1
|
Li Y, Wang S, Wang Y. Cadmium exposure induces oxidative stress-mediated necroptosis via TLR4/NF-κB signaling pathway in pig epididymis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125514. [PMID: 39662580 DOI: 10.1016/j.envpol.2024.125514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/26/2024] [Accepted: 12/09/2024] [Indexed: 12/13/2024]
Abstract
Cadmium (Cd) can cause reproductive disorders through epididymal injury. However, the specific molecular mechanism of Cd-induced epididymal toxic injury is rarely reported. In this study, the model of Cd poisoning in pig epididymis was established. Ten 6-week-old male piglets were divided into two groups. The control group was fed a basic diet, while the Cd group received a diet supplemented with 20 mg/kg CdCl2. After 40 days, All piglets were euthanized, and epididymal tissues were collected to detect morphological changes, trace element contents, oxidative stress (OS) parameters, toll like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) signaling pathway and necroptosis marker genes. This study showed that Cd led to an increased concentration of Cd element in pig epididymis. According to morphological observation, pig epididymal tissue in the Cd group was damaged. Cd decreased the contents of glutathione (GSH), total antioxidant capacity (T-AOC), catalase (CAT), dismutase (SOD), and glutathione peroxidase (GSH-px), but the contents of hydrogen peroxide (H2O2) and malondialdehyde (MDA) were increased. Additionally, Caspase 8 expression was decreased, whereas the expression of TLR4, NF-κB, FADD, RIPK1, RIPK3, MLKL and heat shock proteins (HSPs) were increased after Cd stimulation. We concluded that Cd-triggered TLR4/NF-κB signaling pathway and oxidative stress potentially promoted necroptosis in pig epididymis.
Collapse
Affiliation(s)
- Yulong Li
- College of Food and Bioengineering, Qiqihar University, Qiqihar, 161006, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shu Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, PR China
| | - Yanfei Wang
- Branch of Animal Husbandry and Veterinary, Heilongjiang Academy of Agricultural Sciences, Qiqihar, 161005, PR China.
| |
Collapse
|
2
|
Wei J, Tian Y, Guan M, Wei J, Ji Y, Tao G, Sylvester KG. Sodium formate induces development-dependent intestinal epithelial injury via necroptosis and apoptosis. Redox Rep 2024; 29:2433393. [PMID: 39620924 PMCID: PMC11613409 DOI: 10.1080/13510002.2024.2433393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024] Open
Abstract
OBJECTIVES Necrotizing enterocolitis (NEC) is a common and sometimes fatal disease affecting premature infants. Elevated formate has been found in the stool of patients with NEC. Sodium formate (NaF) is used to explore the role of formate in the intestinal epithelial injury. METHODS In this study, 150 mM NaF solution was intraluminally injected in 14-day-old and 28-day-old mice. Mice were sacrificed after 24 h of feces collection, and the blood and small intestinal tissues were collected to detect the pathological damage of intestinal tissue, intestinal permeability, oxidative stress indicators including SOD, HO-1, MDA, and 4-HNE, inflammatory cytokines including IL-1β, TNF-α and IL-6, mitochondrial function such as ATP and PGC-1α in mice intestinal tissue, indicators of the cell death modes including necroptosis-related protein RIPK1 and p-MLKL, and apoptosis- related protein cleaved-caspase-3 and p-AKT (S473). RESULTS NaF treatment significantly damaged intestinal epithelial tissue and barrier function, caused mitochondrial dysfunction, manifesting as decreased ATP and PGC-1α levels, increased lipid peroxidation products MDA and 4-HNE, depleted antioxidant enzyme SOD, and upregulated the expression of HO-1. Furthermore, NaF treatment induced inflammatory responses by promoting the release of IL-1β, IL-6 and TNF-α in a development-dependent manner, eventually inducing necroptosis and apoptosis. CONCLUSIONS Formate may be a source of metabolic intestinal injury contributing to the pathogenesis of NEC in human newborns.
Collapse
Affiliation(s)
- Jingjing Wei
- Department of Pediatrics, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Yuan Tian
- Department of Pediatrics, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Meiqi Guan
- Department of Pediatrics, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jinshu Wei
- Department of Pediatrics, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Yong Ji
- Department of Neonatal Intensive Care Unit, Shanxi Children’s Hospital, Taiyuan, People’s Republic of China
| | - Guozhong Tao
- Pediatric Surgery-Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Karl G. Sylvester
- Pediatric Surgery-Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
3
|
Zuo M, Ye M, Lin H, Liao S, Xing X, Liu J, Wu D, Huang Z, Ren X. Mitochondrial Dysfunction in Environmental Toxicology: Mechanisms, Impacts, and Health Implications. Chem Res Toxicol 2024; 37:1794-1806. [PMID: 39485318 DOI: 10.1021/acs.chemrestox.4c00328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Mitochondria, pivotal to cellular metabolism, serve as the primary sources of biological energy and are key regulators of intracellular calcium ion storage, crucial for maintaining cellular calcium homeostasis. Dysfunction in these organelles impairs ATP synthesis, diminishing cellular functionality. Emerging evidence implicates mitochondrial dysfunction in the etiology and progression of diverse diseases. Environmental factors that induce mitochondrial dysregulation raise significant public health concerns, necessitating a nuanced comprehension and classification of mitochondrial-related hazards. This review systematically adopts a toxicological perspective to illuminate the biological functions of mitochondria, offering a comprehensive exploration of how toxicants instigate mitochondrial dysfunction. It delves into the disruption of energy metabolism, the initiation of mitochondrial fragility and autophagy, and the induction of mutations in mitochondrial DNA by mutagens. The overarching objective is to enhance our understanding of the repercussions of mitochondrial damage on human health.
Collapse
Affiliation(s)
- Mingyang Zuo
- School of Public Health, Southern Medical University, No. 1023 Shatai Nan Road, Baiyun District, Guangzhou 510515, China
| | - Mingqi Ye
- School of Public Health, Southern Medical University, No. 1023 Shatai Nan Road, Baiyun District, Guangzhou 510515, China
| | - Haofeng Lin
- School of Public Health, Southern Medical University, No. 1023 Shatai Nan Road, Baiyun District, Guangzhou 510515, China
| | - Shicheng Liao
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xiumei Xing
- School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Jianjun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, China
| | - Desheng Wu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, China
| | - Zhenlie Huang
- School of Public Health, Southern Medical University, No. 1023 Shatai Nan Road, Baiyun District, Guangzhou 510515, China
| | - Xiaohu Ren
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
4
|
Boschetto F, Rondinella A, Marin E. Biological Activity of Silicon Nitride Ceramics: A Critical Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5548. [PMID: 39597372 PMCID: PMC11595669 DOI: 10.3390/ma17225548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
The commercial use of Si3N4 ceramics in the biomedical field dates back to the early 1980s and, initially, did not show promising results, which is why their biocompatibility was not then investigated further until about 10 years later. Over the years, a change in trend has been observed; more and more studies have shown that this material could possess high biocompatibility and antibacterial properties. However, the relevant literature struggles to find mechanisms that can incontrovertibly explain the reasons behind the biological activity of Si3N4. The proposed mechanisms are often pure hypotheses or are not substantiated by comprehensive analyses. This review begins by studying the early references to the biological activity of Si3N4 and then reviews the literature regarding the bioactivity of this ceramic over time. An examination of the early insights into surface chemistry and biocompatibility lays the foundation for a detailed examination of the chemical reactions that Si3N4 undergoes in biological environments. Next, the analysis focuses on the mechanisms of bioactivity and antipathogenicity that the material exhibits both alone and in combination with modern bioglass. However, it is highlighted that despite the general consensus on the biocompatibility and bioactivity of Si3N4 ceramics, sometimes the proposed biological mechanisms behind its behavior are discordant or unsupported by the direct evaluation of specific biochemical activities. This review highlights both the reliable information in the literature and the gaps in research that need to be filled in order to fully understand the reasons behind the biological properties of this material.
Collapse
Affiliation(s)
- Francesco Boschetto
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, TX 75219, USA
| | - Alfredo Rondinella
- Department Polytechnic of Engineering and Architecture, University of Udine, 33100 Udine, Italy
| | - Elia Marin
- Department Polytechnic of Engineering and Architecture, University of Udine, 33100 Udine, Italy
- Materials Bioengineering Laboratory, Faculty of Materials Science and Engineering, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| |
Collapse
|
5
|
Li J, Zhang J, Zhong Y, Xie D, Han H, Zhang Z, Liu Y, Li S. TRPC6 regulates necroptosis in myocardial ischemia/reperfusion injury via Ca 2+/CaMKII signaling pathway. Cell Signal 2024; 122:111344. [PMID: 39134250 DOI: 10.1016/j.cellsig.2024.111344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) frequently complicates postoperative cardiovascular disease treatment. Necroptosis, a cell death mechanism similar to apoptosis, is regulated by specific signaling pathways and plays an important role in MIRI. Receptor-interacting protein 3 (RIP3), a key protein regulating necroptosis during MIRI, directly phosphorylates calmodulin-dependent protein kinase II (CaMKII). Leading to mitochondrial permeablity transition pore (mPTP) opening and inducing necroptosis. Transient receptor potential canonical channel 6 (TRPC6) regulats Ca2+ entry, is linked to CaMKII as an important upstream effector. However, the connection between TRPC6 and MIRI necroptosis remains unclear. The study aimed to investigate the relationship between TRPC6 and MIRI necroptosis, with a specific focus on elucidating the role of TRPC6 in regulating CaMKII phosphorylation during cardiac necroptosis via Ca2+ modulation. METHODS AND RESULTS: The experiment used wild-type (WT) and TRPC6 knockout (TRPC6-/-) mice for I/R model construction, and H9c2 myocardial cell line for H/R model. After ischemia-reperfusion (I/R), TRPC6 protein levels in mice significantly increased, exacerbating myocardial injury, infarct size (IS), and cardiac function in WT mice. In contrast, TRPC6 knockout attenuated myocardial injury, IS, and improved cardiac function. The results showed a significant correlation between changes in CaMKII and TRPC6. TRPC6 knockout led to decreased intracellular calcium levels, CaMKII phosphorylation, reactive oxygen species levels, mPTP opening, and improve mitochondrial structure. CONCLUSION: I/R upregulates TRPC6, which mediates Ca2+ entry and CaMKII phosphorylation, exacerbates oxidative stress, and induces necroptosis. These findings suggest a potential therapeutic avenue for mitigating MIRI by targeting TRPC6.
Collapse
Affiliation(s)
- Junhao Li
- Department of Forensic Pathology, School of Forensic Medicine, Zunyi Medical University, Zunyi 563006, Guizhou, China
| | - Jiaji Zhang
- Department of Forensic Pathology, School of Forensic Medicine, Zunyi Medical University, Zunyi 563006, Guizhou, China
| | - Yunlong Zhong
- Department of Forensic Pathology, School of Forensic Medicine, Zunyi Medical University, Zunyi 563006, Guizhou, China
| | - Dongge Xie
- Department of Forensic Pathology, School of Forensic Medicine, Zunyi Medical University, Zunyi 563006, Guizhou, China
| | - Han Han
- Department of Forensic Pathology, School of Forensic Medicine, Zunyi Medical University, Zunyi 563006, Guizhou, China
| | - Zhongqing Zhang
- Department of Forensic Pathology, School of Forensic Medicine, Zunyi Medical University, Zunyi 563006, Guizhou, China
| | - Yong Liu
- Department of Forensic Pathology, School of Forensic Medicine, Zunyi Medical University, Zunyi 563006, Guizhou, China
| | - Shoutian Li
- Department of Forensic Pathology, School of Forensic Medicine, Zunyi Medical University, Zunyi 563006, Guizhou, China.
| |
Collapse
|
6
|
Li L, Li W, Liu Y, Han B, Yu Y, Lin H. Emamectin benzoate exposure induced carp kidney injury by triggering mitochondrial oxidative stress to accelerate ferroptosis and autophagy. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106017. [PMID: 39084778 DOI: 10.1016/j.pestbp.2024.106017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
Emamectin benzoate (EMB), commonly used as an insecticide in fishery production, inevitably leaves residual chemicals in aquatic environments. High-level EMB exposure can cause severe damage to multiple systems of marine animals, potentially through mechanisms involving severe mitochondrial damage and oxidative stress. However, it is not clear yet how EMB exposure at a certain level can cause damage to fish kidney tissue. In this study, we exposed carps to an aquatic environment containing 2.4 μg/L of EMB and cultured carp kidney cells in vitro, established a cell model exposed to EMB. Our findings revealed that EMB exposure resulted in severe kidney tissue damage in carp and compromised the viability of grass carp kidney cells (CIK cells). By RNA-seq analysis, EMB exposure led to significant differences in mitochondrial homeostasis, response to ROS, ferroptosis, and autophagy signals in carp kidney tissue. Mechanistically, EMB exposure induced mitochondrial oxidative stress by promoting the generation of mitochondrial superoxide and reducing the activity of antioxidant enzymes. Additionally, EMB exposure triggered loss of mitochondrial membrane potential, an imbalance in mitochondrial fusion/division homeostasis, and dysfunction in oxidative phosphorylation, ultimately impairing ATP synthesis. Notably, EMB exposure also accelerated excessive autophagy and ferroptosis of cells by contributing to the formation of lipid peroxides and autophagosomes, and the deposition of Fe2+. However, N-acetyl-L-cysteine (NAC) treatment alleviated the damage and death of CIK cells by inhibiting oxidative stress. Overall, our study demonstrated that EMB exposure induced mitochondrial oxidative stress, impaired mitochondrial homeostasis, and function, promoted autophagy and ferroptosis of kidney cells, and ultimately led to kidney tissue damage in carp. Our research enhanced the toxicological understanding on EMB exposure and provides a model reference for comparative medicine.
