1
|
Cen Z, Lv S, Li Q, Zhang J, Mei S, Hu X, Yang A. Acute exposure to antimony elicits endocrine disturbances, leading to PCOS and ovarian fibrosis in female zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2025; 294:110198. [PMID: 40174734 DOI: 10.1016/j.cbpc.2025.110198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 03/17/2025] [Accepted: 03/28/2025] [Indexed: 04/04/2025]
Abstract
Antimony (Sb) is an estrogenic metal. Exogenous exposure to Sb can affect estrogen levels and their receptor expression in organisms, exerting estrogen-disrupting effects and even inducing polycystic ovary syndrome (PCOS), which is accompanied by the progression of ovarian fibrosis. To investigate the pathological mechanism of this reproductive damage caused by Sb exposure, we exposed female zebrafish to Sb solution for 18 days for acute toxicity experiments. The results showed that Sb exposure affected the changes of GnRH, FSH, LH, E2 and T levels on the HPG axis, which disrupted the balance of sex steroid hormones in the internal environment of zebrafish and progression of PCOS. Furthermore, Sirius red staining revealed significant fibrosis in the ovarian tissues of Sb-exposed female zebrafish. This study adopted transcriptome sequencing and Western Blotting to explore the mechanisms of action. The biological processes and signaling pathways potentially associated with Sb-induced ovarian fibrosis were predicted by using GO annotation and KEGG pathway enrichment analysis, such as ECM receptors, TGF-β/Smad and WNT/β-catenin. The experiment results showed that Sb induced up-regulation of the transcription levels of the pro-fibrotic factors tgf-β3, wnt10a, ctnnb1, and β-catenin protein expression, suggesting the activation of the WNT/β-catenin pathways and TGF-β/Smad. Sb exposure led to up-regulation of ECM-related genes col2a1a, itgb1b.2, lamc1, fn1a and up-regulation of fibrosis markers α-SMA, Fn1a, col4a2 protein expression, Therefore, we hypothesized that Sb exposure activates the TGF-β/Smad and WNT/β-catenin pathways, leading to abnormal ECM deposition and promoting the progression of ovarian fibrosis in zebrafish.
Collapse
Affiliation(s)
- Zhongqian Cen
- College of Resources and Environmental Engineering, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Key Laboratory of Karst Georesources and Environment, Guizhou University, Guiyang 550025, China
| | - Shenghan Lv
- Guizhou Fishery Science Research Institute, Guiyang 550025, China
| | - Qing Li
- College of Resources and Environmental Engineering, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Key Laboratory of Karst Georesources and Environment, Guizhou University, Guiyang 550025, China
| | - Jingyun Zhang
- College of Resources and Environmental Engineering, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Key Laboratory of Karst Georesources and Environment, Guizhou University, Guiyang 550025, China
| | - ShiXue Mei
- College of Resources and Environmental Engineering, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Key Laboratory of Karst Georesources and Environment, Guizhou University, Guiyang 550025, China
| | - Xia Hu
- College of Resources and Environmental Engineering, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Key Laboratory of Karst Georesources and Environment, Guizhou University, Guiyang 550025, China; Key Laboratory of Karst Georesources and Environmental, Ministry of Education, College of Resources and Environment Engineering, Guizhou University, Guiyang 550025, China
| | - Aijiang Yang
- College of Resources and Environmental Engineering, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Key Laboratory of Karst Georesources and Environment, Guizhou University, Guiyang 550025, China; Key Laboratory of Karst Georesources and Environmental, Ministry of Education, College of Resources and Environment Engineering, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
2
|
Uddin MH, Ritu JR, Chivers DP, Niyogi S. Neurodevelopmental and behavioural effects of waterborne selenite in larval zebrafish (Denio rerio). ENVIRONMENTAL RESEARCH 2025; 273:121240. [PMID: 40020856 DOI: 10.1016/j.envres.2025.121240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Affiliation(s)
- Md Helal Uddin
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada; Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Jinnath Rehana Ritu
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada; Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada
| |
Collapse
|
3
|
Liu Y, Wang C, Fu Z, Bai Y, Zheng G, Wu F. Common antimicrobials disrupt early zebrafish development through immune-cardiac signaling. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2025; 24:100543. [PMID: 40124655 PMCID: PMC11929095 DOI: 10.1016/j.ese.2025.100543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 02/17/2025] [Accepted: 02/23/2025] [Indexed: 03/25/2025]
Abstract
The global production and use of antimicrobial chemicals surged during and after the COVID-19 pandemic, yet their developmental toxicity in aquatic organisms at environmentally relevant concentrations remains poorly understood. Here, we investigate and compare the developmental effects of two restricted antimicrobial chemicals-triclosan (TCS) and triclocarban (TCC)-and three alternative antimicrobials-benzalkonium chloride (BAC), benzethonium chloride (BEC), and chloroxylenol (CX)-on zebrafish embryos (Danio rerio) at concentrations of 0.4, 4, and 40 μg L-1. We find that BAC induces the most severe reduction in hatching rates, followed by TCS, TCC, BEC, and CX. BAC also exhibits the strongest inhibition of heart rate, with toxicity levels comparable to those of TCS and TCC. All tested chemicals, except CX, cause significant teratogenic effects. Transcriptomic analysis reveals substantial disruptions in immune-related coagulation cascades and mitogen-activated protein kinase signaling pathways. Further validation via protein-protein interaction network analysis and real-time quantitative polymerase chain reaction confirms that altered expression of key hub genes in these pathways impacts bone and heart development, as well as immune system function, potentially driving developmental toxicity. This study provides the first systematic comparison of developmental toxicity among currently used antimicrobials at environmentally relevant concentrations, revealing that the alternative antimicrobial BAC poses greater developmental risks than the banned TCS and TCC. These findings raise concerns about the safety of BAC as a widespread substitute and highlight the necessity for more rigorous environmental risk assessments of alternative antimicrobials before their large-scale application.
Collapse
Affiliation(s)
- Yueyue Liu
- State key laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Chen Wang
- State key laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhiyou Fu
- State key laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yingchen Bai
- State key laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Guomao Zheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Fengchang Wu
- State key laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
4
|
Dubey PR, Kaur G, Shukla R. Nano-mediated Management of Metal Toxicity-induced Neurodegeneration: A Critical Review. Mol Neurobiol 2025:10.1007/s12035-025-04782-z. [PMID: 39994160 DOI: 10.1007/s12035-025-04782-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/13/2025] [Indexed: 02/26/2025]
Abstract
Heavy metals, omnipresent in the environment, though imperative in trace quantities for human physiology, become a serious health hazard due to their toxicity. Copper, arsenic, lead, iron, and mercury are some examples of the heavy metals responsible for oxidative stress, which is one of the primary factors behind neurodegenerative diseases like Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis. Neurodegeneration is caused by toxicity due to environmental exposure to these toxic substances or genetic variation. Conventional therapies, relying on chelation and antioxidants, suffer from the broader perspective of metal removal in a non-selective manner and poor targeting of the brain. In this respect, treatments based on nanotechnology that employ nanoparticles such as dendrimers, micelles, and liposomes constitute a promising interest in enhancing drug delivery with minimal neurotoxicity. The present review outlines the heavy metals responsible for neurodegenerative diseases, their pathophysiology, management strategies available at present, and the scope of nanotechnology intervention in overcoming shortcomings of conventional therapies. The genetic influence of heavy metals on neurological health is also part of this article.
Collapse
Affiliation(s)
- Priyanshu Rajesh Dubey
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India
| | - Gagandeep Kaur
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India.
| |
Collapse
|
5
|
Liu J, Fang L, Gong C, Li J, Liu Y, Zeng P, Fan Y, Liu Y, Guo J, Wang L, Li Y. Neurotoxicity study of cenobamate-induced zebrafish early developmental stages. Toxicol Appl Pharmacol 2025; 495:117201. [PMID: 39667564 DOI: 10.1016/j.taap.2024.117201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 12/14/2024]
Abstract
Cenobamate (CNB) is a novel anti-seizure medication with significant efficacy in treating epilepsy. However, in clinical trials, the most common adverse reactions observed in patients are central nervous system (CNS) symptoms. In animal studies, administration of CNB during pregnancy or lactation has been associated with adverse effects on neurodevelopment in offspring. To optimize the clinical use of CNB, we investigated the neurotoxicity of different concentrations of CNB (10, 20, 40, 80, and 160 μM) on zebrafish embryos. Following exposure, zebrafish embryos exhibited abnormal phenotypes such as shortened body length, impaired yolk sac absorption, and decreased heart rate. Behavioral experiments showed that CNB caused abnormal movements such as decreased spontaneous tail curling frequency, shortened total movement distance, and reduced average movement speed. We also found that CNB leads to increased acetylcholinesterase (AChE) activity levels in zebrafish embryos, along with differential expression of neurodevelopment-related genes such as nestin, gfap, synapsin IIa, and gap43. In summary, our research findings indicated that CNB may induce developmental and neurotoxic effects in zebrafish embryos by altering neurotransmitter systems and the expression of neurodevelopmental genes, thereby influencing behavior. This study will provide information for the clinical use of CNB, aiming to benefit more epilepsy patients through its appropriate administration.
