interactive effects of warming, pesticides and their mixtures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157525. [PMID: 35872193 DOI: 10.1016/j.scitotenv.2022.157525] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Temperature variations and thermal extremes events caused by climate change can have profound implications for the toxicity of pesticides in aquatic organisms. Using an innovative system (Heterogeneous Multi-Habitat Test System - HeMHAS) that allows the simulation of different scenarios within a spatially heterogeneous landscape, the effects on the habitat selection of Danio rerio fish caused by the pesticides fipronil and 2,4-D were studied as single compounds and in mixture and integrated with air temperature variation (20, 24 and 28 °C). As a result, D. rerio detected and avoided both pesticides at air temperatures of 20 and 24 °C; however, at 28 °C no significant difference was observed in habitat choice by fish. Additionally, when pesticides were mixed in a heterogeneously contaminated landscape, it was observed that D. rerio detected contamination and preferred the clean zone at 20 and 24 °C; however, at 28 °C the potential to escape from the most contaminated areas was impaired. Thus, contamination by both pesticides made the habitat selection behavior of fish at 20 and 24 °C more noticeable. In addition, the association between pesticides and temperature showed negative effects on the response of fish to detect and escape from contaminated environments, suggesting the influence of temperature in altering the ability of the organism to provide an efficient response to stress.
Collapse
Affiliation(s)
- Raquel A Moreira
- NEEA/CRHEA/SHS and PPG-SEA, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970 São Carlos, Brazil.
| | - Andrea Cordero-de-Castro
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Universitario Río San Pedro, 11519, Puerto Real, Spain
| | - Curro Polo-Castellano
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Universitario Río San Pedro, 11519, Puerto Real, Spain
| | - Thandy J S Pinto
- NEEA/CRHEA/SHS and PPG-SEA, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970 São Carlos, Brazil
| | - Mariana A Dias
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Cassiana C Montagner
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Evaldo L G Espíndola
- NEEA/CRHEA/SHS and PPG-SEA, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970 São Carlos, Brazil
| | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Universitario Río San Pedro, 11519, Puerto Real, Spain
| | - Julián Blasco
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Universitario Río San Pedro, 11519, Puerto Real, Spain
| |
Collapse
|
31
|
Ribeiro YM, Moreira DP, Weber AA, Sales CF, Melo RMC, Bazzoli N, Rizzo E, Paschoalini AL. Adverse effects of herbicides in freshwater Neotropical fish: A review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 252:106293. [PMID: 36148734 DOI: 10.1016/j.aquatox.2022.106293] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Although herbicides have been developed to act on the physiological processes of plants, they are responsible for causing deleterious effects on animals. These chemical compounds are widely used throughout the world, but especially in countries that export agricultural products such as Central and South America, their use has increased in recent years. Aquatic environments are natural reservoirs of herbicides, which after being applied on crops, run off through the soil reaching rivers, lakes, and oceans. Fish are among the many organisms affected by the contamination of aquatic environments caused by herbicides. These animals play an important ecological role and are a major source of food for humans. However, few studies address the effects of herbicides on fish in this region. Thus, in the present review we discuss the morphophysiological and molecular consequences of herbicide exposure in Neotropical fish systems as well as how the environmental and land use characteristics in this region can influence the toxicity of these pollutants. A toxicity pathway framework was developed summarizing the mechanisms by which herbicides act and endpoints that need to be further investigated.
Collapse
Affiliation(s)
- Yves Moreira Ribeiro
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Minas Gerais, Brasil
| | - Davidson Peruci Moreira
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Minas Gerais, Brasil
| | | | - Camila Ferreira Sales
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Minas Gerais, Brasil
| | - Rafael Magno Costa Melo
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Minas Gerais, Brasil
| | - Nilo Bazzoli
- Programa de Pós-graduação em Biologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, PUC Minas, Belo Horizonte, Minas Gerais, Brasil
| | - Elizete Rizzo
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Minas Gerais, Brasil
| | - Alessandro Loureiro Paschoalini
- Programa de Pós-graduação em Biologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, PUC Minas, Belo Horizonte, Minas Gerais, Brasil.
| |
Collapse
|
32
|
Beghin M, Paris-Palacios S, Mandiki SNM, Schmitz M, Palluel O, Gillet E, Bonnard I, Nott K, Robert C, Porcher JM, Ronkart S, Kestemont P. Integrative multi-biomarker approach on caged rainbow trout: A biomonitoring tool for wastewater treatment plant effluents toxicity assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155912. [PMID: 35588819 DOI: 10.1016/j.scitotenv.2022.155912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The complex mixtures of contaminants released in wastewater treatment plant (WWTP) effluents are a major source of pollution for aquatic ecosystems. The present work aimed to assess the environmental risk posed by WWTP effluents by applying a multi-biomarker approach on caged rainbow trout (Oncorhynchus mykiss) juveniles. Fish were caged upstream and downstream of a WWTP for 21 days. To evaluate fish health, biomarkers representing immune, reproductive, nervous, detoxification, and antioxidant functions were assayed. Biomarker responses were then synthesized using an Integrated Biomarker Response (IBR) index. The IBR highlighted similar response patterns for the upstream and downstream sites. Caged juvenile females showed increased activities of innate immune parameters (lysozyme and complement), histological lesions and reduced glycogen content in the hepatic tissue, and higher muscle cholinergic metabolism. However, the intensity of the observed effects was more severe downstream of the WWTP. The present results suggest that the constitutive pollution level of the Meuse River measured upstream from the studied WWTP can have deleterious effects on fish health condition, which are exacerbated by the exposure to WWTP effluents. Our results infer that the application of IBR index is a promising tool to apply with active biomonitoring approaches as it provides comprehensive information about the biological effects caused by point source pollution such as WWTP, but also by the constitutive pollutions levels encountered in the receiving environment.
