1
|
Pan Y, Zhou H, Sun Z, Zhu Y, Zhang Z, Han J, Liu Y, Wang Q. Regulatory T cells in solid tumor immunotherapy: effect, mechanism and clinical application. Cell Death Dis 2025; 16:277. [PMID: 40216744 PMCID: PMC11992189 DOI: 10.1038/s41419-025-07544-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 01/12/2025] [Accepted: 03/17/2025] [Indexed: 04/14/2025]
Abstract
The tumor-immune response is mobilized to suppress tumorigenesis, while the immune microenvironment and lymph node microenvironment are formed gradually during tumor progression. In fact, tumor surface antigens are not easily recognized by antigen-presenting cells. So it is hard for the immune system to kill the newly formed tumor cells effectively. In a normal immune environment, immune function is always suppressed to maintain the stability of the body, and regulatory T cells play an important role in maintaining immune suppression. However, during tumorigenesis, the suppression of regulatory T cell immune functions is more likely to contribute to tumor cell proliferation and migration leading directly to tumor progression. Therefore, focusing on the role of regulatory T cells in tumor immunity could improve tumor immunotherapy outcomes in the clinic. Regulatory T cells are more mature in hematologic system tumors than in solid tumors. However, there are continuing efforts to apply regulatory T cells for immunotherapy in solid tumors. This review describes the role of regulatory T cells in solid tumor immunotherapy from the perspective of prognosis, immune microenvironment remodeling, and current clinical applications. This summary could help us better understand the mechanisms of regulatory T cells in solid tumor immunotherapy and further expand their clinical application.
Collapse
Affiliation(s)
- Yan Pan
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, 451162, China
| | - Hanqiong Zhou
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, 451162, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Yichen Zhu
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, 451162, China
| | - Zhe Zhang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, 451162, China
| | - Jing Han
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, 451162, China
| | - Yang Liu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| | - Qiming Wang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, 451162, China.
| |
Collapse
|
2
|
Yamada R, Arima K, Yano H, Fujiwara Y, Yamashita K, Kanemitsu K, Hanada N, Yasunaga JI, Iwatsuki M, Mikami Y, Komohara Y. Impact of HTLV-1 infection on clinicopathological characteristics and tumour immune microenvironment in colorectal cancer. Virchows Arch 2025:10.1007/s00428-025-04074-w. [PMID: 40111448 DOI: 10.1007/s00428-025-04074-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/17/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
Recent advances in anti-cancer therapy have indicated the significance of the tumour immune microenvironment in tumour progression and resistance to anti-cancer therapy. This study investigated primary colorectal cancer (CRC) tissues resected from 180 cases in a single institute in a region highly endemic for human T-cell leukaemia virus type 1 (HTLV-1) carriers. Among those 180 cases, 35 HTLV-1 carriers were identified. CRC patients who were HTLV-1 carriers were significantly older (mean age: 76.9 vs. 72.7 years, P = 0.0341), with a lower incidence of lymph node metastases (pN0: 91% vs. 65%, P = 0.0085), and lower tumour stages (stage III or IV: 11% vs. 36%, P = 0.0117) compared to non-carriers. HTLV-1 carriers tended to show a lower incidence of relapse, although the difference was not significant (P = 0.2272). The density of forkhead box P3-positive regulatory T cells (Tregs) was significantly higher in HTLV-1 carriers (median density: 132 vs. 89 cells/mm2, P = 0.0051). In situ hybridisation showed cells positive for HTLV-1 basic leucine zipper factor, likely representing lymphocytes located in stroma around the cancer nest. Our findings indicate that lymph node metastasis was significantly suppressed in CRC patients infected with HTLV-1. Since HTLV-1 infection reportedly impairs the immunosuppressive functions of Tregs, anti-cancer immune responses are potentially enhanced in CRC patients who are HTLV-1 carriers.
Collapse
Affiliation(s)
- Rin Yamada
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
- Department of Diagnostic Pathology, Kumamoto University Hospital, Kumamoto, Japan
| | - Kota Arima
- Department of Surgery, Izumi General Medical Center, Kagoshima, Japan
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiromu Yano
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Kohei Yamashita
- Department of Surgery, Izumi General Medical Center, Kagoshima, Japan
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kosuke Kanemitsu
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Norihisa Hanada
- Department of Surgery, Izumi General Medical Center, Kagoshima, Japan
| | - Jun-Ichirou Yasunaga
- Department of Hematology, Rheumatology and Infectious Diseases, Kumamoto University Hospital, Kumamoto, Japan
| | - Masaaki Iwatsuki
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshiki Mikami
- Department of Diagnostic Pathology, Kumamoto University Hospital, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
3
|
Dzhalilova D, Silina M, Kosyreva A, Fokichev N, Makarova O. Morphofunctional changes in the immune system in colitis-associated colorectal cancer in tolerant and susceptible to hypoxia mice. PeerJ 2025; 13:e19024. [PMID: 40028198 PMCID: PMC11869898 DOI: 10.7717/peerj.19024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/29/2025] [Indexed: 03/05/2025] Open
Abstract
Background One of the effective strategies for the treatment of tumor diseases, including colitis-associated colorectal cancer (CAC), is immunotherapy. During inflammation, NF-κB is activated, which is connected with the hypoxia-inducible factor-HIF, regulating the immune cells functioning and influences the CAC development. Organisms differ according to their hypoxia resistance and HIF expression. Therefore, the aim of the study was to characterize the thymus, spleen and mesenteric lymph nodes morphofunctional features, as well as changes in the subpopulation composition of peripheral blood cells and mesenteric lymph nodes in tolerant and susceptible to hypoxia C57Bl/6 mice in CAC. Methods Hypoxia tolerance was assessed by gasping time measurement in hypobaric decompression chamber. Based on the outcome, the mice were assigned to three groups characterized as 'tolerant to hypoxia', 'normal', and 'susceptible to hypoxia'. A month after determining hypoxia resistance CAC was modeled by intraperitoneal azoxymethane (AOM) administration and three cycles of dextran sulfate sodium consumption. Mice were sacrificed on the 141st day after the AOM administration, a morphological, morphometric and immunohistochemical study of tumors, morphological and morphometric study of thymus and spleen, and subpopulation composition of peripheral blood cells and mesenteric lymph nodes assessment were carried out. Results Tumors in tolerant and susceptible to hypoxia mice were represented by glandular intraepithelial neoplasia and adenocarcinomas, the area of which was larger in susceptible mice. Immunohistochemical study revealed a more pronounced Ki-67+ staining in tumors of susceptible mice. In CAC, only in tolerant mice, expansion of the thymic cortex was observed relative to the control group, while in susceptible ones, no changes were detected. Only in susceptible to hypoxia mice, spleen germinal centers of lymphoid follicles enlargement were observed. Only in susceptible mice during CAC, in comparison to the control group, the relative and absolute number of B-lymphocytes and relative-cytotoxic T-lymphocytes in blood increased. The relative cytotoxic T-lymphocytes and NK cells number in peripheral blood during CAC was higher in susceptible to hypoxia mice compared to tolerant ones. In susceptible to hypoxia mice, more pronounced changes in the mesenteric lymph nodes subpopulation composition of cells were revealed-only in them the absolute and relative number of B-lymphocytes and NK cells, the absolute number of cytotoxic T-lymphocytes increased, and the relative number of macrophages decreased. Conclusions Morphofunctional differences in the thymus, spleen, mesenteric lymph nodes and blood immune cells reactions indicated the more pronounced immune response to the CAC development in susceptible to hypoxia mice, which should be taken into account in experimental studies.
Collapse
Affiliation(s)
- Dzhuliia Dzhalilova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Maria Silina
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Anna Kosyreva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, People’s Friendship University of Russia (RUDN University), Moscow, Russia
| | - Nikolai Fokichev
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Olga Makarova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia
| |
Collapse
|
4
|
Imianowski CJ, Kuo P, Whiteside SK, von Linde T, Wesolowski AJ, Conti AG, Evans AC, Baird T, Morris BI, Fletcher NE, Yang J, Poon E, Lakins MA, Yamamoto M, Brewis N, Morrow M, Roychoudhuri R. IFNγ Production by Functionally Reprogrammed Tregs Promotes Antitumor Efficacy of OX40/CD137 Bispecific Agonist Therapy. CANCER RESEARCH COMMUNICATIONS 2024; 4:2045-2057. [PMID: 38995700 PMCID: PMC11317917 DOI: 10.1158/2767-9764.crc-23-0500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/20/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Regulatory T cells (Treg) are highly enriched within many tumors and suppress immune responses to cancer. There is intense interest in reprogramming Tregs to contribute to antitumor immunity. OX40 and CD137 are expressed highly on Tregs, activated and memory T cells, and NK cells. In this study, using a novel bispecific antibody targeting mouse OX40 and CD137 (FS120m), we show that OX40/CD137 bispecific agonism induces potent antitumor immunity partially dependent upon IFNγ production by functionally reprogrammed Tregs. Treatment of tumor-bearing animals with OX40/CD137 bispecific agonists reprograms Tregs into both fragile Foxp3+ IFNγ+ Tregs with decreased suppressive function and lineage-instable Foxp3- IFNγ+ ex-Tregs. Treg fragility is partially driven by IFNγ signaling, whereas Treg instability is associated with reduced IL2 responsiveness upon treatment with OX40/CD137 bispecific agonists. Importantly, conditional deletion of Ifng in Foxp3+ Tregs and their progeny partially reverses the antitumor efficacy of OX40/CD137 bispecific agonist therapy, revealing that reprogramming of Tregs into IFNγ-producing cells contributes to the anti-tumor efficacy of OX40/CD137 bispecific agonists. These findings provide insights into mechanisms by which bispecific agonist therapies targeting costimulatory receptors highly expressed by Tregs potentiate antitumor immunity in mouse models. SIGNIFICANCE The bispecific antibody FS120, an immunotherapy currently being tested in the clinic, partially functions by inducing anti-tumor activity of Tregs, which results in tumor rejection.
Collapse
Affiliation(s)
| | - Paula Kuo
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom.
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridgeshire, United Kingdom.
| | - Sarah K. Whiteside
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom.
| | - Teresa von Linde
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom.
| | | | - Alberto G. Conti
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom.
| | - Alexander C. Evans
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom.
| | - Tarrion Baird
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom.
| | - Benjamin I. Morris
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom.
| | - Nicole E. Fletcher
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom.
| | - Jie Yang
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom.
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridgeshire, United Kingdom.
| | - Edmund Poon
- F-Star Therapeutics, Babraham Research Campus, Cambridgeshire, United Kingdom.
| | - Matthew A. Lakins
- F-Star Therapeutics, Babraham Research Campus, Cambridgeshire, United Kingdom.
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.
| | - Neil Brewis
- F-Star Therapeutics, Babraham Research Campus, Cambridgeshire, United Kingdom.
| | - Michelle Morrow
- F-Star Therapeutics, Babraham Research Campus, Cambridgeshire, United Kingdom.
- invoX Pharma, Cambridge, United Kingdom.
| | - Rahul Roychoudhuri
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
5
|
Han SH, Ju MH. Characterizing the Tumor Microenvironment and Its Correlation with cDC1-Related Gene Expression in Gastric Cancer. J Immunol Res 2024; 2024:4468145. [PMID: 39015755 PMCID: PMC11251796 DOI: 10.1155/2024/4468145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/07/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024] Open
Abstract
Materials and Methods We analyzed RNA-seq data from the Cancer Genome Atlas (TCGA-STAD) and Gene Expression Omnibus (GEO) datasets, focusing on five cDC1-related genes. The cDC1-related signature was defined and divided into high and low expression groups. We employed gene set variation analysis (GSVA) for oncogenic signaling pathways and conducted comprehensive statistical analyses, including Kaplan-Meier and Cox proportional hazards models. Results The high cDC1-related gene signature group was associated with poorer overall and disease-free survival in the TCGA-STAD cohort. Significant differences in CD8+ T cell infiltration and cytotoxic capabilities were observed between high and low CDC1-related signature groups. The study also revealed a strong correlation between CDC1-related signature and increased expression of immune checkpoint proteins and oncogenic pathways, suggesting a complex immunosuppressive tumor microenvironment. Conclusions Our findings indicate the potential of the cDC1-related signature as a prognostic marker in GC, offering insights into the tumor-immune interplay. The study underscores the importance of cDC1s in shaping the tumor microenvironment and their influence on patient prognosis in GC. These results may contribute to the development of novel therapeutic strategies targeting the immune microenvironment in GC.
Collapse
Affiliation(s)
- Song-Hee Han
- Department of PathologyDong-A University College of Medicine, Busan, Republic of Korea
| | - Mi Ha Ju
- Department of PathologyDong-A University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
6
|
Liao Q, Xiong J. YTHDF1 regulates immune cell infiltration in gastric cancer via interaction with p53. Exp Ther Med 2024; 27:255. [PMID: 38682111 PMCID: PMC11046265 DOI: 10.3892/etm.2024.12543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/26/2024] [Indexed: 05/01/2024] Open
Abstract
The N6-methyladenosine reader YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) has been assessed in several tumor types and holds significance in the tumor microenvironment (TME). Furthermore, p53, an important tumor suppressor, is closely associated with the TME. The present study evaluated the roles of YTHDF1 and p53 in regulating the TME in gastric cancer (GC). Genetic alterations in the YTH domain family were analyzed using the cBioPortal database. Expression of YTHDF1 in GC cells and tissues was assessed using the Tumor Immune Estimation Resource (TIMER), Gene Expression Profiling Interactive Analysis (GEPIA), University of Alabama at Birmingham Cancer data analysis portal and Tumor-Immune System Interactions and Drug Bank (TISIDB) databases, along with reverse-transcription-quantitative PCR and western blotting in GC. The prognostic value of multiple tumors was determined using Kaplan-Meier analysis. Correlation analyses were performed using the TIMER, TISIDB and GEPIA databases. Protein-protein interactions of YTHDF1 were predicted using GeneMANIA and HitPredict, and confirmed using co-immunoprecipitation. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses of the YTHDF1 functional network in GC were performed using LinkedOmics. Genetic alterations revealed that, among the YTH domain family members, YTHDF1 had the highest alteration in GC and was associated with a shorter survival. Additionally, YTHDF1 was significantly negatively associated with the level of CD8+ T cells, B cells, macrophages, dendritic cells (DCs) and neutrophils in GC. Furthermore, tumor associate macrophage-related and DC markers were significantly negatively correlated with YTHDF1 expression, whilst regulatory T cells and T cell exhaustion markers were significantly negatively associated with YTHDF1 expression. In addition, compared with that in p53-nonmutant GC cells, YTHDF1 expression was significantly higher in p53-mutated GC cells, indicating a potential association between YTHDF1 and p53. Analyses using the GeneMANIA and HitPredict databases, and co-immunoprecipitation, demonstrated that YTHDF1 interacted with p53. In conclusion, the findings of the present study indicate that YTHDF1 is associated with a poor prognosis and serves an important role in the TME of GC. We hypothesize, for the first time to the best of our knowledge, that YTHDF1 regulates immune cell infiltration by interacting with p53 in GC, which provides a promising direction for future research.