Collapse
Affiliation(s)
- Jiahao Liu
- Heilongjiang Provincial Key Laboratory of Child Neurorehabilitation, School of Rehabilitation Medicine, Jiamusi University, Jiamusi, Heilongjiang Province 154007, PR China
| | - Liya Fang
- Heilongjiang Provincial Key Laboratory of Child Neurorehabilitation, School of Rehabilitation Medicine, Jiamusi University, Jiamusi, Heilongjiang Province 154007, PR China
| | - Chao Gong
- Heilongjiang Provincial Key Laboratory of Child Neurorehabilitation, School of Rehabilitation Medicine, Jiamusi University, Jiamusi, Heilongjiang Province 154007, PR China
| | - Jiawei Li
- Heilongjiang Provincial Key Laboratory of Child Neurorehabilitation, School of Rehabilitation Medicine, Jiamusi University, Jiamusi, Heilongjiang Province 154007, PR China
| | - Yuanyuan Liu
- Heilongjiang Provincial Key Laboratory of Child Neurorehabilitation, School of Rehabilitation Medicine, Jiamusi University, Jiamusi, Heilongjiang Province 154007, PR China
| | - Pei Zeng
- The Third Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province 154007, PR China
| | - Yanping Fan
- The Third Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province 154007, PR China
| | - Yao Liu
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province 154007, PR China
| | - Jin Guo
- The Third Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province 154007, PR China.
| | - Luchuan Wang
- The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province 154007, PR China.
| | - Yue Li
- Key laboratory of Microecology-immune Regulatory Network and Related Diseases School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province 154000, PR China.
| |
Collapse
|
6
|
Huang M, Cao S, Huang Y, Tan Z, Duan R. The combined metabolism and transcriptome of tail muscles reveal the effects of antimony pulse exposure on swimming behavior of Pelophylax nigromaculatus tadpoles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177929. [PMID: 39647201 DOI: 10.1016/j.scitotenv.2024.177929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
Due to the periodic emission of pollutants, the exposure mode of contaminants in water bodies is mostly pulse exposure, and the toxic effects of fluctuating exposure on aquatic animals are not consistent with traditional toxicological experiments of constant exposure. The toxic effects of heavy metal antimony (Sb) on the swimming behavior of Pelophylax nigromaculatus tadpoles after pulse exposure (PESb) and continuous exposure (CESb) for 28 days were explored. The mechanisms were analyzed from the perspectives of tail muscle metabolism and transcriptomics. Compared to the control group, PESb and CESb decreased the average speed of P. nigromaculatus tadpoles by 25.72 % and 18.08 %, respectively. PESb and CESb led to changes in 70 and 24 metabolites of tail muscle, respectively. PESb led to alterations in metabolic pathways related to pyrimidine metabolism, arginine biosynthesis, and glycerophospholipid metabolism. In contrast, CESb altered metabolic pathways such as alanine, aspartate, and glutamate metabolism. Compared to the control, 1225 and 1139 DEGs were identified for PESb and CESb, respectively. These DEGs were mainly associated with functions such as immune response, DNA replication, protein digestion, and absorption. It can be seen that PESb and CESb can alter the metabolism and transcriptome of the tail muscle of P. nigromaculatus tadpoles, leading to differential expression of individual movements.
Collapse
Affiliation(s)
- Minyi Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China; Key Laboratory of Development, Utilization, Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan Province, Loudi 417000, Hunan, China
| | - Songle Cao
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China; Key Laboratory of Development, Utilization, Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan Province, Loudi 417000, Hunan, China
| | - Ying Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China; Key Laboratory of Development, Utilization, Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan Province, Loudi 417000, Hunan, China
| | - Zikang Tan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China; Key Laboratory of Development, Utilization, Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan Province, Loudi 417000, Hunan, China
| | - Renyan Duan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China; Key Laboratory of Development, Utilization, Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan Province, Loudi 417000, Hunan, China.
| |
Collapse
|
7
|
Xu K, Zou H, Yang A, Yao Q, Li Q, Zhang J, Hu X. Effects of antimony on antioxidant system, damage indexes of blood-brain barrier and ultrastructure of zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2024; 286:110013. [PMID: 39173811 DOI: 10.1016/j.cbpc.2024.110013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/02/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
Antimony (Sb) and its compounds can be harmful to people and are known to cause cancer, so they are a key pollutant to control. This study investigated the influence of antimony on non-enzymatic antioxidants and the blood-brain barrier (BBB) in zebrafish(Danio rerio), a model organism that shares a high degree of genetic similarity with humans. Zebrafish were exposed to different doses of antimony in water for 7, 18, and 30 days. The results indicated that antimony accumulated most in the liver, followed by the gills, flesh, and brain, with the accumulation increasing as the exposure duration extends. Additionally, under identical antimony concentrations, the buildup in the four tissues was positively correlated with the duration of exposure. After 18 days of exposure, the total antioxidant capacity (T-AOC) and endogenous non-enzymatic antioxidants vitamin C (VC) and vitamin E (VE) decreased as a result of antimony ingestion in zebrafish, although cysteine secretion was increased in the liver, gills, and brain. The structural integrity of the BBB was compromised by the elevation of ApoE4 and MMP-9 levels as a result of antimony exposure, which led to the breakdown of the basal lamina, tight junctions, and nerve fibers in the brain. At this injured region, 5-HT and MBP were also able to easily enter and leave the BBB, albeit at variable rates. Additionally, when the antimony exposure level reached 16.58 mg·L-1, antimony penetrated the BBB and bound to erythrocytes, causing their lysis.
Collapse
Affiliation(s)
- Kun Xu
- College of Resources and Environmental Engineering, Guizhou University, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China
| | - Haitao Zou
- College of Resources and Environmental Engineering, Guizhou University, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China
| | - Aijiang Yang
- College of Resources and Environmental Engineering, Guizhou University, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang 50025, PR China; Institute of Environmental Engineering Planning and Designing, Guizhou University, Guiyang 550025, PR China; Guizhou Guida Yuanheng Environmental Protection Technology Co., LTD., Guiyang 550025, PR China.
| | - Qin Yao
- College of Resources and Environmental Engineering, Guizhou University, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China
| | - Qing Li
- College of Resources and Environmental Engineering, Guizhou University, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China
| | - Jingyun Zhang
- College of Resources and Environmental Engineering, Guizhou University, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China
| | - Xia Hu
- College of Resources and Environmental Engineering, Guizhou University, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang 50025, PR China
| |
Collapse
|
8
|
Gu J, Huang H, Tang P, Liao Q, Liang J, Tang Y, Long J, Chen J, Huang D, Liu S, Pan D, Zeng X, Qiu X. Association between maternal metal exposure during early pregnancy and intelligence in children aged 3-6 years: Results from a Chinese birth cohort. ENVIRONMENTAL RESEARCH 2024; 261:119685. [PMID: 39068966 DOI: 10.1016/j.envres.2024.119685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVE Maternal environmental metal exposure is common, but long-term prospective epidemiological evidence of its impact on children's intellectual development is still insufficient. METHODS Data on maternal plasma metal levels and child intelligence were obtained for 211 3-6-year-old children from Guangxi Zhuang Birth Cohort. ICP-MS was employed to detect 17 metals, including 7 essential metals (Mn, Fe, Co, Ni, Cu, Zn, Mo) and 10 non-essential metals (As, Rb, Sr, Cd, Sb, Cs, Ba, W, Pb, U), in maternal plasma samples obtained before 13 weeks of gestation during the initial maternity checkup. Child intelligence was assessed using the Wechsler Intelligence Scale for Children-Fourth Edition. The GLM, RCS and mixture models were used to assess the associations of maternal plasma metal levels with child intelligence quotient (IQ) scores. RESULTS The GLM analysis revealed that U had a significant adverse effect on child IQ scores in high-dose exposure groups (-9.236 [-18.644, -4.936], p = 0.006) after adjusting for covariates, while Sb showed a linear adverse effect on children's intelligence in the adjusted model (-4.028 [-7.432, -0.626], p = 0.021). BKMR modeling indicated that overall IQ scores decreased as concentrations of non-essential metals mixtures increased after adjusting for essential metal mixtures, consistent with findings from the WQS (β [95% CI], -8.463 [-14.449, -2.476], p = 0.007) and Qgcomp models (-7.003 [-12.928, -1.078], p = 0.022). Among the non-essential metals, U had the highest negative weight at 37.96%, followed by Pb (23.35%) and Sb (16.91%). Furthermore, potential interactions were observed between metals (Pb and U) and Sb in the study findings. CONCLUSION Reducing exposure to non-essential metal mixtures, especially U, Sb and Pb, during early pregnancy and ensuring adequate intake of specific essential metal elements could be a critical intervention in addressing childhood intellectual impairment.
Collapse
Affiliation(s)
- Junwang Gu
- Department of Epidemiology and Biostatistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Huishen Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Peng Tang
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing 100191, China
| | - Qian Liao
- Department of Epidemiology and Biostatistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Jun Liang
- Department of Epidemiology and Biostatistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Ying Tang
- Department of Microbiology, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Jinghua Long
- Department of Epidemiology and Biostatistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Jiehua Chen
- Department of Microbiology, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Dongping Huang
- Department of Microbiology, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Shun Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Dongxiang Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xiaoyun Zeng
- Department of Epidemiology and Biostatistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China; Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, Guilin 541001, Guangxi, China
| | - Xiaoqiang Qiu
- Department of Epidemiology and Biostatistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.
| |
Collapse
|
9
|
Lai Z, Wei Y, He M, Lin C, Ouyang W, Liu X. Toxicity and related molecular mechanisms of Sb(III) in the embryos and larvae of zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124551. [PMID: 39004205 DOI: 10.1016/j.envpol.2024.124551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/16/2024]
Abstract
Antimony (Sb) pollution poses a severe threat to humans and ecosystems due to the extensive use of Sb in various fields. However, little is known about the toxic effects of Sb and its aquatic ecotoxicological mechanism. This study aimed to reveal the toxicity and related molecular mechanisms of trivalent Sb (Sb(III)) in zebrafish embryos/larvae. Sb(III) accumulated in larvae, which correlated with the exposure concentration. Although no significant lethal or teratogenic effects were observed, normal growth and development were affected. Exposure to 10 or 20 mg/L Sb(III) increased the levels of reactive oxygen species in the larvae while enhancing catalase activity and increasing cell apoptosis. Transcriptomic analysis revealed that Sb(III) promoted glutathione metabolism and the ferroptosis pathway. In addition, symptoms associated with ferroptosis, including mitochondrial damage, biochemical levels of related molecules and increased tissue iron content, were detected. Quantitative polymerase chain reaction (qPCR) analyses further confirmed that Sb(III) significantly altered the transcription levels of genes related to the ferroptosis pathway by disrupting iron homeostasis. Furthermore, ferrostatin-1 (Fer-1) mitigated the toxic effects induced by Sb(III) in zebrafish. Our research fills the gap in the literature on the toxicity and mechanism of Sb(III) in aquatic organisms, which is highly important for understanding the ecological risks associated with Sb.