Collapse
Affiliation(s)
- Mahaut Beghin
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life Earth and Environment, University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium.
| | - Séverine Paris-Palacios
- Université de Reims Champagne-Ardennes, Research unity "Stress Environnementaux et BIOsurveillance des milieux aquatiques" (SEBIO), Campus du Moulin de la Housse, BP 1039, 51687 Reims cedex 2, France
| | - Syaghalirwa N M Mandiki
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life Earth and Environment, University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium
| | - Mélodie Schmitz
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life Earth and Environment, University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium
| | - Olivier Palluel
- Institut national de l'environnement industriel et des risques (INERIS), URM-I-02 SEBIO, BP n°2, 60550 Verneuil en Halatte, France
| | - Erin Gillet
- La Société wallonne des eaux, 41 Rue de la Concorde, B-4800 Verviers, Belgium
| | - Isabelle Bonnard
- Université de Reims Champagne-Ardennes, Research unity "Stress Environnementaux et BIOsurveillance des milieux aquatiques" (SEBIO), Campus du Moulin de la Housse, BP 1039, 51687 Reims cedex 2, France
| | - Katherine Nott
- La Société wallonne des eaux, 41 Rue de la Concorde, B-4800 Verviers, Belgium
| | - Christelle Robert
- Centre d'Economie Rurale, Health Department, 8 Rue Point du Jour, B-6900 Marloie, Belgium
| | - Jean-Marc Porcher
- Institut national de l'environnement industriel et des risques (INERIS), URM-I-02 SEBIO, BP n°2, 60550 Verneuil en Halatte, France
| | - Sébastien Ronkart
- La Société wallonne des eaux, 41 Rue de la Concorde, B-4800 Verviers, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life Earth and Environment, University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium
| |
Collapse
|
33
|
Pitombeira de Figueirêdo L, Athayde DB, Pinto TJDS, Daam MA, Guerra GDS, Duarte-Neto PJ, Espíndola ELG. Influence of temperature on the toxicity of the elutriate from a pesticide contaminated soil to two cladoceran species. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:956-966. [PMID: 35672617 DOI: 10.1007/s10646-022-02560-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Brazil has become one of the largest consumers of pesticides in the world. However, there are still few studies evaluating pesticide toxicity integrating local aquatic and terrestrial environments. In addition, there is growing concern about the influence of temperature conditions related with climate change on contaminants toxicity. The aim of the present study was to evaluate the elutriate toxicity of the insecticide Kraft® 36 EC (a.i. abamectin), the fungicide Score® 250 EC (a.i. difenoconazole) and their mixture to the cladocerans Ceriodaphnia silvestrii and Daphnia similis, using model ecosystems (mesocosms). To this end, mesocosms were filled with natural soil and subjected to the following treatments: Control (Milli-Q water), Kraft (10.8 g abamectin ha-1), Score (20 g difenoconazole ha-1), and Kraft + Score (10.8 g abamectin ha-1 + 20 g difenoconazole ha-1). The experiment lasted 18 days, and the applications were made on days 1, 8, and 15; the occurrence of rainfall was simulated on days 1, 8, and 15 after applications and only rainfall simulation on days 4, 11, and 18. The experiment was conducted under two different temperatures: 23 °C and 33 °C. At 23 °C, single Kraft treatment and in combination with Score showed high toxicity to both cladocerans. At 33 °C, elutriate of the Kraft® and mixture treatments were highly toxic to D. similis but not to C. silvestrii. The results indicate that while Kraft had higher toxicity than Score to both cladocerans, this toxicity was counteracted at 33 °C only for the exotic species, D. similis. The results portray the complexity of pesticide toxicity when considering realistic experimental settings including different organisms and temperature treatments.
Collapse
Affiliation(s)
- Livia Pitombeira de Figueirêdo
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil.
| | - Danillo B Athayde
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| | - Thandy Junio da Silva Pinto
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| | - Michiel A Daam
- CENSE, Department of Environmental Sciences and Engineering, Faculty of Sciences and Technology, New University of Lisbon, Quinta da Torre, 2829-516, Caparica, Portugal
| | - Glauce da Silva Guerra
- PPGBEA, Department of Statistics and Informatics, Rural Federal University of Pernambuco, R. Dom Manoel de Medeiros, s/n, Dois Irmãos, 52171900, Recife, Brazil
| | - Paulo José Duarte-Neto
- PPGBEA, Department of Statistics and Informatics, Rural Federal University of Pernambuco, R. Dom Manoel de Medeiros, s/n, Dois Irmãos, 52171900, Recife, Brazil
| | - Evaldo L G Espíndola
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| |
Collapse
|
34
|
Lacy B, Rahman MS, Rahman MS. Potential mechanisms of Na +/K +-ATPase attenuation by heat and pesticides co-exposure in goldfish: role of cellular apoptosis, oxidative/nitrative stress, and antioxidants in gills. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57376-57394. [PMID: 35352221 DOI: 10.1007/s11356-022-19779-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
In this study, we examined the dose-dependent effects of an environmentally relevant pesticide cocktail (metalachlor, linuron, isoproturon, tebucanazole, aclonifen, atrazine, pendimethalin, and azinphos-methyl) and temperature change (22 vs. 32 °C for 4-week exposure) on Na+/K+-ATPase, 3-nitrotyrosine protein (NTP), dinitrophenyl protein (DNP), catalase (CAT), and superoxide dismutase (SOD) expressions in gills of goldfish (Carassius auratus). Histopathological analysis showed widespread damage to gill in elevated temperature (32 °C) and pesticide co-exposure groups, including fusion of secondary lamellae, club-shaped primary lamellae, rupture of epithelial layer, loss of normal architecture, and hemorrhaging. Immunohistochemical and qRT-PCR analyses showed significant decreases in Na+/K+-ATPase protein and mRNA expressions in gills exposed to higher temperature and pesticides; however, combined exposure to heat and pesticides significantly increases NTP, DNP, CAT, and SOD expressions. In situ TUNEL assay revealed elevated levels of apoptotic cells in response to combined exposure. Collectively, our results suggest the combined effects of heat and pesticide stress cause cellular damage, upregulate oxidative/nitrative stress biomarkers, and increase apoptotic cells, downregulate Na+/K+-ATPase expression in gills. This provides new evidence for oxidant/antioxidant-dependent mechanisms for downregulation of Na+/K+-ATPase expression in gills during combined exposure.
