1
|
Yuan S, Guo J, Yang B, Huang AX, Hu S, Li Y, Chen J, Yuan B, Yang J. Liquiritigenin protects against cadmium-induced testis damage in mice by inhibiting apoptosis and activating androgen receptor. Biochem Biophys Res Commun 2025; 759:151642. [PMID: 40138758 DOI: 10.1016/j.bbrc.2025.151642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/23/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025]
Abstract
Cadmium (Cd) is a prevalent contaminant in both dietary and drinking water sources, posing harm to multiple tissues and disrupting reproductive function. Recent evidence indicates that natural products derived from plants may offer a mitigating Cd-induced tissue damage. However, the protective role of Liquiritigenin (LQ) and its underlying mechanism remain unclear. The present study was to investigate the protective effect of LQ against short-term, low-dose Cd-induced multi-organ damage. Notably, Cd exposure had no significant impact on body or tissue weight but did induce damage to the heart, liver, lungs, kidneys and testes of mice, while also reducing sperm quality. These adverse effects were reversed by LQ treatment, suggesting that LQ alleviates Cd toxicity. Mechanistically, LQ inhibited testicular apoptosis by modulating the protein levels of Bad, Caspase-3, Bax, Bcl-2, and NF-κB. Furthermore, molecular docking and molecular dynamics simulations provided insights into the interaction between LQ and the androgen receptor (AR). Further studies indicate that LQ increases AR level and further prevent testicular damage. Collectively, these findings support the potential of LQ in preventing Cd-induced tissue damage, particularly in the context of reproductive toxicity.
Collapse
Affiliation(s)
- Siyu Yuan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Jun Guo
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Bijun Yang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Aolin Xiao Huang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Shuqi Hu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Yingcan Li
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Jingxuan Chen
- The Xiyuan Campus of Hefei No. 50 East Middle School, Hefei, Anhui, 230031, People's Republic of China
| | - Bin Yuan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China.
| | - Jing Yang
- Experimental Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China.
| |
Collapse
|
2
|
Merwid-Ląd A, Ziółkowski P, Nowak B, Świątek P, Szczukowski Ł, Kwiatkowska J, Piasecka K, Szeląg A, Szandruk-Bender M. 1,3,4-Oxadiazole Derivatives of Pyrrolo[3,4- d]pyridazinone Alleviate TNBS-Induced Colitis and Exhibit No Significant Testicular Toxicity. Pharmaceuticals (Basel) 2025; 18:546. [PMID: 40283981 PMCID: PMC12030013 DOI: 10.3390/ph18040546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/26/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Inflammatory bowel disease significantly impairs the patient's quality of life. In young individuals, both the disease and the drugs used for the treatment may impact fertility. Our study aimed to assess the action of new 1,3,4-oxadiazole derivatives of pyrrolo[3,4-d]pyridazinone on the rat testes in a model of TNBS-induced colitis in rats. Methods: In the current study, testes from eight randomly chosen rats were taken from each of the following groups: the control group (K), the colitis group (C), and the groups receiving compounds 7b, 10b, and 13b in higher doses (20 mg/kg). Results: Colitis did not affect the testicular index (expressed as a percentage of the body weight), but in group 13b, this parameter was significantly higher than in group K. No significant differences between groups were noticed in malondialdehyde, superoxide dismutase, interleukin-1, or metalloproteinase 9 levels. In the colitis group, lactate dehydrogenase activity in the testes was not increased; however, the administration of compound 10b significantly increased this parameter when compared to both groups K and C. Histological evaluation also did not reveal abnormalities, and the morphology of the testicular tissues was comparable in all groups. Conclusions: The results may suggest that the new 1,3,4-oxadiazole derivatives of pyrrolo[3,4-d]pyridazinone did not exert significant testicular toxicity.
Collapse
Affiliation(s)
- Anna Merwid-Ląd
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland; (B.N.); (A.S.); (M.S.-B.)
| | - Piotr Ziółkowski
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, Marcinkowskiego 1, 50-368 Wrocław, Poland;
| | - Beata Nowak
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland; (B.N.); (A.S.); (M.S.-B.)
| | - Piotr Świątek
- Department of Medicinal Chemistry, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland; (P.Ś.); (Ł.S.)
| | - Łukasz Szczukowski
- Department of Medicinal Chemistry, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland; (P.Ś.); (Ł.S.)
| | - Joanna Kwiatkowska
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland; (B.N.); (A.S.); (M.S.-B.)
| | - Katarzyna Piasecka
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland; (B.N.); (A.S.); (M.S.-B.)
| | - Adam Szeląg
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland; (B.N.); (A.S.); (M.S.-B.)
| | - Marta Szandruk-Bender
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland; (B.N.); (A.S.); (M.S.-B.)
| |
Collapse
|
3
|
Dagher DM, Zaghloul MS, Suddek GM. Modulation of AMPK/mTOR Autophagic Pathway Using Dapagliflozin Protects Against Cadmium-Induced Testicular and Renal Injury in Rats. J Biochem Mol Toxicol 2025; 39:e70257. [PMID: 40233265 DOI: 10.1002/jbt.70257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/03/2025] [Accepted: 03/31/2025] [Indexed: 04/17/2025]
Abstract
Cadmium is a widely distributed heavy metal found in the environment that poses serious hazards to human health. Dapagliflozin (DAPA), a sodium-glucose co-transporter 2 (SGLT-2) inhibitor, exhibited antioxidant, antiapoptotic, and anti-inflammatory properties. Our data assessed the effect of DAPA against Cd-triggered renal and testicular impairment in rats, as well as the underlying mechanisms. Cd (30 mg/kg) and DAPA (5 and 10 mg/kg) were administrated by oral gavage to rats and continued for 21 days. DAPA attenuated Cd-triggered renal and testicular injury as shown by diminishing serum creatinine, BUN, and urinary total protein concentration in addition to increasing creatinine clearance, urinary creatinine, and serum testosterone. Moreover, it diminished renal and testicular histopathological alterations induced by Cd. DAPA stimulated the impaired autophagy flux as seen by significantly elevating the p-AMPK/total AMPK, decreasing p-mTOR/total mTOR ratios, and diminishing p62 & LC3 protein levels. Additionally, DAPA significantly lowered MDA content, increased GSH level and SOD activity. Moreover, it augmented the cytoprotective Nrf2/HO-1 signaling pathway. Furthermore, it attenuated renal and testicular apoptotic cell death via decreasing caspase-3 expression. Conclusion: Boosting autophagic events and combating oxidative stress and apoptosis by DAPA were engaged in alleviating Cd-induced renal and testicular impairment. This was accomplished by modulating the AMPK/mTOR and enhancing the Nrf2/HO-1 pathways.
Collapse
Affiliation(s)
- Doha M Dagher
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Marwa S Zaghloul
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura National University, Gamasa, Egypt
| | - Ghada M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
4
|
Helal AM, Yossef MM, Seif IK, Abd El-Salam M, El Demellawy MA, Abdulmalek SA, Ghareeb AZ, Holail J, Mohsen Al-Mahallawi A, El-Zahaby SA, Ghareeb DA. Nanostructured biloalbuminosomes loaded with berberine and berberrubine for Alleviating heavy Metal-Induced male infertility in rats. Int J Pharm 2024; 667:124892. [PMID: 39481813 DOI: 10.1016/j.ijpharm.2024.124892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
Despite the remarkable biological effects of berberine (BBR), particularly on fertility, its bioavailability is low. This study aims to test the effectiveness of novel nanostructured biloalbuminosomes (BILS) of BBR and its metabolite berberrubine (M1) in treatment of testicular and prostatic lesions. M1 was semi-synthesized from BBR using microwave-assisted reaction. The solvent evaporation method was used to prepare BBR-BILS and M1-BILS by three different concentrations of sodium cholate (SC) or glycocholate (SG), along with the incorporation of bovine serum albumin (BSA). The prepared BILS were fully characterized. Male infertility was induced by cadmium (Cd) at 5 mg/kg and lead (Pb) at 20 mg/kg contaminated water for 90 days, followed by treatment with BBR, M1, and their BILS (BBR-BILS and M1-BILS) for 45 days. Blood male infertility markers, testicular and prostatic oxidative stress status, autophagy, inflammation, along with testicular and prostatic concentrations of Cd and Pb, and histopathology of both tested tissues were determined using standardized protocols. The optimal BBR-BILS and M1-BILS nano-preparations, containing 30 mg SC, were chosen based on the best characterization properties of the preparations. Both nano-preparations improved heavy metals-induced testicular and prostatic deformities, as they reduced Bax and elevated Bcl-2 expressions in both tissues. Moreover, they activated the mTOR/PI3K pathway with a marked reduction in AMPK and activated LC-3II protein levels. Consequently, testicular and prostatic architecture and functions were improved. This study is the first to report the preparation of BBR and M1 BILS nano-preparations and proved their superior efficacy compared to free drugs against testicular and prostatic deformities by attenuating oxidative stress-induced excessive autophagy, offering a new hope to manage male infertility.
Collapse
Affiliation(s)
- Aya M Helal
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, Egypt
| | - Mona M Yossef
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Inas K Seif
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications (SRTA-city), New Borg El Arab, Alexandria, Egypt
| | - Mohamed Abd El-Salam
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin D02 VN5, Ireland; Department of Pharmacognosy, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa, 11152, Egypt
| | - Maha A El Demellawy
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), The City of Scientific Research and Technological Applications (SRTA-City), Borg Al-Arab, Alexandria, Egypt
| | - Shaymaa A Abdulmalek
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed Z Ghareeb
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications (SRTA-city), New Borg El Arab, Alexandria, Egypt
| | - Jasmine Holail
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Sally A El-Zahaby
- Department of Pharmaceutics and Industrial Pharmacy, PharmD Program, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt.
| | - Doaa A Ghareeb
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications (SRTA-city), New Borg El Arab, Alexandria, Egypt; Research Projects Unit, Pharos University in Alexandria, Canal El Mahmoudia Street, Beside Green Plaza Complex 21648, Alexandria, Egypt
| |
Collapse
|
5
|
Shaban SF, Abdel-Fattah EA, Ali MM, Dessouky AA. The therapeutic efficacy of adipose mesenchymal stem cell-derived microvesicles versus infliximab in a dextran sodium sulfate induced ulcerative colitis rat model. Ultrastruct Pathol 2024; 48:526-549. [PMID: 39545690 DOI: 10.1080/01913123.2024.2426566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
Ulcerative colitis (UC) is a chronic relapsing intestinal inflammation that is becoming of increasing incidence worldwide and has insufficient treatment. Therefore, finding effective therapies remains a priority. A dextran sodium sulfate colitis model was established to elucidate colonic layers alterations and compare adipose mesenchymal stem cell-derived microvesicles (MSC-MVs) versus infliximab (IFX) efficacy through biochemical, light, and electron microscope studies. Fifty-four rats were allocated to 4 groups: Control (Con), UC, UC+IFX, and UC+MSC-MVs groups. End body weights (BW) and serum malondialdehyde (MDA) levels were recorded. Colitis severity was estimated by disease activity index (DAI). Colonic specimens were processed to evaluate the histological structure, collagen content, surface mucous and goblet cells, CD44, TNF-α, and GFAP immune expression. Morphometric and statistical analyses were performed. The UC group revealed congested, stenosed colons, a significant decline in end BW, and a significant increase in serum MDA and DAI. Furthermore, disturbed histoarchitecture, inflammatory infiltration, depletion of surface mucous and goblet cells, increased collagen, and TNF-α expression and decreased GFAP expression were observed. Alterations were partially attenuated by IFX therapy, whereas MSC-MVs significantly improved all parameters. In conclusion, MSC-MVs were a superior therapeutic option, via attenuating oxidative stress and inflammatory infiltration, in addition to restoring intestinal epithelial integrity and mucosal barrier.