Collapse
Affiliation(s)
- Ziyang Lai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yihan Wei
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, 519087, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
10
|
Qiu Y, Liu Y, Gan M, Wang W, Jiang T, Jiang Y, Lv H, Lu Q, Qin R, Tao S, Huang L, Xu X, Liu C, Dou Y, Ke K, Sun T, Jiang Y, Xu B, Jin G, Ma H, Shen H, Hu Z, Lin Y, Du J. Association of prenatal multiple metal exposures with child neurodevelopment at 3 years of age: A prospective birth cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173812. [PMID: 38857795 DOI: 10.1016/j.scitotenv.2024.173812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Prenatal exposures to toxic metals and trace elements have been linked to childhood neurodevelopment. However, existing evidence remains inconclusive, and further research is needed to investigate the mixture effects of multiple metal exposures on childhood neurodevelopment. We aimed to examine the associations between prenatal exposure to specific metals and metal mixtures and neurodevelopment in children. In this prospective cohort study, we used the multivariable linear regressions and the robust modified Poisson regressions to explore the associations of prenatal exposure to 25 specific metals with neurodevelopment among children at 3 years of age in 854 mother-child pairs from the Jiangsu Birth Cohort (JBC) Study. The Bayesian kernel machine regression (BKMR) was employed to assess the joint effects of multiple metals on neurodevelopment. Prenatal manganese (Mn) exposure was negatively associated with the risk of non-optimal cognition development of children, while vanadium (V), copper (Cu), zinc (Zn), antimony (Sb), cerium (Ce) and uranium (U) exposures were positively associated with the risk of non-optimal gross motor development. BKMR identified an interaction effect between Sb and Ce on non-optimal gross motor development. Additionally, an element risk score (ERS), representing the mixture effect of multiple metal exposures including V, Cu, Zn, Sb, Ce and U was constructed based on weights from a Poisson regression model. Children with ERS in the highest tertile had higher probability of non-optimal gross motor development (RR = 2.37, 95 % CI: 1.15, 4.86) versus those at the lowest tertile. Notably, Sb [conditional-posterior inclusion probabilities (cPIP) = 0.511] and U (cPIP = 0.386) mainly contributed to the increased risk of non-optimal gross motor development. The findings highlight the importance of paying attention to the joint effects of multiple metals on children's neurodevelopment. The ERS score may serve as an indicator of comprehensive metal exposure risk for children's neurodevelopment.
Collapse
Affiliation(s)
- Yun Qiu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, Jiangsu, China
| | - Yuxin Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Ming Gan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Weiting Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Tao Jiang
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yangqian Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Hong Lv
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, Jiangsu, China
| | - Qun Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Rui Qin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Shiyao Tao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Lei Huang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Xin Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Cong Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yuanyan Dou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Kang Ke
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Tianyu Sun
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yue Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Bo Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Guangfu Jin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, Jiangsu, China
| | - Hongxia Ma
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, Jiangsu, China
| | - Hongbing Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, Jiangsu, China
| | - Yuan Lin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, Jiangsu, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China.
| | - Jiangbo Du
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, Jiangsu, China.
| |
Collapse
|
11
|
Xu W, Chang M, Li J, Li M, Stoks R, Zhang C. Local thermal adaption mediates the sensitivity of Daphnia magna to nanoplastics under global warming scenarios. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134921. [PMID: 38909466 DOI: 10.1016/j.jhazmat.2024.134921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 06/25/2024]
Abstract
The toxicity of nanoplastics at environmentally relevant concentrations has received widespread attention in the context of global warming. Despite numerous studies on the impact of mean temperature (MT), the effects of daily temperature fluctuations (DTFs) on the ecotoxicity of nanoplastics remains largely unexplored. Moreover, the role of evolutionary adaptation in assessing long-term ecological risks is unclear. Here, we investigated the effects of polystyrene nanoplastics (5 μg L-1) on Daphnia magna under varying MT (20 °C and 24 °C) and DTFs (0 °C, 5 °C, and 10 °C). Capitalizing on a space-for-time substitution approach, we further assessed how local thermal adaptation affect the sensitivity of Daphnia to nanoplastics under global warming. Our results indicated that nanoplastics exposure in general reduced heartbeat rate, thoracic limb activity and feeding rate, and increased CytP450, ETS activity and Hgb concentrations. Higher MT and DTFs enhanced these effects. Notably, clones originating from their respective sites performed better under their native temperature conditions, indicating local thermal adaptation. Warm-adapted low-latitude D. magna showed stronger nanoplastics-induced increases in CytP450, ETS activity and Hgb concentrations under local MT 24 °C, while cold-adapted high-latitude D. magna showed stronger nanoplastics-induced decreases in heartbeat rate, thoracic limb activity and feeding rate under high MT than under low MT.
Collapse
Affiliation(s)
- Wencheng Xu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Mengjie Chang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Jingzhen Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Mingyang Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, KU Leuven, Leuven B-3000, Belgium
| | - Chao Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
12
|
Chen Y, Mi X, Cao Z, Guo A, Li C, Yao H, Yuan P. Mechanisms of surface groups regulating developmental toxicity of graphene-based nanomaterials via glycerophospholipid metabolic pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173576. [PMID: 38810761 DOI: 10.1016/j.scitotenv.2024.173576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/07/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Surface modification of graphene-based nanomaterials (GBNs) may occur in aquatic environment and during intentional preparation. However, the influence of the surface groups on the developmental toxicity of GBNs has not been determined. In this study, we evaluated the developmental toxicity of three GBNs including GO (graphene oxide), RGO (reduced GO) and RGO-N (aminated RGO) by employing zebrafish embryos at environmentally relevant concentrations (1-100 μg/L), and the underlying metabolic mechanisms were explored. The results showed that both GO and RGO-N disturbed the development of zebrafish embryos, and the adverse effect of GO was greater than that of RGO-N. Furthermore, the oxygen-containing groups of GBNs play a more important role in inducing developmental toxicity compared to size, defects and nitrogen-containing groups. Specifically, the epoxide and hydroxyl groups of GBNs increased their intrinsic oxidative potential, promoted the generation of ROS, and caused lipid peroxidation. Moreover, a significant decrease in guanosine and abnormal metabolism of multiple glycerophospholipids were observed in all three GBN-treated groups. Nevertheless, GO exposure triggered more metabolic activities related to lipid peroxidation than RGO or RGO-N exposure, and the disturbance intensity of the same metabolite was greater than that of the other two agents. These findings reveal underlying metabolic mechanisms of GBN-induced developmental toxicity.
Collapse
Affiliation(s)
- Yuming Chen
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China; Henan Key Laboratory of Neurorestoratology, First Hospital Affiliated to Xinxiang Medical University, Weihui 453100, China.
| | - Xingjie Mi
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhenzhen Cao
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Ao Guo
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Chunjie Li
- Xinxiang Key Laboratory of Molecular Neurology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Haojing Yao
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Peng Yuan
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
13
|
Tang Q, Zhao B, Cao S, Wang S, Liu Y, Bai Y, Song J, Pan C, Zhao H, Lan X. Neurodevelopmental toxicity of a ubiquitous disinfection by-product, bromoacetic acid, in Zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135211. [PMID: 39024767 DOI: 10.1016/j.jhazmat.2024.135211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
Disinfection of public drinking water and swimming pools is crucial for preventing waterborne diseases, but it can produce harmful disinfection by-products (DBPs), increasing the risk of various diseases for those frequently exposed to such environments. Bromoacetic acid (BAA) is a ubiquitous DBP, with toxicity studies primarily focused on its in vitro cytotoxicity, and insufficient research on its neurodevelopmental toxicity. Utilizing zebrafish as a model organism, this study comprehensively explored BAA's toxic effects and uncovered the molecular mechanisms through neurobehavioral analysis, in vivo two-photon imaging, transcriptomic sequencing, pharmacological intervention and molecular biological detection. Results demonstrated BAA induced significant changes on various indicators in the early development of zebrafish. Furthermore, BAA disrupted behavioral patterns in zebrafish larvae across locomotion activity, light-dark stimulation, and vibration stimulation paradigms. Subsequent investigation focused on larvae revealed BAA inhibited neuronal development, activated neuroinflammatory responses, and altered vascular morphology. Transcriptomic analysis revealed BAA-stressed zebrafish exhibited downregulation of visual transduction-related genes and activation of ferroptosis and cellular apoptosis. Neurobehavioral disorders were recovered by inhibiting ferroptosis and apoptosis. This study elucidates the neurodevelopmental toxicity associated with BAA, which is crucial for understanding health risks of DBPs and for the development of more effective detection methods and regulatory strategies.
Collapse
Affiliation(s)
- Qi Tang
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China; School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Bixi Zhao
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Siqi Cao
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Shuang Wang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Yue Liu
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China; School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Yangyang Bai
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jiajun Song
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Chuanying Pan
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Haiyu Zhao
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Xianyong Lan
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
14
|
Safeer R, Liu G, Yousaf B, Ashraf A, Haider MIS, Cheema AI, Ijaz S, Rashid A, Sikandar A, Pikoń K. Insights into the biogeochemical transformation, environmental impacts and biochar-based soil decontamination of antimony. ENVIRONMENTAL RESEARCH 2024; 251:118645. [PMID: 38485077 DOI: 10.1016/j.envres.2024.118645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/17/2024] [Accepted: 03/05/2024] [Indexed: 04/07/2024]
Abstract
Every year, a significant amount of antimony (Sb) enters the environment from natural and anthropogenic sources like mining, smelting, industrial operations, ore processing, vehicle emissions, shooting activities, and coal power plants. Humans, plants, animals, and aquatic life are heavily exposed to hazardous Sb or antimonide by either direct consumption or indirect exposure to Sb in the environment. This review summarizes the current knowledge about Sb global occurrence, its fate, distribution, speciation, associated health hazards, and advanced biochar composites studies used for the remediation of soil contaminated with Sb to lessen Sb bioavailability and toxicity in soil. Anionic metal(loid) like Sb in the soil is significantly immobilized by pristine biochar and its composites, reducing their bioavailability. However, a comprehensive review of the impacts of biochar-based composites on soil Sb remediation is needed. Therefore, the current review focuses on (1) the fundamental aspects of Sb global occurrence, global soil Sb contamination, its transformation in soil, and associated health hazards, (2) the role of different biochar-based composites in the immobilization of Sb from soil to increase biochar applicability toward Sb decontamination. The review aids in developing advanced, efficient, and effective engineered biochar composites for Sb remediation by evaluating novel materials and techniques and through sustainable management of Sb-contaminated soil, ultimately reducing its environmental and health risks.
