1
|
Dave S, Patel B. The lipocalin saga: Insights into its role in cancer-associated cachexia. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167684. [PMID: 39837432 DOI: 10.1016/j.bbadis.2025.167684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/23/2025]
Abstract
Cancer-associated cachexia (CAC) is a debilitating condition, observed in patients with advanced stages of cancer. It is marked by ongoing weight loss, weakness, and nutritional impairment. Lower tolerance of chemotherapeutic agents and radiation therapy makes it difficult to treat CAC. Anorexia is a significant contributor to worsening CAC. Anorexia can be found in the early or advanced stages of cancer. Anorexia in cancer patients arises from a confluence of factors. Tumor-related inflammatory cytokines can directly impact the gastrointestinal tract, leading to dysphagia and compromised gut function. Additionally, increased serotonin and hormonal disruptions lead to early satiety, suppressing appetite. Due to the complexities in the pathogenesis of the disease, identifying druggable targets is a challenge. Research is ongoing to identify novel targets for the treatment of this condition. Recent research suggests a potential link between elevated levels of Lipocalin 2 (LCN2) and cachexia in cancer patients. LCN2, a glycoprotein primarily released by neutrophils, is implicated in numerous illnesses, including skin disorders, cancer, atherosclerosis, and type 2 diabetes. LCN2 suppresses hunger by binding to the melanocortin-4 receptors. Several in vitro, in vivo, and clinical studies indicate the association between LCN2 levels and appetite suppression. Further research should be explored emphasizing the significance of well-crafted clinical trials to confirm LCN2's usefulness as a therapeutic target and its ability to help cancer patients who are suffering from the fatal hallmark of cachexia. This review explores LCN2's function in the multifaceted dynamics of CAC and anorexia.
Collapse
Affiliation(s)
- Srusti Dave
- National Forensic Sciences University, Gandhinagar 382007, Gujarat, India
| | - Bhoomika Patel
- National Forensic Sciences University, Gandhinagar 382007, Gujarat, India.
| |
Collapse
|
2
|
Rixon A, Meyer E, Daminet S, Goddard A, Kongtasai T, Pazzi P. Influence of Carcinoma and Sarcoma on Neutrophil Gelatinase-Associated Lipocalin and Symmetric Dimethylarginine Concentrations in Dogs. J Vet Intern Med 2025; 39:e70015. [PMID: 40042235 PMCID: PMC11881161 DOI: 10.1111/jvim.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 05/12/2025] Open
Abstract
BACKGROUND It is unknown if tumors or concomitant renal disease influence neutrophil gelatinase-associated lipocalin (NGAL) and symmetric dimethylarginine (SDMA) concentrations in tumor-bearing dogs. OBJECTIVES Determine the effect of tumor presence, tumor type, and metastasis on concentrations of serum NGAL (sNGAL), SDMA, urinary NGAL (uNGAL), and uNGAL-to-creatinine ratio (uNGAL/Cr) in dogs with carcinoma or sarcoma without clinically relevant renal disease. ANIMALS Twenty-one dogs with carcinoma, 18 with sarcoma, and 20 healthy age-controlled dogs. METHODS Concentrations of sNGAL, SDMA, and uNGAL, and uNGAL/Cr ratio were measured from banked samples collected during a previous prospective study. Patient clinicopathological and histopathology records were reviewed, and those with renal azotemia or moderate to severe histopathological renal abnormalities were classified as having clinically relevant renal disease. Biomarker concentrations were compared between tumor-bearing dogs without clinically relevant renal disease and healthy age-controlled dogs. Additionally, comparisons were made between dogs with carcinoma and sarcoma, as well as between dogs with and without metastasis. Correlations between uNGAL and sNGAL concentrations, along with acute phase protein (APP) concentrations, were also analyzed. RESULTS Tumor-bearing dogs without clinically relevant renal disease had increased uNGAL/Cr (p < 0.001), but not sNGAL, compared with healthy controls. Although median SDMA concentrations did not significantly differ between groups, increased concentrations were found in 32% of dogs with carcinoma and 20% of dogs with sarcoma. No differences were found between dogs with carcinoma and those with sarcoma, or between dogs with metastasis and those without. Urinary and serum NGAL concentrations were moderately correlated, while weak to no correlations were observed with APPs. CONCLUSION Carcinomas and sarcomas, but not metastasis, influence uNGAL/Cr and SDMA concentrations in dogs.
Collapse
Affiliation(s)
- Anouska Rixon
- Department of Companion Animal Clinical StudiesFaculty of Veterinary Science, University of PretoriaPretoriaSouth Africa
| | - Evelyne Meyer
- Department of Veterinary and BiosciencesFaculty of Veterinary Medicine, Ghent UniversityMerelbekeBelgium
| | - Sylvie Daminet
- Department of Small AnimalsFaculty of Veterinary Medicine, Ghent UniversityMerelbekeBelgium
| | - Amelia Goddard
- Department of Companion Animal Clinical StudiesFaculty of Veterinary Science, University of PretoriaPretoriaSouth Africa
| | - Thirawut Kongtasai
- Department of Small AnimalsFaculty of Veterinary Medicine, Ghent UniversityMerelbekeBelgium
- Department of Clinical Sciences and Public HealthFaculty of Veterinary Science, Mahidol UniversityNakhon PathomThailand
| | - Paolo Pazzi
- Department of Companion Animal Clinical StudiesFaculty of Veterinary Science, University of PretoriaPretoriaSouth Africa
- Department of Small Animal Clinical SciencesCollege of Veterinary Medicine, University of TennesseeKnoxvilleTennesseeUSA
| |
Collapse
|
3
|
Ni Q, Yang H, Rao H, Zhang L, Xiong M, Han X, Deng B, Wang L, Chen J, Shi Y. The role of the C5a-C5aR pathway in iron metabolism and gastric cancer progression. Front Immunol 2025; 15:1522181. [PMID: 39850877 PMCID: PMC11754390 DOI: 10.3389/fimmu.2024.1522181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
Gastric cancer continues to be a leading global health concern, with current therapeutic approaches requiring significant improvement. While the disruption of iron metabolism in the advancement of gastric cancer has been well-documented, the underlying regulatory mechanisms remain largely unexplored. Additionally, the complement C5a-C5aR pathway has been identified as a crucial factor in gastric cancer development. The impact of the complement system on iron metabolism and its role in gastric cancer progression is an area warranting further investigation. Our research demonstrates that the C5a-C5aR pathway promotes gastric cancer progression by enhancing iron acquisition in tumor cells through two mechanisms. First, it drives macrophage polarization toward the M2 phenotype, which has a strong iron-release capability. Second, it increases the expression of LCN2, a high-affinity iron-binding protein critical for iron export from tumor-associated macrophages, by activating endoplasmic reticulum stress in these cells. Both mechanisms facilitate the transfer of iron from macrophages to cancer cells, thereby promoting tumor cell proliferation. This study aims to elucidate the connection between the complement C5a-C5aR pathway and iron metabolism within the tumor microenvironment. Our data suggest a pivotal role of the C5a-C5aR pathway in tumor iron management, indicating that targeting its regulatory mechanisms may pave the way for future iron-targeted therapeutic approaches in cancer treatment.
Collapse
Affiliation(s)
- Qinxue Ni
- The First Affiliated Hospital of Army Military Medical University, Department of General Surgery, Chongqing, China
| | - Hong Yang
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hang Rao
- The First Affiliated Hospital of Army Military Medical University, Department of General Surgery, Chongqing, China
| | - Liyong Zhang
- The First Affiliated Hospital of Army Military Medical University, Department of General Surgery, Chongqing, China
| | - Mengyuan Xiong
- The First Affiliated Hospital of Army Military Medical University, Department of General Surgery, Chongqing, China
| | - Xiao Han
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Boshao Deng
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lulu Wang
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jian Chen
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yan Shi
- The First Affiliated Hospital of Army Military Medical University, Department of General Surgery, Chongqing, China
| |
Collapse
|
4
|
Tavassoli N, Ghahremani A, Namakin K, Naserghandi A, Miri SR, Abdolahad M. Intra Operative Mild Cooling of Large Tumors Reduces Their Invasive and Metastatic Functions While Increasing Their Resistance to Apoptosis. Ther Hypothermia Temp Manag 2024; 14:290-298. [PMID: 38079194 PMCID: PMC11665270 DOI: 10.1089/ther.2023.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Cancer treatment often involves excisional surgery, but this approach may leave behind minimal residual disease, leading to tumor regrowth. Proinflammatory cytokines and their role in altering residual cancerous cells postsurgery have garnered attention. The study examines how mild intraoperative cooling affects cancer cells and their gene expression. It aims to discover strategies for reducing tumor growth after surgery. Nine cases of solid tumor were included in the study, nine samples were cooled with the Peltier-Seebeck device down to12°C, and cooled and noncooled regions of tumors were analyzed using reverse transcription-polymerase chain reaction. Key transcriptomes, including neural-cadherin, cadherins (CDH), 70-kDa Heat Shock Protein (HSP70), hypoxia-inducible factor (HIF), Y-Box-binding protein 1 (YB-1), matrix metalloproteinase 9 (MMP9), and matrix metalloproteinase 2 (MMP2), were measured to assess the impact of mild hypothermia on cancer cell metabolism and cold shock responses. Analysis of cooled and noncooled regions revealed reduced MMP2/9 levels in cooled regions in five out of seven cases, indicating potential suppression of tumor invasion and metastasis. CDH-1 expression was detected in five cases, with decreased levels observed in cooled regions in most cases, suggesting a role in tumor aggressiveness. YB-1 expression was increased in six out of eight samples, possibly correlating with local recurrence and reduced overall survival times. N-Cad expression was increased in all five samples where it was detected, indicating its potential involvement in tumor cell motility and invasion. HSPs showed a mild increase in four out of five cases following cooling, potentially contributing to tumor cell resistance to cooling-induced apoptosis. Intraoperative mild cooling resulted in the downregulation of key proteins playing a role in invasion and metastasis. However, Elevated YB-1 and N-Cad expression limits cooling's universal application. Further research is necessary to comprehend cooling-related transcriptome changes and their impact on patient outcomes.
Collapse
Affiliation(s)
- Noureddin Tavassoli
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Ghahremani
- Nano Bio Electronic Devices Lab, Nano Electronic Center of Excellence, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Kosar Namakin
- Nano Bio Electronic Devices Lab, Nano Electronic Center of Excellence, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alvand Naserghandi
- Nano Bio Electronic Devices Lab, Nano Electronic Center of Excellence, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Rouhollah Miri
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdolahad
- Nano Bio Electronic Devices Lab, Nano Electronic Center of Excellence, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
5
|
Huang Z, Li Y, Qian Y, Zhai E, Zhao Z, Zhang T, Liu Y, Ye L, Wei R, Zhao R, Li Z, Liang Z, Cai S, Chen J. Tumor-secreted LCN2 impairs gastric cancer progression via autocrine inhibition of the 24p3R/JNK/c-Jun/SPARC axis. Cell Death Dis 2024; 15:756. [PMID: 39424639 PMCID: PMC11489581 DOI: 10.1038/s41419-024-07153-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Gastric cancer (GC) is one of the most lethal malignancies worldwide. Despite extensive efforts to develop novel therapeutic targets, effective drugs for GC remain limited. Recent studies have indicated that Lipocalin (LCN)2 abnormalities significantly impact GC progression; however, its regulatory network remains unclear. Our study investigates the functional role and regulatory mechanism of action of LCN2 in GC progression. We observed a positive correlation between LCN2 expression, lower GC grade, and better prognosis in patients with GC. LCN2 overexpression suppressed GC proliferation and metastasis both in vitro and in vivo. Transcriptome sequencing identified secreted protein acidic and rich in cysteine (SPARC) as a pivotal downstream target of LCN2. Mechanistically, c-Jun acted as a transcription factor inducing SPARC expression, and LCN2 downregulated SPARC by inhibiting the JNK/c-Jun pathway. Moreover, LCN2 bound to its receptor, 24p3R, via autocrine signaling, which directly inhibited JNK phosphorylation and then inhibited the JNK/c-Jun pathway. Finally, analysis of clinical data demonstrated that SPARC expression correlated negatively with lower GC grade and better prognosis, and that LCN2 expression correlated negatively with p-JNK, c-Jun, and SPARC expression in GC. These findings suggest that the LCN2/24p3R/JNK/c-Jun/SPARC axis is crucial in the malignant progression of GC, offering novel prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Zhixin Huang
- Division of Gastrointestinal Surgery Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Laboratory of Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yan Qian
- Division of Gastrointestinal Surgery Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Ertao Zhai
- Division of Gastrointestinal Surgery Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Zeyu Zhao
- Division of Gastrointestinal Surgery Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Laboratory of Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Tianhao Zhang
- Division of Gastrointestinal Surgery Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Laboratory of Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Yinan Liu
- Division of Gastrointestinal Surgery Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Laboratory of Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Linying Ye
- Division of Gastrointestinal Surgery Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Laboratory of Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Ran Wei
- Division of Gastrointestinal Surgery Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Laboratory of Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Risheng Zhao
- Division of Gastrointestinal Surgery Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Zikang Li
- Division of Gastrointestinal Surgery Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Laboratory of Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Zhi Liang
- Division of Gastrointestinal Surgery Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Laboratory of Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Shirong Cai
- Division of Gastrointestinal Surgery Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
- Gastric Cancer Center, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| | - Jianhui Chen
- Division of Gastrointestinal Surgery Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
- Department of General Surgery, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, 530000, Guangxi, China.
| |
Collapse
|
6
|
Vilardi A, Przyborski S, Mobbs C, Rufini A, Tufarelli C. Current understanding of the interplay between extracellular matrix remodelling and gut permeability in health and disease. Cell Death Discov 2024; 10:258. [PMID: 38802341 PMCID: PMC11130177 DOI: 10.1038/s41420-024-02015-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/25/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
The intestinal wall represents an interactive network regulated by the intestinal epithelium, extracellular matrix (ECM) and mesenchymal compartment. Under healthy physiological conditions, the epithelium undergoes constant renewal and forms an integral and selective barrier. Following damage, the healthy epithelium is restored via a series of signalling pathways that result in remodelling of the scaffolding tissue through finely-regulated proteolysis of the ECM by proteases such as matrix metalloproteinases (MMPs). However, chronic inflammation of the gastrointestinal tract, as occurs in Inflammatory Bowel Disease (IBD), is associated with prolonged disruption of the epithelial barrier and persistent damage to the intestinal mucosa. Increased barrier permeability exhibits distinctive signatures of inflammatory, immunological and ECM components, accompanied by increased ECM proteolytic activity. This narrative review aims to bring together the current knowledge of the interplay between gut barrier, immune and ECM features in health and disease, discussing the role of barrier permeability as a discriminant between homoeostasis and IBD.