Collapse
Affiliation(s)
- Brittney Lacy
- School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, 1 West University Drive, Brownsville, TX, 78520, USA
| | - Md Sadequr Rahman
- School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, 1 West University Drive, Brownsville, TX, 78520, USA
| | - Md Saydur Rahman
- School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, 1 West University Drive, Brownsville, TX, 78520, USA.
- Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX, USA.
| |
Collapse
|
35
|
Lacy B, Rahman MS. Interactive effects of high temperature and pesticide exposure on oxidative status, apoptosis, and renin expression in kidney of goldfish: Molecular and cellular mechanisms of widespread kidney damage and renin attenuation. J Appl Toxicol 2022; 42:1787-1806. [PMID: 35698815 DOI: 10.1002/jat.4357] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 12/22/2022]
Abstract
One of many noteworthy consequences of increasing societal reliance on pesticides is their predominance in aquatic environments. These pernicious chemicals interact with high temperatures from global climate change, heat waves, and natural variations to create unstable environments that negatively impact organisms' health. To understand these conditions, we examined the dose-dependent effects of environmentally relevant pesticide mixtures (metolachlor, linuron, isoproturon, tebuconazole, aclonifen, atrazine, pendimethalin, and azinphos-methyl) combined with elevated temperatures (22 control vs. 32°C for 4-week exposure) on renin, dinitrophenyl protein (DNP, an indicator of reactive oxygen species, ROS), 3-nitrotyrosine protein (NTP, an indicator of reactive nitrogen species, RNS), superoxidase dismutase (SOD, an antioxidant), and catalase (CAT, an antioxidant) expressions in the kidneys of goldfish (Carassius auratus). Histopathological analysis showed widespread damage to kidney tissues in high temperature and pesticide co-exposure groups, including rupture of the epithelial layer, hemorrhaging, and degeneration of tubular epithelium. Quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemical analyses demonstrated significant declines in renin receptor-like mRNA and protein expressions in kidney tissues under combined exposure to high temperature and pesticides compared with controls; conversely, expression of DNP, NTP, SOD, and CAT increased in kidney tissues under the same conditions. Apoptotic cells were also increased in co-exposure groups as assessed by in situ terminal deoxynucleotidyl transferase dUTP nick labeling (TUNEL) assay. The enhanced apoptosis in kidneys of heat and pesticides co-exposed fish was associated with increased caspase-3 (a protease enzyme) mRNA levels. Our results demonstrated that high temperature and pesticides induced oxidative/nitrative stress (i.e., ROS/RNS), damaged tissues, increased cellular apoptosis, and suppressed renin expression in kidneys of goldfish.
Collapse
Affiliation(s)
- Brittney Lacy
- School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Md Saydur Rahman
- School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA.,Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX, USA
| |
Collapse
|
36
|
Baratange C, Paris-Palacios S, Bonnard I, Delahaut L, Grandjean D, Wortham L, Sayen S, Gallorini A, Michel J, Renault D, Breider F, Loizeau JL, Cosio C. Metabolic, cellular and defense responses to single and co-exposure to carbamazepine and methylmercury in Dreissena polymorpha. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118933. [PMID: 35122922 DOI: 10.1016/j.envpol.2022.118933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/18/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Carbamazepine (CBZ) and Hg are widespread and persistent micropollutants in aquatic environments. Both pollutants are known to trigger similar toxicity mechanisms, e.g. reactive oxygen species (ROS) production. Here, their effects were assessed in the zebra mussel Dreissena polymorpha, frequently used as a freshwater model in ecotoxicology and biomonitoring. Single and co-exposures to CBZ (3.9 μg L-1) and MeHg (280 ng L-1) were performed for 1 and 7 days. Metabolomics analyses evidenced that the co-exposure was the most disturbing after 7 days, reducing the amount of 25 metabolites involved in protein synthesis, energy metabolism, antioxidant response and osmoregulation, and significantly altering cells and organelles' structure supporting a reduction of functions of gills and digestive glands. CBZ alone after 7 days decreased the amount of α-aminobutyric acid and had a moderate effect on the structure of mitochondria in digestive glands. MeHg alone had no effect on mussels' metabolome, but caused a significant alteration of cells and organelles' structure in gills and digestive glands. Single exposures and the co-exposure increased antioxidant responses vs control in gills and digestive glands, without resulting in lipid peroxidation, suggesting an increased ROS production caused by both pollutants. Data globally supported that a higher number of hyperactive cells compensated cellular alterations in the digestive gland of mussels exposed to CBZ or MeHg alone, while CBZ + MeHg co-exposure overwhelmed this compensation after 7 days. Those effects were unpredictable based on cellular responses to CBZ and MeHg alone, highlighting the need to consider molecular toxicity pathways for a better anticipation of effects of pollutants in biota in complex environmental conditions.