Collapse
Affiliation(s)
- Quan Liao
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, Jiangxi 330006, P.R. China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
7
|
Meng J, Tan JYT, Joseph CR, Ye J, Lim JCT, Goh D, Xue Y, Lim X, Koh VCY, Wee F, Tay TKY, Chan JY, Ng CCY, Iqbal J, Lau MC, Lim HE, Toh HC, Teh BT, Dent RA, Tan PH, Yeong JPS. The Prognostic Value of CD39 as a Marker of Tumor-Specific T Cells in Triple-Negative Breast Cancer in Asian Women. J Transl Med 2024; 104:100303. [PMID: 38103870 DOI: 10.1016/j.labinv.2023.100303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 11/09/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023] Open
Abstract
Triple-negative breast cancer (TNBC) has a poor prognosis with limited therapeutic options available for affected patients. Efforts are ongoing to identify surrogate markers for tumor-specific CD8+ T cells that can predict the response to immune checkpoint inhibitor (ICI) therapies, such as programmed cell death protein 1 or programmed cell death ligand-1 blockade. We have previously identified tumor-specific CD39+CD8+ T cells in non-small cell lung cancer that might help predict patient responses to programmed cell death protein 1 or programmed cell death ligand-1 blockade. Based on this finding, we conducted a comparative interrogation of TNBC in an Asian cohort to evaluate the potential of CD39 as a surrogate marker of tumor-specific CD8+ T cells. Using ICI-treated TNBC mouse models (n = 24), flow cytometric analyses of peripheral blood mononuclear cells and tumor-infiltrating lymphocytes revealed that >99% of tumor-specific CD8+ T cells also expressed CD39. To investigate the relationship between CD39+CD8+ T-cell density and CD39 expression with disease prognosis, we performed multiplex immunohistochemistry staining on treatment-naive human TNBC tissues (n = 315). We saw that the proportion of CD39+CD8+ T cells in human TNBC tumors correlated with improved overall survival, as did the densities of other CD39+ immune cell infiltrates, such as CD39+CD68+ macrophages. Finally, increased CD39 expression on CD8+ T cells was also found to predict the response to ICI therapy (pembrolizumab) in a separate cohort of 11 TNBC patients. These findings support the potential of CD39+CD8+ T-cell density as a prognostic factor in Asian TNBC patients.
Collapse
Affiliation(s)
- Jia Meng
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Jing Ying Tira Tan
- Duke-NUS Medical School, Singapore, Republic of Singapore; National Cancer Centre Singapore, Singapore, Republic of Singapore
| | - Craig Ryan Joseph
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Jiangfeng Ye
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Jeffrey Chun Tatt Lim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Denise Goh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Yuezhen Xue
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Xinru Lim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Valerie Cui Yun Koh
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Republic of Singapore
| | - Felicia Wee
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Timothy Kwang Yong Tay
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Republic of Singapore
| | | | | | - Jabed Iqbal
- Duke-NUS Medical School, Singapore, Republic of Singapore; Department of Anatomical Pathology, Singapore General Hospital, Singapore, Republic of Singapore
| | - Mai Chan Lau
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Hsuen Elaine Lim
- National Cancer Centre Singapore, Singapore, Republic of Singapore
| | - Han Chong Toh
- National Cancer Centre Singapore, Singapore, Republic of Singapore
| | - Bin Tean Teh
- National Cancer Centre Singapore, Singapore, Republic of Singapore
| | - Rebecca Alexandra Dent
- Duke-NUS Medical School, Singapore, Republic of Singapore; National Cancer Centre Singapore, Singapore, Republic of Singapore.
| | - Puay Hoon Tan
- KK Women's and Children's Hospital, Singapore, Republic of Singapore; Luma Women's Imaging Centre/Medical Centre, Singapore, Republic of Singapore.
| | - Joe Poh Sheng Yeong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore; Duke-NUS Medical School, Singapore, Republic of Singapore; National Cancer Centre Singapore, Singapore, Republic of Singapore; Department of Anatomical Pathology, Singapore General Hospital, Singapore, Republic of Singapore.
| |
Collapse
|
8
|
Huan X, Zou K, Zhang P, Ding H, Luo C, Xiang C, Xu S, Zhuang Y, Wu C, Wang Y, Wu X, Chen C, Zhang J, Yao X, Liu F, Liu S, Wu Z. Neoadjuvant chemotherapy is linked to an amended anti-tumorigenic microenvironment in gastric cancer. Int Immunopharmacol 2024; 127:111352. [PMID: 38091833 DOI: 10.1016/j.intimp.2023.111352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND Neoadjuvant chemotherapy (NAC) is a frequently intervention for patients with locally advanced gastric cancer (GC). Nevertheless, its impact on the tumor immune microenvironment remains unclear. METHODS We used immunohistochemistry to identify T-cell subpopulations, tumor-associated neutrophils (TANs), and tumor-associated macrophages (TAMs) in the GC microenvironment (GCME) among paired samples (pre-chemotherapy and post-chemotherapy) from 48 NAC-treated patients. Multiplex immunofluorescence (mIF) was performed to assess immune biomarkers, including CK, CD4, CD8, FOXP3, PD1, PD-L1, CD163, CD86, myeloperoxidase and Arginase-1 in paired samples from 6 GC patients whose response to NAC were rigorously defined. RESULTS NAC was intricately linked to enhanced CD8+:CD4+ ratio, reduced CD163+ M2-like macrophages, augmented CD86+ M1: CD163+ M2-like macrophage ratio, and diminished FOXP3+ regulatory T cells (T-regs) and TANs density. Based on mIF, PD1+CD8+T-cells, FOXP3+T-regs, PD-L1+ TANs, and CD163+ M2-like macrophages exhibited marked reduction and greater co-localization with tumor cells following NAC. The pre-NAC FOXP3+ T-regs and CD163+ M2-like macrophages content was substantially elevated in the response cohort, whereas, the post-NAC CD8+:CD4+ and CD86+ M1: CD163+ M2-like macrophage ratios were intricately linked to the tumor pathologic response. We observed greater CD163+ M2-like macrophages and tumor cells co-localization following NAC, which was correlated with tumor pathologic response. Lastly, multivariate analysis revealed that post-NAC CD8+:CD4+ and CD86+ M1: CD163+ M2-like macrophage ratios were stand-alone indicators of positive patient prognosis. CONCLUSIONS NAC converts the GCME to an anti-tumorigenic state that is conducive to enhanced patient outcome. These finding can significantly benefit the future planning of highly efficacious and personalized GC immunotherapy.
Collapse
Affiliation(s)
- Xiangkun Huan
- Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Kun Zou
- Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Peichan Zhang
- Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Haihua Ding
- Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chunyang Luo
- Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chunjie Xiang
- School of Medicine, Southeast University, Nanjing 210023, China
| | - Shuo Xu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuwen Zhuang
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Cunen Wu
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Yaohui Wang
- Department of Pathology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Xiaoyu Wu
- Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Che Chen
- Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Junfeng Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xuequan Yao
- Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Fukun Liu
- Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Shenlin Liu
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Zhenfeng Wu
- Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China.
| |
Collapse
|
9
|
Whiteside SK, Grant FM, Alvisi G, Clarke J, Tang L, Imianowski CJ, Zhang B, Evans AC, Wesolowski AJ, Conti AG, Yang J, Lauder SN, Clement M, Humphreys IR, Dooley J, Burton O, Liston A, Alloisio M, Voulaz E, Langhorne J, Okkenhaug K, Lugli E, Roychoudhuri R. Acquisition of suppressive function by conventional T cells limits antitumor immunity upon T reg depletion. Sci Immunol 2023; 8:eabo5558. [PMID: 38100544 PMCID: PMC7615475 DOI: 10.1126/sciimmunol.abo5558] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 01/15/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023]
Abstract
Regulatory T (Treg) cells contribute to immune homeostasis but suppress immune responses to cancer. Strategies to disrupt Treg cell-mediated cancer immunosuppression have been met with limited clinical success, but the underlying mechanisms for treatment failure are poorly understood. By modeling Treg cell-targeted immunotherapy in mice, we find that CD4+ Foxp3- conventional T (Tconv) cells acquire suppressive function upon depletion of Foxp3+ Treg cells, limiting therapeutic efficacy. Foxp3- Tconv cells within tumors adopt a Treg cell-like transcriptional profile upon ablation of Treg cells and acquire the ability to suppress T cell activation and proliferation ex vivo. Suppressive activity is enriched among CD4+ Tconv cells marked by expression of C-C motif receptor 8 (CCR8), which are found in mouse and human tumors. Upon Treg cell depletion, CCR8+ Tconv cells undergo systemic and intratumoral activation and expansion, and mediate IL-10-dependent suppression of antitumor immunity. Consequently, conditional deletion of Il10 within T cells augments antitumor immunity upon Treg cell depletion in mice, and antibody blockade of IL-10 signaling synergizes with Treg cell depletion to overcome treatment resistance. These findings reveal a secondary layer of immunosuppression by Tconv cells released upon therapeutic Treg cell depletion and suggest that broader consideration of suppressive function within the T cell lineage is required for development of effective Treg cell-targeted therapies.
Collapse
Affiliation(s)
- Sarah K Whiteside
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Francis M Grant
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge, Cambridgeshire CB22 3AT, UK
| | - Giorgia Alvisi
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - James Clarke
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Leqi Tang
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Charlotte J Imianowski
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Baojie Zhang
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Alexander C Evans
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Alexander J Wesolowski
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Alberto G Conti
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Jie Yang
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Sarah N Lauder
- Division of Infection and Immunity/System Immunity University Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | - Mathew Clement
- Division of Infection and Immunity/System Immunity University Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | - Ian R Humphreys
- Division of Infection and Immunity/System Immunity University Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | - James Dooley
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Oliver Burton
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Adrian Liston
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Marco Alloisio
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
- Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Emanuele Voulaz
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
- Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Jean Langhorne
- Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Enrico Lugli
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Rahul Roychoudhuri
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| |
Collapse
|
10
|
Xu H, Jia Z, Liu F, Li J, Huang Y, Jiang Y, Pu P, Shang T, Tang P, Zhou Y, Yang Y, Su J, Liu J. Biomarkers and experimental models for cancer immunology investigation. MedComm (Beijing) 2023; 4:e437. [PMID: 38045830 PMCID: PMC10693314 DOI: 10.1002/mco2.437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023] Open
Abstract
The rapid advancement of tumor immunotherapies poses challenges for the tools used in cancer immunology research, highlighting the need for highly effective biomarkers and reproducible experimental models. Current immunotherapy biomarkers encompass surface protein markers such as PD-L1, genetic features such as microsatellite instability, tumor-infiltrating lymphocytes, and biomarkers in liquid biopsy such as circulating tumor DNAs. Experimental models, ranging from 3D in vitro cultures (spheroids, submerged models, air-liquid interface models, organ-on-a-chips) to advanced 3D bioprinting techniques, have emerged as valuable platforms for cancer immunology investigations and immunotherapy biomarker research. By preserving native immune components or coculturing with exogenous immune cells, these models replicate the tumor microenvironment in vitro. Animal models like syngeneic models, genetically engineered models, and patient-derived xenografts provide opportunities to study in vivo tumor-immune interactions. Humanized animal models further enable the simulation of the human-specific tumor microenvironment. Here, we provide a comprehensive overview of the advantages, limitations, and prospects of different biomarkers and experimental models, specifically focusing on the role of biomarkers in predicting immunotherapy outcomes and the ability of experimental models to replicate the tumor microenvironment. By integrating cutting-edge biomarkers and experimental models, this review serves as a valuable resource for accessing the forefront of cancer immunology investigation.
Collapse
Affiliation(s)
- Hengyi Xu
- State Key Laboratory of Molecular OncologyNational Cancer Center /National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ziqi Jia
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Fengshuo Liu
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jiayi Li
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yansong Huang
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yiwen Jiang
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Pengming Pu
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Tongxuan Shang
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Pengrui Tang
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yongxin Zhou
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yufan Yang
- School of MedicineTsinghua UniversityBeijingChina
| | - Jianzhong Su
- Oujiang LaboratoryZhejiang Lab for Regenerative Medicine, Vision, and Brain HealthWenzhouZhejiangChina
| | - Jiaqi Liu
- State Key Laboratory of Molecular OncologyNational Cancer Center /National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
11
|
Standing D, Feess E, Kodiyalam S, Kuehn M, Hamel Z, Johnson J, Thomas SM, Anant S. The Role of STATs in Ovarian Cancer: Exploring Their Potential for Therapy. Cancers (Basel) 2023; 15:2485. [PMID: 37173951 PMCID: PMC10177275 DOI: 10.3390/cancers15092485] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Ovarian cancer (OvCa) is a deadly gynecologic malignancy that presents many clinical challenges due to late-stage diagnoses and the development of acquired resistance to standard-of-care treatment protocols. There is an increasing body of evidence suggesting that STATs may play a critical role in OvCa progression, resistance, and disease recurrence, and thus we sought to compile a comprehensive review to summarize the current state of knowledge on the topic. We have examined peer reviewed literature to delineate the role of STATs in both cancer cells and cells within the tumor microenvironment. In addition to summarizing the current knowledge of STAT biology in OvCa, we have also examined the capacity of small molecule inhibitor development to target specific STATs and progress toward clinical applications. From our research, the best studied and targeted factors are STAT3 and STAT5, which has resulted in the development of several inhibitors that are under current evaluation in clinical trials. There remain gaps in understanding the role of STAT1, STAT2, STAT4, and STAT6, due to limited reports in the current literature; as such, further studies to establish their implications in OvCa are necessitated. Moreover, due to the deficiency in our understanding of these STATs, selective inhibitors also remain elusive, and therefore present opportunities for discovery.
Collapse
Affiliation(s)
- David Standing
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Emma Feess
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Satvik Kodiyalam
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Michael Kuehn
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Zachary Hamel
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Jaimie Johnson
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Sufi Mary Thomas
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| |
Collapse
|
12
|
Li Q, Zhang H, Hu J, Zhang L, Zhao A, Feng H. Construction of anoikis-related lncRNAs risk model: Predicts prognosis and immunotherapy response for gastric adenocarcinoma patients. Front Pharmacol 2023; 14:1124262. [PMID: 36925640 PMCID: PMC10011703 DOI: 10.3389/fphar.2023.1124262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Background: Anoikis acts as a programmed cell death that is activated during carcinogenesis to remove undetected cells isolated from ECM. Further anoikis based risk stratification is expected to provide a deeper understanding of stomach adenocarcinoma (STAD) carcinogenesis. Methods: The information of STAD patients were acquired from TCGA dataset. Anoikis-related genes were obtained from the Molecular Signatures Database and Pearson correlation analysis was performed to identify the anoikis-related lncRNAs (ARLs). We performed machine learning algorithms, including Univariate Cox regression and Least Absolute Shrinkage and Selection Operator (Lasso) analyses on the ARLs to build the OS-score and OS-signature. Clinical subgroup analysis, tumor mutation burden (TMB) detection, drug susceptibility analysis, immune infiltration and pathway enrichment analysis were further performed to comprehensive explore the clinical significance. Results: We established a STAD prognostic model based on five ARLs and its prognostic value was verified. Survival analysis showed that the overall survival of high-risk score patients was significantly shorter than that of low-risk score patients. The column diagrams show satisfactory discrimination and calibration. The calibration curve verifies the good agreement between the prediction of the line graph and the actual observation. TIDE analysis and drug sensitivity analysis showed significant differences between different risk groups. Conclusion: The novel prognostic model based on anoikis-related lncRNAs we identified could be used for prognosis prediction and precise therapy in gastric adenocarcinoma.