Collapse
Affiliation(s)
- Lu Li
- Northeast Agricultural University, Harbin 150030, PR China
| | - Wan Li
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Yufeng Liu
- Institute of Animal Husbandry Research, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Bing Han
- Northeast Agricultural University, Harbin 150030, PR China
| | - Yanbo Yu
- Northeast Agricultural University, Harbin 150030, PR China
| | - Hongjin Lin
- Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
7
|
Wang X, Zhang D, Zhu Y, Li D, Shen L, Wang Q, Gao Y, Li X, Yu M. Protein lysine acetylation played an important role in NH 3-induced AEC2 damage and pulmonary fibrosis in piglets. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168303. [PMID: 37939958 DOI: 10.1016/j.scitotenv.2023.168303] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/10/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Gaseous ammonia (NH3), as a main air pollutant in pig farms and surrounding areas, directly affects animal and human health. The lung, as an important organ for gas exchange in the respiratory system, is damaged after NH3 exposure, but the underlying mechanism needs to be further explored. In this study, seven weeks old piglets were exposed to 50 ppm NH3 for 30 days, and displayed pulmonary fibrosis. Then, the toxicological mechanism of NH3-induced pulmonary fibrosis was explored from the aspects of whole genome wide protein expression and post-translational modification. Totally, 404 differentially expressed proteins (DEPs) and 136 differentially lysine acetylated proteins (DAPs) were identified. The expression or lysine acetylation levels of proteins involved in mitochondrial energy metabolism including fatty acid oxidation (CPT1A, ACADVL, ACADS, HADHA, and HADHB), TCA cycle (IDH2 and MDH2), and oxidative phosphorylation (NDUFB7, NDUFV1, ATP5PB, ATP5F1A, COX5A, and COX5B) were significantly changed after NH3 exposure, which suggested that NH3 disrupted mitochondrial energy metabolism in the lung of piglets. Next, we found that type 2 alveolar epithelial cells (AEC2) damaged after NH3 exposure in vivo and in vitro. Integrin-linked kinase (ILK) was enriched in focal adhesion pathway, and showed significantly up-regulated acetylation levels at K191 (FC = 2.99) and K209 sites (FC = 1.52) after NH3 exposure. We illustrated that ILK-K191 hyper-acetylation inhibited AEC2 proliferation and induced AEC2 apoptosis by down-regulating pAKT-S473 in vitro. In conclusion, for the first time, our study revealed that protein acetylation played an important role in the process of NH3-induced pulmonary fibrosis in piglets. Our findings provided valuable insights into toxicological harm of NH3 to human health.
Collapse
Affiliation(s)
- Xiaotong Wang
- College of Animal Science and Technology, Center for Advanced Science in Animal Breeding and Health Breeding, Huazhong Agricultural University, Wuhan 430070, China
| | - Di Zhang
- College of Animal Science and Technology, Center for Advanced Science in Animal Breeding and Health Breeding, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaxue Zhu
- College of Animal Science and Technology, Center for Advanced Science in Animal Breeding and Health Breeding, Huazhong Agricultural University, Wuhan 430070, China
| | - Daojie Li
- College of Animal Science and Technology, Center for Advanced Science in Animal Breeding and Health Breeding, Huazhong Agricultural University, Wuhan 430070, China
| | - Long Shen
- College of Animal Science and Technology, Center for Advanced Science in Animal Breeding and Health Breeding, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiankun Wang
- College of Animal Science and Technology, Center for Advanced Science in Animal Breeding and Health Breeding, Huazhong Agricultural University, Wuhan 430070, China
| | - Yun Gao
- College of Engineering, the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoping Li
- College of Animal Science and Technology, Center for Advanced Science in Animal Breeding and Health Breeding, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Smart Animal Farming Technology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mei Yu
- College of Animal Science and Technology, Center for Advanced Science in Animal Breeding and Health Breeding, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
8
|
Yao BF, Luo XJ, Peng J. A review for the correlation between optic atrophy 1-dependent mitochondrial fusion and cardiovascular disorders. Int J Biol Macromol 2024; 254:127910. [PMID: 37939779 DOI: 10.1016/j.ijbiomac.2023.127910] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Mitochondrial dynamics homeostasis is sustained by continuous and balanced fission and fusion, which are determinants of morphology, abundance, biogenesis and mitophagy of mitochondria. Optic atrophy 1 (OPA1), as the only inner mitochondrial membrane fusion protein, plays a key role in stabilizing mitochondrial dynamics. The disturbance of mitochondrial dynamics contributes to the pathophysiological progress of cardiovascular disorders, which are the main cause of death worldwide in recent decades and result in tremendous social burden. In this review, we describe the latest findings regarding OPA1 and its role in mitochondrial fusion. We summarize the post-translational modifications (PTMs) for OPA1 and its regulatory role in mitochondrial dynamics. Then the diverse cell fates caused by OPA1 expression during cardiovascular disorders are discussed. Moreover, cardiovascular disorders (such as heart failure, myocardial ischemia/reperfusion injury, cardiomyopathy and cardiac hypertrophy) relevant to OPA1-dependent mitochondrial dynamics imbalance have been detailed. Finally, we highlight the potential that targeting OPA1 to impact mitochondrial fusion may be used as a novel strategy against cardiovascular disorders.
Collapse
Affiliation(s)
- Bi-Feng Yao
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.
| |
Collapse
|
9
|
Katafuchi A, Shimamoto S, Kawaguchi M, Tomonaga S, Nakashima K, Ishihara S, Ohtsuka A, Ijiri D. Effects of Delaying Post-hatch Feeding on the Plasma Metabolites of Broiler Chickens Revealed by Targeted and Untargeted Metabolomics. J Poult Sci 2023; 60:2023032. [PMID: 38145205 PMCID: PMC10730121 DOI: 10.2141/jpsa.2023032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/30/2023] [Indexed: 12/26/2023] Open
Abstract
Exogenous nutrients are essential for body and skeletal muscle growth in newly hatched chicks, and delaying post-hatch feeding negatively affects body growth, meat yield, and meat quality. The aim of this study was to investigate the effects of delayed post-hatch feeding on the metabolic profiles of broiler chickens using a combination of targeted and untargeted metabolomics. Newly hatched chicks had either immediate free access to feed (freely fed chicks) or no access to feed from 0 to 2 days of age (delayed-fed chicks); both groups were subsequently provided feed ad libitum until 13 days of age. Untargeted metabolomic analysis was performed using gas chromatography-mass spectrometry, whereas targeted metabolomic analysis of amino acids was performed using high-performance liquid chromatography with ortho-phthalaldehyde derivatization. Delayed feeding increased the plasma levels of sucrose, maltose, serotonin, lactitol, gentiobiose, xylitol, threonic acid, and asparagine, and decreased the plasma levels of creatinine, aspartic acid, and glutamic acid. In addition, the digestibility of the nitrogen-free extract (starch and sugar) and the cecal butyric acid concentration increased in chicks subjected to delayed feeding. In contrast, delayed feeding did not affect muscle protein degradation or digestibility in chicks. Taken together, our results indicate that delaying feeding until 48 h post-hatch alters multiple metabolic pathways, which are accompanied by changes in intestinal carbohydrate digestion and cecal butyric acid content in broiler chickens.
Collapse
Affiliation(s)
- Ayumi Katafuchi
- Graduate School of
Agriculture, Forestry and Fisheries, Kagoshima
University, 1-21-24 Korimoto, Kagoshima 890-0065,
Japan
| | - Saki Shimamoto
- Graduate School of
Science and Technology, Niigata University, 8050
Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181,
Japan
| | - Mana Kawaguchi
- Department of
Biochemical Science and Technology, Kagoshima
University, 1-21-24 Korimoto, Kagoshima 890-0065,
Japan
| | - Shozo Tomonaga
- Division of
Applied Biosciences, Graduate School of
Agriculture, Kyoto University, Sakyo-ku, Kyoto
606-8502, Japan
| | - Kazuki Nakashima
- Division of Meat
Animal and Poultry Research, Institute of
Livestock and Grassland Science, NARO, Tsukuba,
Japan
| | - Shinya Ishihara
- Graduate School of
Applied Life Science, Nippon Veterinary and Life
Science University, 1-7-1 Kyonan-cho, Musashino,
Tokyo 180-8602, Japan
| | - Akira Ohtsuka
- Graduate School of
Agriculture, Forestry and Fisheries, Kagoshima
University, 1-21-24 Korimoto, Kagoshima 890-0065,
Japan
- Department of
Biochemical Science and Technology, Kagoshima
University, 1-21-24 Korimoto, Kagoshima 890-0065,
Japan
- The United
Graduate School of Agricultural Sciences,
Kagoshima University, 1-21-24 Korimoto, Kagoshima
890-0065, Japan
| | - Daichi Ijiri
- Graduate School of
Agriculture, Forestry and Fisheries, Kagoshima
University, 1-21-24 Korimoto, Kagoshima 890-0065,
Japan
- Department of
Biochemical Science and Technology, Kagoshima
University, 1-21-24 Korimoto, Kagoshima 890-0065,
Japan
- The United
Graduate School of Agricultural Sciences,
Kagoshima University, 1-21-24 Korimoto, Kagoshima
890-0065, Japan
| |
Collapse
|
10
|
Chen B, Xie K, Zhang J, Yang L, Zhou H, Zhang L, Peng R. Comprehensive analysis of mitochondrial dysfunction and necroptosis in intracranial aneurysms from the perspective of predictive, preventative, and personalized medicine. Apoptosis 2023; 28:1452-1468. [PMID: 37410216 PMCID: PMC10425526 DOI: 10.1007/s10495-023-01865-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2023] [Indexed: 07/07/2023]
Abstract
Mitochondrial dysfunction and necroptosis are closely associated, and play vital roles in the medical strategy of multiple cardiovascular diseases. However, their implications in intracranial aneurysms (IAs) remain unclear. In this study, we aimed to explore whether mitochondrial dysfunction and necroptosis could be identified as valuable starting points for predictive, preventive, and personalized medicine for IAs. The transcriptional profiles of 75 IAs and 37 control samples were collected from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs), weighted gene co-expression network analysis, and least absolute shrinkage and selection operator (LASSO) regression were used to screen key genes. The ssGSEA algorithm was performed to establish phenotype scores. The correlation between mitochondrial dysfunction and necroptosis was evaluated using functional enrichment crossover, phenotype score correlation, immune infiltration, and interaction network construction. The IA diagnostic values of key genes were identified using machine learning. Finally, we performed the single-cell sequencing (scRNA-seq) analysis to explore mitochondrial dysfunction and necroptosis at the cellular level. In total, 42 IA-mitochondrial DEGs and 15 IA-necroptosis DEGs were identified. Screening revealed seven key genes invovled in mitochondrial dysfunction (KMO, HADH, BAX, AADAT, SDSL, PYCR1, and MAOA) and five genes involved in necroptosis (IL1B, CAMK2G, STAT1, NLRP3, and BAX). Machine learning confirmed the high diagnostic value of these key genes for IA. The IA samples showed higher expression of mitochondrial dysfunction and necroptosis. Mitochondrial dysfunction and necroptosis exhibited a close association. Furthermore, scRNA-seq indicated that mitochondrial dysfunction and necroptosis were preferentially up-regulated in monocytes/macrophages and vascular smooth muscle cells (VSMCs) within IA lesions. In conclusion, mitochondria-induced necroptosis was involved in IA formation, and was mainly up-regulated in monocytes/macrophages and VSMCs within IA lesions. Mitochondria-induced necroptosis may be a novel potential target for diagnosis, prevention, and treatment of IA.
Collapse
Affiliation(s)
- Bo Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, No. 87 Xiangya Rd., Changsha, 410008 Hunan People’s Republic of China
- Hypothalamic-Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan China
- Department of Surgery, LKS Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Kang Xie
- Department of Neurosurgery, Xiangya Hospital, Central South University, No. 87 Xiangya Rd., Changsha, 410008 Hunan People’s Republic of China
- Hypothalamic-Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Jianzhong Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University (Jiangxi Branch), Nanchang, 330000 Jiangxi China
| | - Liting Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, No. 87 Xiangya Rd., Changsha, 410008 Hunan People’s Republic of China
- Hypothalamic-Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Hongshu Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, No. 87 Xiangya Rd., Changsha, 410008 Hunan People’s Republic of China
- Hypothalamic-Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, No. 87 Xiangya Rd., Changsha, 410008 Hunan People’s Republic of China
- Hypothalamic-Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan China
- Department of Neurosurgery, Xiangya Hospital, Central South University (Jiangxi Branch), Nanchang, 330000 Jiangxi China
| | - Renjun Peng
- Department of Neurosurgery, Xiangya Hospital, Central South University, No. 87 Xiangya Rd., Changsha, 410008 Hunan People’s Republic of China
- Hypothalamic-Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan China
- Department of Neurosurgery, Xiangya Hospital, Central South University (Jiangxi Branch), Nanchang, 330000 Jiangxi China
| |
Collapse
|
11
|
Wang G, Liu X, Liu H, Zhang X, Shao Y, Jia X. A novel necroptosis related gene signature and regulatory network for overall survival prediction in lung adenocarcinoma. Sci Rep 2023; 13:15345. [PMID: 37714937 PMCID: PMC10504370 DOI: 10.1038/s41598-023-41998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 09/04/2023] [Indexed: 09/17/2023] Open
Abstract
We downloaded the mRNA expression profiles of patients with LUAD and corresponding clinical data from The Cancer Genome Atlas (TCGA) database and used the Least Absolute Shrinkage and Selection Operator Cox regression model to construct a multigene signature in the TCGA cohort, which was validated with patient data from the GEO cohort. Results showed differences in the expression levels of 120 necroptosis-related genes between normal and tumor tissues. An eight-gene signature (CYLD, FADD, H2AX, RBCK1, PPIA, PPID, VDAC1, and VDAC2) was constructed through univariate Cox regression, and patients were divided into two risk groups. The overall survival of patients in the high-risk group was significantly lower than of the patients in the low-risk group in the TCGA and GEO cohorts, indicating that the signature has a good predictive effect. The time-ROC curves revealed that the signature had a reliable predictive role in both the TCGA and GEO cohorts. Enrichment analysis showed that differential genes in the risk subgroups were associated with tumor immunity and antitumor drug sensitivity. We then constructed an mRNA-miRNA-lncRNA regulatory network, which identified lncRNA AL590666. 2/let-7c-5p/PPIA as a regulatory axis for LUAD. Real-time quantitative PCR (RT-qPCR) was used to validate the expression of the 8-gene signature. In conclusion, necroptosis-related genes are important factors for predicting the prognosis of LUAD and potential therapeutic targets.