Collapse
Affiliation(s)
- Aurora Vilardi
- Cancer Research Centre, University of Leicester, Leicester, LE2 7LX, United Kingdom
| | - Stefan Przyborski
- Department of Biosciences, Durham University, Durham, DH1 3LE, United Kingdom
| | - Claire Mobbs
- Department of Biosciences, Durham University, Durham, DH1 3LE, United Kingdom
| | - Alessandro Rufini
- Cancer Research Centre, University of Leicester, Leicester, LE2 7LX, United Kingdom.
- Department of Biosciences, University of Milan, Milan, 20133, Italy.
| | - Cristina Tufarelli
- Cancer Research Centre, University of Leicester, Leicester, LE2 7LX, United Kingdom.
| |
Collapse
|
7
|
Koulicoff LA, Heilman T, Vitanza L, Welter A, Jeneske H, O'Quinn TG, Hansen S, Huff-Lonergan E, Schulte MD, Chao MD. Matrix metalloproteinase- 9 may contribute to collagen structure modification during postmortem aging of beef. Meat Sci 2023; 205:109321. [PMID: 37643525 DOI: 10.1016/j.meatsci.2023.109321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Matrix metalloproteinases (MMPs) are responsible for the turnover of intramuscular connective tissue in live animals. We hypothesize that MMPs may play a role in postmortem aging of beef muscles for the degradation of connective tissues. Four different experiments were performed to: 1) characterize MMP activity during postmortem aging of beef; 2) determine if the native beef MMP can contribute to connective tissue degradation in a simulated standard industry postmortem aging condition; 3) explore approaches to improve the native beef MMP activity and 4) characterize MMP activity in beef from cattle supplemented with supranutritional level of Zn. In experiment 1, MMP was active throughout the entire aging periods (3, 21, 42 and 63 d) for beef muscles Longissimus lumborum, Gluteus medius and Gastrocnemius, and the unknown MMP responsible for the collagen degradation was identified as MMP-9 by Western Blot. In experiment 2 and 3, MMP-9 activity was noticeable in the gels after 42 d of storage in the cooler. Moreover, the addition of ZnCl2 in the model system significantly increased MMP-9 activity when compared to the control (P < 0.01). In experiment 4, Longissimus thoracis from animals supplemented with a supranutritional Zn level had increased Zn availability and MMP-9 activity than those from animals fed with a control diet (P < 0.05). Further research is needed better understand MMP-9 mechanism during postmortem aging of meat. With a better understanding of MMP-9 in the aging process, the beef industry can provide better connective tissue management strategies for lower-quality beef cuts.
Collapse
Affiliation(s)
- Larissa A Koulicoff
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, KS 66506, USA
| | - Terra Heilman
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, KS 66506, USA
| | - Lauren Vitanza
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, KS 66506, USA
| | - Amelia Welter
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, KS 66506, USA
| | - Haley Jeneske
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, KS 66506, USA
| | - Travis G O'Quinn
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, KS 66506, USA
| | - Stephanie Hansen
- Iowa State University, Department of Animal Science, Ames, IA 50011, USA
| | | | - Matthew D Schulte
- Iowa State University, Department of Animal Science, Ames, IA 50011, USA
| | - Michael D Chao
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, KS 66506, USA.
| |
Collapse
|
8
|
Živalj M, Van Ginderachter JA, Stijlemans B. Lipocalin-2: A Nurturer of Tumor Progression and a Novel Candidate for Targeted Cancer Therapy. Cancers (Basel) 2023; 15:5159. [PMID: 37958332 PMCID: PMC10648573 DOI: 10.3390/cancers15215159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Within the tumor microenvironment (TME) exists a complex signaling network between cancer cells and stromal cells, which determines the fate of tumor progression. Hence, interfering with this signaling network forms the basis for cancer therapy. Yet, many types of cancer, in particular, solid tumors, are refractory to the currently used treatments, so there is an urgent need for novel molecular targets that could improve current anti-cancer therapeutic strategies. Lipocalin-2 (Lcn-2), a secreted siderophore-binding glycoprotein that regulates iron homeostasis, is highly upregulated in various cancer types. Due to its pleiotropic role in the crosstalk between cancer cells and stromal cells, favoring tumor progression, it could be considered as a novel biomarker for prognostic and therapeutic purposes. However, the exact signaling route by which Lcn-2 promotes tumorigenesis remains unknown, and Lcn-2-targeting moieties are largely uninvestigated. This review will (i) provide an overview on the role of Lcn-2 in orchestrating the TME at the level of iron homeostasis, macrophage polarization, extracellular matrix remodeling, and cell migration and survival, and (ii) discuss the potential of Lcn-2 as a promising novel drug target that should be pursued in future translational research.
Collapse
Affiliation(s)
- Maida Živalj
- Brussels Center for Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, 1050 Brussels, Belgium
| | - Jo A. Van Ginderachter
- Brussels Center for Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, 1050 Brussels, Belgium
| | - Benoit Stijlemans
- Brussels Center for Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, 1050 Brussels, Belgium
| |
Collapse
|
9
|
Crescenzi E, Leonardi A, Pacifico F. Iron Metabolism in Cancer and Senescence: A Cellular Perspective. BIOLOGY 2023; 12:989. [PMID: 37508419 PMCID: PMC10376531 DOI: 10.3390/biology12070989] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Iron participates in a number of biological processes and plays a crucial role in cellular homeostasis. Alterations in iron metabolism are considered hallmarks of cancer and drivers of aggressive behaviors, such as uncontrolled proliferation, resistance to apoptosis, enhanced metastatic ability, increased cell plasticity and stemness. Furthermore, a dysregulated iron metabolism has been associated with the development of an adverse tumor microenvironment. Alterations in iron metabolism have been described in cellular senescence and in aging. For instance, iron has been shown to accumulate in aged tissues and in age-related diseases. Furthermore, in vitro studies demonstrate increases in iron content in both replicative and stress-induced senescent cells. However, the role, the mechanisms of regulation and dysregulation and the effects of iron metabolism on senescence remain significantly less characterized. In this review, we first provide an overview of iron metabolism and iron regulatory proteins. Then, we summarize alterations in iron homeostasis in cancer and senescence from a cellular point of view.
Collapse
Affiliation(s)
- Elvira Crescenzi
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, CNR, Via S. Pansini, 5, 80131 Naples, Italy
| | - Antonio Leonardi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, "Federico II" University of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - Francesco Pacifico
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, CNR, Via S. Pansini, 5, 80131 Naples, Italy
| |
Collapse
|
10
|
Romejko K, Markowska M, Niemczyk S. The Review of Current Knowledge on Neutrophil Gelatinase-Associated Lipocalin (NGAL). Int J Mol Sci 2023; 24:10470. [PMID: 37445650 DOI: 10.3390/ijms241310470] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL) is a 25-kDa protein that is secreted mostly by immune cells such as neutrophils, macrophages, and dendritic cells. Its production is stimulated in response to inflammation. The concentrations of NGAL can be measured in plasma, urine, and biological fluids such as peritoneal effluent. NGAL is known mainly as a biomarker of acute kidney injury and is released after tubular damage and during renal regeneration processes. NGAL is also elevated in chronic kidney disease and dialysis patients. It may play a role as a predictor of the progression of renal function decreases with complications and mortality due to kidney failure. NGAL is also useful in the diagnostic processes of cardiovascular diseases. It is highly expressed in injured heart tissue and atherosclerostic plaque; its serum concentrations correlate with the severity of heart failure and coronary artery disease. NGAL increases inflammatory states and its levels rise in arterial hypertension, obesity, diabetes, and metabolic complications such as insulin resistance, and is also involved in carcinogenesis. In this review, we present the current knowledge on NGAL and its involvement in different pathologies, especially its role in renal and cardiovascular diseases.
Collapse
Affiliation(s)
- Katarzyna Romejko
- Department of Internal Diseases, Nephrology and Dialysis, Military Institute of Medicine-National Research Institute, 128 Szaserów Street, 04-141 Warsaw, Poland
| | - Magdalena Markowska
- Department of Internal Diseases, Nephrology and Dialysis, Military Institute of Medicine-National Research Institute, 128 Szaserów Street, 04-141 Warsaw, Poland
| | - Stanisław Niemczyk
- Department of Internal Diseases, Nephrology and Dialysis, Military Institute of Medicine-National Research Institute, 128 Szaserów Street, 04-141 Warsaw, Poland
| |
Collapse
|
11
|
Su W, Li W, Zhang Y, Wang K, Chen M, Chen X, Li D, Zhang P, Yu D. Screening and identification of the core immune-related genes and immune cell infiltration in severe burns and sepsis. J Cell Mol Med 2023. [PMID: 37060578 DOI: 10.1111/jcmm.17749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/17/2023] Open
Abstract
Severe burns often have a high mortality rate due to sepsis, but the genetic and immune crosstalk between them remains unclear. In the present study, the GSE77791 and GSE95233 datasets were analysed to identify immune-related differentially expressed genes (DEGs) involved in disease progression in both burns and sepsis. Subsequently, weighted gene coexpression network analysis (WGCNA), gene enrichment analysis, protein-protein interaction (PPI) network construction, immune cell infiltration analysis, core gene identification, coexpression network analysis and clinical correlation analysis were performed. A total of 282 common DEGs associated with burns and sepsis were identified. Kyoto Encyclopedia of Genes and Genomes pathway analysis identified the following enriched pathways in burns and sepsis: metabolic pathways; complement and coagulation cascades; legionellosis; starch and sucrose metabolism; and ferroptosis. Finally, six core DEGs were identified, namely, IL10, RETN, THBS1, FGF13, LCN2 and MMP9. Correlation analysis showed that some core DEGs were significantly associated with simultaneous dysregulation of immune cells. Of these, RETN upregulation was associated with a worse prognosis. The immune-related genes and dysregulated immune cells in severe burns and sepsis provide potential research directions for diagnosis and treatment.
Collapse
Affiliation(s)
- Wenxing Su
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Wei Li
- Department of Urology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yuanyuan Zhang
- Department of Medical Laboratory, Xindu District People's Hospital of Chengdu, Chengdu, China
| | - Kuan Wang
- Department of Cosmetic Plastic and Burns Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Maolin Chen
- Department of Cosmetic Plastic and Burns Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xiaoming Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Dazhuang Li
- Department of Orthopedics, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Ping Zhang
- Department of Cosmetic Plastic and Burns Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Daojiang Yu
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| |
Collapse
|
12
|
Zhao RY, Wei PJ, Sun X, Zhang DH, He QY, Liu J, Chang JL, Yang Y, Guo ZN. Role of lipocalin 2 in stroke. Neurobiol Dis 2023; 179:106044. [PMID: 36804285 DOI: 10.1016/j.nbd.2023.106044] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/22/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Stroke is the second leading cause of death worldwide; however, the treatment choices available to neurologists are limited in clinical practice. Lipocalin 2 (LCN2) is a secreted protein, belonging to the lipocalin superfamily, with multiple biological functions in mediating innate immune response, inflammatory response, iron-homeostasis, cell migration and differentiation, energy metabolism, and other processes in the body. LCN2 is expressed at low levels in the brain under normal physiological conditions, but its expression is significantly up-regulated in multiple acute stimulations and chronic pathologies. An up-regulation of LCN2 has been found in the blood/cerebrospinal fluid of patients with ischemic/hemorrhagic stroke, and could serve as a potential biomarker for the prediction of the severity of acute stroke. LCN2 activates reactive astrocytes and microglia, promotes neutrophil infiltration, amplifies post-stroke inflammation, promotes blood-brain barrier disruption, white matter injury, and neuronal death. Moreover, LCN2 is involved in brain injury induced by thrombin and erythrocyte lysates, as well as microvascular thrombosis after hemorrhage. In this paper, we review the role of LCN2 in the pathological processes of ischemic stroke; intracerebral hemorrhage; subarachnoid hemorrhage; and stroke-related brain diseases, such as vascular dementia and post-stroke depression, and their underlying mechanisms. We hope that this review will help elucidate the value of LCN2 as a therapeutic target in stroke.