Collapse
Affiliation(s)
- Rabia Safeer
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Guijian Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China.
| | - Balal Yousaf
- Department of Technologies and Installations for Waste Management, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44 -100, Gliwice, Poland
| | - Aniqa Ashraf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Muhammad Irtaza Sajjad Haider
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Ayesha Imtiyaz Cheema
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Samra Ijaz
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Audil Rashid
- Botany Department, Faculty of Science, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan
| | - Anila Sikandar
- Department of Environmental Science, Kunming University of Science and Technology, 650500, Yunnan, PR China
| | - Krzysztof Pikoń
- Department of Technologies and Installations for Waste Management, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44 -100, Gliwice, Poland
| |
Collapse
|
15
|
Li X, Zheng T, Zhang J, Chen H, Xiang C, Sun Y, Dang Y, Ding P, Hu G, Yu Y. Photoaged polystyrene microplastics result in neurotoxicity associated with neurotransmission and neurodevelopment in zebrafish larvae (Danio rerio). ENVIRONMENTAL RESEARCH 2024; 250:118524. [PMID: 38401682 DOI: 10.1016/j.envres.2024.118524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Microplastics (MPs) are emerging pollutants widely distributed in the environment, inducing toxic effects in various organisms. However, the neurotoxicity and underlying mechanisms of simulated sunlight-aged MPs have rarely been investigated. In this study, zebrafish (Danio rerio) were exposed to environmentally relevant concentrations (0, 0.1, 1, 10, and 100 μg/L) of virgin polystyrene (V-PS) and aged polystyrene (A-PS) for 120 hpf to evaluate the neurotoxicity. The results demonstrated that simulated sunlight irradiation altered the physicochemical properties (morphology, functional groups, and chemical composition) of V-PS. Exposure to A-PS causes greater toxicity on locomotor ability in larval zebrafish than V-PS. Motor neuron development was disrupted by transgenic (hb9-GFP) zebrafish larvae exposed to A-PS, with significant alterations in neurotransmitter levels (ACh, DA, 5-HT, and GABA) and enzyme activity (AChE, ChAT, and ChE). Further investigation found that exposure to A-PS had a significantly impact on the expression of neurotransmission and neurodevelopment-related genes in zebrafish. These findings suggest that A-PS induces neurotoxicity by its effects on neurotransmission and neurodevelopment. This study highlights the neurotoxic effects and mechanisms of simulated sunlight irradiation of MPs, providing new insights for assessing the ecological risks of photoaged MPs in the environment.
Collapse
Affiliation(s)
- Xintong Li
- The Postgraduate Training Base of Jinzhou Medical University (South China Institute of Environmental Sciences, Ministry of Ecology and Environment), Guangzhou, 510655, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Tong Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Jiayi Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Haibo Chen
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Chongdan Xiang
- Department of Public Health Emergency Preparedness and Response, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
| | - Yanan Sun
- The Postgraduate Training Base of Jinzhou Medical University (South China Institute of Environmental Sciences, Ministry of Ecology and Environment), Guangzhou, 510655, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China.
| | - Guocheng Hu
- The Postgraduate Training Base of Jinzhou Medical University (South China Institute of Environmental Sciences, Ministry of Ecology and Environment), Guangzhou, 510655, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China.
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| |
Collapse
|
16
|
Prakash V, Chauhan SS, Ansari MI, Jagdale P, Ayanur A, Parthasarathi R, Anbumani S. 4-Methylbenzylidene camphor induced neurobehavioral toxicity in zebrafish (Danio rerio) embryos. ENVIRONMENTAL RESEARCH 2024; 242:117746. [PMID: 38008201 DOI: 10.1016/j.envres.2023.117746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/05/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
4-Methylbenzylidene camphor (4-MBC) is a widely used organic UV filter in personal care products. Extensive use of 4-MBC and its frequent detection in aquatic ecosystems defile the biota with muscular and neuronal impairments. This study investigates the neurobehavioral toxicity of 4-MBC using Danio rerio as a model organism. Embryos were exposed semi-statically to 4-MBC at 5, 50, and 500 μg/L concentrations for 10-day post fertilization (dpf). Embryos exhibited a significant thigmotaxis and decreased startle touch response with altered expression of nervous system mRNA transcripts on 5 & 10 dpf. Compared to the sham-exposed group, 4-MBC treated larvae exhibited changes in the expression of shha, ngn1, mbp, elavl3, α1-tubulin, syn2a, and gap43 genes. Since ngn1 induction is mediated by shh signaling during sensory neuron specification, the elevated protein expression of NGN1 indicates 4-MBC interference in the sonic hedgehog signaling pathway. This leads to sensory neuron impairment and function such as 'sense' as evident from reduced touch response. In addition, larval brain histology with a reduced number of cells in the Purkinje layer emblazing the defunct motor coordination. Predictive toxicity study also showed a higher affinity of 4-MBC to modeled Shh protein. Thus, the findings of the present work highlighted that 4-MBC is potential to induce developmental neurotoxicity at both behavioral and molecular functional perspectives, and developing D. rerio larvae could be considered as a suitable alternate animal model to assess the neurological dysfunction of organic UV filters.
Collapse
Affiliation(s)
- Ved Prakash
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, "Vishvigyan Bhawan", 31, Mahatma Gandhi Marg, P.O. Box No.80, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shweta Singh Chauhan
- Computational Toxicology Facility, CSIR-Indian Institute of Toxicology Research, "Vishvigyan Bhawan", 31, Mahatma Gandhi Marg, P.O. Box No.80, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohammad Imran Ansari
- Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pankaj Jagdale
- Pathology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
| | - Anjaneya Ayanur
- Pathology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ramakrishnan Parthasarathi
- Computational Toxicology Facility, CSIR-Indian Institute of Toxicology Research, "Vishvigyan Bhawan", 31, Mahatma Gandhi Marg, P.O. Box No.80, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, "Vishvigyan Bhawan", 31, Mahatma Gandhi Marg, P.O. Box No.80, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
17
|
Li Y, Li H, Zhang R, Bing X. Toxicity of antimony to Daphnia magna: Influence of environmental factors, development of biotic ligand approach and biochemical response at environmental relevant concentrations. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132738. [PMID: 37832444 DOI: 10.1016/j.jhazmat.2023.132738] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/20/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Acute toxicity of antimony pentavalent to neonatal Daphnia magna and the influence of water quality parameters were investigated, and enzymatic activities of organisms at environmentally relevant levels of antimony were determined. EC50 values of antimony to neonatal D. magna were 90.3 and 63.8 mg/L at 24 and 48 h of exposure, respectively. Dissolved organic matter (FA and HA) and cation (Ca2+, Mg2+ or Na+) had significant protective effects on D. magna against antimony toxicity. With increasing pH in the range from 7.4 to 8.5, increase of EC50 were observed due to the competition of OH- on biotic ligands. Based on the biotic ligand model (BLM) concept, stability constants for the binding of Sb(OH)6- and OH- to the biotic ligand were estimated, and the Log [Formula: see text] - and LogKXOH- were 3.137 and 2.859, respectively. Moreover, antimony exposure in low concentrations significantly increased MDA levels and maybe exert oxidative stress to the organisms. Antimony can also induce toxicity in D. magna by affecting oxidative stress and neurotransmitter systems. The relatively comprehensive toxicological data can contribute to the toxicity prediction and ecological risk assessments of antimony.
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Ecology and Environment, Inner Mongolia University, Huhhot 010021, China
| | - Huixian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Ruiqing Zhang
- School of Ecology and Environment, Inner Mongolia University, Huhhot 010021, China.
| | - Xiaojie Bing
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Ecology and Environment, Inner Mongolia University, Huhhot 010021, China
| |
Collapse
|
18
|
Chen F, Lu J, Li M, Yang J, Xu W, Jiang X, Zhang Y. Spinetoram-Induced Potential Neurotoxicity through Autophagy Mediated by Mitochondrial Damage. Molecules 2024; 29:253. [PMID: 38202836 PMCID: PMC10780237 DOI: 10.3390/molecules29010253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 01/12/2024] Open
Abstract
Spinetoram is an important semi-synthetic insecticide extensively applied in agriculture. It is neurotoxic to insects, primarily by acting on acetylcholine receptors (nAChRs). However, few studies have examined the neurotoxicity of spinetoram in human beings. In this study, various concentrations (5, 10, 15, and 20 μM) of spinetoram were employed to expose SH-SY5Y cells in order to study the neurotoxic effects of spinetoram. The results showed that spinetoram exposure markedly inhibited cell viability and induced oxidative stress. It also induced mitochondrial membrane potential collapse (ΔΨm), and then caused a massive opening of the mitochondrial permeability transition pore (mPTP), a decrease in ATP synthesis, and Ca2+ overloading. Furthermore, spinetoram exposure induced cellular autophagy, as evidenced by the formation of autophagosomes, the conversion of LC3-I into LC3-II, down-regulation of p62, and up-regulation of beclin-1. In addition, we observed that p-mTOR expression decreased, while p-AMPK expression increased when exposed to spinetoram, indicating spinetoram triggered AMPK/mTOR-mediated autophagy. Complementarily, the effect of spinetoram on neurobehavior was studied using the zebrafish model. After being exposed to different concentrations (5, 10, and 20 μg/mL) of spinetoram, zebrafish showed neurobehavioral irregularities, such as reduced frequency of tail swings and spontaneous movements. Similarly, autophagy was also observed in zebrafish. In conclusion, spinetoram exposure produced potential neurotoxicity through autophagy mediated by mitochondrial damage. The experimental data and results of the neurotoxicity study of spinetoram provided above are intended to serve as reference for its safety assessment.