Collapse
Affiliation(s)
- Guoyu Wang
- Department of Traditional Chinese Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xue Liu
- Department of Respiration, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huaman Liu
- Department of General Medicine, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinyue Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yumeng Shao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinhua Jia
- Department of Respiration, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
12
|
Li Y, Wang J, Xing H, Bao J. Selenium Mitigates Ammonia-Induced Neurotoxicity by Suppressing Apoptosis, Immune Imbalance, and Gut Microbiota-Driven Metabolic Disturbance in Fattening Pigs. Biol Trace Elem Res 2023; 201:3341-3355. [PMID: 36224318 PMCID: PMC9556289 DOI: 10.1007/s12011-022-03434-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/24/2022] [Indexed: 11/02/2022]
Abstract
Ammonia could be regarded as one detrimental pollutant with an acrid smell in livestock sheds. So far, the pig breeding industry became the main source of atmospheric ammonia. Previous literature demonstrated that excessive ammonia inhalation might cause a series of physiological damage to multiple organs. Unfortunately, the toxicity mechanisms of gaseous ammonia to the porcine nervous system need further research to elucidate. Selenium (Se) involves in many essential physiological processes and has a mitigative effect on the exogenous toxicant. There were scant references that corroborated whether organic Se could intervene in the underlying toxicity of ammonia to the hypothalamus. In the present study, multi-omics tools, ethology, and molecular biological techniques were performed to clarify the detailed mechanisms of relaxation effects of L-selenomethionine on ammonia poisoning. Our results showed that ammonia inhalation caused the clinical symptoms and the increment of positive apoptosis rate in the hypothalamus with the dysfunction of mitochondrial dynamics factors, while obvious mitochondria structure defects were observed. In parallel, the inflammation medium levels and gut microbes-driven metabolism function were altered to mediate the neurotoxicity in fattening pigs through the initiation of inflammation development. Interestingly, L-selenomethionine could attenuate ammonia toxicity by activating the PI3K/Akt/PPAR-γ pathway to inhibit the mitochondria-mediated apoptosis process, blocking the abnormal immune response and the accumulation of reactive oxygen species in the nucleus. Meanwhile, Se could enhance the production performance of fattening sows. Taken together, our study verified the novel hypothesis for the toxicity identification of aerial ammonia and provided a therapeutic strategy for the treatment of occupational poisoning.
Collapse
Affiliation(s)
- Yutao Li
- College of Life Science, Northeast Normal University, Changchun, 130117, People's Republic of China
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jing Wang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Houjuan Xing
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, 150030, People's Republic of China.
| | - Jun Bao
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, 150030, People's Republic of China.
| |
Collapse
|
13
|
Dai Z, Wang H, Liu J, Zhang H, Li Q, Yu X, Zhang R, Yang C. Comparison of the Effects of Yucca saponin, Yucca schidigera, and Quillaja saponaria on Growth Performance, Immunity, Antioxidant Capability, and Intestinal Flora in Broilers. Animals (Basel) 2023; 13:ani13091447. [PMID: 37174484 PMCID: PMC10177514 DOI: 10.3390/ani13091447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
The purpose of this study is to investigate the effects of Yucca saponin (YSa), Yucca schidigera (YS), and Quillaja Saponaria (QS) on growth performance, nitrogen metabolism, immune ability, antioxidant capability, and intestinal flora of yellow-feather broilers. This study randomly divided a total of 480 1-day yellow-feather broilers into 4 treatment groups. Factors in the 4 groups included CON group (basic diet), YSa group (basic diet mixed with 500 mg/kg YSa), YS group (basic diet mixed with 500 mg/kg YS), and QS group (basic diet mixed with 500 mg/kg QS). Throughout the 56-day study period, YSa, YS, and QS groups had higher average daily gain in broilers than the CON group (p < 0.01). The YS group had a lower feed gain ratio (F: G) in broilers than the CON group (p < 0.05). YSa, YS, and QS showed increased serum immunoglobin A (IgA), immunoglobin Y (IgY), immunoglobin M (IgM), and total antioxidant capacity (T-AOC) levels; enhanced acetic acid, butyric acid, and valeric acid levels of cecal content; and reduced contents of ammonia nitrogen, urea nitrogen, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and malondialdehyde (MDA) in serum in broilers (p < 0.05). The relative abundance of Lachnoclostridium in the QS group was decreased compared with that in the CON group (p < 0.05). Higher IgA and IgY sera contents were observed in the YS group compared to the YSa and QS groups (p < 0.05). In contrast with the QS group, the serum IL-6 concentration of the YS group was reduced (p < 0.05). In conclusion, YSa, YS, and QS promoted growth performance, nitrogen metabolism, immunity, antioxidant capability, and intestinal flora in broilers. Through the comparison of YSa, YS, and QS, it was found that YS is more suitable as a feed additive to ameliorate the healthy growth of broilers.
Collapse
Affiliation(s)
- Zhenglie Dai
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Huixian Wang
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Jinsong Liu
- Key Agricultural Research Institute of Veagmax Green Animal Health Products of Zhejiang Province, Anji 313300, China
| | - Haoran Zhang
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Qing Li
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Xiaorong Yu
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Ruiqiang Zhang
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Caimei Yang
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| |
Collapse
|
14
|
Li Y, Zhou P, Shen X, Zhao K. Molybdenum fertilizer improved antioxidant capacity of Chinese Merino sheep under compound contamination. Biol Trace Elem Res 2023; 201:1717-1725. [PMID: 35507136 DOI: 10.1007/s12011-022-03266-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/25/2022] [Indexed: 11/27/2022]
Abstract
To investigate the response of different levels of molybdenum (Mo) fertilizer to Chinese Merino sheep (Junken Type) grazing on natural heavy metal-contaminated meadows, this study was carried out in the Bayanbulak Grassland lying in the northwest of Xinjiang Uygur Autonomous Region, China. A total of 24-hm2 polluted meadows were fenced and were randomly divided into four groups (3 replication/group and 2 hm2/replication) applied 0-kg Mo, 1-kg Mo, 2-kg Mo, and 3-kg Mo (ammonium molybdate tetrahydrate) per hectare for the CON group, group I, group II, and group III, respectively. Seventy-two healthy 1-year-old Chinese Merino sheep (45.56 ± 2.35 kg) were randomly assigned to the tested pastures for 90 days. Compared with the CON group, the Mo content from fertilized groups and the Se content from group II and group III in serums and livers were significantly increased (P < 0.05), and the Cu content from fertilized groups in serums and livers was significantly decreased (P < 0.05). The levels of blood Hb and RBC, and the activities of serum SOD, CAT, GSH-Px, and Cp in group III, were significantly higher (P < 0.05) than those in the CON group, group I, and group II. Serum MDA content in group III was significantly lower (P < 0.05) than that in the other three groups. In summary, Mo fertilization improved the antioxidant capacity of grazing sheep and also reduced the toxic damage to Chinese Merino sheep grazing on natural grasslands contaminated by heavy metals, but Mo poisoning caused by excessive fertilization should be prevented.
Collapse
Affiliation(s)
- Yuanfeng Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621000, China
| | - Ping Zhou
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, Xinjiang, 832000, China
| | - Xiaoyun Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621000, China.
| | - Kui Zhao
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang, 550025, China
| |
Collapse
|
15
|
Li D, Shen L, Zhang D, Wang X, Wang Q, Qin W, Gao Y, Li X. Ammonia-induced oxidative stress triggered proinflammatory response and apoptosis in pig lungs. J Environ Sci (China) 2023; 126:683-696. [PMID: 36503793 DOI: 10.1016/j.jes.2022.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 06/17/2023]
Abstract
Ammonia, a common toxic gas, is not only one of the main causes of haze, but also can enter respiratory tract and directly affect the health of humans and animals. Pig was used as an animal model for exploring the molecular mechanism and dose effect of ammonia toxicity to lung. In this study, the apoptosis of type II alveolar epithelial cells was observed in high ammonia exposure group using transmission electron microscopy. Gene and protein expression analysis using transcriptome sequencing and western blot showed that low ammonia exposure induced T-cell-involved proinflammatory response, but high ammonia exposure repressed the expression of DNA repair-related genes and affected ion transport. Moreover, high ammonia exposure significantly increased 8-hydroxy-2-deoxyguanosine (8-OHdG) level, meaning DNA oxidative damage occurred. In addition, both low and high ammonia exposure caused oxidative stress in pig lungs. Integrated analysis of transcriptome and metabolome revealed that the up-regulation of LDHB and ND2 took part in high ammonia exposure-affected pyruvate metabolism and oxidative phosphorylation progress, respectively. Inclusion, oxidative stress mediated ammonia-induced proinflammatory response and apoptosis of porcine lungs. These findings may provide new insights for understanding the ammonia toxicity to workers in livestock farms and chemical fertilizer plants.
Collapse
Affiliation(s)
- Daojie Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Long Shen
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Di Zhang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaotong Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiankun Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenhao Qin
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Yun Gao
- College of Engineering, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoping Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
16
|
Chen S, Liu H, Zhang J, Zhou B, He X, Wang T, Wang C. Dietary rutin improves breast meat quality in heat-stressed broilers and protects mitochondria from oxidative attack via the AMPK/PINK1-Parkin pathway. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2367-2377. [PMID: 36606563 DOI: 10.1002/jsfa.12431] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/01/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND This study was conducted to investigate the effect of dietary rutin on the meat quality, antioxidant status and mitochondrial structure and function in the breast muscle of heat-stressed broilers. A total of 192 male broilers were randomly assigned into three groups and treated with normal control (CON), heat stress (34 °C, HS), and HS with 500 mg kg-1 rutin supplementation (HS + Rutin), respectively. RESULTS Dietary rutin significantly reversed HS-induced decrease in body weight, average daily feed intake, average daily gain, and feed efficiency. Rutin supplementation attenuated HS-induced impaired meat quality by decreasing the lightness, drip loss at 24 and 48 h, the peak time of free water (T22 ) and the peak area ratio of free water (P22 ), and increasing the pH24h and peak area ratio of immobilized water (P21 ). Rutin supplementation promoted superoxide dismutase, glutathione peroxidase activities and total antioxidant capacity, and decreased malondialdehyde levels compared with the HS group. Moreover, rutin attenuated HS-induced mitochondrial damage by increasing the mitochondrial DNA copy number and improving mitochondrial morphology. Dietary rutin significantly increased mitochondrial biogenesis-related mRNA (proliferator-activated γ receptor coactivator-1α [PGC-1α], nuclear respiratory factor 1 [NRF1], and mitochondrial transcription factor A [TFAM]) expression via the AMP-activated protein kinase (AMPK) signaling pathway. HS significantly increased mitophagy-related genes and proteins (Parkin, PTEN-induced putative kinase 1 [PINK1], microtubule associated protein light chain 3-II [LC3-II]) expression, and dietary rutin significantly reversed these alterations. CONCLUSION Dietary rutin attenuated the HS-induced decline in meat quality and antioxidant capacity of broilers, which may be related to inhibition of the AMPK/PINK1-Parkin signaling pathway to attenuate mitochondrial damage. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shun Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - HuiJuan Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - JiaQi Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - BinBin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - XiaoFang He
- School of Animal Science and Food Engineering, Institute of Jingling Technology, Nanjing, People's Republic of China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Chao Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| |
Collapse
|
17
|
Chen D, Liang J, Jiang C, Wu D, Huang B, Teng X, Tang Y. Mitochondrion Participated in Effect Mechanism of Manganese Poisoning on Heat Shock Protein and Ultrastructure of Testes in Chickens. Biol Trace Elem Res 2023; 201:1432-1441. [PMID: 35513734 DOI: 10.1007/s12011-022-03259-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023]
Abstract
Manganese (Mn) poisoning can happen in the case of environmental pollution and occupational exposure. However, the underlying mechanisms of Mn-induced teste toxicity and whether mitochondrion and heat shock proteins (HSPs) are involved in toxic effect of Mn on chicken testes remain poorly understood. To investigate this, MnCl2·4H2O was administered in the diet (600, 900, and 1800 mg/kg Mn) of chickens for 30, 60, and 90 days. Electron microscopy and qPCR were performed. Results showed that Mn exposure suppressed dose- and time-dependently HSP40 and HSP60 mRNA levels, meanwhile increased does-dependently HSP27, HSP70, and HSP90 mRNA levels at all three time points under three Mn exposure concentrations. Furthermore, Mn treatment damaged myoid cells, spermatocytes, and Sertoli cells through electron microscopic observation, indicating that Mn treatment damaged chicken testes. In addition, abnormal shapes of mitochondria were found, and mitochondria displayed extensive vacuolation. The increase of HSP90 and HSP70 induced by Mn exposure inhibited HSP40 and stimulated HSP27, respectively, in chicken testes, which needs further to be explored. Taken together, our study suggested that there was toxic effect in excess Mn on chickens, and HSPs and mitochondria were involved in the mechanism of dose-dependent injury caused by Mn in chicken testes. This study provided new insights for Mn toxicity identification in animal husbandry production practice.
Collapse
Affiliation(s)
- Dechun Chen
- Electrical and Information Engineering College, JiLin Agricultural Science and Technology University, Jilin, 132101, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Jiatian Liang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Chunyu Jiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Di Wu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Bin Huang
- Electrical and Information Engineering College, JiLin Agricultural Science and Technology University, Jilin, 132101, China
| | - Xiaohua Teng
- Electrical and Information Engineering College, JiLin Agricultural Science and Technology University, Jilin, 132101, China.
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| | - You Tang
- Electrical and Information Engineering College, JiLin Agricultural Science and Technology University, Jilin, 132101, China.
| |
Collapse
|
18
|
Wu L, Chen Q, Dong B, Han D, Zhu X, Liu H, Yang Y, Xie S, Jin J. Resveratrol attenuated oxidative stress and inflammatory and mitochondrial dysfunction induced by acute ammonia exposure in gibel carp (Carassius gibelio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114544. [PMID: 36641865 DOI: 10.1016/j.ecoenv.2023.114544] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Ammonia is recognized as an environmental stressor for fish. As resveratrol (RES) has anti-inflammatory and antioxidant properties, we hypothesized that RES could attenuate the response to ammonia exposure in gibel carp. Therefore, gibel carp were fed a diet containing RES for eight weeks, followed by acute ammonia stimulation. Stress induced by acute ammonia exposure could be ameliorated by RES, manifested by down-regulated plasma glucose, and up-regulated C3 and IgM levels. Furthermore, decreased AST and LDH; enhanced T-AOC, SOD, and GPx in the liver; and reduced damage to gill and liver tissues indicated that RES attenuated oxidative and tissue damage induced by ammonia exposure. Moreover, RES activated the Nrf2/HO-1 pathway and up-regulated the expression of several antioxidant genes. RES enhanced anti-inflammatory activity as reflected by activation of the NF-κB pathway, down-regulated the expression of pro-inflammatory cytokines (nfκb, tnf-α, and il-1β), and up-regulated the expression of anti-inflammatory cytokines (il-4 and il-10). In terms of mitochondrial function, RES up-regulated protein levels of p-AMPK, SIRT1, and PGC-1α; inhibited mitochondrial fission; promoted mitochondrial fusion and biogenesis-related gene expression. Overall, the results suggest that RES mediated the Nrf2/HO-1, NF-κB, and AMPK/SIRT1/PGC-1α pathways to attenuate oxidative stress, inflammation, and mitochondrial dysfunction induced by ammonia in gibel carp.