Collapse
Affiliation(s)
- Sahar F Shaban
- Department of Medical Histology and Cell Biology, Medicine, Faculty of medicine, Zagazig University, Zagazig city, Egypt
| | - Eman A Abdel-Fattah
- Department of Medical Histology and Cell Biology, Medicine, Faculty of medicine, Zagazig University, Zagazig city, Egypt
| | - Manar M Ali
- Department of Medical Histology and Cell Biology, Medicine, Faculty of medicine, Zagazig University, Zagazig city, Egypt
| | - Arigue A Dessouky
- Department of Medical Histology and Cell Biology, Medicine, Faculty of medicine, Zagazig University, Zagazig city, Egypt
| |
Collapse
|
6
|
Fan Y, Jiang X, Xiao Y, Li H, Chen J, Bai W. Natural antioxidants mitigate heavy metal induced reproductive toxicity: prospective mechanisms and biomarkers. Crit Rev Food Sci Nutr 2024; 64:11530-11542. [PMID: 37526321 DOI: 10.1080/10408398.2023.2240399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Heavy metals are harmful environmental pollutants that have attracted widespread attention, attributed to their health hazards to humans and animals. Due to the non-degradable property of heavy metals, organisms are inevitably exposed to heavy metals such as arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg). Several studies revealed that heavy metals can cause reproductive damage by the excessive production of reactive oxygen species (ROS), which exacerbates oxidative stress, inflammation, and endocrine disruption. Natural antioxidants, mainly polyphenols, carotenoids, and vitamins, have been shown to mitigate heavy metal-induced reproductive toxicity potentially. In this review, accumulated evidences on the influences of four non-essential heavy metals As, Cd, Pb, and Hg on both males and females reproductive system were established. The purpose of this review is to explore the potential mechanisms of the effects of heavy metals on reproductive function and point out the potential biomarkers of natural antioxidants interventions toward heavy metal-induced reproductive toxicity. Notably, increasing evidence proven that the regulations of hypothalamic-pituitary-gonadal axis, Nrf2, MAPK, or NF-κB pathways are the important mechanisms for the amelioration of heavy metal induced reproductive toxicity by natural antioxidants. It also provided a promising guidance for prevention and management of heavy metal-induced reproductive toxicity.
Collapse
Affiliation(s)
- Yueyao Fan
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Yuhang Xiao
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Haiwei Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Jiali Chen
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Panchal H, Bhardwaj JK. Quercetin Supplementation Alleviates Cadmium Induced Genotoxicity-Mediated Apoptosis in Caprine Testicular Cells. Biol Trace Elem Res 2024; 202:1-14. [PMID: 38158459 DOI: 10.1007/s12011-023-04038-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Being a common environmental pollutant, cadmium causes detrimental health effects, including testicular injury. Herein, we document the ameliorative potential of quercetin, a potent antioxidant, against cadmium-induced geno-cytotoxicity and steroidogenic toxicity in goat testicular tissue. Cadmium induced different comet types (Type 0 - Type 4), indicating the varying degree of DNA-damage in testicular cells. The quantitative analysis at 50 and 100 µM cadmium concentration revealed the DNA damage with per cent tail DNA as 75.78 ± 1.49 and 94.65 ± 0.95, respectively, in comparison to the control group (8.87 ± 0.48) post 8 h exposure duration. Cadmium caused a substantial decrease in the activity of key steroidogenic enzymes' (3β-HSD and 17β-HSD) along with reduction of testosterone level in testicular tissue. Furthermore, cadmium treatment induced various types of deformities in sperm, altered the Bax/Bcl-2 expression ratio in testicular tissue and thus suggesting the apoptosis-mediated death of testicular cells. Simultaneous quercetin supplementation, however, significantly (p < 0.05) averted the aforementioned cadmium-mediated damage in testicular tissue. Conclusively, the cadmium-induced DNA-damage and decrease in steroidogenic potential results in death of testicular cells via apoptosis, which was significantly counteracted by quercetin co-supplementation, and thus preventing the cadmium-mediated cytotoxicity of testicular cells.
Collapse
Affiliation(s)
- Harish Panchal
- Department of Zoology, Shri Ramasamy Memorial University, Sikkim, 737102, India
| | - Jitender Kumar Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
| |
Collapse
|
8
|
Tijani AS, Daba TM, Ubong IA, Olufunke O, Ani EJ, Farombi EO. Co-administration of thymol and sulfoxaflor impedes the expression of reproductive toxicity in male rats. Drug Chem Toxicol 2024; 47:618-632. [PMID: 37403475 DOI: 10.1080/01480545.2023.2232564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/06/2023]
Abstract
This study investigated the capability of a co-delivery system of thymol (THY) and sulfoxaflor that can serve to minimize the development of epididymal and testicular injury arise from SFX exposures alone. Forty-eight adult male rats were orally treated by gavage for 28 consecutive days. The rats were divided into six groups comprising control, THY alone (30 mg/kg), low SFX alone (79.4 mg/kg), high SFX alone (205 mg/kg) and co-exposure groups. After euthanasia, the rats epididymal and testicular damage and antioxidant status markers, myeloperoxidase (MPO) activity, levels of nitric oxide, total antioxidant capacity (TAC), total oxidative stress (TOS) and lipid peroxidation (LPO) were analyzed. Levels of tumor necrosis factor alpha (TNF-α), interleukin-1 b (IL-1β) and caspase-3 activity were assessed using ELISA kits. The results revealed that SFX exposure caused a significant (p < 0.05) decrease in the body weight, sperm functional parameters, serum testosterone level with widespread histological abnormalities in a dose-dependent manner. Increased relative organ weights, serum levels of luteinizing hormone (LH) and follicle stimulating hormone (FSH) were observed in low SFX-treated rats. Similarly, the epididymal and testicular myeloperoxidase activity, malondialdehyde (MDA), reactive oxygen species (RONS), tumor necrosis-α, interleukin-1β levels and caspase-3 activity were significant (p < 0.05) increased and a significant (p < 0.05) reduction in antioxidant enzyme activities and reduced glutathione (GSH) were revealed in SFX-treated rats. However, co-treatment of THY with SFX prevented SFX-induced epididymal and testicular toxicities. Thus, thymol protected against potential epididymis and testes alterations elicited by oxido-inflammatory mediators and up regulated antioxidant status.
Collapse
Affiliation(s)
- Abiola S Tijani
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Biochemistry, Molecular Biology and Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Rwanda
| | - Tolessa M Daba
- Department of Biochemistry, Molecular Biology and Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Rwanda
| | - Ime A Ubong
- Department of Physiology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Rwanda
| | - Onaadepo Olufunke
- Department of Physiology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Rwanda
| | - Elemi J Ani
- Department of Physiology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Rwanda
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
9
|
Ajisebiola BS, Toromade AA, Oladele JO, Mustapha ARK, Fagbenro OS, Adeyi AO. Echis ocellatus venom-induced sperm functional deficits, pro-apoptotic and inflammatory activities in male reproductive organs in rats: antagonistic role of kaempferol. BMC Pharmacol Toxicol 2024; 25:46. [PMID: 39123263 PMCID: PMC11311923 DOI: 10.1186/s40360-024-00776-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Echis ocellatus envenoming is potentially toxic initiating clinical damages on male reproductive system. Kaempferol is a therapeutic agent with neutralizing potentials on snake venom toxins. This study investigated the antagonistic effect of kaempferol on E. ocellatus venom (EoV)-induced reproductive toxicities. METHODS Fifty adult male rats were sorted at random into five groups of ten rats for this study. The control rats were allotted to group 1, while rats in groups 2-5 were injected with 0.22 mg/kg bw (LD50) of EoV intraperitoneally. Rats in group 2 were not treated while groups 3-5 rats were treated with serum antivenom (0.2 ml), and 4 and 8 mg/kg bw of kaempferol post envenoming, respectively. RESULTS EoV actuated reproductive toxicity, significantly decreased sperm parameters, and enhanced inflammatory, oxidative stress, and apoptotic biomarkers in reproductive organs of untreated envenomed rats. However, treatment with kaempferol alleviated the venom-induced reproductive disorders with a dose dependent effect. Kaempferol significantly increased the testicular weight, organo-somatic index, sperm parameters, and normalized the levels of serum luteinizing hormone, testosterone, and follicle stimulating hormone. Kaempferol ameliorated testicular and epididymal oxidative stress as evidenced by significant decrease in malondialdehyde (MDA) levels, enhancement of reduced glutathione (GSH) levels, superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities. The inflammatory biomarkers; nitric oxide (NO) levels and myeloperoxidase activity (MPO), and apoptotic biomarkers; caspase 3 and caspase 9 activities were substantially suppressed in the testis and epididymis of envenomed rats treated with kaempferol. CONCLUSION Results revealed kaempferol as a potential remedial agent against reproductive toxicity that could manifest post-viper envenoming.
Collapse
Affiliation(s)
| | | | | | | | - Olukunle Silas Fagbenro
- Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
- Animal Physiology Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Akindele Oluwatosin Adeyi
- Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
- Animal Physiology Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
10
|
Asghar H, Siddiqui A, Batool L, Batool Z, Ahmed T. Post-exposure self-recovery reverses oxidative stress, ameliorates pathology and neurotransmitters imbalance and rescues spatial memory after time-dependent aluminum exposure in rat brain. Biometals 2024; 37:819-838. [PMID: 38233603 DOI: 10.1007/s10534-023-00570-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024]
Abstract
Aluminum is a potent neurotoxin, responsible for memory impairment and cognitive dysfunction. The neurotoxic effect of aluminum on cognitive impairment is well documented, however, exposure to aluminum in a time-dependent manner and post-exposure self-recovery still needs to be elaborated. This research aimed to (1) study the time-dependent effect of aluminum exposure by administering a total dose of 5850 mg/kg of Al over two different time periods: 30 and 45 days (130 and 195 mg/kg of AlCl3 respectively), and (2) study 20 days post-exposure self-recovery effect in both aluminum-exposed groups by giving distilled water. Cognitive abilities were investigated through Morris water maze test and hole board test and compared in both exposure and recovery groups. Oxidative stress markers and neurotransmitter levels were measured for both exposure and recovery groups. To understand the mechanism of aluminum exposure and recovery, immunohistochemical analysis of synaptophysin (Syp) and glial fibrillary acidic protein (GFAP) was performed. Results showed cognitive dysfunction, oxidative stress-induced damage, reduced neurotransmitter levels, decreased immunoreactivity of Syp, and increased GFAP. However, these parameters showed a larger improvement in the recovery group where rats were given aluminum for 30 days period in comparison to recovery group followed by 45 days of aluminum exposure. These results suggest that restoration of cognitive ability is affected by the duration of aluminum exposure. The study findings provide us with insight into the adverse effects of aluminum exposure and can be utilized to guide future preventive and therapeutic strategies against aluminum neurotoxicity.