Collapse
Affiliation(s)
- Clément Baratange
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des Milieux Aquatiques (SEBIO), BP 1039 F, 51687, Reims, Cedex, France
| | - Séverine Paris-Palacios
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des Milieux Aquatiques (SEBIO), BP 1039 F, 51687, Reims, Cedex, France
| | - Isabelle Bonnard
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des Milieux Aquatiques (SEBIO), BP 1039 F, 51687, Reims, Cedex, France
| | - Laurence Delahaut
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des Milieux Aquatiques (SEBIO), BP 1039 F, 51687, Reims, Cedex, France
| | - Dominique Grandjean
- ENAC, IIE, Central Environmental Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 2, 1015, Lausanne, Switzerland
| | - Laurence Wortham
- Inserm UMR-S-1250 P3Cell, Université de Reims Champagne-Ardenne, 51685, Reims, Cedex 2, France
| | - Stéphanie Sayen
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, BP 1039, F-51687 Reims Cedex 2, France
| | - Andrea Gallorini
- Department F.-A. Forel for Environmental and Aquatic Sciences, And Institute for Environmental Sciences, University of Geneva, Boulevard Carl-Vogt 66, 1211, Geneva 4, Switzerland
| | - Jean Michel
- Inserm UMR-S-1250 P3Cell, Université de Reims Champagne-Ardenne, 51685, Reims, Cedex 2, France
| | - David Renault
- University of Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, évolution), UMR, 6553, Rennes, France; Institut Universitaire de France, 1 Rue Descartes, 75231, Paris Cedex 05, France
| | - Florian Breider
- ENAC, IIE, Central Environmental Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 2, 1015, Lausanne, Switzerland
| | - Jean-Luc Loizeau
- Department F.-A. Forel for Environmental and Aquatic Sciences, And Institute for Environmental Sciences, University of Geneva, Boulevard Carl-Vogt 66, 1211, Geneva 4, Switzerland
| | - Claudia Cosio
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des Milieux Aquatiques (SEBIO), BP 1039 F, 51687, Reims, Cedex, France.
| |
Collapse
|
37
|
Mugwanya M, Dawood MA, Kimera F, Sewilam H. Anthropogenic temperature fluctuations and their effect on aquaculture: A comprehensive review. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2021.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
38
|
Filice M, Cerra MC, Imbrogno S. The goldfish Carassius auratus: an emerging animal model for comparative cardiac research. J Comp Physiol B 2021; 192:27-48. [PMID: 34455483 PMCID: PMC8816371 DOI: 10.1007/s00360-021-01402-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022]
Abstract
The use of unconventional model organisms is significantly increasing in different fields of research, widely contributing to advance life sciences understanding. Among fishes, the cyprinid Carassius auratus (goldfish) is largely used for studies on comparative and evolutionary endocrinology, neurobiology, adaptive and conservation physiology, as well as for translational research aimed to explore mechanisms that may be useful in an applicative biomedical context. More recently, the research possibilities offered by the goldfish are further expanded to cardiac studies. A growing literature is available to illustrate the complex networks involved in the modulation of the goldfish cardiac performance, also in relation to the influence of environmental signals. However, an overview on the existing current knowledge is not yet available. By discussing the mechanisms that in C. auratus finely regulate the cardiac function under basal conditions and under environmental challenges, this review highlights the remarkable flexibility of the goldfish heart in relation not only to the basic morpho-functional design and complex neuro-humoral traits, but also to its extraordinary biochemical-metabolic plasticity and its adaptive potential. The purpose of this review is also to emphasize the power of the heart of C. auratus as an experimental tool useful to investigate mechanisms that could be difficult to explore using more conventional animal models and complex cardiac designs.
Collapse
Affiliation(s)
- Mariacristina Filice
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Arcavacata di Rende, CS, Italy.
| | - Maria Carmela Cerra
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Arcavacata di Rende, CS, Italy
| | - Sandra Imbrogno
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Arcavacata di Rende, CS, Italy
| |
Collapse
|
39
|
Li S, Wang R, Dai Z, Wang C, Wu Z. Dietary supplementation with Yucca schidigera extract alleviated heat stress-induced unfolded protein response and oxidative stress in the intestine of Nile tilapia (Oreochromis niloticus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 219:112299. [PMID: 33993089 DOI: 10.1016/j.ecoenv.2021.112299] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/27/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Heat stress due to global warming exerts deleterious effects on both humans and animals. However, nutritional strategies to reduce heat stress-induced intestinal mucosal barrier dysfunction and the underlying mechanisms remain largely unknown. In the present study, 240 tilapia were distributed into four treatment groups that were fed a basal diet supplemented with or without 0.1% Yucca schidigera extract under normal (28 °C) temperature or heat stress (36 °C) conditions for 2 weeks. Our results showed that tilapia exposed to heat stress resulted in growth arrest, intestinal dysfunction, oxidative damage, endoplasmic reticulum stress, and pro-inflammatory response, which were significantly relieved by yucca supplementation. The alleviative effect of Yucca schidigera extract was related to the down-regulation of mRNA expression of ubiquitin-proteasome system (Polyubiquitin, Proteasome 26S, Proteasome α5, Proteasome β3, and Ubiquitin-like 3) and inflammatory factors (tumor necrosis factor α, interleukin 1β, and interleukin 8), as well as the improved histological structure and activation of Hsp70, nuclear factor erythroid 2-related factor 2 signaling, interleukin 10, lysozyme, complement 3, and acid phosphatase in the intestine of tilapia. Collectively, these results indicated that heat stress-induced growth arrest, intestinal dysfunction, and oxidative damage were alleviated by dietary supplementation with Yucca schidigera extract. This offers a nutritional way of improving the growth and intestinal health of tilapia exposed to a hot environment.