Collapse
Affiliation(s)
- Liyun Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiaozhen Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Dong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoming Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Haokun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yunxia Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Junyan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
19
|
Guo Y, Zhang J, Li X, Wu J, Han J, Yang G, Zhang L. Oxidative stress mediated immunosuppression caused by ammonia gas via antioxidant/oxidant imbalance in broilers. Br Poult Sci 2023; 64:36-46. [PMID: 36083210 DOI: 10.1080/00071668.2022.2122025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. Ammonia is one of major air pollutants in intensive poultry houses, where it causes immunosuppression in broilers. Although previous studies have focused on a particular organ, data on multiple organs have not been reported.2. In the following work, broilers were exposed to environmental ammonia (0, 10, 20, and 40 mg/m3 from 1-21 d old; and 0, 15, 30, and 60 mg/m3 from 22-42 d old).3. Ammonia exposure reduced bird spleen index at 42 d and thymus index at 14, 28, 35 and 42 d, meaning that ammonia caused immunosuppression in birds. Moreover, high ammonia exposure down-regulated the expression of toll-like receptor 4 (TLR4) in lung tissue at 21 d, as well as TLR4 in lung and tracheal mucosa at 42 d when analysed using qRT-PCR. It increased SIgA in saliva at 42 d when analysed by ELISA. Ammonia increased interleukin-6 (IL-6), IL-1β, interferon-α (IFN-α), and IFN-γ in serum at 28 d from the ELISA assay, which indicated that all of these factors took part in ammonia-immunosuppression in birds.4. Three antioxidants (CAT, SOD, T-AOC) decreased, and one oxidant MDA increased after ammonia exposure in the liver and blood, which indicated that ammonia caused oxidative stress via the imbalance of antioxidants/oxidants in birds.5. Correlation analysis showed that TLR4 and TLR15 in the tracheal mucosa were significantly positively related to IFN-γ and negatively related to IL-6. TLR2 in the lung was significantly positively related to IL-1β, and TLR2 in bird tracheal mucosa was negatively related to IL-6 in serum.6. The results suggested that oxidative stress mediated immunosuppression caused by ammonia gas via antioxidant/oxidant imbalance in broilers.
Collapse
Affiliation(s)
- Y Guo
- Department of Animal Science, College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan, China
- Henan Engineering Research Center of Development and Application of Green Feed Additives, Shangqiu, Henan, China
| | - J Zhang
- Department of Animal Science, College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan, China
- Henan Engineering Research Center of Development and Application of Green Feed Additives, Shangqiu, Henan, China
| | - X Li
- Department of Genetics and Breeding, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - J Wu
- Department of Basic Veterinary Medicine, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - J Han
- Department of Animal Science, College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan, China
- Henan Engineering Research Center of Development and Application of Green Feed Additives, Shangqiu, Henan, China
| | - G Yang
- Department of Animal Science, College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan, China
- Henan Engineering Research Center of Development and Application of Green Feed Additives, Shangqiu, Henan, China
| | - L Zhang
- Department of Animal Science, College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan, China
- Henan Engineering Research Center of Development and Application of Green Feed Additives, Shangqiu, Henan, China
| |
Collapse
|
20
|
Yang Y, Yu Q, Zhang C, Wang X, He L, Huang Y, Li E, Qin J, Chen L. Acute thiamethoxam exposure induces hepatotoxicity and neurotoxicity in juvenile Chinese mitten crab (Eriocheir sinensis). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114399. [PMID: 36508784 DOI: 10.1016/j.ecoenv.2022.114399] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The similar nervous system structure between crustaceans and insects and the high-water solubility of thiamethoxam can lead to the more severe toxicity of thiamethoxam to crustaceans. However, the effects of thiamethoxam on crustaceans are unclear. Therefore, a 96-h acute toxicity test was performed to explore the hepatotoxicity and neurotoxicity effects of thiamethoxam on Chinese mitten crab (Eriocheir sinensis) at concentrations 0 µg/L, 150 µg/L and 300 µg/L. The antioxidant and detoxification systems (including phases I and II) were significantly activated after exposure of juvenile crabs to thiamethoxam for 24 h in 300 µg/L group, whereas the toxic activation effect in 150 μg/L group was delayed. Moreover, a similar pattern was observed for the transcription levels of immune-related genes. Further analysis of inflammatory signaling pathway-related genes showed that thiamethoxam exposure with 300 µg/L for 24 h may induce a pro-inflammatory response through the NF-κB pathway. In contrast, the gene expression levels in 150 µg/L group were significantly upregulated compared with 0 µg/L group after 96 h. In addition, although the acute exposure of 150 μg/L thiamethoxam did not seem to induce significant neurotoxicity, the acetylcholinesterase activity was significantly decreased in 300 μg/L group after thiamethoxam exposure for 96 h. Correspondingly, thiamethoxam exposure with 300 µg/L for 24 h resulted in significantly downregulated transcriptional levels of synaptic transmission-related genes (e.g. dopamine-, gamma-aminobutyric acid- and serotonin-related receptors). Therefore, thiamethoxam may be harmful and cause potential toxic threats such as neurotoxicity and metabolic damage to crustaceans.
Collapse
Affiliation(s)
- Yiwen Yang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Qiuran Yu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Cong Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Long He
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Yuxing Huang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Erchao Li
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China.
| |
Collapse
|
21
|
Li Y, Fan M, Qiu Q, Wang Y, Shen X, Zhao K. Nano-selenium and Macleaya cordata Extracts Improved Immune Function and Reduced Oxidative Damage of Sows and IUGR Piglets After Heat Stress of Sows in Late Gestation. Biol Trace Elem Res 2022; 200:5081-5090. [PMID: 35020160 DOI: 10.1007/s12011-022-03103-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022]
Abstract
To investigate the effects of nano-selenium (nano-Se) and Macleaya cordata extracts (MCE) on immune function and oxidative damage of sows and intrauterine growth retardation (IUGR) piglets exposed to heat stress (HS) in large-scale farms, a 2 × 2 factorial design was adopted in this test, and the two factors were nano-Se (0, 0.50 mg/kg) and MCE (0, 500 mg/kg). A total of 80 sows ([Landrace × Yorkshire] × Duroc, parity 2) were used in a 25-day trial from day 90 of gestation to delivery with 20 replications per group and 1 sow per replication. The dietary treatments of sows were as follows: (1) CON group, basic diet (0.30 mg/kg added Se, sodium selenite); (2) Nano-Se group, basic diet (0.00 mg/kg added Se) + 0.50 mg/kg added nano-Se; (3) MCE group, basic diet (0.00 mg/kg added Se) + 500 mg/kg added MCE; and (4) Combined group, basic diet (0.00 mg/kg added Se) + 0.50 mg/kg added nano-Se and 500 mg/kg added MCE. The activities of serum SOD, CAT, and GSH-Px of sows and IUGR piglets were significantly increased in MCE group and combined group, and the MDA content was extremely decreased. There were extreme differences in serum IgG level of sows and IUGR piglets, colostrum, and serum IgM level of IUGR piglets in MCE group and combined group compared with CON group. Maternal combined diets increased greatly the levels of serum IL-10 and IFN-γ of sows and IUGR piglets, and decreased extremely the contents of serum IL-1β and TNF-α. MCE alone or combination with nano-Se in sow diets decreased greatly mRNA level of Hsp70 and increased mRNA level of Hsp27 in sows and IUGR piglets. In conclusion, nano-Se and/or MCE can be added to sow diets for the amelioration of HS-induced oxidative damage through improving immune function.
Collapse
Affiliation(s)
- Yuanfeng Li
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
- Swine Research Institute, Tie Qi Li Shi Group Co, Mianyang, 621006, China
| | - Mingdong Fan
- Swine Research Institute, Tie Qi Li Shi Group Co, Mianyang, 621006, China
| | | | - Yachao Wang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Xiaoyun Shen
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Kui Zhao
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang, 550025, China
| |
Collapse
|
22
|
Tan Z, Wu C, Xuan Z, Cheng Y, Xiong R, Su Z, Wang D. Lead exposure dose-dependently affects oxidative stress, AsA-GSH, photosynthesis, and mineral content in pakchoi ( Brassica chinensis L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1007276. [PMID: 36275549 PMCID: PMC9583015 DOI: 10.3389/fpls.2022.1007276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Lead (Pb) is a heavy metal pollutant and negatively affects agriculture and ecosystems. Pb can cause oxidative stress and abnormal plant growth. The ascorbic acid-glutathione (AsA-GSH) cycle mainly exists in chloroplasts and resists oxidative stress, scavenges reactive oxygen radicals, and maintains normal photosynthesis. However, the dosage related effects of Pb on pakchoi photosynthesis, via oxidative stress and the AsA-GSH system, remains unclear. In this study, various Pb dosage stress models were tested (low: 300 mg/kg; medium: 600 mg/kg; high: 900 mg/kg). Pb stress induced a dose-dependent increase in Pb content in pakchoi leaves (P < 0.05). Principal component analysis showed that Se, B, and Pb were significantly and negatively correlated. Pb stress also increased MDA content and decreased antioxidant enzymes SOD, GSH-Px, and T-AOC activities (P < 0.05). We also found that Vc content, as well as the GSH/GSSG ratio, decreased. Additionally, Pb stress destroyed chloroplast structure, decreased photosynthesis indicators Pn, Tr, Gs, Ci and VPD, and attenuated Fv/Fm and Fv/Fo (P < 0.05). In the high-dose group, the contents of chlorophyll a, chlorophyll b, and carotenoids decreased significantly, while the expression of chloroplast development genes (GLK, GLN2) decreased (P < 0.05). Our data suggest that Pb stress leads to dosage-dependent, aberrant photosynthesis by inhibiting the AsA-GSH system in pakchoi. This study expands the Pb toxicology research field and provides indications for screening antagonists.
Collapse
Affiliation(s)
- Zhanming Tan
- College of Horticulture and Forestry Sciences, Tarim University, Alar, China
- The National-local Joint Engineering Laboratory for Efficient and High-quality Cultivation and Deep Processing Technology of Characteristic Fruit Tress in Southern Xinjiang, Alar, China
| | - Cuiyun Wu
- College of Horticulture and Forestry Sciences, Tarim University, Alar, China
- The National-local Joint Engineering Laboratory for Efficient and High-quality Cultivation and Deep Processing Technology of Characteristic Fruit Tress in Southern Xinjiang, Alar, China
| | - Zhengying Xuan
- College of Horticulture and Forestry Sciences, Tarim University, Alar, China
- The National-local Joint Engineering Laboratory for Efficient and High-quality Cultivation and Deep Processing Technology of Characteristic Fruit Tress in Southern Xinjiang, Alar, China
| | - Yunxia Cheng
- College of Horticulture and Forestry Sciences, Tarim University, Alar, China
- The National-local Joint Engineering Laboratory for Efficient and High-quality Cultivation and Deep Processing Technology of Characteristic Fruit Tress in Southern Xinjiang, Alar, China
| | - Renci Xiong
- College of Horticulture and Forestry Sciences, Tarim University, Alar, China
- The National-local Joint Engineering Laboratory for Efficient and High-quality Cultivation and Deep Processing Technology of Characteristic Fruit Tress in Southern Xinjiang, Alar, China
| | - Zhihang Su
- College of Horticulture and Forestry Sciences, Tarim University, Alar, China
- The National-local Joint Engineering Laboratory for Efficient and High-quality Cultivation and Deep Processing Technology of Characteristic Fruit Tress in Southern Xinjiang, Alar, China
| | - Desheng Wang
- College of Agronomy, Tarim University, Alar, China
- The National-local Joint Engineering Laboratory for Efficient and High-quality Cultivation and Deep Processing Technology of Characteristic Fruit Tress in Southern Xinjiang, Alar, China
| |
Collapse
|
23
|
Wang M, Huang X, Liu Y, Zeng J. Effects of Macleaya cordata Extract on Blood Biochemical Indices and Intestinal Flora in Heat-Stressed Mice. Animals (Basel) 2022; 12:ani12192589. [PMID: 36230331 PMCID: PMC9558519 DOI: 10.3390/ani12192589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Heat stress (HS) leads to disturbance of homeostasis and gut microbiota. Macleaya cordata extract (MCE) has anti-inflammatory, antibacterial, and gut health maintenance properties. Still, the specific effects of MCE on blood biochemical indices and gut microbiota homeostasis in heat-stressed mice are not entirely understood. This study aimed to investigate the impact of MCE on blood biochemical indices and gut microbiota in heat-stressed mice. A control group (CON) (25 °C, n = 6) and HS group (42 °C, n = 6) were gavaged with normal saline 0.2 mL/g body weight/day, and HS plus MCE group (HS-MCE) (42 °C, n = 6) was gavaged with 5 mg MCE/kg/day. HS (2 h/d) on 8–14 d. The experiment lasted 14 days. The results showed that HS increased mice’ serum aspartate transaminase, alanine transferase activities, heat shock protein 70 level, and malondialdehyde concentrations, and decreased serum catalase and superoxide dismutase activities. HS also disrupted microbiota diversity and community structure in mice, increasing the Bacteroidetes and decreasing Firmicutes and Lactobacillus; however, MCE can alleviate the disturbance of biochemical indicators caused by HS and regulate the flora homeostasis. Furthermore, MCE was able to moderate HS-induced metabolic pathways changes in gut microbiota. The Spearman correlation analysis implied that changes in serum redox status potentially correlate with gut microbiota alterations in HS-treated mice.