Collapse
Affiliation(s)
- Humna Asghar
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan
| | - Alveena Siddiqui
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan
| | - Laraib Batool
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Zehra Batool
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Touqeer Ahmed
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan.
| |
Collapse
|
11
|
Gao X, Li G, Pan X, Xia J, Yan D, Xu Y, Ruan X, He H, Wei Y, Zhai J. Environmental and occupational exposure to cadmium associated with male reproductive health risk: a systematic review and meta-analysis based on epidemiological evidence. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7491-7517. [PMID: 37584848 DOI: 10.1007/s10653-023-01719-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023]
Abstract
There is an abundance of epidemiological evidence and animal experiments concerning the correlation between cadmium exposure and adverse male reproductive health outcomes. However, the evidence remains inconclusive. We conducted a literature search from PubMed, Embase, and Web of Science over the past 3 decades. Pooled r and 95% confidence intervals (CIs) were derived from Cd levels of the type of biological materials and different outcome indicators to address the large heterogeneity of existing literature. Cd was negatively correlated with semen parameters (r = - 0.122, 95% CI - 0.151 to - 0.092) and positively correlated with sera sex hormones (r = 0.104, 95% CI 0.060 to 0.147). Among them, Cd in three different biological materials (blood, semen, and urine) was negatively correlated with semen parameters, while among sex hormones, only blood and urine were statistically positively correlated. In subgroup analysis, blood Cd was negatively correlated with semen density, sperm motility, sperm morphology, and sperm count. Semen Cd was negatively correlated with semen concentration. As for serum sex hormones, blood Cd had no statistical significance with three hormones, while semen Cd was negatively correlated with testosterone. In summary, cadmium exposure might be associated with the risk of a decline in sperm quality and abnormal levels of sex hormones.
Collapse
Affiliation(s)
- Xin Gao
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Guangying Li
- Department of Public Affairs Administration, School of Health Management, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Xingchen Pan
- School of the First Clinical Medicine, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Jiajia Xia
- Department of Public Affairs Administration, School of Health Management, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Di Yan
- Department of Public Affairs Administration, School of Health Management, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Yang Xu
- School of the First Clinical Medicine, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Xiang Ruan
- School of the First Clinical Medicine, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Huan He
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Yu Wei
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Jinxia Zhai
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China.
| |
Collapse
|
12
|
Alafifi SA, Wahdan SA, Elhemiely AA, Elsherbiny DA, Azab SS. Modulatory effect of liraglutide on doxorubicin-induced testicular toxicity and behavioral abnormalities in rats: role of testicular-brain axis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2987-3005. [PMID: 37162541 PMCID: PMC10567954 DOI: 10.1007/s00210-023-02504-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 04/17/2023] [Indexed: 05/11/2023]
Abstract
Doxorubicin (DOX) is a powerful chemotherapeutic agent used in many types of malignancies. However, its use results in testicular damage. DOX-induced testicular damage results in low level of serum testosterone which may affect cognitive function. The current study investigated the protective effect of liraglutide (50, 100 μg/kg/day) in testicular toxicity and the consequent cognitive impairment induced by DOX. DOX treatment reduced sperm count (62%) and sperm motility (53%) and increased sperm abnormalities (786%), as compared to control group. DOX also reduced serum testosterone level (85%) and the gene expression of testicular 3β-HSD (68%) and 17β-HSD (82%). Moreover, it increased testicular oxidative stress (MDA and GSH) by 103% and 59%, respectively, apoptotic (caspase-3 and P53) by 996% and 480%, respectively. In addition, DOX resulted in increasing autophagic markers including PAKT, mTOR, and LC3 by 48%, 56%, and 640%, respectively. Additionally, rats' behavior in Y-maze (60%) and passive avoidance task (85%) was disrupted. The histopathological results of testis and brain supported the biochemical findings. Treatment with liraglutide (100 μg/kg/day) significantly abrogated DOX-induced testicular damage by restoring testicular architecture, increasing sperm count (136%) and sperm motility (106%), and decreasing sperm abnormalities (84%) as compared to DOX group. Furthermore, liraglutide increased serum testosterone (500%) and steroidogenesis enzymes 3β-HSD (105%) and 17β-HSD (181%) along with suppressing oxidative stress (MDA and GSH) by 23% and 85%, respectively; apoptotic (caspase-3 and P53) by 59% and55%, respectively; and autophagic markers including PAKT, mTOR, and LC3 by 48%, 97%, and 60%, respectively. Moreover, it enhanced the memory functions in passive avoidance and Y-maze tests (132%). In conclusion, liraglutide is a putative agent for protection against DOX-induced testicular toxicity and cognitive impairment through its antioxidant, antiapoptotic, and antiautophagic effects.
Collapse
Affiliation(s)
- Shorouk A Alafifi
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Sara A Wahdan
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | | | - Doaa A Elsherbiny
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Samar S Azab
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
13
|
Arab HH, Fikry EM, Alsufyani SE, Ashour AM, El-Sheikh AAK, Darwish HW, Al-Hossaini AM, Saad MA, Al-Shorbagy MY, Eid AH. Stimulation of Autophagy by Dapagliflozin Mitigates Cadmium-Induced Testicular Dysfunction in Rats: The Role of AMPK/mTOR and SIRT1/Nrf2/HO-1 Pathways. Pharmaceuticals (Basel) 2023; 16:1006. [PMID: 37513918 PMCID: PMC10386496 DOI: 10.3390/ph16071006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Cadmium (Cd) is a widespread environmental pollutant that triggers testicular dysfunction. Dapagliflozin is a selective sodium-glucose co-transporter-2 inhibitor with notable antioxidant and anti-apoptotic features. It has shown marked cardio-, reno-, hepato-, and neuroprotective effects. Yet, its effect on Cd-evoked testicular impairment has not been examined. Hence, the goal of the current study was to investigate the potential positive effect of dapagliflozin against Cd-induced testicular dysfunction in rats, with an emphasis on autophagy, apoptosis, and oxidative insult. Dapagliflozin (1 mg/kg/day) was given by oral gavage, and testicular dysfunction, impaired spermatogenesis, and biomolecular events were studied via immunohistochemistry, histopathology, and ELISA. The current findings demonstrated that dapagliflozin improved relative testicular weight, serum testosterone, and sperm count/motility and reduced sperm abnormalities, signifying mitigation of testicular impairment and spermatogenesis disruption. Moreover, dapagliflozin attenuated Cd-induced histological abnormalities and preserved testicular structure. The testicular function recovery was prompted by stimulating the cytoprotective SIRT1/Nrf2/HO-1 axis, lowering the testicular oxidative changes, and augmenting cellular antioxidants. As regards apoptosis, dapagliflozin counteracted the apoptotic machinery by downregulating the pro-apoptotic signals together with Bcl-2 upregulation. Meanwhile, dapagliflozin reactivated the impaired autophagy, as seen by a lowered accumulation of SQSTM-1/p62 and Beclin 1 upregulation. In the same context, the testicular AMPK/mTOR pathway was stimulated as evidenced by the increased p-AMPK (Ser487)/total AMPK ratio alongside the lowered p-mTOR (Ser2448)/total mTOR ratio. Together, the favorable mitigation of Cd-induced testicular impairment/disrupted spermatogenesis was driven by the antioxidant, anti-apoptotic, and pro-autophagic actions of dapagliflozin. Thus, it could serve as a tool for the management of Cd-evoked testicular dysfunction.
Collapse
Affiliation(s)
- Hany H Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Ebtehal Mohammad Fikry
- Department of Pharmacology, Egyptian Drug Authority (EDA)-Formerly NODCAR, Giza 12654, Egypt
| | - Shuruq E Alsufyani
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed M Ashour
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al Qura University, P.O. Box 13578, Makkah 21955, Saudi Arabia
| | - Azza A K El-Sheikh
- Basic Health Sciences Department, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hany W Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah M Al-Hossaini
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Muhammed A Saad
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Muhammad Y Al-Shorbagy
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Ahmed H Eid
- Department of Pharmacology, Egyptian Drug Authority (EDA)-Formerly NODCAR, Giza 12654, Egypt
| |
Collapse
|
14
|
Şimşek H, Akaras N, Gür C, Küçükler S, Mehmet Kandemir F. Beneficial effects of Chrysin on Cadmium-induced nephrotoxicity in rats: Modulating the levels of Nrf2/HO-1, RAGE/NLRP3, and Caspase-3/Bax/Bcl-2 signaling pathways. Gene 2023; 875:147502. [PMID: 37224935 DOI: 10.1016/j.gene.2023.147502] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal that targets the kidney directly in the body. Chrysin (CHR) is a natural flavonoid with many properties such as antioxidant, anti-inflammatory and anti-apoptotic. The current study discloses new evidence as regards of the curative effects of CHR on Cd-induced nephrotoxicity by regulating oxidative stress, apoptosis, autophagy, and inflammation. Cd was administered orally at a dose of 25 mg/kg body weight alone or in combination with orally administered CHR (25 and 50 mg/kg body weight) for 7 days. Biochemical, molecular, and histological methods were used to investigate inflammation, apoptosis, autophagy, and oxidant pathways in renal tissue. Renal function tests were also evaluated. Cd caused an increase in serum toxicity markers, lipid peroxidation and a decrease in the activities of antioxidant enzymes. Nrf-2 triggered inflammatory responses by suppressing HO-1 and NQO1 mRNA transcripts and increasing NF-κB, TNF-α, IL-1β and iNOS mRNA transcripts. Cd caused inflammasome by increasing RAGE and NLRP3 mRNA transcripts. In addition, Cd application caused apoptosis by increasing Bax, Apaf-1 and Caspase-3 mRNA transcripts and decreasing Bcl-2 mRNA transcript level. It caused autophagy by increasing the activity of Beclin-1 level. CHR treatment had the opposite effect on all these values and reduced the damage caused by all these signal pathways. Overall, the data of this study indicate that renal damage associated with Cd toxicity could be ameliorated by CHR administration.
Collapse
Affiliation(s)
- Hasan Şimşek
- Department of Physiology, Faculty of Medicine, Aksaray University, Aksaray, TÜRKİYE.
| | - Nurhan Akaras
- Department of Histology and Embryology, Faculty of Medicine, Aksaray University, Aksaray, TÜRKİYE
| | - Cihan Gür
- Department of Veterinary Biochemistry, Faculty of Veterinary, Atatürk University, Erzurum, TÜRKİYE
| | - Sefa Küçükler
- Department of Veterinary Biochemistry, Faculty of Veterinary, Atatürk University, Erzurum, TÜRKİYE
| | - Fatih Mehmet Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, TÜRKİYE
| |
Collapse
|
15
|
Chao HH, Zhang Y, Dong PY, Gurunathan S, Zhang XF. Comprehensive review on the positive and negative effects of various important regulators on male spermatogenesis and fertility. Front Nutr 2023; 9:1063510. [PMID: 36726821 PMCID: PMC9884832 DOI: 10.3389/fnut.2022.1063510] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/23/2022] [Indexed: 01/17/2023] Open
Abstract
With the increasing global incidence of infertility, the influence of environmental factors, lifestyle habits, and nutrients on reproductive health has gradually attracted the attention of researchers. The quantity and quality of sperm play vital roles in male fertility, and both characteristics can be affected by external and internal factors. In this review, the potential role of genetic, environmental, and endocrine factors; nutrients and trace elements in male reproductive health, spermatozoa function, and fertility potency and the underlying mechanisms are considered to provide a theoretical basis for clinical treatment of infertility.