Collapse
Affiliation(s)
- Qinglin Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China.,Key Laboratory of Head and Neck Cancer, Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | | | - Jinguo Hu
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Lizhuo Zhang
- Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China
| | - Aiguang Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - He Feng
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China.,Key Laboratory of Head and Neck Cancer, Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Meagher NS, Hamilton P, Milne K, Thornton S, Harris B, Weir A, Alsop J, Bisinoto C, Brenton JD, Brooks-Wilson A, Chiu DS, Cushing-Haugen KL, Fereday S, Garsed DW, Gayther SA, Gentry-Maharaj A, Gilks B, Jimenez-Linan M, Kennedy CJ, Le ND, Piskorz AM, Riggan MJ, Shah M, Singh N, Talhouk A, Widschwendter M, Bowtell DDL, Candido Dos Reis FJ, Cook LS, Fortner RT, García MJ, Harris HR, Huntsman DG, Karnezis AN, Köbel M, Menon U, Pharoah PDP, Doherty JA, Anglesio MS, Pike MC, Pearce CL, Friedlander ML, DeFazio A, Nelson BH, Ramus SJ. Profiling the immune landscape in mucinous ovarian carcinoma. Gynecol Oncol 2023; 168:23-31. [PMID: 36368129 PMCID: PMC10374276 DOI: 10.1016/j.ygyno.2022.10.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Mucinous ovarian carcinoma (MOC) is a rare histotype of ovarian cancer, with low response rates to standard chemotherapy, and very poor survival for patients diagnosed at advanced stage. There is a limited understanding of the MOC immune landscape, and consequently whether immune checkpoint inhibitors could be considered for a subset of patients. METHODS We performed multicolor immunohistochemistry (IHC) and immunofluorescence (IF) on tissue microarrays in a cohort of 126 MOC patients. Cell densities were calculated in the epithelial and stromal components for tumor-associated macrophages (CD68+/PD-L1+, CD68+/PD-L1-), T cells (CD3+/CD8-, CD3+/CD8+), putative T-regulatory cells (Tregs, FOXP3+), B cells (CD20+/CD79A+), plasma cells (CD20-/CD79a+), and PD-L1+ and PD-1+ cells, and compared these values with clinical factors. Univariate and multivariable Cox Proportional Hazards assessed overall survival. Unsupervised k-means clustering identified patient subsets with common patterns of immune cell infiltration. RESULTS Mean densities of PD1+ cells, PD-L1- macrophages, CD4+ and CD8+ T cells, and FOXP3+ Tregs were higher in the stroma compared to the epithelium. Tumors from advanced (Stage III/IV) MOC had greater epithelial infiltration of PD-L1- macrophages, and fewer PD-L1+ macrophages compared with Stage I/II cancers (p = 0.004 and p = 0.014 respectively). Patients with high epithelial density of FOXP3+ cells, CD8+/FOXP3+ cells, or PD-L1- macrophages, had poorer survival, and high epithelial CD79a + plasma cells conferred better survival, all upon univariate analysis only. Clustering showed that most MOC (86%) had an immune depleted (cold) phenotype, with only a small proportion (11/76,14%) considered immune inflamed (hot) based on T cell and PD-L1 infiltrates. CONCLUSION In summary, MOCs are mostly immunogenically 'cold', suggesting they may have limited response to current immunotherapies.
Collapse
Affiliation(s)
- Nicola S Meagher
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia; Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, New South Wales, Australia; The Daffodil Centre, The University of Sydney, A Joint Venture with Cancer Council New South Wales, Australia.
| | - Phineas Hamilton
- Trev & Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, BC, Canada
| | - Katy Milne
- Trev & Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, BC, Canada
| | - Shelby Thornton
- Trev & Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, BC, Canada
| | - Bronwyn Harris
- Trev & Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, BC, Canada
| | - Ashley Weir
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Jennifer Alsop
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Christiani Bisinoto
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - James D Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Derek S Chiu
- British Columbia's Gynecological Cancer Research Team (OVCARE), University of British Columbia, BC Cancer, and Vancouver General Hospital, Vancouver, BC, Canada
| | - Kara L Cushing-Haugen
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Sian Fereday
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Dale W Garsed
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Simon A Gayther
- Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Aleksandra Gentry-Maharaj
- MRC Clinical Trials Unit, Institute of Clinical Trials & Methodology, University College London, London, UK
| | - Blake Gilks
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Catherine J Kennedy
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia; Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia; The University of Sydney, Sydney, New South Wales, Australia
| | - Nhu D Le
- Cancer Control Research, BC Cancer, Vancouver, BC, Canada
| | - Anna M Piskorz
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Marjorie J Riggan
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, NC, USA
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Naveena Singh
- Department of Pathology, Barts Health National Health Service Trust, London, UK; Department of Anatomical Pathology, Vancouver General Hospital, Vancouver, Canada
| | - Aline Talhouk
- British Columbia's Gynecological Cancer Research Team (OVCARE), University of British Columbia, BC Cancer, and Vancouver General Hospital, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | | | - David D L Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Francisco J Candido Dos Reis
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Linda S Cook
- Epidemiology, School of Public Health, University of Colorado, Aurora, CO, USA; Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | - Renée T Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - María J García
- Computational Oncology Group, Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Holly R Harris
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - David G Huntsman
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada; Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Anthony N Karnezis
- Department of Pathology and Laboratory Medicine, UC Davis Medical Center, Sacramento, CA, USA
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, Calgary, AB, Canada
| | - Usha Menon
- MRC Clinical Trials Unit, Institute of Clinical Trials & Methodology, University College London, London, UK
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Jennifer A Doherty
- Huntsman Cancer Institute, Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Michael S Anglesio
- British Columbia's Gynecological Cancer Research Team (OVCARE), University of British Columbia, BC Cancer, and Vancouver General Hospital, Vancouver, BC, Canada; Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | - Malcolm C Pike
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA; Department of Population Health and Public Health Sciences, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Celeste Leigh Pearce
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Michael L Friedlander
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia; Nelune Comprehensive Cancer Centre, Prince of Wales Hospital, Sydney, New South Wales, Australia; Gynaecological Cancer Centre, Royal Hospital for Women, Sydney, New South Wales, Australia
| | - Anna DeFazio
- The Daffodil Centre, The University of Sydney, A Joint Venture with Cancer Council New South Wales, Australia; Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia; Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia; The University of Sydney, Sydney, New South Wales, Australia
| | - Brad H Nelson
- Trev & Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, BC, Canada
| | - Susan J Ramus
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia; Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
14
|
Aguinaga-Barrilero A, Juarez I, Vaquero-Yuste C, Molina-Alejandre M, Gutiérrez-Calvo A, Lasa I, López A, Gómez R, Molanes-López EM, Martin-Villa JM. Higher prevalence of LAP+ (Latency TGFβ-Associated Peptide) T cells at the tissue level in patients with early gastric cancer. Cell Immunol 2022; 382:104635. [PMID: 36332356 DOI: 10.1016/j.cellimm.2022.104635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/13/2022] [Accepted: 10/22/2022] [Indexed: 01/13/2023]
Abstract
The presence of cells with regulatory functions in patients with cancer is one of the mechanisms whereby the immune system cannot confront tumor growth. We sought to determine the prevalence of immunoregulatory T-cell subpopulations, expressing the latency TGFβ-associated peptide (LAP), in patients with gastric adenocarcinoma. T cells were enriched from blood or gastric tissue (tumoral, TT or tumor-free, TF) samples from 22 patients, 6 with early (EGC) and 16 with advanced gastric cancer (AGC). CD4, CD8, LAP, FoxP3 and IFN-γ were measured by cytometry. CD8 + LAP + cells were increased at tumoral sites, especially in early stages of the disease, as compared to tumor-free explants (EGC 5.28 % [4.67-6.64]*; AGC 2.90 % [1.37-4.44]; TF 3.14 % [2.33-4.16]; *p < 0.05 vs TF). Likewise, the LAP+/CD8 + LAP- ratio is increased in gastric samples from patients with early disease (EGC 0.38 [0.30-0.45]*, AGC 0.12 [0.07-0.14]; TF 0.12 [0.09-0.31]; *p < 0.05 vs AGC).Disease progression is accompanied by decreased LAP membrane expression and, probably, increased LAP secretion, therefore limiting the response to the tumor.
Collapse
Affiliation(s)
- Ana Aguinaga-Barrilero
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.
| | - Ignacio Juarez
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.
| | - Christian Vaquero-Yuste
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.
| | - Marta Molina-Alejandre
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.
| | - Alberto Gutiérrez-Calvo
- Servicio de Cirugía General y Aparato Digestivo, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain.
| | - Inmaculada Lasa
- Servicio de Cirugía General y Aparato Digestivo, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain.
| | - Adela López
- Servicio de Cirugía General y Aparato Digestivo, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain.
| | - Remedios Gómez
- Servicio de Cirugía General y Aparato Digestivo, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain.
| | - Elisa M Molanes-López
- Departamento de Estadística e Investigación Operativa, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - José M Martin-Villa
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.
| |
Collapse
|
15
|
Shan F, Somasundaram A, Bruno TC, Workman CJ, Vignali DAA. Therapeutic targeting of regulatory T cells in cancer. Trends Cancer 2022; 8:944-961. [PMID: 35853825 PMCID: PMC9588644 DOI: 10.1016/j.trecan.2022.06.008] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/24/2022]
Abstract
The success of immunotherapy in oncology underscores the vital role of the immune system in cancer development. Regulatory T cells (Tregs) maintain a fine balance between autoimmunity and immune suppression. They have multiple roles in the tumor microenvironment (TME) but act particularly in suppressing T cell activation. This review focuses on the detrimental and sometimes beneficial roles of Tregs in tumors, our current understanding of recruitment and stabilization of Tregs within the TME, and current Treg-targeted therapeutics. Research identifying subpopulations of Tregs and their respective functions and interactions within the complex networks of the TME will be crucial to develop the next generation of immunotherapies. Through these advances, Treg-targeted immunotherapy could have important implications for the future of oncology.
Collapse
Affiliation(s)
- Feng Shan
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Ashwin Somasundaram
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Tullia C Bruno
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA.
| |
Collapse
|
16
|
Immunoregulatory signal networks and tumor immune evasion mechanisms: insights into therapeutic targets and agents in clinical development. Biochem J 2022; 479:2219-2260. [DOI: 10.1042/bcj20210233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022]
Abstract
Through activation of immune cells, the immune system is responsible for identifying and destroying infected or otherwise damaged cells including tumorigenic cells that can be recognized as foreign, thus maintaining homeostasis. However, tumor cells have evolved several mechanisms to avoid immune cell detection and killing, resulting in tumor growth and progression. In the tumor microenvironment, tumor infiltrating immune cells are inactivated by soluble factors or tumor promoting conditions and lose their effects on tumor cells. Analysis of signaling and crosstalk between immune cells and tumor cells have helped us to understand in more detail the mechanisms of tumor immune evasion and this forms basis for drug development strategies in the area of cancer immunotherapy. In this review, we will summarize the dominant signaling networks involved in immune escape and describe the status of development of therapeutic strategies to target tumor immune evasion mechanisms with focus on how the tumor microenvironment interacts with T cells.
Collapse
|
17
|
Wang MX, Gao SY, Yang F, Fan RJ, Yang QN, Zhang TL, Qian NS, Dai GH. Hyperprogression under treatment with immune-checkpoint inhibitors in patients with gastrointestinal cancer: A natural process of advanced tumor progression? World J Clin Oncol 2022; 13:729-737. [PMID: 36212599 PMCID: PMC9537503 DOI: 10.5306/wjco.v13.i9.729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/26/2022] [Accepted: 09/12/2022] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy has shown great promise in treating various types of malignant tumors. However, some patients with gastrointestinal cancer have been known to experience rapid disease progression after treatment, a situation referred to as hyperprogressive disease (HPD). This minireview focuses on the definitions and potential mechanisms of HPD, natural disease progression in gastrointestinal malignancies, and tumor immunological microenvironment.
Collapse
Affiliation(s)
- Mo-Xuan Wang
- Department of Oncology, Chinese PLA Medical School, Beijing 100853, China
| | - Shu-Yue Gao
- Department of Oncology, Chinese PLA Medical School, Beijing 100853, China
| | - Fan Yang
- Department of Oncology, Chinese PLA Medical School, Beijing 100853, China
| | - Run-Jia Fan
- Department of Oncology, Chinese PLA Medical School, Beijing 100853, China
| | - Qin-Na Yang
- Department of Oncology, Chinese PLA Medical School, Beijing 100853, China
| | - Tian-Lan Zhang
- Department of Oncology, Chinese PLA Medical School, Beijing 100853, China
| | - Nian-Song Qian
- Department of Oncology, Senior Department of Respiratory and Critical Care Medicine, The Eighth Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Guang-Hai Dai
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
18
|
Zhao Y, Bai Y, Shen M, Li Y. Therapeutic strategies for gastric cancer targeting immune cells: Future directions. Front Immunol 2022; 13:992762. [PMID: 36225938 PMCID: PMC9549957 DOI: 10.3389/fimmu.2022.992762] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Gastric cancer (GC) is a malignancy with a high incidence and mortality, and the emergence of immunotherapy has brought survival benefits to GC patients. Compared with traditional therapy, immunotherapy has the advantages of durable response, long-term survival benefits, and lower toxicity. Therefore, targeted immune cells are the most promising therapeutic strategy in the field of oncology. In this review, we introduce the role and significance of each immune cell in the tumor microenvironment of GC and summarize the current landscape of immunotherapy in GC, which includes immune checkpoint inhibitors, adoptive cell therapy (ACT), dendritic cell (DC) vaccines, reduction of M2 tumor-associated macrophages (M2 TAMs), N2 tumor-associated neutrophils (N2 TANs), myeloid-derived suppressor cells (MDSCs), effector regulatory T cells (eTregs), and regulatory B cells (Bregs) in the tumor microenvironment and reprogram TAMs and TANs into tumor killer cells. The most widely used immunotherapy strategies are the immune checkpoint inhibitor programmed cell death 1/programmed death-ligand 1 (PD-1/PD-L1) antibody, cytotoxic T lymphocyte–associated protein 4 (CTLA-4) antibody, and chimeric antigen receptor T (CAR-T) in ACT, and these therapeutic strategies have significant anti-tumor efficacy in solid tumors and hematological tumors. Targeting other immune cells provides a new direction for the immunotherapy of GC despite the relatively weak clinical data, which have been confirmed to restore or enhance anti-tumor immune function in preclinical studies and some treatment strategies have entered the clinical trial stage, and it is expected that more and more effective immune cell–based therapeutic methods will be developed and applied.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuansong Bai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Meili Shen
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Yapeng Li, ; Meili Shen,
| | - Yapeng Li
- The National and Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun, China
- *Correspondence: Yapeng Li, ; Meili Shen,
| |
Collapse
|
19
|
Wang Y, Chen X, Jiang F, Shen Y, Fang F, Li Q, Yang C, Dong Y, Shen X. A prognostic signature of pyroptosis-related lncRNAs verified in gastric cancer samples to predict the immunotherapy and chemotherapy drug sensitivity. Front Genet 2022; 13:939439. [PMID: 36147488 PMCID: PMC9485603 DOI: 10.3389/fgene.2022.939439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Pyroptosis is a recently identified mode of programmed inflammatory cell death that has remarkable implications for cancer development. lncRNAs can be involved in cellular regulation through various pathways and play a critical role in gastric cancer (GC). However, pyroptosis -related lncRNAs (PRlncRNAs) have been rarely studied in GC. Methods: Pyroptosis-related gene were abstracted from the literature and GSEA Molecular Signatures data resource. PRlncRNAs were obtained using co-expression analysis. LASSO Cox regression assessment was employed to build a risk model. Kaplan-Meier (KM), univariate along with multivariate Cox regression analysis were adopted to verify the predictive efficiency of the risk model in terms of prognosis. qRT-PCR was adopted to validate the expression of PRlncRNAs in GC tissues. In addition, immune cell infiltration assessment and ESTIMATE score evaluation were adopted for assessing the relationship of the risk model with the tumor immune microenvironment (TME). Finally, immune checkpoint gene association analysis and chemotherapy drug sensitivity analysis were implemented to assess the worthiness of our risk model in immunotherapy and chemotherapy of GC. Results: We identified 3 key PRlncRNAs (PVT1, CYMP-AS1 and AC017076.1) and testified the difference of their expression levels in GC tumor tissues and neighboring non-malignant tissues (p < 0.05). PRlncRNAs risk model was able to successfully estimate the prognosis of GC patients, and lower rate of survival was seen in the high-GC risk group relative to the low-GC risk group (p < 0.001). Other digestive system tumors such as pancreatic cancer further validated our risk model. There was a dramatic difference in TMB level between high-GC and low-GC risk groups (p < 0.001). Immune cell infiltration analysis and ESTIMATE score evaluation demonstrated that the risk model can be adopted as an indicator of TME status. Besides, the expressions of immunodetection site genes in different risk groups were remarkably different (CTLA-4 (r = −0.14, p = 0.010), VISTA (r = 0.15, p = 0.005), and B7-H3 (r = 0.14, p = 0.009)). PRlncRNAs risk model was able to effectively establish a connection with the sensitivity of chemotherapeutic agents. Conclusion: The 3 PRlncRNAs identified in this study could be utilized to predict disease outcome in GC patients. It may also be a potential therapeutic target in GC therapy, including immunotherapy and chemotherapy.