Collapse
Affiliation(s)
- Mingcan Wang
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan 030801, China
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410000, China
| | - Xiuqiong Huang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410000, China
| | - Yisong Liu
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410000, China
| | - Jianguo Zeng
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan 030801, China
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410000, China
- Correspondence: ; Tel.: +86-731-84686560
| |
Collapse
|
24
|
Shang X, Geng L, Zhao Z, Luo L, Shi X, Zhang Q, Du R, Cong Y, Xu W. Transcriptomics reveals the mechanism of selenium-enriched Lactobacillus plantarum alleviating brain oxidative stress under cadmium stress in Luciobarbus capito. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113890. [PMID: 35863216 DOI: 10.1016/j.ecoenv.2022.113890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) is one of toxic metal in environment and is thought to affect nervous system. There were an increasing number of studies on selenium (Se)-enriched probiotics which were believed to produce bioactive nanoselenium. The antagonism of Se on heavy metals can significantly affect biological toxicity of heavy metals. This study aimed to elucidate possible mechanism of brain injury in Luciobarbus capito after Cd exposure and the mitigation of Se-enriched probiotics through transcriptome analysis. The results revealed 465 differentially expressed genes in the Cd and the control brains (Cd vs C), including 320 genes with upregulated expression and 145 genes with downregulated expression. In addition, we found that there were 4117 differentially expressed genes in the Se-enriched L. plantarum plus Cd and the control brains (S1L1-Cd vs C), including 2552 genes with upregulated expression and 1565 genes with downregulated expression. There were 147 differentially expressed genes in the Se-enriched L. plantarum plus Cd and the control brains (S1L1-Cd vs Cd), including 40 genes with upregulated expression and 107 genes with downregulated expression. Moreover, GO enrichment analysis indicated that the differentially expressed genes were involved in biological processes cellular component, and molecular function. KEGG enrichment analysis indicated that MAPK signaling pathway, calcium signaling pathway, and PI3K-Akt signaling pathway were significantly enriched. Subsequently, qRT-PCR was performed, and we selected 15 related differentially expressed genes for verification. The qRT-PCR results revealed the same trend as the RNA-Seq results. In conclusion, this study elucidated relieving effect of Se-enriched probiotics on Cd exposure-induced brain oxidative stress. This study provided a theoretical basis for further research on genes related to Cd poisoning and the amelioration of Se-enriched probiotics on Cd poisoning.
Collapse
Affiliation(s)
- Xinchi Shang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Rd 43 Songfa, Daoli District, Harbin 150070, China; Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin 150070, Heilongjiang, China
| | - Longwu Geng
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Rd 43 Songfa, Daoli District, Harbin 150070, China; Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin 150070, Heilongjiang, China
| | - Zhigang Zhao
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Rd 43 Songfa, Daoli District, Harbin 150070, China; Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin 150070, Heilongjiang, China
| | - Liang Luo
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Rd 43 Songfa, Daoli District, Harbin 150070, China; Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin 150070, Heilongjiang, China
| | - Xiaodan Shi
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Rd 43 Songfa, Daoli District, Harbin 150070, China; National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China
| | - Qing Zhang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Rd 43 Songfa, Daoli District, Harbin 150070, China; Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin 150070, Heilongjiang, China
| | - Rujun Du
- Fisheries Technology Extension Station of Heilongjiang Province, Daqing 166299, China
| | - Yanfeng Cong
- Fisheries Technology Extension Station of Heilongjiang Province, Daqing 166299, China
| | - Wei Xu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Rd 43 Songfa, Daoli District, Harbin 150070, China; Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin 150070, Heilongjiang, China.
| |
Collapse
|
25
|
Liu C, Li Y, Li H, Wang Y, Zhao K. Nano-Selenium and Macleaya cordata Extracts Improved Immune Functions of Intrauterine Growth Retardation Piglets under Maternal Oxidation Stress. Biol Trace Elem Res 2022; 200:3975-3982. [PMID: 34739675 DOI: 10.1007/s12011-021-03009-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/31/2021] [Indexed: 10/19/2022]
Abstract
Intrauterine growth retardation (IUGR) is the main death cause of newborn piglets in large-scale farms. To investigate the effects of maternal nano-selenium (nano-Se) and Macleaya cordata extracts (MCE) on immune functions of IUGR piglets in large scale farms, a 2 × 2 factorial design was adopted in this test, and two factors were nano-Se (0, 0.50 mg/kg) and MCE (0, 500 mg/kg). A total of 32 ternary hybrid sows (Landrace × Yorkshire × Duroc, parity 2) were used in this 25-day trial from day 90 of pregnancy to delivery. The dietary treatments were as follows: (1) CON group, basic diet (0.0 mg/kg Se); (2) Nano-Se group, basic diet + 0.50 mg/kg added Se (nano-Se); (3) MCE group, basic diet + 500 mg/kg added MCE; (4) Combined group, basic diet + 0.50 mg/kg added nano-Se and 500 mg/kg added MCE. Maternal nano-Se or combination of nano-Se and MCE diets extremely increased the superoxide dismutase (SOD), catalase (CAT), superoxide dismutase (GSH-Px) contents in the serum and liver of IUGR offspring (P < 0.05), and MCE supplementation in sow diets remarkably increased the serum superoxide dismutase (SOD), catalase (CAT), and superoxide dismutase (GSH-Px) contents of IUGR piglets (P < 0.05). Adding nano-Se, MCE, or nano-Se and MCE to sow diets decreased the malondialdehyde (MDA) content in the serum and liver of IUGR piglets (P < 0.05). The supplementation of nano-Se and combined diets extremely increased the activities of immunoglobulin G (IgG) and immunoglobulin A (IgA) in the serum and liver of IUGR offspring (P < 0.05). Maternal nano-Se, MCE, and combined diets greatly decreased the levels of tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), and interleukin-1β (IL-1β) in the serum and liver of IUGR piglets (P < 0.05). Together, the application of nano-Se and/or MCE to sow diets improved antioxidant capacities and immune functions of IUGR offspring, and alleviated oxidative stress.
Collapse
Affiliation(s)
- Changlin Liu
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yuanfeng Li
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
- Swine Research Institute, Tie Qi Li Shi Group Co., Mianyang, 621006, China
| | - Haiyan Li
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yachao Wang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Kui Zhao
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang, 550025, China
| |
Collapse
|
26
|
Han Q, Wang A, Fu Q, Zhou S, Bao J, Xing H. Protective role of selenium on ammonia-mediated nephrotoxicity via PI3K/AKT/mTOR pathway: Crosstalk between autophagy and cytokine release. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113918. [PMID: 35882110 DOI: 10.1016/j.ecoenv.2022.113918] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/16/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Ammonia (NH3) is a hazardous substance to human and animal health. Selenium (Se) is an essential micronutrient with multiple health benefits. The present study aimed to verify whether and how Se supplementation has a protective role against NH3 mediated-nephrotoxicity in pigs. A Se-NH3 interaction model was established in pigs and the kidney samples were collected after a 30-day treatment period. The results showed that NH3 exposure inhibited the PI3K/AKT/mTOR pathway and enhanced the secretion of inflammatory cytokines to induce autophagy and inflammation. Se can regulate the PI3K/AKT/mTOR pathway and attenuate the secretion of inflammatory cytokines altered by NH3 to reduce autophagy and inflammation. In addition, Se co-treatment inhibited ROS production, elevated the activities of antioxidant systems, and increased the expression of 13 selenoproteins in pig kidneys caused by NH3 exposure. These results implied that L-selenomethionine can moderate NH3-induced nephrotoxicity in pigs. Our study gives new ideas for the specific mechanism of NH3 nephrotoxicity and provides a reference for comparative medicine and clinical medication.
Collapse
Affiliation(s)
- Qi Han
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Anqi Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Qin Fu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Sitong Zhou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China.
| | - Houjuan Xing
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
27
|
Song Q, Zhou ZJ, Cai S, Chen Y, Chen P. Oxidative stress links the tumour suppressor p53 with cell apoptosis induced by cigarette smoke. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:1745-1755. [PMID: 33825597 DOI: 10.1080/09603123.2021.1910211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
This study was to investigate the effects of oxidative stress in cigarette smoke (CS)-induced cell apoptosis in mice with emphysema. Thirty-two mice were divided into four groups: the control group, the CS group, the CS + Pifithrin-α group, and the CS + NAC group. Pathological changes and apoptosis in lung tissue of mice were detected. The activity of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and total antioxidant capacity (T-AOC) were measured using spectrophotometer. The proteins expression of p53, Bcl-2, Bax, and caspase-3 were determined by western blot. The results showed that cell apoptosis, lung structural damage, and the activity of MDA, as well as the expression of apoptosis-related proteins Bax, total caspase-3, and cleaved caspase-3 were increased in CS-treated mice. The activity of SOD, CAT, and T-AOC, as well as the expression of anti-apoptosis protein Bcl-2 were decreased in CS-treated mice when compared with the control group. However, Pifithrin-α (p53 inhibitor) and N-Acetylcysteine (NAC) could reduce cell apoptosis, lung structural damage and oxidative stress, accelerate the expression of Bcl-2, while suppressing the expression of Bax, total caspase-3 and cleaved caspase-3. More importantly, the treatment with NAC even inhibited the expression of p53. In conclusions, oxidative stress linking the p53 is involved in cell apoptosis in CS-treated emphysema mice.
Collapse
Affiliation(s)
- Qing Song
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Zi-Jing Zhou
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Shan Cai
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Yan Chen
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Ping Chen
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| |
Collapse
|
28
|
Kang L, Wu Y, Zhang J, An Q, Zhou C, Li D, Pan C. Nano-selenium enhances the antioxidant capacity, organic acids and cucurbitacin B in melon (Cucumis melo L.) plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113777. [PMID: 35738099 DOI: 10.1016/j.ecoenv.2022.113777] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Pesticides are widely used in melon production causing safety issues around the consumption of melon and increasing pathogen and insect tolerance to pesticides. This study investigated whether a nano-selenium (Nano-Se) spray treatment can improve resistance to biological stress in melon plants, reducing the need for pesticides, and how this mechanism is activated. To achieve this, we examine the ultrastructure and physio-biochemical responses of two melon cultivars after foliar spraying with Nano-Se. Nano-Se treatment reduced plastoglobulins in leaf mesophyll cells, thylakoid films were left intact, and compound starch granules increased. Nano-Se treatment also increased root mitochondria and left nucleoli intact. Nano-Se treatment enhanced ascorbate peroxidase, peroxidase, phenylalanine ammonia lyase, β-1,3-glucanase, chitinase activities and their mRNA levels in treated melon plants compared to control plants (without Nano-Se treatments). Exogenous application of Nano-Se improved fructose, glucose, galactitol, stachyose, lactic acid, tartaric acid, fumaric acid, malic acid and succinic acid in treated plants compared to control plants. In addition, Nano-Se treatment enhanced cucurbitacin B and up-regulated eight cucurbitacin B synthesis-related genes. We conclude that Nano-Se treatment of melon plants triggered antioxidant capacity, photosynthesis, organic acids, and up-regulated cucurbitacin B synthesis-related genes, which plays a comprehensive role in stress resistance in melon plants.
Collapse
Affiliation(s)
- Lu Kang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Yangliu Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jingbang Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Quanshun An
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Chunran Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Dong Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
29
|
Liu Y, Chen Q, Li Y, Bi L, Lin S, Ji H, Sun D, Jin L, Peng R. Hydrogen sulfide-induced oxidative stress mediated apoptosis via mitochondria pathway in embryo-larval stages of zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113666. [PMID: 35605332 DOI: 10.1016/j.ecoenv.2022.113666] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Hydrogen sulfide (H2S), a highly toxic gas, has become a polluting gas that cannot be ignored, while H2S exposure results in acute or chronic poisoning or even death in humans or animals and plants, but the relevant mechanisms remain poorly understood. In this study, 9-day-old zebrafish larvae were exposed continuously to culture medium containing 30 μM survival rate was counted on H2S, and our results indicated that H2S exposure increased intracellular ROS, Ca2+, NO and MDA contents and decreased SOD activity, meaning that H2S caused oxidative stress in embryo-larval stages of zebrafish. Furthermore, we found that transgenic zebrafish (cms Tg/+ AB) displayed a lower fluorescence intensity, and cytochrome c oxidase (COX) activity and JC-1 monomer fluorescence ratio increased under H2S treatment conditions. These findings indicated that H2S caused mitochondrial dysfunction. Moreover, in this experiment, after H2S treatment, the increase of apoptotic cells, activity of caspase 3 and transcription of typical apoptosis-associated genes including BCL2 associated agonist of cell death (Bad), and BCL2 associated X apoptosis (Baxa) and so on were found, which suggested that H2S caused apoptosis in zebrafish larvae. Therefore, our data meant that H2S-traggered oxidative stress mediate mitochondrial dysfunction, thus triggering apoptosis. In conclusion, oxidative stress triggered H2S-induced apoptosis via mitochondria pathway in embryo-larval stages of zebrafish.
Collapse
Affiliation(s)
- Yinai Liu
- Biomedicine Collaborative Innovation Center of Zhejiang province & Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Qianqian Chen
- Biomedicine Collaborative Innovation Center of Zhejiang province & Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yaoqi Li
- Biomedicine Collaborative Innovation Center of Zhejiang province & Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Liuliu Bi
- Biomedicine Collaborative Innovation Center of Zhejiang province & Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Sue Lin
- Biomedicine Collaborative Innovation Center of Zhejiang province & Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Hao Ji
- Biomedicine Collaborative Innovation Center of Zhejiang province & Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Da Sun
- Biomedicine Collaborative Innovation Center of Zhejiang province & Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Libo Jin
- Biomedicine Collaborative Innovation Center of Zhejiang province & Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Renyi Peng
- Biomedicine Collaborative Innovation Center of Zhejiang province & Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
30
|
Genome-wide identification of chicken bursae of Fabricius miRNAs in response to very virulent infectious bursal disease virus. Arch Virol 2022; 167:1855-1864. [PMID: 35752686 DOI: 10.1007/s00705-022-05496-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/19/2022] [Indexed: 11/02/2022]
Abstract
Infectious bursal disease virus (IBDV) can cause a highly contagious immunosuppressive disease in young chickens. MicroRNAs (miRNAs) are crucial regulators of gene expression and are involved in the pathogenesis of IBDV infection. To investigate the roles of miRNA in chicken bursae of Fabricius in response to very virulent IBDV (vvIBDV) infection, RNA sequencing was performed to compare the small RNA libraries from uninfected and vvIBDV-infected group which was infected for 3 days. A total of 77 differentially expressed (DE) miRNAs were identified in BF, of which 42 DE miRNAs were upregulated and 35 DE miRNAs were downregulated. A gene ontology analysis showed that genes associated with cellular processes, cells, and binding were enriched. Moreover, pathway analyses suggested that apoptosis, T cell receptor signaling pathways, and chemokine signaling pathways may be activated following vvIBDV infection. In addition, we predicted the target genes of DE miRNAs and constructed an miRNA-mRNA regulatory network. In total, 189 pairs of miRNA-target genes were identified, comprising 67 DE miRNAs and 73 mRNAs. In this network, gga-miR-1684b-3p was identified with the highest fold change, as well as gga-miR-1788-3p and gga-miR-3530-5p showed a high degree of change. The above three miRNAs were considered to play vital roles in vvIBDV-host interactions. This study was the first to perform a comprehensive analysis of DE miRNAs in the bursa of Fabricius in response to vvIBDV infection, and it provided new insights into molecular mechanisms underlying vvIBDV infection and pathogenesis.