Collapse
Affiliation(s)
- Hu-He Chao
- Development Center for Medical Science and Technology, National Health Commission of the People's Republic of China, Beijing, China
| | - Ye Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China
| | - Pei-Yu Dong
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | | | - Xi-Feng Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China,*Correspondence: Xi-Feng Zhang ✉ ; ✉
| |
Collapse
|
16
|
Tijani AS, Farombi EO, Olori DO. Thymol co-administration abrogates hexachlorobenzene-induced reproductive toxicities in male rats. Hum Exp Toxicol 2023; 42:9603271221149201. [PMID: 36606752 DOI: 10.1177/09603271221149201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This present study was designed to investigate ameliorating potential of thymol (THY) on hexachlorobenzene (HBC)-induced epididymal and testicular toxicities in adult male rats. Forty adult male rats were orally treated by gavage daily for 28 consecutive days and divided into four groups; control group administered with corn oil, HBC-treated group (16 mg/kg b. wt), thymol-treated group (30 mg/kg b. wt), and HBC + THY-treated group. The results revealed that HBC exposure caused a significant decrease in the body weight change, organ weights, sperm functional parameters, serum testosterone level with widespread histological abnormalities. Furthermore, HBC-treated rats showed increased in the serum levels of luteinizing hormone (LH) and follicle stimulating hormone (FSH), epididymal and testicular myeloperoxidase activity, tumor necrosis-α, interleukin-1β level and caspase-3 activity, induced oxidative damage as evidenced by elevated malondialdehyde (MDA), reactive oxygen species (RONS) levels and significant reduction in antioxidant enzyme activities and reduced glutathione (GSH). However, co-treatment of THY with HBC alleviated the HBC-induced epididymal and testicular toxicities. Our findings revealed that HBC acts as a reproductive toxicant in rats and thymol could be a potential remedial agent for HBC-induced reproductive toxicity.
Collapse
Affiliation(s)
- Abiola S Tijani
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, 58987University of Ibadan, Ibadan, Nigeria
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, 58987University of Ibadan, Ibadan, Nigeria
| | - David O Olori
- Department of Biochemistry, Bowen University, Iwo, Nigeria
| |
Collapse
|
17
|
Arab HH, Abd El Aal HA, Alsufyani SE, El-Sheikh AAK, Arafa ESA, Ashour AM, Kabel AM, Eid AH. Topiramate Reprofiling for the Attenuation of Cadmium-Induced Testicular Impairment in Rats: Role of NLRP3 Inflammasome and AMPK/mTOR-Linked Autophagy. Pharmaceuticals (Basel) 2022; 15:1402. [PMID: 36422532 PMCID: PMC9697422 DOI: 10.3390/ph15111402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 08/27/2023] Open
Abstract
Topiramate, a promising drug classically used for the management of neurological disorders including epilepsy and migraine, has demonstrated marked anti-inflammatory and anti-apoptotic actions in murine models of cardiac post-infarction inflammation, wound healing, and gastric/intestinal injury. However, its potential impact on cadmium-induced testicular injury remains to be elucidated. Herein, the present study aimed to explore the effect of topiramate against cadmium-invoked testicular impairment with emphasis on the molecular mechanisms linked to inflammation, apoptosis, and autophagy. Herein, administration of topiramate (50 mg/kg/day, by gavage) continued for 60 days and the testes were examined by histology, immunohistochemistry, and biochemical assays. The present data demonstrated that serum testosterone, sperm count/abnormalities, relative testicular weight, and histopathological aberrations were improved by topiramate administration to cadmium-intoxicated rats. The rescue of testicular dysfunction was driven by multi-pronged mechanisms including suppression of NLRP3/caspase-1/IL-1β cascade, which was evidenced by dampened caspase-1 activity, lowered IL-1β/IL-18 production, and decreased nuclear levels of activated NF-κBp65. Moreover, curbing testicular apoptosis was seen by lowered Bax expression, decreased caspase-3 activity, and upregulation of Bcl-2. In tandem, testicular autophagy was activated as seen by diminished p62 SQSTM1 accumulation alongside Beclin-1 upregulation. Autophagy activation was associated with AMPK/mTOR pathway stimulation demonstrated by decreased mTOR (Ser2448) phosphorylation and increased AMPK (Ser487) phosphorylation. In conclusion, combating inflammation/apoptosis and enhancing autophagic events by topiramate were engaged in ameliorating cadmium-induced testicular impairment.
Collapse
Affiliation(s)
- Hany H. Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hayat A. Abd El Aal
- Department of Pharmacology, Egyptian Drug Authority (EDA), Formerly NODCAR, Giza 12654, Egypt
| | - Shuruq E. Alsufyani
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Azza A. K. El-Sheikh
- Basic Health Sciences Department, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - El-Shaimaa A. Arafa
- College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Ahmed M. Ashour
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al Qura University, P.O. Box 13578, Makkah 21955, Saudi Arabia
| | - Ahmed M. Kabel
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Ahmed H. Eid
- Department of Pharmacology, Egyptian Drug Authority (EDA), Formerly NODCAR, Giza 12654, Egypt
| |
Collapse
|
18
|
Taha M, Elazab ST, Badawy AM, Saati AA, Qusty NF, Al-Kushi AG, Sarhan A, Osman A, Farage AE. Activation of SIRT-1 Pathway by Nanoceria Sheds Light on Its Ameliorative Effect on Doxorubicin-Induced Cognitive Impairment (Chemobrain): Restraining Its Neuroinflammation, Synaptic Dysplasticity and Apoptosis. Pharmaceuticals (Basel) 2022; 15:918. [PMID: 35893742 PMCID: PMC9394293 DOI: 10.3390/ph15080918] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Chemo fog is one of the most serious health concerns encountered by cancer survivors receiving doxorubicin (DOX)-based chemotherapy. Oxidative stress, neuroinflammation, apoptosis and impairment of synaptic plasticity are regarded as the key factors implicated in DOX-induced cognitive impairment. This research aimed to assess the possible neuroprotective effect of cerium oxide nanoparticles (CeNPs) against DOX-induced neurotoxicity. Forty-eight rats were divided into four groups (12 rats/group): control group, CeNPs group (received oral CeNPs solution (35 mg/kg) daily for 4 weeks), and DOX group (were administered DOX intraperitoneally (2 mg/kg, once/week for 4 weeks)) and DOX+ CeNPs group. The findings revealed that CeNPs mitigated behavioral alterations in DOX-induced cognitive deficit. Additionally, CeNPs alleviated the histopathological abnormalities in hippocampus and ameliorated DOX-induced neuroinflammation by downregulating the expression of NF-κB, TNF-α, IL-1β and IL6. In addition, CeNPs antagonized the apoptosis through reducing the protein expression of cytochrome c and caspase 3. In addition, it stimulated the antioxidant defense, as indicated by upregulating the expression of the Nrf2, HO-1 and PGC-1α genes. CeNPs improved synaptic plasticity via acting on the BDNF. These actions were related through the modification of SIRT-1 expression. Based on the aforementioned results, CeNPs antagonized the doxorubicin-induced neurodegeneration by its antioxidant, anti-inflammatory and antiapoptotic effects, alongside its SIRT-1 mediated mechanisms.
Collapse
Affiliation(s)
- Medhat Taha
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
- Department of Anatomy, Al-Qunfudah Medical College, Umm Al-Qura University, Al-Qunfudhah 28814, Saudi Arabia
| | - Sara T. Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; or
| | - Alaa. M. Badawy
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Abdullah A. Saati
- Department of Community Medicine and Pilgrims Healthcare, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia;
| | - Naeem F. Qusty
- Medical Laboratories Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24382, Saudi Arabia;
| | - Abdullah G. Al-Kushi
- Department of Human Anatomy, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia;
| | - Anas Sarhan
- Department of Internal Medicine, College of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia;
| | - Amira Osman
- Department of Histology, Faculty of Medicine, Kafrelsheikh University, Kafr Elsheikh 33511, Egypt;
| | - Amira E. Farage
- Department of Anatomy and Embryology, Faculty of Medicine, Kafrelsheikh University, Kafr Elsheikh 33511, Egypt;
| |
Collapse
|
19
|
Arab HH, Elhemiely AA, El-Sheikh AAK, Khabbaz HJA, Arafa ESA, Ashour AM, Kabel AM, Eid AH. Repositioning Linagliptin for the Mitigation of Cadmium-Induced Testicular Dysfunction in Rats: Targeting HMGB1/TLR4/NLRP3 Axis and Autophagy. Pharmaceuticals (Basel) 2022; 15:852. [PMID: 35890148 PMCID: PMC9319949 DOI: 10.3390/ph15070852] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
Cadmium, a ubiquitous environmental toxicant, disrupts testicular function and fertility. The dipeptidyl peptidase-4 inhibitor linagliptin has shown pronounced anti-inflammatory and anti-apoptotic features; however, its effects against cadmium-evoked testicular impairment have not been examined. Herein, the present study investigated targeting inflammation, apoptosis, and autophagy by linagliptin for potential modulation of cadmium-induced testicular dysfunction in rats. After 60 days of cadmium chloride administration (5 mg/kg/day, by gavage), testes, epididymis, and blood were collected for analysis. The present findings revealed that linagliptin improved the histopathological lesions, including spermatogenesis impairment and germ cell loss. Moreover, it improved sperm count/motility and serum testosterone. The favorable effects of linagliptin were mediated by curbing testicular inflammation seen by dampening of HMGB1/TLR4 pathway and associated lowering of nuclear NF-κBp65. In tandem, linagliptin suppressed the activation of NLRP3 inflammasome/caspase 1 axis with consequent lowering of the pro-inflammatory IL-1β and IL-18. Jointly, linagliptin attenuated testicular apoptotic responses seen by Bax downregulation, Bcl-2 upregulation, and suppressed caspase 3 activity. With respect to autophagy, linagliptin enhanced the testicular autophagy flux seen by lowered accumulation of p62 SQSTM1 alongside upregulation of Beclin 1. The observed autophagy stimulation was associated with elevated AMPK (Ser487) phosphorylation and lowered mTOR (Ser2448) phosphorylation, indicating AMPK/mTOR pathway activation. In conclusion, inhibition of testicular HMGB1/TLR4/NLRP3 pro-inflammatory axis and apoptosis alongside stimulation of autophagy were implicated in the favorable actions of linagliptin against cadmium-triggered testicular impairment.
Collapse
Affiliation(s)
- Hany H. Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Alzahraa A. Elhemiely
- Department of Pharmacology, Egyptian Drug Authority (EDA), Giza 12654, Egypt; (A.A.E.); (A.H.E.)
| | - Azza A. K. El-Sheikh
- Basic Health Sciences Department, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Hana J. Al Khabbaz
- Biochemistry Division, College of Pharmacy, Riyadh Elm University, P.O. Box 84891, Riyadh 11681, Saudi Arabia;
| | - El-Shaimaa A. Arafa
- College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates;
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Ahmed M. Ashour
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al Qura University, P.O. Box 13578, Makkah 21955, Saudi Arabia;
| | - Ahmed M. Kabel
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta 31527, Egypt;
| | - Ahmed H. Eid
- Department of Pharmacology, Egyptian Drug Authority (EDA), Giza 12654, Egypt; (A.A.E.); (A.H.E.)
| |
Collapse
|
20
|
Baralić K, Javorac D, Marić Đ, Đukić-Ćosić D, Bulat Z, Antonijević Miljaković E, Anđelković M, Antonijević B, Aschner M, Buha Djordjevic A. Benchmark dose approach in investigating the relationship between blood metal levels and reproductive hormones: Data set from human study. ENVIRONMENT INTERNATIONAL 2022; 165:107313. [PMID: 35635964 DOI: 10.1016/j.envint.2022.107313] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
The main objective of this research was to conduct a dose-response modeling between the internal dose of measured blood Cd, As, Hg, Ni, and Cr and hormonal response of serum testosterone, luteinizing hormone (LH), and follicle-stimulating hormone (FSH). The study included 207 male participants from subjects of 5 different cohorts (patients with prostate, testicular, and pancreatic cancer, patients suffering from various thyroid and metabolic disorders, as well as healthy volunteers), enrolled from January 2019 to May 2021 at the Clinical Centre of Serbia in Belgrade, Serbia. Benchmark dose-response modeling analysis was performed with the PROAST software version 70.1, showing the hormone levels as quantal data. The averaging technique was applied to compute the Benchmark dose (BMD) interval (BMDI), with benchmark response set at 10%. Dose-response relationships between metal/metalloid blood concentration and serum hormone levels were confirmed for all the investigated metals/metalloid and hormones. The narrowest BMDI was found for Cd-testosterone and Hg-LH pairs, indicative of high confidence in these estimates. Although further research is needed, the observed findings demonstrate that the BMD approach may prove to be significant in the dose-response modeling of human data.