Collapse
|
20
|
Wei Z, Zeng X, Lei Y, He H, Jamal M, Zhang C, Tan H, Xie S, Zhang Q. TTYH3, a potential prognosis biomarker associated with immune infiltration and immunotherapy response in lung cancer. Int Immunopharmacol 2022; 110:108999. [PMID: 35858518 DOI: 10.1016/j.intimp.2022.108999] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 12/09/2022]
Abstract
PURPOSE The recognition of new diagnostic and prognostic biological markers for lung cancer is an essential and eager study. It's shown that ion channels play important roles in regulating various cellular processes and have been suggested to be associated with patient survival. However, tweety family member 3 (TTYH3), as a maxi-Cl- channel, its role in lung cancer remains elusive. METHODS The expression, diagnostic and prognostic efficacy of TTYH3 were analyzed by public databases and clinical samples. Cell functional experiments were used to explore the effects of TTYH3 on cell viability. GO and KEGG enrichment analysis revealed underlying pathways that TTYH3 and its co-expressed genes were enriched in. TIMER, TIDE and R language analyses were used to detect the correlation between TTYH3 and immune infiltration cell and immunotherapy response. RESULTS TTYH3 was up-regulated in lung cancer tissues compared to normal tissues and possessed a prominent diagnostic and prognostic value. TTYH3 knockdown significantly inhibited the proliferation of lung cancer cells. Enrichment analyses showed that TTYH3 and its co-expressed genes were mainly involved in immune related signaling pathways. Further investigation clarified that TTYH3 had a positive correlation with the infiltration of TAMs, Treg infiltration as well as T cell exhaustion and high TTYH3 expression indicated worse immunotherapy response and shorter survival after immune checkpoint blockade treatment. CONCLUSION This study not only revealed the diagnostic and prognostic value of TTYH3 but also provided TTYH3-based estimation of immunotherapy response for lung cancer patients, which might provide new strategies like anti-TTYH3 combined with immune therapy for the treatment of lung cancer.
Collapse
Affiliation(s)
- Zimeng Wei
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xingruo Zeng
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yufei Lei
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hengjing He
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Muhammad Jamal
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Chengjie Zhang
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Haiyan Tan
- Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Songping Xie
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiuping Zhang
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, China.
| |
Collapse
|
21
|
Masuda K, Kornberg A, Miller J, Lin S, Suek N, Botella T, Secener KA, Bacarella AM, Cheng L, Ingham M, Rosario V, Al-Mazrou AM, Lee-Kong SA, Kiran RP, Stoeckius M, Smibert P, Del Portillo A, Oberstein PE, Sims PA, Yan KS, Han A. Multiplexed single-cell analysis reveals prognostic and nonprognostic T cell types in human colorectal cancer. JCI Insight 2022; 7:e154646. [PMID: 35192548 PMCID: PMC9057629 DOI: 10.1172/jci.insight.154646] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/16/2022] [Indexed: 01/21/2023] Open
Abstract
Clinical outcomes in colorectal cancer (CRC) correlate with T cell infiltrates, but the specific contributions of heterogenous T cell types remain unclear. To investigate the diverse function of T cells in CRC, we profiled 37,931 T cells from tumors and adjacent normal colon of 16 patients with CRC with respect to transcriptome, TCR sequence, and cell surface markers. Our analysis identified phenotypically and functionally distinguishable effector T cell types. We employed single-cell gene signatures from these T cell subsets to query the TCGA database to assess their prognostic significance. We found 2 distinct cytotoxic T cell types. GZMK+KLRG1+ cytotoxic T cells were enriched in CRC patients with good outcomes. GNLY+CD103+ cytotoxic T cells with a dysfunctional phenotype were not associated with good outcomes, despite coexpression of CD39 and CD103, markers that denote tumor reactivity. We found 2 distinct Treg subtypes associated with opposite outcomes. While total Tregs were associated with good outcomes, CD38+ Tregs were associated with bad outcomes independently of stage and possessed a highly suppressive phenotype, suggesting that they inhibit antitumor immunity in CRC. These findings highlight the potential utility of these subpopulations in predicting outcomes and support the potential for novel therapies directed at CD38+ Tregs or CD8+CD103+ T cells.
Collapse
Affiliation(s)
| | - Adam Kornberg
- Columbia Center for Translational Immunology
- Department of Microbiology & Immunology
| | - Jonathan Miller
- Department of Pediatrics
- Columbia Center for Human Development
| | - Sijie Lin
- Columbia Center for Translational Immunology
| | - Nathan Suek
- Columbia Center for Translational Immunology
| | | | | | | | | | - Matthew Ingham
- Department of Medicine, Division of Hematology & Oncology
- Herbert Irving Comprehensive Cancer Center, and
| | - Vilma Rosario
- Herbert Irving Comprehensive Cancer Center, and
- Department of Surgery, Division of Colorectal Surgery, Columbia University, New York, New York, USA
| | - Ahmed M. Al-Mazrou
- Herbert Irving Comprehensive Cancer Center, and
- Department of Surgery, Division of Colorectal Surgery, Columbia University, New York, New York, USA
| | - Steven A. Lee-Kong
- Herbert Irving Comprehensive Cancer Center, and
- Department of Surgery, Division of Colorectal Surgery, Columbia University, New York, New York, USA
| | - Ravi P. Kiran
- Herbert Irving Comprehensive Cancer Center, and
- Department of Surgery, Division of Colorectal Surgery, Columbia University, New York, New York, USA
| | | | | | | | - Paul E. Oberstein
- Department of Medicine, Division of Hematology & Oncology
- Herbert Irving Comprehensive Cancer Center, and
| | - Peter A. Sims
- Departments of Systems Biology and Biochemistry & Molecular Biophysics
| | - Kelley S. Yan
- Columbia Center for Human Development
- Department of Medicine, Division of Digestive & Liver Diseases, and
- Department of Genetics & Development, Columbia University, New York, New York, USA
| | - Arnold Han
- Columbia Center for Translational Immunology
- Department of Microbiology & Immunology
- Herbert Irving Comprehensive Cancer Center, and
- Department of Medicine, Division of Digestive & Liver Diseases, and
| |
Collapse
|
22
|
Yan B, Xiong J, Ye Q, Xue T, Xiang J, Xu M, Li F, Wen W. Correlation and prognostic implications of intratumor and tumor draining lymph node Foxp3 + T regulatory cells in colorectal cancer. BMC Gastroenterol 2022; 22:122. [PMID: 35296257 PMCID: PMC8925044 DOI: 10.1186/s12876-022-02205-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/10/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The prognostic value of intratumor T regulatory cells (Tregs) in colorectal cancer (CRC) was previously reported, but the role of these cells in tumor draining lymph nodes (TDLNs) was less addressed. METHODS A total of 150 CRC stages I-IV were retrospectively enrolled. Intratumor and TDLN Tregs were examined by immunohistochemical assay. The association of these cells was estimated by Pearson correlation. Survival analyses of subgroups were conducted by Kaplan-Meier curves, and the log-rank test and risk factors for survival were tested by the Cox proportional hazard model. RESULTS High accumulation of Tregs in tumors was significant in patients with younger age and good histological grade, where enrichment of these cells in TDLNs was more apparent in those with node-negative disease and early TNM stage disease, both of which were more common in early T stage cases. A significant correlation of intratumoral and TDLN Tregs was detected. Patients with higher intratumoral Tregs displayed significantly better PFS and OS than those with lower Tregs. However, no such differences were found, but a similar prognostic prediction trend was found for these cells in TDLNs. Finally, intratumoral Tregs were an independent prognostic factor for both PFS (HR = 0.97, 95% CI 0.95-0.99, P < 0.01) and OS (HR = 0.98, 95% CI 0.95-1.00, P = 0.04) in the patients. CONCLUSIONS Higher intratumor Tregs were associated with better survival in CRC. Although no such role was found for these cells in TDLNs, the positive correlation and similar prognostic prediction trend with their intratumoral counterparts may indicate a parallelized function of these cells in CRC.
Collapse
Affiliation(s)
- Bing Yan
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District of Sanya City, Hainan province, 572000, People's Republic of China
| | - Jianmei Xiong
- Department of Neurology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District of Sanya City, Hainan Province, 572000, People's Republic of China
| | - Qianwen Ye
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District of Sanya City, Hainan province, 572000, People's Republic of China
| | - Tianhui Xue
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District of Sanya City, Hainan province, 572000, People's Republic of China
| | - Jia Xiang
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District of Sanya City, Hainan province, 572000, People's Republic of China
| | - Mingyue Xu
- Department of General Surgery, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District of Sanya City, Hainan Province, 572000, People's Republic of China
| | - Fang Li
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District of Sanya City, Hainan province, 572000, People's Republic of China.
| | - Wei Wen
- Department of General Surgery, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District of Sanya City, Hainan Province, 572000, People's Republic of China.
| |
Collapse
|
23
|
Xing X, Shi J, Jia Y, Dou Y, Li Z, Dong B, Guo T, Cheng X, Li X, Du H, Hu Y, Jia S, Zhang J, Li Z, Ji J. Effect of neoadjuvant chemotherapy on the immune microenvironment in gastric cancer as determined by multiplex immunofluorescence and T cell receptor repertoire analysis. J Immunother Cancer 2022; 10:e003984. [PMID: 35361730 PMCID: PMC8971786 DOI: 10.1136/jitc-2021-003984] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The combination of immune checkpoint blockade and chemotherapy has revolutionized the treatment of advanced gastric cancer (GC). It is crucial to unravel chemotherapy-induced tumor microenvironment (TME) modulation and identify which immunotherapy would improve antitumor effect. METHODS In this study, tumor-associated immune cells (TAICs) infiltration in residual tumor after neoadjuvant chemotherapy (NAC) together with 1075 cases of treatment-naïve GC patients was analyzed first. Then we performed multiplex fluorescence staining of a panel of immune markers (CD3, CD4, CD8, FOXP3 and PDL1) and T cell receptor β-chain sequencing to phenotype and enumerate T cell subpopulations and clonal expansion in paired GC samples (prechemotherapy and postchemotherapy) from another cohort of 30 cases of stage II/III GC patients. RESULTS Infiltration of CD68+ macrophages in residual tumors after NAC was significantly decreased compared with treatment-naïve GC patients, while no significant difference observed with respect to other immune markers. In residual tumors, post-NAC CD8 +T cells and CD68+ macrophages levels were significantly associated with chemotherapy response. Post-NAC CD8+ T cell levels remained as an independent predictor for favorable prognosis. Furthermore, when comparing the paired samples before and after NAC from 30 cases of stage II/III GC patients, we found FOXP3+ regulatory T cells proportion significantly decreased after chemotherapy. Pre-NAC FOXP3+ T reg cells level was much richer in the response group and decreased more significantly in the stromal compartment. CD8+ cytotoxic T lymphocytes levels were elevated after chemotherapy, which was more significant in the group treated with XELOX regimen and in patients with better response, consistent with the TCR diversity elevation. CONCLUSIONS These findings have deepened our understanding of the immune modulating effect of chemotherapy and suggest that the immune profile of specimens after standard chemotherapy should be considered for the personalized immunotherapy to ultimately improve clinical outcome in patients with GC.
Collapse
Affiliation(s)
- Xiaofang Xing
- Department of Gastrointestinal Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital, Beijing, China
| | - Jinyao Shi
- Department of Gastrointestinal Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital, Beijing, China
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Yongning Jia
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Yunsheng Dou
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Zhongwu Li
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Bin Dong
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Ting Guo
- Department of Gastrointestinal Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital, Beijing, China
| | - Xiaojing Cheng
- Department of Gastrointestinal Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital, Beijing, China
| | - Xiaomei Li
- Department of Gastrointestinal Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital, Beijing, China
| | - Hong Du
- Department of Gastrointestinal Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital, Beijing, China
| | - Ying Hu
- Biobank, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Shuqin Jia
- Department of Molecular Diagnosis, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Jian Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Ziyu Li
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Jiafu Ji
- Department of Gastrointestinal Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital, Beijing, China
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
24
|
Fang F, Zhang T, Li Q, Chen X, Jiang F, Shen X. The tumor immune-microenvironment in gastric cancer. TUMORI JOURNAL 2022; 108:541-551. [PMID: 35196917 DOI: 10.1177/03008916211070051] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIMS AND BACKGROUND The tumor microenvironment significantly influences malignant behavior and progression. Many components are involved in the tumor microenvironment, including extracellular matrix, stromal cells, immune and inflammatory cells, as well as cytokines that promote tumor development with complex interactions through the exchange of molecular information. It is now known that tumor immune escape may be influenced by the tumor microenvironment. The aim of this work is to conduct a review of the tumor immune-microenvironment in gastric cancer. METHODS We review the current knowledge of several immune cells involved in the gastric tumor microenvironment. In addition, a brief description of immunotherapy strategies for gastric cancer is also reviewed. CONCLUSIONS Among immune cell populations, lymphocytes, macrophages, dendritic cells and myeloid-derived suppressor cells are revealed to make the difference in promoting or suppressing gastric tumorigenesis, either directly or indirectly, via regulating the immune responses. Understanding these interactions in detail within the tumor immune-microenvironment will contribute to unraveling new therapeutic targets.