Collapse
Affiliation(s)
- Ruo-Yu Zhao
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China
| | - Peng-Ju Wei
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xin Sun
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China
| | - Dian-Hui Zhang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China
| | - Qian-Yan He
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China
| | - Jie Liu
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China
| | - Jun-Lei Chang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yi Yang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China; Neuroscience Research Center, the First Hospital of Jilin University, Chang Chun, China; Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China.
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China; Neuroscience Research Center, the First Hospital of Jilin University, Chang Chun, China; Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China.
| |
Collapse
|
13
|
Adler O, Zait Y, Cohen N, Blazquez R, Doron H, Monteran L, Scharff Y, Shami T, Mundhe D, Glehr G, Kanner AA, Horn S, Yahalom V, Haferkamp S, Hutchinson JA, Bleckmann A, Nahary L, Benhar I, Yust Katz S, Pukrop T, Erez N. Reciprocal interactions between innate immune cells and astrocytes facilitate neuroinflammation and brain metastasis via lipocalin-2. NATURE CANCER 2023; 4:401-418. [PMID: 36797502 DOI: 10.1038/s43018-023-00519-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/17/2023] [Indexed: 04/19/2023]
Abstract
Brain metastasis still encompass very grim prognosis and therefore understanding the underlying mechanisms is an urgent need toward developing better therapeutic strategies. We uncover the intricate interactions between recruited innate immune cells and resident astrocytes in the brain metastatic niche that facilitate metastasis of melanoma and breast cancer. We show that granulocyte-derived lipocalin-2 (LCN2) induces inflammatory activation of astrocytes, leading to myeloid cell recruitment to the brain. LCN2 is central to inducing neuroinflammation as its genetic targeting or bone-marrow transplantation from LCN2-/- mice was sufficient to attenuate neuroinflammation and inhibit brain metastasis. Moreover, high LCN2 levels in patient blood and brain metastases in multiple cancer types were strongly associated with disease progression and poor survival. Our findings uncover a previously unknown mechanism, establishing a central role for the reciprocal interactions between granulocytes and astrocytes in promoting brain metastasis and implicate LCN2 as a prognostic marker and potential therapeutic target.
Collapse
Affiliation(s)
- Omer Adler
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Zait
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noam Cohen
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Raquel Blazquez
- Department of Internal Medicine III, Hematology and Medical Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Hila Doron
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lea Monteran
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yeela Scharff
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Shami
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dhanashree Mundhe
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gunther Glehr
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Andrew A Kanner
- Department of Neurosurgery, Rabin Medical Center and Sackler Faculty of Medicine Tel Aviv University, Tel Aviv, Israel
| | - Suzana Horn
- Department of Pathology, Rabin Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Vered Yahalom
- Blood Services & Apheresis Institute, Rabin Medical Center and Tel Aviv University, Tel Aviv, Israel
| | - Sebastian Haferkamp
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - James A Hutchinson
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Annalen Bleckmann
- Department of Hematology/Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
- Medical Clinic A, Haematology, Haemostasiology, Oncology and Pulmonology, University Hospital Münster, Münster, Germany
- West German Cancer Center, University Hospital Münster, Münster, Germany
| | - Limor Nahary
- The Shmunis School of Biomedicine and Cancer Research, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Itai Benhar
- The Shmunis School of Biomedicine and Cancer Research, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shlomit Yust Katz
- Neuro-Oncology Unit, Davidoff Cancer Center at Rabin Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Medical Oncology, University Hospital Regensburg, Regensburg, Germany
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Neta Erez
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
14
|
Batsos G, Christodoulou E, Christou EE, Galanis P, Katsanos A, Limberis L, Stefaniotou M. Vitreous inflammatory and angiogenic factors on patients with proliferative diabetic retinopathy or diabetic macular edema: the role of Lipocalin2. BMC Ophthalmol 2022; 22:496. [PMID: 36536319 PMCID: PMC9761947 DOI: 10.1186/s12886-022-02733-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Quantitative analysis of vitreous inflammatory and angiogenic factors from patients with proliferative diabetic retinopathy (PDR) or diabetic macular edema (DME). MATERIALS AND METHODS Collection of undiluted vitreous samples from 20 diabetic patients: 13 with proliferative diabetic retinopathy (PDR) and 7 with diabetic macular edema (DME). DME patients had suboptimal response to anti-VEGF treatment. Samples from 11 control patients, with vitreomacular interface pathology such as idiopathic epiretinal membrane (iERM) (n = 4), vitreomacular traction syndrome (VMT) (n = 3) and full thickness macular hole (FTMH) (n = 3), were also collected. The levels of IL1b, IL6, IL8, IL27, TNFα, ICAM-1, VCAM, MCP-1, VEGFA and LCN2 were measured using cytometry flow analysis. Median values were compared with Mann-Whitney test since the distributions were skewed. Statistical analysis was performed with the Statistical Package for Social Sciences software (IBM Corp. Released 2012. IBM SPSS Statistics for Windows, Version 21.0. Armonk, NY: IBM Corp.). RESULTS The median concentration of LCN2, IL6, IL8, IL1b, IL27, ICAM, VCAM-1, MCP-1, TNFa and VEGFA was higher in PDR patients than in controls. Similarly, the median concentration of LCN2, IL6, IL8, IL27, ICAM, VCAM-1, TNFa and VEGFA was higher in DME patients than in controls. In particular, median LCN2 concentration in diabetic patients was 5,711 pg/ml (interquartile range [IR] = 2,534), while in controls was 2,586 pg/ml (IR = 2,345). Moreover, median LCN2 was 6,534 pg/ml in the DME group (IR = 6,850) and 4,785 pg/ml in the PDR group (IR = 2,608), (p = 0.025). CONCLUSION Various inflammatory and angiogenic factors are involved in the pathophysiology of PDR and DME. Elevated vitreous levels of LCN2 in PDR and especially in DME patients reveal a potential pathogenic association. More extended studies could verify LCN2 as an alternative therapeutic target.
Collapse
Affiliation(s)
- Georgios Batsos
- grid.9594.10000 0001 2108 7481Faculty of Medicine, Department of Ophthalmology, University of Ioannina, 45110 Ioannina, Greece
| | - Eleni Christodoulou
- grid.9594.10000 0001 2108 7481Faculty of Medicine, Department of Ophthalmology, University of Ioannina, 45110 Ioannina, Greece
| | - Evita Evangelia Christou
- grid.9594.10000 0001 2108 7481Faculty of Medicine, Department of Ophthalmology, University of Ioannina, 45110 Ioannina, Greece
| | - Petros Galanis
- grid.5216.00000 0001 2155 0800Clinical Epidemiology Laboratory, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Katsanos
- grid.9594.10000 0001 2108 7481Faculty of Medicine, Department of Ophthalmology, University of Ioannina, 45110 Ioannina, Greece
| | - Loren Limberis
- grid.255364.30000 0001 2191 0423Department of Engineering, East Carolina University, Greenville, NC USA
| | - Maria Stefaniotou
- grid.9594.10000 0001 2108 7481Faculty of Medicine, Department of Ophthalmology, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
15
|
Kang D, Kim IH. Molecular Mechanisms and Potential Rationale of Immunotherapy in Peritoneal Metastasis of Advanced Gastric Cancer. Biomedicines 2022; 10:biomedicines10061376. [PMID: 35740397 PMCID: PMC9220323 DOI: 10.3390/biomedicines10061376] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Peritoneal metastasis (PM) is one of the most frequent metastasis patterns of gastric cancer (GC), and the prognosis of patients with PM is very dismal. According to Paget’s theory, disseminated free cancer cells are seeded and survive in the abdominal cavity, adhere to the peritoneum, invade the subperitoneal tissue, and proliferate through angiogenesis. In these sequential processes, several key molecules are involved. From a therapeutic point of view, immunotherapy with chemotherapy combination has become the standard of care for advanced GC. Several clinical trials of newer immunotherapy agents are ongoing. Understanding of the molecular process of PM and the potential rationale of immunotherapy for PM treatment is necessary. Beyond understanding of the molecular aspect of PM, many studies have been conducted on the modality of treatment of PM. Notably, intraperitoneal approaches, including chemotherapy or immunotherapy, have been conducted, because systemic treatment of PM has limitations. In this study, we reviewed the molecular mechanisms and immunologic aspects of PM, and intraperitoneal approaches under investigation for treating PM.
Collapse
Affiliation(s)
- Donghoon Kang
- Division of Gastroenterology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Korea;
| | - In-Ho Kim
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence:
| |
Collapse
|
16
|
NGAL as a Potential Target in Tumor Microenvironment. Int J Mol Sci 2021. [DOI: 10.3390/ijms222212333
expr 804735418 + 979474750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The signaling network between cancer and stromal cells plays a crucial role in tumor microenvironment. The fate of tumor progression mainly depends on the huge amount of information that these cell populations exchange from the onset of neoplastic transformation. Interfering with such signaling has been producing exciting results in cancer therapy: just think of anti-PD-1/anti-PD-L1/anti-CTLA-4 antibodies that, acting as immune checkpoint inhibitors, interrupt the inhibitory signaling exerted by cancer cells on immune cells or the CAR-T technology that fosters the reactivation of anti-tumoral immunity in a restricted group of leukemias and lymphomas. Nevertheless, many types of cancers, in particular solid tumors, are still refractory to these treatments, so the identification of novel molecular targets in tumor secretome would benefit from implementation of current anti-cancer therapeutical strategies. Neutrophil Gelatinase-Associated Lipocalin (NGAL) is a secreted protein abundantly expressed in the secretome of various human tumors. It represents a promising target for the multiple roles that are played inside cancer and stromal cells, and also overall in their cross-talk. The review focuses on the different roles of NGAL in tumor microenvironment and in cancer senescence-associated secretory phenotype (SASP), highlighting the most crucial functions that could be eventually targetable in cancer therapy.
Collapse
|
17
|
Crescenzi E, Leonardi A, Pacifico F. NGAL as a Potential Target in Tumor Microenvironment. Int J Mol Sci 2021; 22:12333. [PMID: 34830212 PMCID: PMC8623964 DOI: 10.3390/ijms222212333&set/a 915137580+984946846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The signaling network between cancer and stromal cells plays a crucial role in tumor microenvironment. The fate of tumor progression mainly depends on the huge amount of information that these cell populations exchange from the onset of neoplastic transformation. Interfering with such signaling has been producing exciting results in cancer therapy: just think of anti-PD-1/anti-PD-L1/anti-CTLA-4 antibodies that, acting as immune checkpoint inhibitors, interrupt the inhibitory signaling exerted by cancer cells on immune cells or the CAR-T technology that fosters the reactivation of anti-tumoral immunity in a restricted group of leukemias and lymphomas. Nevertheless, many types of cancers, in particular solid tumors, are still refractory to these treatments, so the identification of novel molecular targets in tumor secretome would benefit from implementation of current anti-cancer therapeutical strategies. Neutrophil Gelatinase-Associated Lipocalin (NGAL) is a secreted protein abundantly expressed in the secretome of various human tumors. It represents a promising target for the multiple roles that are played inside cancer and stromal cells, and also overall in their cross-talk. The review focuses on the different roles of NGAL in tumor microenvironment and in cancer senescence-associated secretory phenotype (SASP), highlighting the most crucial functions that could be eventually targetable in cancer therapy.