Collapse
Affiliation(s)
- Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Dragana Javorac
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Đurđica Marić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Evica Antonijević Miljaković
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Milena Anđelković
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | | | - Aleksandra Buha Djordjevic
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| |
Collapse
|
21
|
Soliman NS, Kandeil MA, Khalaf MM. Leurieus quinquestriatus scorpion venom ameliorates adjuvant-induced arthritis in rats: Modulating JAK/STAT/RANKL signal transduction pathway. Int Immunopharmacol 2022; 108:108853. [PMID: 35605432 DOI: 10.1016/j.intimp.2022.108853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/17/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
Abstract
Leurieus quinquestriatus (LQ) is a type of Egyptian scorpions. Prior studies have established the potential use of scorpion venoms in treating several autoimmune diseases. Therefore, the current study investigates the possible pharmacological effect of LQ venom in CFA-induced arthritis - through different mechanisms - by assessing different serum and tissue parameters. This study was divided into two phases: phase I was conducted to determine the lowest therapeutic dose of LQ scorpion venom, whereas phase II investigated the potential therapeutic effect of the chosen dose of LQ venom on induced arthritis through different mechanisms. The Wistar albino rats were divided equally and randomly into normal control group, LQ control group, arthritis control group, infliximab-treated group, and LQ-treated group. On day 20, blood and tissue samples were collected for further analysis of serum and tissue biomarkers as well as histopathological examination. The results revealed a potential therapeutic effect of LQ venom on arthritic-induced rats through a significant decrease in Rheumatoid Factor, Janus Kinase, Signal transducers and activators of transcription, Receptor activator of nuclear factor Kappa-B ligand, Tumor Necrosis Factor-alpha, Interleukin-6, Nuclear factor kappa-light-chain-enhancer of activated B cells and Malondialdehyde by 57%, 66%, 64%, 62%, 75%, 59%, 38%, and 69%, respectively as well as a significant increase in reduced glutathione, and Nuclear factor erythroid 2-related factor 2 by 102% and 360%, respectively. Histopathological examination of knee joint and spleen also revealed a substantial improvement, indicating the possible utilization of LQ venom in the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
| | - Mohamed A Kandeil
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Egypt
| | - Marwa M Khalaf
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Egypt.
| |
Collapse
|
22
|
Ikokide EJ, Oyagbemi AA, Oyeyemi MO. Impacts of cadmium on male fertility: Lessons learnt so far. Andrologia 2022; 54:e14516. [PMID: 35765120 DOI: 10.1111/and.14516] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/19/2022] [Accepted: 05/13/2022] [Indexed: 01/04/2023] Open
Abstract
Cadmium (Cd) is one of the most dangerous heavy metals in the world. Globally, toxicities associated with cadmium and its attendant negative impact on humans and animals cannot be under-estimated. Cd is a heavy metal, and people are exposed to it through contaminated foods and smoking. Cd exerts its deleterious impacts on the testes (male reproductive system) by inducing oxidative stress, spermatogenic cells apoptosis, testicular inflammation, decreasing androgenic and sperm cell functions, disrupting ionic homeostasis, pathways and epigenetic gene regulation, damaging vascular endothelium and blood testes barrier. In association with other industrial by-products, Cd has been incriminated for the recent decline of male fertility rate seen in both man and animals. Understanding the processes involved in Cd-induced testicular toxicity is vital for the innovation of techniques that will help ameliorate infertility in males. In this review, we summed up recent studies on the processes of testicular toxicity and male infertility due to Cd exposure. Also, the usage of different compounds including phytochemicals, and plant extracts to manage Cd reprotoxicity will be reviewed.
Collapse
Affiliation(s)
- Emmanuel Joseph Ikokide
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | |
Collapse
|
23
|
Kavitha V, Ramya M, Viswanathamurthi P, Haribabu J, Echeverria C. Design of a dual responsive receptor with oxochromane hydrazide moiety to monitor toxic Hg 2+ and Cd 2+ ions: Usage on real samples and live cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:119036. [PMID: 35202765 DOI: 10.1016/j.envpol.2022.119036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
In this work, we report a facile receptor OMB [N',N"'-(3-((4-oxochroman-3-yl)methylene)pentane-2,4- diylidene)bis(4-methoxybenzohydrazide)] for the simultaneous detection of toxic analytes (Hg2+ and Cd2+ ions) in environment and biological samples. The receptor OMB exhibits an excellent selectivity and sensitivity which was determined using absorption and emission spectra. The receptor OMB shows rapid detection with lowest LOD (0.62 nM for Hg2+ ions and 0.77 nM for Cd2+ ions) and LOQ (2.08 nM for Hg2+ ions and 2.57 nM for Cd2+ ions) values. In addition, the receptor OMB exhibits 1:1 binding stoichiometry towards Hg2+ and Cd2+ ions with binding constant values of 5.5 × 106 M-1 and 4.6 × 106 M-1. Moreover, the synthesized receptor OMB possess ability to detect these analytes (Hg2+ and Cd2+ ions) in realistic samples (food and water) which was recognized using photoluminescence spectroscopy technique. In addition, the receptor OMB is also utilized to detect both the analytes in live HeLa cells. Thus, the overall results indicate that the receptor OMB was more suitable to detect the toxic analytes (Hg2+ and Cd2+ ions) present in the environment.
Collapse
Affiliation(s)
| | - Mari Ramya
- Department of Chemistry, Periyar University, Salem, 636 011, Tamil Nadu, India
| | | | - Jebiti Haribabu
- Facultad de Medicina, Universidad de Atacama, Los Carreras 1579, 1532502, Copiapo, Chile
| | - Cesar Echeverria
- Facultad de Medicina, Universidad de Atacama, Los Carreras 1579, 1532502, Copiapo, Chile
| |
Collapse
|
24
|
Antar SA, El-Gammal MA, Hazem RM, Moustafa YM. Etanercept Mitigates Cadmium Chloride-induced Testicular Damage in Rats "An Insight into Autophagy, Apoptosis, Oxidative Stress and Inflammation". ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:28194-28207. [PMID: 34993805 DOI: 10.1007/s11356-021-18401-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
RATIONALE Cadmium (Cd) is an environmental and occupational toxin that represents a serious health hazard to humans and other animals. One of the negative consequences of cadmium exposure is testicular injury. OBJECTIVE This study aimed to investigate the therapeutic effect of etanercept against cadmium chloride-induced testicular damage and the probable underlying mechanisms of its action. METHODS A total of sixty rats were divided into six groups: control, cadmium chloride (CdCl2) (7 mg/ kg i.p.), and CdCl2 treated with etanercept (5,10 and 15 mg/kg s.c.) and etanercept only (15 mg/kg s.c.). CdCl2 was administrated as a single dose, while etanercept was administered every 3 days for 3 weeks. RESULTS CdCl2 reduced serum testosterone, testicular glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD). However, it elevated the levels of malondialdehyde (MDA) and microtubule-associated protein light chain 3B (LC3B) in the testes. Cadmium caused pathogenic alterations as well as increased levels of inflammatory biomarkers such as tumor necrosis factor-alpha (TNF-α) and nuclear factor-kappa B (NF-κB). Besides, the gene expressions of caspase-3 and inducible nitric oxide synthase (i-NOS) and Beclin-1 protein increased with CdCl2 exposure. Interestingly, etanercept relieved the previous toxic effects induced by CdCl2 in a dose-dependent manner as evidenced by inhibition of oxidative stress, inflammatory markers, Beclin-1, LC3B, and caspase-3 accompanied by improvement in histopathological changes. CONCLUSION Etanercept provides a potential therapeutic approach to treat testicular tissue against the damaging effects of Cd by reducing oxidative stress, inflammation, apoptosis, and autophagy.
Collapse
Affiliation(s)
- Samar A Antar
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta, 34518, Egypt.
| | - Mohamad A El-Gammal
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta, 34518, Egypt
| | - Reem M Hazem
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Yasser M Moustafa
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University, Badr University Cairo, 11829, Egypt
| |
Collapse
|
25
|
Xiong L, Bin Zhou, Young JL, Wintergerst K, Cai L. Exposure to low-dose cadmium induces testicular ferroptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113373. [PMID: 35272187 PMCID: PMC10858319 DOI: 10.1016/j.ecoenv.2022.113373] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
As an environmental pollutant, cadmium (Cd) has been widely reported to induce male infertility due to its gonadotoxicity. However, the specific mechanism of Cd-induced testicular damage remains unclear. We investigated whether Cd causes testicular injury through ferroptosis. Male C57BL/6 J mice were exposed to 0, 0.5, or 5 ppm Cd via drinking water, starting in utero, and continuing through 24 weeks post-weaning. The results showed that Cd accumulated in the testes in a dose-dependent manner. Cd exposure at a concentration of 5 ppm, but not 0.5 ppm, caused a mass loss and detachment of germ cells, as well as a decreased meiotic index and testis weight. Exposure to 5 ppm Cd caused iron accumulation, increased levels of malondialdehyde (MDA) and nitro tyrosine (3-NT), and decreased expression of Nrf2, HO-1 and SOD2. We also found that exposure to 5 ppm Cd significantly decreased the expression of SLC7A11, a marker of ferroptosis in mice, along with the expression of SLC40A1 mRNA and ferritin heavy chain (FTH) protein, whereas there was no obvious change in the mRNA expression of Tfrc, ZIP8, ZIP14, and NCOA4. These findings indicate that 5 ppm Cd exposure increased testicular ferroptosis, which may be attributed to the reduction of stored iron export.
Collapse
Affiliation(s)
- Lijuan Xiong
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Emergency, The Affiliated Children's Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Bin Zhou
- Department of Endocrinology, Metabolism, and Genetics, The Affiliated Children's Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jamie L Young
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Kupper Wintergerst
- Wendy Novak Diabetes Center, Norton Children's Hospital, Louisville, KY 40202, USA; Division of Endocrinology, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; Wendy Novak Diabetes Center, Norton Children's Hospital, Louisville, KY 40202, USA; Radiation Oncology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
26
|
Komili K, Söyler G, Toros P, Çalış İ, Kükner A. Effects of Corchorus Olitorius and Protocatechuic Acid on Cadmium-Induced Rat Testicular Tissue Degeneration. CYPRUS JOURNAL OF MEDICAL SCIENCES 2022. [DOI: 10.4274/cjms.2020.1970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
Yao Y, Wan Y, Shi X, Guo L, Jiang H, Zhang X, Xu B, Hua J. Letrozole protects against cadmium-induced inhibition of spermatogenesis via LHCGR and Hsd3b6 to activate testosterone synthesis in mice. Reprod Biol Endocrinol 2022; 20:43. [PMID: 35236366 PMCID: PMC8889770 DOI: 10.1186/s12958-022-00915-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 02/21/2022] [Indexed: 11/10/2022] Open
Abstract
The heavy metal cadmium is proposed to be one of the environmental endocrine disruptors of spermatogenesis. Cadmium-induced inhibition of spermatogenesis is associated with a hormone secretion disorder. Letrozole is an aromatase inhibitor that increases peripheral androgen levels and stimulates spermatogenesis. However, the potential protective effects of letrozole on cadmium-induced reproductive toxicity remain to be elucidated. In this study, male mice were administered CdCl2 (4 mg/kg BW) orally by gavage alone or in combination with letrozole (0.25 mg/kg BW) for 30 days. Cd exposure caused a significant decreases in body weight, sperm count, motility, vitality, and plasma testosterone levels. Histopathological changes revealed extensive vacuolization and decreased spermatozoa in the lumen. However, in the Cd + letrozole group, letrozole treatment compensated for deficits in sperm parameters (count, motility, and vitality) induced by Cd. Letrozole treatment significantly increased serum testosterone levels, which were reduced by Cd. Histopathological studies revealed a systematic array of all germ cells, a preserved basement membrane and relatively less vacuolization. For a mechanistic examination, RNA-seq was used to profile alterations in gene expression in response to letrozole. Compared with that in the Cd-treated group, RNA-Seq analysis showed that 214 genes were differentially expressed in the presence of letrozole. Gene ontology (GO) enrichment analysis and KEGG signaling pathway analysis showed that steroid biosynthetic processes were the processes most affected by letrozole treatment. Furthermore, we found that the expression of the testosterone synthesis-related genes LHCGR (luteinizing hormone/choriogonadotropin receptor) and Hsd3b6 (3 beta- and steroid delta-isomerase 6) was significantly downregulated in Cd-treated testes, but these genes maintained similar expression levels in letrozole-treated testes as those in the control group. However, the transcription levels of inflammatory cytokines, such as IL-1β and IL-6, and oxidative stress-related genes (Nrf2, Nqo1, and Ho-1) showed no changes. The present study suggests that the potential protective effect of letrozole on Cd-induced reproductive toxicity might be mediated by the upregulation of LHCGR and Hsd3b6, which would beneficially increase testosterone synthesis to achieve optimum protection of sperm quality and spermatogenesis.