Collapse
|
31
|
Li D, Chen S, Liu C, Wei B, Li X. Liver transcriptome analysis reveals biological pathways and transcription factors in response to high ammonia exposure. Inhal Toxicol 2022; 34:219-229. [PMID: 35648801 DOI: 10.1080/08958378.2022.2083275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Aim: Ammonia is a toxic gas that not only causes environmental pollution, but also is harmful to human health after inhalation. Liver is an important detoxification organ that can convert external or metabolized toxic substances into nontoxic substances. However, the toxic effects of ammonia exposure on livers have not been well studied.Method: In this study, pigs were used as an animal model and were exposed to 80 ppm ammonia (8 h during 12 days), and then, RNA-seq were conducted to explore the key genes in response to high ammonia exposure in livers.Result: Gene set enrichment analysis (GSEA) showed that the genes associated with hypoxia, inflammatory response, and apoptosis were up-regulated in the ammonia group, but the genes associated with DNA replication, linoleic acid metabolism, and glycolysis were down-regulated. Totally, 556 differentially expressed genes (DEGs) including 54 genes that encode the transcription factors (TFs) were identified between the exposure and control groups. GO and KEGG pathway analysis suggested that these DEGs were involved in inflammatory response, oxidative stress, apoptosis, immune, and cell cycle. Furthermore, the TF-target interaction analysis showed that FOS, HIF-1α, JUNB, ATF3, REL, and KLF4 were important TFs in regulating the hepatic gene expression in response to high ammonia exposure.Conclusion: Altogether, our findings not only presented a comprehensive mRNA transcriptome profile of liver after high ammonia exposure, but also found some key genes and TFs that could be used to investigate the toxicity mechanism of high ammonia on livers.
Collapse
Affiliation(s)
- Daojie Li
- Key Laboratory of Smart Animal Farming Technology, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shuangzhao Chen
- Key Laboratory of Smart Animal Farming Technology, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chun Liu
- Key Laboratory of Smart Animal Farming Technology, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Baoxing Wei
- Key Laboratory of Smart Animal Farming Technology, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaoping Li
- Key Laboratory of Smart Animal Farming Technology, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
32
|
Li Y, He J, Zhang Q, Li L, Wang Y. Nano-Molybdenum and Macleaya cordata Extracts Improved Antioxidant Capacity of Grazing Nanjiang Brown Goats on Copper and Cadmium-Contaminated Prairies. Biol Trace Elem Res 2022; 200:2734-2740. [PMID: 34546490 DOI: 10.1007/s12011-021-02915-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 08/31/2021] [Indexed: 01/13/2023]
Abstract
To investigate the effects of nano-ammonium octamolybdate (nano-Mo) and Macleaya cordata extracts (MCE) on antioxidant capacity of grazing Nanjiang brown goats on natural prairies under Cu and Cd stress, a 2 × 2 factorial design was adopted in this test, and two factors were nano-Mo (0, 10 mg/kg) and MCE (0, 3000 mg/kg). 24 hm2 polluted grassland was used in this 30-day trial and was equally divided into twelve fenced units. A total of 36 Nanjiang brown goats (1 year old) with an average body weight (BW) of 40.9 ± 2.1 kg were used in this test. The dietary treatments were (1) CON group, basic diet; (2) Nano-Mo group, basic diet + 10 mg/kg added Mo (nano-Mo); (3) MCE group, basic diet + 3000 mg/kg added MCE; and (4) combined group, basic diet + 10 mg/kg added nano-Mo and 3000 mg/kg added MCE. Nano-Mo or combination of nano-Mo and MCE diets significantly decreased the Cu content in serum and the liver of grazing goats (P < 0.05) and increased the Fe and Mo contents in serum and the liver (P < 0.05). The supplementation of nano-Mo, MCE, and combined diets extremely increased the levels of blood Hb, RBC, and PCV (P < 0.05), as well as the activities of serum SOD, GSH-Px, CAT, and Cp (P < 0.05), and greatly decreased the blood WBC content (P < 0.05) and the serum MDA content (P < 0.05). In conclusion, the application of nano-Mo and/or MCE diets on contaminated grasslands changed the contents of mineral elements in serum and the liver of grazing goats, reduced oxidative stress, and improved antioxidant capacity. The combination of nano-Mo and MCE can alleviate the toxic damage of combined heavy metal contaminations.
Collapse
Affiliation(s)
- Yuanfeng Li
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
- Swine Research Institute, Tie Qi Li Shi Group Co., Mianyang, 621006, China
| | - Jian He
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Qionglian Zhang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Lian Li
- Swine Research Institute, Tie Qi Li Shi Group Co., Mianyang, 621006, China
| | - Yachao Wang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
33
|
Li Y, Liu H, He J, Shen X, Zhao K, Wang Y. The Effects of Oral Administration of Molybdenum Fertilizers on Immune Function of Nanjiang Brown Goat Grazing on Natural Pastures Contaminated by Mixed Heavy Metal. Biol Trace Elem Res 2022; 200:2750-2757. [PMID: 34482497 DOI: 10.1007/s12011-021-02901-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/21/2021] [Indexed: 12/15/2022]
Abstract
Mineral development and metal smelting seriously polluted the surrounding groundwater and soil, threatening human health through the food chain. To investigate the effects of different sources of molybdenum (Mo) fertilizers on immune function of Nanjiang brown goats grazing on natural pastures under compound pollutions, fertilizing experiment was carried out in Liangshan Yi Nationality Prefecture of the Western Sichuan Plateau, China. Eighteen square hectometers of polluted meadows were fenced and were randomly divided into three groups (3 replications/group and 2 hm2/replication). A total of 54 healthy Nanjiang brown goats with an average BW of 31.6 ± 1.5 kg (1 year old) were used to this 30-day test (18 goats per group). The goats from CON group, AM group, and PM group were orally supplemented with deionized water, 15 mg Mo/BW·d (ammonium molybdate tetrahydrate), and 15 mg Mo/BW·d (potassium molybdate), respectively. Compared to CON group, the serum Fe content of grazing animals from AM group and PM group was 10.05% and 3.45% higher (P < 0.05), and the serum Cu content of grazing animals from AM group and PM group was 69.05% and 67.86% lower, respectively (P < 0.05). Mo fertilization significantly increased the levels of blood Hb, RBC, and PCV, and the activities of serum SOD, GSH-Px, CAT, and Cp of grazing goats (P < 0.05), and also extremely decreased the MDA content of experimental goats fed Mo compared to the control goats (P < 0.05). Compared to CON group, the activities of serum IgG, IgA, IgM, IL-2, and TNF-α of grazing animals from AM group and PM group were significantly increased (P < 0.05), and the levels of serum IL-6 and IL-1β of grazing goats from AM group and PM group were extremely decreased (P < 0.05). In summary, oral Mo fertilizers can alter the contents of serum mineral elements, reduce oxidative stress, improve immune function, and relieve the toxic damage of goats grazing on contaminated natural grasslands.
Collapse
Affiliation(s)
- Yuanfeng Li
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
- Swine Research Institute, Tie Qi Li Shi Group Co., Mianyang, 621006, China
| | - Hongwei Liu
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Jian He
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Xiaoyun Shen
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
- World Bank Poverty Alleviation Project Office in Guizhou, Southwest China, Guiyang, 550004, China.
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China.
| | - Kui Zhao
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang, 550025, China
| | - Yachao Wang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| |
Collapse
|
34
|
Zhang J, Zhang Y, Qi X, Cui Y, Chen X, Lin H. TRAF2/ASK1/JNK Signaling Pathway Is Involved in the Lung Apoptosis of Swine Induced by Cadmium Exposure. Biol Trace Elem Res 2022; 200:2758-2766. [PMID: 34365572 DOI: 10.1007/s12011-021-02860-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
Cadmium (Cd), a toxic heavy metal, exists widely in the environment, which can enter organisms through a variety of ways and cause damage to various organs and tissues. However, the mechanism of lung toxicity in swine after Cd exposure is still unclear. To explore the molecular mechanism of swine lung damage caused by Cd exposure, we established the model of Cd exposure, and Cd chloride (20 mg/kg CdCl2) was added to the diet of swine for continuous exposure for 40 days. TUNEL staining showed that the apoptosis of swine lung increased significantly after Cd exposure. Meanwhile, the results of qRT-PCR showed that Cd induced oxidative stress and inhibited the expression of antioxidant enzymes including CAT, GCLM, GST, SOD, and GSH-px in lung tissue. Cd exposure activated mitochondrial apoptosis pathway via the TRAF2/ASK1/JNK signaling pathway. In brief, we considered that Cd exposure causes oxidative stress in lung and induces lung cell apoptosis through the TRAF2/ASK1/JNK pathway and increases the expression of HSPs to resist the toxicity of Cd. Our research enriches the theoretical basis of Cd toxicity and provides reference for comparative medicine.
Collapse
Affiliation(s)
- Jinxi Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xue Qi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yuan Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaoming Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, People's Republic of China.
| |
Collapse
|
35
|
Wang Y, Wang S, Xu T, Cui W, Shi X, Xu S. A new discovery of polystyrene microplastics toxicity: The injury difference on bladder epithelium of mice is correlated with the size of exposed particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153413. [PMID: 35090911 DOI: 10.1016/j.scitotenv.2022.153413] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs), as widespread hazardous substances in the environment, can cause potential adverse effects on biological health. However, reports on the toxic effects of different diameters MPs on urinary system are limited. Here, we investigated the types and mechanisms of damage to mice bladder epithelial cells treated with diameter (1-10 μm and 50-100 μm) polystyrene microplastics (PS-MPs). The results showed that exposure to PS-MPs of both diameters resulted in necroptosis and inflammation to bladder epithelium. However, 1-10 μm PS-MPs posed more severe necroptosis and 50-100 μm PS-MPs led to a higher degree of inflammatory injury at the same exposure concentration. Mechanistically, PS-MPs were found to induce necroptosis as well as p-NFκB-mediated inflammation by triggering oxidative stress and excessive release of reactive oxygen species (ROS). Furthermore, N-Acetyl-l-cysteine (NAC) attenuated the toxic effects of PS-MPs on bladder epithelial cells. In conclusion, our study demonstrated for the first time that PS-MPs caused necroptosis and inflammation in mice bladders tissues, and the difference of injury correlates with the size of PS-MPs particles.
Collapse
Affiliation(s)
- Yue Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal, PR China
| | - Shengchen Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal, PR China
| | - Tong Xu
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, PR China
| | - Wei Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal, PR China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal, PR China; Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
36
|
Zhang J, Cui J, Wang Y, Lin X, Teng X, Tang Y. Complex molecular mechanism of ammonia-induced apoptosis in chicken peripheral blood lymphocytes: miR-27b-3p, heat shock proteins, immunosuppression, death receptor pathway, and mitochondrial pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113471. [PMID: 35378398 DOI: 10.1016/j.ecoenv.2022.113471] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Ammonia gas, a toxic environmental pollutant, is a vital component of PM2.5 aerosols, and can decrease human and animal immunity. Peripheral blood lymphocytes (PBLs) are main immune cells. Nevertheless, poisoning mechanism of PBLs under ammonia exposure remains unclear. Here, we established an ammonia poisoning model of chicken PBLs to explore poisoning mechanism of ammonia-caused apoptosis in chicken PBLs. Cell viability and apoptosis rate were detected using CCK8 assay and flow cytometry, respectively. Mitochondrial membrane potential (MMP) was observed using fluorescent staining. In addition, qRT-PCR was performed to measure mRNA levels of apoptosis-related genes (tumor necrosis factor-α (TNF-α), tumor necrosis factor receptor 1 (TNFR1), TNF receptor-associated death domain (TRADD), Fas-associated death domain (FADD), Caspase-8, BH3-interacting domain death agonist (Bid), Bcl-2-associated X protein (Bax), Bcl-2 homologous antagonist/killer (Bak), B-cell lymphoma-2 (Bcl-2), Cytochrome-c (Cytc), apoptotic protease activating factor-1 (APAF1), Caspase-9, and Caspase-3), immune-related genes (interferon-γ (IFN-γ), interleukin-2 (IL-2), IL-4, IL-6, IL-1β, IL-10, transforming growth factor-β1 (TGF-β1), IL-17, IL-21, and IL-22), heat shock protein (HSP) genes (HSP25, HSP40, HSP60, HSP70, HSP90, and HSP110), as well as miR-27b-3p. Western blot was used to determine protein levels of apoptosis-related factors (TNF-α, Caspase-8, Bcl-2, Caspase-9, and Caspase-3), as well as HSPs (HSP40, HSP60, HSP70, and HSP90). The results indicated that TRADD, FADD, and APAF1 were target genes of miR-27b-3p, as well as miR-27b-3p participated in molecular mechanism of apoptosis through targeting TNF-α/TNFR1/Caspase-8 death receptor pathway-triggered Bid/Cytc/Caspase-9 mitochondrial pathway in ammonia-treated chicken PBLs. In addition, our findings demonstrated that excess ammonia led to immunosuppression via Th1/Th2 imbalance and Treg/Th17 imbalance. Simultaneously, ammonia stress activated HSPs. In summary, for the first time, our data demonstrated that HSPs-triggered immunosuppression led to apoptosis under ammonia exposure. Our findings provided a new insight into molecular mechanism of ammonia poisoning and an important reference for environmental risk assessment related to ammonia.