Collapse
Affiliation(s)
- Elvira Crescenzi
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, CNR, Via S. Pansini, 5-80131 Naples, Italy;
| | - Antonio Leonardi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, “Federico II” University of Naples, Via S. Pansini, 5-80131 Naples, Italy;
| | - Francesco Pacifico
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, CNR, Via S. Pansini, 5-80131 Naples, Italy;
- Correspondence:
| |
Collapse
|
18
|
NGAL as a Potential Target in Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms222212333. [PMID: 34830212 PMCID: PMC8623964 DOI: 10.3390/ijms222212333] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/29/2022] Open
Abstract
The signaling network between cancer and stromal cells plays a crucial role in tumor microenvironment. The fate of tumor progression mainly depends on the huge amount of information that these cell populations exchange from the onset of neoplastic transformation. Interfering with such signaling has been producing exciting results in cancer therapy: just think of anti-PD-1/anti-PD-L1/anti-CTLA-4 antibodies that, acting as immune checkpoint inhibitors, interrupt the inhibitory signaling exerted by cancer cells on immune cells or the CAR-T technology that fosters the reactivation of anti-tumoral immunity in a restricted group of leukemias and lymphomas. Nevertheless, many types of cancers, in particular solid tumors, are still refractory to these treatments, so the identification of novel molecular targets in tumor secretome would benefit from implementation of current anti-cancer therapeutical strategies. Neutrophil Gelatinase-Associated Lipocalin (NGAL) is a secreted protein abundantly expressed in the secretome of various human tumors. It represents a promising target for the multiple roles that are played inside cancer and stromal cells, and also overall in their cross-talk. The review focuses on the different roles of NGAL in tumor microenvironment and in cancer senescence-associated secretory phenotype (SASP), highlighting the most crucial functions that could be eventually targetable in cancer therapy.
Collapse
|
19
|
Umar MI, Hassan W, Murtaza G, Buabeid M, Arafa E, Irfan HM, Asmawi MZ, Huang X. The Adipokine Component in the Molecular Regulation of Cancer Cell Survival, Proliferation and Metastasis. Pathol Oncol Res 2021; 27:1609828. [PMID: 34588926 PMCID: PMC8473628 DOI: 10.3389/pore.2021.1609828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/09/2021] [Indexed: 12/22/2022]
Abstract
A hormonal imbalance may disrupt the rigorously monitored cellular microenvironment by hampering the natural homeostatic mechanisms. The most common example of such hormonal glitch could be seen in obesity where the uprise in adipokine levels is in virtue of the expanding bulk of adipose tissue. Such aberrant endocrine signaling disrupts the regulation of cellular fate, rendering the cells to live in a tumor supportive microenvironment. Previously, it was believed that the adipokines support cancer proliferation and metastasis with no direct involvement in neoplastic transformations and tumorigenesis. However, the recent studies have reported discrete mechanisms that establish the direct involvement of adipokine signaling in tumorigenesis. Moreover, the individual adipokine profile of the patients has never been considered in the prognosis and staging of the disease. Hence, the present manuscript has focused on the reported extensive mechanisms that culminate the basis of poor prognosis and diminished survival rate in obese cancer patients.
Collapse
Affiliation(s)
| | - Waseem Hassan
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Manal Buabeid
- Department of Clinical Sciences, Ajman University, Ajman, United Arab Emirates.,Medical and Bio-allied Health Sciences Research Centre, Ajman University, Ajman, United Arab Emirates
| | - Elshaimaa Arafa
- Department of Clinical Sciences, Ajman University, Ajman, United Arab Emirates.,Medical and Bio-allied Health Sciences Research Centre, Ajman University, Ajman, United Arab Emirates
| | | | - Mohd Zaini Asmawi
- School of Pharmaceutical Sciences, University of Science Malaysia, Pulau Pinang, Malaysia
| | - Xianju Huang
- College of Pharmacy, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
20
|
Nerve growth factor orchestrates NGAL and matrix metalloproteinases activity to promote colorectal cancer metastasis. Clin Transl Oncol 2021; 24:34-47. [PMID: 34255268 DOI: 10.1007/s12094-021-02666-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE Colorectal cancer (CRC) is one most cancer type of high incidence and high mortality rate. Metastasis play an important role in survival rate and life quality of colorectal cancer patients. Nerve growth factor (NGF) has been shown to be involved in the metastasis and deterioration in many cancers, but the detail mechanisms in promoting the metastasis of colorectal cancer remain unknown. In this study, we aimed to explore the mechanism of NGF promoting colorectal cancer metastasis to provide new insights for developing NGF anti-colorectal cancer drugs. METHODS We examined the expression of NGF in human colorectal cancer by immunohistochemical staining, and Western blot to evaluate the relationship between NGF and colorectal cancer metastasis. Using biochemical experiments including wound healing assay, transwell migration and invasion assay, RT-PCR, Western blot and ELISA to explore the relative mechanism of NGF promoting colorectal cancer cells metastasis in vivo. RESULTS Our results found that the high expression of NGF was related with high incidence of metastasis. The binding of NGF to TrkA phosphorylated TrkA, which activated MAPK/Erk signaling pathway increasing the expression NGAL to enhance the activity of MMP2 and MMP9, promoted colorectal cancer metastasis. CONCLUSION Our finding demonstrated that NGF increased NGAL expression to enhance MMPs activity to promoted colorectal cancer cell metastasis by TrkA-MAPK/Erk axis.
Collapse
|
21
|
Dertli R, Biyik M, Yolacan R, Karakarcayildiz A, Keskin M, Kayar Y, Asil M. May Neutrophil Gelatinase-Associated Lipocalin (NGAL) Level Predict Mortality in Patients with Hepatocellular Carcinoma (HCC)? J Gastrointest Cancer 2021; 51:932-938. [PMID: 31729643 DOI: 10.1007/s12029-019-00323-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE Hepatocellular carcinoma (HCC) ranks fifth among the common cancers worldwide. Hepatocarcinogenesis is a multiple-phases process, which involves changes in cellular genomes including high cell proliferation.In this study, we aimed to evaluate the relationship of NGAL level at the time of diagnosis with mortality in patients diagnosed with HCC. MATERIAL AND METHODS A total of 35 patients who developed HCC on the ground of HBV(+) and 30 healthy subjects were included in the study. Barcelona Clinic Liver Cancer (BCLC), Okuda staging system, and Milan criteria were used for staging of the patients with HCC. RESULTS The mean age of all patients was 59.54 ± 11.57 years. Seventeen (48.6%) HCC patients died during 1-year follow-up. Survival of the patients who met the Milan criteria was longer (log-rank (Mantel-Cox) test, χ2 = 5.353, p = 0.021). Kaplan-Meier curve was drawn for NGAL cut-off value, mortality was found to be higher in patients with a NGAL level higher than 217.50 (log-rank (Mantel-Cox) test, χ2 = 15.540, p < 0.001). CONCLUSION In this study, we found that high levels of NGAL at the time of diagnosis were associated with poor prognosis in HCC patients.
Collapse
Affiliation(s)
- Ramazan Dertli
- Department of Internal Medicine, Division of Gastroenterology, Van Education and Research Hospital, Van, Turkey.
| | - Murat Biyik
- Meram School of Medicine, Department of Internal Medicine, Division of Gastroenterology, Necmettin Erbakan University, Meram, Konya, Turkey
| | - Ramazan Yolacan
- Meram School of Medicine, Department of Internal Medicine, Necmettin Erbakan University, Meram, Konya, Turkey
| | - Ahmet Karakarcayildiz
- Meram School of Medicine, Department of Internal Medicine, Necmettin Erbakan University, Meram, Konya, Turkey
| | - Muharrem Keskin
- Meram School of Medicine, Department of Internal Medicine, Division of Gastroenterology, Necmettin Erbakan University, Meram, Konya, Turkey
| | - Yusuf Kayar
- Department of Internal Medicine, Division of Gastroenterology, Van Education and Research Hospital, Van, Turkey
| | - Mehmet Asil
- Meram School of Medicine, Department of Internal Medicine, Division of Gastroenterology, Necmettin Erbakan University, Meram, Konya, Turkey
| |
Collapse
|
22
|
Wang J, Wang C, Xu P, Li X, Lu Y, Jin D, Yin X, Jiang H, Huang J, Xiong H, Ye F, Jin J, Chen Y, Xie Y, Chen Z, Ding H, Zhang H, Liu R, Jiang H, Chen K, Yao Z, Luo C, Huang Y, Zhang Y, Zhang J. PRMT1 is a novel molecular therapeutic target for clear cell renal cell carcinoma. Am J Cancer Res 2021; 11:5387-5403. [PMID: 33859753 PMCID: PMC8039964 DOI: 10.7150/thno.42345] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/17/2021] [Indexed: 01/06/2023] Open
Abstract
Background and Objective: Epigenetic alterations are common events in clear cell renal cell carcinoma (ccRCC), and protein arginine methyltransferase 1 (PRMT1) is an important epigenetic regulator in cancers. However, its role in ccRCC remains unclear. Methods: We investigated PRMT1 expression level and its correlations to clinicopathological factors and prognosis in ccRCC patients based on ccRCC tissue microarrays (TMAs). Genetic knockdown and pharmacological inhibition using a novel PRMT1 inhibitor DCPT1061 were performed to investigate the functional role of PRMT1 in ccRCC proliferation. Besides, we confirmed the antitumor effect of PRMT1 inhibitor DCPT1061 in ccRCC cell-derived tumor xenograft (CDX) models as well as patient-derived tumor xenograft (PDX) models. Results: We found PRMT1 expression was remarkably upregulated in tumor tissues and associated with poor pathologic characters and outcomes of ccRCC patients. Furthermore, genetic knockdown and pharmacological inhibition of PRMT1 by a novel potent inhibitor DCPT1061 dramatically induced G1 cell cycle arrest and suppressed ccRCC cell growth. Mechanistically, RNA sequencing and further validation identified Lipocalin2 (LCN2), a secreted glycoprotein implicated in tumorigenesis, as a crucial regulator of ccRCC growth and functional downstream effector of PRMT1. Epigenetic silencing of LCN2 autocrine secretion by PRMT1 deficiency decreased downstream p-AKT, leading to reduced p-RB and cell growth arrest through the neutrophil gelatinase associated lipocalin receptor (NGALR). Moreover, PRMT1 inhibition by DCPT1061 not only inhibited tumor growth but also sensitized ccRCC to sunitinib treatment in vivo by attenuating sunitinib-induced upregulation of LCN2-AKT-RB signaling. Conclusion: Taken together, our study revealed a PRMT1-dependent epigenetic mechanism in the control of ccRCC tumor growth and drug resistance, indicating PRMT1 may serve as a promising target for therapeutic intervention in ccRCC patients.
Collapse
|
23
|
Rodrigues BL, Mazzaro MC, Nagasako CK, Ayrizono MDLS, Fagundes JJ, Leal RF. Assessment of disease activity in inflammatory bowel diseases: Non-invasive biomarkers and endoscopic scores. World J Gastrointest Endosc 2020; 12:504-520. [PMID: 33362904 PMCID: PMC7739141 DOI: 10.4253/wjge.v12.i12.504] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/06/2020] [Accepted: 11/05/2020] [Indexed: 02/05/2023] Open
Abstract
Inflammatory bowel diseases (IBD) comprise two major forms: Crohn's disease and ulcerative colitis. The diagnosis of IBD is based on clinical symptoms combined with results found in endoscopic and radiological examinations. In addition, the discovery of biomarkers has significantly improved the diagnosis and management of IBD. Several potential genetic, serological, fecal, microbial, histological and immunological biomarkers have been proposed for IBD, and they have been evaluated for clinical routine and clinical trials. Ileocolonoscopy, especially with biopsy collection, has been considered the standard method to diagnose IBD and to assess clinical activity of the disease, but it is limited to the colon and terminal ileum and is considered invasive. For this reason, non-invasive biomarkers are necessary for this type of chronic inflammatory disease, which affects mostly young individuals, as they are expected to have a long follow-up.