Collapse
Affiliation(s)
- Yao Yao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yangyang Wan
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei City, Anhui Province, China
| | - Xiaoyun Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Lan Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Hui Jiang
- The Department of Urology, Peking University Third Hospital, Andrology, Peking, 100191, China
| | - Xiansheng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bo Xu
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei City, Anhui Province, China.
| | - Juan Hua
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
28
|
Elish SEA, Sanad FA, Baky MH, Yasin NAE, Temraz A, El-Tantawy WH. Ficus natalensis extract alleviates Cadmium chloride-induced testicular disruptions in albino rats. J Trace Elem Med Biol 2022; 70:126924. [PMID: 35007915 DOI: 10.1016/j.jtemb.2022.126924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Cadmium is a potential environmental pollutant with worldwide health problems. Many Ficus species are reported to have an extensive diversity of traditional uses, among them the treatment of reproductive toxicity. OBJECTIVES This study set out to evaluate the effect of Ficus natalensis extract on the testicular impairments induced by cadmium chloride (CdCl2) and investigated the potential mechanisms associated with its treatment. METHODS Thus, 40 male albino rats were categorized into 4 groups (n = 10); group I (control), group II (cadmium-treated group) orally received 5 mg/kg/day CdCl2 for one month, group III (cadmium + Ficus natalensis extract) orally received 5 mg/kg/day CdCl2 for one month plus 200 mg/kg/day Ficus natalensis extract for another month, and group IV (cadmium + reference drug (mesterolone) orally received 5 mg/kg/day CdCl2 for one month plus 4.16 mg/kg/day mesterolone for another month. RESULTS At the end of experiment, CdCl2 administration markedly induced histological and histo-morphometric changes with a substantial (p < 0.05) decrease in the sperm count, sperm motility, serum TAC, serum testosterone, downregulation in the mRNA expression levels of testicular 17β-HSD and StAR, in addition to a significant increase in serum TNF-α and testicular MDA level compared to the control group. Conversely, the treatment with Ficus natalensis methanolic extract as well as the reference drug significantly ameliorated the above-mentioned adverse effects induced by CdCl2. CONCLUSIONS Our results suggested that Ficus natalensis extract can attenuate the CdCl2-induced testicular impairments via inhibiting the oxidative cell damage and inflammation that contributed to CdCl2 toxicity.
Collapse
Affiliation(s)
- Shaimaa E A Elish
- Pharmacognosy Department, Faculty of Pharmacy-Egyptian Russian University, Badr City, New Cairo, Egypt.
| | - Fatma A Sanad
- National Organization for Drug Control and Research, Dokki, Cairo, Egypt.
| | - Mostafa H Baky
- Pharmacognosy Department, Faculty of Pharmacy-Egyptian Russian University, Badr City, New Cairo, Egypt.
| | - Noha A E Yasin
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Abeer Temraz
- Pharmacognosy Department, Faculty of Pharmacy(Girls), Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Walid H El-Tantawy
- National Organization for Drug Control and Research, Dokki, Cairo, Egypt.
| |
Collapse
|
29
|
Marini HR, Micali A, Squadrito G, Puzzolo D, Freni J, Antonuccio P, Minutoli L. Nutraceuticals: A New Challenge against Cadmium-Induced Testicular Injury. Nutrients 2022; 14:663. [PMID: 35277022 PMCID: PMC8838120 DOI: 10.3390/nu14030663] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 12/04/2022] Open
Abstract
Cadmium (Cd) is a widespread heavy metal and a ubiquitous environmental toxicant. For the general population, the principal causes of Cd exposure are cigarette smoking, air pollution and contaminated water and food consumption, whereas occupational exposure usually involves humans working in mines or manufacturing batteries and pigments that utilize Cd. The aim of the present review is to evaluate recent data regarding the mechanisms of Cd-induced testicular structural and functional damages and the state of the art of the therapeutic approaches. Additionally, as the current literature demonstrates convincing associations between diet, food components and men's sexual health, a coherent nutraceutical supplementation may be a new valid therapeutic strategy for both the prevention and alleviation of Cd-induced testicular injury. The toxic effects on testes induced by Cd include many specific mechanisms, such as oxidative stress, inflammation and apoptosis. As no specific therapy for the prevention or treatment of the morbidity and mortality associated with Cd exposure is available, the development of new therapeutic agents is requested. Dietary strategies and the use of nutraceuticals, particularly abundant in fresh fruits, beans, vegetables and grains, typical of the Mediterranean diet, are recommended against Cd-induced testicular injury.
Collapse
Affiliation(s)
- Herbert Ryan Marini
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (H.R.M.); (G.S.); (L.M.)
| | - Antonio Micali
- Department of Human Pathology of Adult and Childhood, University of Messina, 98125 Messina, Italy; (A.M.); (P.A.)
| | - Giovanni Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (H.R.M.); (G.S.); (L.M.)
| | - Domenico Puzzolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy;
| | - José Freni
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy;
| | - Pietro Antonuccio
- Department of Human Pathology of Adult and Childhood, University of Messina, 98125 Messina, Italy; (A.M.); (P.A.)
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (H.R.M.); (G.S.); (L.M.)
| |
Collapse
|
30
|
Xiong L, Zhou B, Young JL, Xu J, Wintergerst K, Cai L. Effects of whole-life exposure to low-dose cadmium with post-weaning high-fat diet on offspring testes in a male mouse model. Chem Biol Interact 2022; 353:109797. [PMID: 34998821 PMCID: PMC8862595 DOI: 10.1016/j.cbi.2022.109797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/20/2021] [Accepted: 01/03/2022] [Indexed: 02/03/2023]
Abstract
Although several studies have reported testicular impairments caused by cadmium (Cd) or obesity alone, the combined effect of Cd and obesity on the testes and its underlying mechanism remains unclear. We examined the combined effect of whole-life exposure to low-dose Cd started at preconception and post-weaning high-fat diet (HFD) on the testes of offspring mice. At weaning, male offspring parented with and without exposure to low-dose Cd were continued on the same drinking water regimen as their parents and fed with either a normal diet (ND) or HFD for 10 or 24 weeks. Whole-life exposure to Cd resulted in its accumulation in testes, and HFD induced obesity and lipid metabolism disorder. Exposure to Cd or HFD alone significantly decreased Johnsen scores, disrupted testicular structure, and increased germ cell apoptosis at both 10 and 24 weeks. However, co-exposure to Cd and HFD did not induce the toxic effects that were induced by either alone, as revealed by preserved testicular structure and spermatogenesis, lack of significant apoptosis, and increased cell proliferation. Mechanistically, the combined effects of low-dose Cd and HFD consumption were associated with the activation of the JAK/STAT pathway. These findings suggest that co-exposure to low-dose Cd and HFD did not cause Cd- or HFD-induced testicular injury, probably because of the activation of the JAK/STAT pathway to prevent germ cell apoptosis.
Collapse
Affiliation(s)
- Lijuan Xiong
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40202, USA; Department of Emergency, The Affiliated Children's Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Bin Zhou
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40202, USA; Department of Endocrinology, Metabolism, and Genetics, The Affiliated Children's Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jamie L Young
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA; Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Jianxiang Xu
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Kupper Wintergerst
- Wendy Novak Diabetes Center, Louisville, KY, 40202, USA; Division of Endocrinology, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA; Wendy Novak Diabetes Center, Louisville, KY, 40202, USA; Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| |
Collapse
|
31
|
Zeng L, Zhou J, Zhang Y, Wang X, Wang M, Su P. Differential Expression Profiles and Potential Intergenerational Functions of tRNA-Derived Small RNAs in Mice After Cadmium Exposure. Front Cell Dev Biol 2022; 9:791784. [PMID: 35047503 PMCID: PMC8762212 DOI: 10.3389/fcell.2021.791784] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/07/2021] [Indexed: 12/18/2022] Open
Abstract
Cadmium (Cd) is a toxic heavy metal and ubiquitous environmental endocrine disruptor. Previous studies on Cd-induced damage to male fertility mainly focus on the structure and function of testis, including cytoskeleton, blood-testis barrier, and steroidogenesis. Nevertheless, to date, no studies have investigated the effects of Cd exposure on sperm epigenetic inheritance and intergenerational inheritance. In our study, we systematically revealed the changes in sperm tRNA-derived small RNAs (tsRNA) profiles and found that 14 tsRNAs (9 up-regulated and 5 down-regulated) were significantly altered after Cd exposure. Bioinformatics of tsRNA-mRNA-pathway interactions revealed that the altered biological functions mainly were related to ion transmembrane transport, lipid metabolism and cell membrane system. In addition, we focused on two stages of early embryo development and selected two organs to study the impact of these changes on cell membrane system, especially mitochondrion and lysosome, two typical membrane-enclosed organelles. Surprisingly, we found that the content of mitochondrion was significantly decreased in 2-cell stage, whereas remarkably increased in the morula stage. The contents of mitochondrion and lysosome were increased in the testes of 6-day-old offspring and livers of adult offspring, whereas remarkably decreased in the testes of adult offspring. This provides a possible basis to further explore the effects of paternal Cd exposure on offspring health.
Collapse
Affiliation(s)
- Ling Zeng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinzhao Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanwei Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofei Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Wang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping Su
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Qin L, Duan Z, Cheng H, Wang Y, Zhang H, Zhu Z, Wang L. Size-dependent impact of polystyrene microplastics on the toxicity of cadmium through altering neutrophil expression and metabolic regulation in zebrafish larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118169. [PMID: 34536643 DOI: 10.1016/j.envpol.2021.118169] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Insufficient evidence exists regarding the visible physiological toxic endpoints of MPs exposures on zebrafish larvae due to their small sizes. Herein, the impacts of micro-polystyrene particles (μ-PS) and 100 nm polystyrene particles (n-PS) on the toxicity of cadmium (Cd) through altering neutrophil expressions were identified and quantified in the transgenic zebrafish (Danio rerio) larvae Tg(lyz:DsRed2), and the effects were size-dependent. When exposed together with μ-PS, the amount of neutrophils in Cd treated zebrafish larvae decreased by 25.56% through reducing Cd content in the larvae. By contrast, although n-PS exposure caused lower Cd content in the larvae, the expression of neutrophils under their combined exposure remained high. The mechanism of immune toxicity was analyzed based on the results of metabonomics. n-PS induced high oxidative stress in the larvae, which promoted taurine metabolism and unsaturated fatty biosynthesis in n-PS + Cd treatment. This observation was accordance with the significant inhibition of the activities of superoxide dismutase and catalase enzymes detected in their combined treatment. Moreover, n-PS promoted the metabolic pathways of catabolic processes, amino acid metabolism, purine metabolism, and steroid hormone biosynthesis in Cd treated zebrafish larvae. Nanoplasctis widely coexist with other pollutants in the environment at relatively low concentrations. We conclude that more bio-markers of immune impact should be explored to identify their toxicological mechanisms and mitigate the effects on the environment.