Collapse
Affiliation(s)
- Jingyang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jiawen Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yueyang Wang
- The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Xu Lin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - You Tang
- Electrical and Information Engineering College, JiLin Agricultural Science and Technology University, Jilin 132101, People's Republic of China.
| |
Collapse
|
37
|
Jiang HL, Yang HH, Liu YB, Zhang CY, Zhong WJ, Guan XX, Jin L, Hong JR, Yang JT, Tan XH, Li Q, Zhou Y, Guan CX. L-OPA1 deficiency aggravates necroptosis of alveolar epithelial cells through impairing mitochondrial function during ALI in mice. J Cell Physiol 2022; 237:3030-3043. [PMID: 35478455 DOI: 10.1002/jcp.30766] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 11/11/2022]
Abstract
Necroptosis, a recently described form of programmed cell death, is the main way of alveolar epithelial cells (AECs) death in acute lung injury (ALI). While the mechanism of how to trigger necroptosis in AECs during ALI has been rarely evaluated. Long optic atrophy protein 1 (L-OPA1) is a crucial mitochondrial inner membrane fusion protein, and its deficiency impairs mitochondrial function. This study aimed to investigate the role of L-OPA1 deficiency-mediated mitochondrial dysfunction in AECs necroptosis. We comprehensively investigated the detailed contribution and molecular mechanism of L-OPA1 deficiency in AECs necroptosis by inhibiting or activating L-OPA1. Firstly, our data showed that L-OPA1 expression was down-regulated in the lungs and AECs under the lipopolysaccharide (LPS) challenge. Furthermore, inhibition of L-OPA1 aggravated the pathological injury, inflammatory response, and necroptosis in the lungs of LPS-induced ALI mice. In vitro, inhibition of L-OPA1 induced necroptosis of AECs, while activation of L-OPA1 alleviated necroptosis of AECs under the LPS challenge. Mechanistically, inhibition of L-OPA1 aggravated necroptosis of AECs by inducing mitochondrial fragmentation and reducing mitochondrial membrane potential. While activation of L-OPA1 had the opposite effects. In summary, these findings indicate for the first time that L-OPA1 deficiency mediates mitochondrial fragmentation, induces necroptosis of AECs, and exacerbates ALI in mice. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hui-Ling Jiang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, 410078, China
| | - Hui-Hui Yang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, 410078, China
| | - Yu-Biao Liu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, 410078, China
| | - Chen-Yu Zhang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, 410078, China
| | - Wen-Jing Zhong
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, 410078, China
| | - Xin-Xin Guan
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, 410078, China
| | - Ling Jin
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, 410078, China
| | - Jie-Ru Hong
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, 410078, China
| | - Jin-Tong Yang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, 410078, China
| | - Xiao-Hua Tan
- Experimental Center of Medical Morphology, School of Basic Medicine Science, Central South University, Changsha, Hunan, 410078, China
| | - Qing Li
- Department of Physiology, Hunan University of Medicine, Huaihua, Hunan, 418000, China
| | - Yong Zhou
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, 410078, China
| | - Cha-Xiang Guan
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, 410078, China
| |
Collapse
|
38
|
Liu L, Zhao L, Liu Y, Yu X, Qiao X. Rutin Ameliorates Cadmium-Induced Necroptosis in the Chicken Liver via Inhibiting Oxidative Stress and MAPK/NF-κB Pathway. Biol Trace Elem Res 2022; 200:1799-1810. [PMID: 34091842 DOI: 10.1007/s12011-021-02764-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022]
Abstract
Cadmium (Cd) is a recognized toxic metal and exerts serious hepatotoxicity in animals and humans. Rutin (RUT) is a dietary bioflavonoid with strong antioxidant and anti-inflammatory potential. However, little is known about the alleviating effect of RUT against Cd-induced liver necroptosis. The aim of this study was to ascertain the ameliorative mechanism of RUT on necroptosis triggered by Cd in chicken liver. One hundred twenty-eight 100-day-old Isa hens were randomly divided into four groups: the control group, RUT group, Cd + RUT cotreated group, and Cd group. Cd exposure prominently elevated Cd accumulation and the activities of liver function indicators (ALT and AST). Furthermore, the histopathological results, the overexpression of genes (RIPK1, RIPK3, and MLKL) related to the necroptosis pathway, and low Caspase 8 levels in Cd-exposed chicken liver indicated that Cd intoxication induced necroptosis in chicken liver. Meanwhile, Cd administration drastically increased the levels of oxidizing stress biomarkers (ROS production, MDA content, iNOS activity, and NO generation), and obviously reduced the activities of antioxidant enzymes (SOD, GPx, and CAT) and total antioxidant capacity (T-AOC) in chicken liver. Cd treatment promoted the expression of the main members of the MAPK and NF-κB pathways (JNK, ERK, P38, NF-κB, and TNF-α) and activated heat shock proteins (HSP27, HSP40, HSP60, HSP70, and HSP90). However, RUT application remarkably alleviated these Cd-induced variations and necroptosis injury. Overall, our study demonstrated that RUT might prevent Cd-induced necroptosis in the chicken liver by inhibiting oxidative stress and MAPK/NF-κB pathway.
Collapse
Affiliation(s)
- Lili Liu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Harbin, 150040, China.
| | - Liangyou Zhao
- Drug Safety Evaluation Center, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yuan Liu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Harbin, 150040, China
| | - Xiaoli Yu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, No. 600 Changjiang Street, Harbin, 150030, China
| | - Xinyuan Qiao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, No. 600 Changjiang Street, Harbin, 150030, China.
| |
Collapse
|
39
|
Cheng Z, Shu Y, Li X, Li Y, Zhou S, Liu H. Evaluation of potential cardiotoxicity of ammonia: l-selenomethionine inhibits ammonia-induced cardiac autophagy by activating the PI3K/AKT/mTOR signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113304. [PMID: 35158256 DOI: 10.1016/j.ecoenv.2022.113304] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Ammonia is a major harmful gas in the environment of livestock and poultry. Studies have shown that excessive ammonia inhalation has adverse effects in pig heart. However, the mechanism of ammonia-induced cardiac toxicity in pigs has not been reported. L-selenomethionine is a kind of organic selenium (Se) which is easily absorbed by the body. Therefore, in this study, twenty-four 125-day-old pigs were randomly divided into 4 groups: C (control) group, A (ammonia) group, Se group (Se content: 0.5 mg kg-1), and A (ammonia) + Se group. The mechanism of ammonia-induced cardiotoxicity and the alleviating effect of L-selenomethionine were examined. The results in the A group showed as follows: a large number of myocardial fiber edema and cytoplasmic bleakness were observed in the heart; a large number of mitochondrial autophagy were observed; ATP content, ATPase activities and hematological parameters decreased significantly; Endoplasmic reticulum stress (ERS) markers (GRP78, IRE1α, ATF4, ATF6, and CHOP) were significantly induced in the mRNA and protein levels; PI3K/AKT/mTOR signaling pathway was activated; and autophagy key genes and proteins (Beclin-1, LC3, ATG3, and ATG5) were significantly up-regulated. The results of comparison between the A + Se group and the A group were as follows: the degree of edema of cardiac muscle fiber in the A + Se group was somewhat relieved; the level of mitochondrial autophagy decreased; ATP content and ATPase activities increased significantly; the mRNA and protein levels of ERS markers were significantly down-regulated; the expression level of PI3K/AKT/mTOR signaling pathway was decreased; and the mRNA and protein levels of key autophagy genes were decreased. However, the changes of these indexes in the A + Se group were still significantly different from those in the C group. Our results indicated that L-selenomethionine supplementation inhibited ammonia-induced cardiac autophagy by activating the PI3K/AKT/mTOR signaling pathway, which confirmed that L-selenomethionine could alleviate the cardiac injury caused by excessive ammonia inhalation to a certain extent. This study aims to enrich the toxicological mechanism of ammonia and provide valuable reference for future intervention of ammonia toxicity.
Collapse
Affiliation(s)
- Zheng Cheng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yufu Shu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xin Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yutao Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Sitong Zhou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Honggui Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, Heilongjiang 150030, People's Republic of China.
| |
Collapse
|
40
|
Li S, Liu R, Xia S, Wei G, Ishfaq M, Zhang Y, Zhang X. Protective role of curcumin on aflatoxin B1-induced TLR4/RIPK pathway mediated-necroptosis and inflammation in chicken liver. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113319. [PMID: 35189522 DOI: 10.1016/j.ecoenv.2022.113319] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/30/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
This study set out to assess the mitigative effects of curcumin on AFB1-induced necroptosis and inflammation in chicken liver. Ninety-six one-day-old AA broiler chickens were separated into four groups, including control group, AFB1 (1 mg/kg) group, curcumin (300 mg/kg) + AFB1 (1 mg/kg) group and curcumin (300 mg/kg) group. After 28 days treatment, livers were collected for different experimental analyses. The morphological observation results showed obvious necrotic characteristics, including cell swelling, rupture of cell and mitochondrial membranes and inflammation in chicken livers. AFB1 exposure increased oxidative stress index (ROS and MDA) and decreased the antioxidant activity markers (SOD, CAT and GSH) and ATPase activities in chickens' liver. ELISA results showed that AFB1 exposure significantly induced the cytokines (TNF-α, iNOS, IL-6 and IL-1β) release from the liver tissues. While, western blot and qRT-PCR results showed that the protein and mRNA expressions of inflammatory (TLR4/myd88/NF-κB) and necroptosis (RIPK1/RIPK3/MLKL) genes were up-regulated by AFB1 exposure. We suspect that signal crosstalk between TLR4 and TNF-α triggers inflammation and RIPK1/RIPK3 mediating necroptosis in AFB1-induced chicken liver injury. Curcumin can regulate the TLR4/RIPK signaling pathway, reduced oxidative stress biomarkers and inflammatory cytokines levels and attenuated the expression of necroptosis and inflammation genes altered by AFB1 to reduce necroptosis of chicken liver tissue. In conclusion, curcumin can protect against AFB1-induced necroptosis and inflammation by TLR4/RIPK pathway in chicken liver.
Collapse
Affiliation(s)
- Sihong Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, China; Animal Genome Engineering Research Team, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Ruimeng Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, China
| | - Shun Xia
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, China
| | - Gaoqiang Wei
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, China
| | - Muhammad Ishfaq
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, China; Huanggang Normal University, 438000 Huanggang, China
| | - Yixin Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, China
| | - Xiuying Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, China.
| |
Collapse
|
41
|
Zurak D, Slovenec P, Janječić Z, Bedeković XD, Pintar J, Kljak K. Overview on recent findings of nutritional and non-nutritional factors affecting egg yolk pigmentation. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2046447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- D. Zurak
- Department of Animal Nutrition, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - P. Slovenec
- Department of Animal Nutrition, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - Z. Janječić
- Department of Animal Nutrition, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - X, D. Bedeković
- Department of Animal Nutrition, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - J. Pintar
- Department of Animal Nutrition, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - K. Kljak
- Department of Animal Nutrition, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| |
Collapse
|
42
|
Zhang TY, Chen T, Hu WY, Li JC, Guo MY. Ammonia induces autophagy via circ-IFNLR1/miR-2188-5p/RNF182 axis in tracheas of chickens. Biofactors 2022; 48:416-427. [PMID: 34652043 DOI: 10.1002/biof.1795] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/03/2021] [Indexed: 12/18/2022]
Abstract
Ammonia (NH3 ), an air pollutant in the living environment, has many toxic effects on various tissues and organs. However, the underlying mechanisms of NH3 -induced tracheal cell autophagy remains poorly understood. In present study, chickens and LMH cells were used as NH3 exposure models to investigate toxic effects. The change of tracheal tissues ultrastructure showed that NH3 exposure induced autolysosomes. The differential expression of 12 circularRNAs (circRNAs) was induced by NH3 exposure using circRNAs transcriptome analysis in broiler tracheas. We further found that circ-IFNLR1 was down-regulated, and miR-2188-5p was up-regulated in tracheal tissues under NH3 exposure. Bioinformatics analysis and dual luciferase reporter system showed that circ-IFNLR1 bound directly to miR-2188-5p and regulated each other, and miR-2188-5p regulated RNF182. Overexpression of miR-2188-5p caused autophagy and its inhibition partially reversed autophagy in LMH cells which were caused by ammonia stimulation or knockdown of circ-IFNLR1. The expressions of three autophagy-related genes (LC3, Beclin 1, and BNIP3) were observably up-regulated. Our results indicated that NH3 exposure caused autophagy through circ-IFNLR1/miR-2188-5p/RNF182. These results provided new insights for the study of ammonia on environmental toxicology on ceRNA and circRNAs in vivo and vitro.
Collapse
Affiliation(s)
- Tian-Yi Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ting Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wan-Ying Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ji-Chang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Meng-Yao Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
43
|
Xu YC, Liu GH, Xu YH, Zhao T, Zheng H, Tan XY. Physiological and transcriptomic analyses reveal the toxicological mechanism and risk assessment of environmentally-relevant waterborne tetracycline exposure on the gills of tilapia (Oreochromis niloticus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151290. [PMID: 34743874 DOI: 10.1016/j.scitotenv.2021.151290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/06/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
With the increasing application of tetracycline (TC) in medical treatment, animal husbandry and aquaculture in recent decades, high quantities of TC have been frequently detected in the aquatic environment, and accordingly TC-related toxicity and environmental pollution have become a global concern. The present study was performed to explore the toxicological influences of TC exposure at its environmentally relevant concentrations on the gills of tilapia Oreochromis niloticus, based on the alteration in histopathology, oxidative stress, inflammatory response, cell cycle, mitochondrial function, apoptosis, and transcriptomic analysis. Our findings revealed that TC exposure damaged the structure and function, induced oxidative stress, affected inflammatory responses, and reduced Na+/K+-ATPase (NKA) activity in the gills. TC also caused the inhibition in cell cycle, resulted in mitochondrial dysfunction and activated apoptosis. Further transcriptomic analysis indicated the extensive influences of TC exposure on the gill function, and immune system was the main target to waterborne TC exposure. These results elucidated that environmental TC had more complex toxicological effects on gills of fish than previously assessed, and provided novel insight into molecular toxicology of TC on fish and good basis for assessing the environmental risk of TC.