Collapse
Affiliation(s)
- Senlin Li
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Renjie Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Chao Wang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
40
|
Mohamad S, Liew HJ, Zainuddin RA, Rahmah S, Waiho K, Ghaffar MA, Nhan HT, Loh JY, Lim LS, Chang Y, Liang L, De Boeck G. High environmental temperature and low pH stress alter the gill phenotypic plasticity of Hoven's carp Leptobarbus hoevenii. JOURNAL OF FISH BIOLOGY 2021; 99:206-218. [PMID: 33629400 DOI: 10.1111/jfb.14712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Climate warming and low pH environment are known to negatively impact all levels of aquatic organism from cellular to organism and population levels. For ammonotelic freshwater species, any abiotic factor fluctuation will cause disturbance to the fish, specifically at the gills which act as a multifunctional organ to support all biological processes. Therefore, this study was designed to investigate the effect of temperature (28 vs. 32°C) and pH (7.0 vs. 5.0) stress on the gill plasticity of Hoven's carp after 20 days of continuous exposure. The results demonstrated that high temperature and low pH caused severe changes on the primary and secondary lamellae as well as the cells within lamellae. An increasing trend of the proportion available for gas exchange was noticed at high temperature in both pH exposures, which resulted from a reduction of the primary lamellae width with elongated and thinner secondary lamellae compared to fishes at ambient temperature. Following exposure to high temperature and acidic pH, Hoven's carp experienced gill modifications including aneurysm, oedema, hypertrophy, curling of secondary lamellae, epithelial lifting, hyperplasia and lamellae fusion. These modifications are indicators of the coping mechanism of Hoven's carp to the changing environment in order to survive.
Collapse
Affiliation(s)
- Suhaini Mohamad
- Higher Institution of Center Excellence, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Hon Jung Liew
- Higher Institution of Center Excellence, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Rabiatul Adawiyyah Zainuddin
- Higher Institution of Center Excellence, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Sharifah Rahmah
- Higher Institution of Center Excellence, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Khor Waiho
- Higher Institution of Center Excellence, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Mazlan Abd Ghaffar
- Higher Institution of Center Excellence, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
- Faculty of Science and Marine Environments, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Hua Thai Nhan
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Jiun-Yan Loh
- Faculty of Applied Sciences, UCSI University, Cheras, Malaysia
| | - Leong-Seng Lim
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Yumei Chang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Liqun Liang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Gudrun De Boeck
- Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
41
|
Gewaily MS, Abdo SE, Moustafa EM, AbdEl-kader MF, Abd El-Razek IM, El-Sharnouby M, Alkafafy M, Raza SHA, El Basuini MF, Van Doan H, Dawood MAO. Dietary Synbiotics Can Help Relieve the Impacts of Deltamethrin Toxicity of Nile Tilapia Reared at Low Temperatures. Animals (Basel) 2021; 11:1790. [PMID: 34203916 PMCID: PMC8232581 DOI: 10.3390/ani11061790] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 01/31/2023] Open
Abstract
The optimal water temperature for the normal growth of Nile tilapia is between 26 and 28 °C, and the toxicity of pesticides is strongly related to water temperature. An alternate approach to augmenting the resistance of fish to ambient water toxicity and low water temperature via synbiotic feeding was proposed. In this study, fish were allocated into four groups with 10 fish in each replicate, where they were fed a basal diet or synbiotics (550 mg/kg) and kept at a suboptimal water temperature (21 ± 2 °C). The prepared diets were fed to Nile tilapia for 30 days with or without deltamethrin (DMT) ambient exposure (15 μg/L). The groups were named control (basal diet without DMT toxicity), DMT (basal diet with DMT toxicity), synbiotic (synbiotics without DMT toxicity), and DMT + synbiotic (synbiotics with DMT toxicity). The results displayed upregulated transcription of catalase, glutathione peroxidase, and interferon (IFN-γ) genes caused by DMT exposure and synbiotic feeding when compared with the controls. Moreover, HSP70 and CASP3 genes displayed increased transcription caused by DMT exposure without synbiotic feeding. However, fish fed with synbiotics showed downregulated HSP70 and CASP3 gene expressions. The transcription of IL-1β and IL-8 genes were also decreased by DMT exposure, while fish fed synbiotics showed upregulated levels. DMT exposure resulted in irregular histopathological features in gills, intestine, spleen, and liver tissues, while fish fed synbiotics showed regular, normal, and protected histopathological images. Our results indicated that dietary synbiotics ameliorated histopathological damages in DMT-exposed tilapia through alleviation of oxidative stress and inflammation as well as enhancing the immunity.
Collapse
Affiliation(s)
- Mahmoud S. Gewaily
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El Sheikh 33516, Egypt;
| | - Safaa E. Abdo
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El Sheikh 33516, Egypt;
| | - Eman M. Moustafa
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine Kafrelsheikh University, Kafr El Sheikh 33516, Egypt;
| | - Marwa F. AbdEl-kader
- Department of Fish Diseases and Management, Sakha Aquaculture Research Unit, Central Laboratory for Aquaculture Research, A.R.C., Kafr El Sheikh 33516, Egypt;
| | - Ibrahim M. Abd El-Razek
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El Sheikh 33516, Egypt; (I.M.A.E.-R.); (M.A.O.D.)
| | - Mohamed El-Sharnouby
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (M.E.-S.); (M.A.)
| | - Mohamed Alkafafy
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (M.E.-S.); (M.A.)
| | - Sayed Haidar Abbas Raza
- State Key Laboratory of Animal Genetics Breeding & Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China;
| | - Mohammed F. El Basuini
- Faculty of Desert Agriculture, King Salman International University, South Sinai 46618, Egypt;
- Department of Animal Production, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Science and Technology Research Institute, Chiang Mai University, 239 Huay Keaw Rd., Suthep, Muang, Chiang Mai 50200, Thailand
| | - Mahmoud A. O. Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El Sheikh 33516, Egypt; (I.M.A.E.-R.); (M.A.O.D.)