Collapse
Affiliation(s)
- Fan Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; (F.C.); (J.L.); (M.L.); (W.X.)
| | - Jin Lu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; (F.C.); (J.L.); (M.L.); (W.X.)
| | - Meng Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; (F.C.); (J.L.); (M.L.); (W.X.)
| | - Junwu Yang
- Frog Prince (Fujian) Baby&Child Care Product Co., Ltd., Zhangzhou 363000, China;
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; (F.C.); (J.L.); (M.L.); (W.X.)
| | - Xufeng Jiang
- Ugel Cosmetics PTE Ltd., Singapore 349561, Singapore
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; (F.C.); (J.L.); (M.L.); (W.X.)
| |
Collapse
|
19
|
Mohan K, Omar BJ, Chacham S, Bharti A. Perinatal Exposure to Trace Elements: The Dubious Culprit of Autistic Spectrum Disorder in Children. Curr Pediatr Rev 2024; 21:18-28. [PMID: 37937576 DOI: 10.2174/0115733963251295231031102941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/25/2023] [Accepted: 09/26/2023] [Indexed: 11/09/2023]
Abstract
There is evidence that few trace elements in the environment work as hazardous materials in terms of their exposure in the perinatal period, causing autistic spectrum disorder (ASD) in children, and avoiding these exposures in the environment can reduce the number of new cases. This perspective study provides preliminary evidence to consider a few trace elements as culprits for ASD. More studies with larger cohorts are needed, but meanwhile, as per available evidence, exposure to these hazardous materials must be warranted during pregnancy and early stages of life.
Collapse
Affiliation(s)
- Kriti Mohan
- Department of Pediatrics, All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh, India
| | - Balram Ji Omar
- Department of Microbiology, All India Institute of Medical Science, Rishikesh, Uttarakhand, India
| | - Swathi Chacham
- Department of Pediatrics, All India Institute of Medical Sciences, Bibinagar, India
| | - Ajay Bharti
- Department of Orthopedics, All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh, India
| |
Collapse
|
20
|
Ma DD, Shi WJ, Li SY, Zhang JG, Lu ZJ, Long XB, Liu X, Huang CS, Ying GG. Ephedrine and cocaine cause developmental neurotoxicity and abnormal behavior in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106765. [PMID: 37979497 DOI: 10.1016/j.aquatox.2023.106765] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
Ephedrine (EPH) and cocaine (COC) are illegal stimulant drugs, and have been frequently detected in aquatic environments. EPH and COC have negative effects on the nervous system and cause abnormal behaviors in mammals and fish at high concentrations, but their mechanisms of neurotoxicity remain unclear in larvae fish at low concentrations. To address this issue, zebrafish embryos were exposed to EPH and COC for 14 days post-fertilization (dpf) at 10, 100, and 1000 ng L-1. The bioaccumulation, development, behavior, cell neurotransmitter levels and apoptosis were detected to investigate the developmental neurotoxicity (DNT) of EPH and COC. The results showed that EPH decreased heart rate, while COC increased heart rate. EPH caused cell apoptosis in the brain by AO staining. In addition, behavior analysis indicated that EPH and COC affected spontaneous movement, touch-response, swimming activity and anxiety-like behaviors. EPH and COC altered the levels of the neurotransmitters dopamine (DA) and γ-aminobutyric acid (GABA) with changes of the transcription of genes related to the DA and GABA pathways. These findings indicated that EPH and COC had noticeable DNT in the early stage of zebrafish at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Dong-Dong Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China; Anti-Drug Technology Center of Guangdong Province and National Anti-Drug Laboratory Guangdong Regional Center, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China.
| | - Si-Ying Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jin-Ge Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zhi-Jie Lu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao-Bing Long
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xin Liu
- Anti-Drug Technology Center of Guangdong Province and National Anti-Drug Laboratory Guangdong Regional Center, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China
| | - Chu-Shu Huang
- Anti-Drug Technology Center of Guangdong Province and National Anti-Drug Laboratory Guangdong Regional Center, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China; Anti-Drug Technology Center of Guangdong Province and National Anti-Drug Laboratory Guangdong Regional Center, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China.
| |
Collapse
|
21
|
Toni M, Arena C, Cioni C, Tedeschi G. Temperature- and chemical-induced neurotoxicity in zebrafish. Front Physiol 2023; 14:1276941. [PMID: 37854466 PMCID: PMC10579595 DOI: 10.3389/fphys.2023.1276941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/22/2023] [Indexed: 10/20/2023] Open
Abstract
Throughout their lives, humans encounter a plethora of substances capable of inducing neurotoxic effects, including drugs, heavy metals and pesticides. Neurotoxicity manifests when exposure to these chemicals disrupts the normal functioning of the nervous system, and some neurotoxic agents have been linked to neurodegenerative pathologies such as Parkinson's and Alzheimer's disease. The growing concern surrounding the neurotoxic impacts of both naturally occurring and man-made toxic substances necessitates the identification of animal models for rapid testing across a wide spectrum of substances and concentrations, and the utilization of tools capable of detecting nervous system alterations spanning from the molecular level up to the behavioural one. Zebrafish (Danio rerio) is gaining prominence in the field of neuroscience due to its versatility. The possibility of analysing all developmental stages (embryo, larva and adult), applying the most common "omics" approaches (transcriptomics, proteomics, lipidomics, etc.) and conducting a wide range of behavioural tests makes zebrafish an excellent model for neurotoxicity studies. This review delves into the main experimental approaches adopted and the main markers analysed in neurotoxicity studies in zebrafish, showing that neurotoxic phenomena can be triggered not only by exposure to chemical substances but also by fluctuations in temperature. The findings presented here serve as a valuable resource for the study of neurotoxicity in zebrafish and define new scenarios in ecotoxicology suggesting that alterations in temperature can synergistically compound the neurotoxic effects of chemical substances, intensifying their detrimental impact on fish populations.
Collapse
Affiliation(s)
- Mattia Toni
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Chiara Arena
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Carla Cioni
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Gabriella Tedeschi
- Department of Veterinary Medicine and Animal Science (DIVAS), Università Degli Studi di Milano, Milano, Italy
- CRC “Innovation for Well-Being and Environment” (I-WE), Università Degli Studi di Milano, Milano, Italy
| |
Collapse
|
22
|
Yao Q, Yang A, Hu X, Zou H, Chen J, Li Q, Lv S, Yu X, Li C. Effects of antimony exposure on DNA damage and genome-wide variation in zebrafish (Danio rerio) liver. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 259:106524. [PMID: 37031539 DOI: 10.1016/j.aquatox.2023.106524] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/21/2023] [Accepted: 04/05/2023] [Indexed: 05/15/2023]
Abstract
Antimony (Sb) is a potentially toxic and carcinogenic cumulative contaminant that poses a serious threat to aquatic ecosystems. To better clarify the genotoxicity of Sb and its mechanism of action. In this study, we investigated DNA damage and genome-wide variation in the liver of a model organism, zebrafish (Danio rerio), under subacute Sb exposure and explored its potential toxicological mechanisms. The results showed that medium and high concentrations of Sb significantly reduced the total antioxidant capacity and increased the content of reactive oxygen species in zebrafish liver, and further studies revealed that it increased oxidative DNA damage and DNA-DNA cross-link (DDC), but had little effect on DNA-protein cross-link (DPC). The result of resequencing showed that the mutation sites of the genes with high concentrations of Sb were higher than those with medium concentrations, and the mutation was mainly a single nucleotide. The pathways significantly enriched for nonsynonymous single nucleotide polymorphisms (SNPs) and insertion/deletion mutations (InDels) variant genes in the coding regions of both the medium and high Sb-treated groups were ECM-receptor interactions, and the high Sb-treated group also included lysine degradation, hematopoietic cell lineage, and cytokine-cytokine receptor interactions. This suggests that ECM-receptor interactions play an important role in the mechanism of antimony toxicity to the liver of zebrafish.
Collapse
Affiliation(s)
- Qin Yao
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China
| | - Aijiang Yang
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China; Institute of Environmental Engineering Planning and Designing, Guizhou University, Guiyang 550025, PR China.
| | - Xia Hu
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China; Institute of Environmental Engineering Planning and Designing, Guizhou University, Guiyang 550025, PR China
| | - HaiTao Zou
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China
| | - Jiangfeng Chen
- The College of Animal Science, Guizhou University, Guiyang 550025, PR China
| | - Qing Li
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China
| | - Shenghan Lv
- Guizhou Provincial Academy of Agricultural Sciences, Guiyang 550025, PR China
| | - Xuegang Yu
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China
| | - Cixing Li
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
23
|
Zhou R, Zhou D, Yang S, Shi Z, Pan H, Jin Q, Ding Z. Neurotoxicity of polystyrene nanoplastics with different particle sizes at environment-related concentrations on early zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162096. [PMID: 36791853 DOI: 10.1016/j.scitotenv.2023.162096] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Nanoplastics (NPs) have received global attention due to their wide application and detection in various environmental or biological media. NPs can penetrate physical barriers and accumulate in organisms after being ingested, producing a variety of toxic effects and possessing particle size-dependent effects, distinguishing them from traditional contaminants. This paper explored the neurotoxicity of polystyrene (PS)-NPs of different particle sizes on zebrafish (Danio rerio) embryos at environmental concentrations at the tissue and molecular levels using visualized transgenic zebrafish. Results showed that all particle sizes of PS-NPs produced developmental toxicity in zebrafish embryos and induced neuronal loss, axonal deletion/shortening/hybridization, and developmental and apoptotic-related genetic alterations, ultimately leading to behavioral abnormalities. PS-NPs with smaller sizes may have more severe neurotoxicity due to their entry into the embryo and brain through the chorionic pore before hatching. In addition, PS-NPs at 100 nm and 1000 nm can specifically interfere with GABAergic, cholinergic or serotonergic system and affect neuronal signaling. Our results reveal the neurotoxic risk of NPs, and smaller particle-size NPs may have a greater ecological risk. We anticipate that our study can provide a basis for exploring the toxicity mechanisms of NPs and the environmental risk assessment of NPs.