Collapse
Affiliation(s)
- Bruno Lima Rodrigues
- Inflammatory Bowel Disease Research Laboratory, Gastrocenter, Colorectal Surgery Unit, Department of Surgery, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-878, São Paulo, Brazil
| | - Márcia Carolina Mazzaro
- Inflammatory Bowel Disease Research Laboratory, Gastrocenter, Colorectal Surgery Unit, Department of Surgery, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-878, São Paulo, Brazil
| | - Cristiane Kibune Nagasako
- Department of Gastroenterology, Gastrocenter, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-878, São Paulo, Brazil
| | - Maria de Lourdes Setsuko Ayrizono
- Inflammatory Bowel Disease Research Laboratory, Gastrocenter, Colorectal Surgery Unit, Department of Surgery, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-878, São Paulo, Brazil
| | - João José Fagundes
- Inflammatory Bowel Disease Research Laboratory, Gastrocenter, Colorectal Surgery Unit, Department of Surgery, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-878, São Paulo, Brazil
| | - Raquel Franco Leal
- Inflammatory Bowel Disease Research Laboratory, Gastrocenter, Colorectal Surgery Unit, Department of Surgery, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-878, São Paulo, Brazil
| |
Collapse
|
24
|
Hao P, Li H, Wu A, Zhang J, Wang C, Xian X, Ren Q, Hao N, Wang Y, Yue F, Cui H. Lipocalin2 promotes cell proliferation and migration in ovarian cancer through activation of the ERK/GSK3β/β-catenin signaling pathway. Life Sci 2020; 262:118492. [PMID: 32980390 DOI: 10.1016/j.lfs.2020.118492] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/19/2020] [Accepted: 09/20/2020] [Indexed: 12/01/2022]
Abstract
Lipocalin2 (Lcn2) has been shown to be a vital regulator of tumorigenesis in a variety of different cancers. However, its expression patterns and possible roles in ovarian cancer remain obscure. The aim of this study was to investigate the expression of Lcn2 in ovarian cancer cells and to determine any potential association between Lcn2 and ovarian tumor development and cancer progression. Our results indicated that Lcn2 was upregulated in tumor tissue from ovarian cancer patients as well as in three ovarian cancer cell lines compared to normal tissues and cells. Overexpression of Lcn2 promoted both cell proliferation and migration in ovarian cancer cells. Conversely, knockdown of Lcn2 in cell lines suppressed both migration and proliferation. Moreover, upregulation of Lcn2 contributed to tumor growth in nude mice in vivo. Mechanistically, Lcn2 was found to lead to tumor progression in ovarian cancer cells through activation of the ERK/GSK3β/β-catenin signaling pathway. In summary, Lcn2 promotes cell proliferation and migration in ovarian cancer through activation of the ERK/GSK3β/β-catenin signaling pathway, suggesting that Lcn2 might be a novel therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Peipei Hao
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang 050017, Hebei, China; Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang 050017, Hebei, China; International Cooperation Laboratory of Stem Cell Research, Shijiazhuang 050017, Hebei, China
| | - Haili Li
- Department of Gynecology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Aiyuan Wu
- The 3rd Affiliated Teaching Hospital of Xinjiang Medical University (Affiliated Cancer Hospital), Suzhou Dong Street No.789, Urumqi 830011, China
| | - Jiamin Zhang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Chang Wang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang 050017, Hebei, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Xian Xian
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang 050017, Hebei, China; International Cooperation Laboratory of Stem Cell Research, Shijiazhuang 050017, Hebei, China
| | - Qian Ren
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang 050017, Hebei, China; Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang 050017, Hebei, China; International Cooperation Laboratory of Stem Cell Research, Shijiazhuang 050017, Hebei, China
| | - Nana Hao
- Department of Neurology, HanDan Central Hospital, HanDan, Hebei, China
| | - Yunpeng Wang
- Department of General Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China
| | - Fengming Yue
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang 050017, Hebei, China; International Cooperation Laboratory of Stem Cell Research, Shijiazhuang 050017, Hebei, China; The Department of Histology and Embryology, Medical School of Shinshu University, Japan
| | - Huixian Cui
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang 050017, Hebei, China; Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang 050017, Hebei, China; International Cooperation Laboratory of Stem Cell Research, Shijiazhuang 050017, Hebei, China.
| |
Collapse
|
25
|
Gasterich N, Wetz S, Tillmann S, Fein L, Seifert A, Slowik A, Weiskirchen R, Zendedel A, Ludwig A, Koschmieder S, Beyer C, Clarner T. Inflammatory Responses of Astrocytes Are Independent from Lipocalin 2. J Mol Neurosci 2020; 71:933-942. [PMID: 32959226 DOI: 10.1007/s12031-020-01712-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022]
Abstract
The central nervous system (CNS) responds to diverse neurologic injuries with a vigorous activation of astrocytes. In addition to their role in the maintenance of CNS homeostasis and neuronal function, astrocytes are thought to participate in the regulation of innate and adaptive immune responses in the CNS. Following antigen recognition, reactive astrocytes may participate in the initiation of innate immune responses, and modulate adaptive immune response leading to the recruitment of peripheral immune cells. Among activation, astrocytes undergo morphological changes and express several molecules, e.g., chemokines. Lipocalin 2 (LCN2) is involved in the control of innate immune responses, regulation of excess iron, and reactive oxygen production. Here, we investigated the influence of LCN2 on basic astrocytic functions linked to inflammatory responses. In vitro studies revealed a similar chemokine expression pattern in wild-type and Lcn2-deficient astrocyte cultures after treatment with lipopolysaccharides (LPS). Increased wound closure and morphological changes upon LPS treatment are independent of Lcn2 expression. We conclude that LCN2 is not necessary for basic astrocytic functions in the context of inflammation. However, CNS-derived LCN2 might have a regulatory effect on other cells, e.g., endothelial cells of the blood-brain barrier.
Collapse
Affiliation(s)
- Natalie Gasterich
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany.
| | - Sophie Wetz
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany
| | - Stefan Tillmann
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Lena Fein
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany
| | - Anke Seifert
- Institute of Molecular Pharmacology, RWTH University Hospital Aachen, Aachen, Germany
| | - Alexander Slowik
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Adib Zendedel
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany
| | - Andreas Ludwig
- Institute of Molecular Pharmacology, RWTH University Hospital Aachen, Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany
| | - Tim Clarner
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
26
|
Biological Functions and Therapeutic Potential of Lipocalin 2 in Cancer. Int J Mol Sci 2020; 21:ijms21124365. [PMID: 32575507 PMCID: PMC7352275 DOI: 10.3390/ijms21124365] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022] Open
Abstract
Lipocalin-2 (LCN2) is a secreted glycoprotein linked to several physiological roles, including transporting hydrophobic ligands across cell membranes, modulating immune responses, maintaining iron homeostasis, and promoting epithelial cell differentiation. Although LNC2 is expressed at low levels in most human tissues, it is abundant in aggressive subtypes of cancer, including breast, pancreas, thyroid, ovarian, colon, and bile duct cancers. High levels of LCN2 have been associated with increased cell proliferation, angiogenesis, cell invasion, and metastasis. Moreover, LCN2 modulates the degradation, allosteric events, and enzymatic activity of matrix metalloprotease-9, a metalloprotease that promotes tumor cell invasion and metastasis. Hence, LCN2 has emerged as a potential therapeutic target against many cancer types. This review summarizes the most relevant findings regarding the expression, biological roles, and regulation of LCN2, as well as the proteins LCN2 interacts with in cancer. We also discuss the approaches to targeting LCN2 for cancer treatment that are currently under investigation, including the use of interference RNAs, antibodies, and gene editing.
Collapse
|
27
|
Gumpper K, Dangel AW, Pita-Grisanti V, Krishna SG, Lara LF, Mace T, Papachristou GI, Conwell DL, Hart PA, Cruz-Monserrate Z. Lipocalin-2 expression and function in pancreatic diseases. Pancreatology 2020; 20:419-424. [PMID: 31932215 PMCID: PMC7160010 DOI: 10.1016/j.pan.2020.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 02/08/2023]
Abstract
Lipocalin-2 (LCN2) is a secreted molecule, expressed in various cell types, that is involved in the progression of numerous diseases and disorders. The biological functions and expression levels of LCN2 in diseases including pancreatic cancer, pancreatitis (acute and chronic), and diabetes mellitus, suggest the potential role of LCN2 as a biomarker and/or therapeutic target. However, findings on the role of LCN2 in pancreatic diseases have been contradictory. In pancreatic cancer and pancreatitis, LCN2 has been identified as a potential biomarker; increased expression levels in various biological specimens correlate with the presence of the disease and may be able to differentiate cancer and chronic pancreatitis from healthy subjects. LCN2 is also known to be an adipokine; it is upregulated in obesity and is a common co-factor in the development of pancreatic diseases. Emerging research suggests LCN2 is elevated in type 2 diabetes mellitus, but the exact role of LCN2 in this disease is not clear. In this review, we summarize research on LCN2 as it relates to pancreatic diseases, highlighting the discrepancies in the literature. By explaining and clarifying the role of LCN2 in these disorders, we aim to promote research in developing novel diagnostic and treatment strategies to reduce the burden of pancreatic diseases.
Collapse
Affiliation(s)
- Kristyn Gumpper
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Andrew William Dangel
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Valentina Pita-Grisanti
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Somashekar G Krishna
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Luis F Lara
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Thomas Mace
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Georgios I Papachristou
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Darwin L Conwell
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Phil A Hart
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
28
|
de Bruyn M, Ringold R, Martens E, Ferrante M, Van Assche G, Opdenakker G, Dukler A, Vermeire S. The Ulcerative Colitis Response Index for Detection of Mucosal Healing in Patients Treated With Anti-tumour Necrosis Factor. J Crohns Colitis 2020; 14:176-184. [PMID: 31628842 DOI: 10.1093/ecco-jcc/jjz125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Surrogate markers that accurately detect mucosal healing [MH] in patients with ulcerative colitis [UC] are urgently needed. Several stool neutrophil-related proteins are currently used as biomarkers for MH. However, the sensitivity and specificity are not sufficient to avoid unnecessary endoscopic evaluations. METHODS Novel serum neutrophil-related markers (neutrophil gelatinase B-associated lipocalin and matrix metalloproteinase-9 [NGAL-MMP-9 complex], cathelicidin LL-37 and chitinase 3-like 1 [CHI3L1]), together with C-reactive protein [CRP] and neutrophil counts were studied. Serum samples were obtained from 176 anti-tumour necrosis factor [anti-TNF]-treated UC patients (145 infliximab [IFX] and 31 adalimumab [ADM]) at baseline and after a median of 9.5 weeks. All patients had active disease prior to treatment (Mayo endoscopic subscore [MES] ≥ 2), and MH was defined as MES ≤ 1. Serum was also obtained from 75 healthy controls. Binary logistic regression analysis was used to generate the Ulcerative Colitis Response Index [UCRI]. The performance of individual markers and UCRI was tested with receiver operating characteristic analysis. RESULTS All neutrophil-related markers were significantly higher in active UC patients compared to healthy controls. In the IFX cohort, CRP, NGAL-MMP-9, CHI3L1 and neutrophil count decreased significantly after treatment and all marker levels were significantly lower in healers compared to non-healers following IFX. In the ADM cohort, CRP, NGAL-MMP-9, CHI3L1 and neutrophil count decreased significantly only in healers. UCRI [including CRP, CHI3L1, neutrophil count and LL-37] accurately detected MH in both IFX-treated (area under the curve [AUC] = 0.83) and ADM-treated [AUC = 0.79] patients. CONCLUSIONS The new UCRI index accurately detects MH after treatment with IFX and ADM. This panel is useful for monitoring MH in UC patients under anti-TNF treatment. PODCAST This article has an associated podcast which can be accessed at https://academic.oup.com/ecco-jcc/pages/podcast.
Collapse
Affiliation(s)
- Magali de Bruyn
- Translational Research Centre for GastroIntestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium.,Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Randy Ringold
- Kepler Diagnostics, Inc., Simi Valley, California, USA
| | - Erik Martens
- Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Marc Ferrante
- Translational Research Centre for GastroIntestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium.,University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
| | - Gert Van Assche
- Translational Research Centre for GastroIntestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium.,University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
| | - Ghislain Opdenakker
- Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | | | - Séverine Vermeire
- Translational Research Centre for GastroIntestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium.,University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
| |
Collapse
|
29
|
Implication and role of neutrophil gelatinase-associated lipocalin in cancer: lipocalin-2 as a potential novel emerging comprehensive therapeutic target for a variety of cancer types. Mol Biol Rep 2020; 47:2327-2346. [PMID: 31970626 DOI: 10.1007/s11033-020-05261-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/16/2020] [Indexed: 12/18/2022]
Abstract
Cancer is a leading cause of mortalities worldwide. Over the past few decades, exploration of molecular mechanisms behind cancer initiation and progression has been of great interest in the viewpoint of both basic and clinical scientists. It is generally believed that identification of key molecules implicated in cancer pathology not only improves our understanding of the disease, but also could result in introduction of novel therapeutic strategies. Neutrophil gelatinase-associated lipocalin (NGAL)/lipocalin-2 (LCN2) is a member of lipocalin superfamily with a variety of functions. Although the main function of LCN2 is still unknown, many studies confirmed its significant role in the initiation, progression, and metastasis of various types of cancer. Furthermore, aberrant expression of LCN2 is also concerned with the chemo- and radio-resistant phenotypes of tumors. Here, we will review the contribution of known functions of LCN2 to the pathophysiology of cancer. We also highlight how the deregulated expression of LCN2 is associated with a variety of fatal types of cancer for which there are no effective therapeutic modalities. The unique and multiple functions of LCN2 and its widespread expression in different types of cancer prompted us to suggest LCN2 could be considered either as a valuable diagnostic and prognostic biomarker or as a potential novel therapeutic target.