| |
Collapse
|
42
|
Karlsson O, Rocklöv J, Lehoux AP, Bergquist J, Rutgersson A, Blunt MJ, Birnbaum LS. The human exposome and health in the Anthropocene. Int J Epidemiol 2021; 50:378-389. [PMID: 33349868 PMCID: PMC8128460 DOI: 10.1093/ije/dyaa231] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Joacim Rocklöv
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, Sweden
| | - Alizée P Lehoux
- Department of Earth Sciences, Uppsala University, Uppsala, Sweden
| | - Jonas Bergquist
- Department of Chemistry-BMC, Analytical Chemistry and Neurochemistry, Uppsala University, Uppsala, Sweden
| | - Anna Rutgersson
- Department of Earth Sciences, Uppsala University, Uppsala, Sweden
| | - Martin J Blunt
- Department of Earth Science & Engineering, Imperial College London, London, UK
| | - Linda S Birnbaum
- National Institute of Environmental Health Sciences, National Toxicology Program, Durham, NC, USA
| |
Collapse
|
43
|
Pitombeira de Figueirêdo L, Athayde DB, Daam MA, Guerra G, Duarte-Neto PJ, Sarmento H, Espíndola ELG. Integrated ecosystem models (soil-water) to analyze pesticide toxicity to aquatic organisms at two different temperature conditions. CHEMOSPHERE 2021; 270:129422. [PMID: 33421753 DOI: 10.1016/j.chemosphere.2020.129422] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
In order to increase the knowledge about pesticides considering the soil-water interaction, ecosystem models (mesoscosms) were used to analyze the of leachate on the immobility and feeding rate of the cladocerans, Ceriodaphnia silvestrii and D. similis and algae Raphidocelis subcapitata, at two different temperatures. Mesocosm were filled with natural soil (latosolo) that were contaminated with insecticide/acaricide Kraft 36 EC® and fungicide Score 250 EC®, using the recommended concentration for strawberry crops (10.8 g abamectin/ha and 20 g difenoconazole/ha). Pesticides were applied once (hand sprayers) and the precipitation was simulated twice a week (Days 1, 4, 8, 11, 15 and 18). The mesocosm were kept in a room with a controlled temperature (23 and 33 °C) and photoperiod (12h light/12h dark). The Kraft 36 EC® insecticide showed toxicity for both species of cladocerans tested, with effects on immobility and feeding rate, both at 23 and 33 °C. Score 250 EC® showed to be toxic only for the experiments that analyzed the immobility of C. silvestrii at 23 °C and the feeding of D. smilis at 33 °C, demonstrating that the effects are species-specific and related to the temperature at which they are tested. While for species R. subcapitata there was an effect only for mixture treatments of the pesticides analyzed at both temperatures. Thereby, zooplanktonic organisms may be at risk when exposed to this compound even after percolating in a soil column, which could lead to effects on the entire aquatic trophic chain and that temperature can influence the organism response to the contaminant.
Collapse
Affiliation(s)
- Livia Pitombeira de Figueirêdo
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil.
| | - Danillo B Athayde
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| | - Michiel A Daam
- CENSE, Department of Environmental Sciences and Engineering, Faculty of Sciences and Technology, New University of Lisbon, Quinta da Torre, 2829-516, Caparica, Portugal
| | - Glauce Guerra
- PPGBEA, Department of Statistics and Informatics, Rural Federal University of Pernambuco, R. Dom Manoel de Medeiros, s/n, Dois Irmãos, 52171900, Recife, Brazil
| | - Paulo José Duarte-Neto
- PPGBEA, Department of Statistics and Informatics, Rural Federal University of Pernambuco, R. Dom Manoel de Medeiros, s/n, Dois Irmãos, 52171900, Recife, Brazil
| | - Hugo Sarmento
- Laboratory of Microbial Processes and Biodiversity, Department of Hydrobiology, Federal University of São Carlos (UFSCar), 13565-905, São Carlos, Brazil
| | - Evaldo L G Espíndola
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| |
Collapse
|
44
|
Abstract
Indirect effects in ecotoxicology are defined as chemical- or pollutant-induced alterations in the density or behavior of sensitive species that have cascading effects on tolerant species in natural systems. As a result, species interaction networks (e.g., interactions associated with predation or competition) may be altered in such a way as to bring about large changes in populations and/or communities that may further cascade to disrupt ecosystem function and services. Field studies and experimental outcomes as well as models indicate that indirect effects are most likely to occur in communities in which the strength of interactions and the sensitivity to contaminants differ markedly among species, and that indirect effects will vary over space and time as species composition, trophic structure, and environmental factors vary. However, knowledge of indirect effects is essential to improve understanding of the potential for chemical harm in natural systems. For example, indirect effects may confound laboratory-based ecological risk assessment by enhancing, masking, or spuriously indicating the direct effect of chemical contaminants. Progress to better anticipate and interpret the significance of indirect effects will be made as monitoring programs and long-term ecological research are conducted that facilitate critical experimental field and mesocosm investigations, and as chemical transport and fate models, individual-based direct effects models, and ecosystem/food web models continue to be improved and become better integrated.
Collapse
|
45
|
Petitjean Q, Jean S, Côte J, Larcher T, Angelier F, Ribout C, Perrault A, Laffaille P, Jacquin L. Direct and indirect effects of multiple environmental stressors on fish health in human-altered rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140657. [PMID: 32721751 DOI: 10.1016/j.scitotenv.2020.140657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Freshwater fish face multiple challenges in human-altered rivers such as trace metal contamination, temperature increase and parasitism. These multiple stressors could have unexpected interactive effects on fish health due to shared physiological pathways, but few studies investigated this question in wild fish populations. In this study, we compared 16 populations of gudgeon (Gobio occitaniae) distributed along perturbation gradients in human-altered rivers in the South of France. We tested the effects of single and combined stressors (i.e., metal contamination, temperature, parasitism) on key traits linked to fish health across different biological levels using a Structural Equation Modelling approach. Parasitism and temperature alone had limited deleterious effects on fish health. In contrast, fish living in metal-contaminated sites had higher metal bioaccumulation and higher levels of cellular damage in the liver through the induction of an inflammatory response. In addition, temperature and contamination had interactive negative effects on growth. These results suggest that trace metal contamination has deleterious effects on fish health at environmentally realistic concentrations and that temperature can modulate the effects of trace metals on fish growth. With this study, we hope to encourage integrative approaches in realistic field conditions to better predict the effects of natural and anthropogenic stressors on aquatic organisms.