Collapse
Affiliation(s)
- Ranran Zhou
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Dao Zhou
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Shixin Yang
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Zhiqiao Shi
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Hui Pan
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Qijie Jin
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Zhuhong Ding
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China.
| |
Collapse
|
24
|
Su M, Bao R, Wu Y, Gao B, Xiao P, Li W. Diafenthiuron causes developmental toxicity in zebrafish (Danio rerio). CHEMOSPHERE 2023; 323:138253. [PMID: 36849025 DOI: 10.1016/j.chemosphere.2023.138253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Diafenthiuron, a broad-spectrum insecticide and acaricide used for agricultural crop protection, is highly toxic to nontarget organisms. However, the developmental toxicity of diafenthiuron and its underlying mechanisms are not fully understood. Thus, the purpose of this study was to investigate the developmental toxicity of diafenthiuron in zebrafish. Zebrafish embryos were exposed to diafenthiuron at different concentrations (0.01, 0.1, and 1 μM) from 3 to 120 h post fertilization (hpf). Diafenthiuron exposure significantly shortened the body lengths of zebrafish larvae and significantly decreased superoxide dismutase activity. It also downregulated the spatiotemporal expression of pomc and prl, marker genes involved in pituitary development. Moreover, diafenthiuron exposure downregulated the spatiotemporal expression of liver-specific marker, fabp10a, and inhibited the development of the liver, a detoxification organ. In conclusion, our data provide evidence of the developmental toxicity and hepatotoxicity of diafenthiuron in aquatic organisms, and they are instrumental for further environmental risk assessment of diafenthiuron in aquatic ecosystems.
Collapse
Affiliation(s)
- Menglan Su
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, PR China
| | - Rongkai Bao
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, PR China
| | - Yaqing Wu
- Instrumental Analysis Center of Huaqiao University, Xiamen, 361021, PR China
| | - Bo Gao
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, PR China
| | - Peng Xiao
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Institute for Eco-environmental Research of Sanyang Wetland, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, PR China.
| | - Wenhua Li
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, PR China.
| |
Collapse
|
25
|
Wang B, Wang A, Xu C, Tong Z, Wang Y, Zhuo X, Fu L, Yao W, Wang J, Wu Y. Molecular, morphological and behavioral alterations of zebrafish (Danio rerio) embryos/larvae after clorprenaline hydrochloride exposure. Food Chem Toxicol 2023; 176:113776. [PMID: 37059383 DOI: 10.1016/j.fct.2023.113776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/16/2023]
Abstract
Chlorprenaline hydrochloride (CLOR) is a typical representative of β-adrenergic agonists that may be used illegally as a livestock feed additive and may have adverse impacts on the environment. In the present study, zebrafish embryos were exposed to CLOR to investigate its developmental toxicity and neurotoxicity. The results demonstrated that CLOR exposure led to adverse effects on developing zebrafish, such as morphological changes, a high heart rate, and increased body length, resulting in developmental toxicity. Moreover, the up-regulation of activities of superoxide dismutase (SOD) and catalase (CAT) and the enhancement of malondialdehyde (MDA) content illustrated that CLOR exposure activated oxidative stress in exposed zebrafish embryos. Meanwhile, CLOR exposure also caused alterations in locomotive behavior in zebrafish embryos, including an increase in acetylcholinesterase (AChE) activity. Quantitative polymerase chain reaction (QPCR) results showed that the transcription of genes related to the central nervous system (CNS) development, namely, mbp, syn2a, α1-tubulin, gap43, shha, and elavl3, indicated that CLOR exposure could lead to neurotoxicity in zebrafish embryos. These results showed that CLOR exposure could cause developmental neurotoxicity in the early stages of zebrafish development and that CLOR might induce neurotoxicity by altering the expression of neuro-developmental genes, elevating AChE activity, and activating oxidative stress.
Collapse
Affiliation(s)
- Binjie Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Anli Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Chengrui Xu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Zan Tong
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Yijing Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Xiaocong Zhuo
- Office of Criminal Science and Technology, Xiaoshan District Branch of Hangzhou Public Security Bureau, Hangzhou, 311200, China
| | - Lixiang Fu
- Office of Criminal Science and Technology, Xiaoshan District Branch of Hangzhou Public Security Bureau, Hangzhou, 311200, China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China.
| |
Collapse
|
26
|
Yan Y, Liang S, Zhang T, Deng C, Li H, Zhang D, Lei D, Wang G. Acute exposure of Isopyrazam damages the developed cardiovascular system of zebrafish (Danio rerio). JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:367-377. [PMID: 37032599 DOI: 10.1080/03601234.2023.2197655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Isopyrazam (IPZ) is one of the broad-spectrum succinate dehydrogenase inhibitor fungicides (SDHIs). Although the potential bio-toxicity of SDHIs has been reported hourly, the specific effects focused on the cardiovascular system have remained unclear and piecemeal. Thus, we chose IPZ as a representative to observe the cardiovascular toxicity of SDHIs in zebrafish. Two types of transgenic zebrafish, Tg (cmlc2:GFP) and Tg (flk1:GFP) were used in this study. Healthy embryos at 6 hpf were exposed to IPZ solutions. The statistical data including survival rate, hatching rate, malformed rate, and morphological and functional parameters of the cardiovascular system at 48 hpf and 72 hpf demonstrated that IPZ could cause abnormalities and cardiovascular defects such as spinal curvature, dysmotility, pericardial edema, pericardial hemorrhage, and slowed heart rate, etc. At the same time, the activity of enzymes related to oxidative stress was altered with IPZ. Our results revealed that IPZ-induced cardiovascular toxicity and oxidative stress might be one of the underlying toxic mechanisms.
Collapse
Affiliation(s)
- Yuepei Yan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Shuang Liang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- Department of Radiology, The Second Affiliated Hospital to Mudanjiang Medical University, Mudanjiang City, Heilongjiang Province, China
| | - Tao Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing University of Science and Technology, Chongqing, China
| | - Chengchen Deng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Huili Li
- Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Dechuan Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Daoxi Lei
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| |
Collapse
|
27
|
Tan Y, El-Kersh K, Watson SE, Wintergerst KA, Huang J, Cai L. Cardiovascular Effects of Environmental Metal Antimony: Redox Dyshomeostasis as the Key Pathogenic Driver. Antioxid Redox Signal 2023; 38:803-823. [PMID: 36424825 PMCID: PMC10402706 DOI: 10.1089/ars.2022.0185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
Significance: Cardiovascular diseases (CVDs) are the leading cause of death worldwide, which may be due to sedentary lifestyles with less physical activity and over nutrition as well as an increase in the aging population; however, the contribution of pollutants, environmental chemicals, and nonessential metals to the increased and persistent CVDs needs more attention and investigation. Among environmental contaminant nonessential metals, antimony has been less addressed. Recent Advances: Among environmental contaminant nonessential metals, several metals such as lead, arsenic, and cadmium have been associated with the increased risk of CVDs. Antimony has been less addressed, but its potential link to CVDs is being gradually recognized. Critical Issues: Several epidemiological studies have revealed the significant deleterious effects of antimony on the cardiovascular system in the absence or presence of other nonessential metals. There has been less focus on whether antimony alone can contribute to the pathogenesis of CVDs and the proposed mechanisms of such possible effects. This review addresses this gap in knowledge by presenting the current available evidence that highlights the potential role of antimony in the pathogenesis of CVDs, most likely via antimony-mediated redox dyshomeostasis. Future Directions: More direct evidence from preclinical and mechanistic studies is urgently needed to evaluate the possible roles of antimony in mitochondrial dysfunction and epigenetic regulation in CVDs. Antioxid. Redox Signal. 38, 803-823.
Collapse
Affiliation(s)
- Yi Tan
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Wendy Novak Diabetes Institute, Norton Children's Hospital, Louisville, Kentucky, USA
| | - Karim El-Kersh
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sara E. Watson
- Wendy Novak Diabetes Institute, Norton Children's Hospital, Louisville, Kentucky, USA
- Division of Endocrinology, Department of Pediatrics, Norton Children's Hospital, University of Louisville, Louisville, Kentucky, USA
| | - Kupper A. Wintergerst
- Wendy Novak Diabetes Institute, Norton Children's Hospital, Louisville, Kentucky, USA
- Division of Endocrinology, Department of Pediatrics, Norton Children's Hospital, University of Louisville, Louisville, Kentucky, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Jiapeng Huang
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Anesthesiology and Perioperative Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Cardiovascular and Thoracic Surgery, Cardiovascular Innovation Institute, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Lu Cai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Wendy Novak Diabetes Institute, Norton Children's Hospital, Louisville, Kentucky, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Radiation Oncology; University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
28
|
Li S, Cai M, Wang Q, Yuan Z, Li R, Wang C, Sun Y. Effect of long-term exposure to dyeing wastewater treatment plant effluent on growth and gut microbiota of adult zebrafish (Danio rerio). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53674-53684. [PMID: 36864334 DOI: 10.1007/s11356-023-26167-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 02/23/2023] [Indexed: 06/19/2023]
Abstract
Strict standards have been put forward for the treatment and discharge of dyeing wastewater worldwide. However, there are still traces amount of pollutants, especially emerging pollutants in dyeing wastewater treatment plant (DWTP) effluent. Few studies have focused on the chronic biological toxicity effect and mechanism of DWTP effluent. In this study, 3-month chronic compound toxic effects were investigated by the exposure of DWTP effluent using adult zebrafish. Significantly higher mortality and fatness and significantly lower body weight and body length were found in the treatment group. In addition, long-term exposure to DWTP effluent also obviously reduced liver-body weight ratio of zebrafish, causing abnormal liver development of zebrafish. Moreover, DWTP effluent led to obvious changes in the gut microbiota and microbial diversity of zebrafish. At phylum level, significantly higher of Verrucomicrobia but lower Tenericutes, Actinobacteria, and Chloroflexi were found in the control group. At genus level, the treatment group had significantly higher abundance of Lactobacillus, but significantly lower abundance of Akkermansia, Prevotella, Bacteroides, and Sutterella. These results suggested that long-term exposure to DWTP effluent led to imbalance of gut microbiota in zebrafish. In general, this research indicated that DWTP effluent pollutants could result in negative health outcomes to aquatic organisms.