Collapse
Affiliation(s)
- Li Qin
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Zhenghua Duan
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin University of Technology, Tianjin, 300384, China.
| | - Haodong Cheng
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin University of Technology, Tianjin, 300384, China
| | - Yudi Wang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin University of Technology, Tianjin, 300384, China
| | - Haihong Zhang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin University of Technology, Tianjin, 300384, China
| | - Zhe Zhu
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin University of Technology, Tianjin, 300384, China
| | - Lei Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin, 300071, China
| |
Collapse
|
33
|
Evaluation of oxidative stress, inflammation, apoptosis, oxidative DNA damage and metalloproteinases in the lungs of rats treated with cadmium and carvacrol. Mol Biol Rep 2021; 49:1201-1211. [PMID: 34792728 DOI: 10.1007/s11033-021-06948-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/09/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND The potential protective properties of carvacrol (CRV), which possesses various biological and pharmacological properties, against lung toxicity caused by cadmium (Cd), a major environmental pollutant, were investigated in the present study. METHODS AND RESULTS In the study, rats were given 25 or 50 mg/kg CRV orally 30 min after administrating 25 mg/kg cadmium chloride for seven days. Subsequently, the levels of 8-OHdG, MMP-2, and MMP-9, as well as markers of oxidative stress, inflammation, and apoptosis, were analyzed in the lung tissue of the animals. The results revealed that CRV exhibited antioxidant characteristics and raised SOD, CAT, GPx, and CAT levels and decreased the MDA levels induced by Cd. It also suppressed proinflammatory cytokines by lowering the levels of CRV NF-κB and p38 MAPK, thus exerting an anti-inflammatory effect against Cd. It was found that the levels of Bax, Caspase-3, and cytochrome c increased by Cd were decreased by the application of CRV. CRV also showed an anti-apoptotic effect by increasing Bcl-2 levels. The levels of 8-OHdG, MMP2, and MMP9, which increased with Cd administration, were observed to reduce after treatment with CRV. CONCLUSIONS The results indicate that CRV has protective properties against Cd-induced lung toxicity.
Collapse
|
34
|
Mounier NM, Wahdan SA, Gad AM, Azab SS. Role of inflammatory, oxidative, and ER stress signaling in the neuroprotective effect of atorvastatin against doxorubicin-induced cognitive impairment in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:1537-1551. [PMID: 33755739 DOI: 10.1007/s00210-021-02081-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/15/2021] [Indexed: 02/06/2023]
Abstract
Doxorubicin (DOX) is a potent chemotherapeutic agent widely used for the treatment of several malignancies. Despite its effectiveness, DOX has been implicated in induced neurotoxicity manifested as cognitive dysfunction with varying degrees, commonly referred to as chemobrain. DOX-induced chemobrain is presumed to be due to cytokine-induced inflammatory, oxidative, and apoptotic responses damaging the brain. Atorvastatin (ATV), 3-hydroxy 3-methylglutaryl co-enzyme A (HMG Co-A) reductase inhibitor, is a cholesterol-lowering statin possessing beneficial pleiotropic effects, including anti-inflammatory, antioxidant, and anti-apoptotic properties. Therefore, this study aims to investigate the potential neuroprotective effects of ATV against DOX-induced cognitive impairment studying the possible involvement of heme oxygenase-1 (HO-1) and endoplasmic reticulum (ER) stress biomarkers. Rats were treated with DOX (2 mg/kg/week), i.p. for 4 weeks. Oral treatment with ATV (10 mg/kg) ameliorated DOX-induced behavioral alterations, protected brain histological features, and attenuated DOX-induced inflammatory, oxidative, and apoptotic biomarkers. In addition, ATV upregulated the protective HO-1 expression levels and downregulated the DOX-induced apoptotic ER stress biomarkers. In conclusion, ATV (10 mg/kg) exhibited neuroprotective properties against DOX-induced cognitive impairment which could possibly be attributed to their anti-inflammatory, antioxidant, and anti-apoptotic effects in the brain.
Collapse
Affiliation(s)
- Noha M Mounier
- Egyptian Drug Authority (EDA), Formerly National Organization for Drug Control and Research (NODCAR), Cairo, Egypt
| | - Sara A Wahdan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amany M Gad
- Egyptian Drug Authority (EDA), Formerly National Organization for Drug Control and Research (NODCAR), Cairo, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, East Kantara Branch, New City, El Ismailia, Egypt
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
35
|
Bimonte VM, Besharat ZM, Antonioni A, Cella V, Lenzi A, Ferretti E, Migliaccio S. The endocrine disruptor cadmium: a new player in the pathophysiology of metabolic diseases. J Endocrinol Invest 2021; 44:1363-1377. [PMID: 33501614 DOI: 10.1007/s40618-021-01502-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
Cadmium (Cd), a highly toxic heavy metal, is found in soil, environment and contaminated water and food. Moreover, Cd is used in various industrial activities, such as electroplating, batteries production, fertilizers, while an important non-occupational source is represented by cigarette smoking, as Cd deposits in tobacco leaves. Since many years it is clear a strong correlation between Cd body accumulation and incidence of many diseases. Indeed, acute exposure to Cd can cause inflammation and affect many organs such as kidneys and liver. Furthermore, the attention has focused on its activity as environmental pollutant and endocrine disruptor able to interfere with metabolic and energy balance of living beings. Both in vitro and in vivo experiments have demonstrated that the Cd-exposure is related to metabolic diseases such as obesity, diabetes and osteoporosis even if human studies are still controversial. Recent data show that Cd-exposure is associated with atherosclerosis, hypertension and endothelial damage that are responsible for cardiovascular diseases. Due to the large environmental diffusion of Cd, in this review, we summarize the current knowledge concerning the role of Cd in the incidence of metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- V M Bimonte
- Department of Movement, Human and Health Sciences, Section of Health Sciences, Foro Italico University, Piazza Lauro De Bosis 6, 00195, Rome, Italy
| | - Z M Besharat
- Department of Experimental Medicine, Section of Medical Pathophysiology, Endocrinology and Food Sciences, Sapienza University of Rome, Viiale Regina Elena 324, 00161, Rome, Italy
| | - A Antonioni
- Department of Experimental Medicine, Section of Medical Pathophysiology, Endocrinology and Food Sciences, Sapienza University of Rome, Viiale Regina Elena 324, 00161, Rome, Italy
| | - V Cella
- Department of Movement, Human and Health Sciences, Section of Health Sciences, Foro Italico University, Piazza Lauro De Bosis 6, 00195, Rome, Italy
| | - A Lenzi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Endocrinology and Food Sciences, Sapienza University of Rome, Viiale Regina Elena 324, 00161, Rome, Italy
| | - E Ferretti
- Department of Experimental Medicine, Section of Medical Pathophysiology, Endocrinology and Food Sciences, Sapienza University of Rome, Viiale Regina Elena 324, 00161, Rome, Italy
| | - S Migliaccio
- Department of Movement, Human and Health Sciences, Section of Health Sciences, Foro Italico University, Piazza Lauro De Bosis 6, 00195, Rome, Italy.
| |
Collapse
|
36
|
Arab HH, Gad AM, Reda E, Yahia R, Eid AH. Activation of autophagy by sitagliptin attenuates cadmium-induced testicular impairment in rats: Targeting AMPK/mTOR and Nrf2/HO-1 pathways. Life Sci 2021; 269:119031. [PMID: 33453244 DOI: 10.1016/j.lfs.2021.119031] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/03/2021] [Accepted: 01/07/2021] [Indexed: 02/05/2023]
Abstract
AIMS Cadmium (Cd) is a prevalent environmental contaminant that incurs deleterious health effects, including testicular impairment. Sitagliptin, a selective dipeptidyl peptidase-4 (DPP-4) inhibitor, has demonstrated marked cardio-, hepato-, and reno-protective actions, however, its impact on Cd-triggered testicular dysfunction has not been formerly investigated. Hence, the present study aimed to explore the probable beneficial impact of sitagliptin against Cd-evoked testicular impairment which may add to its potential clinical utility. The underlying mechanisms pertaining to the balance between testicular autophagy and apoptosis were explored, including the AMPK/mTOR and Nrf2/HO-1 pathways. MATERIALS AND METHODS The testicular tissues were examined using histopathology, immunohistochemistry, Western blotting, and ELISA. Sitagliptin (10 mg/kg/day, by gavage) was administered for 4 consecutive weeks. KEY FINDINGS Sitagliptin attenuated the testicular impairment via improvement of the relative testicular weight, sperm count/motility, sperm abnormalities, and serum testosterone. Additionally, sitagliptin counteracted Cd-induced histologic aberrations/disrupted spermatogenesis. Interestingly, sitagliptin augmented the defective autophagy as demonstrated by upregulating Beclin 1 protein expression and lowering p62 SQSTM1 protein accumulation. These effects were mediated via the activation of testicular AMPK/mTOR pathway as proven by increasing p-AMPK (Ser485, Ser491)/total AMPK and diminishing p-mTOR (Ser2448)/total mTOR protein expression. Additionally, sitagliptin suppressed the testicular apoptotic events via downregulating Bax and upregulating Bcl-2 protein expression. In tandem, sitagliptin suppressed the oxidative stress through lowering lipid peroxides and activating Nrf2/HO-1 pathway via upregulating the protein expression of Nrf2, and the downstream effectors HO-1 and GPx. SIGNIFICANCE Sitagliptin attenuated Cd-induced testicular injury via boosting the autophagy/apoptosis ratio through activation of AMPK/mTOR and Nrf2/HO-1 pathways.
Collapse
Affiliation(s)
- Hany H Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Amany M Gad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, El Ismailia, Egypt; Department of Pharmacology, Egyptian Drug Authority (EDA), formerly NODCAR, Giza, Egypt
| | - Enji Reda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, El Ismailia, Egypt
| | - Rania Yahia
- Department of Pharmacology, Egyptian Drug Authority (EDA), formerly NODCAR, Giza, Egypt
| | - Ahmed H Eid
- Department of Pharmacology, Egyptian Drug Authority (EDA), formerly NODCAR, Giza, Egypt
| |
Collapse
|
37
|
Zhou Y, Fan R, Botchway BOA, Zhang Y, Liu X. Infliximab Can Improve Traumatic Brain Injury by Suppressing the Tumor Necrosis Factor Alpha Pathway. Mol Neurobiol 2021; 58:2803-2811. [PMID: 33501626 DOI: 10.1007/s12035-021-02293-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) has both high morbidity and mortality rates and can negatively influence physical and mental health, while also causing extreme burden to both individual and society. Hitherto, there is no effective treatment for TBI because of the complexity of the brain anatomy and physiology. Currently, management strategies mainly focus on controlling inflammation after TBI. Tumor necrotizing factor alpha (TNF-α) plays a crucial role in neuroinflammation post-TBI. TNF-α acts as the initiator of downstream inflammatory signaling pathways, and its activation can trigger a series of inflammatory reactions. Infliximab is a monoclonal anti-TNF-α antibody that reduces inflammation. Herein, we review the latest findings pertaining to the role of TNF-α and infliximab in TBI. We seek to present a comprehensive clinical application prospect of infliximab in TBI and, thus, discuss potential strategies of infliximab in treating TBI.