Collapse
|
30
|
Batsos G, Christodoulou E, Vartholomatos G, Galanis P, Stefaniotou M. Vitreous levels of Lipocalin-2 on patients with primary rhegmatogenous retinal detachment. PLoS One 2019; 14:e0227266. [PMID: 31891637 PMCID: PMC6938320 DOI: 10.1371/journal.pone.0227266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/15/2019] [Indexed: 01/22/2023] Open
Abstract
Purpose To measure vitreous levels of Lipocalin2 (LCN2) in patients with rhegmatogenous retinal detachment (RRD) and investigate potential association with presence of proliferative vitreoretinopathy (PVR). Materials and methods Collection of undiluted vitreous samples from 24 patients suffering from RRD and 10 control patients undergoing vitrectomy for: vitreomacular traction (VMT) (n = 2), idiopathic epiretinal membrane (iERM) (n = 6) and full thickness macular hole (FTMH) (n = 2). Quantitative analysis of LCN2 has been made with flow cytometry. Lens status, duration of symptoms, quadrants of detachment, as well as level of PVR, were assessed. Statistical analysis included Mann-Whitney test, Kruskal-Wallis test, t-test, Spearman’s correlation coefficient and Fisher's exact test. Results Median LCN2 was significantly higher in the RRD group as compared to control (p<0.001). Within the RRD group there was a positive correlation between LCN2 and PVR grade (rs = 0.94, p<0.001). Median LCN2 was 35,759 pg/ml (IR = 55,347) in grade C PVR, 9,387 pg/ml (IR = 3721) in grade B, 4,917 pg/ml (IR = non computable) in grade A and 3,921 pg/ml (2132) in the no PVR group. Median LCN2 was also significantly higher in pseudophakic patients as compared to phakic patients (p = 0.007). LCN2 also correlates with the extend of detachment (≤2 vs >2 quadrants, p<0.001) as well as with duration of symptoms (rs = 0.87, p<0.001). After multivariate linear regression analysis, only PVR was independently related with LCN2 concentration. In particular, increased PVR grading was associated with increased LCN2 concentration (coefficient b = 2.97, 95% confidence interval = 1.89 to 4.67, p<0.001). Conclusion A positive correlation between vitreous levels of LCN2 and PVR grading reveals a potential role in the pathogenesis and progression of PVR. Further studies could elucidate if LCN2 could be a therapeutic target.
Collapse
Affiliation(s)
- Georgios Batsos
- Ophthalmology Department, University Hospital Of Ioannina, Ioannina, Greece
- * E-mail:
| | | | - Georgios Vartholomatos
- Haematology Laboratory Unit of Molecular Biology, University Hospital Of Ioannina, Ioannina, Greece
| | - Petros Galanis
- Center for Health Services Management and Evaluation, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Maria Stefaniotou
- Ophthalmology Department, University Hospital Of Ioannina, Ioannina, Greece
| |
Collapse
|
31
|
Du Z, Wu B, Xia Q, Zhao Y, Lin L, Cai Z, Wang S, Li E, Xu L, Li Y, Xu H, Yin D. LCN2-interacting proteins and their expression patterns in brain tumors. Brain Res 2019; 1720:146304. [PMID: 31233712 DOI: 10.1016/j.brainres.2019.146304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/01/2019] [Accepted: 06/20/2019] [Indexed: 02/08/2023]
Abstract
Lipocalin 2 (LCN2) is a member of the lipocalin family. Elevated expression of LCN2 has been observed in many human tumors, suggesting it might be a potential biomarker and/or therapeutic target in malignancies. In this study, we aimed to explore LCN2 interacting proteins through bioinformatics, as well as their biological functions. Protein-protein interaction networks (PPIN) were constructed using LCN2 and its interacting proteins as the core node. These PPINs were scale free biological networks in which LCN2 and its interacting proteins could connect or cross-talk with at least one partner protein. Both functional and KEGG pathway enrichment analyses identified the known and potential biological functions of the PPIN, such as cell migration and cancer-related pathways. Expression levels of the PPIN proteins, as well as their expression correlations, in five types of brain tumor, were analyzed and integrated into the PPIN to illustrate a dynamic change. A significant correlation was found between the survival time of glioblastoma patients and the expression level of 10 genes (LCN2, MMP9, MMP2, PDE4DIP, L2HGDH, HNRNPA1, DDX31, LOXL2, FAM60A and RNF25). Taken together, our results suggest that LCN2 and its interacting proteins are mostly differentially expressed and have a distinguishing co-expression pattern. They might promote proliferation and migration via cell migration signaling and cancer-related pathways. LCN2 and its interacting proteins might be potential biomarkers in glioblastoma.
Collapse
Affiliation(s)
- Zepeng Du
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Genes Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China; Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, Guangdong, China
| | - Bingli Wu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Qiaoxi Xia
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yan Zhao
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, Guangdong, China
| | - Ling Lin
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Zhixiong Cai
- Department of Cardiology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, Guangdong, China
| | - Shaohong Wang
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, Guangdong, China
| | - Enmin Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Liyan Xu
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yun Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Genes Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China
| | - Haixiong Xu
- Department of Neurosurgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, Guangdong, China.
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Genes Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China.
| |
Collapse
|
32
|
Chen YC, Chang SC, Huang YH, Lee YJ, Chang CC, Liao JW, Hsu WL. Expression and the molecular forms of neutrophil gelatinase-associated lipocalin and matrix metalloproteinase 9 in canine mammary tumours. Vet Comp Oncol 2019; 17:427-438. [PMID: 31050171 DOI: 10.1111/vco.12488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/10/2019] [Accepted: 04/26/2019] [Indexed: 01/01/2023]
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL) is a new biomarker for renal injury. It is also involved in tumorigenesis of different human cancer types. The oncogenic role of NGAL is related to its molecular forms, and heterodimer formation with matrix metalloproteinase 9 (MMP9) promotes human breast cancer (HBC) invasion and metastasis. To date, the levels of NGAL and NGAL/MMP9 complex have not yet been explored in canine mammary tumours (CMTs). Hence, this study aimed to investigate whether NGAL and its molecular forms could be the biomarker for CMT diagnosis. To this end, expression profile of NGAL and MMP9 in mammary epithelial cells as well as in urine samples were detected. By immunohistochemistry staining, NGAL was expressed at variable levels. Unlike HBC, a significant reduction in NGAL expression was demonstrated in benign and malignant CMTs as compared with normal controls. Additionally, NGAL expression was significantly reduced in dogs with metastatic CMTs. By contrast, the mean score of MMP9 expression in ascending order was normal groups, benign, and malignant CMTs. Interestingly, analysis of the molecular form revealed the NGAL/MMP9 complex presents in most mammary tissues and urine of dogs with benign or malignant CMTs, whereas the complex was absent in samples from dogs without CMTs. In conclusion, NGAL and MMP9 are ubiquitously expressed in canine mammary epithelial cells in normal and cancerous status. However, the NGAL/MMP9 complex exclusively presents in mammary tissues and urine of dogs with tumours.
Collapse
Affiliation(s)
- Yi-Chen Chen
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Shih-Chieh Chang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan.,Veterinary Medical Teaching Hospital, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Han Huang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Ya-Jane Lee
- Institute of Veterinary Clinical Science, School of Veterinary Medicine, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Chao-Chin Chang
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Li Hsu
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
33
|
Zhao Y, Xia Q, Liu Y, Bai W, Yao Y, Ding J, Lin L, Xu Z, Cai Z, Wang S, Li E, Xu H, Wu B, Xu L, Du Z. TCF7L2 and EGR1 synergistic activation of transcription of LCN2 via an ERK1/2-dependent pathway in esophageal squamous cell carcinoma cells. Cell Signal 2019; 55:8-16. [PMID: 30557604 DOI: 10.1016/j.cellsig.2018.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 02/05/2023]
Abstract
High level expression of lipocalin 2 (LCN2) usually indicates poor prognosis in esophageal squamous cell carcinoma (ESCC) and many other cancers. Our previous study showed LCN2 promotes migration and invasion of ESCC cells through a novel positive feedback loop. However, the key transcription activation protein (KTAP) in the loop had not yet been identified. In this study, we first predicted the most probable KTAPs by bioinformatic analysis. We then assessed the transcription regulatory regions in the human LCN2 gene by fusing deletions of its 5'-flanking region to a dual-luciferase reporter. We found that the region -720/-200 containing transcription factor 7-like 2 (TCF7L2) (-273/-209) and early growth response 1 (EGR1) (-710/-616) binding sites is crucial for LCN2 promoter activity. Chromatin immunoprecipitation (ChIP) experiments demonstrated that TCF7L2 and EGR1 bound directly to their binding sites within the LCN2 promoter as KTAPs. Mechanistically, overexpression of TCF7L2 and EGR1 increased endogenous LCN2 expression via the ERK signaling pathway. Treatment with recombinant human LCN2 protein enhanced activation of the ERK pathway to facilitate endogenous LCN2 expression, as well as increase the expression level of TCF7L2 and EGR1. Treatment with the MEK inhibitor U0126 inhibited the activation by TCF7L2 or EGR1 overexpression. Moreover, overexpression of TCF7L2 or EGR1 accelerated the migration and invasion of ESCC cells. A synergistic effect was observed between TCF7L2 and EGR1 in amplifying the induction of LCN2 and enhancing migration and invasion. Taken together, our study indicates that TCF7L2 and EGR1 are the KTAPs of LCN2, within a positive "LCN2 → MEK/ERK → LCN2" path, to promote the migration and invasion of ESCC cells. Based on their clinicopathological significance, LCN2 and its two expression regulators TCF7L2 and ERG1 might be therapeutic targets for ESCC.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China; Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China
| | - Qiaoxi Xia
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Yan Liu
- Department of Neurosurgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China
| | - Wenjing Bai
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Yubin Yao
- Department of Radiology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China
| | - Jiyu Ding
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Ling Lin
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Zhennan Xu
- Department of Neurosurgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China
| | - Zhixiong Cai
- Department of Cardiology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China
| | - Shaohong Wang
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China
| | - Enmin Li
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Haixiong Xu
- Department of Neurosurgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China
| | - Bingli Wu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China.
| | - Liyan Xu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China.
| | - Zepeng Du
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China; Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Genes Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
34
|
Liu F, Li N, Yang W, Wang R, Yu J, Wang X. The expression analysis of NGAL and NGALR in clear cell renal cell carcinoma. Gene 2018; 676:269-278. [DOI: 10.1016/j.gene.2018.08.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 01/12/2023]
|
35
|
Bauvois B, Susin SA. Revisiting Neutrophil Gelatinase-Associated Lipocalin (NGAL) in Cancer: Saint or Sinner? Cancers (Basel) 2018; 10:cancers10090336. [PMID: 30231474 PMCID: PMC6162539 DOI: 10.3390/cancers10090336] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/13/2018] [Accepted: 09/15/2018] [Indexed: 12/13/2022] Open
Abstract
Human neutrophil gelatinase-associated lipocalin (NGAL) is a glycoprotein present in a wide variety of tissues and cell types. NGAL exists as a 25 kDa monomer, a 46 kDa homodimer (the most abundant form in healthy subjects) and a 130 kDa disulfide-linked heterodimer bound to latent matrix metalloproteinase-9. Dysregulated expression of NGAL in human malignancies suggests its value as a clinical marker. A growing body of evidence is highlighting NGAL’s paradoxical (i.e., both beneficial and detrimental) effects on cellular processes associated with tumor development (proliferation, survival, migration, invasion, and multidrug resistance). At least two distinct cell surface receptors are identified for NGAL. This review (i) summarizes our current knowledge of NGAL’s expression profiles in solid tumors and leukemias, and (ii) critically evaluates the beneficial and detrimental activities of NGAL having been documented in a diverse range of cancer-derived cell lines. A better understanding of the causal relationships between NGAL dysregulation and tumor development will require a fine analysis of the molecular aspects and biological role(s) of NGAL both in primary tumors and at different stages of disease. Having an accurate picture of NGAL’s contribution to tumor progression is a prerequisite for attempting to modulate this protein as a putative therapeutic target.
Collapse
Affiliation(s)
- Brigitte Bauvois
- INSERM UMRS 1138, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, 75006 Paris, France.
- Sorbonne Universités Paris Cité, F-75006 Paris, France.
- Université Paris Descartes, F-75005 Paris, France.
| | - Santos A Susin
- INSERM UMRS 1138, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, 75006 Paris, France.
- Sorbonne Universités Paris Cité, F-75006 Paris, France.
- Université Paris Descartes, F-75005 Paris, France.
| |
Collapse
|
36
|
Li W, Ng JMK, Wong CC, Ng EKW, Yu J. Molecular alterations of cancer cell and tumour microenvironment in metastatic gastric cancer. Oncogene 2018; 37:4903-4920. [PMID: 29795331 PMCID: PMC6127089 DOI: 10.1038/s41388-018-0341-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023]
Abstract
The term metastasis is widely used to describe the endpoint of the process by which tumour cells spread from the primary location to an anatomically distant site. Achieving successful dissemination is dependent not only on the molecular alterations of the cancer cells themselves, but also on the microenvironment through which they encounter. Here, we reviewed the molecular alterations of metastatic gastric cancer (GC) as it reflects a large proportion of GC patients currently seen in clinic. We hope that further exploration and understanding of the multistep metastatic cascade will yield novel therapeutic targets that will lead to better patient outcomes.