Collapse
Affiliation(s)
- Quentin Petitjean
- EcoLab, Laboratoire écologie fonctionnelle et environnement, UMR5245, Université de Toulouse, CNRS, Toulouse, France; EDB, UMR5174 EDB, Université de Toulouse, CNRS, IRD, UPS, 118 route de Narbonne, Toulouse, France; LTSER France, Zone Atelier PYGAR "Pyrénées-Garonne", Auzeville-Tolosane, France.
| | - Séverine Jean
- EcoLab, Laboratoire écologie fonctionnelle et environnement, UMR5245, Université de Toulouse, CNRS, Toulouse, France; LTSER France, Zone Atelier PYGAR "Pyrénées-Garonne", Auzeville-Tolosane, France
| | - Jessica Côte
- EDB, UMR5174 EDB, Université de Toulouse, CNRS, IRD, UPS, 118 route de Narbonne, Toulouse, France; LTSER France, Zone Atelier PYGAR "Pyrénées-Garonne", Auzeville-Tolosane, France
| | - Thibaut Larcher
- INRA-Oniris, PAnTher APEX, La Chantrerie, 44307 Nantes, France
| | - Fréderic Angelier
- Centre d'Etudes Biologiques de Chizé, UMR 7372, Université de la Rochelle, CNRS, Villiers en Bois, France
| | - Cécile Ribout
- Centre d'Etudes Biologiques de Chizé, UMR 7372, Université de la Rochelle, CNRS, Villiers en Bois, France
| | - Annie Perrault
- EcoLab, Laboratoire écologie fonctionnelle et environnement, UMR5245, Université de Toulouse, CNRS, Toulouse, France; LTSER France, Zone Atelier PYGAR "Pyrénées-Garonne", Auzeville-Tolosane, France
| | - Pascal Laffaille
- EcoLab, Laboratoire écologie fonctionnelle et environnement, UMR5245, Université de Toulouse, CNRS, Toulouse, France; LTSER France, Zone Atelier PYGAR "Pyrénées-Garonne", Auzeville-Tolosane, France
| | - Lisa Jacquin
- EDB, UMR5174 EDB, Université de Toulouse, CNRS, IRD, UPS, 118 route de Narbonne, Toulouse, France; LTSER France, Zone Atelier PYGAR "Pyrénées-Garonne", Auzeville-Tolosane, France
| |
Collapse
|
46
|
Stara A, Zuskova E, Vesely L, Kouba A, Velisek J. Single and combined effects of thiacloprid concentration, exposure duration, and water temperature on marbled crayfish Procambarus virginalis. CHEMOSPHERE 2020; 273:128463. [PMID: 34756343 DOI: 10.1016/j.chemosphere.2020.128463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 06/13/2023]
Abstract
The increasing utilization of chemicals and ongoing climate change have a negative impact on aquatic ecosystems. The present study examined combined effects of water temperature, chemical concentration, and duration of exposure to the neonicotinoid thiacloprid on marbled crayfish Procambarus virginalis. Crayfish were exposed to thiacloprid at the environmental concentration of 4.50 μg L-1 and 10% 96LC50 to marbled crayfish, 64.64 μg L-1, at water temperature of 17 and 23 °C for 28 days followed by a 28 day depuration period. No crayfish died during the experiment. Both thiacloprid concentrations at 23 °C showed a synergistic effect with temperature on the biochemical indicators in haemolymph compared to those at 17 °C. Both concentrations of thiacloprid at both temperatures were associated with significant differences from thiacloprid-free controls (P < 0.01) in haemolymph glucose, ammonia, calcium, inorganic phosphate, and lactate; haemolymph enzymes aspartate aminotransferase, alanine aminotransferase, creatine kinase, and alkaline phosphatase; antioxidant biomarkers superoxide dismutase, catalase, glutathione S-transferase, and reduced glutathione in hepatopancreas, muscle, and gill, and showed lipid peroxidation in hepatopancreas and muscle. Histological analyses revealed structural changes and damage to gill and hepatopancreas of exposed crayfish.
Collapse
Affiliation(s)
- Alzbeta Stara
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic.
| | - Eliska Zuskova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Lukas Vesely
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Antonin Kouba
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Josef Velisek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| |
Collapse
|
47
|
Meng S, Delnat V, Stoks R. Mosquito larvae that survive a heat spike are less sensitive to subsequent exposure to the pesticide chlorpyrifos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114824. [PMID: 32454381 DOI: 10.1016/j.envpol.2020.114824] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/10/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
While extreme high temperatures are an important aspect of global warming, their effects on organisms are relatively understudied, especially in ecotoxicology. Sequential exposure to heat spikes and pesticides is a realistic scenario as both are typically transient stressors and are expected to further increase in frequency under global warming. We tested the effects of exposure to a lethal heat spike and subsequently to an ecologically relevant lethal pulse exposure of the pesticide chlorpyrifos in the larvae of mosquito Culex pipiens. The heat spike caused direct and delayed mortality, and resulted in a higher heat tolerance and activity of acetylcholinesterase, and a lower fat content in the survivors. The chlorpyrifos exposure caused mortality, accelerated growth rate, and decreased the heat tolerance and the activity of acetylcholinesterase. The preceding heat spike did not change how chlorpyrifos reduced the heat tolerance. Notably, the preceding heat spike did lower the lethal effect of the pesticide, which makes an important novel finding at the interface of ecotoxicology and global change biology, and adds a new dimension to the "climate-induced toxicant sensitivity" (CITS) concept. This may be due to both survival selection and cross-tolerance, and therefore likely a widespread phenomenon. Our results emphasize the importance of including extreme high temperatures as an important transient global change stressor in ecotoxicology.