Collapse
Affiliation(s)
- Yi-Chuang Xu
- Laboratory of Molecular Nutrition and Toxicology for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Guang-Hui Liu
- Laboratory of Molecular Nutrition and Toxicology for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi-Huan Xu
- Laboratory of Molecular Nutrition and Toxicology for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Zhao
- Laboratory of Molecular Nutrition and Toxicology for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Hua Zheng
- Laboratory of Molecular Nutrition and Toxicology for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Ying Tan
- Laboratory of Molecular Nutrition and Toxicology for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
44
|
Qin W, Shen L, Wang Q, Gao Y, She M, Li X, Tan Z. Chronic exposure to ammonia induces oxidative stress and enhanced glycolysis in lung of piglets. ENVIRONMENTAL TOXICOLOGY 2022; 37:179-191. [PMID: 34806272 DOI: 10.1002/tox.23382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 06/06/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Ammonia is one of the major environmental pollutants in the pig industry that seriously affects the airway health of pigs. In this study, we aimed to investigate the metabolic profiling changes of piglets' lung tissue after the exposure of 0 ppm (CG), 20 ppm (LG) and 50 ppm (HG) ammonia for 30 days. Compared with the control group, the obvious lung lesions were observed in HG, including interstitial thickening, inflammatory cell infiltration and focal hemorrhage. The significantly increased content of malondialdehyde in HG, combined with the significantly decreased mRNA expression of antioxidase and inflammatory-regulators in exposure groups, implied that ammonia exposure induced oxidative stress and diminished the anti-inflammatory response in lung tissues. Metabolomic analyses of lung tissues revealed 15 significantly altered metabolites among the three groups including multiple amino acids, carbohydrates and lipids. The accumulation of succinic acid, linoleic acid and phosphorylethanolamine and consumption of glucose, quinolinic acid and aspartic acid in ammonia exposure groups, indicated that energy supply from glucose aerobic oxidation was suppressed and the glycolysis and lipolysis were activated in lung tissues induced by chronic ammonia exposure.
Collapse
Affiliation(s)
- Wenhao Qin
- College of Science, Huazhong Agricultural University, Wuhan, China
| | - Long Shen
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Qiankun Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Yun Gao
- College of Engineering, the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Mengqi She
- College of Science, Huazhong Agricultural University, Wuhan, China
| | - Xiaoping Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Zuojun Tan
- College of Science, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
45
|
Wang H, Wang A, Wang X, Zeng X, Xing H. AMPK/PPAR-γ/NF-κB axis participates in ROS-mediated apoptosis and autophagy caused by cadmium in pig liver. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118659. [PMID: 34896222 DOI: 10.1016/j.envpol.2021.118659] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/19/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The experiment was conducted to investigate the effects of Cadmium (Cd) on growth performance, blood biochemical parameters, oxidative stress, hepatocyte apoptosis and autophagy of weaned piglets. A total of 12 healthy weaned piglets were randomly assigned to the control and the Cd group, which were fed with a basal diet and the basal diet supplemented with 15 ± 0.242 mg/kg CdCl2 for 30 d, respectively. Our results demonstrated that Cd significantly decreased final body weight, average daily feed intake (ADFI), average daily gain (ADG) and increased feed-to-gain (F/G) ratio (P < 0.05). For blood biochemical parameters, Cd treatment significantly decreased the red blood cell (RBC), hemoglobin (HGB), hematocrit (HCT), total protein, albumin, copper content and iron content (P < 0.05). In addition, liver injury was observed in the Cd-exposed group. Our results also demonstrated that Cd exposure contributed to the production of ROS, activated the AMPK/PPAR-γ/NF-κB pathway (increasing the expressions of P-AMPK/AMPK, NF-κB, I-κB-β, COX-2, and iNOS, decreasing the expressions of PPAR-γ and I-κB-α), finally induced autophagy (increasing the expressions of Beclin-1, the ratio of LC3-II/LC3-I and p62), and apoptosis (increasing the expressions of Bax, Bak, Caspase-9, and Caspase-3, decreasing the expression of Bcl-2). Overall, these findings revealed the vital role of AMPK/PPAR-γ/NF-κB pathway in Cd-induced liver apoptosis and autophagy, which provided deeper insights into a better understanding of Cd-induced hepatotoxicity.
Collapse
Affiliation(s)
- Huan Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Anqi Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xinqiao Wang
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing, 102249, People's Republic of China
| | - Xiangyin Zeng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Houjuan Xing
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
46
|
Kadiene EU, Ouddane B, Gong HY, Hwang JS, Souissi S. Multigenerational study of life history traits, bioaccumulation, and molecular responses of Pseudodiaptomus annandalei to cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113171. [PMID: 34999339 DOI: 10.1016/j.ecoenv.2022.113171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Metal pollution provide a substantial challenge for environmental health. This study investigated the multigeneration effects of cadmium on populations of the copepod species Pseudodiaptomus annandalei, exposed to a sublethal concentration, 40 µg/L of cadmium (Cd), over 10 generations. At the end of each generation, copepod individuals were collected to estimate fecundity, bioaccumulation, and real time qPCR quantification of selected differentially expressed genes to evaluate Cd effects and sex-specific responses of copepods across multiple generations. Our results revealed a sex-specific accumulation of Cd integrating 10 successive generations. The concentration of Cd was significantly higher (p < 0.05) in males than in females. We also observed a generational increase in Cd accumulation. Fecundity increased, with the exception of the first generation, possibly as a compensation for a decrease of copepod population size under Cd exposure. Protein expression of copepods exposed to Cd occurred in a sex-specific manner. Hemerythrin was mostly up-regulated in both copepod sexes exposed to Cd with males having the highest expression levels, while heat shock protein 70 was mostly up-regulated in males and down-regulated in female copepods, both exposed to Cd. Although copepods are known to develop adaptive mechanisms to tolerate toxic chemicals, continuous exposure to metals could lead to the bioaccumulation of metals in their offspring through maternal transfer and direct uptake from the medium over several generations. As a consequence, increased metal concentrations in copepods could result in physiological damage, reducing their fitness, and possibly compromise copepod population structures. This study showed that mortality, life history traits and molecular responses of a copepod species provided important toxicological endpoints and bio-markers for environmental risk assessments. Environmental pressure resulting from continuous exposure to persistent pollutants like Cd, could have evolutionary significance. The tendency for copepods to selectively adapt to a toxic environment through modifications, could increase their chance of survival over a long term.
Collapse
Affiliation(s)
- Esther U Kadiene
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000 Lille, France; Institute of Marine Biology, National Taiwan Ocean University, 20224 Keelung, Taiwan
| | - Baghdad Ouddane
- Université de Lille, Equipe Physico-Chimie de l'Environnement, Laboratoire LASIR UMR CNRS 8516, 59655 Villeneuve d'Ascq Cedex, France
| | - Hong-Yi Gong
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, 20224 Keelung, Taiwan; Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Sami Souissi
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000 Lille, France.
| |
Collapse
|
47
|
Cui J, Wu F, Yang X, Liu S, Han S, Chen B. Effects of ammonia on hypothalamic-pituitary-ovarian axis in female rabbits. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112922. [PMID: 34700170 DOI: 10.1016/j.ecoenv.2021.112922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND As one of the most harmful gases in the livestock house, ammonia is recognized as an environmental stressor by Environmental Protection Agency (United States). The study aimed to explore the effect of ammonia on hypothalamic-pituitary-ovarian (HPO) axis of rabbits. A total of ninety two-month-old female IRA rabbits were randomly divided into three groups, and were kept in animal environment control rooms for four weeks at college of animal science and technology, Hebei Agricultural University (Baoding, China). The rabbits in the control group were kept under ammonia concentration of < 3 ppm. The two treatment groups were kept under ammonia concentration of 30 ppm and 50 ppm. Hypothalamus, pituitary, and ovary were collected for hematoxylin and eosin (HE) staining, immunohistochemistry, terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL) and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Serum was collected for enzyme-linked immunosorbent assay (ELISA). RESULTS Histopathological examination revealed that exposed to excess ammonia damaged the morphology and structure of hypothalamus, pituitary, and ovary. TUNEL assay revealed that apoptosis rate increased in hypothalamus, pituitary, and ovary. The protein expression levels of Bcl-2associated X protein (Bax) and Caspase-9 increased, while B-cell lymphoma-2 (Bcl-2) decreased, resulting in apoptosis. Moreover, the concentration of gonadotropin-releasing hormone (GnRH), follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol (E2), and progesterone (PROG) reduced in plasma. The mRNA expression of FSH and LH in pituitary and follicle-stimulating hormone receptor (FSHR), E2, PROG in ovary as well as decreased, indicated hormone secretion disorder. CONCLUSIONS The results indicated that ammonia exposure damaged hypothalamus, pituitary, and ovary, caused hormone secretion disorder and apoptosis.
Collapse
Affiliation(s)
- Jia Cui
- Department of Animal Science and Technology, Hebei Agricultural University, Baoding, China.
| | - Fengyang Wu
- Department of Animal Science and Technology, Hebei Agricultural University, Baoding, China.
| | - Xinyu Yang
- Department of Animal Science and Technology, Hebei Agricultural University, Baoding, China.
| | - Shudong Liu
- Department of Animal Science and Technology, Hebei Agricultural University, Baoding, China.
| | - Shuaijuan Han
- Department of Animal Science and Technology, Hebei Agricultural University, Baoding, China.
| | - Baojiang Chen
- Department of Animal Science and Technology, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
48
|
Liu Y, Yu M, Cui J, Du Y, Teng X, Zhang Z. Heat shock proteins took part in oxidative stress-mediated inflammatory injury via NF-κB pathway in excess manganese-treated chicken livers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112833. [PMID: 34600291 DOI: 10.1016/j.ecoenv.2021.112833] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Manganese (Mn) is an essential metal in humans and animals. However, excess Mn entered environment due to the wide application of Mn in industry and agriculture, and became an environmental pollutant. Exposure to high doses of Mn is toxic to humans and animals (including chickens). Liver is a target organ of Mn poisoning. Nevertheless, there were few studies on whether Mn poisoning damages chicken livers and poisoning mechanism of Mn in chicken livers. Herein, the aim of this study was to explore if oxidative stress, heat shock proteins (HSPs), and inflammatory response were involved in the mechanism of Mn poisoning-caused damage in chicken livers. A chicken Mn poisoning model was established. One hundred and eighty chickens were randomly divided into one control group (containing 127.88 mg Mn kg-1) and three Mn-treated groups (containing 600, 900, and 1800 mg Mn kg-1, respectively). Histomorphological structure was observed via microstructure and ultrastructure. Spectrophotometry was used to detect total antioxidant capacity (T-AOC) and inducible nitric oxide synthase (iNOS) activity, as well as nitric oxide (NO) content. And qRT-PCR was performed to measure mRNA expression of inflammatory genes (nuclear factor kappa B (NF-κB), tumor necrosis factor α (TNF-α), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and iNOS) and heat shock protein (HSP) genes (HSP27, HSP40, HSP60, HSP70, and HSP90). Multivariate correlation analysis, principal component analysis, and cluster analysis were used to demonstrate the reliability of mechanism of Mn poisoning in our experiment. The results indicated that excess Mn led to inflammatory injury at three contents and three time points. Meanwhile, we found that NO content, iNOS activity, and NF-κB, TNF-α, COX-2, PGE2, and iNOS mRNA expression increased after Mn treatment, meaning that exposure to Mn induced inflammatory response via NF-κB pathway in chicken livers. Moreover, excess Mn decreased T-AOC activity, indicating that Mn exposure caused oxidative stress. Furthermore, mRNA expression of above five HSP genes was up-regulated during Mn exposure. Oxidative stress triggered the increase of HSPs and the increase of HSPs mediated inflammatory response induced by Mn. In addition, there were time- and dose-dependent effects on Mn-caused chicken liver inflammatory injury. Taken together, HSPs participated in oxidative stress-mediated inflammatory damage caused by excess Mn in chicken livers via NF-κB pathway. For the first time, we found that oxidative stress can trigger HSP70 and HSPs can trigger poisoning-caused inflammatory damage, which needs to be further explored. This study provided a new insight into environmental pollutants and a reference for further study on molecular mechanisms of poisoning.
Collapse
Affiliation(s)
- Yuhao Liu
- School of Animal Science, Inner Mongolia Agricultural University, Hohhot City 010018, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Meijin Yu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Jiawen Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Ye Du
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China; Electrical and Information Engineering College, Jilin Agricultural Science and Technology University, Jilin 132101, PR China.
| | - Zuozhong Zhang
- School of Animal Science, Inner Mongolia Agricultural University, Hohhot City 010018, PR China.
| |
Collapse
|
49
|
Guan K, Li H, Qi X, Chen H, Wang R, Ma Y. Bovine-derived MFG-E8 alleviating mitochondrial dysfunction via Akt/Sirt1/PGC-1α and MAPK/ERK signaling cascades. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
50
|
Xu Z, Cao J, Qin X, Qiu W, Mei J, Xie J. Toxic Effects on Bioaccumulation, Hematological Parameters, Oxidative Stress, Immune Responses and Tissue Structure in Fish Exposed to Ammonia Nitrogen: A Review. Animals (Basel) 2021; 11:ani11113304. [PMID: 34828036 PMCID: PMC8614401 DOI: 10.3390/ani11113304] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 01/11/2023] Open
Abstract
Simple Summary Ammonia nitrogen is a common environmental limiting factor in aquaculture, which can accumulate rapidly in water and reach toxic concentrations. In most aquatic environments, fish are vulnerable to the toxic effects of high levels of ammonia nitrogen exposure. It has been found that the toxic effects of ammonia nitrogen on fish are multi-mechanistic. Therefore, the purpose of this review is to explore the various toxic effects of ammonia nitrogen on fish, including oxidative stress, neurotoxicity, tissue damage and immune response. Abstract Ammonia nitrogen is the major oxygen-consuming pollutant in aquatic environments. Exposure to ammonia nitrogen in the aquatic environment can lead to bioaccumulation in fish, and the ammonia nitrogen concentration is the main determinant of accumulation. In most aquatic environments, fish are at the top of the food chain and are most vulnerable to the toxic effects of high levels of ammonia nitrogen exposure. In fish exposed to toxicants, ammonia-induced toxicity is mainly caused by bioaccumulation in certain tissues. Ammonia nitrogen absorbed in the fish enters the circulatory system and affects hematological properties. Ammonia nitrogen also breaks balance in antioxidant capacity and causes oxidative damage. In addition, ammonia nitrogen affects the immune response and causes neurotoxicity because of the physical and chemical toxicity. Thence, the purpose of this review was to investigate various toxic effects of ammonia nitrogen, including oxidative stress, neurotoxicity and immune response.
Collapse
Affiliation(s)
- Zhenkun Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Z.X.); (J.C.); (W.Q.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Jie Cao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Z.X.); (J.C.); (W.Q.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Xiaoming Qin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China;
| | - Weiqiang Qiu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Z.X.); (J.C.); (W.Q.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Z.X.); (J.C.); (W.Q.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
- Correspondence: (J.M.); (J.X.); Tel.: +86-21-61900349 (J.M.); +86-21-61900351 (J.X.)
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Z.X.); (J.C.); (W.Q.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
- Correspondence: (J.M.); (J.X.); Tel.: +86-21-61900349 (J.M.); +86-21-61900351 (J.X.)
| |
Collapse
|