Collapse
Affiliation(s)
- Weilin Li
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Jennifer Mun-Kar Ng
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Chi Chun Wong
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Enders Kwok Wai Ng
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
| | - Jun Yu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
| |
Collapse
|
37
|
Ding G, Wang J, Feng C, Jiang H, Xu J, Ding Q. Lipocalin 2 over-expression facilitates progress of castration-resistant prostate cancer via improving androgen receptor transcriptional activity. Oncotarget 2018; 7:64309-64317. [PMID: 27602760 PMCID: PMC5325444 DOI: 10.18632/oncotarget.11790] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/13/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Castration-resistant prostate cancer (CRPC) is the lethal phenotype of prostate cancer. Lipocalin 2 (LCN2) is aberrantly expressed in many cancers including primary prostate cancer (PCa), but its role in CRPC has not been reported. RESULTS LCN2 expression was upregulated in human primary PCa and CRPC tissues. Overexpression of LCN2 promoted C4-2B and 22RV1 cell proliferation while knockdown of LCN2 markedly inhibited C4-2B and 22RV1 cell growth. LCN2 overexpression led to increased AR downstream gene SLC45A3 without upregulating AR expression. In the xenograft model, overexpression of LCN2 significantly promoted tumor growth. METHODS LCN2 expression was detected in primary PCa and CRPC tissues and cell lines C4-2B and 22RV1 using immunohistochemistry and western blotting, respectively. Serum LCN2 level was detected vi ELISA. Lentiviruses-mediated over-expression of LCN2 and LCN2 knockdown were performed in CRPC cell lines. Expressions of androgen receptor (AR) downstream genes was examined in cell lines, in CRPC tissues, and in animal models. CONCLUSION LCN2 could facilitate cell proliferation of CRPC via AR transcriptional activity. LCN2 could be a novel target in CRPC.
Collapse
Affiliation(s)
- Guanxiong Ding
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianqing Wang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chenchen Feng
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianfeng Xu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Department of Urology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Qiang Ding
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
38
|
Kim SL, Lee ST, Min IS, Park YR, Lee JH, Kim DG, Kim SW. Lipocalin 2 negatively regulates cell proliferation and epithelial to mesenchymal transition through changing metabolic gene expression in colorectal cancer. Cancer Sci 2017; 108:2176-2186. [PMID: 28859238 PMCID: PMC5666039 DOI: 10.1111/cas.13389] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/20/2017] [Accepted: 08/25/2017] [Indexed: 12/17/2022] Open
Abstract
Lipocalin 2 (LCN2), a member of the lipocalin superfamily, plays an important role in oncogenesis and progression in various types of cancer. However, the expression pattern and functional role of LCN2 in colorectal cancer (CRC) is still poorly understood. The purpose of the present study was to investigate whether LCN2 is associated with proliferation and the epithelial-mesenchymal transition (EMT) in CRC and to elucidate the underlying signaling pathways. LCN2 was preferentially expressed in CRC cells compared to normal tissues. However, LCN2 expression was significantly lower in metastatic or advanced-stage CRC than in non-metastatic or early stage CRC. Knockdown of LCN2 using small interfering RNA (siRNA) in CRC cells expressing a high level of LCN2 induced cell proliferation and a morphological switch from an epithelial to mesenchymal state. Furthermore, downregulation of LCN2 in CRC cells increased cell migration and invasion involved in the regulation of EMT markers. Knockdown of LCN2 also induced glucose consumption and lactate production, accompanied by an increase in energy metabolism-related genes. Taken together, our findings indicated that LCN2 negatively modulated proliferation, EMT and energy metabolism in CRC cells. Accordingly, LCN2 may be a candidate metastasis suppressor and potential therapeutic target in CRC.
Collapse
Affiliation(s)
- Se-Lim Kim
- Department of Internal Medicine Research Institute of Clinical Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea.,Biomedical Research Institute, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| | - Soo Teik Lee
- Department of Internal Medicine Research Institute of Clinical Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea.,Biomedical Research Institute, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| | - In Suk Min
- Department of Internal Medicine Research Institute of Clinical Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea.,Biomedical Research Institute, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| | - Young Ran Park
- Department of Internal Medicine Research Institute of Clinical Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea.,Biomedical Research Institute, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| | - Ju Hyung Lee
- Department of Preventive Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| | - Dae-Ghon Kim
- Department of Internal Medicine Research Institute of Clinical Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea.,Biomedical Research Institute, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| | - Sang-Wook Kim
- Department of Internal Medicine Research Institute of Clinical Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea.,Biomedical Research Institute, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| |
Collapse
|
39
|
Cystic fluid neutrophil gelatinase-associated lipocalin (NGAL) concentration in differential diagnosis of pancreatic cystic lesions: a new factor enters the scene? GASTROENTEROLOGY REVIEW 2017; 13:132-136. [PMID: 30002772 PMCID: PMC6040100 DOI: 10.5114/pg.2017.68805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 02/07/2023]
Abstract
Introduction Neutrophil gelatinase-associated lipocalin – 25 kDa peptide – is at present one of the most fascinating and unrecognised proteins implicated in the process of tumour development. Precise assessment of pancreatic cystic lesions is crucial for selecting available treatment options, such as conservative therapy or surgical resection. Aim To determine the utility of NGAL concentration in cyst fluid obtained by endoscopic ultrasound (EUS) with EUS-guided fine-needle aspiration (EUS-FNA) to distinguish neoplastic pancreatic cysts from pseudocysts. Material and methods Twenty-two patients underwent EUS and FNA of a pancreatic cystic lesion; 9 of these patients underwent surgical resection, providing a histologic diagnosis of the cystic lesion. Furthermore, the final diagnosis was based on cyst fluid cytology, cyst fluid tumour markers (CEA, CA 72-4, CA 19-9), and medical history. Patients were divided in two groups: cystic neoplasms and inflammatory cysts (pseudocysts). Results The final diagnosis was pseudocyst in 7 patients, serous cystadenoma in 4, mucinous cystadenoma in 3, intraductal papillary mucinous neoplasms in 6 patients, and cystic form of pancreatic adenocarcinoma in 2. Cyst fluid analysis of these patients showed that median cyst fluid NGAL for the cystic neoplasm group (211 ng/ml; n = 15) was significantly lower (p = 0.02) than the inflammatory cystic group (4689 ng/ml; n = 7). Correlation analysis showed that only fluid CA 72-4 was positively related to NGAL (r = 0.8, p < 0.01). Conclusions In this single-centre study, pancreatic cyst fluid NGAL concentration appeared to be useful in distinguishing neoplastic pancreatic cysts from pseudocysts. Larger studies are recommended to evaluate this role further.
Collapse
|
40
|
S1P Provokes Tumor Lymphangiogenesis via Macrophage-Derived Mediators Such as IL-1 β or Lipocalin-2. Mediators Inflamm 2017; 2017:7510496. [PMID: 28804221 PMCID: PMC5539930 DOI: 10.1155/2017/7510496] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/15/2017] [Indexed: 12/17/2022] Open
Abstract
A pleiotropic signaling lipid, sphingosine-1-phosphate (S1P), has been implicated in various pathophysiological processes supporting tumor growth and metastasis. However, there are only a few descriptive studies suggesting a role of S1P in tumor lymphangiogenesis, which is critical for tumor growth and dissemination. Corroborating own data, the literature suggests that apoptotic tumor cell-derived S1P alters the phenotype of tumor-associated macrophages (TAMs) to gain protumor functions. However, mechanistically, the role of TAM-induced lymphangiogenesis has only been poorly described, mostly linked to the production of lymphangiogenic factors such as vascular endothelial growth factor C (VEGF-C) and VEGF-D, or transdifferentiation into lymphatic endothelial cells. Recent findings highlight a rather underappreciated role of S1P in tumor lymphangiogenesis, referring to the production of interleukin-1β (IL-1β) and lipocalin-2 (LCN2) by a tumor-promoting macrophage phenotype. In this review, we aim to provide to the readers with the current understanding of the molecular mechanism how apoptotic cell-derived S1P triggers TAMs to promote lymphangiogenesis.
Collapse
|
41
|
A rapid and highly sensitive immunoassay format for human lipocalin-2 using multiwalled carbon nanotubes. Biosens Bioelectron 2017; 93:198-204. [DOI: 10.1016/j.bios.2016.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/29/2016] [Accepted: 09/01/2016] [Indexed: 12/25/2022]
|
42
|
Lipocalin-2 and iron trafficking in the tumor microenvironment. Pharmacol Res 2017; 120:146-156. [PMID: 28342790 DOI: 10.1016/j.phrs.2017.03.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 02/07/2023]
Abstract
Iron is an essential element for virtually all organisms. It facilitates cell proliferation and growth but also contributes to major hallmarks of cancer such as tumor initiation, growth, and metastasis. Often, iron handling of tumor cells is disturbed, with altered iron acquisition, efflux, and storage. Targeting perturbed iron metabolic pathways might open opportunities towards novel approaches in cancer treatment. It is becoming clear that cells of the tumor microenvironment such as macrophages contribute to tumor progression. Since macrophages evolved a multitude of mechanisms to sequester, transport, store, and release iron it can be speculated that tumor cells educate them to supply iron to support tumor growth. Recent evidence supports the existence of transferrin-independent iron transport mechanisms in the tumor microenvironment, which points to local iron transport proteins such as lipocalin-2 and/or low molecular weight iron-trafficking substances such as siderophores. We hypothesize that tumor cells educate immune cells, i.e. macrophages in their neighborhood to make them delivering iron for the benefit of cancer progression. In particular, we pay attention to recent developments, pointing to lipocalin-2 and siderophores as alternative iron transport molecules in the tumor microenvironment.
Collapse
|
43
|
Can NGAL be employed as prognostic and diagnostic biomarker in human cancers? A systematic review of current evidence. Int J Biol Markers 2017; 32:e53-e61. [PMID: 28106227 DOI: 10.5301/jbm.5000245] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Some studies have reported differentially altered neutrophil gelatinase-associated lipocalin (NGAL) levels in several malignancies. We evaluated NGAL measured in plasma or urine as both prognostic and diagnostic marker for different types of human tumors. METHODS We performed systematic electronic searches in Medline, Embase and CRDTAS. Studies were included if they evaluated NGAL as a prognostic or diagnostic marker for human cancers. The selection of the studies, screening of the full texts and data extraction were conducted independently by 2 authors. We used the random-effects model for the meta-analyses. A methodological assessment was completed. RESULTS We included 35 studies dedicated to colorectal, pancreas, breast, thyroid, gastric, kidney, endometrial, brain, liver, lung, esophageal, oral and ovarian cancers. Our meta-analyses showed that, in patients with colorectal and breast cancer, positive NGAL expression was associated with a decrease of disease-free survival (hazard ratio [HR] = 2.27, 95% confidence interval [95% CI], 1.54-3.36; HR = 1.78, 95% CI, 1.33-2.38, respectively). NGAL was a negative prognostic marker of overall survival in colorectal (HR = 2.37, 95% CI, 1.68-3.34) and endometrial (HR = 4.38, 95% CI, 1.9-10.12) cancers. Discriminative power of NGAL between cancer patients and control was moderate in colorectal cancer (area under the curve [AUC] = 0.6; pooled sensitivity 0.56; pooled specificity 0.72), acceptable in pancreatic cancer (AUC = 0.8; pooled sensitivity 0.6; pooled specificity 0.8) and good in thyroid cancer (AUC = 0.9; pooled sensitivity 0.85; pooled specificity 0.96). CONCLUSIONS NGAL determination in plasma and urine could be useful in the prognosis of colorectal and breast cancer, but its prognostic accuracy remains uncertain for other human tumors.
Collapse
|
44
|
Muşlu N, Ercan B, Akbayır S, Balcı Ş, Ovla HD, Bozlu M. Neutrophil gelatinase-associated lipocalin as a screening test in prostate cancer. Turk J Urol 2017; 43:30-35. [PMID: 28270948 PMCID: PMC5330265 DOI: 10.5152/tud.2016.08941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/01/2016] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Prostate specific antigen (PSA) with digital rectal examination is used for diagnosis of prostate cancer (PCa), where definite diagnosis can only be made by prostate biopsy. Recently neutrophil gelatinase-associated lipocalin (NGAL), a lipocalin family member glycoprotein, come into prominence as a cancer biomarker. This study is aimed to test serum NGAL as a diagnostic biomarker for PCa and discriminate PCa from benign prostatic hyperplasia (BPH). MATERIAL AND METHODS In this prospective study, 90 patients who underwent transrectal ultrasound-guided 12-core prostate biopsy between May 2015 and September 2015, were evaluated. Histopathologically diagnosed 45 PCa and 45 BPH patients were enrolled in this study. Serum NGAL and PSA levels of all participants were measured, then these data were evaluated by statistical programs. RESULTS When sensitivity fixed to 80% specificity of NGAL was better than PSA (49%, 31% respectively). Receiver operating characteristic (ROC) curve analysis showed that NGAL alone or its combined use with PSA have better area under curve (AUC) results than PSA alone (0.662, 0.693, and 0.623 respectively). CONCLUSION In conclusion NGAL gave promising results such as increased sensitivity and a better AUC values in order to distinguish PCa from BPH. NGAL showed a potential to be a non-invasive biomarker which may decrease the number of unnecessary biopsies.