Collapse
Affiliation(s)
- Shandong Meng
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Belgium.
| | - Vienna Delnat
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Belgium
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Belgium
| |
Collapse
|
48
|
Mojiri A, Zhou JL, Robinson B, Ohashi A, Ozaki N, Kindaichi T, Farraji H, Vakili M. Pesticides in aquatic environments and their removal by adsorption methods. CHEMOSPHERE 2020; 253:126646. [PMID: 32276120 DOI: 10.1016/j.chemosphere.2020.126646] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/02/2020] [Accepted: 03/27/2020] [Indexed: 05/26/2023]
Abstract
Although pesticides are widely used in agriculture, industry and households, they pose a risk to human health and ecosystems. Based on target organisms, the main types of pesticides are herbicides, insecticides and fungicides, of which herbicides accounted for 46% of the total pesticide usage worldwide. The movement of pesticides into water bodies occurs through run-off, spray drift, leaching, and sub-surface drainage, all of which have negative impacts on aquatic environments and humans. We sought to define the critical factors affecting the fluxes of contaminants into receiving waters. We also aimed to specify the feasibility of using sorbents to remove pesticides from waterways. In Karun River in Iran (1.21 × 105 ng/L), pesticide concentrations are above regulatory limits. The concentration of pesticides in fish can reach 26.1 × 103 μg/kg, specifically methoxychlor herbicide in Perca fluviatilis in Lithuania. During the last years, research has focused on elimination of organic pollutants, such as pesticides, from aqueous solution. Pesticide adsorption onto low-cost materials can effectively remediate contaminated waters. In particular, nanoparticle adsorbents and carbon-based adsorbents exhibit high performance (nearly 100%) in removing pesticides from water bodies.
Collapse
Affiliation(s)
- Amin Mojiri
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Hiroshima, Japan.
| | - John L Zhou
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Brett Robinson
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Akiyoshi Ohashi
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Hiroshima, Japan
| | - Noriatsu Ozaki
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Hiroshima, Japan
| | - Tomonori Kindaichi
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Hiroshima, Japan
| | - Hossein Farraji
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Mohammadtaghi Vakili
- Green Intelligence Environmental School, Yangtze Normal University, Chongqing, 408100, China
| |
Collapse
|
49
|
Jacquin L, Petitjean Q, Côte J, Laffaille P, Jean S. Effects of Pollution on Fish Behavior, Personality, and Cognition: Some Research Perspectives. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00086] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
50
|
Dallarés S, Dourado P, Sanahuja I, Solovyev M, Gisbert E, Montemurro N, Torreblanca A, Blázquez M, Solé M. Multibiomarker approach to fipronil exposure in the fish Dicentrarchus labrax under two temperature regimes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 219:105378. [PMID: 31841729 DOI: 10.1016/j.aquatox.2019.105378] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/26/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Fipronil is a phenylpyrazole insecticide widely used to control pests in agriculture even though evidence of harmful side effects in non-target species has been reported. A comprehensive study on the effects of dietary administration of Regent®800WG (80 % fipronil) in European sea bass juveniles was carried out under two temperature regimes: a) natural conditions, and b) 3 °C above the natural temperature (an increase predicted for the NW Mediterranean by the end of this century). Fipronil was added to the fish food (10 mg fipronil /Kg feed) and the effects were studied at several time points including right before administration, 7 and 14 days after daily fipronil feed and one-week after the insecticide withdrawal from the diet (depuration period). A wide array of physiological and metabolic biomarkers including feeding rate, general condition indices, plasma and epidermal mucus metabolites, immune response, osmoregulation, detoxification and oxidative-stress markers and digestive enzymes were assessed. General linear models and principal component analyses indicated that regardless of water temperature, fipronil resulted in a significant alteration of several of the above listed biomarkers. Among them, glucose and lactate levels increased in plasma and decreased in epidermal mucus as indicators of a stress response. Similarly, a depletion in catalase activity and higher lipid peroxidation in liver of fipronil-exposed fish were also indicative of an oxidative-stress condition. Fipronil induced a time dependent inhibition of Cytochrome P450-related activities and an increase of phase II glutathione-S-transferase. Moreover, fipronil administration was able to reduce the hypo-osmoregulatory capability as shown by the increase of plasmatic osmolality and altered several digestive enzymes including trypsin, lipase, alpha amylase and maltase. Finally, analyses in bile and muscle confirmed the rapid clearance of fipronil but the persistence of the metabolite fipronil-sulfone in bile even after the 7-day depuration period. Altogether, the results reveal a notable impact of this compound on the physiological condition of the European sea bass. The results should be considered in future environmental risk assessment studies since fipronil could be hazardous to fish species, particularly those inhabiting estuarine ecosystems exposed to the discharge of agriculture runoffs where this pesticide is mainly used.
Collapse
Affiliation(s)
- Sara Dallarés
- Institute of Marine Sciences (ICM-CSIC), Pg. Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Priscila Dourado
- Institute of Biosciences, Language and Exact Sciences of São José do Rio Preto, Paulist State University "Júlio de Mesquita Filho", Rua Cristóvão Colombo - de 1897/1898 ao fim, Jardim Nazareth, 15054000, São José do Rio Preto, SP, Brazil
| | - Ignasi Sanahuja
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Mikhail Solovyev
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Frunze st., 11, 630091, Novosibirsk, Russia; Tomsk State University, 36 Lenin Ave, 634050, Tomsk, Russia
| | - Enric Gisbert
- Institute of Research and Technology Food and Agriculture (IRTA), Aquaculture Program, Ctra. Poble Nou, km 5.5, 43540, Sant Carles de la Ràpita, Tarragona, Spain
| | - Nicola Montemurro
- Water and Soil Quality Research Group (IDAEA-CSIC), Department of Environmental Chemistry, C/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Amparo Torreblanca
- Department of Functional Biology and Physical Anthropology, University of València, C/Dr. Moliner 50, Burjassot, 46100, Valencia, Spain
| | - Mercedes Blázquez
- Institute of Marine Sciences (ICM-CSIC), Pg. Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Montserrat Solé
- Institute of Marine Sciences (ICM-CSIC), Pg. Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain.
| |
Collapse
|