Collapse
Affiliation(s)
- Fujin Fang
- Key Laboratory of Environmental Medical Engineering and Education Ministry, School of Public Health, Southeast University, Nanjing, Jiangsu, China.,Department of Preventive Medicine, School of Public Health, Southeast University, Nanjing, China
| | - Tiantian Zhang
- Department of Clinical Laboratory, The Third People's Hospital of Bengbu, Bengbu, China
| | - Qiong Li
- Key Laboratory of Environmental Medical Engineering and Education Ministry, School of Public Health, Southeast University, Nanjing, Jiangsu, China.,Department of Preventive Medicine, School of Public Health, Southeast University, Nanjing, China
| | - Xiaowei Chen
- Key Laboratory of Environmental Medical Engineering and Education Ministry, School of Public Health, Southeast University, Nanjing, Jiangsu, China.,Department of Preventive Medicine, School of Public Health, Southeast University, Nanjing, China
| | - Fei Jiang
- Key Laboratory of Environmental Medical Engineering and Education Ministry, School of Public Health, Southeast University, Nanjing, Jiangsu, China.,Department of Preventive Medicine, School of Public Health, Southeast University, Nanjing, China
| | - Xiaobing Shen
- Key Laboratory of Environmental Medical Engineering and Education Ministry, School of Public Health, Southeast University, Nanjing, Jiangsu, China.,Department of Preventive Medicine, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
25
|
Two novel human anti-CD25 antibodies with antitumor activity inversely related to their affinity and in vitro activity. Sci Rep 2021; 11:22966. [PMID: 34824364 PMCID: PMC8617198 DOI: 10.1038/s41598-021-02449-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 11/16/2021] [Indexed: 11/09/2022] Open
Abstract
High tumor regulatory T (Treg) cell infiltration is associated with poor prognosis of many cancers. CD25 is highly expressed on tumor Treg cells and is a potential target for Treg deletion. Previously characterized anti-CD25 antibodies appear to have limited efficacy in tumor inhibition. Here we identified two human anti-CD25 antibodies, BA9 and BT942, which did not prevent the activation of IL-2R signaling pathway by IL-2. BT942 had weaker binding and cytotoxic activity to human CD25-expressing cell lines than BA9. But both demonstrated significant tumor growth inhibition in early and late-stage animal cancer models. BT942 resulted in a higher expansion of CD8+ T cells and CD4+ T cells in tumor microenvironment in mouse MC38 model compared to BA9. BT942 also demonstrated significant higher tumor growth inhibition and higher expansion of CD8+ T cells and CD4+ T cells in combination with an anti-PD1 antibody. Pharmacokinetic study of BT942 in cynomolgus monkeys demonstrated a half-life of 206.97 ± 19.03 h. Structural analysis by cryo-EM revealed that BT942 recognizes an epitope on opposite side of the CD25-IL-2 binding site, consistent with no IL-2 signaling blockade in vitro. BT942 appears to be an excellent candidate for cancer immunotherapy.
Collapse
|
26
|
Kim H, Heo YJ, Cho YA, Kang SY, Ahn S, Kim KM. Tumor immune microenvironment is influenced by frameshift mutations and tumor mutational burden in gastric cancer. Clin Transl Oncol 2021; 24:556-567. [PMID: 34767183 DOI: 10.1007/s12094-021-02714-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/23/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE Immunoscore can effectively predict prognosis in patients with colon cancer; however, its clinical application is limited. We modified the Immunoscore and created a tumor immune microenvironment (TIM) classification system for gastric carcinoma. Unlike previous studies that used small sample sizes or focused on particular immune-cell subtypes, our simplified system enables pathologists to classify gastric carcinomas intuitively using H&E-stained sections. METHODS Samples from 326 patients with advanced gastric carcinoma were reviewed and analyzed by pathologists using simple determination and digital image analysis. Comprehensive results of cancer-panel sequencing, Epstein-Barr‒virus (EBV) status, and PD-L1, HER2, ATM, PTEN, MET, FGFR2, and EGFR immunohistochemistry were evaluated with respect to the TIM class. RESULTS The TIM was classified as "hot" (n = 22), "immunosuppressed" (n = 178), "excluded" (n = 83), or "cold" (n = 43). TIM category was significantly associated with numbers of frameshift mutations (P < 0.001) and high tumor mutational burden (P < 0.004), and predicted overall survival. It was also significantly associated with age, histological type, degree of fibrosis, PD-L1 expression, loss of ATM and PTEN expression (P < 0.001), sex, EBV positivity, and HER2 overexpression (P < 0.04). "Hot" tumors were frequent in PD-L1 expressing and EBV-positive samples, and in those with ATM and PTEN loss. "Excluded" tumors were frequent in HER2-positive cases, whereas "cold" tumors were more frequent in younger patients with poorly cohesive histology and high fibrosis levels. CONCLUSIONS TIM classification system for gastric carcinoma has prognostic significance and results in classes that are associated with molecular characteristics.
Collapse
Affiliation(s)
- H Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Y J Heo
- The Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Y A Cho
- Department of Pathology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea
| | - S Y Kang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - S Ahn
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - K -M Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea. .,The Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Multiomics analysis of tumor mutational burden across cancer types. Comput Struct Biotechnol J 2021; 19:5637-5646. [PMID: 34745455 PMCID: PMC8531462 DOI: 10.1016/j.csbj.2021.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Whether tumor mutational burden (TMB) is related to improved survival outcomes or the promotion of immunotherapy in various malignant tumors remains controversial, and we lack a comprehensive understanding of TMB across cancers. Based on the data obtained from The Cancer Genome Atlas (TCGA), we conducted a multiomics analysis of TMB across 21 cancer types to identify characteristics related to TMB and determine the mechanism as it relates to prognosis, gene expression, gene mutation and signaling pathways. In our study, TMB was found to have a significant relationship with prognosis for 21 tumors, and the relationship was different in different tumors. TMB may also be related to different outcomes for patients with different tumor subtypes. TMB was confirmed to be correlated with clinical information, such as age and sex. Mutations in GATA3 and MAP3K1 in beast invasive carcinoma (BRCA), TCF7L2 in colon adenocarcinoma (COAD), NFE2L2 in esophageal carcinoma (ESCA), CIC and IDH1 in brain lower grade glioma (LGG), CDH1 in stomach adenocarcinoma (STAD), and TP53 in uterine corpus endometrial carcinoma (UCEC) were demonstrated to be correlated with lower TMB. Moreover, we identified differentially expressed genes (DEGs) and differentially methylated regions (DMRs) according to different TMB levels in 21 cancers. We also investigated the correlation between enrichment of signaling pathways, immune cell infiltration and TMB. In conclusion, we identified multiomic characteristics related to the TMB in 21 tumors, providing support for a comprehensive understanding of the role of TMB in different tumors.
Collapse
|
28
|
Role of FoxP3-positive regulatory T-cells in regressive and progressive cervical dysplasia. J Cancer Res Clin Oncol 2021; 148:377-386. [PMID: 34739585 DOI: 10.1007/s00432-021-03838-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/14/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE Forkhead Box Protein 3 (FoxP3) is known as a key mediator in the immunosuppressive function of regulatory T-cells (Tregs). The aim of our study was to investigate whether FoxP3-positive Tregs have the potential to act as an independent predictor in progression as well as in regression of cervical intraepithelial neoplasia, especially in patients with intermediate cervical intraepithelial neoplasia (CIN II). METHODS Nuclear FoxP3 expression was immunohistochemically analysed in 169 patient samples (CIN I, CIN II with regressive course, CIN II with progressive course, CIN III). The median numbers were calculated for each slide and correlated with the histological CIN grade. Statistical analysis was performed by SPSS 26 (Mann-Whitney U test, Spearman's rank correlation). RESULTS An increased FoxP3 expression in CIN II with progression could be detected in comparison to CIN II with regression (p = 0.003). Total FoxP3 expression (epithelium and dysplasia-connected stroma) was higher in more advanced CIN grades (p < 0.001 for CIN I vs. CIN II; p = 0.227 for CIN II vs. CIN III). A positive correlation could be detected between FoxP3-positive cells in epithelium and total FoxP3 expression (Spearman's Rho: 0,565; p < 0.01). CONCLUSION Expression of FoxP3 could be a helpful predictive factor to assess the risks of CIN II progression. As a prognosticator for regression and progression in cervical intraepithelial lesions it might thereby help in the decision process regarding surgical treatment vs. watchful waiting strategy to prevent conisation-associated risks for patients in child-bearing age. In addition, the findings support the potential of Tregs as a target for immune therapy in cervical cancer patients.
Collapse
|
29
|
Opinto G, Agostinelli C, Ciavarella S, Guarini A, Maiorano E, Ingravallo G. Hodgkin Lymphoma: A Special Microenvironment. J Clin Med 2021; 10:4665. [PMID: 34682791 PMCID: PMC8541076 DOI: 10.3390/jcm10204665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/18/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
Classical Hodgkin's lymphoma (cHL) is one of the most particular lymphomas for the few tumor cells surrounded by an inflammatory microenvironment. Reed-Sternberg (RS) and Hodgkin (H) cells reprogram and evade antitumor mechanisms of the normal cells present in the microenvironment. The cells of microenvironment are essential for growth and survival of the RS/H cells and are recruited through the effect of cytokines/chemokines. We summarize recent advances in gene expression profiling (GEP) analysis applied to study microenvironment component in cHL. We also describe the main therapies that target not only the neoplastic cells but also the cellular components of the background.
Collapse
Affiliation(s)
- Giuseppina Opinto
- Haematology and Cell Therapy Unit, IRCCS-Istituto Tumori ‘Giovanni Paolo II’, 70124 Bari, Italy; (G.O.); (S.C.); (A.G.)
| | - Claudio Agostinelli
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy
| | - Sabino Ciavarella
- Haematology and Cell Therapy Unit, IRCCS-Istituto Tumori ‘Giovanni Paolo II’, 70124 Bari, Italy; (G.O.); (S.C.); (A.G.)
| | - Attilio Guarini
- Haematology and Cell Therapy Unit, IRCCS-Istituto Tumori ‘Giovanni Paolo II’, 70124 Bari, Italy; (G.O.); (S.C.); (A.G.)
| | - Eugenio Maiorano
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Giuseppe Ingravallo
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari Aldo Moro, 70124 Bari, Italy;
| |
Collapse
|
30
|
Whiteside SK, Grant FM, Gyori DS, Conti AG, Imianowski CJ, Kuo P, Nasrallah R, Sadiyah F, Lira SA, Tacke F, Eil RL, Burton OT, Dooley J, Liston A, Okkenhaug K, Yang J, Roychoudhuri R. CCR8 marks highly suppressive Treg cells within tumours but is dispensable for their accumulation and suppressive function. Immunol Suppl 2021; 163:512-520. [PMID: 33838058 PMCID: PMC8274197 DOI: 10.1111/imm.13337] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 03/12/2021] [Accepted: 03/26/2021] [Indexed: 02/02/2023]
Abstract
CD4+ regulatory T (Treg) cells, dependent upon the transcription factor Foxp3, contribute to tumour immunosuppression but are also required for immune homeostasis. There is interest in developing therapies that selectively target the immunosuppressive function of Treg cells within tumours without disrupting their systemic anti-inflammatory function. High levels of expression of chemokine (C-C motif) receptor 8 (CCR8) discriminate Treg cells within tumours from those found in systemic lymphoid tissues. It has recently been proposed that disruption of CCR8 function using blocking anti-CCR8 antibodies results in reduced accumulation of Treg cells within tumours and disruption of their immunosuppressive function. Here, using Ccr8-/- mice, we show that CCR8 function is not required for Treg cell accumulation or immunosuppression in the context of syngeneic MC38 colorectal adenocarcinoma and B16 melanoma tumours. We observed high levels of CCR8 expression on tumour-infiltrating Treg cells which were abolished in Ccr8-/- mice. High levels of CCR8 marked cells with high levels of suppressive function. However, whereas systemic ablation of Treg cells resulted in strikingly diminished tumour burden, growth of subcutaneously implanted tumours was unaffected by systemic CCR8 loss. Consistently, we observed minimal impact of systemic CCR8 ablation on the frequency, phenotype and function of tumour-infiltrating Treg cells and conventional T (Tconv) function. These findings suggest that CCR8 is not required for Treg cell accumulation and immunosuppressive function within tumours and that depletion of CCR8+ Treg cells rather than blockade of CCR8 function is a more promising avenue for selective immunotherapy.
Collapse
Affiliation(s)
- Sarah K. Whiteside
- Department of PathologyUniversity of CambridgeCambridgeUK,Immunology ProgrammeBabraham Research CampusBabraham InstituteCambridgeUK
| | - Francis M. Grant
- Immunology ProgrammeBabraham Research CampusBabraham InstituteCambridgeUK
| | - David S. Gyori
- Department of PhysiologySemmelweis UniversityBudapestHungary
| | | | - Charlotte J. Imianowski
- Department of PathologyUniversity of CambridgeCambridgeUK,Immunology ProgrammeBabraham Research CampusBabraham InstituteCambridgeUK
| | - Paula Kuo
- Department of PathologyUniversity of CambridgeCambridgeUK,Immunology ProgrammeBabraham Research CampusBabraham InstituteCambridgeUK
| | - Rabab Nasrallah
- Immunology ProgrammeBabraham Research CampusBabraham InstituteCambridgeUK
| | - Firas Sadiyah
- Department of PathologyUniversity of CambridgeCambridgeUK,Immunology ProgrammeBabraham Research CampusBabraham InstituteCambridgeUK
| | - Sergio A. Lira
- Mount Sinai School of MedicineImmunology InstituteNew YorkNYUSA
| | - Frank Tacke
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum (CVK) and Campus Charité Mitte (CCM)Charité Universitätsmedizin BerlinBerlinGermany
| | - Robert L. Eil
- Department of SurgeryMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Oliver T. Burton
- Immunology ProgrammeBabraham Research CampusBabraham InstituteCambridgeUK
| | - James Dooley
- Immunology ProgrammeBabraham Research CampusBabraham InstituteCambridgeUK
| | - Adrian Liston
- Immunology ProgrammeBabraham Research CampusBabraham InstituteCambridgeUK
| | | | - Jie Yang
- Department of PathologyUniversity of CambridgeCambridgeUK,Immunology ProgrammeBabraham Research CampusBabraham InstituteCambridgeUK
| | - Rahul Roychoudhuri
- Department of PathologyUniversity of CambridgeCambridgeUK,Immunology ProgrammeBabraham Research CampusBabraham InstituteCambridgeUK
| |
Collapse
|
31
|
Kajal K, Bose S, Panda AK, Chakraborty D, Chakraborty S, Pati S, Sarkar T, Dhar S, Roy D, Saha S, Sa G. Transcriptional regulation of VEGFA expression in T-regulatory cells from breast cancer patients. Cancer Immunol Immunother 2021; 70:1877-1891. [PMID: 33394094 PMCID: PMC10991595 DOI: 10.1007/s00262-020-02808-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/21/2020] [Indexed: 02/05/2023]
Abstract
The initiation of new blood vessel formation (neo-angiogenesis) is one of the primary requirements for the establishment of tumor. As the tumor grows beyond a certain size, a hypoxic-condition arises in the inner core of tumor, triggering the release of chemokines, which attract T-regulatory (Treg) cells in the tumor-site. The presence of FOXP3, a lineage-specific transcription factor, expressing Treg cells in various types of tumor implements immunosuppressive and tumor-promoting strategies. One such strategy is the invitation of endothelial cells for neo-vascularization in the tumor site. Here we report that as the disease progresses, Treg cells from breast cancer patients are capable of secreting high-amount of VEGFA. The VEGFA promoter lacks Treg-specific transcription factor FOXP3 binding site. FOXP3 in association with locus-specific transcription factor STAT3 binds to VEGFA promoter to induce its transcription in Treg cells obtained from breast cancer patients. Treg cell-secreted VEGFA induces neo-angiogenesis from endothelial cells under in-vitro conditions. Targeting Tregs in mice with breast tumor reduces tumor growth as well as the level of neo-angiogenesis in the tumor tissue.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/genetics
- Breast Neoplasms/immunology
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Case-Control Studies
- Cell Proliferation
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Mice
- Mice, Inbred BALB C
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Prognosis
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Tumor Cells, Cultured
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Kirti Kajal
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700 054, India
| | - Sayantan Bose
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700 054, India
| | - Abir K Panda
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700 054, India
| | - Dwaipayan Chakraborty
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700 054, India
| | - Sreeparna Chakraborty
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700 054, India
| | - Subhadip Pati
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700 054, India
| | - Tania Sarkar
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700 054, India
| | - Subhanki Dhar
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700 054, India
| | - Dia Roy
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700 054, India
| | - Shilpi Saha
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700 054, India
| | - Gaurisankar Sa
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700 054, India.
| |
Collapse
|
32
|
Correlation between tumor infiltrating immune cells and peripheral regulatory T cell determined using methylation analyses and its prognostic significance in resected gastric cancer. PLoS One 2021; 16:e0252480. [PMID: 34086741 PMCID: PMC8177409 DOI: 10.1371/journal.pone.0252480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/16/2021] [Indexed: 11/30/2022] Open
Abstract
Peripheral regulatory T cells (pTregs) are a highly immunosuppressive fraction of CD4+ T cells. We aimed to evaluate the clinical significance of pTregs in patients with gastric cancer and to determine the correlation between pTregs and immune cell infiltration in tumor microenvironment. pTregs status was determined by assessing the pTreg/total T-cell ratio (ratio of Foxp3 Treg-specific demethylated region (TSDR) to CD3G/CD3D demethylation, so-called Cellular Ratio of Immune Tolerance “ImmunoCRIT”) using methylation analyses in 433 patients with gastric cancer who received curative surgery. Among 422 evaluable patients, 230 (54.5%) had high ImmunoCRIT (> 21.0). Patients with high ImmunoCRIT had significantly shorter disease-free survival (DFS) and overall survival (OS) than those with high ImmunoCRIT (p = 0.030, p = 0.008, respectively). In multivariate analysis, high ImmunoCRIT kept a prognostic role for shorter OS (hazard ratio [HR] 1.9, 95% confidence interval [CI] 1.4–2.9; p = 0.005). CD3+ cell density and CD4+ cell density was significantly higher within the tumor in high ImmunoCRIT group than those in low ImmunoCRIT group (CD3+ cell, 202.12/mm2vs. 172.2/mm2, p = 0.029; CD4+ cell, 56.5/mm2vs. 43.5/mm2, p = 0.007). In conclusion, the peripheral ImmunoCRIT determined by epigenetic methylation analysis provides prognostic information in resected gastric tumors.