Collapse
Affiliation(s)
- Necati Muşlu
- Department of Biochemistry, Mersin University School of Medicine, Mersin, Turkey
| | - Bahadır Ercan
- Department of Biochemistry, Dicle University School of Medicine, Diyarbakır, Turkey
| | - Serin Akbayır
- Karaman State Hospital, Biochemistry Laboratory, Karaman, Turkey
| | - Şenay Balcı
- Department of Biochemistry, Mersin University School of Medicine, Mersin, Turkey
| | - H. Didem Ovla
- Department of Biostatistics Mersin University School of Medicine, Mersin, Turkey
| | - Murat Bozlu
- Department of Urology, Mersin University School of Medicine, Mersin, Turkey
| |
Collapse
|
45
|
Isaacson KJ, Martin Jensen M, Subrahmanyam NB, Ghandehari H. Matrix-metalloproteinases as targets for controlled delivery in cancer: An analysis of upregulation and expression. J Control Release 2017; 259:62-75. [PMID: 28153760 DOI: 10.1016/j.jconrel.2017.01.034] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/18/2017] [Accepted: 01/26/2017] [Indexed: 02/07/2023]
Abstract
While commonly known for degradation of the extracellular matrix, matrix metalloproteinases (MMPs) exhibit broad potential for use in targeting of bioactive and imaging agents in cancer treatment. MMPs are upregulated at all stages of expression in cancers. A comprehensive analysis of published literature on expression of all MMP subtypes at the genetic, protein, and activity levels in normal and diseased tissues indicate targeting applicability in a variety of cancers. This expression significantly increases at advanced cancer stages, providing an improved opportunity for controlled release in higher-stage patients. Since MMPs are integral at every stage of metastasis, MMP roles in cancer are discussed with a focus on MMP distribution and mobility within cells and tumors for cancer targeting applications. Several strategies for MMP utilization in targeting - such as matrix degradation, MMP cleavage, MMP binding, and MMP-induced environmental changes - are addressed.
Collapse
Affiliation(s)
- Kyle J Isaacson
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA
| | - M Martin Jensen
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA
| | - Nithya B Subrahmanyam
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA
| | - Hamidreza Ghandehari
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
46
|
Haneda S, Nagaoka K, Nambo Y, Kikuchi M, Nakano Y, Li J, Matsui M, Miyake YI, Imakawa K. Expression of uterine lipocalin 2 and its receptor during early- to mid-pregnancy period in mares. J Reprod Dev 2016; 63:127-133. [PMID: 27980236 PMCID: PMC5401805 DOI: 10.1262/jrd.2016-096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
From previous cDNA subtraction studies analyzing gene expression in equine endometrium, high lipocalin 2 (LCN2) mRNA expression was found in the gravid endometrium. In the uterus, LCN2 may transport hydrophobic
molecules and siderophores with iron, or may form a complex with another protein, however, the expression of uterine LCN2 beyond day 20 of equine pregnancy and its receptor has not been characterized. To study the expression and
potential roles of uterine LCN2 from pre-implantation to mid-gestation period, stage-specific endometrial samples were obtained from day 13 (day 0 = ovulation) cyclic and days 13, 19, 25, and 60 to 131 pregnant mares. Expression
of LCN2 mRNA increased in day 19 gravid endometrium and was abundant from day 60 onward. The expression of LCN2 mRNA was localized to the glandular epithelium. LCN2 protein was detected in day 25
gravid endometrium and luminal fluid, and the protein was localized to the glandular epithelium and luminal cavity, whereas LCN2 receptor expression was found in luminal and glandular epithelium and trophectoderm throughout the
experimental period. The presence of matrix metalloproteinase-9 (MMP9) was also examined because MMP9 is known to form a complex with LCN2. Although MMP9 and LCN2 were both found in luminal fluid from day 25 pregnant uterus, the
complex of these proteins was not detected. Localization of the receptor in the trophectoderm suggests that endometrial LCN2 could play a role in carrying small substances from the mother to fetus in the equine species.
Collapse
Affiliation(s)
- Shingo Haneda
- Department of Applied Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | - Kentaro Nagaoka
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-0057, Japan
| | - Yasuo Nambo
- Department of Applied Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | - Masato Kikuchi
- Chiba Agricultural Insurance Association, Chiba 260-0031, Japan
| | - Yasuko Nakano
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki 319-0206, Japan
| | - Junyou Li
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki 319-0206, Japan
| | - Motozumi Matsui
- Department of Applied Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | - Yo-Ichi Miyake
- Department of Applied Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | - Kazuhiko Imakawa
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki 319-0206, Japan
| |
Collapse
|
47
|
Asimakopoulou A, Weiskirchen S, Weiskirchen R. Lipocalin 2 (LCN2) Expression in Hepatic Malfunction and Therapy. Front Physiol 2016; 7:430. [PMID: 27729871 PMCID: PMC5037186 DOI: 10.3389/fphys.2016.00430] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/09/2016] [Indexed: 01/06/2023] Open
Abstract
Lipocalin 2 (LCN2) is a secreted protein that belongs to the Lipocalins, a group of transporters of small lipophilic molecules such as steroids, lipopolysaccharides, iron, and fatty acids in circulation. Two decades after its discovery and after a high variety of published findings, LCN2's altered expression has been assigned to critical roles in several pathological organ conditions, including liver injury and steatosis, renal damage, brain injury, cardiomyopathies, muscle-skeletal disorders, lung infection, and cancer in several organs. The significance of this 25-kDa lipocalin molecule has been impressively increased during the last years. Data from several studies indicate the role of LCN2 in physiological conditions as well as in response to cellular stress and injury. LCN2 in the liver shows a protective role in acute and chronic injury models where its expression is highly elevated. Moreover, LCN2 expression is being considered as a potential strong biomarker for pathological conditions, including rheumatic diseases, cancer in human organs, hepatic steatosis, hepatic damage, and inflammation. In this review, we summarize experimental and clinical findings linking LCN2 to the pathogenesis of liver disease.
Collapse
Affiliation(s)
- Anastasia Asimakopoulou
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen Aachen, Germany
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen Aachen, Germany
| |
Collapse
|
48
|
Differential Diagnosis of Autoimmune Pancreatitis From Pancreatic Cancer by Analysis of Serum Gelatinase Levels. Pancreas 2016; 45:1048-55. [PMID: 26692441 DOI: 10.1097/mpa.0000000000000576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVES The aim of this study was to analyze serum gelatinases as part of the clinical strategy for the preoperative differentiation between autoimmune pancreatitis (AIP) and pancreatic ductal adenocarcinoma (PDAC). The finding of differential markers will prevent unnecessary surgical resection and allow optimal treatment of these diseases. METHODS Quantitative gelatin zymography was applied to analyze all individual gelatinase forms in serum and to define proteinase alterations associated with AIP and PDAC. For this purpose, sera of 130 patients, being 29 with AIP, 33 with chronic pancreatitis, 32 with PDAC, and 36 healthy controls, were first assayed for gelatinase levels by quantitative zymography before further validation by the analysis with commercial sandwich enzyme linked immunosorbent assays. RESULTS Serum profiling data obtained by zymography analysis revealed that gelatinase B/matrix metalloproteinase 9 (MMP-9), the neutrophil gelatinase B-associated lipocalin/MMP-9 complex, and gelatinase A/MMP-2 levels were significantly increased in patients with AIP. These proteins are promising markers to discriminate between AIP and PDAC. The best composite parameter, being the ratio of total MMP-9 over MMP-2 levels, can predict 93% of the AIP and 75% of the PDAC correctly. With enzyme linked immunosorbent assay, we confirmed the zymography results. CONCLUSIONS Differential gelatinase serum profiles as AIP markers, together with other clinical tests, help to assure the diagnosis of PDAC or AIP.
Collapse
|
49
|
Kalanxhi E, Hektoen HH, Meltzer S, Dueland S, Flatmark K, Ree AH. Circulating proteins in response to combined-modality therapy in rectal cancer identified by antibody array screening. BMC Cancer 2016; 16:536. [PMID: 27461255 PMCID: PMC4962367 DOI: 10.1186/s12885-016-2601-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/22/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The increasingly complex programs of contemporary cancer therapy emphasize the need for biological indicators of both therapeutic response and adverse effects. One example is combined-modality treatment aimed at improving long-term outcome in patients with locally advanced rectal cancer, which commonly comes at the price of extended limits of patient tolerance. METHODS In a prospective study with intensified neoadjuvant treatment of rectal cancer patients, using an antibody array, the profiling of approximately 500 proteins was performed in serial serum samples collected at different stages of the treatment course. RESULTS The small number of proteins whose levels significantly changed after induction neoadjuvant chemotherapy (NACT) expanded substantially following the sequential chemoradiotherapy (CRT) and persisted four weeks later at treatment evaluation before pelvic surgery. Serum levels of proteins selected for validation of the experimental design, lipocalin-2 and matrix metalloproteinase-9, declined after NACT and gradually reverted to baseline values during the remaining neoadjuvant course. Of note, the greater the decline in post-NACT and post-CRT matrix metalloproteinase-9 levels, the more favorable progression-free survival. No correlation was found, however, with diarrhea scores, the clinical correlate of adverse therapeutic effects. CONCLUSIONS Even though the findings were indicative of only tumor and not normal tissue effects, multiplex immunoassay analysis of circulating proteins in patients undergoing combined-modality therapy may in principle dissect the contribution of the individual modalities to overall systemic responses in patient outcome and tolerance. TRIAL REGISTRATION ClinicalTrials.gov NCT00278694 ; registration date: January 16, 2006, retrospective to enrollment of the first 10 patients of the current report.
Collapse
Affiliation(s)
- Erta Kalanxhi
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Molecular Biology, Akershus University Hospital, P.O. Box 1000, 1478, Lørenskog, Norway
| | - Helga Helseth Hektoen
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, P.O. Box 1171, Blindern, 0318, Oslo, Norway.,Department of Tumor Biology, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway
| | - Sebastian Meltzer
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, P.O. Box 1171, Blindern, 0318, Oslo, Norway
| | - Svein Dueland
- Department of Oncology, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway
| | - Kjersti Flatmark
- Institute of Clinical Medicine, University of Oslo, P.O. Box 1171, Blindern, 0318, Oslo, Norway.,Department of Tumor Biology, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway.,Department of Gastroenterological Surgery, Oslo University Hospital - Norwegian Radium Hospital, P.O. Box 4950, Nydalen, 0424, Oslo, Norway
| | - Anne Hansen Ree
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway. .,Institute of Clinical Medicine, University of Oslo, P.O. Box 1171, Blindern, 0318, Oslo, Norway.
| |
Collapse
|
50
|
Wang X, Li A, Guo Y, Wang Y, Zhao X, Xiang L, Han Z, Li Y, Xu W, Zhuang K, Yan Q, Zhong J, Xiong J, Liu S. iTRAQ-Based Proteomics Screen identifies LIPOCALIN-2 (LCN-2) as a potential biomarker for colonic lateral-spreading tumors. Sci Rep 2016; 6:28600. [PMID: 27339395 PMCID: PMC4919649 DOI: 10.1038/srep28600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/07/2016] [Indexed: 12/18/2022] Open
Abstract
The improvement and implementation of a colonoscopy technique has led to increased detection of laterally spreading tumors (LSTs), which are presumed to constitute an aggressive type of colonic neoplasm. Early diagnosis and treatment of LSTs is clinically challenging. To overcome this problem, we employed iTRAQ to identify LST-specific protein biomarkers potentially involved in LST progression. In this study, we identified 2,001 differentially expressed proteins in LSTs using iTRAQ-based proteomics technology. Lipocalin-2 (LCN-2) was the most up-regulated protein. LSTs expression levels of LCN-2 and matrix metallopeptidase-9 (MMP-9) showed positive correlation with worse pathological grading, and up-regulation of these proteins in LSTs was also reflected in serum. Furthermore, LCN-2 protein overexpression was positively correlated with MMP-9 protein up-regulation in the tumor tissue and serum of LST patients (former rs = 0.631, P = 0.000; latter rs = 0.815, P = 0.000). Our results suggest that LCN-2 constitutes a potential biomarker for LST disease progression and might be a novel therapeutic target in LSTs.
Collapse
Affiliation(s)
- Xianfei Wang
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Aimin Li
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yubin Guo
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yadong Wang
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinhua Zhao
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Gastroenterology, Mianyang Central Hospital, Mianyang, China
| | - Li Xiang
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Gastroenterology, Longgang Central Hospital, Shen Zhen, China
| | - Zelong Han
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yue Li
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wen Xu
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kangmin Zhuang
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qun Yan
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jietao Zhong
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Xiong
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Side Liu
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|