Collapse
Affiliation(s)
- Shuangshuang Li
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan, 056038, China
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, Dalian, 116023, China
| | - Mingcan Cai
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Qing Wang
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Zixi Yuan
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Ruixuan Li
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Chun Wang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, Dalian, 116023, China.
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
| | - Yingxue Sun
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, State Environmental Protection Key Laboratory of Food Chain Pollution Control, School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| |
Collapse
|
29
|
Wu Y, Ye X, Jiang L, Wang A, Wang J, Yao W, Qin Y, Wang B. Developmental toxicity induced by brodifacoum in zebrafish (Danio rerio) early life stages. Birth Defects Res 2023; 115:318-326. [PMID: 36326103 DOI: 10.1002/bdr2.2118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES The present study mainly focused on the assessment of developmental toxicity induced by exposure to brodifacoum (BDF) in zebrafish at early life stages. MATERIAL AND METHODS Zebrafish embryos were exposed to 0.2, 0.4, and 0.8 mg/L of BDF from 6 to 96 hr post-fertilization (hpf), and the toxic effects of BDF on early embryonic development were investigated in terms of morphological changes, oxidative stress, and alterations in heart development-related genes. RESULTS The experimental results showed that BDF significantly decreased the heart rate, survival rate, body length, and spontaneous movements of zebrafish embryos at 0.8 mg/L, and the morphological developmental abnormalities were also observed at 96 hpf. In addition, exposure to BDF significantly increased oxidative stress levels in zebrafish embryos by increasing the enzymatic activities of catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA) levels, and decreased glutathione (GSH) levels. Furthermore, BDF treatment-induced alterations in the expression levels of the heart development-related genes (gata4, sox9b, tbx2b, and nppa). CONCLUSION Results from this study indicated that exposure to BDF could lead to marked growth inhibition and significantly alter the activities of antioxidant enzymes in zebrafish embryos. Moreover, BDF exposure exhibited severe cardiotoxicity and significantly disrupted heart development-related genes. The results indicated that BDF could induce developmental and cardiac toxicity in zebrafish embryos.
Collapse
Affiliation(s)
- Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province Zhejiang Police College, Hangzhou, Zhejiang Province, PR China
| | - Xinyu Ye
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province Zhejiang Police College, Hangzhou, Zhejiang Province, PR China
| | - Linyi Jiang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province Zhejiang Police College, Hangzhou, Zhejiang Province, PR China
| | - Anli Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang Province, PR China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province Zhejiang Police College, Hangzhou, Zhejiang Province, PR China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province Zhejiang Police College, Hangzhou, Zhejiang Province, PR China
| | - Yazhou Qin
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province Zhejiang Police College, Hangzhou, Zhejiang Province, PR China
| | - Binjie Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province Zhejiang Police College, Hangzhou, Zhejiang Province, PR China
| |
Collapse
|
30
|
Shang Y, Zhang S, Cheng Y, Feng G, Dong Y, Li H, Fan S. Tetrabromobisphenol a exacerbates the overall radioactive hazard to zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120424. [PMID: 36272602 DOI: 10.1016/j.envpol.2022.120424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The major health risks of dual exposure to two hazardous factors of plastics and radioactive contamination are obscure. In the present study, we systematically evaluated the combinational toxic effects of tetrabromobisphenol A (TBBPA), one of the most influential plastic ingredients, mainly from electronic wastes, and γ-irradiation in zebrafish for the first time. TBBPA (0.25 μg/mL for embryos and larvae, 300 μg/L for adults) contamination aggravated the radiation (6 Gy for embryos and larvae, 20 Gy for adults)-induced early dysplasia and aberrant angiogenesis of embryos, further impaired the locomotor vitality of irradiated larvae, and worsened the radioactive multiorganic histologic injury, neurobehavioural disturbances and dysgenesis of zebrafish adults as well as the inter-generational neurotoxicity in offspring. TBBPA exaggerated the radiative toxic effects not only by enhancing the inflammatory and apoptotic response but also by further unbalancing the endocrine system and disrupting the underlying gene expression profiles. In conclusion, TBBPA exacerbates radiation-induced injury in zebrafish, including embryos, larvae, adults and even the next generation. Our findings provide new insights into the toxicology of TBBPA and γ-irradiation, shedding light on the severity of cocontamination of MP components and radioactive substances and thereby inspiring novel remediation and rehabilitation strategies for radiation-injured aqueous organisms and radiotherapy patients.
Collapse
Affiliation(s)
- Yue Shang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, China
| | - Shuqin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, China
| | - Yajia Cheng
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, China
| | - Guoxing Feng
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, China
| | - Yinping Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, China
| | - Hang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, China.
| |
Collapse
|
31
|
Zou H, Xu K, Yang A, Hu X, Niu A, Li Q. Antimony accumulation in zebrafish (Danio rerio) and its effect on genotoxicity, histopathology, and ultrastructure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 252:106297. [PMID: 36122460 DOI: 10.1016/j.aquatox.2022.106297] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Antimony (Sb) is a toxic metal in aquatic ecosystems. In this study, the accumulation of aqueous Sb in the liver, brain, gills and muscle of zebrafish (Danio rerio) and its effect on genotoxicity, histopathology and ultrastructure alterations were evaluated. The fishes were exposed to different concentrations (0, 8.29, 16.58, 33.16 mg L-1) of aqueous Sb for 18 days. The results showed that the order of Sb accumulation in different tissues was liver > gill > muscle > brain, and the accumulation increased with increasing Sb stress concentration. The mRNA expression levels of Nrf2, Cu/Zn-SOD, Mn-SOD, CAT and GPx genes showed different trends. In addition, significant histopathology and ultrastructure alterations were observed in the liver and gills exposed to Sb. Sb could accumulate in different tissues of zebrafish, inducing the expression of oxidative stress genes and activating antioxidant defense systems. Histological and ultrastructural changes could be used as valid biomarkers for the assessment of aqueous Sb contamination.
Collapse
Affiliation(s)
- HaiTao Zou
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China
| | - Kun Xu
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China
| | - Aijiang Yang
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China; Institute of Environmental Engineering Planning and Designing, Guizhou University, Guiyang 550025, PR China.
| | - Xia Hu
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China; Institute of Environmental Engineering Planning and Designing, Guizhou University, Guiyang 550025, PR China
| | - Aping Niu
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China; Institute of Environmental Engineering Planning and Designing, Guizhou University, Guiyang 550025, PR China
| | - Qing Li
- Guizhou Guida Yuanheng Environmental Protection Technology Co., LTD., Guiyang 550025, PR China; Institute of Environmental Engineering Planning and Designing, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
32
|
Cardoso-Vera JD, Gómez-Oliván LM, Islas-Flores H, García-Medina S, Elizalde-Velázquez GA, Orozco-Hernández JM, Heredia-García G, Rosales-Pérez KE, Galar-Martínez M. Multi-biomarker approach to evaluate the neurotoxic effects of environmentally relevant concentrations of phenytoin on adult zebrafish Danio rerio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155359. [PMID: 35460791 DOI: 10.1016/j.scitotenv.2022.155359] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Several studies have reported the presence of phenytoin (PHE) in wastewater treatment plant effluents, hospital effluents, surface water, and even drinking water. However, published studies on the toxic effects of PHE at environmentally relevant concentrations in aquatic organisms are scarce. The present study aimed to determine the effect of three environmentally relevant concentrations of PHE (25, 282, and 1500 ng L-1) on behavioral parameters using the novel tank test. Moreover, we also aimed to determine whether or not these concentrations of PHE may impair acetylcholinesterase (AChE) activity and oxidative status in the brain of Danio rerio adults. Behavioral responses suggested an anxiolytic effect in PHE-exposed organisms, mainly observed in organisms exposed to 1500 ng L-1, with a significant decrease in fish mobility and a significant increase in activity at the top of the tank. Besides the behavioral impairment, PHE-exposed fish also showed a significant increase in the levels of lipid peroxidation, hydroperoxides, and protein carbonyl content compared to the control group. Moreover, a significant increase in brain AChE levels was observed in fish exposed to 282 and 1500 ng L-1. The results obtained in the present study show that PHE triggers a harmful response in the brain of fish, which in turn generates fish have an anxiety-like behavior.
Collapse
Affiliation(s)
- Jesús Daniel Cardoso-Vera
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| | - Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - José Manuel Orozco-Hernández
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Gerardo Heredia-García
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Karina Elisa Rosales-Pérez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| |
Collapse
|
33
|
Holguín-Céspedes GK, Céspedes-Rubio ÁE, Rondón-Barragán IS. First study on response of astrocytes in alevines of red-bellied pacu (Piaractus brachypomus) to subchronic exposure to chlorpyrifos and trichlorfon. Vet World 2022; 15:1676-1683. [PMID: 36185539 PMCID: PMC9394146 DOI: 10.14202/vetworld.2022.1676-1683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Organophosphate pesticides (OPs) used in agricultural production pose environmental and public health risks whenever non-target organisms are exposed to them. Oxon-type OPs, such as trichlorfon (TCF) and chlorpyrifos (CPF), are frequently used in Colombia and have been detected in water bodies in the vicinity of croplands; however, their effect on aquatic organisms, especially fish, is largely unknown. The neurotoxicity of OPs includes inhibition of esterase enzymes, neuronal damage, and increased glial reactivity. This study aimed to assess the astrocytic response in the brain tissue of juvenile red-bellied pacu (Piaractus brachypomus) exposed to TCF and CPF.