Collapse
|
33
|
Paijens ST, Vledder A, de Bruyn M, Nijman HW. Tumor-infiltrating lymphocytes in the immunotherapy era. Cell Mol Immunol 2021; 18:842-859. [PMID: 33139907 PMCID: PMC8115290 DOI: 10.1038/s41423-020-00565-9] [Citation(s) in RCA: 542] [Impact Index Per Article: 135.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
The clinical success of cancer immune checkpoint blockade (ICB) has refocused attention on tumor-infiltrating lymphocytes (TILs) across cancer types. The outcome of immune checkpoint inhibitor therapy in cancer patients has been linked to the quality and magnitude of T cell, NK cell, and more recently, B cell responses within the tumor microenvironment. State-of-the-art single-cell analysis of TIL gene expression profiles and clonality has revealed a remarkable degree of cellular heterogeneity and distinct patterns of immune activation and exhaustion. Many of these states are conserved across tumor types, in line with the broad responses observed clinically. Despite this homology, not all cancer types with similar TIL landscapes respond similarly to immunotherapy, highlighting the complexity of the underlying tumor-immune interactions. This observation is further confounded by the strong prognostic benefit of TILs observed for tumor types that have so far respond poorly to immunotherapy. Thus, while a holistic view of lymphocyte infiltration and dysfunction on a single-cell level is emerging, the search for response and prognostic biomarkers is just beginning. Within this review, we discuss recent advances in the understanding of TIL biology, their prognostic benefit, and their predictive value for therapy.
Collapse
Affiliation(s)
- Sterre T Paijens
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Annegé Vledder
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marco de Bruyn
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hans W Nijman
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
34
|
Yamaguchi T, Kinoshita J, Saito H, Shimada M, Terai S, Moriyama H, Okamoto K, Makino I, Nakamura K, Tajima H, Ninomiya I, Fushida S. High CD8/CD33 ratio in peritoneal metastatic lesions is associated with favorable prognosis in gastric cancer. Cancer Rep (Hoboken) 2021; 4:e1389. [PMID: 33793095 PMCID: PMC8551992 DOI: 10.1002/cnr2.1389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/02/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Background Tumor‐infiltrating lymphocytes (TILs) and other immune cells have been reported as a prognostic factor in several tumors, including gastric cancer, and they play an important role in antitumor effect at the primary site. There were few reports on the immune status in peritoneal metastatic lesions for gastric cancer. Aims The aims of this study were to assess the prognostic significance of TILs (CD4, CD8, CD19, regulatory T cells [Tregs]), and myeloid‐derived suppressor cells (MDSCs) in peritoneal metastatic lesions. Methods We retrospectively investigated 60 patients for gastric cancer with peritoneal metastasis who were treated between 2009 and 2016 in our institute. Immunohistochemistry for CD4, CD8, CD19, FOXP3, and CD33 was performed in the peritoneal metastatic lesions. The absolute numbers of immune cells and ratios were evaluated, and the relationship between immune‐related marker and overall survival (OS) was investigated. Results A high infiltration of CD8+ lymphocytes or high CD8/CD33 ratio was a better prognosis for OS in univariate analysis using all immunologic variables (P = .012, P = .001). In multivariate analysis for clinical and immunologic variables, high CD8/CD33 ratio was identified as an independent prognostic factor for OS (Hazard ratio: 0.291, 95% confidence interval: 0.126‐0.670, P = .004). Conclusion High CD8/CD33 ratio and high infiltration of CD8+ lymphocytes in peritoneal metastatic lesions were favorable prognoses for gastric cancer patients with peritoneal metastasis. It is necessary to modify the immune microenvironment result to increase the level of CD8+ lymphocytes in the peritoneal metastatic lesions.
Collapse
Affiliation(s)
- Takahisa Yamaguchi
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Jun Kinoshita
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Hiroto Saito
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Mari Shimada
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Siro Terai
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Hideki Moriyama
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Koichi Okamoto
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Isamu Makino
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Keishi Nakamura
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Hidehiro Tajima
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Itasu Ninomiya
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Sachio Fushida
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| |
Collapse
|
35
|
Yun S, Koh J, Nam SK, Kwak Y, Ahn SH, Do Park J, Kim HH, Kim WH, Lee HS. Immunoscore is a strong predictor of survival in the prognosis of stage II/III gastric cancer patients following 5-FU-based adjuvant chemotherapy. Cancer Immunol Immunother 2021; 70:431-441. [PMID: 32785776 PMCID: PMC10991343 DOI: 10.1007/s00262-020-02694-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 08/04/2020] [Indexed: 12/25/2022]
Abstract
The prognostic impact of Immunoscore (IS) in gastric cancer (GC) patients treated with adjuvant chemotherapy remains unelucidated. We evaluated the CD3 + , CD8 + , and Foxp3 + T-lymphocyte densities in tumor centers and invasive margin regions of 389 patients with surgically resected stage II/III GC who received 5-FU-based adjuvant chemotherapy and investigated the impact of IS on survival. In univariate analysis, high CD3 + , CD8 + , and Foxp3 + T-lymphocyte densities in the invasive margin were correlated with better prognosis (all P < 0.05). Patients with high IS had significantly longer disease-free survival (DFS; P < 0.001) and overall survival (OS; P < 0.001). In multivariate analysis, IS demonstrated a powerful prognostic impact on patient outcome [DFS, hazard ratio (HR) = 0.465; 95% confidence interval (CI), 0.306-0.707, P < 0.001; OS, HR = 0.478; 95% CI, 0.308-0.743, P = 0.001]. Additionally, although all EBV-positive cases had high IS, IS was similar in both microsatellite instability (MSI)-high and microsatellite stable (MSS)/MSI-low groups (83.3% and 80.5%, respectively). Subgroup analysis according to MSI status revealed that high IS patients had significant DFS and OS benefits in both MSS/MSI-low (DFS, HR = 0.527, 95% CI, 0.341-0.816, P = 0.004; OS, HR = 0.528, 95% CI, 0.334-0.837, P = 0.007) and MSI-high (DFS, HR = 0.166, 95% CI, 0.033-0.826, P = 0.028; OS, HR = 0.177, 95% CI, 0.036-0.883, P = 0.035) groups. Thus, the assessment of immune cell infiltration based on IS may provide a strong indicator of survival in stage II/III GC patients with curative resection following 5-FU-based adjuvant chemotherapy.
Collapse
Affiliation(s)
- Sumi Yun
- Department of Diagnostic Pathology, Samkwang Medical Laboratories, Seoul, Republic of Korea
| | - Jiwon Koh
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Soo Kyung Nam
- Department of Pathology, Seoul National University Bundang Hospital, 173-82 Gumiro, Bundang-gu, Gyeonggi-do, Seongnam-si, 463-707, Republic of Korea
| | - Yoonjin Kwak
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sang-Hoon Ahn
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Joong Do Park
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hyung-Ho Kim
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Bundang Hospital, 173-82 Gumiro, Bundang-gu, Gyeonggi-do, Seongnam-si, 463-707, Republic of Korea.
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
36
|
Rocha S, Basto AP, Ijsselsteijn ME, Teles SP, Azevedo MM, Gonçalves G, Gullo I, Almeida GM, Maqueda JJ, Oliveira MI, Carneiro F, Barata JT, Graça L, de Miranda NFCC, Carvalho J, Oliveira C. Immunophenotype of Gastric Tumors Unveils a Pleiotropic Role of Regulatory T Cells in Tumor Development. Cancers (Basel) 2021; 13:cancers13030421. [PMID: 33498681 PMCID: PMC7865950 DOI: 10.3390/cancers13030421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/26/2023] Open
Abstract
Gastric cancer (GC) patients display increased regulatory T cell (Tregs) numbers in peripheral blood and among tumor-infiltrating lymphocytes. Nevertheless, the role of Tregs in GC progression remains controversial. Here, we sought to explore the impact of Tregs in GCs with distinct histology, and whether Tregs can directly influence tumor cell behavior and GC development. We performed a comprehensive immunophenotyping of 82 human GC cases, through an integrated analysis of multispectral immunofluorescence detection of T cells markers and patient clinicopathological data. Moreover, we developed 3D in vitro co-cultures with Tregs and tumor cells that were followed by high-throughput and light-sheet imaging, and their biological features studied with conventional/imaging flow cytometry and Western blotting. We showed that Tregs located at the tumor nest were frequent in intestinal-type GCs but did not associate with increased levels of effector T cells. Our in vitro results suggested that Tregs preferentially infiltrated intestinal-type GC spheroids, induced the expression of IL2Rα and activation of MAPK signaling pathway in tumor cells, and promoted spheroid growth. Accumulation of Tregs in intestinal-type GCs was increased at early stages of the stomach wall invasion and in the absence of vascular and perineural invasion. In this study, we proposed a non-immunosuppressive mechanism through which Tregs might directly modulate GC cells and thereby promote tumor growth. Our findings hold insightful implications for therapeutic strategies targeting intestinal-type GCs and other tumors with similar immune context.
Collapse
Affiliation(s)
- Sara Rocha
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (S.R.); (S.P.T.); (M.M.A.); (I.G.); (G.M.A.); (J.J.M.); (F.C.); (J.C.)
- Ipatimup—Institute of Molecular Pathology and Immunology of University of Porto, 4200-135 Porto, Portugal
- Doctoral Program on Cellular and Molecular Biotechnology Applied to Health Sciences, ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Afonso P Basto
- iMM—Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal; (A.P.B.); (J.T.B.); (L.G.)
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Marieke E Ijsselsteijn
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (M.E.I.); (N.F.C.C.d.M.)
| | - Sara P Teles
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (S.R.); (S.P.T.); (M.M.A.); (I.G.); (G.M.A.); (J.J.M.); (F.C.); (J.C.)
- Ipatimup—Institute of Molecular Pathology and Immunology of University of Porto, 4200-135 Porto, Portugal
| | - Maria M Azevedo
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (S.R.); (S.P.T.); (M.M.A.); (I.G.); (G.M.A.); (J.J.M.); (F.C.); (J.C.)
| | - Gilza Gonçalves
- Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal;
| | - Irene Gullo
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (S.R.); (S.P.T.); (M.M.A.); (I.G.); (G.M.A.); (J.J.M.); (F.C.); (J.C.)
- Ipatimup—Institute of Molecular Pathology and Immunology of University of Porto, 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal;
- Department of Pathology, Centro Hospitalar Universitário de São João, 4200-319 Porto, Portugal
| | - Gabriela M Almeida
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (S.R.); (S.P.T.); (M.M.A.); (I.G.); (G.M.A.); (J.J.M.); (F.C.); (J.C.)
- Ipatimup—Institute of Molecular Pathology and Immunology of University of Porto, 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal;
| | - Joaquín J Maqueda
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (S.R.); (S.P.T.); (M.M.A.); (I.G.); (G.M.A.); (J.J.M.); (F.C.); (J.C.)
- Ipatimup—Institute of Molecular Pathology and Immunology of University of Porto, 4200-135 Porto, Portugal
| | - Marta I Oliveira
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal;
| | - Fátima Carneiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (S.R.); (S.P.T.); (M.M.A.); (I.G.); (G.M.A.); (J.J.M.); (F.C.); (J.C.)
- Ipatimup—Institute of Molecular Pathology and Immunology of University of Porto, 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal;
- Department of Pathology, Centro Hospitalar Universitário de São João, 4200-319 Porto, Portugal
| | - João T Barata
- iMM—Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal; (A.P.B.); (J.T.B.); (L.G.)
| | - Luís Graça
- iMM—Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal; (A.P.B.); (J.T.B.); (L.G.)
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Noel F C C de Miranda
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (M.E.I.); (N.F.C.C.d.M.)
| | - Joana Carvalho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (S.R.); (S.P.T.); (M.M.A.); (I.G.); (G.M.A.); (J.J.M.); (F.C.); (J.C.)
- Ipatimup—Institute of Molecular Pathology and Immunology of University of Porto, 4200-135 Porto, Portugal
| | - Carla Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (S.R.); (S.P.T.); (M.M.A.); (I.G.); (G.M.A.); (J.J.M.); (F.C.); (J.C.)
- Ipatimup—Institute of Molecular Pathology and Immunology of University of Porto, 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal;
- Correspondence: ; Tel.: +351-225-570-785
| |
Collapse
|
37
|
Cui Y, Li Q, Li W, Wang Y, Lv F, Shi X, Tang Z, Shen Z, Hou Y, Zhang H, Mao B, Liu T. NOTCH3 is a Prognostic Factor and Is Correlated With Immune Tolerance in Gastric Cancer. Front Oncol 2021; 10:574937. [PMID: 33479597 PMCID: PMC7814877 DOI: 10.3389/fonc.2020.574937] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/13/2020] [Indexed: 12/28/2022] Open
Abstract
Introduction Although traditional treatments confer survival benefits to patients with gastric cancer (GC), many patients experience relapse soon after postoperative adjuvant therapy. Immune-related mechanisms play an important role in GC, and immunotherapeutic strategies are considered to be a promising direction for the treatment of GC. Thus, our study aimed to investigate the expression and prognostic significance of immune-related genes in GC. Methods Formalin-fixed, paraffin-embedded samples were collected from 48 resectable GC patients. The transcriptome data of the tumor immune microenvironment were assessed using an immuno-oncology 395-gene panel RNA sequencing platform. The prognostic value of the 395 genes was analyzed and validated in the KM plotter and GEPIA databases. The data from The Cancer Genome Atlas (TCGA, downloaded from UCSC Xena repository) and Tumor IMmune Estimation Resource (TIMER) were used to evaluate the correlations between prognostic factors and immune signatures. Results Among the 395 genes, NOTCH3 was identified as a good prognostic factor for GC patients. Its prognostic value was also suggested in both our GC cohort from Zhongshan Hospital and the public databases (KM plotter and GEPIA database). Mechanistically, high NOTCH3 expression correlated with a lower infiltration of activated CD8+ T cells and a higher infiltration of immunosuppressive cells including Tregs and M2 macrophages in the tumor microenvironment. Moreover, high NOTCH3 expression was accompanied by the increased expression of a series of immune checkpoint inhibitors, resulting in a dampened immune response. Interestingly, NOTCH3 expression had a negative association with well-documented predictive biomarkers of immune checkpoint blockade (ICB) immunotherapy, including tumor mutation burden (TMB), gene expression profiling (GEP) score and innate anti-PD-1 resistance (IPRES) signature. Conclusion These findings uncovered a new mechanism by which NOTCH3 participates in the immune tolerance of GC, implying the potential of NOTCH3 as a therapeutic target or predictive marker for GC patients.