Collapse
Affiliation(s)
- Yiru Zhou
- Department of Histology and Embryology, Medical College, Shaoxing City, China
| | - Ruihua Fan
- School of Life Science, Shaoxing University, Shaoxing City, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing City, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing City, China.
| |
Collapse
|
38
|
Xiong L, Zhou B, Liu H, Cai L. Comprehensive Review of Cadmium Toxicity Mechanisms in Male Reproduction and Therapeutic Strategies. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 258:151-193. [PMID: 34618232 DOI: 10.1007/398_2021_75] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Cadmium (Cd) has been widely studied as an environmental pollutant for many years. Numerous studies have reported that Cd exposure causes damage to the heart, liver, kidneys, and thyroid in vivo. The emerging evidence suggests that Cd exposure induces damage on male reproductive system, which is related to oxidative stress, inflammation, steroidogenesis disruption, and epigenetics. Current preclinical animal studies have confirmed a large number of proteins and intracellular signaling pathways involved in the pathological process of Cd-induced male reproductive damage and potential measures for prophylaxis and treatment, which primarily include antioxidants, anti-inflammatory agents, and essential ion supplement. However, explicit pathogenesis and effective treatments remain uncertain. This review collects data from the literatures, discusses the underlying mechanisms of Cd-induced toxicity on male reproductive function, and summarizes evidence that may provide guidance for the treatment and prevention of Cd-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Lijuan Xiong
- Department of Emergency, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China.
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
| | - Bin Zhou
- Department of Emergency, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Hong Liu
- Department of Emergency, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
- Departments of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
39
|
Labib H, Galal A. Caffeine versus antioxidant combination (Antox) and their role in modifying cadmium-induced testicular injury in adult male albino rats. Andrologia 2020; 53:e13948. [PMID: 33372294 DOI: 10.1111/and.13948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 12/30/2022] Open
Abstract
The aim of the current work was to compare the roles of caffeine and antioxidants in prevention of cadmium-induced testicular damage when given, in addition to cadmium, in adult male albino rats. Histopathological and ultra-structural examination as well as biochemical and molecular assessments were done. Cadmium chloride (4 mg/kg body weight) was administered via oral gavage from day 21 to 28 of the experiment. Caffeine (25 mg/kg) via intra-peritoneal injection and antioxidant preparation (Antox) 10 mg/kg via oral gavage were given as a pre-treatment for 21 days and concomitantly with Cd from day 21 to 28. Real-time PCR was done for determination of 3, 17 β hydroxy steroid dehydrogenase steroidogenic acute regulatory protein, caspase-9 and mitofusin 1,2 gene expression. Testosterone level, glutathione S-transferase enzyme activity, reactive oxygen species, malondialdehyde and superoxide dismutase were measured spectrophotometrically by ELISA. Histological and ultra-structural evaluation revealed disturbance of normal architecture, vacuolisation and necrosis. Vascular dilatation and congestion and collagen fibre deposition were present. A statistically significant difference was seen in all parameters when caffeine and antioxidants were given against cadmium-induced testicular injury. Overall, we conclude that both caffeine and antioxidants have the ability to reverse cadmium-induced testicular injury when given as pre-treatment prior to cadmium exposure.
Collapse
Affiliation(s)
- Heba Labib
- Department of Anatomy and Embryology, Faculty of Medicine, Kasr Alainy, Cairo University, Giza, Egypt
| | - Ahmed Galal
- Department of Anatomy and Embryology, Faculty of Medicine, Kasr Alainy, Cairo University, Giza, Egypt
| |
Collapse
|
40
|
Bhardwaj JK, Panchal H, Saraf P. Cadmium as a testicular toxicant: A Review. J Appl Toxicol 2020; 41:105-117. [DOI: 10.1002/jat.4055] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/04/2020] [Accepted: 08/10/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Jitender Kumar Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology Kurukshetra University Kurukshetra Haryana India
| | - Harish Panchal
- Reproductive Physiology Laboratory, Department of Zoology Kurukshetra University Kurukshetra Haryana India
| | - Priyanka Saraf
- Reproductive Physiology Laboratory, Department of Zoology Kurukshetra University Kurukshetra Haryana India
| |
Collapse
|
41
|
Şahin TD, Gocmez SS, Duruksu G, Yazir Y, Utkan T. Infliximab prevents dysfunction of the vas deferens by suppressing inflammation and oxidative stress in rats with chronic stress. Life Sci 2020; 250:117545. [PMID: 32173313 DOI: 10.1016/j.lfs.2020.117545] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 01/20/2023]
|
42
|
Wahdan SA, El-Derany MO, Abdel-Maged AE, Azab SS. Abrogating doxorubicin-induced chemobrain by immunomodulators IFN-beta 1a or infliximab: Insights to neuroimmune mechanistic hallmarks. Neurochem Int 2020; 138:104777. [PMID: 32479984 DOI: 10.1016/j.neuint.2020.104777] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/01/2020] [Accepted: 05/25/2020] [Indexed: 01/06/2023]
Abstract
Chemobrain is a well-established clinical syndrome that impairs patient's daily function, in particular attentiveness, coordination and multi-tasking. Thus, it interferes with patient's quality of life. The putative pharmacological intervention against chemobrain relies on understanding the molecular mechanisms underlying it. This study aimed to examine the potential neuroprotective effects of two immunomodulators: Interferon-β-1a (IFN-β-1a), as well as Tumor necrosis function-alpha (TNF-α) inhibitor; Infliximab in doxorubicin (DOX)-induced chemobrain in rats. Besides, the current study targets investigating the possible molecular mechanisms in terms of neuromodulation and interference with different death routes controlling neural homeostasis. Herein, the two immunomodulators IFN-β-1a at a dose of 300,000 units; s.c.three times per week, or Infliximab at a dose of 5 mg/kg/week; i.p. once per week were examined against DOX (2 mg/kg/w, i.p.) once per week for 4 consecutive weeks in rats.The consequent behavioral tests and markers for cognitive impairment, oxidative stress, neuroinflammation, apoptosis and neurobiological abnormalities were further evaluated. Briefly, IFN-β-1a or Infliximab significantly protected against DOX-induced chemobrain. IFN-β-1a or Infliximab ameliorated DOX-induced hippocampal histopathological neurodegenerative changes, halted DOX-induced cognitive impairment, abrogated DOX-induced mitochondrial oxidative, inflammatory and apoptotic stress, mitigated DOX-induced autophagic dysfunction and finally upregulated the mitophagic machineries. In conclusion, these findings suggest that either IFN-β-1a or Infliximab offers neuroprotection against DOX-induced chemobrain which could be explained by their antioxidant, anti-inflammatory, pro-autophagic, pro-mitophagic and antiapoptotic effects. Future clinical studies are recommended to personalize either use of IFN-β-1a or infliximab to ameliorate DOX-induced chemobrain.
Collapse
Affiliation(s)
- Sara A Wahdan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Marwa O El-Derany
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amany E Abdel-Maged
- National Organization for Research and Control of Biologicals (NORCB), Cairo, Egypt
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
43
|
Zhang C, Ge J, Lv M, Zhang Q, Talukder M, Li JL. Selenium prevent cadmium-induced hepatotoxicity through modulation of endoplasmic reticulum-resident selenoproteins and attenuation of endoplasmic reticulum stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113873. [PMID: 32369892 DOI: 10.1016/j.envpol.2019.113873] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd), a heavy metal contaminant, exists in humans and animals throughout life and closely associate with severe hepatotoxicity. Selenium (Se) has been recognized as an effective chemo-protectant of Cd, but the underlying mechanisms remain unclear. The objective of the present study is to illustrate the antagonistic effect of Se against Cd-induced hepatotoxicity. Primary hepatocytes were cultured in the presence of 5 μM Cd, 1 μM Se and the mixture of 1 μM Se and 5 μM Cd for 24 h. Cell viability and morphology, antioxidant status, endoplasmic reticulum (ER) stress response and selenotranscriptome were assessed. It was observed that Se treatment dramatically alleviated Cd-induced hepatocytes death and morphological change. Simultaneously, Se mitigated Cd-induced oxidative stress by reducing ROS production, increasing reduced glutathione (GSH) level and increasing selenoenzyme (glutathione peroxidase, GPX) activity. Cd induced hepatotoxicity via disordering ER-resident selenoproteins transcription and triggering ER stress and unfolded protein response. Supplementary Se evidently relieved hepatocytes injury via modulating ER-resident selenoproteins transcription to inhibit ER stress. Collectively, our findings showed a potential protection of Se against Cd-induced hepatotoxicity via suppressing ER stress response.
Collapse
Affiliation(s)
- Cong Zhang
- College of Veterinary Medicine, PR China.
| | - Jing Ge
- College of Veterinary Medicine, PR China.
| | - Meiwei Lv
- College of Veterinary Medicine, PR China.
| | - Qi Zhang
- College of Veterinary Medicine, PR China.
| | - Milton Talukder
- College of Veterinary Medicine, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh.
| | - Jin-Long Li
- College of Veterinary Medicine, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
44
|
Abdelaziz AI, Mantawy EM, Gad AM, Fawzy HM, Azab SS. Activation of pCREB/Nrf-2 signaling mediates re-positioning of liraglutide as hepato-protective for methotrexate -induced liver injury (MILI). Food Chem Toxicol 2019; 132:110719. [PMID: 31362085 DOI: 10.1016/j.fct.2019.110719] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/18/2019] [Accepted: 07/26/2019] [Indexed: 02/08/2023]
Abstract
Methotrexate (MTX) is commonly used to treat several types of cancer and autoimmune diseases. However, there is increasing concern over its organs toxicities particularly liver toxicity. Liraglutide, a glucagon like peptide-1 agonist, possesses antioxidant and anti-inflammatory features. This study aimed to explore the potential protective effect of liraglutide pre-treatment in ameliorating MTX-induced hepatotoxicity and to further investigate the underlying mechanisms. Rats received 1.2 mg/kg liraglutide intraperitoneal twice daily for 7 days before MTX. Results revealed that liraglutide significantly decreased activities of liver enzymes and oxidative stress in hepatocytes. Furthermore, NF-kB expression and related inflammatory markers (TNF-α, COX-2 and IL-6) were reduced in the pre-treatment group of liraglutide. These data validate the advantageous effects of liraglutide in MTX hepatotoxic animals. In addition, liraglutide increased the expression of the antioxidant transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf-2), along with the transcription of downstream phosphorylated cAMP response element-binding protein (pCREB) which increases the activity of Nrf-2. Additionally, caspase-3 expression/activity and BAX/Bcl-2 ratio were decreased following liraglutide pre-treatment. In conclusion, it was confirmed that liraglutide enhanced the antioxidant activity of liver cells by activating the Nrf-2 and pCREB signaling, thereby, reducing liver cell inflammation and apoptosis induced by MTX.
Collapse
Affiliation(s)
- Aya I Abdelaziz
- Department of Pharmacology, National Organization for Drug Control and Research (NODCR), Cairo, Egypt
| | - Eman M Mantawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amany M Gad
- Department of Pharmacology, National Organization for Drug Control and Research (NODCR), Cairo, Egypt
| | - Hala M Fawzy
- Department of Pharmacology, National Organization for Drug Control and Research (NODCR), Cairo, Egypt
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|