Materials and Methods: A 25-day subchronic assay was conducted in which juvenile red-bellied pacu were exposed to CPF and TCF. After 25 days of exposure, the fish were killed and brain samples were collected and processed for immunohistochemistry to assess the morphology and reactivity of astrocytes; glial acidic fibrillary protein was used as a biomarker.
Results: The brain samples from animals under subchronic exposure to OPs for 25 days showed higher cellular density as well as changes in astrocyte phenotype characterized by shortening of cytoplasmic projections, hypertrophy, and ameboid morphology compared to those from nonexposed animals. Similarly, astrocyte hyperreactivity was detected in the optic tectum and medial longitudinal fasciculus of the exposed group.
Conclusion: Immunoreactivity of brain glial cells under subchronic exposure to OPs measured through immunohistochemical tests as well as OPs-induced neuropathology may be useful as a biomarker for monitoring environmental pollution. The results also indicate that P. brachypomus is a suitable biomonitoring model for studying neurotoxicological and neurodegenerative diseases.
Collapse
Affiliation(s)
- Gisella Karina Holguín-Céspedes
- Research Group of Neurodegenerative Diseases – END, Immunotoxicology, Department of Animal Health, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Ibagué, Tolima, Colombia
| | - Ángel Enrique Céspedes-Rubio
- Research Group of Neurodegenerative Diseases – END, Immunotoxicology, Department of Animal Health, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Ibagué, Tolima, Colombia
| | - Iang S. Rondón-Barragán
- Research Group of Neurodegenerative Diseases – END, Immunotoxicology, Department of Animal Health, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Ibagué, Tolima, Colombia
| |
Collapse
|
34
|
Periferakis A, Caruntu A, Periferakis AT, Scheau AE, Badarau IA, Caruntu C, Scheau C. Availability, Toxicology and Medical Significance of Antimony. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084669. [PMID: 35457536 PMCID: PMC9030621 DOI: 10.3390/ijerph19084669] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/04/2022] [Accepted: 04/10/2022] [Indexed: 01/01/2023]
Abstract
Antimony has been known and used since ancient times, but its applications have increased significantly during the last two centuries. Aside from its few medical applications, it also has industrial applications, acting as a flame retardant and a catalyst. Geologically, native antimony is rare, and it is mostly found in sulfide ores. The main ore minerals of antimony are antimonite and jamesonite. The extensive mining and use of antimony have led to its introduction into the biosphere, where it can be hazardous, depending on its bioavailability and absorption. Detailed studies exist both from active and abandoned mining sites, and from urban settings, which document the environmental impact of antimony pollution and its impact on human physiology. Despite its evident and pronounced toxicity, it has also been used in some drugs, initially tartar emetics and subsequently antimonials. The latter are used to treat tropical diseases and their therapeutic potential for leishmaniasis means that they will not be soon phased out, despite the fact the antimonial resistance is beginning to be documented. The mechanisms by which antimony is introduced into human cells and subsequently excreted are still the subject of research; their elucidation will enable us to better understand antimony toxicity and, hopefully, to improve the nature and delivery method of antimonial drugs.
Collapse
Affiliation(s)
- Argyrios Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.P.); (A.-T.P.); (I.A.B.); (C.C.)
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, The “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
- Correspondence: (A.C.); (C.S.)
| | - Aristodemos-Theodoros Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.P.); (A.-T.P.); (I.A.B.); (C.C.)
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania;
| | - Ioana Anca Badarau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.P.); (A.-T.P.); (I.A.B.); (C.C.)
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.P.); (A.-T.P.); (I.A.B.); (C.C.)
- Department of Dermatology, Prof. N.C. Paulescu National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.P.); (A.-T.P.); (I.A.B.); (C.C.)
- Correspondence: (A.C.); (C.S.)
| |
Collapse
|
35
|
Wang C, Yuan Z, Li J, Liu Y, Li R, Li S. Acute effects of antimony exposure on adult zebrafish (Danio rerio): From an oxidative stress and intestinal microbiota perspective. FISH & SHELLFISH IMMUNOLOGY 2022; 123:1-9. [PMID: 35219828 DOI: 10.1016/j.fsi.2022.02.050] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
The rapid development of the textile industry has resulted in a large influx of wastewater production. The "national discharge standards of water pollutants for dyeing and finishing of textile industry (GB4287-2012)" stipulates that the discharge of total Sb from textile industry effluent must be < 0.10 mg/L, but it is difficult to meet the standard at present. Antimony is potentially carcinogenic, and the pathogenic mechanism of antimony is poorly understood. In this study, the acute toxic effects of various concentrations of antimony on adult zebrafish (Danio rerio) were investigated, including effects on oxidative stress, neurotransmitters and intestinal microbiota. The activities of catalase (CAT), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), superoxide dismutase (SOD), total antioxidant capacity (T-AOC) and acetylcholinesterase (AChE) were measured in zebrafish muscle and intestine tissue samples. In addition, intestinal microbial community composition and diversity of zebrafish were also analyzed. The results demonstrated that SOD, CAT and GSH-Px activities in the zebrafish gut showed a decreasing and then increasing trend with antimony concentration increasing. SOD, CAT and MDA in zebrafish muscle decreased with increasing exposure time. GSH-Px activities increased with increasing exposure time. T-AOC increased and then decreased. In addition, antimony exposure was neurotoxic to zebrafish, and a significant decrease in AChE activity was found in the intestine with increased exposure time. The neurotoxicity caused by antimony in the high concentration group (40 mg/L) was stronger than that in low concentration groups (10 mg/L and 20 mg/L). Notably, antimony exposure caused increases in the relative abundance of phyla Fusobacteriota and Actinomycetes, but decreases in the relative abundance of the phyla Firmicutes and Proteobacteria in zebrafish intestine. These outcomes will advance our understanding of antimony-induced biotoxicity, environmental problems, and health hazards. In conclusion, this study shows that acute exposure of antimony to zebrafish induces host oxidative stress and neurotoxicity, dysregulates the intestinal microbiota, showing adverse effects on the health and gut microbiota of zebrafish.
Collapse
Affiliation(s)
- Chun Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Zixi Yuan
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Jinjin Li
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Ying Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310012, China
| | - Ruixuan Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Shuangshuang Li
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China; College of Energy and Environmental Engineering, Hebei University of Engineering, Handan, 056038, China.
| |
Collapse
|
36
|
Lai Z, He M, Lin C, Ouyang W, Liu X. Interactions of antimony with biomolecules and its effects on human health. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113317. [PMID: 35182796 DOI: 10.1016/j.ecoenv.2022.113317] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Antimony (Sb) pollution has increased health risks to humans as a result of extensive application in diverse fields. Exposure to different levels of Sb and its compounds will directly or indirectly affect the normal function of the human body, whereas limited human health data and simulation studies delay the understanding of this element. In this review, we summarize current research on the effects of Sb on human health from different perspectives. First, the exposure pathways, concentration and excretion of Sb in humans are briefly introduced, and several studies have revealed that human exposure to high levels of Sb will cause higher concentrations in body tissues. Second, interactions between Sb and biomolecules or other nonbiomolecules affected biochemical processes such as gene expression and hormone secretion, which are vital for causing and understanding health effects and mechanisms. Finally, we discuss the different health effects of Sb at the biological level from small molecules to individual. In conclusion, exposure to high levels of Sb compounds will increase the risk of disease by affecting different cell signaling pathways. In addition, the appropriate form and dose of Sb contribute to inhibit the development of specific diseases. Key challenges and gaps in toxicity or benefit effects and mechanisms that still hinder risk assessment of human health are also identified in this review. Systematic studies on the relationships between the biochemical process of Sb and human health are needed.
Collapse
Affiliation(s)
- Ziyang Lai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China.
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| |
Collapse
|
37
|
Wang C, Yuan Z, Sun Y, Yao X, Li R, Li S. Effect of Chronic Exposure to Textile Wastewater Treatment Plant Effluents on Growth Performance, Oxidative Stress, and Intestinal Microbiota in Adult Zebrafish ( Danio rerio). Front Microbiol 2021; 12:782611. [PMID: 34899664 PMCID: PMC8656261 DOI: 10.3389/fmicb.2021.782611] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/28/2021] [Indexed: 01/30/2023] Open
Abstract
The ever-increasing production and processing of textiles will lead to greater risks of releasing pollutants into the environment. Textile wastewater treatment plants (TWTPs) effluent are an important source of persistent toxic pollutants in receiving water bodies. The effects of specific pollutants on organisms are usually studied under laboratory conditions, and therefore, comprehensive results are not obtained regarding the chronic combined effects of pollutants under aquatic environmental conditions. Thus, this study aimed to determine the combined effects of TWTP effluents on the growth performance, oxidative stress, inflammatory response, and intestinal microbiota of adult zebrafish (Danio rerio). Exposure to TWTP effluents significantly inhibited growth, exacerbated the condition factor, and increased the mortality of adult zebrafish. Moreover, markedly decreases were observed in the activities of antioxidant enzymes, such as CAT, GSH, GSH-Px, MDA, SOD, and T-AOC, mostly in the intestine and muscle tissues of zebrafish after 1 and 4 months of exposure. In addition, the results demonstrated that TWTP effluent exposure affected the intestinal microbial community composition and decreased community diversity. Slight changes were found in the relative abundance of probiotic Lactobacillus, Akkermansia, and Lactococcus in zebrafish guts after chronic TWTP effluent exposure. The chronic toxic effects of slight increases in opportunistic pathogens, such as Mycoplasma, Stenotrophomonas, and Vibrio, deserve further attention. Our results reveal that TWTP effluent exposure poses potential health risks to aquatic organisms through growth inhibition, oxidative stress impairment of the intestine and muscles, and intestinal microbial community alterations.
Collapse
Affiliation(s)
- Chun Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, China.,State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, China
| | - Zixi Yuan
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, China.,State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, China
| | - Yingxue Sun
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, China.,State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, China
| | - Xiaolong Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, China.,State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, China
| | - Ruixuan Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, China.,State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, China
| | - Shuangshuang Li
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|