Collapse
Affiliation(s)
- Yuehong Cui
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qian Li
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Li
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Wang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fang Lv
- Medical Department, Beijing Genecast Biotechnology Co., Beijing, China
| | - Xinying Shi
- Medical Department, Beijing Genecast Biotechnology Co., Beijing, China
| | - Zhaoqing Tang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhenbin Shen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Henghui Zhang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Beibei Mao
- Medical Department, Beijing Genecast Biotechnology Co., Beijing, China
| | - Tianshu Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
38
|
Chatzileontiadou DSM, Sloane H, Nguyen AT, Gras S, Grant EJ. The Many Faces of CD4 + T Cells: Immunological and Structural Characteristics. Int J Mol Sci 2020; 22:E73. [PMID: 33374787 PMCID: PMC7796221 DOI: 10.3390/ijms22010073] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
As a major arm of the cellular immune response, CD4+ T cells are important in the control and clearance of infections. Primarily described as helpers, CD4+ T cells play an integral role in the development and activation of B cells and CD8+ T cells. CD4+ T cells are incredibly heterogeneous, and can be divided into six main lineages based on distinct profiles, namely T helper 1, 2, 17 and 22 (Th1, Th2, Th17, Th22), regulatory T cells (Treg) and T follicular helper cells (Tfh). Recent advances in structural biology have allowed for a detailed characterisation of the molecular mechanisms that drive CD4+ T cell recognition. In this review, we discuss the defining features of the main human CD4+ T cell lineages and their role in immunity, as well as their structural characteristics underlying their detection of pathogens.
Collapse
Affiliation(s)
- Demetra S. M. Chatzileontiadou
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
| | - Hannah Sloane
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
| | - Andrea T. Nguyen
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Emma J. Grant
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
| |
Collapse
|
39
|
Li L, Huang S, Yao Y, Chen J, Li J, Xiang X, Deng J, Xiong J. Follistatin-like 1 (FSTL1) is a prognostic biomarker and correlated with immune cell infiltration in gastric cancer. World J Surg Oncol 2020; 18:324. [PMID: 33292276 PMCID: PMC7724795 DOI: 10.1186/s12957-020-02070-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Background Follistatin-like 1 (FSTL1) plays a central role in the progression of tumor and tumor immunity. However, the effect of FSTL1 on the prognosis and immune infiltration of gastric cancer (GC) remains to be elucidated. Methods The expression of FSTL1 data was analyzed in Oncomine and TIMER databases. Analyses of clinical parameters and survival data were conducted by Kaplan-Meier plotter and immunohistochemistry. Western blot assay and real-time quantitative PCR (RT-qPCR) were used to analyze protein and mRNA expression, respectively. The correlations between FSTL1 and cancer immune infiltrates were analyzed by Tumor Immune Estimation Resource (TIME), Gene Expression Profiling Interactive Analysis (GEPIA), and LinkedOmics database. Results The expression of FSTL1 was significantly higher in GC tissues than in normal tissues, and bioinformatic analysis and immunohistochemistry (IHC) indicated that high FSTL1 expression significantly correlated with poor prognosis in GC. Moreover, FSTL1 was predicted as an independent prognostic factor in GC patients. Bioinformatics analysis results suggested that FSTL1 mainly involved in tumor progression and tumor immunity. And significant correlations were found between FSTL1 expression and immune cell infiltration in GC. Conclusions The study effectively revealed useful information about FSTL1 expression, prognostic values, potential functional networks, and impact of tumor immune infiltration in GC. In summary, FSTL1 can be used as a biomarker for prognosis and evaluating immune cell infiltration in GC. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-020-02070-9.
Collapse
Affiliation(s)
- Li Li
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China.,Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, Jiangxi, P.R. China
| | - Shanshan Huang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China.,Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, Jiangxi, P.R. China
| | - Yangyang Yao
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China.,Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, Jiangxi, P.R. China
| | - Jun Chen
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China.,Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, Jiangxi, P.R. China
| | - Junhe Li
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China.,Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, Jiangxi, P.R. China
| | - Xiaojun Xiang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China.,Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, Jiangxi, P.R. China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China. .,Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, Jiangxi, P.R. China.
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China. .,Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, Jiangxi, P.R. China.
| |
Collapse
|
40
|
Prognostic impact of peripheral blood neutrophil to lymphocyte ratio in advanced-stage pulmonary large cell neuroendocrine carcinoma and its association with the immune-related tumour microenvironment. Br J Cancer 2020; 124:925-932. [PMID: 33250511 PMCID: PMC7921668 DOI: 10.1038/s41416-020-01188-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 09/25/2020] [Accepted: 11/05/2020] [Indexed: 12/20/2022] Open
Abstract
Background The prognostic value of the neutrophil-to-lymphocyte ratio (NLR) with large cell neuroendocrine carcinoma (LCNEC) patients remains unclear. Thus, we performed a retrospective study to examine the relationship between the pretreatment NLR and clinical outcome in advanced LCNEC patients and the impact of the immune-related tumour microenvironment (TME). Methods This retrospective study included 63 advanced LCNEC patients who had received chemotherapy. We collected clinical data and investigated the TME status (CD4, CD8, CD20 and FOXP3). Results The overall survival of the patients with a low NLR (<5) was significantly longer than those with a high NLR (≥5) (14.9 vs. 5.2 months; p < 0.001). A multivariate analysis identified a high NLR as a predictor of a poor prognosis (HR, 3.43; 95% CI, 1.73–6.79; p < 0.001). The NLR was inversely correlated with tumoural and stromal CD8-positive tumour-infiltrating lymphocytes (tumoural: r = −0.648, p = 0.005, stromal: r = −0.490, p = 0.046). Conclusions A high NLR was associated with a poor prognosis in advanced LCNEC patients. Our study revealed that the NLR can reflect the TME, at least in part, suggesting that the NLR plays an important role not only as a clinical outcome predictor but also as a tumour immune status indicator.
Collapse
|
41
|
Long noncoding RNA: a dazzling dancer in tumor immune microenvironment. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:231. [PMID: 33148302 PMCID: PMC7641842 DOI: 10.1186/s13046-020-01727-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) are a class of endogenous, non-protein coding RNAs that are highly linked to various cellular functions and pathological process. Emerging evidence indicates that lncRNAs participate in crosstalk between tumor and stroma, and reprogramming of tumor immune microenvironment (TIME). TIME possesses distinct populations of myeloid cells and lymphocytes to influence the immune escape of cancer, the response to immunotherapy, and the survival of patients. However, hitherto, a comprehensive review aiming at relationship between lncRNAs and TIME is missing. In this review, we focus on the functional roles and molecular mechanisms of lncRNAs within the TIME. Furthermore, we discussed the potential immunotherapeutic strategies based on lncRNAs and their limitations.
Collapse
|
42
|
The changing face of gastric cancer: epidemiologic trends and advances in novel therapies. Cancer Gene Ther 2020; 28:390-399. [PMID: 33009508 DOI: 10.1038/s41417-020-00234-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/19/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
Abstract
Gastric cancer is an aggressive solid-tumor malignancy with poor prognosis. The epidemiologic face of gastric cancer is changing and further insight into its heterogenous immunohistopathologic nature is needed to develop personalized therapies for specific patient populations. In this review, we highlight changes in gastric cancer epidemiology with a special emphasis on racial and ethnic variations and discuss the implications of current clinical and preclinical treatment advances.
Collapse
|
43
|
Heo YJ, Lee T, Byeon SJ, Kim EJ, Shin HC, Kim B, Kang SY, Ha SY, Kim KM. Digital image analysis in pathologist-selected regions of interest predicts survival more accurately than whole-slide analysis: a direct comparison study in 153 gastric carcinomas. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2020; 7:42-51. [PMID: 32885920 PMCID: PMC7737754 DOI: 10.1002/cjp2.179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/24/2022]
Abstract
Automatic quantification of biomarkers such as tumor‐infiltrating lymphocytes and PD‐L1 is one of the most studied topics in digital pathology image analysis (DIA). However, direct comparison between the DIA of a whole‐slide image (WSI) and that of regions of interest (ROIs) chosen by pathologists has not been performed. In this study, we aimed to compare the prognostic value of tumor microenvironment markers CD8 and PD‐L1, measured by DIA of WSIs and ROIs. We selected 153 primary gastric cancer tissues and stained them with CD8 and PD‐L1. All IHC slides were scanned at ×200 magnification and ratios of CD8 and PD‐L1 were measured in WSIs and ROIs from the invasive front, within the tumor, and the mucosa. Patients with high CD8 and PD‐L1 ratios showed more favorable outcomes compared to those with low ratios. Pathologist‐aided DIA predicted the survival of patients more accurately than WSI analysis (CD8, p = 0.025 versus p = 0.068; PD‐L1, p = 0.008 versus p = 0.2). Although a high density of CD8+ T cells at the invasive front correlated best with patient survival, CD8 ratio in the mucosa could also predict patient outcome. In conclusion, CD8 and PD‐L1 ratios measured by pathologist‐aided DIA predicted survival more accurately than WSI analyses and ROIs at the invasive front correlated best with patient outcome.
Collapse
Affiliation(s)
- You Jeong Heo
- The Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Taebum Lee
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Pathology, Chonnam National University Medical School, Hwasun Hospital, Hwasun-gun, Republic of Korea
| | - Sun-Ju Byeon
- Department of Pathology, Hallym University Dongtan Sacred Heart Hospital, Hwaseong-si, Republic of Korea.,Center of Companion Diagnostics, Samsung Medical Center, Seoul, Republic of Korea
| | - Eun Ji Kim
- Center of Companion Diagnostics, Samsung Medical Center, Seoul, Republic of Korea
| | - Hyeong Chan Shin
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Center of Companion Diagnostics, Samsung Medical Center, Seoul, Republic of Korea
| | - Binnari Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Center of Companion Diagnostics, Samsung Medical Center, Seoul, Republic of Korea
| | - So Young Kang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sang Yun Ha
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyoung-Mee Kim
- The Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Center of Companion Diagnostics, Samsung Medical Center, Seoul, Republic of Korea
| |
Collapse
|
44
|
High Endothelial Venule with Concomitant High CD8+ Tumor-Infiltrating Lymphocytes Is Associated with a Favorable Prognosis in Resected Gastric Cancer. J Clin Med 2020; 9:jcm9082628. [PMID: 32823631 PMCID: PMC7464373 DOI: 10.3390/jcm9082628] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/24/2022] Open
Abstract
CD8+ tumor-infiltrating lymphocytes (TILs) play a major role in antitumor immunity. High endothelial venules (HEVs) are related to diverse immune cells in solid tumors. We analyzed CD8+ and Foxp3+ TILs in combination with HEVs to determine their prognostic role in advanced gastric cancer (AGC). We enrolled 157 patients with AGC in this study. The densities of CD8+ TILs and Foxp3+ TILs were calculated using immunohistochemical staining. HEVs were evaluated by MECA-79 expression. HEVs were identified in 60 (38.2%) cases and was significantly associated with an increased number of CD8+ TILs (p = 0.027) but not of Foxp3+ TILs (p = 0.455) and CD20+ TILs (p = 0.163). A high CD8+/HEV+ level was significantly associated with nodal metastasis (p = 0.048). In survival analysis, patients with high CD8+/HEV+ levels demonstrated the longest overall survival (OS) (p = 0.015). Furthermore, a high CD8+/HEV+ level was an independent prognostic factor in AGC (p = 0.011; hazard ratio (HR) = 0.435; 95% confidence interval (CI) = 0.245–0.837). HEVs were found to play an important role in antitumor immunity associated with CD8+ TILs in AGC. This analysis of HEVs and CD8+ TILs helps stratify patients with AGC and sheds light on tumor immunity.
Collapse
|
45
|
FoxP3 + T regulatory cells in cancer: Prognostic biomarkers and therapeutic targets. Cancer Lett 2020; 490:174-185. [PMID: 32721551 DOI: 10.1016/j.canlet.2020.07.022] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/28/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022]
Abstract
T Regulatory cells (Tregs) can have both protective and pathological roles. They maintain immune homeostasis and inhibit immune responses in various diseases, including cancer. Proportions of Tregs in the peripheral blood of some cancer patients increase by approximately two-fold, compared to those in healthy individuals. Tregs contribute to cancer development and progression by suppressing T effector cell functions, thereby compromising tumor killing and promoting tumor growth. Highly immunosuppressive Tregs express upregulated levels of the transcription factor, Forkhead box protein P3 (FoxP3). Elevated levels of FoxP3+ Tregs within the tumor microenvironment (TME) showed a positive correlation with poor prognosis in various cancer patients. Despite the success of immunotherapy, including the use of immune checkpoint inhibitors, a significant proportion of patients show low response rates as a result of primary or acquired resistance against therapy. Some of the mechanisms which underlie the development of therapy resistance are associated with Treg suppressive function. In this review, we describe Treg contribution to cancer development/progression, and the mechanisms of Treg-mediated immunosuppression. We discuss the prognostic significance of FoxP3+ Tregs in different cancers and their potential use as prognostic biomarkers. We also describe potential therapeutic strategies to target Tregs in combination with other types of immunotherapies aiming to overcome tumor resistance and improve clinical outcomes in cancer patients. Overall, understanding the prognostic significance of FoxP3+ Tregs in various cancers and their contribution to therapy resistance could help in the development of more effective targeted therapeutic strategies to enhance the clinical outcomes in cancer patients.
Collapse
|
46
|
Choi E, Chang MS, Byeon SJ, Jin H, Jung KC, Kim H, Lee KL, Kim W, Park JH, Kim KH, Kim JS, Choi IS, Han DS, Ahn HS, Heo SC. Prognostic perspectives of PD-L1 combined with tumor-infiltrating lymphocytes, Epstein-Barr virus, and microsatellite instability in gastric carcinomas. Diagn Pathol 2020; 15:69. [PMID: 32498695 PMCID: PMC7271517 DOI: 10.1186/s13000-020-00979-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/19/2020] [Indexed: 02/08/2023] Open
Abstract
Background The prognostic potential of PD-L1 is currently unclear in gastric carcinomas, although the immune checkpoint PD-1/PD-L1 inhibitors have produced promising results in clinical trials. Methods We explored the prognostic implications of programmed death ligand 1 (PD-L1) in 514 consecutive surgically-resected gastric carcinomas. Overall survival and recurrence-free survival were evaluated. Immunohistochemistry for PD-L1, CD8, FOXP3, and PD-1, and molecular grouping by in situ hybridization for Epstein-Barr virus (EBV)-encoded small RNAs and multiplex PCR for microsatellite instability (MSI) markers were performed. Additionally, to explore the function inherent to PD-L1, PD-L1-specific siRNA transfection, cell proliferation, invasion, migration and apoptosis assays were conducted in five gastric carcinoma cell lines. Results PD-L1(+) tumor and immune cells were observed in 101 (20%) and 244 patients (47%), respectively. “Tumoral PD-L1(+)/immune cell PD-L1(-)/CD8+/low tumor-infiltrating lymphocytes (TILs),” and more advanced-stage tumors were associated with unfavorable clinical outcomes in the entire cohort through multivariate analysis. Furthermore, tumoral PD-L1(+)/FOXP3+/low TILs were associated with worse clinical outcomes in EBV-positive and MSI-high carcinomas. Tumoral PD-L1(+) alone was an adverse prognostic factor in EBV-positive carcinomas, but not in MSI-high carcinomas, whereas PD-L1(+) immune cells or FOXP3+/high TILs alone were correlated with a favorable prognosis. PD-L1 knockdown in gastric carcinoma cells suppressed cell proliferation, invasion and migration, and increased apoptosis, which were all statistically significant in two EBV(+) cell lines, but not all in three EBV(−) cell lines. Conclusions The prognostic impact of PD-L1 may depend on the tumor microenvironment, and statuses of EBV and MSI, although PD-L1 innately promotes cancer cell survival in cell-based assays. The combination of “tumoral PD-L1/immune cell PD-L1/CD8+ TILs” may serve as an independent prognostic factor. Tumoral PD-L1(+)/immune cell PD-L1(−)/CD8+/low TILs showing a worse prognosis may be beneficial for combinatorial therapies of anti-PD-L1/PD-1 and anti-cytotoxic T-lymphocyte associated antigen 4 (CTLA4) that would promote effector T cells, thus attack the tumor.
Collapse
Affiliation(s)
- Euno Choi
- Department of Pathology, Seoul National University Boramae Hospital, Seoul National University College of Medicine, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea
| | - Mee Soo Chang
- Department of Pathology, Seoul National University Boramae Hospital, Seoul National University College of Medicine, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea.
| | - Sun-Ju Byeon
- Department of Pathology, Seoul National University Boramae Hospital, Seoul National University College of Medicine, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea
| | - Heejin Jin
- Medical Research Collaborating Center, Department of Biostatistics, Seoul National University Boramae Hospital, Seoul, Republic of Korea
| | - Kyeong Cheon Jung
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Haeryoung Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kook Lae Lee
- Department of Internal Medicine, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Won Kim
- Department of Internal Medicine, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin Hyun Park
- Department of Internal Medicine, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ki Hwan Kim
- Department of Internal Medicine, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin-Soo Kim
- Department of Internal Medicine, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - In Sil Choi
- Department of Internal Medicine, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong-Seok Han
- Department of Surgery, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hye Seong Ahn
- Department of Surgery, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Chul Heo
- Department of Surgery, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
47
|
Kim HI, Kim SY, Yu JE, Shin SJ, Roh YH, Cheong JH, Hyung WJ, Noh SH, Park CG, Lee HJ. Contrasting Prognostic Effects of Tumor-Infiltrating Lymphocyte Density in Cardia and Non-cardia Gastric Adenocarcinomas. J Gastric Cancer 2020; 20:190-201. [PMID: 32596002 PMCID: PMC7311218 DOI: 10.5230/jgc.2020.20.e21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/21/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE This study sought to investigate the prognostic significance of tumor-infiltrating lymphocytes (TILs) in relation to tumor location within the stomach. MATERIALS AND METHODS The densities and prognostic significance of TIL subsets were evaluated in 542 gastric cancer patients who underwent gastrectomy. Immunohistochemical staining for CD3, CD4, CD8, forkhead/winged helix transcription factor (Foxp3), and granzyme B was performed. RESULTS Cardia cancer was associated with significantly lower densities of CD8 T-cells and higher densities of Foxp3 and granzyme B T-cells than non-cardia tumors. Multivariate analysis showed that advanced age (hazard ratio [HR], 1.023; 95% confidence interval [CI], 1.006-1.040), advanced T classification (HR, 2.029; 95% CI, 1.106-3.721), lymph node metastasis (HR, 3.319; 95% CI, 1.947-5.658), low CD3 expression (HR, 0.997; 95% CI, 0.994-0.999), and a high Foxp3/CD4 ratio (HR, 1.007; 95% CI, 1.001-1.012) were independent predictors of poor overall survival in cardia cancer patients. In non-cardia cancer patients, total gastrectomy (HR, 2.147; 95% CI, 1.507-3.059), advanced T classification (HR, 2.158; 95% CI, 1.425-3.266), lymph node metastasis (HR, 1.854; 95% CI, 1.250-2.750), and a low Foxp3/CD4 ratio (HR, 0.978; 95% CI, 0.959-0.997) were poor prognostic factors for survival. CONCLUSIONS The densities and prognostic effects of TILs differed in relation to the location of tumors within the stomach. The contrasting prognostic effects of Foxp3/CD4 ratio in cardia and non-cardia gastric cancer patients suggests that clinicians ought to consider tumor location when determining treatment strategies.
Collapse
Affiliation(s)
- Hyoung-Il Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
- Gastric Cancer Center, Yonsei Cancer Center, Seoul, Korea
- Open NBI Convergence Technology Research Laboratory, Severance Hospital, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Yong Kim
- Open NBI Convergence Technology Research Laboratory, Severance Hospital, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Eun Yu
- Open NBI Convergence Technology Research Laboratory, Severance Hospital, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Su-Jin Shin
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Yun Ho Roh
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Korea
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
- Gastric Cancer Center, Yonsei Cancer Center, Seoul, Korea
| | - Woo Jin Hyung
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
- Gastric Cancer Center, Yonsei Cancer Center, Seoul, Korea
| | - Sung Hoon Noh
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
- Gastric Cancer Center, Yonsei Cancer Center, Seoul, Korea
| | - Chung-Gyu Park
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
| | - Hyuk-Joon Lee
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
48
|
Wang M, Huang YK, Kong JC, Sun Y, Tantalo DG, Yeang HXA, Ying L, Yan F, Xu D, Halse H, Di Costanzo N, Gordon IR, Mitchell C, Mackay LK, Busuttil RA, Neeson PJ, Boussioutas A. High-dimensional analyses reveal a distinct role of T-cell subsets in the immune microenvironment of gastric cancer. Clin Transl Immunology 2020; 9:e1127. [PMID: 32377339 PMCID: PMC7200219 DOI: 10.1002/cti2.1127] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/18/2022] Open
Abstract
Objectives To facilitate disease prognosis and improve precise immunotherapy of gastric cancer (GC) patients, a comprehensive study integrating immune cellular and molecular analyses on tumor tissues and peripheral blood was performed. Methods The association of GC patients' outcomes and the immune context of their tumors was explored using multiplex immunohistochemistry (mIHC) and transcriptome profiling. Potential immune dysfunction mechanism/s in the tumors on the systemic level was further examined using mass cytometry (CyTOF) in complementary peripheral blood from selected patients. GC cohorts with mIHC and gene expression profiling data were also used as validation cohorts. Results Increased CD4+FOXP3+ T-cell density in the GC tumor correlated with prolonged survival. Interestingly, CD4+FOXP3+ T cells had a close interaction with CD8+ T cells rather than tumor cells. High densities of CD4+FOXP3+ T cells and CD8+ T cells (High-High) independently predicted prolonged patient survival. Furthermore, the interferon-gamma (IFN-γ) gene signature and PDL1 expression were up-regulated in this group. Importantly, a subgroup of genomically stable (GS) tumors and tumors with chromosomal instability (CIN) within this High-High group also had excellent survival. The High-High GS/CIN tumors were coupled with increased frequencies of Tbet+CD4+ T cells and central memory CD4+ T cells in the peripheral blood. Conclusion These novel findings identify the combination of CD8+ T cells and FOXP3+CD4+ T cells as a significant prognostic marker for GC patients, which also could potentially be targeted and applied in the combination therapy with immune checkpoint blockades in precision medicine.
Collapse
Affiliation(s)
- Minyu Wang
- Upper Gastrointestinal Translational Research Laboratory Peter MacCallum Cancer Centre Melbourne VIC Australia.,Sir Peter MacCallum Department of Oncology The University of Melbourne Melbourne VIC Australia.,Department of Medicine, Royal Melbourne Hospital The University of Melbourne Melbourne VIC Australia.,Cancer Immunology Research Peter MacCallum Cancer Centre Melbourne VIC Australia
| | - Yu-Kuan Huang
- Upper Gastrointestinal Translational Research Laboratory Peter MacCallum Cancer Centre Melbourne VIC Australia.,Sir Peter MacCallum Department of Oncology The University of Melbourne Melbourne VIC Australia.,Department of Medicine, Royal Melbourne Hospital The University of Melbourne Melbourne VIC Australia
| | - Joseph Ch Kong
- Sir Peter MacCallum Department of Oncology The University of Melbourne Melbourne VIC Australia.,Department of Medicine, Royal Melbourne Hospital The University of Melbourne Melbourne VIC Australia
| | - Yu Sun
- Sir Peter MacCallum Department of Oncology The University of Melbourne Melbourne VIC Australia
| | - Daniela G Tantalo
- Cancer Immunology Research Peter MacCallum Cancer Centre Melbourne VIC Australia
| | - Han Xian Aw Yeang
- Cancer Immunology Research Peter MacCallum Cancer Centre Melbourne VIC Australia
| | - Le Ying
- Centre for Innate Immunity and Infectious Diseases Hudson Institute of Medical Research Clayton VIC Australia
| | - Feng Yan
- Australian Centre for Blood Diseases Central Clinical School Monash University Melbourne VIC Australia
| | - Dakang Xu
- Faculty of Medical Laboratory Science Ruijin Hospital School of Medicine Shanghai Jiao Tong University Shanghai China
| | - Heloise Halse
- Cancer Immunology Research Peter MacCallum Cancer Centre Melbourne VIC Australia
| | - Natasha Di Costanzo
- Upper Gastrointestinal Translational Research Laboratory Peter MacCallum Cancer Centre Melbourne VIC Australia
| | - Ian R Gordon
- Statistical Consulting Centre School of Mathematics and Statistics The University of Melbourne Melbourne VIC Australia
| | - Catherine Mitchell
- Department of Pathology Peter MacCallum Cancer Centre Melbourne VIC Australia
| | - Laura K Mackay
- Department of Microbiology and Immunology Peter Doherty Institute for Infection and Immunity University of Melbourne Melbourne VIC Australia
| | - Rita A Busuttil
- Upper Gastrointestinal Translational Research Laboratory Peter MacCallum Cancer Centre Melbourne VIC Australia.,Sir Peter MacCallum Department of Oncology The University of Melbourne Melbourne VIC Australia.,Department of Medicine, Royal Melbourne Hospital The University of Melbourne Melbourne VIC Australia
| | - Paul J Neeson
- Sir Peter MacCallum Department of Oncology The University of Melbourne Melbourne VIC Australia.,Cancer Immunology Research Peter MacCallum Cancer Centre Melbourne VIC Australia.,Department of Pathology The University of Melbourne Melbourne VIC Australia
| | - Alex Boussioutas
- Upper Gastrointestinal Translational Research Laboratory Peter MacCallum Cancer Centre Melbourne VIC Australia.,Sir Peter MacCallum Department of Oncology The University of Melbourne Melbourne VIC Australia.,Department of Medicine, Royal Melbourne Hospital The University of Melbourne Melbourne VIC Australia
| |
Collapse
|
49
|
Maeda S, Nakazawa M, Uchida M, Yoshitake R, Nakagawa T, Nishimura R, Miyamoto R, Bonkobara M, Yonezawa T, Momoi Y. Foxp3 + Regulatory T Cells Associated With CCL17/CCR4 Expression in Carcinomas of Dogs. Vet Pathol 2020; 57:497-506. [PMID: 32347186 DOI: 10.1177/0300985820921535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Regulatory T cells (Tregs) can be targeted in cancer immunotherapy. A previous study has shown that the chemokine CCL17 and the receptor CCR4 play a role in Treg recruitment in canine urothelial carcinoma. Here, we describe the association of tumor-infiltrating Tregs with CCL17/CCR4 expression in dogs with other carcinomas. In this study, we investigated 23 dogs with mammary carcinoma, 14 dogs with oral squamous cell carcinoma, 16 dogs with pulmonary adenocarcinoma, and 8 healthy control dogs. Immunohistochemistry showed that Foxp3+ Tregs and CCR4+ cells were increased in the tumor tissues of mammary carcinoma, squamous cell carcinoma, and pulmonary adenocarcinoma, when compared with the healthy tissues. The number of CCR4+ cells was associated with that of Foxp3+ Tregs. Double immunofluorescence labeling confirmed that most tumor-infiltrating Foxp3+ Tregs expressed CCR4. In vitro, canine carcinoma cell lines expressed CCL17 mRNA. Quantitative RT-PCR (reverse transcriptase-polymerase chain reaction) showed that CCL17 mRNA expression in canine carcinomas was increased approximately 10- to 25-fold relative to that of healthy tissues. These results suggest that the CCL17/CCR4 axis may drive Treg recruitment in a variety of canine carcinomas. CCR4 blockade may be a potential therapeutic option for tumor eradication through Treg depletion.
Collapse
Affiliation(s)
- Shingo Maeda
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Maho Nakazawa
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Mona Uchida
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryohei Yoshitake
- Department of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takayuki Nakagawa
- Department of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryohei Nishimura
- Department of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryo Miyamoto
- Department of Veterinary Clinical Pathology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Makoto Bonkobara
- Department of Veterinary Clinical Pathology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Tomohiro Yonezawa
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Momoi
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
50
|
Chang WL, Yang WC, Zeng XY, Li CG, Xiong Z, Wang T, Zhang RZ, Tao KX, Zhang P. Elevated preoperative platelet-to-lymphocyte ratio predicts poor prognosis of patients with primary gastrointestinal stromal tumor. BMC Gastroenterol 2020; 20:124. [PMID: 32321434 PMCID: PMC7178594 DOI: 10.1186/s12876-020-01275-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/15/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) are considered to reflect the systemic inflammatory response and clinical prognosis. However, the independent prognostic values of the NLR and PLR for patients with gastrointestinal stromal tumor (GIST) remain debatable. This study aims to evaluate the prognostic value of preoperative NLR and PLR in GIST patients. METHODS We retrospectively reviewed all GIST patients diagnosed and surgically treated at Union Hospital between 2005 and 2018. The preoperative NLR and PLR were calculated to evaluate recurrence-free survival (RFS) and overall survival (OS) by Kaplan-Meier analysis. Univariate and multivariate Cox regression analyses were performed to estimate the independent prognostic values. RESULTS The median follow-up time was 49 months (interquartile range, 22-74 months). The preoperative PLR was significantly increased in the GIST patients with intermediate and high tumor risks. Increases in the NLR (≥2.34) and PLR (≥185.04) were associated with shorter RFS and OS (P < 0.01). Moreover, the multivariate analysis revealed that elevated PLR was an independent factor for shorter RFS (hazard ratio [HR]: 3.041; 95% confidence interval [CI]: 2.001-4.622; P < 0.001) and OS (HR: 1.899; 95% CI: 1.136-3.173; P = 0.014). CONCLUSIONS The preoperative PLR is a potential biomarker of GIST and is related to the clinical outcome. An elevated preoperative PLR predicts poor prognosis of patients with primary GIST after complete surgical resection.
Collapse
Affiliation(s)
- Wei-Long Chang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of General Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wen-Chang Yang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiang-Yu Zeng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cheng-Guo Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhen Xiong
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rui-Zhi Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kai-Xiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Peng Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|